130 research outputs found

    Off-line evaluation of indoor positioning systems in different scenarios: the experiences from IPIN 2020 competition

    Get PDF
    Every year, for ten years now, the IPIN competition has aimed at evaluating real-world indoor localisation systems by testing them in a realistic environment, with realistic movement, using the EvAAL framework. The competition provided a unique overview of the state-of-the-art of systems, technologies, and methods for indoor positioning and navigation purposes. Through fair comparison of the performance achieved by each system, the competition was able to identify the most promising approaches and to pinpoint the most critical working conditions. In 2020, the competition included 5 diverse off-site off-site Tracks, each resembling real use cases and challenges for indoor positioning. The results in terms of participation and accuracy of the proposed systems have been encouraging. The best performing competitors obtained a third quartile of error of 1 m for the Smartphone Track and 0.5 m for the Foot-mounted IMU Track. While not running on physical systems, but only as algorithms, these results represent impressive achievements.Track 3 organizers were supported by the European Union’s Horizon 2020 Research and Innovation programme under the Marie Skłodowska Curie Grant 813278 (A-WEAR: A network for dynamic WEarable Applications with pRivacy constraints), MICROCEBUS (MICINN, ref. RTI2018-095168-B-C55, MCIU/AEI/FEDER UE), INSIGNIA (MICINN ref. PTQ2018-009981), and REPNIN+ (MICINN, ref. TEC2017-90808-REDT). We would like to thanks the UJI’s Library managers and employees for their support while collecting the required datasets for Track 3. Track 5 organizers were supported by JST-OPERA Program, Japan, under Grant JPMJOP1612. Track 7 organizers were supported by the Bavarian Ministry for Economic Affairs, Infrastructure, Transport and Technology through the Center for Analytics-Data-Applications (ADA-Center) within the framework of “BAYERN DIGITAL II. ” Team UMinho (Track 3) was supported by FCT—Fundação para a Ciência e Tecnologia within the R&D Units Project Scope under Grant UIDB/00319/2020, and the Ph.D. Fellowship under Grant PD/BD/137401/2018. Team YAI (Track 3) was supported by the Ministry of Science and Technology (MOST) of Taiwan under Grant MOST 109-2221-E-197-026. Team Indora (Track 3) was supported in part by the Slovak Grant Agency, Ministry of Education and Academy of Science, Slovakia, under Grant 1/0177/21, and in part by the Slovak Research and Development Agency under Contract APVV-15-0091. Team TJU (Track 3) was supported in part by the National Natural Science Foundation of China under Grant 61771338 and in part by the Tianjin Research Funding under Grant 18ZXRHSY00190. Team Next-Newbie Reckoners (Track 3) were supported by the Singapore Government through the Industry Alignment Fund—Industry Collaboration Projects Grant. This research was conducted at Singtel Cognitive and Artificial Intelligence Lab for Enterprises (SCALE@NTU), which is a collaboration between Singapore Telecommunications Limited (Singtel) and Nanyang Technological University (NTU). Team KawaguchiLab (Track 5) was supported by JSPS KAKENHI under Grant JP17H01762. Team WHU&AutoNavi (Track 6) was supported by the National Key Research and Development Program of China under Grant 2016YFB0502202. Team YAI (Tracks 6 and 7) was supported by the Ministry of Science and Technology (MOST) of Taiwan under Grant MOST 110-2634-F-155-001

    Off-Line Evaluation of Indoor Positioning Systems in Different Scenarios: The Experiences From IPIN 2020 Competition

    Get PDF
    Every year, for ten years now, the IPIN competition has aimed at evaluating real-world indoor localisation systems by testing them in a realistic environment, with realistic movement, using the EvAAL framework. The competition provided a unique overview of the state-of-the-art of systems, technologies, and methods for indoor positioning and navigation purposes. Through fair comparison of the performance achieved by each system, the competition was able to identify the most promising approaches and to pinpoint the most critical working conditions. In 2020, the competition included 5 diverse off-site off-site Tracks, each resembling real use cases and challenges for indoor positioning. The results in terms of participation and accuracy of the proposed systems have been encouraging. The best performing competitors obtained a third quartile of error of 1 m for the Smartphone Track and 0.5 m for the Foot-mounted IMU Track. While not running on physical systems, but only as algorithms, these results represent impressive achievements

