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Abstract
The main goal of this project was to design an injection locked oscillator (ILO) with
free-running frequency of 70 GHz, and with locking capability to the third and the
fifth harmonics of the reference signal upon injection. The circuit was realized using
the silicon-germanium (SiGe) bipolar-complementary metal-oxide-semiconductor
(BiCMOS) technology and the locking condition were verified after simulating the
resistor-capacitor (RC) extracted netlist of the layout. The cadence virtuoso toolkit
was used for the design process and the simulation purpose. The locking phenomenon,
quasi-lock and fast-beat mode, lock range upon different injection power and phase
noise characteristics of the ILO upon subharmonic injection were studied.

The ILO was implemented using the direct (parallel) injection topology. The de-
signed ILO circuit consists of two main components; conventional cross-coupled
oscillator with oscillation frequency of 71 GHz and harmonic generator that injects
the harmonics of the reference signal into the oscillator. The nonlinearities of the
transistor were studied under different biasing conditions and the optimal bias point
of 0.83 V was chosen that provided the maximum frequency conversion gain. The
power consumed by the core oscillator is 2.64 mW and 3.4 mW by the harmonic
generator under the supply voltage of 1.2 V, making the total power consumption of
6.04 mW as a whole by the ILO.

The ILO achieved the locking range (LR) of 7.9% for the fifth harmonics injection and
1.22% for the third harmonics injection of the reference signal with input injection
power of 0 dBm. The oscillator even achieved 0.32% LR for the seventh harmonics
injection with the injection power of 0 dBm. The corresponding frequency ranges are
18.9-24.5 GHz, 13.29-14.16 GHz, 9.8-10.03 GHz for the third, fifth and the seventh
harmonics injection respectively.
Keywords Injection Locked Oscillator, Subharmonic Injection Locking, Phase Noise,

Harmonic Generator, Lock Range
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Symbols and abbreviations

Symbols

Q Quality Factor

ω Arbitrary Frequency

ω0 Oscillation Frequency in Radians per Second

ωinj Injection Frequency

f0 Oscillation Frequency in Hertz

L∆ω Phase Noise

∆ω Offset Frequency From the Main Oscillation Frequency

H(jω) Open-Loop Gain

β(jω) Feedback Transfer Function

PDC DC Power Consumption

gm Small Signal Transconductance

Cπ Base-Emitter Capacitance

Cµ Base-Collector Capacitance

Ccs Collector-Substrate Capacitance

Rp Inductor Equivalent Parallel Resistance

Rs Inductor Effective Series Resistance

Itail Oscillator Bias Current

I⃗ tank Tank Current

I⃗osc Oscillation Current

I⃗ inj Injection Current

Vosc Output Voltage Swing of the Oscillator

θ Phase Difference Between Tank Current and Oscillation Current

ϕ Angle Between Oscillation Current and Injection Current

φ Small Random Phase Fluctuations

ωL Lock Range
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Abbreviations
DC Direct Current

ILO Injection Locked Oscillator

LC Inductor-Capacitor

RC Resistor-Capacitor

RLC Resistor-Inductor-Capacitor

LR Lock Range

FOM Figure of Merit

RF Radio Frequency

HBT Hetrojunction Bipolar Transistor

BJT Bipolar Junction Transistor

CMOS Complementary Metal-Oxide-Semiconductor

BiCMOS Bipolar Complementary Metal-Oxide-Semiconductor

IC Integrated Circuit

DFT Discrete Fourier Transform

ADS Advance Design System

RFIC Radio Frequency Integrated Circuit

PLL Phase-Locked Loop

IV Current-Voltage

EM Electromagnetic



1 Introduction
Communication systems have been developed rapidly over the past few decades.
The requirement of high data rate communication systems with low power and
low voltage headroom, occupying the smaller dye area is inevitable. In the recent
years, the millimeter-wave (mm-wave) frequency band (30-300 GHz) has got a lot of
attention, opening the gateway for high data rate communications, radars, material
characterization, security and medical applications. On the other hand, the design of
a high performance, low power and low-cost radio frequency (RF) circuit becomes a
challenging task for the engineers with the technology scaling. The advanced CMOS
and SiGe BiCMOS process has become most preferred technology for designing
extremely high-speed RF electronics that offers cost-effective and low power solutions.
These process with bipolars offer transient frequency higher than 300 GHz.

The larger number of channels are required with the growing wireless communication
systems. The requirement of reference signal with less phase noise becomes very
essential in transceivers to avoid signal corruption due to frequency conversion of the
undesired channel. The limited performance of active and passive components at
high frequencies degrades the spectral purity of the local oscillator signals. The phase
noise must be very small so that the negligible amount of corruption is produced.
The traditional phase-locked loop (PLL) phase noise increases as the frequency
of operation increases, consumes high power and occupies large area. In spite of
having high phase noise performance than most of the available oscillators, inductor-
capacitor (LC) oscillators also suffer from poor phase noise performance due to low
quality factor (Q) of the on-chip inductors. ILO is a suitable candidate for mm-wave
frequency applications to overcome these problems as it allows the transformation
of low quality signal to the signal of high spectral purity. The oscillator can be
locked to the subharmonic frequency of the reference signal with excellent phase
noise performance. The resulting output signal of the oscillator follows the phase
noise of the injection signal, improving the phase noise performance of the oscillator.

The sole purpose of this project was to design an ILO with free running frequency of
70 GHz. The main core oscillator must be locked by the third and the fifth harmonics
of the reference signal which are 23.33 GHz and 14 GHz respectively. The goal of
the project was achieved utilizing the direct injection topology with cross-coupled
topology as the core oscillator, and the differential harmonic generater that depends
upon the nonlinearity of transistor to generate all the harmonics of the reference signal.

Section 2 presents the fundamental principle for oscillation and basic theory on
different integrated oscillators. Section 3 describes the theory of injection locking
phenomenon, mathematical derivation of locking range (LR) and phase noise charac-
teristics of the ILO. Section 4 presents the ILO design description and its layout
implementation. Section 5.3 presents the simulated results of the designed ILO.
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2 Oscillator Fundamentals
In electronics, oscillators are nonlinear devices that converts direct-current (DC)
signal into alternating-current (AC) signal of desired frequency. Oscillators generate
periodic waveforms that could be either sinusoidal, triangular, square or distorted
version of all the three. Oscillators are extensively used in various electronic devices
such as reference tone in receivers and transmitters, master clocks in computers,
frequency synthesizers, wristwatches and so on. They are implemented either as
single ended or in differential form depending upon the requirement of the system.
However, mostly differential configuration is desired due to its less power consumption,
common mode rejection and less phase noise. Besides, many RF applications require
reference signal with amplitude stability and high spectral purity [1–3].

2.1 The LC Resonator
LC resonators often called tank circuits are the most commonly used resonators in
integrated RF oscillators. The output of a LC resonator has a bandpass response
with maximum amplitude at the resonance frequency. It plays an important role in
overall performance of an oscillator as it affects the amplitude of oscillation, tuning
range and phase noise. With some initial energy given, an ideal LC tank oscillates for
eternity. But, in practice, due to ohmic resistance of the capacitor and the inductor,
the oscillation decays with certain damping frequency at every instant of time until
it completely dies out as shown in Figure 1(c).

