
Ricardo Bruno Barbeiro dos Santos

Bachelor Degree in Biomedical Engineering Sciences

Human Crowdsourcing Data for Indoor Location
Applied to Ambient Assisted Living Scenarios

Dissertation submitted in partial fulfillment
of the requirements for the degree of

Master of Science in
Biomedical Engineering

Adviser: Hugo Filipe Silveira Gamboa, Professor Auxiliar, Faculdade
de Ciências e Tecnologia, Universidade NOVA de Lisboa

Examination Committee

Chairperson: Prof. Dr. Carla Maria Quintão Pereira
Raporteur: Prof. Dr. Ricardo Nuno Pereira Verga e Afonso Vigário

Member: Prof. Dr. Hugo Filipe Silveira Gamboa

November, 2018





Human Crowdsourcing Data for Indoor Location Applied to Ambient Assisted
Living Scenarios

Copyright © Ricardo Bruno Barbeiro dos Santos, Faculty of Sciences and Technology,

NOVA University Lisbon.

The Faculty of Sciences and Technology and the NOVA University Lisbon have the right,

perpetual and without geographical boundaries, to file and publish this dissertation

through printed copies reproduced on paper or on digital form, or by any other means

known or that may be invented, and to disseminate through scientific repositories and

admit its copying and distribution for non-commercial, educational or research purposes,

as long as credit is given to the author and editor.

This document was created using the (pdf)LATEX processor, based in the “novathesis” template[1], developed at the Dep. Informática of FCT-NOVA [2].
[1] https://github.com/joaomlourenco/novathesis [2] http://www.di.fct.unl.pt

https://github.com/joaomlourenco/novathesis
http://www.di.fct.unl.pt




Acknowledgements

The success of my academic journey, especially in the past months with the development

of this thesis, would not be possible without the immense support of several people, who

always had my back and surely never let me down.

First of all, I would like to express my gratitude to my academic supervisor, Professor

Hugo Gamboa, for his advice and guidance through the all project, and especially, for

welcoming me at Fraunhofer AICOS. Thank you for introducing me to the amazing world

of data science.

I would also like to thank Associação Fraunhofer Portugal Research, for giving me the

opportunity to work and grow as a professional in an amazing environment, with all the

necessary conditions to produce “remarkable technology, easy to use”. Among the exce-

lent people I have met, I want to manifest my sincere appreciation to Marília Barandas,

one of the persons that most contributed to my success, for her guidance and constant

support. I am sure it was not easy to putting up with me in all the endless questions.

Thank you! I cannot not leave Ricardo Leonardo out of this list. His help and suggestions

during the entire process were also fundamental to the accomplishment of this project.

For that, I want to express my gratitude!

I want to give a very special word to the colleagues that accompanied me during this

months, in this “thesis life”. Mariana, Patrícia, Rui and Helena, thank you for all the

moments of fun and focus we have passed, you certainly made this process easier.

The last five years were, with no doubt, the most enjoyable time of my life. It was

surely due to all the incredible people that have crossed my path, whom I am lucky

enough to call friends. To the people I have met at FCT, and especially to the members

of the “sueca” team, thank you for all the great moments, all the laughs and cries, all the

parties and study sessions. To the friends that I have made during my journey at Primark,

thank you for all the lessons you taught me, I have grown so much while I had so much

fun! To the friends that are standing by my side for a number of years that I cannot count

anymore, thank you for everything, you mean so much to me. The stories and adventures

we have been through are countless, and so much more are yet to come!

Por fim, o meu maior agradecimento é dirigido aos responsáveis pela minha existência e
pelo homem que sou hoje. Um muito obrigado à minha família por tudo o que me proporcionou
e por todos os ensinamentos que me fizeram chegar a este momento, o culminar de toda a
minha jornada académica. Obrigado aos meus pais e à minha irmã por terem estado sempre a

v



meu lado, por me terem apoiado, dado força e acreditado de que eu era capaz de aqui chegar.
Nem sempre foi fácil, mas tudo é possível quando se acredita. Obrigado às minhas avós pela
sabedoria que me transmitiram, pela inspiração que são, e pelo carinho que me deram. Ao meu
avô, que não teve oportunidade de me ver chegar ao fim deste capítulo, obrigado por tudo, as
saudades já apertam. Um muito obrigado final a todos, por nunca terem duvidado de mim e
das minhas capacidades, tendo sempre mostrado um enorme orgulho em mim. Sem vocês tudo
o que alcancei não seria possível. Espero poder sempre retribuir o vosso amor. Muito obrigado
por tudo!

vi



Abstract

In the last decades, the rise of life expectancy has accelerated the demand for new tech-

nological solutions to provide a longer life with improved quality. One of the major areas

of the Ambient Assisted Living aims to monitor the elderly location indoors. For this pur-

pose, indoor positioning systems are valuable tools and can be classified depending on the

need of a supporting infrastructure. Infrastructure-based systems require the investment

on expensive equipment and existing infrastructure-free systems, although rely on the

pervasively available characteristics of the buildings, present some limitations regarding

the extensive process of acquiring and maintaining fingerprints, the maps that store the

environmental characteristics to be used in the localisation phase. These problems hinder

indoor positioning systems to be deployed in most scenarios.

To overcome these limitations, an algorithm for the automatic construction of indoor

floor plans and environmental fingerprints is proposed. With the use of crowdsourcing

techniques, where the extensiveness of a task is reduced with the help of a large undefined

group of users, the algorithm relies on the combination of multiple sources of information,

collected in a non-annotated way by common smartphones. The crowdsourced data is

composed by inertial sensors, responsible for estimating the users’ trajectories, Wi-Fi

radio and magnetic field signals. Wi-Fi radio data is used to cluster the trajectories into

smaller groups, each corresponding to specific areas of the building. Distance metrics

applied to magnetic field signals are used to identify geomagnetic similarities between

different users’ trajectories. The building’s floor plan is then automatically created, which

results in fingerprints labelled with physical locations.

Experimental results show that the proposed algorithm achieved comparable floor

plan and fingerprints to those acquired manually, allowing the conclusion that is possible

to automate the setup process of infrastructure-free systems. With these results, this

solution can be applied in any fingerprinting-based indoor positioning system.

Keywords: Ambient Assisted Living, Crowdsourcing, Indoor Location, Fingerprinting,

Time Series Similarities, Machine Learning
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Resumo

Nas últimas décadas, o aumento da esperança média de vida tem acelerado a procura

por novas soluções tecnológicas capazes de fornecer, durante mais tempo, uma vida com

qualidade. Uma das maiores áreas da Assistência à Autonomia no Domicílio procura

monitorizar a localização dos idosos dentro de edifícios. Para tal, os sistemas de posiciona-

mento indoor são ferramentas valiosas, podendo ser classificados conforme a necessidade

de uma infraestrutura de suporte. Os sistemas dependentes de infraestrutura requerem

um investimento em equipamento dispendioso. Já os sistemas que não necessitam de

uma infraestrutura de suporte, ainda que utilizem as características omnipresentes dos

edifícios, apresentam algumas limitações relacionadas com o processo de aquisição e ma-

nutenção de fingerprints, os mapas que guardam as características ambientais a ser usadas

no processo de localização. Estes problemas impedem que os sistemas de posicionamento

indoor sejam aplicados na maioria dos cenários.

De modo a ultrapassar estas limitações, um algoritmo para a construção automática

de plantas de edifícios e fingerprints ambientais é proposto. Com o uso de técnicas de

crowdsourcing, onde a extensividade de uma tarefa é reduzida com o apoio de um amplo

grupo indefinido de utilizadores, o algoritmo combina múltiplas fontes de informação,

adquiridas de forma não anotada por smartphones comuns. Os dados recolhidos por crowd-
sourcing são compostos por sensores inerciais, responsáveis por estimar as trajetórias dos

utilizadores, leituras de Wi-Fi e sinais de campo magnético. Os dados de Wi-Fi são uti-

lizados para agrupar as trajetórias em pequenos grupos, em que cada um corresponde

a uma zona especifica do edifício. Métricas de distância aplicadas aos sinais de campo

magnético permitem identificar similaridades geomagnéticas entre as trajetórias de dife-

rentes utilizadores. Posteriormente, a planta do edifício é automaticamente construída,

resultando em fingerprints rotuladas com localizações físicas.

Resultados experimentais mostram que o algoritmo proposto alcançou, para o mesmo

edifício, a planta e as fingerprints comparáveis com as adquiridas manualmente, permi-

tindo concluir que é possível automatizar o processo de configuração dos sistemas livres

de infraestrutura. Com estes resultados, esta solução pode ser aplicada a qualquer sistema

de posicionamento indoor baseado em fingerprinting.
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1
Introduction

1.1 Motivation

The scientific development that has taken place in the last decades has caused enormous

changes in human being’s quality of life. Improvements, especially in healthcare, have

led to a rise of life expectancy. According to Eurostat1, over the period from 1980 to

2016, the average life expectancy of a Portuguese citizen increased almost 10 years, and

is expected to increase further (see Figure 1.1).

Given this, the age structure of the population is changing. While the proportion

of the working age population is decreasing, the proportion relative to the elderly is

taking the opposite course (see Figure 1.2). Considering this, it is imperative to build

a sustainable society, where health and social care costs are supportable, while elderly

people quality of life is enhanced.

Ambient Assisted Living (AAL) is a concept created in this line of thought. It com-

prises all the research done to create innovative technological solutions to provide better

life conditions to the older adults, allowing them to live longer in their preferred environ-

ment, independently and safely [1, 2].

One of the key tasks of AAL is to monitor the elderly at their homes, either by keeping

track on their daily activities, or by knowing their location. An intelligent system installed

in every elderly’s home would, for example, identify if the medicines were taken or

forgotten, giving an alert if necessary. The monitoring of the number of hours that an

elderly slept or the number of times that went to the bathroom, by knowing their positions

in their house through the day, could help on understanding if everything is fine.

Positioning systems are thus valuable tools, not only for the elderly, but also for their

families and healthcare professionals. These systems can help on ensuring the safety of

1Eurostat is the statistical office of the European Union.
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the elderly in their homes, providing a fast response in an emergency situation, or even

to help them reach some destination, as in a hospital or a supermarket, large buildings

where an elderly could easily get lost and disoriented.

While Global Positioning System (GPS) is the standard solution for outdoor position-

ing and navigation, its precision is compromised indoors by the presence of walls and

ceilings, which attenuate the received signal. For this reason, Indoor Positioning Systems

(IPS) rely on alternative sources of information to provide location-dependent services

indoors, such as the buildings’ Wi-Fi radio signal distribution or its magnetic field be-

haviour.

The ubiquity of the smartphones enhances the dissemination of IPS. However, the

need for some of these systems to have the updated building data hinders IPS to be

deployed in most buildings, since the data collection process brings intensive costs on

manpower and time. Therefore, it is imperative to improve this process. In the last years,

crowdsourcing is being used by organisations to transfer the execution of a task or a

process to an undefined group of anonymous users, lowering its costs and increasing the

quickness of its conclusion.

With the application of this model, it is expected that the use of crowdsourced data

will help on diminishing the time-consuming process of implementation, improving the

scalability of current IPS systems.
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Figure 1.1: Life expectancy in Portugal,
with data from 1980 to 2016, and projec-
tions for 2080. Data source: [3, 4].
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Figure 1.2: Age structure of the Por-
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source: [5, 6].

1.2 Objectives

The main purpose of this thesis is to potentiate existing indoor location solutions with

the use of crowdsourcing, by diminishing the expensive process of the setup phase, a

prerequisite of typical infrastructure-free solutions. Currently, the first step of the setup
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phase consists on the upload of the buildings’ floor plan, which might need to be con-

structed, if not available. The second phase includes the process of collecting fingerprints,

the maps of the characteristics of the buildings, which are used as reference to provide

the localisation. The setup phase is commonly pointed as a great disadvantage of typical

infrastructure-free solutions, for being very extensive and expensive, since it requires an

expert to walk through the whole building to collect the necessary data [7].

To overcome these limitations, the main goal of this work is to develop an algorithm

that automatically constructs indoor floor plans and collects environmental fingerprints

with crowdsourced data. This process will be done without any explicit effort from the

users, since data will be collected during their natural moving inside buildings.

1.3 Applications

The developed algorithm will extend the range of applications for IPS. Besides the afore-

mentioned applications for AAL, there are several services that can be improved with

indoor location. If applied in a hospital, these systems will be useful not only to locate

medical equipment when lost, but also to call the nearest doctors in emergency situations

[8]. Another area that will thrive with IPS is the retail. In a mall or a supermarket, for

example, indoor location services can help consumers optimise their time, if the ideal

route for their shopping list is automatically prepared. For retailers, the possibility to

know the behaviour of the consumers inside their stores allows the development of new

sales techniques, improving their results [9]. Indoor location will also be helpful in smart

homes, where energy savings can be achieved if the location of their inhabitants is known

[10]. In large buildings, as conference centres, IPS can help a visitor to navigate to a

desired area, or simply to meet a friend in an unknown location. Beyond these examples,

there are several other areas that will benefit with indoor location, thus inspiring the

development of easily deployable solutions.

1.4 Literature Review

In the last two decades, the effort from the scientific community to develop a robust and

precise indoor location system resulted in an large number of solutions. However, the

limitations that these solutions present leave open the search for a system reliable enough

to be widely marketed.

Although GPS signal is not available indoors, several other sources can be used, by

taking advantage of the wide range of sensors commonly present in modern smartphones

[11] or smartwatches [12], to help in the indoor localisation processes.

Current IPS can be divided in two types, depending on the need of a supporting

infrastructure. Infrastructure-based systems normally rely on beacons, which are small

devices that transmit a specific signal to the device to be located. The most common

source of information used with beacons is Bluetooth [13–15]. However, other sources
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can be used, namely ultrasounds [16] or light, either in infrared spectrum [17, 18] or in

visible light [19], among others. In contrast, infrastructure-free systems use opportunistic

readings from signals that are pervasively available in the majority of environments, like

magnetic field [20], atmospheric pressure [7, 21], ambient light [22] or sound [23, 24]. Wi-

Fi radio signal readings are also used in this type of system [7, 25–27], even though they

are emitted by an Access Point (AP), which can be considered a type of beacon. However,

APs are widely present in most of nowadays’ buildings. Both systems can also rely on

inertial data collected from the user’s device’s sensors [28, 29], as the accelerometer,

the magnetometer and the gyroscope, to characterise the human movement by dead

reckoning techniques.

