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ABSTRACT 

Sastry, Vishwas M.S.E., Department of Electrical Engineering, Wright State 

University, 2008. Design of CMOS RF Front End Receiver in 0.18μm technology. 

An RF front end receiver system refers to the analog down conversion stages of the 

wireless communication system. The Digital base-band signals cannot be transmitted 

directly through wireless channels due to the properties of electromagnetic waves. The 

baseband signals need to be converted to analog through a digital-to-analog converter 

(DAC), up converted to higher frequency using an up conversion mixer and then 

transmitted through the channel. The received signals are down converted to base band 

frequency and then converted to digital again using the analog to digital converter 

(ADC). The processes which the analog signal undergoes at the RF front end include 

amplification, mixing and filtering. 

The RF Front End receiver developed in this thesis makes use of a differential low noise 

amplifier (LNA) with center frequency at 1.75GHz.The incoming RF signal undergoes 

amplification by the LNA and is down converted by a Gilbert double balanced mixer to a 

first Intermediate frequency (IF) of 250 MHz A second Gilbert Double Balanced Mixer 

down converts to a low second IF of 50 MHz The local oscillator signal for the mixer is 

generated using a voltage controlled ring oscillator (VCO).The entire front end of the 

receiver was created in Cadence virtuoso schematic editor using CMOS 0.18μm 

technology. The total power consumed by the RF Front End Receiver is 113.36 mW. 
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1                                                                                                             INTRODUCTION 

1.1 Overview 

Wireless Communication Systems market has seen resurgence especially in the last 

decade. The demand for High Frequency Transceivers has been explosive and 

unanticipated. Wireless products demands low-cost, low-power high speed and high 

volume. With the improvement of integrated circuit (IC) technology, the size of 

electronic components like transistors has consistently shrunk. Following the scale down 

in channel length, there has been an improvement in unity gain cut off frequency (ft) and 

maximum operating frequency (fmax) which shows the potential of CMOS at the front end 

of a RF system. The decreasing supply voltages are making the design of Analog and RF 

circuits more challenging. The RF circuits are usually dominated by passive components 

(like resistors, capacitors and inductors), the size of which does not scale proportionately. 

As a result, the chip area does not shrink to the same extent. Hence there is a need to 

build a complete transceiver on a single CMOS chip to minimize the silicon area as well 

as the cost. Efforts are being made to bring the digital processing functions as close to the 

front end as possible but still most of the RF Front-end components like the Low Noise 

Amplifier and the Mixer are still designed in the Analog Domain. 
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Rapid Advancements have been made at the component level as the channel length 

continues to shrink, line width reduces, and the transistors occupy less silicon area and 

switch faster. However not so much has happened at the system level For example, the 

super heterodyne receiver [14] architecture which was invented decades ago is still the 

most popular architecture in modern RF Receivers. 

1.2 Receiver Concepts. 

1.2.1 Basics. 

The main purpose of the receiver is to accept the signals through the antenna from the 

transmitter and perform various tasks such as amplification, mixing, demodulation and 

then pass it on for digital signal processing. Before seeing what are the different types of 

receiver architectures and its various components, let’s cover some concepts related to 

any receiver: selectivity and sensitivity. These two parameters affect the performance of 

the receiver to a large extent. In addition to these noise performance of individual blocks, 

linearity, gain and image rejection are crucial in the receiver design. 

1.2.2 Sensitivity. 

Sensitivity of a receiver is defined as the minimum amount of the signal which can be 

detected at the input such that there is adequate signal to noise ratio at the receiver output 

at a given instance. It determines how far the receiver can be placed from the transmitter. 

Sensitivity is specified in terms of dBm( decibels relative to 1 mili watt).Overall 

sensitivity is related to the noise figure of the receiver which is due to noise from the 

individual blocks as well as the gain from the individual blocks. Noise Figure is defined 

as the ratio between the SNR at the input and the SNR at the output of the circuit. 
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F≡ 𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰 𝑺𝑺𝑺𝑺𝑺𝑺
𝑶𝑶𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰 𝑺𝑺𝑺𝑺𝑺𝑺

                                                          (1.1) 

NF≡10log (F) in dB                                           (1.2) 

Where F is the noise factor and NF is the noise figure of the system. 

Noise Figure is usually calculated with respect to a specific source impedance and noise 

temperature. In wireless communication systems, the standard values for a source 

impedance, Rs = 50Ω and at temperature, T=293 K. For an individual block like an 

amplifier or mixer, the total noise figure can be derived in terms of the Gain and output 

noise added by the system. G is the power gain of the amplifier with input signal power 

Pinput and input noise power Ninput. The output signal power is GPinput and output noise 

power is given by GNinput + Nadded where Nadded is the noise added externally. The noise 

figure of the amplifier can be calculated as follows:- 

𝑭𝑭 = �𝑷𝑷𝒊𝒊𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰 
𝑺𝑺𝒊𝒊𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰

� /( 𝑮𝑮𝑷𝑷𝒊𝒊𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰 
𝑮𝑮𝑺𝑺𝒊𝒊𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰 +𝑺𝑺𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂

)                             (1.3) 

F = 1+ (𝑺𝑺𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂/𝑮𝑮𝑺𝑺𝒊𝒊𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰 ) = 1+(𝑺𝑺𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂,𝒊𝒊𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰/𝑺𝑺𝒊𝒊𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰)                 (1.4) 

Where Nadded, input is the input referred added noise from the amplifier. 

1.2.3 Noise Figure. 

The noise figure of the overall receiver can be derived by the calculating the noise figure 

of the individual cascaded blocks in the receiver chain. The noise figure of the entire 

cascaded chain depends on the noise figure of the individual blocks as well as the gain 

distribution. For a receiver chain consisting of 2 blocks cascaded with proper matching, 

the total output noise is given by 
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Pnoise,output = F1Pnoise,inputG1G2 +(F2-1)Pnoise,inputG2                  (1.5) 

Where G1 and G2 are the power gains of the individual blocks with corresponding noise 

figures F1 and F2. 

The output SNR of the cascaded blocks is given by 

SNR output = 
𝐒𝐒𝒐𝒐𝑰𝑰𝑰𝑰

𝐏𝐏𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧,𝐧𝐧𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨 
 = 𝑺𝑺𝒊𝒊𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑮𝑮𝟏𝟏𝑮𝑮𝟐𝟐

�𝐅𝐅�𝟏𝟏𝐏𝐏𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧,𝐧𝐧𝐧𝐧𝐨𝐨𝐨𝐨𝐨𝐨𝐆𝐆𝟏𝟏𝐆𝐆𝟐𝟐+(𝐅𝐅𝟐𝟐−𝟏𝟏)𝐏𝐏𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧,𝐧𝐧𝐧𝐧𝐨𝐨𝐨𝐨𝐨𝐨𝐆𝐆𝟐𝟐
      (1.6) 

Total cascaded noise figure can be calculated as 

F = 𝑺𝑺𝑺𝑺𝑺𝑺𝒐𝒐𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰
𝑺𝑺𝑺𝑺𝑺𝑺𝒊𝒊𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰

 = F1+
(𝑭𝑭𝟐𝟐−𝟏𝟏)
𝑮𝑮𝟏𝟏

       (1.7) 

From the above equation it can be seen that the total noise figure of the cascaded blocks 

depends on the noise figures of the individual blocks as well as the gain of the first block. 