High performance capacitors can be easily implemented in integrated circuits (ICs).
But, the loss introduced by the semiconducting substrates in silicon technology limits
the Q of an inductor; Q is a dimensionless quantity and, is defined as the ratio of the
energy stored to the energy lost per cycle within the resonator. In addition, larger
inductor demands bigger silicon area which restricts its on chip implementation. Also,
the self resonant frequency (SRF) of the integrated inductors limits its frequency of
operation. Figure 1(a) and Figure 1(b) shows the model of a lossy LC resonator and
its equivalent parallel resistor-capacitor-inductor (RLC) circuit respectively.

LC

Rs,L

C L Rp

Rs,C

Figure 1: (a) Lossy LC resonator: Rs,C and Rs,L models the loss of the capacitor
and the inductor respectively. (b) Equivalent parallel RLC model. (c) Oscillatory
behaviour of a lossy resonator.
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The values of the capacitor C and the inductor L determine the oscillation frequency
of the resonator, and is given by:

ω0 = 1√
LC

(1)

where ω0 is natural frequency of the LC resonator. The effective impedance Zp of
the resonator in parallel configuration is:

|Zp| = 1⌜⃓⃓⎷(︄ 1
Rp

)︄2

+
(︄

1
ωL

− ωC

)︄2
(2)

where ω is any arbitrary frequency and Rp is an equivalent parallel resistance of the
lossy resonator as depicted in Figure 1(b). Eq. (2) implies that the impedance of
the inductor and the capacitor dominates at high frequencies and at low frequencies
respectively. At resonance, the inductive and capacitive impedances cancel out,
therefore, the impedance is simply the resistance of the network.

|Zp| = Rp (3)

Eq. (4) shows the relation of Q with the LC tank. The expression comes in very
handy for rough estimation of the Q while designing the RF circuits.

Q = Rpω0L = ω0RpC = 1
Rp

√︄
L

C
(4)

2.2 Basic Principle and Condition for Oscillation
To sustain the oscillation, an active device can be connected in parallel to the
tank that injects energy to the tank to compensate the loss introduced by the
passive components. The active devices are generally implemented using metal-oxide-
semiconductor field-effect transistors (MOSFETs) or bipolar junction transistors
(BJTs) with feedback loop that exhibits negative resistance when seen from the
resonator [4]. Figure 2 shows the conceptual view of the resonator along with the
active circuit. With | − Rp| ≥ Rp, any noise starts the oscillation whose amplitude
grows with time until it reaches steady state [1].

A
ctive C

ircu
it

Figure 2: LC tank with active circuit added to cancel the loss.
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In 1934, while studying the feedback oscillators, H. G. Barkhausen developed a
formula that an oscillator must fulfill to sustain a steady oscillation which are often
referred as phase and gain conditions for oscillation . It is a necessary criterion but
does not guarantee oscillation at the desired frequency [5].

An oscillator can be modeled as two blocks as shown in Figure 3 that consists of an
amplifier and a feedback circuit. Though, the feedback loop configuration is negative
feedback in real implementation, at frequency of operation, the feedback becomes
positive due to the total phase shift provided by the amplifier and the feedback
loop [6].

Figure 3: Positive feedback system.

Mathematically, the above system can be expressed as:

Vout = VinH(jω) + VoutH(jω)β(jω) (5)

where Vin, Vout, H(jω) and β(jω) are the input voltage, output voltage, open-loop
gain and feedback transfer function of the system respectively. On re-arranging the
like-terms of Eq. (5), the closed loop gain of the system is obtained as:

Vout

Vin

(︃
jω
)︃

= H(jω)
1 − β(jω)H(jω) (6)

A linear circuit oscillates when it becomes unstable. The poles of the transfer function
must lie on the right-half plane of the complex plane. Therefore, the system becomes
unstable and starts oscillating when the magnitude of the open loop gain is:

|β(jω)||H(jω)| ≥ 1 (7)

and, the total phase shift around the loop is:

∠(jω)H(jω) = 2kπ, k = 0, 1, 2, .., .., n (8)

Eq. (7) and Eq. (8) are the two most popular expressions called Barkhausen criterion
for oscillation, which states that the loop gain must be unity and the total phase
shift around the loop is 0 degree or integer multiple of 2π.
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2.3 Phase Noise
Phase noise is a key specification of an oscillator that defines its spectral purity. An
ideal oscillator with some initial energy given would always produce perfect sinusoidal
output at the desired frequency of form [6]:

x(t) = A0 cos(ω0t) (9)

where A0 is the amplitude of an oscillator output signal respectively. In reality,
however, the output of an oscillator shows fluctuation in both phase and amplitude
due to the noises generated by the oscillator devices. Due to the amplitude limiting
mechanism present in all the oscillators, amplitude fluctuations are greatly attenuated
and hence, phase noise dominates. So, the performance of an oscillator is mainly
determined by its phase perturbation at the zero crossings of the output signal that
occurs at an integral multiple of 2π/ω0 [6, 7]. With addition of the phase noise, the
output of the oscillator as expressed in Eq. (9) becomes:

x(t) = A0 cos[ω0t + φ(t)] (10)

where the term φ(t) is a small random phase fluctuations at the zero crossings of the
output signal, and is called phase noise. So, the instantaneous frequency is:

ω(t) = d

dt
[ω0t + φ(t)]

= ω0 + dφ

dt

(11)

which implies that the random fluctuation in the phase results in random fluctuations
in the frequency. Figure 4 shows the power spectrum in case of ideal and real
oscillator respectively.

Figure 4: (a) Spectrum of ideal oscillator. (b) Spectrum of realistic oscillator.

In electronic circuits analysis and design, one of the challenging task is an analytical
description of an oscillator phase noise. Various simulation and analysis techniques in
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both frequency domain and time domain have been developed in the last few decades
to realize the phase noise of an oscillator accurately. This challenge is due to the fact
that small signal approximation for noise analysis does not work well for realizing
the phase noise of the oscillators. Also, it is difficult to extract the parameters with
precision in current technologies to accurately approximate the large signal model of
a transistor.

One of the most preferred formula to predict the phase noise of an oscillator is given
by the Lesson’s model (Figure 5) which still continues to be popular 60 years later
as expressed below.

L∆ω = 10 log10

⎡⎣2FkT

Psig

⎧⎨⎩1 +
⎛⎝ ω0

2Q∆ω

⎞⎠2⎫⎬⎭
⎛⎝1 +

∆ω1/f3

|∆ω|

⎞⎠⎤⎦ (12)

where L∆f is phase noise of the oscillator in dBc/Hz, F is a fitting parameter
introduced by Lesson [8], T is absolute temperature, k is Boltzmann’s constant,
∆ω1/f3 is flicker noise corner frequency, ω0 is carrier frequency, Psig is carrier power
and ∆ω is offset from the carrier frequency. Eq. (12) suggests that the phase noise
has proportional relationship with the Q of the resonator and the output signal power
of the oscillator.

Figure 5: Lesson’s phase noise model.

