1,596 research outputs found

    Testing QoE in Different 3D HDTV Technologies

    Get PDF
    The three dimensional (3D) display technology has started flooding the consumer television market. There is a number of different systems available with different marketing strategies and different advertised advantages. The main goal of the experiment described in this paper is to compare the systems in terms of achievable Quality of Experience (QoE) in different situations. The display systems considered are the liquid crystal display using polarized light and passive lightweight glasses for the separation of the left- and right-eye images, a plasma display with time multiplexed images and active shutter glasses and a projection system with time multiplexed images and active shutter glasses. As no standardized test methodology has been defined for testing of stereoscopic systems, we develop our own approach to testing different aspects of QoE on different systems without reference using semantic differential scales. We present an analysis of scores with respect to different phenomena under study and define which of the tested aspects can really express a difference in the performance of the considered display technologies

    Conceptual design study for a teleoperator visual system, phase 2

    Get PDF
    An analysis of the concept for the hybrid stereo-monoscopic television visual system is reported. The visual concept is described along with the following subsystems: illumination, deployment/articulation, telecommunications, visual displays, and the controls and display station

    Crosstalk in stereoscopic displays: A review

    Get PDF
    Crosstalk, also known as ghosting or leakage, is a primary factor in determining the image quality of stereoscopic three dimensional (3D) displays. In a stereoscopic display, a separate perspective view is presented to each of the observer’s two eyes in order to experience a 3D image with depth sensation. When crosstalk is present in a stereoscopic display, each eye will see a combination of the image intended for that eye, and some of the image intended for the other eye—making the image look doubled or ghosted. High levels of crosstalk can make stereoscopic images hard to fuse and lack fidelity, so it is important to achieve low levels of crosstalk in the development of high-quality stereoscopic displays. Descriptive and mathematical definitions of these terms are formalized and summarized. The mechanisms by which crosstalk occurs in different stereoscopic display technologies are also reviewed, including micropol 3D liquid crystal displays (LCDs), autostereoscopic (lenticular and parallax barrier), polarized projection, anaglyph, and time-sequential 3D on LCDs, plasma display panels and cathode ray tubes. Crosstalk reduction and crosstalk cancellation are also discussed along with methods of measuring and simulating crosstalk

    Optical simulation, modeling and evaluation of 3D medical displays

    Get PDF

    Production and Assessment of Usefulness of Interactive 2-D and Stereoscopic 3-D Videos as Tools for Anatomic Dissection Preparation and Examination Review

    Get PDF
    Laboratory is an integral part of a gross anatomy course in which students have their first in–depth dissection experience and explore structure-function relationships. Students arrive in the course that requires acquisition of a large vocabulary and visual imagery with scant prior knowledge. Even with extensive preparation on their part, the task is so difficult that students rely heavily on help from peers, teaching assistants, and instructors to gain the best from laboratory time. In recognition of the complexity of the learning task and the limitation on the amount of help available, this research was conducted to explore the value of educational tools that could enhance learning, make time in the laboratory more profitable, and decrease dependency on peers, teaching assistants, and instructors. Because anatomy is a highly visually based discipline, it was reasoned that interactive high definition videos with verbal descriptions of dissections would enhance the learning process. High definition videos of dissections were produced in 2–D and stereoscopic 3–D formats and compared with the standard dissection guide as tools for laboratory preparation. Stereoscopic 3–D format was included because of the hypothesis that the depth it provides might help students more readily grasp the relationships of structures to each other. Timing, duration, and tools provided to interact with the various formats varied with the experiment. The videos consisted of short presentations (10–14 minutes) of dissection steps or reviews of relationships of structures and were self–paced so they could be viewed more than once. Questions to encourage interaction with the materials were integrated into the videos and supplied with the Guide. Depending on the experiment, data collected included performance on paper and practical examinations, dissection quality, and frequency of requests for help in addition to surveys designed to assess ease of use and acceptance of the various presentation modes. Results presented in the thesis indicate that videos were superior to the guide in helping students prepare for dissection and develop understanding of the assigned body structures and their relationships. With the reservation that mode of 3–D delivery may play a role, 2–D videos were usually rated more positively than 3–D videos in student opinions. Both types of videos improved performance on various assessments and received more positive feedback when compared to the laboratory manual. This research confirmed the basic hypothesis that videos are effective tools for use in anatomy education and that they are worthy of significant investment of resources to help overcome some of the challenges facing anatomy educators

    Stereoscopic human interfaces

    Get PDF
    This article focuses on the use of stereoscopic video interfaces for telerobotics. Topics concerning human visual perception, binocular image capturing, and stereoscopic devices are described. There is a wide variety of video interfaces for telerobotic systems. Choosing the best video interface depends on the telerobotic application requirements. Simple monoscopic cameras are good enough for watching remote robot movements or for teleprogramming a sequence of commands. However, when operators seek precise robot guidance or wish to manipulate objects, a better perception of the remote environment must be achieved, for which more advanced visual interfaces are required. This implies a higher degree of telepresence, and, therefore, the most suitable visual interface has to be chosen. The aim of this article is to describe the two main aspects using stereoscopic interfaces: the capture of binocular video images, according to the disparity limits in human perception and the proper selection of the visualization interface for stereoscopic images

    Perceived Depth Control in Stereoscopic Cinematography

    Get PDF
    Despite the recent explosion of interest in the stereoscopic 3D (S3D) technology, the ultimate prevailing of the S3D medium is still significantly hindered by adverse effects regarding the S3D viewing discomfort. This thesis attempts to improve the S3D viewing experience by investigating perceived depth control methods in stereoscopic cinematography on desktop 3D displays. The main contributions of this work are: (1) A new method was developed to carry out human factors studies on identifying the practical limits of the 3D Comfort Zone on a given 3D display. Our results suggest that it is necessary for cinematographers to identify the specific limits of 3D Comfort Zone on the target 3D display as different 3D systems have different ranges for the 3D Comfort Zone. (2) A new dynamic depth mapping approach was proposed to improve the depth perception in stereoscopic cinematography. The results of a human-based experiment confirmed its advantages in controlling the perceived depth in viewing 3D motion pictures over the existing depth mapping methods. (3) The practicability of employing the Depth of Field (DoF) blur technique in S3D was also investigated. Our results indicate that applying the DoF blur simulation on stereoscopic content may not improve the S3D viewing experience without the real time information about what the viewer is looking at. Finally, a basic guideline for stereoscopic cinematography was introduced to summarise the new findings of this thesis alongside several well-known key factors in 3D cinematography. It is our assumption that this guideline will be of particular interest not only to 3D filmmaking but also to 3D gaming, sports broadcasting, and TV production
    corecore