If the gain G1 is large then the noise from the succeeding blocks will have less effect on 

the overall noise figure. Hence the first block of the receiver (usually LNA) must have 

low noise figure and enough gain. 

1.2.4 Selectivity 

The performance of the receiver in terms of sensitivity to the required signal was 

discussed but the presence of interfering or unwanted signals was ignored. Selectivity is 

the measure of performance of the receiver to separate the wanted or required signals 

from those which are not required. Selectivity is very important when the receiver needs 

to choose between a weak desired signal and a strong neighboring interfering/undesired 

signal. There is no quantitative way how the selectivity of a receiver can be measured but 
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usually specified as blocking masks used in filtering, nonlinearity and phase requirements 

in the circuit. The two tone test is one of the other ways to test the selectivity of the 

receiver. 

1.3 Receiver Architectures. 

The main purpose of the RF receiver is to perform certain tasks on the received signal 

like amplification, filtering, demodulation and analog to digital conversion with adequate 

signal to noise ratio (SNR) before it undergoes digital signal processing. The received 

signal can be strong or extremely weak; also a strong blocking signal might be present 

with certain offset from the wanted frequency which needs to be rejected. These factors 

affect the dynamic range, sensitivity blocking and inter modulation performance. The 

receiver architecture affects the requirements and the performance. Another critical 

criterion in the receiver architecture is the number of components (both external and 

integrated) which directly determine the cost. In addition external filters might be present 

which require a low impedance level to drive them. So the final aim would be to reduce 

the number of such filters and design a receiver with low power consumption. 

The most common receiver architectures are super heterodyne, direct conversion, low IF, 

and wideband IF. The front end of the receiver topology used in this thesis is that of the 

low IF Architecture. 

1.3.1 Direct Conversion Architecture 

The direct conversion receiver topology is also called the zero-IF or the homodyne 

Architecture [1]. First published in 1924 by F. M. Colebrook [2] and practical 

Implementations were introduced in 1947[3].The block diagram of a typical direct-



6 
 

conversion receiver is as shown in the figure. The RF signal after the antenna is pre 

filtered so as to attenuate the signals outside the reception band. Then the signal is 

amplified through a low noise amplifier (LNA) and then it is down converted to zero 

intermediate frequency (IF).In some systems like CDMA, an external inter stage filter is 

used after the LNA attenuate the transmitter signal leakage and to relax the linearity 

requirements of the succeeding mixer[4][5]. For Frequency and Phase modulated signals, 

down conversion should be performed in quadrature to prevent signal sidebands from 

aliasing with one another [6]. Because the Local Oscillator frequency is centered in the 

desired channel, useful signal and noise occupy both the upper and lower sidebands. The 

low-pass filter with a bandwidth of a half of the symbol rate removes adjacent channels at 

baseband. Since filtering is performed at low frequencies the filters can be realized on 

chip. From the point of power consumption the direct conversion receiver architecture is 

very good. Here the RF signal is converted directly to zero intermediate frequency (IF), 

the image consists of the channel itself. Therefore this architecture eliminates the image 

reject problem existing in other receiver architectures. The Direct Conversion Receiver 

has a few drawbacks like high sensitivity to flicker noise and dc offsets [6][7]. 
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Fig1.1: Direct Conversion Receiver Architecture 

1.3.2 Low IF Architecture. 

The Basic Block diagram of low-IF receiver is similar to that the direct conversion 

receiver. The low IF receiver down converts the input signal directly to low IF frequency 

which is above dc but lower than half of the reception bandwidth. Single stage down 

conversion is performed in quadrature and the low IF receiver does not need an external 

intermediate filter. In comparison to the direct conversion receiver, the low IF receiver is 

not affected by dc offset problems and the flicker noise is less problematic. The low IF 

receiver architecture requires good matching for image rejection [8]. The choice of IF 

frequency is another critical decision. A very low IF complicates the requirements of the 

frequency synthesizer [9]. Higher IF frequency increases the complexity and current 

consumption of the IF stages. 
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Fig 1.2: Low IF Receiver Architecture 

1.3.3 Wideband IF Architecture. 

In the Wideband Receiver Architecture as shown in the figure, the signal is down 

converted in two phases to zero frequency[10][11][12]. The whole reception band is 

down converted with quadrature mixers such that a large bandwidth at IF is maintained. 

Any up converted frequency components are removed using a simple low pass filter and 

then the signals are passed through to a second set of mixers [10]. Second Stage of down 

conversion to zero IF, the wanted channel is selected by adjusting the frequency of the 

second local oscillator. The channel filtering is done at baseband and discrete filters are 

avoided. The image rejection is achieved during the second down converting step. 

Compared to direct conversion receiver, wideband IF receiver has several advantages. 

Firstly, there are no local oscillators which operate at the same frequency as the receiver 

RF signal which minimizes the problems related to time varying dc offsets. Channel 

selection performed by tuning only the frequency of the second LO and reduction in 

phase noise of the first LO can be achieved [10]. Flicker noise of the first mixer is not 



9 
 

very critical however the first stage down conversion should be performed accurately so 

as to not affect the image-reject capability and the sensitivity of the receiver [13]. 

Multistage realization leads to increased power consumption.  

 

 

 

 

Fig 1.3: Wideband IF Receiver Architecture. 

1.3.4 Super Heterodyne Receiver 

One of the most popular forms of receiver in use today is the super heterodyne receiver or 

superhet radio. Used in a variety of applications ranging from broadcast receivers to 

mobile radio communication systems. It was first developed at the end of First World 

War by an American named Edwin Armstrong [14]. The main theory behind the superhet 

is the received signal enters one of the inputs of the mixer, a locally generated signal 

from the oscillator to the other input. As a result of the mixing of the two signals, new 

signals are generated. The resulting signal is applied to the intermediate frequency 

amplifier (of fixed frequency) and filter combination. The signals that are down 



10 
 

converted and fall within the pass band of the IF amplifier will be amplified and passed 

on to the next stage and those outside the pass band are rejected. Tuning is accomplished 

by varying the frequency of the local oscillator. What makes this process advantageous is 

that very selective fixed frequency filters can be used which outperform the variable 

frequency counterparts. The intermediate frequency is normally a lower frequency than 

the incoming signal and thus enables a better performance and less expensive. 

 

 

Fig 1.4: Super Heterodyne Receiver Architecture. 

The block diagram of a basic superhet is as shown in the figure. The RF Signal enters the 

front end circuitry from the antenna. The front end unit contains tuning for the superhet to 

remove the image signal and often includes an RF amplifier to amplify the signals before 

they enter the mixer. The level of amplification is chosen such that it does not overload 

the mixer when strong signals are present, but enables the signals to be amplified 

efficiently to ensure a good signal to noise ratio is achieved. The Tuned and Amplified 

signal is applied to one port of the mixer while the local oscillator signal is applied to the 

other port of the mixer. The local oscillator signal may be generated from variable 

frequency oscillator which can be tuned by varying capacitor, a voltage controlled 
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oscillator which can be tuned by varying the control voltage or by usage of a frequency 

synthesizer which enables greater stability and accuracy. The signals out of the mixer 

enter the IF stages. The IF stages contain most of the amplification in the receiver and as 

well as the filtering which separate the signals of one frequency from that of the other. 

Filters may consist simply of LC tuned circuits to provide inter stage coupling or might 

be there for a different requirement. The Signals from the IF stage needs to be 

demodulated; depending upon the type of transmission different types of demodulators 

are required. A Receiver may have a particular type of demodulator or variety of 

demodulators for the corresponding transmitted signals. The output of the demodulator is 

the recovered audio [28].  