Phase noise is specified as the ratio of the noise power at an offset frequency ∆ω
from the carrier frequency ω0 to the carrier power Psig over 1 Hz bandwidth. It
is generally expressed in dBc/Hz. The spectrum of phase noise consists of three
components, one at the carrier frequency, representing the carrier power and two
symmetrical noise sidebands of equal magnitude around the carrier at ω0 + ∆ω and
ω0 − ∆ω, which determines an oscillator phase noise [9].
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2.4 Figure of Merit
Main parameters that characterizes an oscillator can be expressed thorough single
formula called a figure of merit (FOM). It helps to compare different types of oscillator
operating at different frequencies in more realistic way. Based on the necessity and
the technology limitation, an oscillator can operate either at single frequency or at
range of frequencies. Therefore, this results into the requirement of two expression
for the FOM calculation. The most commonly used formula for calculating the FOM
of an oscillator operating at single frequency is given by [9]:

FOM1 = L∆ω − 20 log10

⎛⎝ωosc

∆ω

⎞⎠+ 10 log10

⎛⎝ PDC

1 mW

⎞⎠ (13)

where PDC is the total DC power consumption of the oscillator in milliwatt (mW).
Similarly, the FOM expression with tuning range TR included is given by [10]:

FOM2 = 10 log
⎛⎝ kT

PDC

(︄
TR

∆ω

)︄2
⎞⎠− L∆ω (14)

2.5 Classification of Oscillators
There are varieties of oscillators available based on the principle of oscillation,
performance capability in RF environment and oscillation frequency band [11].
Mainly, oscillators can be categorized into two fundamental types, namely waveform-
based oscillators and resonator-based oscillators on the basis of their oscillation
method. Waveform-based oscillators generate triangular or square wave while the
output waveform of resonator-based oscillators is usually sinusoidal [12]. The clear
illustration of the oscillators classification is shown in Figure 6 below.

Figure 6: Classification of oscillators.

Based on the tuning mechanism, resonator-based oscillators can be further classified
into RC oscillators, crystal oscillators, switched-capacitor (SC) oscillators and LC
oscillators. RC oscillators do not have any inductors. They use resistor capacitance
for oscillation frequency and are useful for audible frequencies. They can be further
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divided into Wien Bridge oscillators, twin-T oscillators and RC phase shift oscillators.
Similarly, LC oscillators can be further classified into Colpitts oscillators, Clapp oscil-
lators, cross coupled oscillators, Hartley oscillators and Armstrong oscillators [12,13].

Different oscillators relies on certain technique for frequency tuning. For example,
variable capacitors are employed in LC oscillators for frequency tuning, whereas the
tuning depends upon current steering technique in case of ring oscillators. Ring
oscillators can be fully integrated on chip and has better phase noise performance
than relaxation oscillators but not as good as LC oscillators. The phase noise perfor-
mance of the LC oscillators are even comparable to the crystal oscillators in some
applications. LC oscillators have high quality factor due to its tendency to store
energy whereas RC-based oscillators have almost unity Q which results into very low
phase noise performance [12].

Besides, LC oscillators due to its good phase noise performance at high frequencies and
ring oscillators due to its simplicity and integrability have become dominant choice
in radio frequency integrated circuits (RFICs). In addition, cross coupled oscillators
also popularly known as negative resistance oscillators and Colpitts oscillators are
the two most fabricated LC oscillators in ICs [4]. It can be said that ring oscillators,
Colpitts oscillators and cross-coupled oscillators are the three main categories of the
integrated oscillators. Therefore, these three oscillators being the excellent choice for
ICs are discussed in this document.

2.5.1 Cross-Coupled Oscillator

Cross-coupled oscillators are most commonly used oscillators in RF applications
because of its differential nature, simpler implementation and good phase noise
performance. In addition, differential topology facilitates direct integration with the
balanced circuits like double balanced mixers that require differential inputs. A cross
coupled oscillator is composed of a LC resonator that controls frequency and an
active circuit that generates energy. The active circuit can be realized either with het-
erojunction bipolar transistor (HBT) topology, or n-type metal-oxide-semiconductor
(NMOS) topology or p-type metal-oxide semiconductor (PMOS) topology or comple-
mentary metal-oxide-semiconductor CMOS topology.

A pair of BJTs/MOSFETs in differential configuration with their base/gates connected
to one another collector/drain generates negative resistance. On connecting this
circuit in parallel to the LC tank cancels the energy loss due to the resonator. Each
transistor acts as a tuned amplifier and provides π phase shift at oscillation frequency.
The feedback contributes additional π phase shift making total phase shift of 2π
around the loop which fulfills the Barkhausen criterion for oscillation. The resultant
output signal at the differential terminals are 180◦ out of phase. Figure 7 shows an
example of BJT cross coupled oscillator.
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T1T2

Figure 7: BJT cross coupled oscillator.

The oscillation frequency and required negative resistance for oscillation can be found
by drawing equivalent small signal model of Figure 7 as shown below.

Figure 8: Small signal model of BJT cross-coupled oscillator.

Referring Figure 8, the output admittance Y of the oscillator can be expressed as a
function of differential voltages VX , VY and current IOUT as:

Y = IOUT

VX − VY

=
gm1V1 +

[︄
1

Rp

+ jω(C + Ccs1 + Cπ1Cµ1 + Cµ2) + 1
jωL

]︄
V2 − jω(Cµ1 + Cµ2)V1

VX − VY

(15)
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where Cµ1, Cµ2 are base-collector , Cπ1, Cπ2 are base-emitter, Ccs1, Ccs2 are collector-
substrate capacitances, gm1, gm2 are transconductances of the transistors T1 and T2
respectively. Considering the symmetry of the circuit, Eq. (15) becomes:

Y =
gmV1 +

⎡⎣ 1
Rp

+ jω(C + Ccs + Cπ + 2Cµ) + 1
jωL

⎤⎦V2 − j2ωCµV1

VX − VY

(16)

According to the Kirchhoff’s law, the current entering the node must be equal to the
current leaving the node. This holds true if:

gmV1 +
⎡⎣ 1

Rp

+ jω(Cπ + C + Ccs + 2Cµ) + 1
jωL

⎤⎦V2 − j2ωCµV1

= −gmV2 +
⎡⎣ 1

Rp

+ jω(Cπ + C + Ccs + 2Cµ) − 1
jωL

⎤⎦V1 + j2ωCµV2 (17)

On simplification, Eq. (17) reduces to:

VX = −VY (18)

From Eq. (16) and Eq. (18), we get;

Z = −gm

2 + 1
2Rp

+ j

⎡⎣ω

(︄
C + Cπ + Ccs

2 + 2Cµ

)︄
− 1

ωL

⎤⎦ (19)

At resonance, the imaginary part of Eq. (19) goes to zero. Therefore, the oscillation
frequency is obtained as:

ωosc = 1√︂
L(C + Ccs + Cπ + 4Cµ)

(20)

And, for oscillation to occur, the real part of Eq. (19) must go to zero due to the
cancellation of the tank loss by the active circuit. Thus,

gm = 1
Rp

(21)