While infrastructure-based systems usually do the localisation process through meth-

ods such as trilateralation [13] or triangulation [25], infrastructure-free systems are com-

monly based on fingerprinting [7, 30], which consist on maps with the characteristics

measured on the buildings.

Figure 1.3: PIL solution running

on a smartphone. © Fraunhofer

Portugal Research

Precise Indoor Location (PIL) is an IPS developed

by researchers at Fraunhofer AICOS [7], that runs on

a common smartphone, as it can be seen in Figure

1.3. This infrastructure-free system relies on smart-

phone’s inertial sensors to track users’ movement in

a building. Since these sensors accumulate error, PIL

system uses fingerprints of Wi-Fi radio and magnetic

field to provide more accurate results. With a particle

filter that expands while a user walks, the most proba-

ble positions are chosen with great certainty. The fin-

gerprints used in PIL are previously acquired, where

a user walks through defined routes with a smart-

phone that collects the required data. Besides this,

the floor plan of the building needs to be uploaded

to the server, so the particle filter can be constrained

and the fingerprints can be matched to absolute posi-

tions. Even though this system can use Google Maps’

indoor floor plans automatically, the number of avail-

able buildings is very limited, making the construc-

tion of the floor plans an indispensable process.

Thus, both types of IPS have limitations. On the one hand, infrastructure-based

systems require the installation and maintenance of beacons, which make these solu-

tions more expensive and less appealing to be applied in large scale. On the other hand,

infrastructure-free systems based on fingerprinting require an extensive process to col-

lect and update the fingerprints, mainly in large buildings, which increases the cost of

these systems too. To overcome current IPS limitations, crowdsourcing is suggested as

a way to create self-sustaining systems, which do not require almost any specific human
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intervention. There are already some solutions that use crowdsourced data to collect

fingerprints, but also to build the floor plans of the buildings, increasing the spectrum of

buildings where indoor location can be applied, to any unknown building.

1.4.1 Crowdsourced Fingerprints

The process of building fingerprints is known as the training or offline phase of any

infrastructure-free indoor location system. It consists on the collection of the desired data

to be used in the operating or online phase, to provide the location of the user. The larger

the building, the more labour-intensive and time-consuming this process becomes, greatly

increasing the costs of these systems. Thus, the use of crowdsourcing to automatically

build fingerprints stands as a viable solution to solve this extensive and expensive process,

where some solutions have been already developed.

One of the most well known solution belongs to Rai et al. [31], who developed Zee,

an algorithm that collects data from smartphones’ inertial sensors to track users’ paths

in indoor environments, while simultaneously performs Wi-Fi scans. The algorithm

then combines the inferred trajectories with the constrains of the floor plan given as

input, such as walls and other barriers, to obtain the most probable last position of

each trajectory. Finally, the remaining positions of each trajectory are obtained with a

backward propagation algorithm and the Wi-Fi fingerprints are obtained.

Wu et al. [32] designed LiFS, a complete indoor location system that relies only on

the crowdsourced collection of Wi-Fi radio data and step detection to build fingerprints.

Instead of using the traditional floor plan in two dimensions, the authors apply Multidi-

mensional Scaling (MDS) to obtain a multidimensional floor plan that stores the distances

between every pair of interest locations. Then, with the application of the same principle

to obtain multidimensional fingerprints, each reading is then attributed to a real physical

location by corresponding both the new floor plan and the multidimensional fingerprint.

In the work of Niu et al. [33], WicLoc was created, an indoor location system that uses

Wi-Fi radio data and inertial tracking to detect steps and turns. They identify similarities

between collected signals by computing a distance matrix of fingerprints. It consists on

the differences of the Received Signal Strength Indicator (RSSI) between every pair of

APs. Then, the distance matrix is converted to the multidimensional space by a modified

MDS algorithm. Finally, the absolute positions of the fingerprints on the floor plans are

obtained by comparing the new distance matrix to a set of previously defined anchor

points.

Recently, Chen et al. [34] proposed UILoc, an unsupervised IPS that builds Wi-Fi

fingerprints. It uses dead reckoning techniques to track users trajectories, and has a

particle filter to correct the steps length and heading bias. The system requires the

installation of Bluetooth Low Energy (BLE) beacons to serve as landmarks, so errors can

be fixed. With the obtained position, the fingerprints are built. Although UILoc avoids

the setup phase, the need of an infrastructure might hinder this system to be widely
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deployed.

1.4.2 Crowdsourced Floor Plans

The floor plan of a building is required to most of infrastructure-free indoor location

systems, not only to obtain the fingerprints over an absolute reference, in the case of

infrastructure-free systems. A floor plan is also needed to allow the navigation process, so

the system can drive the user to a destination, considering the constrains of the building.

However, floor plans might not be always accessible, or may not even exist. Thus, the

process of constructing floor plans is often necessary. However, it is also an extensive

and time-consuming process, especially for large buildings, which may be unaffordable.

As a result, new techniques for automatic floor plans construction have been developed

exploiting the use of crowdsourcing.

CrowdInside was designed by Alzantot and Youssef [35]. It is an automatic floor plan

construction system that leverages smartphones’ inertial sensors to reconstruct users’

trajectories. To avoid the error accumulation of noisy sensors, this system identifies

anchor points, which correspond to unique sensor signatures, as when a user passes by

an elevator or by stairs. With the information of the initial position, which corresponds

to the last known GPS coordinate, all trajectories are matched and corrected with the

anchors, and at last the floor plan is obtained.

Shen et al. [36] developed Walkie-Markie, an algorithm that uses dead-reckoning to

recognise users’ movement and relies on buildings’ Wi-Fi infrastructure. The algorithm

identifies WiFi-Marks, locations at which the trend of the Received Signal Strength (RSS)

of an AP reverses. Given the initial position of each reconstructed trajectory, the system

assigns absolute positions to every WiFi-Mark. Finally, by identifying similarities between

them, trajectory errors are corrected and the final floor plan is obtained by merging all

trajectories.

1.4.3 Crowdsourced Fingerprints and Floor Plans

To be deployed in large scale, such as in every elderly’s residence or healthcare facility,

an IPS needs to be cheap to install and to maintain, without compromising its results.

In order to achieve this, the scientific community has developed, in the last years, new

autonomous systems that do not require any specific human intervention, allowing its

application in any unknown building. New solutions have been published regarding

the automatic construction of floor plans and the simultaneous mapping of fingerprints,

relying only on crowdsourced data.

In the work developed by Shin et al. [37], SmartSLAM is a new solution to construct

automatic indoor floor plans and Wi-Fi radio fingerprints. They use a variant of Simulta-

neous Localisation and Mapping (SLAM), a technique commonly used in robotics, where

the location is provided by dead reckoning techniques and the mapping of unknown

areas is done at the same time. Since smartphones’ noisy sensors accumulate too much

6



1.4. LITERATURE REVIEW

error, the authors implemented a particle filter to weight the possible positions. With the

Wi-Fi readings obtained through the users’ trajectories, the floor plans are built, along

with the radio fingerprints.

Leveraging the use of the magnetic field interferences, instead of the buildings’ radio

data, H. Luo et al. [38] designed a solution that uses crowdsourcing to build automatic

floor plans and magnetic field fingerprints. They apply hierarchical clustering to the

process, where the first step consists on separating the routes by straight segments. Then,

these segments are clustered by their length, the average of the absolute heading and

finally their similarity on the magnetic field behaviour. Finally, the floor plan is con-

structed by merging routes with identified similarities and then the magnetic fingerprint

is obtained.

PiLoc is an IPS developed by C. Lou et al. [39]. It also uses inertial data to track the

users and Wi-Fi radio data to construct the floor plans and fingerprints. Their system

consists on clustering all trajectories by their AP coherence, that is, joining in the same

cluster all the trajectories that have APs in common. With this, the authors separate the

crowdsourced data by floor, since normally an AP can’t be read in different floors, due

to construction materials attenuation. Then, the algorithm segments the trajectories by

curves and straight lines with a minimum length and compares their inertial behaviour

and Wi-Fi data trends to identify similarities. To obtain the final floor plans and finger-

prints, all trajectories are merged. This systems also allows the automatic update of the

obtained floor plans and fingerprints.

Lastly, Wang et al. [40] created UnLoc, a complete IPS that has the same principle as

CrowdInside, since it relies on the landmarks of a building, locations with specific signa-

tures. These landmarks can be previously defined (seeded) if the floor plan is available, or

can be organic if identified by the algorithm. Inertial Wi-Fi radio and magnetic field data

is compared to identify patterns. At the same time, users’ trajectories are reconstructed

using dead reckoning techniques, with the definition of the last known location, which

corresponds to the last known GPS coordinate. If the patterns are coherent in terms of

location, even with some accepted error, they become a landmark. In the localisation

phase, those landmarks are used to correct dead reckoning errors to provide an accurate

absolute position.

1.4.4 Discussion

Even with this large number of solutions that apply crowdsourcing to indoor location,

the market is still waiting for the announcement of a solution that is robust enough to

satisfy all the needs.

While some solutions require the input of the floor plan to automatically build finger-

prints, others only are able to construct floor plans, leaving the problem of the extensive

process of mapping fingerprints unsolved.

Regarding the solutions that can build fingerprints while constructing floor plans,
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some limitations still discourage the investment on their application worldwide. In Smart-
SLAM [37], the way that the particle filter is developed to reconstruct the movement, only

allows the system to build maps with the layout of the buildings’ main corridors, requir-

ing a further process to explore unmapped areas. The solution presented by H. Luo et

al. [38] will have problems if applied in large buildings, since every segmented signal is

compared to each other, rising the processing costs. Contrarily, PiLoc [39] only works for

large buildings due to the fact that the system only segments curves with more than 10

steps and straight line paths with more than 30 steps, a number too high for an elderly’s

home, for example. Finally, UnLoc [40] needs at least one seeded landmark to trigger

the system, which can be for example the entrance of a building, with a GPS coordinate.

The system will start working only when a user passes by this landmark, a requisite that

might not be feasible in buildings with multiple entrances, as a hospital.

Thus, the system proposed in this thesis aims to solve these problems, creating an

autonomous crowdsourcing solution that relies on inertial, magnetic field and Wi-Fi radio

data, without any specific effort from the users. Using information pervasively available

in every building, it will be possible to offer a solution with conditions to be widely

deployed. Without any restrains concerning the buildings’ dimensions, the applicability

of this system will go from small environments, such as homes, to big environments, such

as hospitals, malls or airports.

1.5 Work Summary

The goal proposed on this thesis will be achieved with the use of diverse techniques.

The data acquisition is done by leveraging the ubiquity of smartphones in our daily life.

Common smartphones are now equipped with a wide range of sensors that can be used

to understand the human motion and behaviour. Crowdsourcing will be applied by

collecting huge amounts of non-annotated data, by different users on different smart-

phones. The automatic construction of floor plans and environmental fingerprints will

be accomplished by identifying similarities between the reconstructed routes.

The algorithm will apply different techniques to process different types of information.

Inertial sensors provide information about the linear and angular velocity of the users,

that is processed to obtain the characterisation of the movement, as the detection of steps

and their length and direction computation. Wi-Fi radio data will be processed with

unsupervised machine learning techniques, to restrain the area to search for similarities,

that will be further discovered by applying time series analysis methods to the magnetic

field data. Finally, the algorithm will match all the identified similarities to obtain the

final map and the necessary fingerprints.

All the algorithms created in this work will be tested in Fraunhofer AICOS’s PIL

solution, a fully developed indoor localisation system that has some features to allow the

verification of this algorithm’s quality.
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1.6 Thesis Overview

This thesis is organised in 4 main elements, divided into six chapters and two appendices,

as it is outlined in Figure 1.4.
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Figure 1.4: Thesis overview scheme.

The basis element is composed by the first two chapters. The current chapter intro-

duces the problem that motivated this research, as well as the literature review about

the automatic construction of floor plans and environmental fingerprints topic and the

brief explanation of the developed work. Chapter 2 aims to contextualise the reader to

the concepts and methods used in this thesis.

The second element of the current work includes three chapters that comprise all the

achieved developments. A first approach to test the feasibility of the proposed objectives

is explained in the Proof of Concept (PoC) of Chapter 3. After the evaluation of the

preliminary results, Chapter 4 describes the process of data collection, that was used in

the development of the proposed algorithm of Chapter 5. This chapter not only explains

the functioning of the final solution, but also presents the intermediary results, obtained

through all the steps of the development, as well as the final results.

Chapter 6 constitutes the third element and makes the final balance of this thesis,

where the taken conclusions are discussed and some future guidelines are suggested.

Finally, Appendix A shows the designed routes for the dataset built in this project.

Appendix B displays the fingerprints obtained with the developed algorithm, along with

their respective interpolations and the originals, collected with the traditional methods,

to provide a tool for the results evaluation.
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2
Theoretical Background

To properly understand this work, the applied concepts are presented in this chapter.

Firstly, the Ambient Assisted Living (AAL) concept is introduced, followed by the con-

cepts involving the Human Activity Recognition (HAR). Next, an explanation about

fingerprinting-based indoor location is given, including all the types and information

sources commonly used. Finally, the signal processing techniques used in this project are

described and concepts about machine learning are presented.

2.1 Ambient Assisted Living

AAL encompasses all the technological products and services developed to improve the

quality of life of older adults and people with special needs, in all aspects [41]. The main

objective of AAL is to increase the safety and autonomy of these people, allowing them

to stay at their preferred environment longer, usually their homes [8].

The demand for these technologies emerged due to the changes in world’s demogra-

phy. The rise of the life expectancy in developed countries is changing the age structure

of the population. While the number of the elderly population is increasing, the working

age population, responsible for sustaining the costs of the healthcare systems, is compar-

atively declining [1]. This unbalance, along with the fact that an ageing population is

more prone to age-related diseases, such as Alzheimer’s disease or Parkinson’s disease,

rises even more the healthcare costs [42].

To overcome these problems, several research support programmes have been created.

The Active and Assisted Living programme1 funds projects in the field of information

and communication technologies. This programme is co-founded by the European Com-

mission and 19 other countries of the European Union, with the main goal of encouraging

1More information available in http://www.aal-europe.eu/ (visited on 09/17/2018).
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researchers to develop new technologies and services for ageing well [2].