1.3.5 RF Front End Systems 

The RF front end system refers to the analog front end of the wireless communication 

system.  Digital base-band signals cannot be transmitted directly through wireless 

channels due to the properties of electromagnetic waves. As a result of which these 

signals need to be converted to analog through a digital-to-analog converter, up converted 

to higher frequency using an up conversion mixer and then transmitted through the 

channel. The received signals are down converted to base band frequency and then 

converted to digital again using the analog to digital converter. The processes which the 

analog signal undergoes at the RF front end include amplification, mixing and filtering 

[30]. From an RF Front end point of view, the type of receiver architecture is not of much 

difference. The LNA is a requirement in all receiver topologies and mixers are present in 

all receiver architectures. Hence the low noise amplifier and the mixer design discussed 

in this thesis are applicable for most of the receiver designs. The mixer is the immediate 
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subsystem after the LNA unless the load of the LNA is an external filter in which the 

performance of the LNA needs to be measured individually and the output of the LNA 

needs to be matched to certain impedance. 

1.4 Thesis Organization 

Chapter 2 discusses about the design aspects of the Low Noise Amplifier, different 

topologies and the low noise amplifier used in this work which is the Cherry Hooper 

amplifier. Chapter 3 gives an overview of the mixer design considerations, its topologies 

and the mixer used in this thesis namely the Gilbert mixer along with the LC filter used. 

Chapter 4 throws some light on the voltage controlled ring oscillator used in this work. 

Chapter 5 includes the simulation and results of this thesis work and Chapter 6 

summarizes the entire work ending with a short note on the future work which can be 

done. 
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2                                                                                              LOW NOISE AMPLIFIER 

2.1 Design Aspects. 

2.1.1 Noise Figure 

The low noise amplifier is the first stage in the front end of the receiver. The low noise 

amplifier is the first amplifying stage of the receiver and it sets the minimum noise figure 

of the receiver in accordance to the Friis’ equation. Friis’ formula is used to calculate the 

total noise figure of a cascade of stages [15], where each stage has its own noise factor 

and gain. 

𝑭𝑭𝑰𝑰𝒐𝒐𝑰𝑰𝒂𝒂𝒕𝒕 =  𝑭𝑭𝟏𝟏 +
𝑭𝑭𝟐𝟐 − 𝟏𝟏
𝑮𝑮𝟏𝟏 

+
𝑭𝑭𝟑𝟑 − 𝟏𝟏
𝑮𝑮𝟏𝟏𝑮𝑮𝟐𝟐

+
𝑭𝑭𝟒𝟒 − 𝟏𝟏
𝑮𝑮𝟏𝟏𝑮𝑮𝟐𝟐𝑮𝑮𝟑𝟑 

+  … +
𝑭𝑭𝑰𝑰 − 𝟏𝟏

𝑮𝑮𝟏𝟏𝑮𝑮𝟐𝟐 …𝑮𝑮𝑰𝑰−𝟏𝟏
(2.1) 

Where Fn and Gn are the noise factor and available power gain respectively of the n-th 

stage. 

In a cascaded system which is a receiver where the low noise amplifier (LNA) is the first 

block. The overall noise figure is given by 

𝑭𝑭𝒓𝒓𝒂𝒂𝒓𝒓𝒂𝒂𝒊𝒊𝒓𝒓𝒂𝒂𝒓𝒓 =  𝑭𝑭𝒕𝒕𝑰𝑰𝒂𝒂 +
 𝑭𝑭𝒓𝒓𝒂𝒂𝒓𝒓𝑰𝑰 − 𝟏𝟏
𝑮𝑮𝒕𝒕𝑰𝑰𝒂𝒂

(2.2) 

Where Frest is the overall noise factor of the subsequent stages. The overall noise figure, 

Freceiver,is dominated by the noise figure of the low noise amplifier Flna provided the gain 

is sufficiently high. 
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2.1.2 Linearity 

Linearity is defined is the region of operation where the output signal varies 

proportionally to the input signal. Linearity can be measured in several ways in terms on 

1dB compression point as well as 3rd order intercept point (IP3). 

2.1.2.1 1 dB compression point. 

1 dB compression point is defined as input or output signal level where the gain is 

decreased by 1 dB from its ideal value. It is also used to estimate the largest input the 

circuit can handle. 

 

Fig 2.1 Graph showing the 1dB compression point. 
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2.1.2.2 Third order intercept point (IP3) 

Third order intercept point is the point where the fundamental and the third order 

response intercept each other. Two signals, one which is the desired signal and the other 

which is the undesired interfering signal are applied to the circuit and the collaborated 

effect of these is known as intermodulation. 

 

 

Fig 2.2 Graphical representation of the Third-Order Intermodulation Intercept 

Point (IIP3). 

The LNA should provide enough gain to overcome the noise as well as not overload the 

following stages which might degrade the sensitivity of the receiver. The bandwidth of 

the LNA should be large enough to cover the desired signal band but should be narrow 

enough such that it should pre filter some on the unwanted signals. The linearity of the 

receiver front end depends of the subsequent stages after the LNA but however the LNA 
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should have some linearity in order to prevent inter modulation tones in the reception 

band. In case a filter is preceding the LNA, Impedance matching is required otherwise the 

properties of the filter will degrade the input to the LNA.  

2.2 Topology 

Another important design criterion for LNA is the type of input which can be either 

single ended or differential structure. The single ended topology occupies less area on 

chip, providing better gain and noise figure for the same current as its differential 

counterpart. Single ended structure also eliminates the need for a balun (a passive 

electronic device which converts between  balanced and unbalanced electrical signals) 

between the antenna and the LNA. However differential topology gives better rejection to 

substrate, supply noise and unwanted signals. The single ended LNA which uses 

inductors consume substantial amount of chip area in comparison to the differential 

design which might contain one or no inductors. In the structure of LNA’s there are only 

one or two stacked transistors and  with the supply voltages going down the performance 

can still be achieved. 

2.2.1 Single Ended Topology. 

Single Ended LNA’s are typically used in narrowband wireless applications. Inductively 

degenerated common source or common gate LNA topologies are the ones which are 

popularly used. Inductively degenerated common source (IDCS) amplifier has the best 

noise figure and provides both voltage as well as current gain thereby reducing the noise 

contribution to the succeeding stages. In Inductive source degeneration impedance 

matching is achieved without the use of a physical resistor which is advantageous as a 
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resistor would add to the LNA’s noise. The degeneration inductance has low impedance 

at low frequency, hence the topologies using inductive degeneration are more linear 

compared to those using resistive degeneration for the same biasing current. Some of the 

common source amplifiers utilize cascode connection. This type of topology reduces 

miller effect and improves LNA stability. 

 

Fig 2.3: Schematic of a single ended LNA [22] 

 Common Gate LNA is also one of the popular topologies used in wireless 

communications. The common gate topology does not suffer from the miller effect. In 

CG stage the noise performance is independent of the operating frequency hence it is a 

suitable to use this configuration at higher frequencies. 
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2.2.2 Differential mode topology. 

Most of today’s high performance wide-band amplifiers employ the differential topology. 

Although the single ended LNA topology consumes less power as well as less chip area 

sometimes at twice the cost the differential architecture is preferred. Noise figure is a 

critical factor for the low noise amplifier; the differential design has better noise 

performance due to the ability to reject common mode noise. Linearity wise the 

differential LNA has a better performance because the circuit is symmetrical and natural 

ability to cancel out the even order distortions. 