The oscillator becomes marginally stable when gm = 1/Rp which results in only
desirable output. However, in practice, any small deviation in the gm leads to
a decaying or growing oscillation. So, the oscillators are generally designed with
gm > 1/Rp that results into growing oscillation. On the other hand, the growing
oscillation is limited by the gm, which in practical implementation cannot draw
infinite amount of power. Besides, the amplitude of oscillation depends on the
nonlinear characteristics of the active circuit [4]. The oscillation amplitude Vosc at
each output terminal of the cross-coupled oscillator as depicted in Figure 7 can be
approximated as a function of tail current Itail (bias current) and Rp as:

Vosc ≈ 2
π

ItailRp ≈ ItailRp (22)
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2.5.2 Ring Oscillator

Ring oscillators are formed by cascading N number of gain or delay stages. Each
delay stage is composed of inverters that can be realized with currently existing high
performance CMOS/BiCMOS technology. The output of each stage is connected
to the input of the next stage, and the output of the final stage is connected to the
input of the first, forming the closed loop system. The total number of stages used
and the delay in each stage determines the oscillation frequency of an ring oscillator.
For an N number of stages, the oscillation frequency of the ring is given by:

fosc = 1
2Ntd

(23)

where td is the propagation delay at each stage. Eq. (23) implies that the oscillation
frequency is mainly the function of propagation delay as N is constant for a fixed
circuit. This makes the delay time the most important parameter for the study of
ring oscillators. The oscillation frequency can be controlled by controlling the delay
of each stage in the ring. One way to control the delay is to limit the current available
for charging and discharging the load capacitors at the output of each stage. Ring
oscillators are available in both single-ended and differential topology as shown in
Figure 9 below.

  

CMOS Inverter

(a)

(b)

Figure 9: (a) Single-ended ring oscillator. (b) Differential ring oscillator.

Each stage in the ring adds phase shift of π/N to the signal, which means the total
phase shift of π is provided by the ring. The additional phase shift of π to satisfy the
Barkhausen criterion (Eqs. (7) and (8)) for a sustained oscillation is obtained from
the feedback configuration. A single-ended ring oscillator requires odd number of
stages for an oscillation to occur. On the contrary, the differential topology can have
either an odd or even number of stages. Since the signals of both phases are available
in differential configuration, the oscillation criterion can be fulfilled by swapping the
feedback lines [14].
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One of the main advantage of the ring oscillators is that it can be realized fully with
active devices without requirement of any passive components which makes it highly
preferable candidate in the integrated RF oscillators. On the contrary, the phase
noise is high due to the lack of passive resonant components [15].

2.5.3 Colpitts Oscillator

Colpitts oscillator is a subclass of LC oscillator that consists of a negative transcon-
ductance stage and a resonator. The resonator consists of a pair of capacitors as a
voltage divider and an inductor in parallel with these capacitors. It can be designed
with just only one transistor either in common base or common emitter configuration.
The common emitter configuration is usually not desired due to the requirement of a
large RF choke and capacitors that are not generally available in IC technology. In
addition, it also suffers form the Miller effect as neither the base nor the collector is
grounded [1]. Figure 10 shows the common-collector and common base configuration
of the Colpitts oscillator.

Q1

Q1

(a) (a)

Figure 10: Colpitts oscillator: (a) Common-collector configuration. (b) Common-
base configuration.

Each capacitor provides phase shift of π/2, hence total phase shift of π. The transcon-
ductance stage provides additional phase shift of π, satisfying the Barkhaunsen phase
criterion for oscillation. The oscillation frequency is given by:

ωosc = 1⌜⃓⃓⎷L

(︄
C1C2

C1 + C2

)︄ (24)

The output voltage is generated across C1 and the feedback voltage is generated
across C2. The ratio between the capacitors C1 and C2 determine the amount of
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feedback required for oscillation and is called feedback fraction. The feedback fraction,
β is therefore:

β(jω) = VC1

VC2

= C2

C1
(25)

Substituting β(jω) from the above equation in Eq. (7), the required condition for
oscillation is obtained as:

|H(jω)| ≥ C1

C2
(26)

Eq. (26) implies that the voltage gain of the amplifier must be greater than or equal
to the feedback factor β for an oscillation to occur. The negative resistance generated
when seen from the resonator is:

R = − gm

ω2
oscC1C2

(27)

Eq. (27) implies that larger negative resistance can be generated using small capacitors
and large transconductance. However, it is not possible to realize small capacitance
due to the parallel junction capacitance of the transistor. The Colpitts oscillator
consumes more current than the cross coupled oscillator to generate the same negative
transconductance. It is because the minimum voltage gain required for a Colpitts
oscillator to oscillate is [1, 16]:

gmRp ≥ 4 (28)

2.6 summary
The fundamental theory of oscillators and its performance parameters along with the
brief description of the most commonly used integrated oscillators, ring oscillators,
cross-coupled oscillator and Colpitts oscillator have been discussed in this section.
Among all, differential LC oscillators with cross-coupled topology are most widely
preferred topology due its robust operation and ease of implementation.
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3 Injection Locking of Oscillators
Any oscillatory systems in the nature with same or nearby frequencies tend to os-
cillate with the similar frequency when the coupling between them is quite strong
enough. As a result, one of the systems capture the frequency of another, and starts
oscillating at the same frequency. For example, two pendulums oscillating at different
frequencies hanged on the same string tend to oscillate at the same frequency over
time due to the coupling between them through the string. In electronics, injection
locking occurs when an oscillator with certain natural frequency is injected by an
external signal with enough power level that has a frequency close to or equal to the
natural frequency of that oscillator. Upon injection, the oscillator follows the phase
and frequency of the injected signal and tends to oscillate with the frequency of the
injected signal maintaining constant phase difference between them [6,17].

For an LC oscillator to be injection locked at different frequency than the resonance
frequency, the tank must be supplied with net reactive current by the injection current.
This is because the tank does not appear as open circuit as in case of resonance,
therefore, current must be drawn [18]. Injection locking can occur on a fundamental
frequency itself or an integral multiple or submultiple of the fundamental frequency.
An oscillator will always try to oscillate at the injection frequency by introducing
enough phase shift when the locking signal is slightly different from the oscillating
signal. In case, if the oscillator bears no phase difference with the injected signal,
the oscillator is said to be synchronized to the injection signal [6, 17,19–21].

The traditional PLL with currently existing technology suffers from large chip area
and high power consumption. The LC oscillators have low tuning range, occupy
large area and provide decent phase noise performance. On the contrary, the ring
oscillators have very poor phase noise performance [22]. Injection locking proved to
be useful in various applications such as quadrature generation [23,24], oscillators
with finer phase separations [25], and frequency division [26]. Injection locking allows
the operation of circuits at mm-frequencies with low power consumption, providing
wide locking range and occupying smaller chip area. In addition, it dramatically
reduces the phase noise of the oscillator, since the zero crossings of the oscillator are
corrected periodically by the low noise injection source [27]. Besides, the oscillator
signal can be fined tuned to the desired frequency that may have shifted to the
nearby frequency due to the process variations.

