10,604 research outputs found

    Continuous maintenance and the future – Foundations and technological challenges

    Get PDF
    High value and long life products require continuous maintenance throughout their life cycle to achieve required performance with optimum through-life cost. This paper presents foundations and technologies required to offer the maintenance service. Component and system level degradation science, assessment and modelling along with life cycle ‘big data’ analytics are the two most important knowledge and skill base required for the continuous maintenance. Advanced computing and visualisation technologies will improve efficiency of the maintenance and reduce through-life cost of the product. Future of continuous maintenance within the Industry 4.0 context also identifies the role of IoT, standards and cyber security

    Remote systems development

    Get PDF
    Potential space missions of the nineties and the next century require that we look at the broad category of remote systems as an important means to achieve cost-effective operations, exploration and colonization objectives. This paper addresses such missions, which can use remote systems technology as the basis for identifying required capabilities which must be provided. The relationship of the space-based tasks to similar tasks required for terrestrial applications is discussed. The development status of the required technology is assessed and major issues which must be addressed to meet future requirements are identified. This includes the proper mix of humans and machines, from pure teleoperation to full autonomy; the degree of worksite compatibility for a robotic system; and the required design parameters, such as degrees-of-freedom. Methods for resolution are discussed including analysis, graphical simulation and the use of laboratory test beds. Grumman experience in the application of these techniques to a variety of design issues are presented utilizing the Telerobotics Development Laboratory which includes a 17-DOF robot system, a variety of sensing elements, Deneb/IRIS graphics workstations and control stations. The use of task/worksite mockups, remote system development test beds and graphical analysis are discussed with examples of typical results such as estimates of task times, task feasibility and resulting recommendations for design changes. The relationship of this experience and lessons-learned to future development of remote systems is also discussed

    Cloud platforms for remote monitoring system : a comparative case study

    Get PDF
    Currently, industrial companies are increasingly introducing services to extend their tangible products. Remote monitoring solutions are one of the most implemented services by machine builders to manage their relationship with customers and also improve their business performance in the digital manufacturing era. However, the conventional method of remote monitoring cannot fulfil distributed business environments. Therefore, new solutions are needed to enable remote connection in manufacturing. By reviewing recent literature and proposing new features for software which can be used for remote service and operations, this research paper introduces a remote monitoring system connecting into a central cloud-based system with edge computing network architecture, namely Cloud-based Remote Monitoring (CloudRM). This proposed CloudRM also has been implemented in two different case companies for analysis and evaluation from a value proposition and technical implementation point of view. It shows significant improvement of production management and measurement by using CloudRM.fi=vertaisarvioitu|en=peerReviewed

    A component-based approach to human–machine interface systems that support agile manufacturing

    Get PDF
    The development of next generation manufacturing systems is currently an active area of research worldwide. Globalisation is placing new demands on the manufacturing industry with products having shorter lifecycles and being required in more variants. Manufacturing systems must therefore be agile to support frequent manufacturing system reconfiguration involving globally distributed engineering partners. The research described in this thesis addresses one aspect within this research area, the Human Machine Interface (HMI) system that support the personnel involved in the monitoring, diagnostics and reconfiguration of automated manufacturing production machinery. Current HMI systems are monolithic in their design, generally offer poor connectivity to other manufacturing systems and require highly skilled personnel to develop and maintain them. The new approach established in the research and presented in this thesis provides a specification capture technique (using a novel storyboarding modelling notation) that enables the end users HMI functionality to be specified and rapidly developed into fully functional End User HMI's via automated generation tools. A novel feature in this HMI system architecture that all machine information is stored in a common unified machine data model which ensures consistent accurate machine data is available to all machine lifecycle engineering tools including the HMI. The system's run-time architecture enables remote monitoring and diagnostics capabilities to be available to geographically distributed engineering partners using standard internet technologies. The implementation of this novel HMI approach has been prototyped and evaluated using the industrial collaborators full scale demonstrator machines within cylinder head machining and engine assembly applications