 

Fig 2.4 A fully differential tunable LNA [16] 

 Differential topology is not only beneficial for sensitive signals but even for noisy 

signals. The total current drawn from the power supply is more or less constant and 

alternates between the two symmetrical branches of the differential amplifier which 

maintains a constant load to the power supply thereby reducing the noise generated in the 



19 
 

power supply. Due to doubling of the devices in differential topology, the input noise 

voltage is √2 times in comparison to that in the single ended structure. 

2.3 Cherry Hooper Amplifier. 

One of the main purposes for using the Cherry Hooper amplifier [18] is that it provides 

high gain bandwidth product without the need of extra supply voltage or chip area needed 

for inductively peaked gain stages which use active or passive inductors. The Cherry 

Hooper amplifier uses local feedback in the drain network to improve speed. A 

modification of the Cherry Hooper amplifier with source follower feedback and an 

additional feedback resistor to enhance the gain is used as the main amplifier. The 

modified Cherry Hooper is designed using NMOS FET’s only as they are faster 

compared to the PMOS transistors and PMOS transistors provide unwanted capacitance 

at the output node of the amplifier. A CMOS implementation of Cherry Hooper amplifier 

is shown in the figure. 
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Fig 2.5: A CMOS Cherry Hooper Amplifier 

The Transistors M1 and M2 form the input pair which is also known as the trans-

conductance stage that converts input voltage into current. The Resistor Rf provides 

feedback between drain and gate of transistor M3 and M4 respectively. The current mode 

signal is then amplified and converted back to voltage by the second pair of transistors 

M3 and M4 which form the trans-impedance stage.  

In order to improve the gain of the amplifier without a corresponding decrease in 

bandwidth the load resistor Rd in the conventional Cherry Hooper amplifier is split into 

two resistors R1 and R2.Transistors M5 and M6 provide source follower feedback through 

the Resistor Rf. 
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Fig 2.6: A Modified Cherry Hooper Amplifier with Source Follower[19]. 

The Cherry Hooper Amplifier topology allows high speed operation but faces difficulties 

at very low voltages.I1 is equal to (Iss1+Iss2)/2 and Iss1/2 must flow through feedback 

resistor Rf. Therefore the minimum voltage required by the circuit is:- 

VDD, min = VI1+ 𝑰𝑰𝒓𝒓𝒓𝒓𝟏𝟏
𝟐𝟐

. Rf + VGS 3, 4 + VIss2 (2.3) 

Here VI1 and VIss2 represent the minimum voltages across I1 and Iss2 respectively. These 

factors limit the voltage gain of the circuit. To improve the gain-headroom trade off, the 

modified Cherry Hooper topology is used. The differential mode half circuit [20] of the 

modified Cherry Hooper amplifier along with the most significant parasitic elements is 

shown in the figure.  



22 
 

 

Fig2.7: Differential Mode Half Circuit Small Signal Model of modified Cherry 

Hooper Amplifier. 

The low frequency small signal gain of the circuit is given by 

𝑽𝑽𝒐𝒐𝑰𝑰𝑰𝑰
𝑽𝑽𝒊𝒊𝑰𝑰

 = 
�𝒈𝒈𝒎𝒎𝟏𝟏(𝑺𝑺𝟏𝟏+𝑺𝑺𝟐𝟐)� 𝟏𝟏

𝒈𝒈𝒎𝒎𝒎𝒎
+𝑺𝑺𝒇𝒇��

�𝟐𝟐� 𝟏𝟏
𝒈𝒈𝒎𝒎𝟑𝟑

+𝑺𝑺𝟏𝟏��
   (2.4) 

The gain of the modified Cherry Hooper Amplifier is significantly greater than the circuit 

without R2 or the source follower feedback. 
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Fig2.8: Modified Cherry Hooper amplifier with biasing circuitary. 

The topology has certain constraints. The major one being the amount of voltage 

headroom available in CMOS technologies which will become lesser as line width scales 

down and the power supply drops. The ratio of R2/R1 cannot be made extremely large as 

the DC voltages at nodes n3 and n4 must be high enough to drive the next stage in case of 

cascading several amplifiers. A critical path exists between the power supply and the 

ground hence it is important to keep all the transistors in saturation. The critical path 

includes the voltage drop over R1, the gate-to-source voltage of transistor M5 (Vgs, M5), the 

voltage drop over Rf, the gate-to-source voltage of transistor M3 (Vgs, M3) and finally the 

drain-to-source voltage of biasing transistor Mc3 (Vds, Mc3).For 0.18um CMOS technology, 

Vth for nMOS transistor is around 0.5 V. For a overdrive voltage Vgs−Vth of 0.2 V, Vgs, M3 

and Vgs, M5 must be equal to 0.7 V. Vds, Mc3 should be larger than the saturation voltage, 
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which approximately equals the overdrive voltage Vgs-Vth of 0.2 V. As a result of which 

the voltage drop consumed by the transistors is almost 1.6 V. In a process using a power 

supply of 1.8 V, only 0.2 V of headroom is left for the resistors. Therefore, the current 

through these resistors is usually low and the resistance values should be chosen to be as 

small as possible within the constraint of high gain. The Ratio of R2/R1 has influence on 

the bandwidth as well as on the gain of the amplifier. A higher ratio ensures a large gain 

however it is less beneficial for bandwidth, hence the ratio should be one which is 

optimized for both gain and bandwidth. 
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3                                                                                                                                MIXER 

3.1 Theory 

Mixers are used for frequency translation i.e. they are used to convert the RF signal 

(incoming signal after it is amplified by the LNA) to an intermediate frequency (IF) by 

multiplying it with a local oscillator (LO) signal. The block level representation is show 

in figure 3.1. The intermediate frequency can be the sum of frequencies of the two input 

signals or can be the difference between the two signal frequencies. 

 

Fig 3.1 Block diagram of a mixer. 

Suppose we consider the input signals are sinusoidal signals represented as [21]  

V1(t) = A1sin2πf1t 

V2(t) = A2sin2πf2t 
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We have 

V1(t)*V2(t) = 𝑨𝑨𝟏𝟏𝑨𝑨𝟐𝟐
𝟐𝟐

 [cos2π (f1-f2) t-cos2π (f1+f2) t] (3.1) 

Where (f1+f2), (f1-f2) are the sum and the difference of the frequencies respectively. 

This is the simplest form of multiplication by the mixer. Different mixers employ 

different multiplication techniques which gives rise to various terms contain the sum of 

the two frequencies, the difference of the two frequencies, squares of the input 

frequencies and other weak signals which act as noise to the desired signal, All signals 

other than the desired signal need to be filtered out using various filtering techniques. 

3.2 Design Considerations. 

While designing a mixer, various parameters must be taken under consideration and there 

might be a tradeoff between one or two parameters in order to meet the design 

requirements. Impedance matching, conversion gain, noise figure, linearity, isolation and 

power consumption are few of the important ones. 

3.2.1Impedance matching. 

The super heterodyne receiver has an off chip image reject filter between the LNA and 

the mixer. The mixer input is connected to an off chip component should have an 

impedance of 50Ω in order to avoid reflections on the transmission line between the 

mixer and the image reject filter. The low IF and zero IF receivers have the output of the 

LNA connected directly to input of the mixer and there is no connection going off chip, 

hence matching is not required. On chip connections are much smaller than the 
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wavelength of the input signal as a result of which reflections are not as big as a problem 

compared to when they go off chip. 