3.1 Theoretical Background on Injection Locking
Injection locking is a technique of transforming the low quality signal to the sig-
nal of high spectral purity. Injection locking phenomenon, first realized by the
Dutch scientist Christian Huygens has been studied tremendously over the years by
Kurokawa [19], Paciorek [21], Adler [17], Razavi [6], Mirzaei [20] and others. A lot of
efforts have been made to explain the phase noise shaping phenomenon, accurate
prediction of the LR and behaviour of the oscillators under injection of small and
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large signals. Although the models presented in [17,19–21,28] are approximate, they
are useful for predicting the behaviour of the ILO.

The Locking Range

The frequency range over which the oscillator locks to the external signal injected is
called LR of an ILO. If the injection frequency lies outside of the LR, the oscillator
goes under pulling phenomena [28]. Figure 11 shows the conceptual diagram of the
ILO as used by Razavi to describe the injection locking phenomenon. Based on
the figure, the oscillator can be interpreted geometrically and the lock range can be
derived on that basis. Here, we take the Razavi approach to derive the locking range
of the ILO under the sinusoidal injection.

Figure 11: Conceptual diagram of injection locked oscillator.

Before moving forward to the actual mathematics of the injection locking, let’s derive
the phase shift introduced by the second order parallel LC tank nearby resonance
frequency. The impedance ZLC of the second order parallel RLC is:

ZRLC = 1⌜⃓⃓⎷ 1
Rp

− j

(︄
ωC − 1

ωL

)︄ (29)

where ω is any arbitrary frequency offset from the natural frequency of the tank
circuit. The phase shift introduced by the tank near its natural frequency is:

tan ϕ = −Rp

(︄
ωC − 1

ωL

)︄

= Rp

ωL

(︄
1 − ω2LC

)︄ (30)

Substituting Q = Rp/ωL and 1/ω2
0 = LC in Eq. (30) yields,

tan ϕ = Q

ω2
0

(︄
ω2

0 − ω2
)︄

(31)

Approximating ω2
0 − ω2 ≈ 2ω0, we get;

tan ϕ ≈ 2Q

ω0
(ω0 − ω) (32)
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At resonance frequency, the phase angle between the oscillating voltage V⃗ osc, the
tank current I⃗ tank and the oscillating current I⃗osc is zero i.e., they are perfectly
aligned with each other. But, when an external signal I⃗ inj with proper amplitude
and frequency is injected, the phase angle is introduced between I⃗osc and I⃗ inj such
that I⃗ tank becomes resultant of the two signals. The I⃗osc remains aligned with the
V⃗ osc. Also, it is obvious from Figure 11 that tank current is sum of the injection
current and the oscillating current [28]. Thus,

I⃗ tank = I⃗ inj + I⃗osc (33)

The relation between I⃗ inj , I⃗osc and I⃗ tank can be described geometrically with phasor
diagram as shown in Figure 12 below.

Figure 12: (a) Phasor diagram showing the relation of oscillator current, injection
current and tank current. (b) Maximum allowed phase difference between the tank
current and the oscillator current.

Referring to Figure 11, the oscillation amplitude can be approximated as:

V⃗ osc ≈ ZtankI⃗ tank (34)

Similarly, the oscillating current, I⃗osc can be defined as the product of the V⃗ osc and
the large signal transconductance Gm as:

I⃗osc = GmV⃗ osc (35)

Substituting V⃗ osc from Eq. (34) into Eq. (35) yields,

I⃗osc = ZtankGmI⃗ tank (36)

From Figure 12(a), the phase angle ϕ between I⃗ inj and I⃗osc is:

ϕ = ∠I⃗osc − ∠I⃗ tank (37)

Therefore, from Eqs. (34), (36) and (37), the phase difference between the tank
current and the oscillator current is:

ϕ = ∠Ztank (38)
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Eq. (38) implies that the angle between the tank current and the oscillating current
is equal to the phase of the tank’s impedance. This means, for ω ̸= ω0, I⃗osc must
bear phase difference with I⃗ tank to match the phase shift introduced by the tank
such that I⃗ inj form an angle θ with I⃗osc to compensate the introduced phase shift.
Now, we derive the relation of ϕ with I⃗ inj, I⃗osc and I⃗ tank using the phasor diagram
as depicted in Figure 12(a). Using trigonometric identity, it can be shown that:

sin θ = x

Iinj

(39)

where x is a perpendicular line drawn form the I⃗ tank on the I⃗osc. Also,

sin ϕ = x

Itank

(40)

From Eq. (39) and Eq. (40), we get;

sin ϕ = Iinj

Itank

sin θ (41)

Using the law of cosine, I⃗ tank can be expressed as:

I2
tank = I2

osc + I2
inj − 2IinjIosc cos(π − θ)

= I2
osc + I2

inj + 2IinjIosc cos θ
(42)

Substituting Itank from Eq. (42) into Eq. (41), we get;

sin ϕ = Iinj sin θ√︂
I2

osc + I2
inj + 2IinjIosc cos θ

(43)

As depicted in Figure 12(b), θ varies from −π to π making a circle on full rotation.
At the same time, ϕ varies from −π/2 to π/2. So geometrically, it is not possible
for ϕ to change after certain I⃗ inj. The only parameters that continues to change on
changing I⃗ inj is θ. So, we differentiate Eq. (43) with respect to θ. The slope of any
continuous function becomes zero at maximum and minimum value. Therefore, the
maximum value allowed for sin ϕ can be found from:

d

dθ

(︂
sin ϕ

)︂
= 0 (44)

which leads to the following solutions for cos θmax:

cos θmax =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−Iosc

Iinj

, Iinj ≥ Iosc

−Iinj

Iosc

, Iinj ≤ Iosc

(45)
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On substituting the solutions obtained in Eq. (45) leads to the following solutions
for sin ϕmax:

sin ϕmax =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, Iinj ≥ Iosc

Iinj

Iosc

, Iinj ≤ Iosc

(46)

With sin ϕmax = 1, tan ϕ goes to ∞. On the other hand, the tangent of ϕ with
sin ϕmax = Iinj/Iosc is:

tan ϕ = sin ϕ

cos ϕ
= sin ϕ√

1 − sin ϕ2 = Iinj

Iosc

· 1⌜⃓⃓⎷1 −
I2

inj

I2
osc

(47)

Therefore, substituting tan ϕ from Eq. (32) and considering ωinj = ω in the respective
equation, the lock range ωL of an ILO can be expressed as:

ωL = ω0 − ωinj = ω0

2Q

Iinj

Iosc

· 1⌜⃓⃓⎷1 −
I2

inj

I2
osc

(48)

where ωinj is the injection frequency. Eq. (48) is for only one-sided LR. The overall
LR is ±ωL around ω0 [28]. On the other hand, the LR goes to infinity with tan ϕ = ∞,
which is physically impossible. Hence, the maximum LR is obtained for:

sin ϕmax = Iinj

Iosc

(49)

As illustrated in Figure 12(b), Eq. (49) leads to the conclusion that I⃗ inj makes
maximum angle of 90◦ with I⃗ tank, implying maximum phase difference of 90◦ + ϕmax
between I⃗ inj and I⃗osc.