AAL technologies are supported by several techniques, that have been developed in

the last years. Activity recognition is one of the main tasks in AAL, where several sensors

and cameras are combined with intelligent programming, such as machine learning, to

monitor elderly people through their day. With this, it is possible to create anomaly

detection algorithms, useful to identify problems, as a fall or even a heart attack. Context

modelling is another task, which consists on structuring the available information of the

users, such as their profile, medical history and data collected from sensors, for example,

to be used in several applications. Automatic planning is another important mission,

where applications and devices can help older adults to not forget to take their medicines,

among other uses. Finally, location services are very useful to track and monitor elderly

people outside, where GPS is used, and inside, with the rising of IPS [41, 43].

2.2 Human Activity Recognition

HAR is one of the most important tasks in AAL. It is defined as the capacity of a system

to automatically interpret a body gesture or a movement, thus classifying it as an action

or activity [44]. This process aims to monitor people in their daily life, while they move

naturally. HAR is very challenging since human activities are very diverse and complex,

where most of the times different activities have similar movements [45].

There are numerous applications where HAR is useful, especially in AAL. Monitoring

the activities performed by an elderly through the day makes it possible to know if

everything is fine, without the permanent presence of a healthcare professional or a

relative. A system that identifies if the monitored elderly has forgotten to take their

medication can be very effective on avoiding further health problems, for example.

In the scope of indoor location, some types of IPS are based on the reconstruction

of the trajectory described by the users, so it is important to recognise not only their

movement, but also its characteristics. To achieve this, HAR techniques are employed

and some specific sensors are used to collect the necessary data.

2.2.1 Sensors

The development that happened in the last decades in microelectronics and computer

systems allowed the creation of a wide range of sensors. They are now small, low-cost

and come with a high computational power. With all these characteristics, sensors are

being used to collect pervasive data that is used to recognise human activities [46].

To address this issue, sensors are mainly deployed in two ways. External sensors are

fixed in interest locations, where the user is supposed to interact with. Smart homes are

based in this type of sensors, where actions are triggered when the user passes by, in the

case of a motion detector, or touches it, in the case of a faucet. Cameras, normally used in
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surveillance systems, are also considered a type of external sensor, since the recognition

of gestures and actions can also be identified by the image processing [46].

Contrarily, wearable sensors are attached to the user, measuring continuously the

interest data [46]. These sensors are usually available in devices that we use everyday,

as in smartphones, smartwatches or smart clothes. This last type is commonly used to

monitor physiological conditions in elderly people and athletes [47]. Wearable sensors

can measure various types of data, normally related to the user’s movement, as the accel-

eration, physiological signals, as the heart rate, or user’s environmental conditions, as the

temperature or air pressure [46].

Inertial sensors are the ones that allow the reconstruction of users’ trajectories, be-

ing for this reason very important for this work. These sensors are available in almost

every smartphone in an Inertial Measurement Unit (IMU). IMUs are electronic devices

composed by an accelerometer, a gyroscope and usually a magnetometer, the necessary

sensors to reconstruct the users’ movement.

• Accelerometer: This sensor aims to measure the device’s linear acceleration relative

to a fixed referential, the Earth’s. IMUs accelerometers usually sense data along

three axes: x (lateral), y (vertical) and z (longitudinal), as it can be seen in Figure

2.1. The measured acceleration is frequently represented using SI units, meters per

second squared (m/s²), but some devices measure in g-force units (g). The measured

signal has two components, one is static, and is caused by the Earth’s gravitational

acceleration, and the other is dynamic, caused by the device’s movement. This

last component allows the identification if a user is standing or moving, as well as

his/her linear velocity.

• Gyroscope: This sensor is used to measure the angular velocity of a device, and can

be used to compute its relative orientation to a previous instant. The SI units for the

angular velocity are radians per second (rad/s). IMUs gyroscopes are normally three

dimensional too, with the same axes as the accelerometer. After the integration of

gyroscope data, (pitch, roll, yaw) are obtained, which represent the rotation angles

around the (x, y, z) axes, respectively (Figure 2.1). Thus, it is possible to identify if

a user is moving forward or changing direction.

• Magnetometer: This last inertial sensor measures the intensity and the direction of

the Earth’s local magnetic field. With this data it is possible to obtain the absolute

orientation of the device relatively to the North Pole. They also collect data in

three dimensions, being usually represented in microtesla (µT) units. However,

magnetometers are also used as environmental sensors, since the read magnetic field

is often influenced by buildings’ ferromagnetic construction materials and electrical

equipment. The interference might be a singular characteristic of a specific building,

as it is explained in Section 2.3.2.2.
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Figure 2.1: Representation of the smartphone IMU axes and rotation angles.

Leveraging the ubiquity of smartphones in our daily life, IPS are normally deployed

in these devices. The smartphone is thus responsible for collecting the necessary data to

reconstruct the movement, through the built-in IMU. Then, the information is processed

locally or remotely, and the user’s position is displayed on an interface, where he/she can

interact. Considering the role of smartphones for indoor location, they will be used in

this work to collect data from the IMU, to reconstruct the trajectories developed by the

users.

2.2.2 Pedestrian Dead Reckoning

Dead Reckoning (DR) is a technique used mainly in navigation to infer a trajectory or a

path described by a person or a vehicle, but also to predict their next positions. DR has

many applications, as in marine or air navigation. The goal is to determine the positions

by which some ship or aircraft will pass over time, considering their current speed and

direction [48].

Pedestrian Dead Reckoning (PDR) is one of the most recent applications of DR, where

this technique estimates the successive positions of a person, from a known initial point,

by estimating his/her travelled distance and the direction of the movement [49]. To

reconstruct the movement, data collected from the IMU sensors is processed.

The first phase consists on detecting the moments where the user took a step, as

well as their corresponding length. To do this, the linear acceleration retrieved from the

accelerometer is used. Theoretically, the integration of the linear acceleration should be

enough to obtain the user’s velocity and travelled distance. However, the error of the

low-cost accelerometers in IMUs prevents an accurate estimation [50]. Thus, the analysis

of the human gait movement allowed the understanding that this cyclic pattern is well

reproduced in the magnitude of the accelerometer signal [7]. A step happens in the

moment when a person touches the floor, which causes a vertical peak on the acceleration.
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Thus, the identification of this peak allows the step moments detection.

After the step detection, the step length can determined by several techniques. The

constant model [39] considers that the step length is approximately always the same,

considering or not an error for the calculations. The linear model [51] determines the

step length by the following equation:

Step Length = A+B ·Freq+C ·V ar +w (2.1)

where Freq is the step frequency and V ar the step acceleration variance. A, B and

C are linearly regressive parameters, previously determined in the training phase, and

w the added Gaussian noise. The non-linear model [7] consists on an empirical relation

between the peaks of the vertical acceleration and is described by the following equation:

Step Length = K · 4
√
Amax −Amin (2.2)

where Amax and Amin are the maximum and minimum vertical accelerations of a step,

respectively. K is a calibration constant, recursively adjusted by the least-squares method.

The non-linear model is the most used since it only requires one estimated parameter,

facilitating its use.

The second phase of PDR consists on determining the direction of every step. Two

approaches can be considered. The first uses the magnetometer signal to identify the

absolute orientation of the device to the North Pole [50]. However, this method might fail

indoors, since the interferences that affect the magnetic field deviate the North estimation,

as it is explained in Section 2.3.2.2.

The second approach computes the changes of direction between steps, using the

vertical axis of the gyroscope in the Earth frame. The conversion of the device to the Earth

frame is known as sensor fusion [7]. It consists on identifying the long-term directions

of the gravitational acceleration and the North Pole, provided by the accelerometer and

the magnetometer, respectively. With this information, the coordinates of the device

are transposed, to align the device to the Earth, which is independent from the device

orientation on the body. This allows the identification of the variations on the trajectory’s

direction, although with some error. The short-term accuracy of the gyroscope causes the

inferred trajectory to drift, producing a cumulative error as it can be seen in Figure 2.2.

To solve this problem, Guimarães et al. [7] eliminate small direction variations, based on

the principle that a user tends to walk straight in the corridors of a building.

In summary, PDR techniques rely on the data retrieved from the IMU’s sensors to

provide the length and the direction of each step. It allows the reconstruction of the

trajectories described by the users, although with some faults, mainly due to the smart-

phones’ noisy sensors.
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Figure 2.2: Illustration of the gyroscope’s drift problem, where the inferred direction is
traced in blue. The algorithm of Guimarães et al. [7] corrects the drift, obtaining a more
accurate heading, traced in green. The pointed curve represents the original route. Image
retrieved from [7].

2.3 Indoor Location

Indoor location is an active research area that comprises all the systems created to provide

localisation-based services indoors, either to locate people or objects, where GPS signal is

unavailable. To face the complexity of this area, numerous solutions that use different ap-

proaches have been unveiled. Indoor location systems can be classified in two categories,

according to the type and the source of the information required to be processed.

Infrastructure-based indoor location systems depend on previously installed beacons

through the buildings, that function as a source of signal that will be interpreted by

the devices to be located or vice-versa. Contrarily, infrastructure-free systems rely on

information pervasively available in the buildings that is collected and processed by the

same devices. This thesis aims to make improvements in fingerprinting-based solutions,

a type of systems of infrastructure-free Indoor Positioning Systems (IPS), as it will be

further explained.

2.3.1 Fingerprinting-Based Solutions

Fingerprinting is one of the most applied methods to provide infrastructure-free indoor

localisation. These solutions rely on fingerprints, which are floor plans that store the

characteristics of the buildings. These characteristics depend on the formulation of the

solution and consist on the pervasive signals available in each building. Figure 2.3 shows

a fingerprint of the vertical component of the magnetic field for an office building. A

fingerprint is relative to a specific location, where each coordinate of the two dimensional
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Cartesian plane refers to the same coordinates of the respective building, being meaning-

less if applied in another. For this reason, fingerprinting-based solutions must identify

the building a priori, so the correspondent fingerprints can be loaded [30].

Figure 2.3: Fingerprint of the vertical component of magnetic field for an office building.
© Fraunhofer Portugal Research

The fingerprints of each building must be collected before the launch of the system.

The process of collecting fingerprints consists on acquiring data from the necessary

sources of information with a smartphone, for example. Passing by every location of

the building, the fingerprints are progressively mapped. In large buildings, this process

becomes very extensive, rising the costs of IPS. In an attempt to overcome this problem,

Guimarães et al. [7] developed a system that is capable of compute the fingerprints of

unmapped positions, according to the distance of the nearby mapped positions. This way,

the necessary coverage of the map is diminished, easing the collection process.

The location is usually obtained by the following process. At an unknown location,

when the application running on the device to be located sends a localisation request, the

system will record the fingerprint at that location, by registering the data coming from

the desired sensors. If the system runs online, the data will then be sent to the server to be

compared to every position of the complete fingerprints in the database. The difference

of an offline system is that it has the building’s fingerprints stored in the device’s memory.

Then, the most similar position in the fingerprint is the most likely location of the device.

However, the variability of the data, even in different times of the day, often affects the

localisation process, returning a wrong location. Thus, improvements have been made to

the existing solutions to overcome these problems.

To improve the location estimation, Viel and Asplund [30] applied an unsupervised

machine learning technique (Section 2.6), namely the K-Nearest Neighbours algorithm,

to help on deciding the most probable location, among the K smallest distances. Some

more advanced solutions employ PDR techniques to improve the classic fingerprinting-

based systems [7, 52]. These improved systems are able to track users through their

trajectories, with the identification of the movement’s characteristics. However, as it was

explained in Subsection 2.2.2, the reconstruction of the trajectories is subject to error
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accumulation, making solely dead reckoning solutions very inaccurate. When PDR and

fingerprint-based systems are employed together, it is possible to improve the reliability

of infrastructure-free IPS. This fused mechanism often works resorting to a particle filter.

A particle filter is a technique that implements a Bayesian filter using a Sequential

Monte Carlo method [53], on which a set of random particles are distributed through

the building. A particle is defined by a probability of a certain position to be the real

position of the device. The probability of every particle is initially the same, but each

one is updated and propagated to its neighbouring positions over time, depending on the

readings of the environment and the movement of the user. Weighting every available

information, the probabilities of some particles increase, meaning that they are possibly

close to the real location, while the probabilities of others decrease to the point that they

do not make sense anymore. Some solutions, like the one developed by Guimarães et al.

[7], are able to estimate the area where the user initially is, on which the particles are

distributed. Then, their propagation considers the progression of the user’s movement

and their susceptibility to error, as well as the readings from the environmental data. So-

lutions that use particle filtering allow the navigation in a building, instead of providing

a singular response to a localisation request.

2.3.2 Fingerprinting Sources

Several information sources can be employed to IPS. Although the use of many informa-

tion sources heightens the complexity of these systems, it also improves their accuracy.

Thus, a trade-off between the complexity and the accuracy must be carefully planed.

The information of the environmental magnetic field and Wi-Fi radio data, available on

almost every building, are believed to be very useful [7, 26, 28]. Therefore, these two

sources will be used in this work.

2.3.2.1 Wi-Fi Radio

The use of Wi-Fi radio as a pervasive signal is done due to the great availability of Wi-Fi

networks in most of nowadays buildings, along with the fact that almost every mobile

device has a built-in Wi-Fi receiving module, especially in smartphones.

The basis of every Wi-Fi network is a Wireless Access Point (WAP), or commonly

named just as Access Point (AP). APs are the devices that allow the connection of a Wi-Fi

device to a wired network, typically the Ethernet, by projecting its signal wirelessly. Fin-

gerprinting often uses two main features of Wi-Fi networks: the name that characterises

every AP and its perceived signal strength.

Every AP is characterised by a unique name, the Basic Service Set Identifier (BSSID).

This unequivocal designation is given by the Media Access Control address (MAC address)

of the equipment, a 48-bit sequence with 12 hexadecimal numbers. The first six numbers

identify the manufacturer and are established by the Institute of Electrical and Electronics

Engineers (IEEE). The last six are attributed by the manufacturer to every equipment,
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under the constrains of uniqueness. Besides this, an AP often is capable to transmit in

two radio bands, the 2.4 GHz and the 5 GHz. For each radio band, depending on the

AP, several Wireless Local Area Network (WLAN) can be configured. This happens very

frequently when a network provider, as an university, wants to offer different network

services to different users, as for students and teachers. Every WLAN is identified by a

also unique name, commonly given by a variation of the last character of the AP’s original

BSSID. Thus, for localisation purposes, since an AP can be characterised without any

ambiguity, it is possible to identify the specific area where a device is by identifying the

MAC address of the AP that is transmitting the collected Wi-Fi radio signal.