Similarly the output impedance of the mixer needs to be matched in case of a connection 

going off chip. An output buffer can be added in case impedance matching has to be 

provided. 

3.2.2 Conversion Gain 

Conversion gain represents the efficiency with which the RF signal transposes to the IF 

frequency. By definition, it is the ratio of desired IF output to RF input. This ratio can be 

expressed in terms of voltage or power and is usually expressed in dB. 

𝑽𝑽𝒈𝒈𝒂𝒂𝒊𝒊𝑰𝑰 = 𝟐𝟐𝟐𝟐𝐥𝐥𝐧𝐧𝐥𝐥(𝑽𝑽𝒐𝒐𝑰𝑰𝑰𝑰
𝑽𝑽𝒊𝒊𝑰𝑰 

)  Or 𝑷𝑷𝒈𝒈𝒂𝒂𝒊𝒊𝑰𝑰 = 𝟏𝟏𝟐𝟐 𝐥𝐥𝐧𝐧𝐥𝐥 �𝑽𝑽𝒐𝒐𝑰𝑰𝑰𝑰
𝑽𝑽𝒊𝒊𝑰𝑰 

� (3.2) 

Conversion gain is a very important parameter because it affects the linearity and noise 

figure of the overall receiver. While calculating of the overall input noise figure of the 

receiver, the noise from the stages following the receiver will be attenuated by the gain of 

the mixer or amplified by its loss. The conversion gain also affects linearity as the signal 

level to the succeeding stages will change according to the gain or loss of the mixer. 

3.2.3 Noise figure. 

The measure of input noise corruption relative to the output noise corruption is called the 

noise factor. The noise factor when measured in decibels is known as noise figure 

(NF).Noise figure is given by 

𝑺𝑺𝑭𝑭 = 𝟏𝟏𝟐𝟐 𝐥𝐥𝐧𝐧𝐥𝐥 � 𝑺𝑺𝑺𝑺𝑺𝑺𝒊𝒊𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰
𝑺𝑺𝑺𝑺𝑺𝑺𝒐𝒐𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰

�  (3.3) 
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Where 𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  and 𝑆𝑆𝑆𝑆𝑆𝑆𝑜𝑜𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  are the signal-to-noise ratio at the input and output 

respectively. 

3.2.4 Linearity 

Linearity of a circuit can be measured in several ways. The 1 dB compression point and 

the Input third order intercept point (IIP3) help in defining the linearity of the mixer. The 

gain of the mixer increases linearly according to the input signal applied but beyond a 

certain point the gain of the mixer decreases and the point where the gain drops by 1 dB 

is called the 1 dB compression point. After the one dB compression point the linearity of 

the circuit is no longer valid. The third order intercept point indicates how well the mixer 

performs in the presence of nearby signals. This is mainly to understand the inter 

modulation distortion. 

3.2.5 Isolation. 

Port-to-Port isolation is very important in mixers. The LO-to-RF leakage is the most 

common problem in receivers. When the LO signal is very large, a significant amount 

may leak back to the RF input of the mixer causing a leakage back to the front end of the 

receiver. An LO-to-IF leakage degrades the performance of the stages following the 

mixer. RF-to-IF leakage also exists in certain receiver architectures which lead to 

distortions at the output. 

3.2.6 Power. 

For the mixer to function properly, the LO signal applied at the LO input must be 

sufficiently large. There is a tradeoff between the LO power and the conversion gain 
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which can be determined at a reasonable LO voltage. The 1 dB gain compression input 

voltage also needs to be determined which requires a suitable amplitude of LO signal. 

3.3 Mixer Topologies. 

3.3.1 Single Balanced Mixers 

A mixer with a single ended RF signal as input is called a single balanced mixer. The 

trans conductance transistor acts as a linear voltage-to-current converter i.e. VRF to 

variation in drain current of the transistor. The differential pair act as switches and are 

driven by the LO signals which are in anti-phase. When the LO signal is a square wave, 

the LO amplitude must be chosen such that during operation only one transistor is 

saturated while the other is in cutoff region. An active or passive load converts the 

current to voltage at the output. Source Degeneration can be used to provide better 

linearity. Single balanced mixers are very susceptible to noise in the local oscillator (LO) 

signal and hence this configuration is rarely used. Its main drawback is the LO-IF feed 

through. The local oscillator signal could leak into the IF signal if the IF is not much 

lower than the LO frequency. The low pass filtering following the mixing stage may not 

suppress the LO signal completely without adding noise to the IF signal [1] (as the LO 

and IF frequencies are close to one another). 
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Fig 3.2 Single Balanced Mixer. 

3.3.2 Double Balanced Mixers 

Double balanced mixers are essentially two single-balanced circuits with the RF input 

transistors connected in parallel and the switching transistor pairs (or LO) connected in 

anti parallel. The double balanced structure provides high degree of LO-IF isolation and 

eases the job of filtering at the output [17]. This configuration is less susceptible to noise 

because of the differential RF signal. This topology results in zero LO terms at output 

while the converted signal is doubled at the output. This is also popularly known as the 

Gilbert cell mixer. 
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Fig 3.3 Double Balanced Mixer. 

3.4 Gilbert Mixer. 

The Gilbert cell is the most popular topology of double balanced mixers. It has two pairs 

of transistors connected in parallel which provides the double balanced structure which 

attenuates the RF-LO feed through produced by the mixer. When the two signals are 

given to the mixer, the output is the wanted frequency and the unwanted components 

which is the feed through. Since the inputs are 180 degrees out of phase some of the feed 

through gets cancelled as a result of this. 
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Fig 3.4 Schematic of Gilbert mixer. 

The two transistors (M1-M2) at the RF input act as the amplifier increasing the gain 

before the RF signal undergoes mixing with the LO signal. This stage is also called the 

gain stage. The gain stage should have very high linearity in order to handle the power 

from the LNA. Degeneration resistors (Rs) can be added to increase or decrease the 

linearity. Source degeneration resistors can also be used to vary the gain. The RF 

transistors should be biased such that they have enough voltage headroom to swing 

without leaving the saturation region. The gain can be increased by either increasing the 

width of the transistor or by increasing the current through the transistors. The transistors 

which have the LO input going into them form the switching stage (M3-M4-M5-M6). Only 

one pair of transistors is on during a certain time, while the other pair is completely off. If 

both the pairs conduct at the same time, noise will be generated.  
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Fig 3.5 Illustration of proper LO transistor pair switching. 

The output of the mixer is taken from the IF+ and IF- ports. No impedance matching is 

required for the mixer if the input comes from the LNA or image reject filter which is on 

chip otherwise impedance matching is necessary. The gain of the mixer with source 

degeneration resistor Rs and load resistor RL is given by the expression:- 

𝑽𝑽𝒐𝒐𝑰𝑰𝑰𝑰(𝑰𝑰)
𝑽𝑽𝒓𝒓𝒇𝒇(𝑰𝑰)

≈ 𝟐𝟐
𝝅𝝅

( 𝑺𝑺𝑳𝑳
𝑺𝑺𝒓𝒓+ 𝟏𝟏

𝒈𝒈𝒎𝒎

)    (3.4) 

3.5 Mixer with Tuned Load. 

When voltage headroom is a problem and there is need of large gain over a small 

frequency range, a tuned load can be used in the mixer. The RF input can be a broadband 

signal and the output IF is of fixed frequency. In the normal resistive load, there is a 

certain voltage drop across the resistor depending on the value of the resistance and the 

amount of current flowing through the resistor. When a tuned load in present, the 

inductor is acts as a short at DC and hence there is more voltage headroom to work with. 
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By choosing the proper values of L and C the tank circuit resonates at the required 

frequency ω0 where  

ω0 = 
𝟏𝟏
√𝑳𝑳𝑳𝑳  (3.5) 

and the gain of the tank circuit or mixer is given by gmR where R is the value of the 

resistor in the tank circuit. 