For very small injection current Iinj << Iosc, the lock range ωL as depicted in Eq. (48)
can be approximated as:

ωL = ω0

2Q

Iinj

Iosc

(50)

On the basis of Eq. (48), it can be concluded that the LR depends upon the Q of
the tank. For wider locking range, the Q of the tank can be decreased. But, this
leads to the decreased oscillating amplitude and requires extra power to produce the
required output level, which in result increases the power consumption. Another
parameter that can be considered to increase the LR is the injection current Iinj.
But, this comes in cost of the additional power dissipation.
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3.2 Subharmonic Injection Locking
A free running oscillator can be locked to the N th (N = ω0/ωinj) harmonic of the
injected signal such that it starts oscillating at the frequency ω0 = Nωinj. When
locked, the oscillator tracks down the phase noise of the injected signal and hence,
the phase noise of the oscillator is highly suppressed by the factor of N2 (20 log10 N).
For this phase noise reduction to happen, N must be an integer. With N being the
frequency ratio of the fundamental frequency to the injected frequency, the phase
noise L∆ω of the oscillator within the LR under subharmonic injection is [27]:

L∆ω = Linj + 20 log10 N (51)

where Linj is phase noise of the injected signal. Figure 13 is an illustration of the
phase noise characteristics of an oscillator under subharmonic injection.

Figure 13: Subharmonically injection locked oscillator phase noise.

The effective injection current for subharmonically injection locked oscillator is
Iinj/N [27]. Therefore, the LR as depicted in Eq. (48) becomes:

ωL = 1
N

· ω0

2Q

Iinj

Iosc

· 1⌜⃓⃓⎷1 −
I2

inj

I2
osc

≈ 1
N

· ω0

2Q

Iinj

Iosc

(52)

The above expression is only valid for approximating the LR of a standalone oscillator.
It can be noted from Eq. (52) that the LR degrades as the N increases.
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3.3 Noise-Shaping Phenomenon
One of the main characteristics of an ILO is phase noise shaping phenomenon. The
ILO follows the phase noise of the injected signal. The spectral purity of the output
signal from an ILO depends upon the quality of the injected signal. This is a reason
for the requirement of an ILO in high frequency applications as the low phase noise
signal from an oscillator can be transformed to the signal of excellent phase noise.
Figure 14 shows the phase noise shaping phenomenon of an ILO.

Figure 14: Phase noise shaping phenomenon in an ILO.

As depicted in Eq. (51), the phase noise shaping phenomenon is determined by the N.
The phase noise shaping degrades as the N increases. Also, the phase noise follows
Eq. (51) within the LR. The minimum degradation in the phase noise occurs at
the center of the LR and the maximum degradation at the edges of the LR. So in
practical ILOs, the main oscillation frequency is tuned at the center of the LR [27].
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4 Design Description
The ILO was designed using Innovation for High Performance (IHP) Microelectronics
0.13 µm SiGe HBT BiCMOS technology under a supply voltage of 1.2 V. The ILO
is composed of a pair of inductors for resonance at the desired frequency, negative
resistance generator for a sustained oscillation and harmonic generator for distortion
of the injected signal. The core oscillator oscillates at the single frequency and no
on-chip capacitors were used for resonance at the desired frequency. The inductor
resonates with the total parasitic capacitance at the output of the oscillator. Hence,
the design of these devices that make the ILO are discussed in this section.

4.1 Inductor
The inductor was designed with an assistance of Mühlhaus RFIC inductor toolkit
in Keysight advanced design system (ADS). The toolkit synthesizes the inductor
layout provided by the technology to achieve an optimal inductance. By adjusting
certain parameters in the toolkit, the spiral inductor with single turn was generated.
Although, the inductance and Q was around 0.128 nH and 16.1 respectively during
the initial electromagnetic (EM) simulation, the final inductance was approximately
0.13 nH with Q of 6.43. The change in the values of these parameters were due
to the layout considerations which are discussed in the later section. The effective
inductance of the generated inductor using the toolkit versus the frequency is shown
in Figure 15 below.
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Figure 15: Effective inductance of the generated spiral inductor.

The inductor has SRF of 157 GHz which is much far away from the desired oscil-
lation frequency. At 70 GHz, the effective series resistance Rs of the inductor is
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approximately 8.75 Ω. The equivalent parallel resistance, Rp is therefore:

Rp = R2
s + X2

L

Rs

≈ 370.4 Ω (53)

where XL is the reactive component of the inductor impedance. Similarly, the Q of
the inductor against the frequency is shown in Figure 16 below.
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Figure 16: Q of the inductor against the frequency.

4.2 Core Oscillator
The core oscillator is a conventional cross-coupled oscillator that oscillates with the
effective inductance of 0.128 nH and total parasitic capacitance of around 39.3 fF
that appears at the output terminal. The parasitics of the harmonic generator also
contributes to the total capacitance of the oscillator. During the initial simulations,
on-chip capacitors were also used for the oscillation at the desired frequency. Since
the parasitics play a critical role in mm-wave frequency, the drastic change in the
oscillation frequency was observed after the post-layout simulation. Therefore, the
on-chip capacitors were removed which is quite advantageous as less area is consumed.
Figure 17 shows the schematic view of the designed cross-coupled oscillator.

The bias current is provided to the oscillator by the tail transistor T3 that mirrors
the reference current of the transistor T4. The reference current source transistor
T3 utilizes single multiplier, whereas the tail transistor T4 utilizes 8 multipliers so
that lower reference current can be used. According to the theory, the active circuit
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must cancel the effective series resistance of the inductor. For the oscillator as shown
in Figure 17 to oscillate, each transistor T1 and T2 must have gm ≥ 1/Rp ≈ 3 mS.
However, the equivalent gm value does not start up the oscillation which is certain for
practical circuits. Therefore, the gm must be chosen greater than the Rp to ensure
the oscillation.

T1 T2

T4T3

Figure 17: Core oscillator.

The oscillator starts oscillating with the tail current of 667.37 µA with very low
output voltage swing of 18.5 mV. The corresponding gm is 12.2 mS which is much
greater than the required gm value for oscillation. The large size transistors and higher
bias current can be used to increase the effective gm of the active circuit. But, this
increases the parasitics and magnitude of the fundamental harmonics. Consequently,
the phase noise also increases. Through the number of simulations following the
sweeping of different parameters, the tail current of 2.2 mA and 2 multipliers for the
active circuit transistors were fixed that provided decent phase noise performance
and output voltage swing. The corresponding gm of each transistor is 33 mS. Table 1
lists the key figure of the simulated core oscillator.