The characteristics and the behaviour of the Wi-Fi radio signal are also useful for

indoor localisation. This signal is transmitted by the APs’ antennas and is expressed in

milliwatt (mW) units. However, since the Wi-Fi signal has a low transmit power, the

Received Signal Strength (RSS) values in mW would be too difficult to interpret, due to

the high number of decimal places. Thus, the signal values are converted, by the Wi-Fi

devices, to more intuitive forms, expressed by the Received Signal Strength Indicator

(RSSI) values. The RSSI can be represented as a dimensionless measure that translates

the relation between the strength power and a value, commonly from 0 to 60, 100 or 255,

depending on the manufacturer [54]. However, most systems express the Wi-Fi RSS in

decibel milliwatt (dBm) units, as the Android operative system [55]. dBm is the absolute

signal power over a logarithmic relation, being expressed in decibels (dB) with reference

to 1 mW. This relation is obtained by the following equation:

PdBm = 10log10

( P
1mW

)
(2.3)

The values of dBm tipically vary between 0 and approximately -100. The higher the

value, the better the quality of the signal. Since this representation comes in a logarithmic

scale, the quality does not vary linearly. Instead, it follows the rule of the 3s and 10s. This

means that a gain of 3 dBm doubles the signal strength in mW, while a loss of 3 dBm

halves it. Besides this, if the strength gains 10 dBm, the strength in mW is multiplied by

10, as well as the opposite. For example, if a transition from -20 to -10 dBm is registered,

then the strength rises from 0.01 to 0.1 mW. Regarding the decay pattern of the Wi-Fi

signal strength, it follows a Gaussian distribution, where its signal strength decreases

with the increasing of the distance between the AP and the receiving device [56].

The use of Wi-Fi radio signal for fingerprinting requires the collection of many finger-

prints, one for each detected AP, in each radio band. However, this source of information

has some problems. The main challenges of using Wi-Fi radio signal for fingerprinting

are related to the fact that its decay pattern can be very affected by the involving environ-

ment. This signal often suffers of problems such has diffraction, reflection, scattering or

absorption during its propagation. The human body is one of the main causers of this

interference. Ma et al. [56] made readings from the Wi-Fi signal by placing a user in a
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distance of only one meter from an AP. The variability of the readings when the user was

facing front and back the AP reached 5 dBm, which is enough to affect the positioning.

2.3.2.2 Geomagnetic Field

The earth’s magnetic field has great potential for indoor location, due to its omnipresence.

Although the intensity of the geomagnetic field changes around the world, varying from

about 24 to 66 µT, in the same area, this value remains stable. For example, accordingly

to IPMA2 [57], in continental Portugal the intensity of the magnetic field varies around

44 µT.

The stable pattern of the geomagnetic field is affected indoors. The presence of metal-

lic construction materials and electrical equipment causes the local magnetic field pattern

to change. However, these anomalies are stable over time, as long as the layout of the

building remains the same [28]. Thus, the uniqueness of these disturbance patterns can

be used to identify a physical location. Fingerprinting-based IPS can easily rely on the

pervasive magnetic field of every building, through the mapping of its magnetic finger-

prints. Commonly, a fingerprint is mapped for every axis of the magnetometer, as well as

for its magnitude.

Nevertheless, some problems can be pointed out as impediments to the solely use of

this source for infrastructure-free indoor location. The fact that the geomagnetic field is

very weak lows the discernibility of this signal, due to the high amount of electromag-

netic noise sources, making it difficult to process. Furthermore, the variability that the

readings of magnetic signal suffer between different devices also becomes a problem if

the necessary processing is not properly considered [28]. Thus, the use of several sources

of information to support indoor location systems, although it represents an increase to

the complexity of the system, also increases the quality of its results.

2.4 Crowdsourcing

Crowdsourcing is a term that defines a contribution model employed by individuals,

organisations and companies to solve a problem, develop a task or to reach a goal, relying

on the contribution of a group of anonymous people, the crowd [58, 59]. With an open

call, where the participation of the users is voluntary, the crowdsourcers obtain help from

a heterogeneous group of individuals with different knowledge and experience.

Two techniques can be defined, depending on the contribution of the crowd. In

participatory crowdsourcing, users contribute actively to reach the final goal, by perform-

ing some computations or generating data. When the users participate in an passive

way, crowdsourcing is said opportunistic. In this type, devices are used to automatically

collect data from sensors, or use their processing power to perform some computations,

2IPMA (Instituto Português do Mar e da Atmosfera) is the Portuguese Institute for Sea and Atmosphere.
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generally in device’s background [58]. In this work, since the objective is to develop a solu-

tion that does not require any explicit effort from the users, opportunistic crowdsourcing

is the ideal technique to be used.

Smartphones are excellent devices for opportunistic crowdsourcing, since they not

only are equipped with a wide range of sensors, but also are almost permanently con-

nected to the internet. Besides the use of crowdsourcing for indoor location, there are

several other uses of opportunistic crowdsourcing. A common use of this type of crowd-

sourcing in our daily lives is the traffic information provided in real time by mobile

navigation apps, as in Google Maps app. These apps rely on data collected from the users’

devices, that is automatically sent to the company’s servers to be processed. Finally, the

traffic on the desired route is provided to the user [58]. Participatory crowdsourcing can

also be applied in outdoor navigation apps, as in Waze, where users are called to report

events, such as accidents or police operations.

Several other applications use crowdsourcing to reach their goals. Collaborative trans-

lation is one of the examples, where a group of people can be called to help on translating

documents, thus lowering its costs and fastening its completion. Crowdfunding is seen

as a variation of crowdsourcing, where projects are funded by people that share the same

interests. In this case, with a monetary contribution, instead of working for some task,

the crowd supports the development of a product, for example, and often receives a pro-

totype before it reaches the market. Among several others, Wikipedia is another example

of participatory crowdsourcing, on which a "collaborative encyclopedia" is constructed

with the expertise and experience of users worldwide.

2.5 Signal Processing

A signal is defined as a function that carries information about the behaviour of a system

or the characteristics of some phenomenon, and can either exist in nature or can be syn-

thesised [60]. Thus, useful information can be extracted from signals to help developing

new systems, by the means of signal analysis, one of the areas of signal processing. Be-

sides this, signal processing also includes the techniques that are use to modify signals so

they can be improved.

In this work, two main types of signal will be handled. Time series are the first type of

signal to be processed, in order to obtain useful information to be used in the algorithm

that will be created. Images are the second type of signal that will be processed, with the

purpose of improving the final solution.

2.5.1 Time Series Analysis

Time series are defined as a set of observations xt, measured over time t. Time series either

can be discrete, when observations are taken, for example, in fixed time intervals, or can
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be continuous, when observations are measured continuously over some time interval

[61].

Time series analysis is the process of extracting useful information from time series,

to be used in many purposes. Generally, the methods used in time series analysis can

be divided in two categories, depending on the domain where the methods are applied.

When the analysis is applied in the frequency-domain, the studied time series have to be

converted to the right domain, by several techniques, where one of the most popular is

the Fourier transform. However, in this work, time-domain techniques will be applied,

where the time series are directly analysed [62].

Time series analysis can be divided in several areas. The area that will be applied in

this work attempts to measure the similarity between two time series. This measure is

very useful for several classification and clustering problems, since the main goal is to

identify connections among all the available data, as further explained in Section 2.6.

Depending on the data where similarities are sought, there are various families of

measures which compare the data differently. In this work, methods based on these two

families are used [63, 64]:

• Lock-step measures: Comparison between two time series happens directly, where

the ith point of the first is compared to the the ith point of the second.

• Elastic measures: This type allows the comparison of one point of the first time

series to many points of the second, thus handling series that are not temporally

aligned.

2.5.1.1 Euclidean Distance

Euclidean distance is a lock-step measure that compares time series at the same temporal

location. It is one of the most used similarity measures due to its computational simplicity

and indexing capabilities. This measure requires that both time series have the same

length. In the cases that this does not happen, usually a resampling is performed [63, 65].

The formula for Euclidean distance is:

distanceEuclidean(P ,Q) =

√√√
d∑
i=1

(
Pi −Qi

)2
(2.4)

where P and Q refer to the two time series to be compared. d represents the length

of both time series. Figure 2.4 has represented an example of the application of the

Euclidean distance between two distorted signals.

2.5.1.2 Dynamic Time Warping

Dynamic Time Warping (DTW) is used to measure two time series that are characterised

by having different velocities. DTW is an elastic measure that aims to find the optimal
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Figure 2.4: Representation of the Euclidean distance between two distorted signals.

alignment between two time series, in a way that minimises the accumulated cost function.

With this, it is possible to "stretch" or "compress" a time series to test their similarity to

other [63, 64]. In Figure 2.5 it is possible two see the results of the application of DTW to

two distorted signals with different lengths.

In a extensive comparison of several methods, Wang et al. [64] came to the conclusion

that the DTW is one of the most effective methods, although it has a higher process-

ing time when compared to more recent measures. This processing time difference is

diminished when the length of the time series increases.
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Figure 2.5: Representation of the DTW distance between two distorted signals.

2.5.1.3 Windowed P-norm Alignment

Windowed P-norm Alignment (WPA) [66, 67] is a measure that aims to find the best

alignment between a previous computed window, window, with length N , and a second

time series. The window slides through the second time series, one sample at a time,

sig[i:i+N ], which has the same length as the window. The distance between the two series

is computed for each alignement i, being represented by the following equation:

distancei =

∑N
j=1

∣∣∣∣sig[i:i+N ]j −windowj
∣∣∣∣

N
(2.5)
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The distance measured between the window and every sample of the second series

generates a function of similarity. The lowest values of this function are the most similar

points. Even though this specific formula applies the absolute value of the differences

between the two signals, other measures can be applied, as the Euclidean distance. There-

fore, with this method it is possible to obtain a measure that identifies similarities between

two signal with different lengths. Figure 2.6 has represented an example of the applica-

tion of WPA to a signal, where a predefined window slides through it and computes the

difference between them. The plotted alignment identifies the higher similarity.
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Figure 2.6: Representation of the WPA distance between a defined window and a signal.
The window slides through the signal and computes the difference between them at
each position. The point with the minimum distance is the optimal alignment, being
represented in this Figure by the vertical lines.

2.5.2 Digital Image Processing

An image can be seen as a two-dimensional function, f (x,y), defined by its spatial coor-

dinates x and y. The intensity or grey level of an image is given by the corresponding

amplitude of f at any pair of coordinates (x,y). When the image’s coordinates and their

corresponding intensities are finite and discrete quantities, the image is called digital

[68]. Each element of a digital image is named pixel, which consists on the respective

intensity of a particular location (x,y).

Digital image processing comprises all the operations performed on a digital image,

either to extract some useful information, or to enhance it. In this type of signal pro-

cessing, the inputs are digital images, and the outputs can either be new images, or the

characteristics extracted from them.

One of the most extensive classes of image processing operations, applied to binary

images, are the morphological operations [69]. Morphological operations on images are

tools developed to extract information about their shape, as their boundaries or skeletons,

being useful for filtering purposes. Operations consist on the adding or removal of pixels

from an image, depending on the pattern of a pixel’s neighbouring pixels. Morphological

operations include dilation and erosion, and modifications and combinations of them,

depending on the objective of the operation.
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• Dilation: Dilation process adds pixels to a binary image, turning their value from

0 to 1. At each pixel, an evaluation of its original neighbourhood is made, and if

any of those values is set to 1, the value of the evaluated pixel is also set to the

same value. In practice, this operation enlarges the shape of the image, since it

adds a layer of pixels around features and regions, possible causing them to merge.

Dilation also fills small holes within features [69].

• Erosion: Contrarily, erosion removes pixels of an image that should not be there,

turning them to 0. By evaluating the neighbourhood of each pixel, its value will

only be 1 if every neighbour also has the same value. This process removes a layer

of pixels around the limits of all features and regions, causing the image to shrink.

Erosion is used to remove erroneous pixels, often caused by noise [69].

• Closing: Closing operation combines the two previous methods. It consists in the

application of a dilation, followed by an erosion. This operation is done mainly to

close breaks in features, eliminating 0 valued isolated pixels that are within features

or gaps between portion of a feature [69].

• Opening: Contrarily, opening is the inverse combination of morphological opera-

tions of closing and it is used to separate touching features in an image [69].

The aforementioned image processing techniques will be used in the final part of this

work, where the resulting floor plan of map matching process (Section 5.4), which can be

considered as an image, has some gross errors that must be resolved. Thus, in Section 5.5,

these methods are studied and applied.

2.6 Machine Learning

Machine learning is the subfield of computer science that is dedicated to the development

of computational techniques that are able to automatically learn from large amounts of

training data, by recognising their patterns. Then, the algorithm is able to apply the

learned patterns to future inputs of unknown data, even at a bigger scale [70, 71].

There are several techniques that can be used, depending on the type of information

available. Thus, four types of machine learning can be defined:

• Supervised learning: In this type, also known as classification, the algorithm is

developed with the objective of identifying connections between a set of inputs and

a set of outputs, previously trained with a set of labelled data [72].

• Semi-supervised learning: Being a variation of the supervised learning process,

the training phase of this type of machine learning relies on a small set of labelled

data and a large set of unlabelled data [24].
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• Unsupervised learning: Also called clustering, this type aims to divide a set of

unlabelled data into clusters, considering their similarity [72].

• Reinforcement learning: This algorithm aims to achieve an objective, such as win-

ning a game, by learning in a dynamic environment, instead of learning with a set

of discrete training data [24].

For this work, both supervised and unsupervised techniques have been applied in

different steps. Classification algorithms were used in Chapter 3, while clustering algo-

rithms were applied in Chapter 5.

2.6.1 Supervised Machine Learning or Classification

Supervised machine learning algorithms aim to generate, from externally supplied in-

stances, hypothesis capable of making predictions about future instances [72]. The results

are classifiers, since they are able to classify a set of features from objects with unknown

labels, based on the previous evaluation of labelled features. Features are the characteris-

tics of the dataset’s objects where the algorithm will look for similarities to generate the

classifier.

Depending on the available dataset and the objectives of the classifiers, several classi-

fication algorithms can be selected. For this work some algorithms were tested and the

one that gave the best results was chosen.

2.6.1.1 K-Nearest Neighbours

K-Nearest Neighbours (K-NN) algorithm classifies a new unlabelled object by the most

frequent class of the K nearest objects. The K value is chosen by the user. K normally

is small comparing to the size of the training dataset, which is useful for datasets with

poorly defined decision boundaries. However, higher Ks are more robust to noisy datasets

[24, 71].