 

Fig 3.6 the mixer with tuned load. 

3.6 Filters 

Filters are electronic circuits which are used in signal processing mainly to remove the 

unwanted signals and allow the desired signals[25]. They are used in Analog as well as 

Digital circuits. Filters are classified as  

• Active or Passive 

• Analog or Digital 

• Discrete time or Continuous time 

• Linear or Non-Linear 
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• Finite Impulse Response(FIR) or Infinite Impulse Response(IIR) 

The oldest types of filters are the passive analog linear which is constructed using 

Resistors, Capacitors and Inductors. The reason they are called passive filters is because 

they are made up of passive components like Resistors, Inductors and Capacitors and 

they do not require an external power supply. Inductors and Capacitors are the reactive 

elements of the circuit. Inductors conduct at very low frequencies but they block high 

frequencies, while capacitors are just the opposite they conduct at high frequencies and 

block low frequency signals. Resistors do not have frequency selection properties; they 

are used in combination with inductors and capacitors to determine the time constants of 

the circuit which in turn determine the frequency response of the circuit. Passive filters 

can be of RC, RL, LC or RLC types. These filters may be used as low pass, high pass, 

band pass or band stop configurations. 

3.6.1 LC Filters. 

LC filters are the most popularly used filters at radio frequencies. The LC filters can be 

used as low-pass, high-pass, band-pass and band stop filters depending on the 

requirements. Unlike RC or RL filters which are also used widely are attenuators because 

of the presence of resistive component in it.LC network is either used to generate a signal 

of a particular frequency or to select a particular frequency from a complex signal. The 

LC circuit stores electrical energy vibrating at its resonant frequency. The capacitor 

stores energy in the form of electric field depending on the voltage across it and the 

inductor stores energy in form of magnetic field depending on the current flowing 

through it.[24] 
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Resonance occurs when the inductive and capacitive reactances are equal. The LC circuit 

cannot resonate on its own; it must be driven by a power supply. The frequency at which 

it resonates is called the resonant frequency and is given by ωo. 

Where ωo =  �
𝟏𝟏
𝑳𝑳𝑳𝑳

  (3.6) 

Equivalent frequency in Hertz is  

𝑭𝑭𝒐𝒐 = 𝝎𝝎𝒐𝒐
𝟐𝟐𝝅𝝅

 = 𝟏𝟏
𝟐𝟐𝝅𝝅√𝑳𝑳𝑳𝑳

   (3.7) 

LC Filters are constructed in L, T and π structures as shown in the Figure. 

 

Fig 3.7 various topologies of LC filter. 

LC filters can also be used as low pass, high pass; band pass and band reject filters as 

shown from the figure. 
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Figure 3.8 circuit and graphical representation of various configurations of LC filter 

circuits. 
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4                                                                                                                   OSCILLATOR 

4.1 Overview 

An oscillator is an electronic circuit that produces a repetitive electronic signal which is 

often a sine wave and sometimes a square wave or saw tooth [23]. Oscillators are used in 

transmitters, receivers and various kinds of electronic circuits especially radio frequency 

circuits. Oscillator basically is an amplifier and a filter operating in a positive feedback 

loop [29]. In order for oscillations to begin the circuit must satisfy the Barkhausen criteria 

which is Firstly, At resonant frequency the loop gain should be greater than unity and 

Secondly the loop phase must be n2π (where n is an integer). 

 

 

 

 

Fig 4.1 Simplified Block diagram of an oscillator 

The amplifier provides the gain satisfying the first criteria. For the second criteria, the 

amplifier is of inverting type which provides a phase shift of π radians and the filter 

provides another additional phase shift of π radians making it a total of 2π radians around 

the feedback loop. 
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An ideal oscillator has a loop gain greater than 1.0 when the amplitude of the oscillations 

is small and they decrease to 1.0 when the signal reaches the desired amplitude. 

 

Fig 4.2 Graphical representation of Loop gain versus amplitude of oscillations. 

4.2 Ring Oscillator 

A ring oscillator is an electronic device composed of odd number of inverters or not gates 

whose output oscillates between the two voltage levels 0 and 1.The inverters are attached 

in a chain and the output of the last inverter is fed back to the input of the first inverter 

and hence the name ring oscillator.  

 

Fig 4.3 Representation of Ring Oscillator. 
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The input is applied to the first inverter which generates a logical not of the input, since 

the ring oscillator has odd number of inverters the output of last inverter is a logical not 

of the first input. The delay of the individual inverters keep adding up at every stage as 

each inverter introduces a delay of its own.  

 

Fig 4.4 Waveform showing delay of individual inverters. 

The output of the last inverter is fed back to the input of the first inverter. The final 

output occurs after a certain delay since when the input is applied and this is fed back to 

the first input which causes oscillations. 

Period of Oscillations 𝑻𝑻 = 𝟏𝟏
𝑰𝑰𝝉𝝉𝑫𝑫

 (4.1) 

Where 𝑖𝑖 is the number of stages and 𝜏𝜏𝐷𝐷  is the delay of the individual stage. 

4.2.1 Principle. 

The ring oscillator is a voltage controlled oscillator (VCO) whose frequency can be 

controlled by the applied voltage. As the control voltage increases, the frequency of 

oscillation also increases. The ring oscillator is based on the principal of gate delay. No 



41 
 

logic gate can switch immediately as soon as the input is applied, the gate capacitance 

must be charged to a certain value before current can flow through the device. Hence in 

the ring oscillator the inverter output changes after a certain amount of time when the 

input changes. Each inverter contributes a certain delay to the inverter chain and the 

period of the square wave (or frequency) is equal to the sum of the inverter delays. 

Adding more inverters increases the total delay of the inverter chain, thereby reducing the 

frequency of oscillations. 

Ring oscillator belongs to the class of time delay oscillators. It consists of a inverting 

amplifier with a delay element between the input and the output. At the required 

oscillating frequency the amplifier should have a gain greater than 1.Intially the amplifier 

input and output are balanced at a certain point but a small amount of noise can cause the 

output to rise to a certain point. After passing through the delay element a small change 

in output will be presented at the amplifier input. Hence the output will be amplified with 

a negative gain greater than 1 or the output changes in direction opposite to the input. 

This amplified inverted signal propagates from the output to the input, where it is 

amplified again and inverted and process continues. As a result a square wave is 

generated with the period of each half of the square wave equal to the delay. This square 

wave grows in amplitude till it reaches a stable value. Initially the waveform is not square 

but as it reaches the maximum amplitude, it stabilizes and the signal appears more as a 

square wave.[23] 
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4.2.2 Operation. 