    The IPIN 2019 Indoor Localisation Competition - Description and Results

    Get PDF
    IPIN 2019 Competition, sixth in a series of IPIN competitions, was held at the CNR Research Area of Pisa (IT), integrated into the program of the IPIN 2019 Conference. It included two on-site real-time Tracks and three off-site Tracks. The four Tracks presented in this paper were set in the same environment, made of two buildings close together for a total usable area of 1000 m 2 outdoors and and 6000 m 2 indoors over three floors, with a total path length exceeding 500 m. IPIN competitions, based on the EvAAL framework, have aimed at comparing the accuracy performance of personal positioning systems in fair and realistic conditions: past editions of the competition were carried in big conference settings, university campuses and a shopping mall. Positioning accuracy is computed while the person carrying the system under test walks at normal walking speed, uses lifts and goes up and down stairs or briefly stops at given points. Results presented here are a showcase of state-of-the-art systems tested side by side in real-world settings as part of the on-site real-time competition Tracks. Results for off-site Tracks allow a detailed and reproducible comparison of the most recent positioning and tracking algorithms in the same environment as the on-site Tracks

    The IPIN 2019 Indoor Localisation Competition—Description and Results

    Get PDF
    IPIN 2019 Competition, sixth in a series of IPIN competitions, was held at the CNR Research Area of Pisa (IT), integrated into the program of the IPIN 2019 Conference. It included two on-site real-time Tracks and three off-site Tracks. The four Tracks presented in this paper were set in the same environment, made of two buildings close together for a total usable area of 1000 m 2 outdoors and and 6000 m 2 indoors over three floors, with a total path length exceeding 500 m. IPIN competitions, based on the EvAAL framework, have aimed at comparing the accuracy performance of personal positioning systems in fair and realistic conditions: past editions of the competition were carried in big conference settings, university campuses and a shopping mall. Positioning accuracy is computed while the person carrying the system under test walks at normal walking speed, uses lifts and goes up and down stairs or briefly stops at given points. Results presented here are a showcase of state-of-the-art systems tested side by side in real-world settings as part of the on-site real-time competition Tracks. Results for off-site Tracks allow a detailed and reproducible comparison of the most recent positioning and tracking algorithms in the same environment as the on-site Tracks

    Mobility increases localizability: A survey on wireless indoor localization using inertial sensors

    Get PDF
    Wireless indoor positioning has been extensively studied for the past 2 decades and continuously attracted growing research efforts in mobile computing context. As the integration of multiple inertial sensors (e.g., accelerometer, gyroscope, and magnetometer) to nowadays smartphones in recent years, human-centric mobility sensing is emerging and coming into vogue. Mobility information, as a new dimension in addition to wireless signals, can benefit localization in a number of ways, since location and mobility are by nature related in the physical world. In this article, we survey this new trend of mobility enhancing smartphone-based indoor localization. Specifically, we first study how to measure human mobility: what types of sensors we can use and what types of mobility information we can acquire. Next, we discuss how mobility assists localization with respect to enhancing location accuracy, decreasing deployment cost, and enriching location context. Moreover, considering the quality and cost of smartphone built-in sensors, handling measurement errors is essential and accordingly investigated. Combining existing work and our own working experiences, we emphasize the principles and conduct comparative study of the mainstream technologies. Finally, we conclude this survey by addressing future research directions and opportunities in this new and largely open area.</jats:p

    User Experience Enhancement on Smartphones using Wireless Communication Technologies