    A Novel Method to Improve the Resolution of Envelope Spectrum for Bearing Fault Diagnosis Based on a Wireless Sensor Node

    Get PDF
    In this paper, an accurate envelope analysis algorithm is developed for a wireless sensor node. Since envelope signals employed in condition monitoring often have narrow frequency bandwidth, the proposed algorithm down-samples and cascades the analyzed envelope signals to construct a relatively long one. Thus, a relatively higher frequency resolution can be obtained by calculating the spectrum of the cascaded signal. In addition, a 50 % overlapping scheme is applied to avoid the distortions caused by Hilbert transform based envelope calculation. The proposed method is implemented on a wireless sensor node and tested successfully for detecting an outer race fault of a rolling bearing. The results show that the frequency resolution of the envelope spectrum is improved by 8 times while the data transmission remains at a low rate

    Predictive maintenance: a novel framework for a data-driven, semi-supervised, and partially online prognostic health management application in industries

    Get PDF
    Prognostic Health Management (PHM) is a predictive maintenance strategy, which is based on Condition Monitoring (CM) data and aims to predict the future states of machinery. The existing literature reports the PHM at two levels: methodological and applicative. From the methodological point of view, there are many publications and standards of a PHM system design. From the applicative point of view, many papers address the improvement of techniques adopted for realizing PHM tasks without covering the whole process. In these cases, most applications rely on a large amount of historical data to train models for diagnostic and prognostic purposes. Industries, very often, are not able to obtain these data. Thus, the most adopted approaches, based on batch and off-line analysis, cannot be adopted. In this paper, we present a novel framework and architecture that support the initial application of PHM from the machinery producers’ perspective. The proposed framework is based on an edge-cloud infrastructure that allows performing streaming analysis at the edge to reduce the quantity of the data to store in permanent memory, to know the health status of the machinery at any point in time, and to discover novel and anomalous behaviors. The collection of the data from multiple machines into a cloud server allows training more accurate diagnostic and prognostic models using a higher amount of data, whose results will serve to predict the health status in real-time at the edge. The so-built PHM system would allow industries to monitor and supervise a machinery network placed in different locations and can thus bring several benefits to both machinery producers and users. After a brief literature review of signal processing, feature extraction, diagnostics, and prognostics, including incremental and semi-supervised approaches for anomaly and novelty detection applied to data streams, a case study is presented. It was conducted on data collected from a test rig and shows the potential of the proposed framework in terms of the ability to detect changes in the operating conditions and abrupt faults and storage memory saving. The outcomes of our work, as well as its major novel aspect, is the design of a framework for a PHM system based on specific requirements that directly originate from the industrial field, together with indications on which techniques can be adopted to achieve such goals

    Generalized Method Of Designing Unmanned Remotely Operated Complexes Based On The System Approach

    Get PDF
    Self-propelled underwater systems belong to the effective means of marine robotics. The advantages of their use include the ability to perform underwater work in real time with high quality and without risk to the life of a human operator. At present, the design of such complexes is not formalized and is carried out separately for each of the components – a remotely operated vehicle, a tether-cable and cable winch, a cargo device and a control and energy device. As a result, the time spent on design increases and its quality decreases. The system approach to the design of remotely operated complexes ensures that the features of the interaction of the components of the complex are taken into account when performing its main operating modes. In this paper, the system interaction between the components of the complex is proposed to take into account in the form of decomposition of “underwater tasks (mission) – underwater technology of its implementation – underwater work on the selected technology – task for the executive mechanism of the complex” operations. With this approach, an information base is formed for the formation of a list of mechanisms of the complex, the technical appearance of its components is being formed, which is important for the early design stages. Operative, creative and engineering phases of the design of the complex are proposed. For each phase, a set of works has been formulated that cover all the components of the complex and use the author's existence equations for these components as a tool for system analysis of technical solutions.The perspective of the scientific task of the creative phase to create accurate information models of the functioning of the components of the complex and models to support the adoption of design decisions based on a systematic approach is shown.The obtained results form the theoretical basis for finding effective technical solutions in the early stages of designing remotely operated complexes and for automating the design with the assistance of modern applied computer research and design packages