The ring oscillator consists of a ring of inverters connected to each other where the 

number of stages and the delay per stage control the frequency of oscillations. The delay 

through each stage or each inverter can be controlled by the amount of current available 

to charge or discharge the capacitive load at each stage. This type of circuit is called the 

current starved inverter [26]. The maximum current available for charge and discharge is 

controlled by the current source Iref. If the control voltage Vcon is increased, the current Iref 

increases which in turn increases the current through transistor M3 which decreases the 

time available to discharge the load capacitance of the next stage. The charging time is 

also decreased as the current through M4 mirrors current though M6.Therefore this causes 

a reduction in τD as a result of increase in Vcont which increases the frequency of 

oscillations [31]. 

 

Fig 4.5: A Current Starved Voltage Controlled Oscillator. 
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5                                                                    DESIGN, SIMULATION AND RESULTS. 

The main objective of this work was to design and develop the front end of a RF 

Receiver in 0.18μm CMOS technology. The incoming RF signal was a signal 1.75 GHz 

which was then down converted to a low IF signal for further signal processing by the 

digital components. The Front End of the receiver consists of the LNA which receives the 

incoming RF signal which might be weak in terms of signal strength as well as affected 

by noise. The low noise amplifier designed is of differential topology to reduce or 

eliminate the common mode noise and is of broadband configuration. The Signal 

amplified by the LNA is down converted to an IF signal by a down converting mixer. 

The mixer used is also of double balanced structure as it has better susceptibility of noise 

because of the differential RF signal and the differential LO signals used in the topology. 

The RF signal is down converted to an IF of 250MHz. The mixer is used in combination 

with an LC filter to remove the image signals and other unwanted higher order 

components. 

The local oscillator signal for the mixer is generated by a VCO which is a ring oscillator. 

The ring oscillator is used because it has very fine tuning capacity. The preliminary IF 

signal of 250 MHz is again further down converted to a lower IF signal of 50MHz by 

another mixer stage from where the signal can be given to an ADC to be converted to 

digital type and undergo digital signal processing. 
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5.1 Low Noise Amplifier. 

The Cherry Hooper amplifier used in this work is of differential topology. The circuit 

consists of only nMOS transistors as they are faster compared to pMOS transistors and 

pMOS transistors add unwanted capacitance at the output node of the amplifier. The 

Cherry Hooper Amplifier circuit used in this work is shown in the figure. 

 

Fig 5.1 Modified Cherry Hooper Amplifier with Source Follower. 

The Cherry Hooper amplifier is designed with an input dc offset of 0.9 V and output dc 

offset of 0.9 V. The amplifier is given an input signal of 1.75 GHz and the transient 

response is as shown in the figure. 



45 
 

 

Fig 5.2 Transient response of the differential input differential output of Cherry 

Hooper amplifier for an input signal of 1.75GHz. 

The Cherry Hooper amplifier has single ended ac gain of 9.08 dB and bandwidth of 

1.752GHz with maximum operating frequency of 1.75 GHz. The differential gain of the 

circuit is about twice the single ended gain. The gain of the amplifier can be increased by 

making the ratio of resistors R1 and R2 as high as possible. The gain of the circuit can 

also be increased by increasing the biasing current but power dissipation is also another 

important consideration. The power dissipation for the LNA is 8.8mW. 

Noise figure is another important parameter of the LNA which helps determine the 

amount of corruption of input noise relative to the output noise. The noise figure should 

be as low as possible and is measured in terms of dB. 
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Fig 5.3 AC analysis showing the single ended gain of the LNA and the bandwidth. 

 

Fig 5.4 Noise Figure of the LNA in dB. 
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Linearity is a very important parameter which determines the performance of the circuit 

especially the Low Noise Amplifier. Linearity can be measure in terms on 1 dB 

compression point as well as the Input Third order Intercept point. The gain of the LNA 

remains linear till a particular frequency and then at certain point if the input signal is 

increased in lower it is not amplified by same amount. At this point where there is a 1 dB 

drop is called the 1 dB compression point and beyond this points the gain of the amplifier 

decreases. Hence beyond the 1 dB compression point the LNA loses its amplification 

property. 

 

Fig 5.5 Graph showing the 1 dB compression point of the LNA which is 3.61 dBm. 

IIP3 (Input third Order Intercept Point) 

IIP3 is defined as the point where the fundamental and the third order response intercept. 

This parameter indicates how well the amplifier performs in the presence of nearby 
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signals. Two signals in this case of frequencies 1.75 GHz (fundamental) and 1.76 GHz 

are applied to the LNA and their intercept point is as shown in the figure. The IIP3 is 

usually greater than the 1 dB compression point by 5~10 dB. 

 

Fig 5.6 Graph Showing the Input Intercept Point of 3rd Order. 

Circuit 
(LNA) 

Single 
Ended 
Gain 

Bandwidth Technology Noise 
Figure 

at I 
GHz 

Supply 
voltage 

Power 
Dissipation 

Sackinger and 
Fisher[27] 

8 dB 3 GHz 0.35um 16 dB 2.5 V 13.3 mW 

Holdenreid,Lynch 
and Haslett[19] 

10.4 
dB 

2.1 GHz 0.35um 14.2 
dB 

1.8 V 20.1 mW 

This work 
 

9.1 dB 1.75 GHz 0.18um 11.08 
dB 

1.8 V 9.8 mW 

 

Table 1 Showing Comparison of this LNA results with previous works. 
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5.2 Down Conversion Mixer. 

The RF signal from the antenna which is amplified by the low noise amplifier is of high 

frequency. These signals need to be converted to digital form for digital signal 

processing. In order to ensure signals can undergo proper signal processing they are down 

converted to lower intermediate frequencies (IF) and then passed forward. Gilbert mixer 

is used in this work as the LNA was of differential topology and it gives an amplified 

differential output signal. The double balanced mixer has a differential RF signal of 1.75 

GHz and a locally generated signal of 2 GHz using a voltage controlled ring oscillator 

given to 2 inputs. The schematic of the Gilbert Mixer is as shown in the figure. 

 

Fig 5.7 a double balanced Gilbert Cell Mixer. 
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The RF signal of 1.75 GHz is given to the differential RF inputs and the local oscillator 

signal of 2 GHz is given to the LO terminals. As a result of the mixing of the 2 signals 

the difference of the 2 signals and the unwanted higher order components are available at 

the IF (differential) output. In order to remove the higher frequency components a filter is 

used. The filter used in this work is an LC filter. The filter allows the difference of the RF 

and LO frequencies to pass through and blocks all the other unwanted components which 

contain the sum of the RF and LO frequencies as well as higher order RF and LO 

frequencies. The transient response of the mixer is as shown in the figure. 

 

Fig 5.8 Transient Response of mixer for RF signal of 1.75 GHz and LO signal of 2 

GHz.(output of mixer before and after filtering is shown ) 
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5.3 Filter. 

The mixer output contains the sum of the RF and LO frequencies, the difference of RF 

and LO frequencies which is the required signals and several higher order components of 

the RF and LO signals.The LC second order filter used for filtering allows only the 

difference or the wanted mixed signal to pass through the filter to undergo further 

processing. The second order LC filter schematic and the frequency response is as shown 

in the figure. 

 

 

Fig 5.9: LC filter for cutoff frequency of 250 MHz and the frequency response of the 

filter. 

5.4 Second Down conversion Mixer. 

The IF signal from the output of the first mixer of frequency 250 MHz is further down 

converted to a lower IF frequency of 50 MHz using a second mixer. Here the local 

oscillator signal is of 200 MHz also generated using a voltage controlled ring oscillator. 
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This mixed signal contains the IF signal of 50 MHz and also the undesired higher order 

frequency components. These signals are filtered out using the second order LC filter of 

cutoff frequency 50 MHz The mixers chain might include a band pass filter in between 

the two stages. Impedance matching between the mixer and the filter or the mixer chain is 

not necessary in case they are on the same chip. The impedance matching between the 

mixer and filter is also not required unless the filter is off chip. The transient response of 

the second mixer is as shown in the figure. 