2.6.1.2 Decision Trees

This algorithm attributes labels to unknown objects by a set of decisions, depending

on the training data. A decision tree consists on a set of nodes connected by branches,

like in a real tree. At each decision node, the value of a single feature is tested, and

depending on the result, the following branch is selected. A set of features from an object

travels through the tree until a terminal node is found, where the label for that object is

attributed [72].

Decision trees have the advantage of being very intuitive for the users, as it can be seen

in Figure 2.7, where four features are progressively tested to classify the data objects into

one of five labels. Besides this, decision trees can handle both numerical and categorical

data, which amplifies the number and type of features that can be extracted from the
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dataset. However, decision trees can easily suffer from overfitting if the maximum number

of nodes is not well defined.

feature 1 ≥ 0,53 
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Yes No
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feature 4 = 4,30
?

Yes No

label
E

label
D

Figure 2.7: Illustration of a decision tree for a specific dataset. Each object of the dataset is
characterised by four features (1 to 4), that will be evaluated so the object can be classified
in one of five labels (A to E).

2.6.1.3 Random Forest

As the name suggests, this algorithm creates "forests", a set of decision trees. The higher

the number of decision trees, the higher the robustness of the algorithm. The classification

is then based on the most obtained label from all the decision trees in the "forest". Each

tree is created using a subset of the dataset [24].

2.6.2 Unsupervised Machine Learning or Clustering

Clustering algorithms have the objective of separating a given set of unlabelled data into

small similar groups, named clusters, without any prior knowledge of the clusters’ defini-

tions [73]. Each object of the dataset is analysed so their features can be extracted. After

the evaluation of the features of each object, all objects are separated into clusters with

similar features. At the end, all the objects within the same cluster have the maximum

similarity, and minimum similarity between clusters [74, 75].

This unsupervised method is defined by not using labelled objects beforehand. In-

stead, it tries to find a structure within the given dataset. Thus, clustering is considered

to be of exploratory nature [74, 75].
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Clustering algorithms can be separated by several techniques, depending on the char-

acteristic that is being studied [76]. When considering the hardness of the cluster assign-

ment, two categories can be considered:

• Hard clustering: In this deterministic type of clustering, an object either belongs

to a specific cluster or not.

• Soft or Fuzzy clustering: Instead of assigning a cluster to each object, this type

attributes to an object the degree of belonging to each cluster. This way, an object

belongs to more than one cluster. Soft clustering can be transformed into hard

clustering if the object is attributed to the cluster with the highest probability.

For the purposes of the application of clustering in this work, hard clustering algo-

rithms will be preferred. Regarding this type, algorithms can be further divided int new

categories, depending on the relation between the created clusters and the process of

achieving them:

• Hierarchical clustering: This type of clustering aims to create a hierarchy of clus-

ters. The process consists on assigning a cluster to every object and consecutively

merging clusters until a sopping criteria is met. The opposite process can also hap-

pen, where at the beginning all objects belong to the same cluster, being separated

successively [73].

• Partitioning clustering: This type consists on initially partitioning all objects into

a defined number of clusters. Then, the clusters are iteratively improved until a

stable division is reached [73].

• Density-based clustering: This last type is characterised for discovering clusters

with arbitrary shapes, depending on the number of neighbouring objects of each

cluster’s object. Contrarily, the other methods search for objects where a minimum

distance from the centre of the cluster is met. This is useful to protect the clusters

against outliers on the dataset [73].

There are several algorithms for each type of clustering. However, there is no algo-

rithm that works properly under all the situations. Thus, the choice of the best algorithm

for a specific dataset is often done empirically. The following algorithms that belong to

the aforementioned types were tested in this work.

2.6.2.1 Agglomerative Clustering

This is the most common hierarchical clustering algorithm [77]. It uses a "bottom up"

approach, where every object starts with is own cluster. The process of agglomerative

clustering algorithm is [73]:
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1. Initially, every object is in its own cluster.

2. From all clusters, selection of the two nearest clusters.

3. Merging of these two clusters into a single one.

4. Repetition of steps 2 and 3 until the stopping criteria is met, which can usually be

a predefined final number of clusters.

The results of hierarchical clustering are often represented as a dendogram, a graphic

that shows the relationships between the old clusters and the new merged clusters, as

well as the order in which the clusters were merged. A dendogram is available in Figure

2.8, where eight objects are plotted in the two-dimensional feature space. The dendogram

of the same Figure identifies the process of clusters merging, depending on the increasing

distance between objects. With a stopping criteria of two clusters, it is possible to see

that the objects 7 and 8 will be placed in one cluster, while the remaining objects will be

placed in the other.
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Figure 2.8: Illustration of a dendogram for a specific dataset. The dataset has eight
objects (1 to 8), characterised by two features (X and Y). The results of the application of
the agglomerative clustering algorithm are represented in the dendogram of the Figure,
where each object has initially its own cluster. Progressively, with the increase of the
accepted distance between objects, the clusters are merged, until a stopping criteria is
met.

2.6.2.2 K-Means

K-Means is the most popular and simplest partitioning clustering algorithm [74]. It

requires as input K, the number of clusters to divide the dataset, and the distance metric,

where it is usually applied the Euclidean distance. Each cluster is represented by its

centroid, which corresponds to the mean of the features’ values of all objects within the

cluster. The steps of K-Means algorithm are the following [73, 74]:
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1. K points are set as initial centroids, among the unlabelled data.

2. Every object is assigned to its closest centroid.

3. Computation the new centroid for each cluster.

4. Repetition of steps 2 and 3 until all cluster memberships stabilise.
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Figure 2.9: Illustration of the results of K-Means algorithm for a specific dataset, charac-
terised by two features (X and Y). A number of three clusters was predefined, and the
resulting segmentation is available in the right part of the Figure. The objects of each
cluster are identified by a different colour, as it is explained in the legend placed in the
centre of the Figure.

The results of K-Means process are illustrated in Figure 2.9, with a simple example of

a dataset with two features for three clusters. The three segmented clusters are identified

by a different colour, where each object is more approximate of its cluster centroid than

to the others.

One of the problems of K-Means is the fact that the number of clusters has to be chosen

beforehand. If the clustered dataset is completely unknown, the number of clusters is

then impossible to predict. To overcome these limitations, the following methods were

proposed to try to identify the ideal number of clusters:

• Elbow method: This method computes a given evaluation metric, as the sum of the

within cluster variance, for different numbers of clusters, usually from 1 to 10, and

plots a curve with the obtained results. The ideal number of clusters is the one that

adding another cluster does not improve significantly the value of the evaluation

metric. This point is known as the elbow of the curve. However, the identification

of the ideal number of clusters is done visually, so it cannot be done unambiguously.

• Curvature-based method: With the purpose of eliminating the uncertainty of the

ideal number of clusters identification of the elbow method, Zhang et al. [78]

developed the curvature-based method, where the curvature of each point of the
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elbow method graph is computed. The curvature index κ is the amount by which a

geometric object deviates from being flat, defined as the following equation:

κ =

∣∣∣y′′∣∣∣
(1 + y′2)3/2

(2.6)

where y = f (x), which represents the curve obtained by the within cluster variances

for each number of clusters. The elbow of the curve is then the point with the

maximum curvature index.

2.6.2.3 DBSCAN

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is a density-based

clustering algorithm that aims to separate high density regions from low density regions.

The density of a region is established by the number of objects that are less than a distance

from another object. This distance is the input parameter Eps. The minimum number

of objects inside a region, MinPts, is also given as input. The process of DBSCAN is the

following [77]:

1. For each object in the dataset, its density is computed, which corresponds to the

number of objects under a distance Eps.

2. Classification of every object as one of the next three categories:

• Core object: Happens when the number of objects under Eps is bigger than

the MinPts threshold.

• Border object: This object is not a core object, but falls into the neighbourhood

of a core object.

• Noise object: A noise object is neither of the previous categories, since it is far

from all the other objects.

3. Identification of the detected clusters and removal of outliers, the noise objects.

The results of the DBSCAN process to the same dataset of Figure 2.9 are schematised

in Figure 2.10, where two clusters were constructed, identified by a different colour. The

outliers of the dataset are identified in white. This algorithm only needs one iteration

to cluster the data, but has some disadvantages. Being Eps a distance between objects

that is required as parameter, it is very difficult to define in datasets with high number of

features. While in Figure 2.10 the objects are characterised by two features, as they are

represented in two dimensions, it is easy to get the desired Eps. However, in a dataset

with a fifty features, for example, it might be impossible to get the ideal parameter. This

problem also happens if the dataset is not well known.
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Figure 2.10: Illustration of the results of DBSCAN algorithm for a specific dataset, char-
acterised by two features (X and Y). Since DBSCAN does not require the input of the
number of clusters, the algorithm segmented the data in two clusters, considering its
density-based approach. Both clusters and the outliers of the dataset are identified by a
different colour, as it is explained in the legend placed in the centre of the Figure.

Besides the fact that the final number of clusters is not required as input, the great

advantage of DBSCAN is the fact that is able to find clusters with arbitrary shapes and

sizes, also being resistant to noise in the dataset. Contrarily, algorithms as K-Means

attribute a cluster to every object and form globular clusters.

2.6.2.4 HDBSCAN

Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN)

is an improvement of DBSCAN, since it does not require the Eps parameter as input.

Instead of computing the number of objects that are under Eps as in DBSCAN, HDBSCAN

computes for every object the distance required to contain the minimum number of points,

thus creating new concept of density. The algorithm then merges in the same cluster all

the connected points within a density. Different densities are hierarchically tested to

optimise the value that gives the best results [79].
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Proof of Concept with Simulated Data

The first phase of this thesis consisted in a Proof of Concept (PoC), that was developed

to demonstrate the feasibility of the use of crowdsourced data for the automatic con-

struction of buildings’ floor plans and environmental fingerprints, trough the detection

of similarities between signals. To achieve this, the developed PoC relied on simulated

environmental data, designed to be as approximate as possible to the real acquired data.

This first approach was motivated by the fact that, to reach the final objectives, this thesis

will rely on the complex topic of processing non-annotated data. Thus, the use of con-

trolled data, that is not suitable to the variability of real contexts, allowed not only the

verification of the feasibility of the final algorithm, but also the mastery of the techniques

required to develop it.

Data 
Simulation

Routes 
Generation

Classification
Map

Matching
Similarity 
Measures

Figure 3.1: Scheme of the PoC workflow.

The workflow of this PoC is available in the scheme of Figure 3.1. The first stage

of the developed algorithm simulates the environmental distribution of the magnetic

field and the Wi-Fi radio data, within a physical space. In the next stage, random routes

are generated in the same space, and the environmental data is annotated, to replicate

the acquisition process. Then, similarity metrics are applied to the obtained routes, to

identify common segments between them, named overlaps. After this stage, the map

matching process tries to construct maps with the combination of all routes, in order

to prove the accuracy of the overlap identification process. Due to the obtained results,
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a final stage was required, so the correct map, among all the constructed maps, can be

identified. The algorithm was developed in Python 2.7.

In this PoC, the physical space is represented by a two dimensional grid of 100 m2

(10x10 m), divided in evenly disposed 0.04 m2 (0.2x0.2 m) cells, i.e., a square matrix of

50 by 50 cells. As it can be seen in Figure 3.2, the centre of the matrix represents the

origin point of the simulated physical space.
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Figure 3.2: Representation of the physical space used in this PoC. Each cell represents
0.04 m2, where the coordinates of every position vary from the centre of the grid, defined
to be the origin point.

3.1 Simulation of Environmental Data

The simulation of environmental data in this PoC was made to create a solution that

reduces the variability and unpredictability of real scenarios. If a system does not work

using information that behaves as physics models predict, then it would be possible to

infer that the use of data highly suitable to variations would not improve the system.

Thus, instead of using real data collected from smartphones, environmental data was

simulated. As it will be used in the final solution, this PoC relies on environmental data

of magnetic field and Wi-Fi radio.

3.1.1 Magnetic Field Fingerprints Simulation

The use of the magnetic field for the purposes of this work requires that inferences exist,

to create singular patterns that can be identified by similarity measures. To recreate this,

the simulation of the magnetic field was done using an algorithm previously developed

at Fraunhofer AICOS. This algorithm places dipoles in chosen locations within or outside
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the simulated space, to replicate the magnetic interferences that would be created by the

construction materials, for example. The magnetic field value within each cell element

has three components, which correspond to the three axes of the Cartesian coordinate

system [66].

In Figure 3.3, it is possible to see the magnetic field behaviour of the simulated space,

represented by its corresponding magnetic fingerprints. In this case, two dipoles were

placed in the coordinates (0.0, 0.0) and (5.0, 5.0), in the (x, y) plane, where z was fixed as

0.0. Both dipoles were vertically oriented, across the z axis.
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Magnetic Fingerprints

Figure 3.3: Magnetic fingerprints used in this PoC, with each axis represented in its
fingerprint, as well as their magnitude. The dipoles were placed at (0.0, 0.0) and (5.0,
5.0) coordinates of the (x, y) plane, where z was fixed as 0.0. Both dipoles were vertically
oriented, across the z axis. Each fingerprint is computed for the same physical space
simulated in Figure 3.2. Their values vary differently, as it is explained by the scales
positioned in their right.

3.1.2 Wi-Fi Radio Fingerprints Simulation

For the Wi-Fi radio simulation, a number of APs are placed in the simulated space, in

chosen positions. Considering that the Wi-Fi decay pattern with no interferences follows
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a Gaussian distribution, as it is described in Section 2.3.2.1, the signal that is expected to

be read in the surroundings is computed for each AP.

In this simulation, the chosen positions of the two placed APs in the (x, y) plane were

(-2.0, 2.0) and (2.0, 3.0), with z fixed as 0.0. Figure 3.4 shows the fingerprints of the Wi-Fi

radio signal for both APs.
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Figure 3.4: Wi-Fi fingerprints used in this PoC, with the decay of each AP represented
in its fingerprint. APs 1 and 2 were placed at (-2.0, 2.0) and (2.0, 3.0) coordinates of the
(x, y) plane, respectively. The z axis was fixed as 0.0. Each fingerprint is computed for
the same physical space simulated in Figure 3.2. Their values vary differently, as it is
explained by the scales positioned in their right.

3.2 Generation of Random Routes

The simulation of routes was created to eliminate the error created by the noisy inertial

sensors of smartphones. The originated routes only have straight line paths with rigid

turns of 90 degrees to the right or to the left. The length of each step was defined to

be of one meter. However, a straight line always has even number of steps. This is

done to approximate this simulation to the human behaviour, since the walking patterns

in real situations consist mainly in straight segments, with few turns, when necessary.