    3D-based Advanced Machine Service Support

    Get PDF
    In the face of today's unpredictable and fluctuating global market, there have been trends in industry towards wider adoption of more advanced and flexible new generation manufacturing systems. These have brought about new challenges to manufacturing equipment builders/suppliers in respect of satisfying ever-increasing customers' requirements for such advanced manufacturing systems. To stay competitive, in addition to supplying high quality equipment, machine builders/suppliers must also be capable of providing their customers with cost-effective, efficient and comprehensive service support, throughout the equipment's lifecycle. This research study has been motivated by the relatively unexplored potential of integrating 3D virtual technology with various machine service support tools/techniques to address the aforementioned challenges. The hypothesis formulated for this study is that a 3D-based virtual environment can be used as an integration platform to improve service support for new generation manufacturing systems. In order to ensure the rigour of the study, it has been initiated with a two-stage (iterative) literature review, consisting of: a preliminary review for the identification of practical problems/main issues related to the area of machine service support and in-depth reviews for the identification of research problems/questions and potential solutions. These were then followed by iterations of intensive research activities, consisting of: requirements identification, concept development, prototype implementation, testing and exploration, reflection and feedback. The process has been repeated and revised continuously until satisfactory results, required for answering the identified research problems/questions, were obtained. The main focus of this study is exploring how a 3D-based virtual environment can be used as an integration platform for supporting a more cost-effective and comprehensive strategy for improving service support for new generation manufacturing systems. One of the main outcomes of this study is the proposal of a conceptual framework for a novel 3D-based advanced machine service support strategy and a reference architecture for a corresponding service support system, for allowing machine builders/suppliers to: (1) provide more cost-effective remote machine maintenance support, and (2) provide more efficient and comprehensive extended service support during the equipment's life cycle. The proposed service support strategy advocates the tight integration of conventional (consisting of mainly machine monitoring, diagnostics, prognostics and maintenance action decision support) and extended (consisting of mainly machine re-configuration, upgrade and expansion support) service support functions. The proposed service support system is based on the integration of a 3D-based virtual environment with the equipment control system, a re-configurable automated service support system, coupled with a maintenance-support-tool/strategy support environment and an equipment re-configuration/upgrade/expansion support environment, in a network/lntenet framework. The basic concepts, potential benefits and limitations of the proposed strategy/ system have been explored via a prototype based on a laboratory-scale test bed. The prototype consists of a set of integrated modular network-ready software tools consisting of: (1) an integrated 20/30 visualisation and analysis module, (2) support tools library modules, (3) communication modules and (4) a set of modular and re-configurable automated data logging, maintenance and re-configuration support modules. A number of test cases based on various machine service support scenarios, have been conducted using the prototype. The experimentation has shown the potential and feasibility (technical implementation aspects) of the proposed 3D-based approach. This research study has made an original contribution to knowledge in the field of machine service support. It has contributed a novel approach of using a 3D-based virtual environment as an integration platform for improving the capability of machine builders/suppliers in providing more cost-effective and comprehensive machine service support for complex new generation manufacturing systems. Several important findings have resulted from this work in particular with respect to how various 20/30 visualisation environments are integrated with machine service support tools/techniques for improving service support for complex manufacturing systems. A number of aspects have also been identified for future work

    Evaluating the impact of adopting a component-based approach within the automotive domain

    Get PDF
    Component-based technology applied to the control system of production machinery is one of the new research developments in the automotive sector. Although it is important to evaluate the technical aspects of this new paradigm, an appreciation of the impact from the business and human aspects is equally important to the stakeholders in the industry. However, the current evaluation approaches do not offer a method to capture and analyse the component-based technology that is simple to use and produces results that are readily understood by the stakeholders involved in the process. This study is based upon a research project at Loughborough University to look into the effect of the implementation of a component-based control system for production machinery in the automotive sector (referred to as the component-based approach) and is focused on the business and the human aspects of the approach. [Continues.
    corecore