    Get PDF
    학위논문 (박사) -- 서울대학교 대학원 : 공과대학 전기·정보공학부, 2020. 8. 박세웅.Recently, various sensors as well as wireless communication technologies such as Wi-Fi and Bluetooth Low Energy (BLE) have been equipped with smartphones. In addition, in many cases, users use a smartphone while on the move, so if a wireless communication technologies and various sensors are used for a mobile user, a better user experience can be provided. For example, when a user moves while using Wi-Fi, the user experience can be improved by providing a seamless Wi-Fi service. In addition, it is possible to provide a special service such as indoor positioning or navigation by estimating the users mobility in an indoor environment, and additional services such as location-based advertising and payment systems can also be provided. Therefore, improving the user experience by using wireless communication technology and smartphones sensors is considered to be an important research field in the future. In this dissertation, we propose three systems that can improve the user experience or convenience by usingWi-Fi, BLE, and smartphones sensors: (i) BLEND: BLE beacon-aided fast Wi-Fi handoff for smartphones, (ii) PYLON: Smartphone based Indoor Path Estimation and Localization without Human Intervention, (iii) FINISH: Fully-automated Indoor Navigation using Smartphones with Zero Human Assistance. First, we propose fast handoff scheme called BLEND exploiting BLE as secondary radio. We conduct detailed analysis of the sticky client problem on commercial smartphones with experiment and close examination of Android source code. We propose BLEND, which exploits BLE modules to provide smartphones with prior knowledge of the presence and information of APs operating at 2.4 and 5 GHz Wi-Fi channels. BLEND operating with only application requires no hardware and Android source code modification of smartphones.We prototype BLEND with commercial smartphones and evaluate the performance in real environment. Our measurement results demonstrate that BLEND significantly improves throughput and video bitrate by up to 61% and 111%, compared to a commercial Android application, respectively, with negligible energy overhead. Second, we design a path estimation and localization system, termed PYLON, which is plug-and-play on Android smartphones. PYLON includes a novel landmark correction scheme that leverages real doors of indoor environments consisting of floor plan mapping, door passing time detection and correction. It operates without any user intervention. PYLON relaxes some requirements for localization systems. It does not require any modifications to hardware or software of smartphones, and the initial location of WiFi APs, BLE beacons, and users. We implement PYLON on five Android smartphones and evaluate it on two office buildings with the help of three participants to prove applicability and scalability. PYLON achieves very high floor plan mapping accuracy with a low localization error. Finally, We design a fully-automated navigation system, termed FINISH, which addresses the problems of existing previous indoor navigation systems. FINISH generates the radio map of an indoor building based on the localization system to determine the initial location of the user. FINISH relaxes some requirements for current indoor navigation systems. It does not require any human assistance to provide navigation instructions. In addition, it is plug-and-play on Android smartphones. We implement FINISH on five Android smartphones and evaluate it on five floors of an office building with the help of multiple users to prove applicability and scalability. FINISH determines the location of the user with extremely high accuracy with in one step. In summary, we propose systems that enhance the users convenience and experience by utilizing wireless infrastructures such as Wi-Fi and BLE and various smartphones sensors such as accelerometer, gyroscope, and barometer equipped in smartphones. Systems are implemented on commercial smartphones to verify the performance through experiments. As a result, systems show the excellent performance that can enhance the users experience.1 Introduction 1 1.1 Motivation 1 1.2 Overview of Existing Approaches 3 1.2.1 Wi-Fi handoff for smartphones 3 1.2.2 Indoor path estimation and localization 4 1.2.3 Indoor navigation 5 1.3 Main Contributions 7 1.3.1 BLEND: BLE Beacon-aided Fast Handoff for Smartphones 7 1.3.2 PYLON: Smartphone Based Indoor Path Estimation and Localization with Human Intervention 8 1.3.3 FINISH: Fully-automated Indoor Navigation using Smartphones with Zero Human Assistance 9 1.4 Organization of Dissertation 10 2 BLEND: BLE Beacon-Aided FastWi-Fi Handoff for Smartphones 11 2.1 Introduction 11 2.2 Related Work 14 2.2.1 Wi-Fi-based Handoff 14 2.2.2 WPAN-aided AP Discovery 15 2.3 Background 16 2.3.1 Handoff Procedure in IEEE 802.11 16 2.3.2 BSS Load Element in IEEE 802.11 16 2.3.3 Bluetooth Low Energy 17 2.4 Sticky Client Problem 17 2.4.1 Sticky Client Problem of Commercial Smartphone 17 2.4.2 Cause of Sticky Client Problem 20 2.5 BLEND: Proposed Scheme 21 2.5.1 Advantages and Necessities of BLE as Secondary Low-Power Radio 21 2.5.2 Overall Architecture 22 2.5.3 AP Operation 23 2.5.4 Smartphone Operation 24 2.5.5 Verification of aTH estimation 28 2.6 Performance Evaluation 30 2.6.1 Implementation and Measurement Setup 30 2.6.2 Saturated Traffic Scenario 31 2.6.3 Video Streaming Scenario 35 2.7 Summary 38 3 PYLON: Smartphone based Indoor Path Estimation and Localization without Human Intervention 41 3.1 Introduction 41 3.2 Background and Related Work 44 3.2.1 Infrastructure-Based Localization 44 3.2.2 Fingerprint-Based Localization 45 3.2.3 Model-Based Localization 45 3.2.4 Dead Reckoning 46 3.2.5 Landmark-Based Localization 47 3.2.6 Simultaneous Localization and Mapping (SLAM) 47 3.3 System Overview 48 3.3.1 Notable RSSI Signature 49 3.3.2 Smartphone Operation 50 3.3.3 Server Operation 51 3.4 Path Estimation 52 3.4.1 Step Detection 52 3.4.2 Step Length Estimation 54 3.4.3 Walking Direction 54 3.4.4 Location Update 55 3.5 Landmark Correction Part 1: Virtual Room Generation 56 3.5.1 RSSI Stacking Difference 56 3.5.2 Virtual Room Generation 57 3.5.3 Virtual Graph Generation 59 3.5.4 Physical Graph Generation 60 3.6 Landmark Correction Part 2: From Floor Plan Mapping to Path Correction 60 3.6.1 Candidate Graph Generation 60 3.6.2 Backbone Node Mapping 62 3.6.3 Dead-end Node Mapping 65 3.6.4 Final Candidate Graph Selection 66 3.6.5 Door Passing Time Detection 68 3.6.6 Path Correction 70 3.7 Particle Filter 71 3.8 Performance Evaluation 73 3.8.1 Implementation and Measurement Setup 73 3.8.2 Step Detection Accuracy 77 3.8.3 Floor Plan Mapping Accuracy 77 3.8.4 Door Passing Time 78 3.8.5 Walking Direction and Localization Performance 81 3.8.6 Impact of WiFi AP and BLE Beacon Number 84 3.8.7 Impact of Walking Distance and Speed 84 3.8.8 Performance on Different Areas 87 3.9 Summary 87 4 FINISH: Fully-automated Indoor Navigation using Smartphones with Zero Human Assistance 91 4.1 Introduction 91 4.2 Related Work 92 4.2.1 Localization-based Navigation System 92 4.2.2 Peer-to-peer Navigation System 93 4.3 System Overview 93 4.3.1 System Architecture 93 4.3.2 An Example for Navigation 95 4.4 Level Change Detection and Floor Decision 96 4.4.1 Level Change Detection 96 4.5 Real-time navigation 97 4.5.1 Initial Floor and Location Decision 97 4.5.2 Orientation Adjustment 98 4.5.3 Shortest Path Estimation 99 4.6 Performance Evaluation 99 4.6.1 Initial Location Accuracy 99 4.6.2 Real-Time Navigation Accuracy 100 4.7 Summary 101 5 Conclusion 102 5.1 Research Contributions 102 5.2 Future Work 103 Abstract (In Korean) 118 감사의 글Docto