Consequently, the full length of every route is always a even number. The process of

routes generation is the following:

1. Selection of a random pair of coordinates on the created grid (see Figure 3.2), to be

the starting point of each route.

2. Selection of a random length for the straight line path, considering the even number

of steps, within the grid’s borders.

3. Random selection of the turning direction, to the left or to the right, depending on

the available possibilities.
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4. Repetition of steps 2 and 3 until a minimum total length of each routes is met,

established as 16 meters.

Contrarily to the final solution, that will use a large number of routes collected with

crowdsourcing techniques, this PoC will be done using only three routes, for simplicity.

To ensure that overlapping areas exist, new routes will be generated until at least one

overlap is found. Figure 3.5 shows the three simulated routes that will be used as example

to explain the algorithm of this PoC.
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Figure 3.5: Trajectories of the three simulated routes in this PoC, one for each Subfigure.
They were computed within the limits of the physical space of Figure 3.2. The green and
red dots represent, respectively, the start and end of each route. The black dots represent
the beginning of the two meter straight sections that will be further used in Section 3.3.

After the routes are generated, the data acquisition process has to be simulated. This

process consists on retrieving the values of the magnetic and Wi-Fi radio fingerprints, for

the positions of each route. Thus, since it is assumed that a step has a length of one meter,

but the resolution of the considered grid is one fifth of that value, every step is composed

by five values of environmental data.
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Data collected in real environments has great variability, due to noisy sensors and

other factors, as the difference on the walking velocity of the users. However, in this PoC

those problems do not happen. Then, the process of identifying similarities, between two

overlapping sections of two different routes, would be too direct if the collected signals of

the simulated fingerprints were compared. Thus, to approximate this PoC to the reality,

Gaussian noise with mean 0 and variance 5 is added to the registered magnetic field and

Wi-Fi radio signals. In Figure 3.6, it is possible to see the differences on a sequence of

magnetic field data from the x axis, from one of the simulated routes.
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Figure 3.6: Sequence from the x axis of the simulated magnetic field, before the addition
of Gaussian noise (Figure 3.6a), and after (Figure 3.6b). The Gaussian noise follows a
normal distribution with mean 0 and variance 5.

With all the necessary information available, every route is translated to the origin

point, at the (0, 0) coordinates. This is done to approximate this PoC to the final solution,

where the absolute positions of the collected routes are not known.

3.3 Similarity Measures

The identification of overlapping sections between the simulated routes is made by seg-

menting every route in two meter sections and comparing them to each other. In other

words, the segmented sections of the first route are compared to the sections of the second

and third routes, and the sections of the second route are compared to the sections of the

third. Besides this, since overlaps could happen in opposite ways, all sections are also

compared with the inverted ones. For these comparisons, the following methods were

applied, for both the magnetic field and the Wi-Fi radio data:
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• Magnetic Field

– Dynamic Time Warping: This measure is very useful to identify similarities

between signals with a temporal distortion, caused by the different velocities

of the users during the acquisitions. Although this problem is not verified

in this PoC, DTW was still implemented, to understand its mechanism and

test its potentialities. Thus, DTW is computed for every pair of segmented

sections, and the cost functions are registered. This measure is implemented

in a package for Python1.

– Difference of means: The mean of the magnetic signal of each section might

be useful, since the interferences created by the dipoles create a decay pattern

that influence the mean of the signal. Considering this, the difference of the

means between every pair of sections is computed, for every axis and their

corresponding magnitude.

• Wi-Fi Radio

– Difference of RSSs’ means: The difference of the means of measured RSSs

also gives useful information about the similarity between sections, since the

strength of the Wi-Fi signal decreases with the distance from the APs.

– Coherence of APs: Since the similarity identification by the difference of RSSs

might be affected by the presence of noise, this method tests if the APs detec-

tion is consistent in both sections, returning a Boolean (consistent/not consis-

tent). The test will return True if the detected APs are the same in both sections

being analysed. Otherwise, it will return False.

For each method, heatmaps for every pair of routes are built to visually evaluate

the metrics results. As it can be seen in Figure 3.7, where each heatmap represents a

comparison between two routes, and each cell has the mean of the distances computed

with DTW, for all axes of the magnetic field. The axes of each heatmap identify the

straight section numbers of each route, as it is described in the trajectories of Figure

3.2. The numbers followed by an apostrophe (’) identify the sections that were inverted

before the comparison, so overlaps in opposite directions can be identified. The different

results are displayed in different colours, as the scale of each map reveals. The smaller

the distance, the greater the similarity. For example, in the cell corresponding to the

section 3 of the first route and the section 7 of the second route, this minimum distance

corresponds to an overlap.

After the computation of all methods for every pair of straight sections, it is necessary

to evaluate them, so the overlaps can be identified. To do this, the following process was

applied:

1Available in https://github.com/pierre-rouanet/dtw (visited on 09/17/2018).
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Figure 3.7: Resulting heatmaps from the magnetic field comparisons with DTW. Each
heatmap has the results of the comparisons between two routes, where each cell contains
the distance between two straight sections of different routes, identified by the corre-
sponding section numbers. The sections identified by its number and an apostrophe (’)
were inverted before the comparison, to identify overlaps in opposite ways. The sections
of each route are also available in the trajectories of Figure 3.2. As it is showed in the
scales in the right of each heatmap, the colour of each cell denotes a different distance.
The darker the colour, the lesser the distance and consecutively, the higher the similarity.

1. The metrics’ results are converted to a normalised value, between 0 and 1. This

is done using a sigmoid function, so similar sections will obtain a high parameter

value, while different sections will obtain a low parameter value. The variables that

define the shape of the sigmoid were empirically chosen for each method.

2. Taking into consideration the fact that some metrics give more trustworthy results,

a weighted mean of the normalised values obtained in step 1 is computed, applying

the following equation to every comparison:

f inal result =

∑N
i=1

(
resulti ×weighti

)
∑N
i=1weighti

(3.1)

whereN represents all the metrics applied. For the magnetic field, the weights were

defined as 1.0 for the DTW and 0.8 for the difference of means. Regarding the Wi-Fi

radio, the chosen weights were 0.8 for the difference of RSSs’ means and 1.0 for the

coherence of APs. Therefore, similar sections will have a higher final result value.

3. The identified overlaps are retrieved by analysing the final results. This process

consists on identifying the maximum value among all set of comparisons. Then, all
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the comparisons that have a value higher than 80% of the maximum are registered

as overlapping sections.
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Figure 3.8: Resulting heatmaps with the computed final results for the comparisons be-
tween every pair of routes. Each cell contains the final result obtained for two sections,
identified by the corresponding section numbers in the heatmaps’ axes. The sections
identified by its number and an apostrophe (’) were inverted before the comparison, to
identify overlaps in opposite ways. The sections of each route are also available in the
trajectories of Figure 3.2. As it is showed in the scales on the right of each heatmap, the
colour of each cell denotes a different value. The overlaps are in the darker cells, with a
final result value approximate to 1.

After step 2, a new heatmap is computed with the final results of the comparisons

between every pair of routes, as it can be seen in Figure 3.8. Again, the straight sections

of each route are identified by their numbers and the comparisons that were computed

between a section and the reverse of another are represented with an apostrophe (’). From

these heatmaps, the overlaps are retrieved, depending on the darkness of the colour of

each cell. Then, the created list of overlaps is sent to the map matching process, ordered

by the number of route. For each overlap, the final result obtained from the comparisons

is also stored in the list, since it will be important for the classification phase.

3.4 Map Matching

The map matching phase of this PoC aims to reconstruct the map of the simulated space,

given by the combination of the trajectories of the created routes. After this process, it is

possible to verify the quality of the overlaps identified by the similarity measures.

It is expected that the process of identifying overlaps has some error, where not only

wrong overlaps might be identified, but also true overlaps may stay unidentified. Since
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CHAPTER 3. PROOF OF CONCEPT WITH SIMULATED DATA

the only method that produces a different value when comparing sections in both direc-

tions is the DTW for the magnetic field, sometimes overlaps of the same sections in both

directions are identified. Thus, the map construction must consider that not all identified

overlaps are correct. To do so, the algorithm constructs as many maps as the necessary

to include all overlaps. Even if in this PoC’s example the number of constructed maps

might not be too high, since it only processes overlaps for 3 routes, the number of maps

increases considerably with the number of routes.

The map matching process is initialised with the random mapping of a route in a

grid, similar to the one available in Figure 3.2, which is the map where the reconstruction

will take place. Therefore, this first route will provide the basis coordinates for every

map, with every route being transformed to match this one. After this, the algorithm

iteratively searches for overlaps between the route being analysed and all the available

routes, among the previously obtained list.

Then, for each identified overlap, the new route is transformed to match the coordi-

nates of the route already mapped. If a new overlap produces a different configuration

of routes, the original map with the first route is copied, and a new map that considers

the new overlap is produced. After this point, every new overlap will be matched in all

available maps. The map matching finishes when all the identified overlaps are mapped.

The process of adding a new route to a map is done using the information of the

original coordinates of the new route and the coordinates of the route already in the

map. Then, the orientations of the overlapping sections are computed. If these two

sections have different orientations, then the new route needs to be rotated to match the

orientation of the first route’s section. This is done by multiplying a rotation matrix by the

coordinates of the new route. The rotation matrix, defined in Equation 3.2, is computed

with an angle given by the difference of orientation between both sections, θ = (θ1 −θ2).

With both overlapping sections in the same orientation, the new route is translated into

the positions of the route already mapped, by subtracting from all points, the difference

between the overlapping sections.

R(θ) =

cosθ −sinθ

sinθ cosθ

 (3.2)

After the map matching process has been applied to the routes used in this PoC,

two maps were created, as it is possible to see in Figure 3.9. Thus, by comparing these

maps to the positions of the original routes, is it possible to conclude that Figure 3.9a

has represented the accurate combination of all created routes, in the simulated physical

space.
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Figure 3.9: Reconstructed maps from the map matching process. Depending on the
combination of all existing overlaps, a variable number of maps is constructed, by the
successive transformation of routes.

3.5 Classification

The map matching process originates a set of maps, where only one represents correctly

the combination of all routes in the simulated space. To help on deciding which map is

the correct, a supervised classifier was trained. This binary classifier has the capability of

deciding if a map is or is not correct.

To train the classifier, an algorithm was developed to provide the ground truth in-

formation about every constructed map. The algorithm builds the map that correctly

combines all the simulated routes, and then compares its coordinates with the maps

obtained after the map matching process. If the difference between them is always a

constant value, then the constructed map is the correct. This evaluation attributes a label

to the training set of features.

As it is explained in Subsection 2.6.1, classifiers require a set of labelled features to

the training phase. The features that characterise each constructed map are:

• Number of overlapping sections: The number of sections that overlap in the con-

structed map is used as feature. It includes every pair of overlapping sections in the

map, not only the overlaps identified by the similarity measures.

• Number of routes: This feature is also important to consider, since it is more prob-

able to find overlaps in a map with more routes.

• Statistics: Regarding all the found overlaps in the map, the following statistical

features are computed, using the final results previously obtained in Section 3.3:

– Maximum final result

– Minimum final result

43



CHAPTER 3. PROOF OF CONCEPT WITH SIMULATED DATA

– Mean of overlaps’ final results

– Standard deviation of overlaps’ final results

– Root mean square of overlaps’ final results

Three different classifiers were tested in an adaptation of a framework previously

developed at Fraunhofer AICOS, which trains a set of classifiers to test their performance.

At the end, it returns the classifier with the best accuracy. The following classifiers were

tested:

• K-Nearest Neighbours (Subsubsection 2.6.1.1)

• Decision Tree (Subsubsection 2.6.1.2)

• Random Forest (Subsubsection 2.6.1.3)
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Figure 3.10: Confusion matrix obtained with the Random Forest classifier, after it has
been trained with 1000 cycles. The accuracy obtained with this classifier was approxi-
mately 88%.

The classifiers were trained with a dataset of 1000 cycles, with different numbers of

simulated routes. As it was previously explained, the number of resulting maps varies

depending on the quality of the retrieved overlaps in the end of Section 3.3. The classifier

that gave the best results was the Random Forest, with an accuracy of approximately 88%.

The resulting confusion matrix is available in Figure 3.10. As it can be seen, the number

of maps that was classified as wrong or incomplete is explained by the fact that among

all of the created map, at best only one represents the correct combination of routes. For
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the resulting maps of this PoC’s example, the only map that was classified as the right

one was the first, which corresponds to the truth.

After the classification process, more than one floor plan can be classified as correct.

Among the hypothetical set of "correct" floor plans, the final floor plan to be returned is

the one that has the highest mean of all overlapping results. However, this problem was

not verified in this example. In Figure 3.11 it is possible to see the final returned map,

after the merge of all routes.
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Figure 3.11: Returned map after the classification process. As it can be confirmed by the
trajectories of Figure 3.5, the map matching process, as well as the classification phase
produced the expected results. The physical space is not the same of Figure 3.2, since the
combination of routes does not produce an absolute reference to the original positions.

3.6 Discussion

The results obtained in this PoC sustain the hypothesis that the development of a system

that constructs automatic floor plans might be possible to develop. Although the used

environmental data does not correspond to the collected data in real situations, its char-

acteristics allow the approximation. While the fact that humans most commonly walk

in straight lines is contemplated in this PoC, it does not consider the high variability of

the direction changes. Despite the fact that the segmentation process must be adapted to

the real context, the similarity measures that can guarantee an accurate identification of

overlaps may be applied with the same principles. Regarding the map matching process,

some modifications have to be made, to ensure the scalability of the solution, since the

number of routes used to construct the map will be very much higher. Thus, Chapter 5

describes how the final solution handles this differences, with some different methods

applied in each phase of the process.
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4
Data Acquisition

The algorithm proposed on this thesis aims to automatically construct indoor floor plans

and environmental fingerprints, without any human effort. To do this, data will be op-

portunistically collected via crowdsourcing. In practice, this means that large amounts

of data will be acquired from users’ smartphones, who will walk freely during their daily

activities, inside the building to be mapped.

To support the development of this algorithm, an acquisition protocol was designed

and the respective dataset was collected to simulate the human movement during real life

situations where individuals can express "normal" behaviour. The tests performed during

the algorithm development process were done using a dataset acquired at Fraunhofer

AICOS’s Lisbon office. Its floor plan is available in Figure 4.1. This building will be

referred in this thesis as test building.

Figure 4.1: Floor plan of the test building.