Table 1: Key figures of the core oscillator

Parameters Value Unit

IRef 320 µA

Itail 2.2 mA

Number of Multipliers 1 for T3, 8 for T4,
2 for T1 and T2 respectively. –

Oscillation Amplitude 373 mV

Phase Noise@1MHz -70.12 dBc/Hz

PDC 2.64 mW
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4.3 Harmonic Generator
The core oscillator must be injection locked to the third and the fifth harmonics
of the reference signal. The injection locking phenomenon and LR relies on the
strength of the injected signal and its harmonics. The harmonics generation rely on
the nonlinearities of the transistor. When biased with proper base-emitter voltage
and injection power, the HBT generates all the harmonics of the injection signal.
Therefore, it is very essential to study the nonlinear behavior of the HBT under
different biasing conditions. The two major reasons for nonlinearities in the HBT
are the nonlinear exponential current-voltage (IV) characteristic and clipping and
conduction angle of the collector current [29]. Frequency triplers taking an advantage
of these nonlinearities have been designed in [29–32]. Especially, [29] and [33] have
clearly described the nonlinear behaviour of the HBT with mathematical derivation.
Similar approach has been used in this thesis project to design the harmonic generator.

The nonlinear behavior of the HBT has been studied upon different biasing conditions
with injection power of 0 dBm along with the different transistor sizing. The final
simulation involves the total of 3 multipliers for the HBT. Figure 18 shows the plot
of the third order and the fifth order derivative of the collector current along with
the HBT IV characteristics.
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Figure 18: HBT nonlinearities with different biasing voltages.

Figure 18 shows that the HBT shows maximum nonlinearity when it turns on and
near saturation region. For maximum nonlinearity and frequency conversion gain,
the bias voltage of 0.83 V has been chosen that corresponds to the class AB operation.
The harmonic generator is composed of a pair of BJTs in differential configuration
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biased with resistor voltage divider and a coupling capacitor Cc as shown in Figure 19
below.

T6T5

Figure 19: Harmonic Generator.

The resistor voltage divider was considered as it provides constant voltage biasing
despite of the base current variation and hence, maintains the HBT nonlinearity.
The values of the resistors R1 and R2 are 1 kΩ and 2.4 kΩ respectively. Although, in
ideal case, the biasing voltage with these resistances correspond around 0.847 V, the
final bias voltage of 0.83V has been achieved for the HBTs with the corresponding
resistor values. This is due to the fact that the parasitics of the metal interconnects
contribute to the overall resistance of the voltage divider. The coupling capacitor of
300 fF was chosen that allows the RF signals to pass into the harmonic generator
while blocking the DC signals. The key figures of the simulated harmonic generator
are listed in Table 2 below.

Table 2: Key figures of the harmonic generator

Parameters Value Unit

Bias Voltage 0.83 V

Total Number of Multipliers of Each HBT 3 –

Quiescent Current of Each HBT 1.42 mA

PDC 3.4 mW

4.4 ILO Schematic and Layout Design
The direct injection topology has been utilized to inject the harmonics of the reference
signal into the oscillator i.e., the outputs of the harmonic generator are directly fed
into the outputs of the cross-coupled oscillator. The desired harmonic gets amplified
and undesired harmonics get suppressed depending upon the frequency response and
LR of the oscillator. Figure 20 shows the full schematic of the designed ILO.
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T1 T2

T4T3

T6T5

Figure 20: Full schematic of the designed ILO.

The Cadence Virtuoso layout editor was utilized to design the layout of the ILO
circuit. The main challenging task during the layout design was the inductor. It was
observed after the post-layout simulations that the metal interconnects of the inductor
contribute significantly to its overall effective inductance and series resistance. As
a result, the oscillation frequency shifted from the desired one greatly. This is the
reason for the decrement of Q of the final inductance as discussed in Section 4.1. The
EM simulation had to be performed number of times along with the interconnects to
fine tune the oscillation frequency. Figure 21 shows the layout of the designed ILO
circuit.

Figure 21: Layout design.

The layouts of the current mirror, harmonic generator and negative resistance gener-
ator were designed separately along with the metal interconnects and the parasitics
were extracted for the simulations. Similarly, the EM simulation of the inductor
was performed using the ADS Momentum and the scattering parameters file was
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extracted for the simulations. After the desired oscillation frequency was achieved,
each layout blocks were placed as they were designed for the pre-layout simulation
verification and hence, the complete layout of the ILO was created. In addition,
multiple vias were considered to decrease the resistance and increase the reliability.
Also, similar orientation for the differential HBTs were considered for symmetrical
reasons. The RC extraction of the layout was done and the ILO performance was
evaluated whose results are presented in the later section.
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5 Simulation Results
This section presents the simulation results of the ILO. The ILO was simulated using
the cadence spectre and an ideal voltage, current and 50Ω RF sources have been
used to provide the main supply voltage, reference current and differential signal to
the circuit respectively. In addition, all the simulated results data were exported
and plotted using the Matlab. Also, the discrete Fourier transform (DFT) of the
transient simulated data were performed using the Matlab.

5.1 Free-running oscillator
Figure 22 shows the transient simulation and its DFT of the free running oscillator.
The oscillator reaches the steady state after about 400 ps, and starts oscillating with
the frequency of 71 GHz and output voltage swing of 373 mV.

Figure 22: Transient simulation and its DFT plot of the free running oscillator.

The DFT plot shows that the even harmonics are suppressed greatly than the odd
harmonics due to the differential nature of the oscillator. The magnitude of the
second, third and fifth harmonics are -52.25 dB, -31.6 dB and -42.95 dB respectively
below the fundamental frequency of oscillation.

Figure 23 shows the phase noise performance of the free running oscillator. At offset
frequency of 1 MHz, the free-running oscillator achieves phase noise of -70.12 dBc/Hz.
The corresponding FOM of the free-running oscillator is -162.93 dBc/Hz.
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Figure 23: Free-running oscillator phase noise.

5.2 Injection-Locked Oscillator
The injection locking phenomenon was studied by injecting the 3rd and 5th harmonics
of the injected signal. Figure 24, Figure 25 shows the injection locking to the 3rd and
the 5th harmonics of the injection signal respectively with injection power of 0 dBm.

Figure 24: Third harmonic injection locking.
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Figure 25: Fifth harmonic injection locking.

On simulation, it was found that the oscillator also locks to the 7th harmonics of
the injected signal with very narrow LR (Figure 29). Figure 26 shows the injection
locking to the 7th harmonic of the injection signal with injection power of 0 dBm.

Figure 26: Injection locking to the seventh harmonic.
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The magnitude of the output signal is increased under locked condition compared
to the free-running oscillator due to the contribution of the injection power. Also,
the reference spurs are high due to the low Q of the inductor and feedthrough the
harmonic generator. To accurately determine the LR of the oscillator upon different
harmonics injection, the transient simulation of the ILO was performed in wide range
of frequencies with small frequency steps around the injection frequency. The locked
state was found out by plotting the transient simulation and performing DFT of its
data. Under locked condition, the DFT shows only the tones of the injected signal
(Figures 24 to 26) with highest peak being at the locked frequency.

The oscillator goes under pulling phenomenon outside the LR. When the injection
signal is close to the ω0 and outside the LR, the oscillator goes under quasi-lock
mode that consists of many tones other than the injected signal with small frequency
spacing as shown in Figure 27. Similarly, when the injection signal is far from the
ω0 and outside the LR, the oscillator goes under fast beat mode. Like in quasi-lock
mode, the spectrum contains many tones other than the injected signal but with
larger frequency spacing as shown in Figure 28.

Figure 27: Oscillator under quasi-lock mode with ωinj = 2π·13.25 GHz.