    Off-Line Evaluation of Indoor Positioning Systems in Different Scenarios: The Experiences From IPIN 2020 Competition

    Get PDF
    Every year, for ten years now, the IPIN competition has aimed at evaluating real-world indoor localisation systems by testing them in a realistic environment, with realistic movement, using the EvAAL framework. The competition provided a unique overview of the state-of-the-art of systems, technologies, and methods for indoor positioning and navigation purposes. Through fair comparison of the performance achieved by each system, the competition was able to identify the most promising approaches and to pinpoint the most critical working conditions. In 2020, the competition included 5 diverse off-site off-site Tracks, each resembling real use cases and challenges for indoor positioning. The results in terms of participation and accuracy of the proposed systems have been encouraging. The best performing competitors obtained a third quartile of error of 1 m for the Smartphone Track and 0.5 m for the Foot-mounted IMU Track. While not running on physical systems, but only as algorithms, these results represent impressive achievements.Track 3 organizers were supported by the European Union’s Horizon 2020 Research and Innovation programme under the Marie Skłodowska Curie Grant 813278 (A-WEAR: A network for dynamic WEarable Applications with pRivacy constraints), MICROCEBUS (MICINN, ref. RTI2018-095168-B-C55, MCIU/AEI/FEDER UE), INSIGNIA (MICINN ref. PTQ2018-009981), and REPNIN+ (MICINN, ref. TEC2017-90808-REDT). We would like to thanks the UJI’s Library managers and employees for their support while collecting the required datasets for Track 3. Track 5 organizers were supported by JST-OPERA Program, Japan, under Grant JPMJOP1612. Track 7 organizers were supported by the Bavarian Ministry for Economic Affairs, Infrastructure, Transport and Technology through the Center for Analytics-Data-Applications (ADA-Center) within the framework of “BAYERN DIGITAL II. ” Team UMinho (Track 3) was supported by FCT—Fundação para a Ciência e Tecnologia within the R&D Units Project Scope under Grant UIDB/00319/2020, and the Ph.D. Fellowship under Grant PD/BD/137401/2018. Team YAI (Track 3) was supported by the Ministry of Science and Technology (MOST) of Taiwan under Grant MOST 109-2221-E-197-026. Team Indora (Track 3) was supported in part by the Slovak Grant Agency, Ministry of Education and Academy of Science, Slovakia, under Grant 1/0177/21, and in part by the Slovak Research and Development Agency under Contract APVV-15-0091. Team TJU (Track 3) was supported in part by the National Natural Science Foundation of China under Grant 61771338 and in part by the Tianjin Research Funding under Grant 18ZXRHSY00190. Team Next-Newbie Reckoners (Track 3) were supported by the Singapore Government through the Industry Alignment Fund—Industry Collaboration Projects Grant. This research was conducted at Singtel Cognitive and Artificial Intelligence Lab for Enterprises (SCALE@NTU), which is a collaboration between Singapore Telecommunications Limited (Singtel) and Nanyang Technological University (NTU). Team KawaguchiLab (Track 5) was supported by JSPS KAKENHI under Grant JP17H01762. Team WHU&AutoNavi (Track 6) was supported by the National Key Research and Development Program of China under Grant 2016YFB0502202. Team YAI (Tracks 6 and 7) was supported by the Ministry of Science and Technology (MOST) of Taiwan under Grant MOST 110-2634-F-155-001.Peer reviewe