To allow the visualisation of the results obtained at each stage of the algorithm of

Chapter 5, as well as to other necessities of the PIL solution, the floor plan of Figure 4.1

was converted to a schematic that translates the walkable areas of the building. This
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CHAPTER 4. DATA ACQUISITION

new simpler floor plan is represented in Figure 4.2, where the white coloured zones

represent the existing areas of the building. The blue colour translates the impossible

areas, originated by the furniture, walls, or simply zones outside of the building. The red

colour identifies sections with stairs.

Figure 4.2: Floor plan of the test building, to be used in the development of the algorithm.
The white colours translates the walkable areas, while the blue colour designates the
building’s constrains. The red colour identifies a stairs section.

4.1 Routes Design

In order to achieve the natural movement of users in the test building, where numerous

different trajectories happen, 22 different routes were designed. These routes cover dif-

ferent parts of the building and were designed to have overlaps in different zones. These

overlaps are fundamental to the construction of floor plans process. Since most buildings

have common areas and are constructed with main corridors, where a great part of the

users passes by, it can be assumed that overlaps will always exist indoors. The overlaps

between routes were designed in both directions, to further increase the reliability of the

dataset.

The coordinates of the designed routes were annotated with the purpose of providing

a ground truth basis for intermediate tests, during the development phase. In Figure 4.3

it is possible to see four routes of the dataset. The full design is available in Appendix A.

Regarding the nomenclature of the routes in the dataset, each acquisition has a unique

name, defined as HCrowdXX_YY. XX and YY are the values that identify unequivocally

each acquisition. XX is given by the number of the route’s design, and assumes values

from 00 to 21. YY represents the repetition number of the acquisition for a given route,

incrementally varying from 01.

Overlaying all routes of the dataset in the floor plan, it is possible to obtain the covered

areas of the building, where each area has at least one route passing by. Ideally, the

proposed algorithm will produce a floor plan equal to Figure 4.4, which shows the covered

areas of the test building.
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Start

End

HCrowd09

HCrowd14

HCrowd13

HCrowd20

Figure 4.3: Design of four routes of the dataset, displayed in front of the test building’s
floor plan. Each route is identified by a different colour, as it is described in the Figure’s
legend. The starting and ending point is as well identified by the green and red circles,
respectively.

Figure 4.4: Illustration of the areas of the test building covered with routes. An ideal
algorithm would construct a floor plan similar to the covered areas of the building.

4.2 Data Acquisition

The data acquisition process was designed considering the characteristics of the acquisi-

tions in a real environment. Six healthy subjects, aged from 22 to 27 years old, collected

data through the day and in different days, to consider its variability. A total of 135 acqui-

sition were collected, with several repetitions of the same route, but always in different

conditions, whether by different subjects or different acquisition devices. Overall, 95

minutes of data were acquired. The smartphones used for the acquisition were a Google

Nexus 5 and a Google Nexus 6P, both running on Android system. These smartphones

are equipped with all the necessary sensors to this project.

To acquire the data for this dataset, both smartphones had installed a mobile applica-

tion responsible to manage all the smartphones’ sensors and register all the information
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collected by them. This application, named Recorder, was previously developed at Fraun-

hofer AICOS.

It is important to collect data from different smartphones, since their sensors have

some different characteristics, although the collected information is the same [30]. Read-

ings from the magnetometer usually have an offset between different smartphones. The

sampling frequency of each sensor is another parameter that varies among different smart-

phones. Table 4.1 shows the sampling frequencies registered for each sensor on each

smartphone, in one acquisition of the same route.

Table 4.1: Sampling frequencies of different sensors for each used smartphone. These
values were obtained for one acquisition in the HCrowd00 route, using the Nexus 5 and
Nexus 6P smartphones.

Sampling Rates (Hz)

Accelerometer Magnetometer Gyroscope Wi-Fi Radio

Nexus 5 198.82 49.80 198.77 0.32

Nexus 6P 396.25 49.66 396.45 0.67

4.2.1 Sensors Acquired

The data acquired from smartphones’ sensors is used in two main phases of this work.

Subsection 2.2.2 explains how the sensors from the IMU are used to reconstruct the

movement. The sources of information described in Subsection 2.3.2 are not only used in

the fingerprinting processes, but will also be very useful for this work in the identification

of similarities phase.

Thus, the collected dataset has data from the accelerometer, the magnetometer and

the gyroscope, all part of the smartphones’ IMU. Regarding the environmental data,

the magnetometer also provides the necessary magnetic field information. Besides this,

readings from the local Wi-Fi radio signal are also registered.

4.2.2 Acquisition Protocol

The acquisition of the dataset used in this work followed some rules to ensure the integrity

and fidelity of the data. Every participant on the acquisition was instructed to walk

normally in the designed routes, starting at the initial position, identified by a green dot,

and finishing at the end of the route, identified by a red dot (see Figure 4.3). The subject

also had to hold the smartphone in texting position, since the variations on the position

of the device affect the dead reckoning results, as it is explained in Section 4.3.

Since the collected data will serve as ground truth for the intermediate phases of

this work, the acquisitions were duly annotated. The Recorder application allows the

annotation of the moments of desired events, with a tap on the smartphone’s screen.
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Thus, every subject was instructed to tap the screen in every turn, providing with great

certainty the information of the moments where the subject passed by those points.

4.3 Dead Reckoning Parameters Retrieval

The processing of sensed data from the accelerometer, the gyroscope and the magnetome-

ter allows the reconstruction of the users’ trajectories, as it is explained in Subsection

2.2.2, being also used in other steps of the entire process. This data processing is the

starting point of this work. The parameters retrieved from dead reckoning techniques are

the moments when steps were taken, their corresponding length, and finally, the direc-

tion of each step. Alternatively, some algorithms compute the relative direction between

a step and its previous. These parameters are all that is necessary for the trajectories

reconstruction.

In a real context, the device that performs the data collection for the localisation

purposes, automatically computes the dead reckoning parameters immediately after the

data has been sensed, and reacts accordingly. In the development of this work, these

parameters are not immediately obtained, since the data is processed a posteriori. Thus,

they are computed by a framework developed at Fraunhofer AICOS, that processes the

data collected from the IMU’s sensors, as if it was coming in real time, and returns a

list with the aforementioned parameters. Relatively to the direction, the used framework

computes the direction of every step, by merging the data coming from the magnetometer

and the gyroscope. Thus, the movement characteristics are considered to be given as input

to the algorithm developed in this thesis.
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5
Proposed Algorithm and Results

In this chapter, a new algorithm for the automatic construction of indoor floor plans

and environmental fingerprints will be presented, along with the results obtained during

its development. This algorithm aims to reduce the extensive effort of the floor plans

and fingerprints construction process, viewed as one of the major problems of current

infrastructure-free IPS. This work was developed in Python 2.7 and its implementation

can be divided in several stages, as it can be seen in Figure 5.1.

Data
Acquisition

Wi-Fi
Clustering

Inertial
Processing

Fingerprints 
Retrieval

Floor Plan 
Filtering

Map
Matching

Geomagnetic 
Similarities

Figure 5.1: Scheme of the proposed algorithm workflow.

After the data acquisition process, the Wi-Fi clustering and the inertial processing

stages aim to process the respective types of data, before the identification of geomagnetic

similarities of stage three. While the Wi-Fi radio data is clustered to reduce the search

area for similarities, the inertial data is processed to understand the walking patterns of

the users. After these stages, the floor plan construction will be done in the map matching

stage, followed by its filtering. Finally, the environmental fingerprints are obtained from

the collected data in the fingerprints retrieval stage.

This chapter addresses every stage of this process, where an explanation will be given,

together with the obtained results. Finally, the constructed floor plan and the correspond-

ing fingerprints for the dataset acquisitions’ building, described in Chapter 4, will be

tested in a real scenario.
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5.1 Wi-Fi Radio Clustering

The first main stage of this project consists on the processing of the Wi-Fi radio data, fol-

lowed by its evaluation by unsupervised machine learning techniques. The clustering of

data allows the identification of clusters with similar information. Each cluster represents

a smaller area of the building.

The collected Wi-Fi data is received in batches of APs replies. A batch consists on a

singular scan of the reachable APs in the area. Depending on the sampling frequencies

of the smartphone, after a batch is received, a new Wi-Fi radio request is sent. The APs

that are close enough to perceive the request, reply with the information of their signal,

as its strength, frequency channel and MAC address. After a predefined interval, a list

with all available WLANs is obtained, representing a batch. Every batch is characterised

by a timestamp of the instant of the AP reply.

The clustering of the Wi-Fi data is applied to the received batches of each collected

route. After the clustering process, a cluster is attributed to each batch. The batches of the

same cluster have similar information, meaning that they have coherent strengths for the

same APs. With the clustering results, it is expected to be possible to divide the building

in small areas, one area for each cluster. Although this process is not indispensable to the

final objective, it has a major role on decreasing the processing time, especially in large

buildings, as it will be explained in Section 5.3. Before the application of the clustering

algorithms, the features to be evaluated must be extracted.

5.1.1 Wi-Fi Data Pre-Processing

Machine learning algorithms work by evaluating the set of features that characterise

every object. In this specific case, the objects are the obtained Wi-Fi batches. Before the

extraction of features, the data is pre-processed following these steps:

1. A search through the measured Wi-Fi signals is conducted to identify all APs with

coverage inside the building. This search considers the following aspects:

• Networks that transmit only in the 5 GHz band are not considered, since they

are not detectable by every smartphone.

• An AP is considered only if at least two WLANs are detected in a batch. This

is done to remove variable APs, as a smartphone hotspots, based on the fact

that common APs transmit in more than one WLAN.

2. For each batch, the detected WLANs are analysed. In the cases where more than one

WLAN from the same AP is detected, the mean of their strength values is computed.

3. Some APs have weak signal indoors. Therefore, when an AP is missing in a certain

batch, this work assumes that their RSS is equal to -100 dBm.
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The result of this pre-processing is a list of batches that contains the Wi-Fi signal

strengths for all the detected APs in the building.

A further optional processing is implemented, where an evaluation of the obtained

list is performed, and the Wi-Fi signals strengths readings with low values are neglected.

A low value is due to a reading that was received far from the AP, being for this reason

very susceptible to interferences. For the tested dataset, this threshold was established as

-90 dBm. With this, values below -90 dBm are replaced by -100 dBm. After this, the APs

that do not have meaningful values are removed from the list.

5.1.2 Features Extraction

With the Wi-Fi radio information properly organised, the study of the best features can

be done. Different methods compare the data in different ways, reason why distinct

clustering results are expected. Thus, several features were implemented to test which

one gives the best results:

• RSS values: This method does not require any further processing. The features that

characterise each batch are the Wi-Fi signals strengths values in the list previously

obtained.

• Difference of RSSs: Based on the fact that readings from different devices might

have some variability, comparing directly the RSS values might not give the best

results. Thus, to only consider the relative differences between the APs of a batch,

a different approach is required. The developed method computes, for all batches,

the differences between the registered RSSs of every pair of APs.

• Exponential representation: Considering that signals collected far from the AP

are more suitable to noise, Torres-Sospedra et al. [65] introduced an exponential

representation, in order to give higher values to higher RSSs, as well as the opposite,

in a non-linear way. This representation of the data is also implemented, where the

RSS values are converted with the following equation:

Exponentiali(RSSi) = exp
(
RSSi
α

)
(5.1)

where α was defined by the authors as 24, through an empirical process.

• Sigmoid representation: In the sequence of the last representation, the RSS values

can be converted by a sigmoid function, where the values higher than a threshold

are valued as 1, while the values below a lower threshold are valued as 0. The

sigmoid function is given by:

Sigmoidi(RSSi) =
−1

1 + exp(α · x − β)
+ k (5.2)
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where α was empirically defined as 0.145, β as -9.3 and k as 1. With these param-

eters, values above -40 dBm are converted to 1, and for lower RSSs, the converted

value decreases until it reaches 0, at approximately -90 dBm.

• Difference of new values: With the same premise of the difference of RSSs method,

the same process is implemented for the exponential and sigmoid representations.

The study of the best method can only be done after the implementation of the clus-

tering algorithms, since it is the only way to evaluate if each method gives a good relation

between the data.

5.1.3 Clustering Algorithms

The unsupervised machine learning techniques are exploratory in nature. These algo-

rithms aim to find an organisation among the data, resorting in clusters that separate the

data according to their similarity. The number and the shape of resulting clusters can

be previously foreseen if the characteristics of the dataset are well known. However, the

idea of the algorithm to be developed in this thesis is to automatise the process of floor

plans construction and fingerprints mapping.

As it was explained, the application of clustering in the collected Wi-Fi data aims to

divide the building into smaller areas that have coherent information. Considering that

this solution aims to be applied in any unknown building, it is impossible to predict both

the number of clusters and their shape. Thus, the clustering algorithms applied cannot

require the number of clusters as input. Besides this, since the shape of the clusters also

cannot be predicted, the evaluation of the results, to decide the best clustering algorithm,

must be done visually, considering the available dataset.

The following algorithms were tested for the acquired data, with a detailed description

of their functioning available in Subsection 2.6.2:

• Agglomerative Clustering: The fundament of this algorithm implementation to

cluster the Wi-Fi data was to test if a hierarchical approach would give proper

results. It was implemented using the scikit-learn package for Python [80]. This

specific implementation has a predefined number of clusters as stopping criteria.

• K-Means: Being one of the most used clustering algorithms, K-Means was applied

to the Wi-Fi data. This partitioning approach is also implemented in scikit-learn
package [80], which has as input the number of clusters on which the data will be

divided.

• DBSCAN: This density-based approach was also tested in this work, in order to

understand if the identification of high density regions, with similar information,

would give good results. This method also allows the identification of outliers,

which are objects that do not match any of the clusters. This algorithm is available

in scikit-learn package [80], having Eps and MinPts as input parameters.
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• HDBSCAN: This algorithm is a variation of DBSCAN. It uses a hierarchical ap-

proach to optimise the Eps parameter of DBSCAN, since it is very difficult to predict

for a high number of features. HDBSCAN is implemented in a package developed

for Python that has a set of tools to perform HDBSCAN [81]. The only required

parameter is the minimum cluster size.

5.1.4 Clustering Results

The identification of the best algorithm to cluster the Wi-Fi data was done through an

iterative process, where different algorithms and different features were tested. The best

algorithm is the one that is capable of dividing the Wi-Fi batches in consistent clusters,

where the cluster attributions are coherent through the badges of every route. The number

of clusters is secondary, since it is preferable to have fewer clusters with great consistency,

than the opposite.