With injection power of 0 dBm, the oscillator locks the harmonics of the reference
frequencies ranging from 18.9-24.5 GHz and 13.29-14.16 GHz for the third and the
fifth harmonics injection respectively. The corresponding LR are 5.6 GHz for the 3rd

harmonics and 870 MHz for the 5th harmonics injection. To verify the relation of LR
with Iinj as depicted by Eq. (48), the injection power was swept from 0 dBm to -10
dBm, injecting the 3rd, 5th and 7th harmonics of the reference signal. As predicted by
the theory, the simulated results showed that LR decreases on decreasing the injection
power and vice versa. This is because the conversion gain of the respective harmonic
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decreases on decreasing the injection power. Mostly, the power of the harmonics
are much weaker already after the third harmonic which results in decreased LR for
higher harmonics. Figure 29 shows the LR of the ILO with various injection power
and subharmonic frequencies. The minimum injection power required for injection
locking to the 3rd harmonic of the injection signal so that the oscillator oscillates
at 70 GHz frequency is -9 dBm, and -5 dBm for the 5th harmonic injection. The
corresponding injection frequencies lies at the edge of the LR.

Figure 28: Oscillator under fast-beat mode with ωinj = 2π·12 GHz.

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0

P
inj

 [dBm]

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

L
oc

k
 R

an
ge

 [
M

H
z]

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

850

900

L
oc

k
 R

an
ge

 [
M

H
z]

3rd Harmonic Injection (left y-axis)

5th Harmonic Injection (right y-axis)

7th Harmonic Injection (right y-axis)

Figure 29: LR relation with input injection power.



40

For the phase noise simulation of the ILO, the injection source was given constant
phase noise values at certain frequency offsets. Although the simulated results
do not accurately predict the phase noise of the oscillator when impressed by the
external signal, it helps to understand the phase noise behaviour of the ILO. In
addition, it also helps to verify if the oscillator is locked to the injected signal. Under
locked condition, the phase noise of the oscillator is suppressed by the factor of
20 log10 N dB as mentioned in Section 3.2. Figure 30 shows the phase noise of the
input reference signal along with the output phase noise of its 3rd and 5th harmonics
injection respectively.
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Figure 30: Phase noise characteristics of the oscillator under injection.

Figure 30 shows that the resultant output signal of the oscillator follows the phase
noise of the reference signal. The phase noise degradation of 10.3 dB at 1 MHz offset
frequency can seen with the third harmonic injection which is almost near to the
theoretical limit of 20 log10 3 = 9.54 dB. Similarly, the phase noise degrades by 14.7
dB for the fifth harmonic injection at offset frequency of 1 MHz and approaches the
theoretical limit of 20 log10 5 = 13.94 dB. The phase noise approaches almost the
theoretical limit if the injection power is increased beyond 0 dBm. On the contrary,
the phase phase noise degrades for the low power injection. Besides, the phase
noise also approaches near to the theoretical limit with the same injection power at
small offset frequency as a result of low-pass frequency response. The phase noise
degradation for the third harmonic injection is already 9.91 dB at 10 kHz frequency
offset which is very much close to the theoretical limit value of 9.54 dB.
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5.3 Summary
Table 3 lists the achieved specification of the post-layout simulated ILO.

Table 3: Key figures of the injection locked oscillator.

Technology 0.13µm SiGe HBT BiCMOS

Supply Voltage 1.2 V

Oscillating Condition Performance Parameters Value Unit

Free-
Running

Frequency 71 GHz

Phase Noise@1MHz 70.12 dBc/Hz

FOM@1MHz -162.93 dBc/Hz

Injection-
Locked

Divide-By-3 LR 5.6 GHz

Divide-By-5 LR 870 MHz

Divide-By-7 LR 230 MHz

Injection Power 0 dBm

PDC 6.04 mW
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6 Conclusion
A mm-wave subharmonic ILO has been realized using the IHP SiGe 0.13 µm BiCMOS
technology under supply voltage of 1.2 V. The final design of the ILO includes the
clean design rule check (DRC) and layout vs schematic (LVS) layout that achieves
injection locking to the third, fifth and even seventh harmonics of the injection signal.

The designed ILO is composed of a cross-coupled oscillator that oscillates at the
frequency of 71 GHz and a differential harmonic generator that generates all the
harmonics of the reference signal. The direct injection topology has been utilized
to achieve the odd harmonics injection locking i.e., the differential outputs of the
harmonic generator are directly injected to the differential outputs of the core oscilla-
tor. For the harmonics generation, the nonlinear characteristic of the HBT has been
studied with different biasing voltages (Figure 18) and the biasing point is chosen
where the HBT is most nonlinear. When biased with 0.83 V, the harmonic generator
provides maximum frequency conversion gain for the required harmonics. The core
oscillator consumes 2.64 mW power with tail current of 2.2 mA and the harmonic
generator consumes 3.4 mW power making the total DC power consumption of 6.04
mW for the whole ILO.

The ILO achieves the LR of 7.9%, 1.22%, 0.32% for the third, fifth and the seventh
harmonics injection respectively with input injection power of 0 dBm. The plot of the
LR with different injection power (Figure 29) verifies the proportional relationship
of LR with the injection power i.e., the LR decreases for low injection power and
vice versa. The phase noise of the locked ILO follows the phase noise of the injection
signal as predicted by the theory and approaches the theoretical value upon high
power injection. The minimum injection power required to obtain the desired 70
GHz locked output under the third harmonic injection is -9 dBm and -5 dBm for the
fifth harmonic injection. But this must be compromised with the LR and the phase
noise degradation. The magnitude of the resultant output signal increases by more
than 3.5 dB for all the third, fifth and the seventh harmonics injection due to the
contribution of the injection power which is quite advantageous.

As a conclusion, an ILO with free-running frequency of 71 GHz, and with locking
capability to the third, fifth and the seventh harmonics of the reference signal has
been realized with the decent LR. The primary requirement of free-running oscillation
frequency of 70 GHz can be met by increasing the bias current of the core oscillator.
But, this comes in cost of increased DC power dissipation and decreased LR. On
the contrary, the bias current of the oscillator can decreased, increasing the Q of
the inductor at the same time to decrease the power consumption of the oscillator
without degrading the LR due to the inverse proportionality relationship of the
LR with the oscillating current. But, care must be taken while playing with these
parameters as minimum bias current is required for sustaining the loop gain. Besides,
further improvement in the design of the ILO can be done to decrease the magnitude
of the reference spurs.
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Furthermore, the simulation were carried out without the output buffers that may
affect the main oscillation frequency and the LR due to its parasitics. Similarly, the
process-voltage-temperature (PVT) analysis has not been carried out which may also
affect the operation of the ILO; any variation in the supply voltage could degrade
the LR greatly as the harmonic generator relies on the bias point of the HBT for
harmonics generation. In addition, an ideal RF source has been used as a reference
signal with input power of 0 dBm. In practical circuits, this amount of power is not
possible to be transferred without using the buffer as the power gets reflected due to
the impedance mismatching. As in all, the thesis work is focused mainly on studying
the characteristics of an ILO rather than focusing on its practical implementation.
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