    A Meta-Review of Indoor Positioning Systems

    Get PDF
    An accurate and reliable Indoor Positioning System (IPS) applicable to most indoor scenarios has been sought for many years. The number of technologies, techniques, and approaches in general used in IPS proposals is remarkable. Such diversity, coupled with the lack of strict and verifiable evaluations, leads to difficulties for appreciating the true value of most proposals. This paper provides a meta-review that performed a comprehensive compilation of 62 survey papers in the area of indoor positioning. The paper provides the reader with an introduction to IPS and the different technologies, techniques, and some methods commonly employed. The introduction is supported by consensus found in the selected surveys and referenced using them. Thus, the meta-review allows the reader to inspect the IPS current state at a glance and serve as a guide for the reader to easily find further details on each technology used in IPS. The analyses of the meta-review contributed with insights on the abundance and academic significance of published IPS proposals using the criterion of the number of citations. Moreover, 75 works are identified as relevant works in the research topic from a selection of about 4000 works cited in the analyzed surveys

    Collaborative Wi-Fi fingerprint training for indoor positioning

    Get PDF
    As the scope of location-based applications and services further reach into our everyday lives, the demand for more robust and reliable positioning becomes ever more important. However indoor positioning has never been a fully resolved issue due to its complexity and necessity to adapt to different situations and environment. Inertial sensor and Wi-Fi signal integrated indoor positioning have become good solutions to overcome many of the problems. Yet there are still problems such as inertial heading drift, wireless signal fluctuation and the time required for training a Wi-Fi fingerprint database. The collaborative Wi-Fi fingerprint training (cWiDB) method proposed in this paper enables the system to perform inertial measurement based collaborative positioning or Wi-Fi fingerprinting alternatively according to the current situation. It also reduces the time required for training the fingerprint database. Different database training methods and different training data size are compared to demonstrate the time and data required for generating a reasonable database. Finally the fingerprint positioning result is compared which indicates that the cWiDB is able to achieve the same positioning accuracy as conventional training methods but with less training time and a data adjustment option enabled

    Human Crowdsourcing Data for Indoor Location Applied to Ambient Assisted Living Scenarios

    Get PDF
    In the last decades, the rise of life expectancy has accelerated the demand for new technological solutions to provide a longer life with improved quality. One of the major areas of the Ambient Assisted Living aims to monitor the elderly location indoors. For this purpose, indoor positioning systems are valuable tools and can be classified depending on the need of a supporting infrastructure. Infrastructure-based systems require the investment on expensive equipment and existing infrastructure-free systems, although rely on the pervasively available characteristics of the buildings, present some limitations regarding the extensive process of acquiring and maintaining fingerprints, the maps that store the environmental characteristics to be used in the localisation phase. These problems hinder indoor positioning systems to be deployed in most scenarios. To overcome these limitations, an algorithm for the automatic construction of indoor floor plans and environmental fingerprints is proposed. With the use of crowdsourcing techniques, where the extensiveness of a task is reduced with the help of a large undefined group of users, the algorithm relies on the combination ofmultiple sources of information, collected in a non-annotated way by common smartphones. The crowdsourced data is composed by inertial sensors, responsible for estimating the users’ trajectories, Wi-Fi radio and magnetic field signals. Wi-Fi radio data is used to cluster the trajectories into smaller groups, each corresponding to specific areas of the building. Distance metrics applied to magnetic field signals are used to identify geomagnetic similarities between different users’ trajectories. The building’s floor plan is then automatically created, which results in fingerprints labelled with physical locations. Experimental results show that the proposed algorithm achieved comparable floor plan and fingerprints to those acquired manually, allowing the conclusion that is possible to automate the setup process of infrastructure-free systems. With these results, this solution can be applied in any fingerprinting-based indoor positioning system
    corecore