 

Fig 5.10 Transient response of the second down conversion mixer with RF signal of 

250 MHz and LO of 200 MHz The mixer output and filtered output is also shown. 

5.5 Oscillator. 

The LO input to the mixer is a square wave which is generated using the voltage 

controlled ring oscillator. The voltage controlled ring oscillator generates different 
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frequencies of oscillations depending on the control voltage. The ring oscillator has been 

used in this work as it has very fine tuning capacity to generate exact and precise 

oscillating frequencies. The ring oscillator has odd number of inverting stages. In this 

work it is a 3 stage ring oscillator and increasing the stages decreases the frequency of 

oscillations and tuning range. The schematic of the ring oscillator is as shown in the 

figure.  

 

Fig 5.11 Schematic of Voltage Controlled Ring Oscillator. 

The variation in control voltage causes the variation in the reference current through the 

transistors which in turn changes the time available of the charge and discharge at the 

output of each inverter which increases or decreases the delay of the inverter. Depending 

on the number of stages of the inverter and the delay of the individual inverter, the 

oscillating frequency is determined. The schematic of the control voltage to generate an 

oscillating frequency of 2 GHz is as shown in the figure. 
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Table 2 showing variation of control voltage with oscillation frequency 

Vcontrol(V) Frequency(GHz) 
0.5 0.043 

0.55 0.108 
0.6 0.232 

0.65 0.431 
0.7 0.666 

0.75 0.909 
0.8 1.111 

0.85 1.291 
0.9 1.472 

0.95 1.623 
 1.0 1.777 
1.05 1.879 
1.1 1.981 

1.15 2.061 
1.2 2.122 

1.25 2.172 
1.3 2.222 

1.35 2.271 
1.4 2.305 

1.45 2.321 
1.5 2.351 

 

5.12 Graph of Control Voltage vs Oscillation Frequency. 
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Fig 5.13 Waveform showing oscillator frequency of 2 GHz for a control voltage of 

1.17 V. 

 

Fig 5.14 Waveform showing oscillator frequency of 200 MHz for a control voltage of 

0.59 V. 
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5.6 Receiver Front End. 

The schematic of the entire receiver front end consisting of the LNA-MIXER-VCO 

combination is as shown in the figure. Both the stages of mixers are shown in the 

schematic. The LC filters are combined with the mixer block and hence they are not 

shown in the schematic separately. 

The Receiver has an incoming RF signal of 1.75 GHz into the LNA. The signal is 

amplified by the LNA and then passed into the RF input terminal of the mixer which is 

also fed by a local oscillator signal of 2 GHz. The Down converted IF signal is of 250 

MHz and is the input to the RF terminal of the next mixer. The second mixer is fed by a 

local oscillator signal of 200 MHz and the mixing results in a lower IF signal of 

50MHz.This signal continues to the other blocks of the receiver. 

 

Fig 5.15 Schematic showing the receiver front end with LNA, 2 stages of MIXER 

and ring oscillator. 
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The first component of any receiver is the RF antenna which receives all the range of 

frequencies coming through the wireless channel.The antenna receives the signal which 

might contain added noise along with wanted RF signal.The RF antenna is followed by 

an RF bandpass filter which allows only the required message signal to go through to the 

front end of the receiver.The filtered signal strength might be weak in terms of signal 

amplitude and needs to be boosted in terms of amplitude and power .This signal is fed to 

the input of the low noise amplifier(LNA) 

 

Fig 5.16 Waveform showing the input RF signal of 1.75 GHz. 

The input signal of 1.75 GHz is fed to the differential inputs of the Cherry Hooper 

amplifier which in this work has a gain of 9.08 dB. The gain of the Cherry Hooper 

amplifier when connected in the receiver chain does not give the same gain due to the 

loading effect of the succeeding stages. The gain of the LNA is a little less than 9.08 dB. 

The amplified signal available at the output of the LNA is as shown in the figure. 
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Fig 5.17 Waveform showing the output of the LNA. 

The amplified signal from the LNA goes to the RF inputs to the first of the two mixer 

chain. The mixer has two inputs one is the RF signal and other is the local oscillator 

signal generated by the Voltage Controlled Oscillator (VCO).The local oscillator 

frequency of 2 GHz is generated for a control voltage of 1.17 V.

 

Fig 5.18 Waveform showing square wave of 2 GHz for a control voltage of 1.17 V 

generated using the Voltage Controlled Ring Oscillator. 
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The RF signal of 1.75 GHz and the LO signal of 2 GHz undergo mixing and result in 

signals which contain the sum,difference and higher order components of the input 

signals.The wanted signal ie the difference of 250 MHz is filtered out using a second 

order low pass LC filter.The transient response of the signal is as shown in the figure. 

 

Fig 5.19 Waveform showing the output of mixer with frequency of 250 MHz 

resulting from an RF signal of 1.75 GHz and LO signal of 2 GHz. 

The Intermediate Frequency of 250 MHz is fed into the RF input of the second mixer. 

The local oscillator signal of 200 MHz is generated also using the ring oscillator for a 

control voltage of 0.59 V. The transient response of the ring oscillator for control voltage 

of 0.59 V is shown in the figure. 
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Fig 5.20 Waveform showing square wave of 200 MHz for a control voltage of 0.59 V 

generated using the Voltage Controlled Ring Oscillator. 

The RF signal of 250 MHz and the LO signal of 200 MHz as a result of mixing produce 

signals which contain the sum, difference and higher order components of the input 

frequencies. The required IF signal of 50 MHz is obtained by low pass filtering the 

output.

 

Fig 5.21 Waveform showing output of second mixer of 50 MHz resulting from 

difference of RF frequency of 250 MHz and LO signal of 200 MHz. 
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6                                                  SUMMARY, CONCLUSION AND FUTURE WORK 

The Front end of a RF CMOS Receiver was designed and implemented in 0.18um 

technology with a supply voltage of 1.8 V. The RF Front End consisted of the LNA-

MIXER-OSCILLATOR combination. The summary of the entire work is as follows: 

Technology: 0.18μm TSMC 

Supply Voltage: 1.8 V 

Low Noise Amplifier 

Circuit Topology: Cherry Hooper Amplifier (differential architecture). 

Single Ended Gain: 9.1 dB 

Noise Figure: 11.08 dB 

Bandwidth: 1.752 GHz 

Power Dissipation: 9.8 mW  

Mixer 

Circuit topology: Gilbert Cell Mixer (double balanced architecture) 

Power Dissipation: 20.9 mW 

Oscillator 

Circuit Topology: Voltage Controlled Ring Oscillator 

Power Dissipation: 43 mW at a maximum frequency of 2.4 GHz. 

Tuning Range: 43 MHz at 0.5 V to 2.35 GHz at 1.5 V. 
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The LNA implemented in this work had very low gain (< 10 dB) compared to the LNA 

using inductor peaking technique, therefore LNA with could be implemented with 

inductor peaking technique in order to increase the gain and the bandwidth of the LNA.A 

band pass filtering stage could be introduced between the mixer chain stages to provide 

better isolation between the two stages. An alternate topology for the Oscillator could be 

used as the ring oscillator as it has very low noise tolerance. 
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