In order to evaluate the quality of the combinations of different algorithms and results,

a visualisation tool was developed. For each designed route, using their annotated coordi-

nates, it was possible to compute their full length. Then, a linear regression between the

full time that took to a user to acquire the data, and the timestamp of every batch, it was

possible to identify the approximate coordinate where the batch was acquired, within

the trajectory. Figure 5.2 displays a map of the test building of this work. On top, four

acquisitions of the dataset, corresponding to four different routes, are mapped. Their

design is available in Figure 4.3. The acquired Wi-Fi batches of each route are scattered

in Figure 5.2, where each polygon represents the batches of a route, as it can be seen in

the legend of the map. This map, together with the same routes, will be used to visually

demonstrate the clustering results.

HCrowd09_02
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HCrowd14_04
HCrowd20_02

Figure 5.2: Four routes from the dataset with collected Wi-Fi batches, before the cluster-
ing process, plotted in the corresponding positions of the test building. The batches of
each route are identified by the polygon described in the plot’s legend.

Since the goal was to implement a method that does not require the number of clusters,

DBSCAN was the first algorithm to be tested. The MinPts parameter was established at

10, a small value, to allow the creation of clusters that would represent a small area in
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the building. Since the Eps parameter cannot be easily predicted in datasets with a high

number of features, its value was progressively changed until a solution with satisfying

results would be obtained. However, it was not possible to obtain a Eps that produced

satisfactory results. The Eps value is very hard to predict when the number of features is

large, since it works as a radius on which an object will search for close neighbours. The

variations on the type of the features did not improve the results. Testing progressively

incremented Eps values, it was possible to understand that, for a acceptable number of

clusters for the test building, as five for example, the number of outliers reached 86%

of the total number of batches. In Figure 5.3 it is possible to see this result, where five

clusters were obtained with an Eps value of 2.2. The outlier batches are identified by the

white colour, while each cluster is coloured differently. In this example, the used features

were the original RSS values.

HCrowd09_02
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Figure 5.3: Results of DBSCAN algorithm on four routes of the dataset, plotted in the cor-
responding positions of the test building. The original RSS values were used as features,
and the Eps value was established as 2.2. The number of obtained clusters was 5, each
represented by a different colour. The white filled polygons are the outliers.

HDBSCAN is an algorithm that hierarchically implements DBSCAN to avoid the

definition of the Eps value as parameter. Initially, MinPts was defined as 10, the same

number used in DBSCAN. However, the algorithm divided the batches in 28 clusters

that were not uniformly distributed. Besides this, the number of outliers still was too

high, reaching almost 31% of the batches. Increasing the MinPts value, the acceptable

number of clusters, established as five, was obtained with MinPts as 75, where the cluster

distribution for the routes of the example is available in Figure 5.4. The type of features

did not influenced the results. However, the high percentage of outliers, almost 67%,

and the distribution still were not satisfying, which is why the search for new algorithms

continued.

With the aforementioned experiments, it is possible to understand that a density-

based approach does not work for this type of data. The hierarchical approach, imple-

mented by the agglomerative clustering method, was tested next. Since the algorithm

starts by attributing a cluster to each batch, and progressively merges them, the final
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HCrowd09_02
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Figure 5.4: Results of HDBSCAN algorithm on four routes of the dataset, plotted in the
corresponding positions of the test building. The differences between the RSS values were
used as features, and the MinPts value was established as 75. The number of obtained
clusters was 5, each represented by a different colour. The white filled polygons are the
outliers.

result will not have outliers. The only parameter of this method is the final number of

clusters. Although this requirement may become a problem in a final solution, it was still

worth to test this hierarchical approach. Starting at the five clusters, the algorithm was

tested with the dataset. The results showed that this number of clusters was to high, since

the cluster distribution were not very coherent, for every type of features. Progressively

decreasing, the best outcome happened when the number of clusters was defined as two,

with the RSS values converted by a sigmoid, as it can be seen in Figure 5.5.
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Figure 5.5: Results of agglomerative clustering algorithm on four routes of the dataset,
plotted in the corresponding positions of the test building. The RSS values converted by
a sigmoid were used as features, and the number of clusters was established as two. Each
cluster is represented by a different colour.

Since it is not possible to use the agglomerative clustering without having the number

of clusters as inputs, another algorithm was tested. As a partitioning algorithm, K-Means

iteratively adjusts its cluster attributions until a stable solution is found. The used im-

plementation also has the number of clusters as input. However, some methods were
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developed that aim to optimise the final number of cluster. The elbow and the curvature-

based methods (Subsubsection 2.6.2.2) were thus implemented, where the tested number

of clusters varied from one to ten. The best results for this algorithm were obtained using

the differences between the RSS values as features. As it is possible to see in the plots of

Figure 5.6, the ideal number of clusters for this dataset is two, which corresponds to the

maximum index of Figure 5.6b. It is also possible to verify that this number of clusters is

identified in Figure 5.6a by the elbow, the point where the biggest variation of curvatures

exist. The final distribution of clusters in the example routes is available in Figure 5.7.
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Figure 5.6: Results from the elbow (Figure 5.6a) and the curvature (Figure 5.6b) methods,
after the application of K-Means clustering algorithm, for a number of clusters between
one and ten, using this work’s dataset.
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Figure 5.7: Results of K-Means algorithm on four routes of the dataset, plotted in the
corresponding positions of the test building. The differences between the RSS values
were used as features, and the number of clusters obtained by the elbow and curvature-
based methods was two, each represented by a different colour.

From all the tested algorithms, the best results were obtained with K-Means, which

is why this algorithm is the one that is used in the development of the algorithm. The

differences between the RSS values are the features that will further used, since they
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were the ones that provided the best results. However, it is possible to see in Figure

5.7 that some wrong cluster attributions happened, since sometimes a colour that is

different from the neighbourhood is shown. Thus, an algorithm was created to correct

these incoherent transitions between clusters. It works by changing the cluster of a batch

if the three batches before and the three after coincide, and are different from the centre

batch. Figure 5.8 shows the final results of clustering process, after the correction process,

for the four routes used as example.
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Figure 5.8: Final results of the clustering process after the noisy batches removal, on four
routes of the dataset.

With the results from clustering process, it is possible to know which parts of the ac-

quisitions were collected in the same area. With this information, a list is created to store

the initial and final timestamps of each segment with the same cluster, in every route.

Some requirements are applied to this registry process. As it will be later explained, a

minimum length of each partition is required. Thus, the annotation of the timestamps

only happens if at least three consecutive batches of the same cluster are identified. Fur-

thermore, since the exact moment of the cluster transition is not known, due to the low

sampling frequency of Wi-Fi acquisitions, the timestamp of the batch before the first

batch of a cluster is registered, as well as the timestamp of the batch after the last batch of

the same cluster. Figure 5.9 illustrates this process. In an acquisition that took 40 seconds,

where 22 batches were collect, the results of the clustering process are represented by the

green and red filled rhombuses. The limits of the black arrows are the stored timestamps,

taking in consideration the aforementioned rules.

5.2 Data Processing

The second stage of this process consists in the processing of the acquired data, in order

to prepare it for the next stages of this work. This processing regards the inertial data

obtained from the IMU of the smartphones and the collected data from the Wi-Fi radio

and the magnetic field is also processed.
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Figure 5.9: Illustration of the timestamps annotation rules with the results of clustering
process. For each route, the initial and final timestamps of segments with consecutive con-
cordant clusters are annotated in the black arrows, considering that a minimum of three
batches are required. The annotated timestamps are the timestamps of the immediately
before and after the first and last batch of the segment.

5.2.1 Trajectories Reconstruction

The inertial data that is firstly processed was previously obtained in the dataset construc-

tion process, as it is explained in Section 4.3. The timestamp and the length of each

step, as well as their direction, are the parameters retrieved after the dead reckoning

techniques.

With these parameters, it is possible to infer the trajectories described by the users.

The process that allows the reconstruction is the following:

1. The initial position, in a two dimensional plane, is defined as (0, 0) for every route.

The direction of the movement, given in radians, varies accordingly to the illustra-

tion of Figure 5.10.

y

x

0 rad

1 rad

Figure 5.10: Representation of the direction variation circle, in radians.

2. At each step, the next position is obtained by summing to each coordinate of the last

position, the coordinates of the displacement of the new step. The displacement

has to consider the direction of the movement, so its coordinates are obtained by

multiplying a rotation matrix by the length of the step, as if it was done to the 0

rads angle direction. The following Equation describes this process:

(xnext , ynext) = (xprev , yprev) + (disp, 0) ·
cosθ −sinθ

sinθ cosθ

 (5.3)
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where (xnext , ynext) and (xprev , yprev) are the coordinates of the next and the previous

positions, respectively. disp is the displacement of the new step, and θ its direction.

Figure 5.11 shows the reconstruction of one of the routes used as example. As it is

possible to see, by comparing this reconstruction to the original designed route, drawn

in the background of the map of the same Figure, the reconstruction has some problems.

The framework used to compute the dead reckoning parameters has some errors in the

computation of the steps’ length, reason why the full length of the original and recon-

structed routes differs. However, it must be taken into consideration that some of this

error is explained by the variability of the users’ movement, in relation to the trajectories

that were designed. Furthermore, the direction of the movement also originates some

error, since the drift originated by the gyroscope might not be completely eliminated by

the employed correction mechanism.

HCrowd30_02

Figure 5.11: Result of the reconstruction process for one route of the dataset, plotted
above the buildings map, in black. The dimension of both the map and the route are
proportional. The real designed routes is drawn in blue colour.

After the routes are reconstructed, information about their direction will be retrieved.

Since the algorithm of the floor plans reconstruction will be based in comparisons between

all the crowdsourced data, which is not annotated, it is important that these comparisons

are done with high confidence data, to reduce the hypothetical accumulated error.

As it was previously explained, the retrieval of the direction information has some

error. Besides this, this values are highly influenced by the user. Several situations

exist where a turn in the movement can be detected, while the user continues to walk

straight, as a simple tilt on the smartphone, or a hesitation during the movement inside a

building, where the user might turn over to read some information, for example. Thus,

the information of the changes of direction is not very trustworthy.

To overcome these problems, the comparisons between the collected data will only

take place when is certain that the user walks straight, or, in other words, when the

direction of consecutive steps remains constant. To do this, at this stage, the initial and
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final moments of the straight line paths are annotated in a list, by the registry of the

timestamp of the first step where the user walked straight, as well as the last.

Besides this, as in clustering process, a minimum number of steps is defined to the

segment to be considered. This value was established as five. An example that illustrates

the annotation of the first and last steps of the straight line paths is available in Figure

5.12. As it can be seen in this Figure, the direction information of all steps is plotted,

where each step instant is identified by the red dots. Although there are several straight

sections, their annotation only occurs if at least five consecutive steps have the exact same

direction value, as the limits of the black arrows show. In almost every identified straight

section, the neighbouring steps have an approximate direction. However, they are not

considered to avoid at most the susceptibility to comparison errors.

40.0s

steps
4

steps
4

steps
4

steps
6

steps
9

43.0s 54.7s 60.1s
step 
timestamps

number of 
straight steps

Figure 5.12: Illustration of the straight sections identification rules, with information of
the direction of every detected step. A straight section is identified every time at least
five consecutive steps with the same direction are detected.

5.2.2 Time to Distance Domain Conversion

Before the comparison of the magnetic data and the later fingerprints retrieval, some

processing has to be done. The walking pattern of every user has great variability, where

different conditions affect the way the users walk. For example, an elder person will walk

slower than a young adult. Furthermore, a person that knows the building will walk with

more confidence than a person that is there for the first time. Then, the acquisition of the

data will be affected. The higher the speed of the user, the lesser the points that will be

collected through the same distance.

To solve these issues, the data is converted to the distance domain. This means that

the data will not vary with time, which is dependent of the sampling rates of each sensor,

but will vary with distance, by a fixed step value. This way, all the data is interpolated

to match the corresponding distance points. Due to the nature of the data, the magnetic

field and the Wi-Fi radio are processed in different ways.

The domain conversion of the magnetic field data can be done practically in any cho-

sen step distance, due to the high sampling rates of common magnetometers. The step

value was established as 10 centimetres. The conversion process identifies the approxi-

mate timestamp that corresponds to every distance point, progressively incremented by

10 centimetres, until the full length of the route is reached.
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To do this, the algorithm processes at each time a pair of two consecutive steps. By

knowing the accumulated displacement at each step, the algorithm computes a linear

interpolation between the known timestamps and accumulated displacements, to obtain

the timestamp that corresponds to the distance point being analysed. After the obtain-

ment of the timestamp that corresponds to the 10 centimetre multiple distance point, the

magnetic data of every axis is annotated. An illustration of the process of identifying the

timestamp that corresponds to the displacement of 5.30 m is illustrated in Figure 5.13.

In this example, the use of the timestamps and displacements of steps number 7 and 8,

allows the computation of the unknown timestamp, given by the result of Equation 5.4:

tunknown = tstep7 +
(
dpoint − dstep7

) tstep8 − tstep7

dstep8 − dstep7
(5.4)

where tstep7 and tstep8 refer to the timestamps of steps number 7 and 8. Their displace-

ments are represented by dstep7 and dstep8, respectively. dpoint refers to the displacement

of the distance point that is being interpolated, to obtain the corresponding timestamp,

tunknown.
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Figure 5.13: Illustration of the interpolation of one distance point, in the time to distance
conversion process. For each displacement of the distance domain, as 5.30 m in this
example, it is possible to obtain the corresponding timestamp of the time domain. It is
done by applying the linear interpolation of Equation 5.4, with the information of the
neighbouring steps.

After the conversion process, it is possible to deal with the data as if it was acquired

between intervals of 10 centimetres, instead of the varying time intervals. Figure 5.14

shows the final result of the domain conversion, for two routes collected in the same

section of a building, but at different walking velocities.

The conversion of the Wi-Fi radio data to the distance domain is done differently than

the magnetic field. As it was already explained, the sampling rate of the Wi-Fi signal is

lower than the magnetic field’s, where the most common value in smartphones is 0.29 Hz.

Between two batches, the users may walk several meters. Therefore, a sampling distance

of 10 centimetres cannot be obtained.

Instead, the process of conversion works in a simpler way. It just computes the ap-

proximate distance that corresponds to the timestamp of every batch. Thus, for a batch,

an iteration over consecutive pairs of steps of its route is done. The iteration stops when

the timestamp of the batch is included in the time interval between two consecutive steps.
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Figure 5.14: Results of the magnetic signal conversion from time to distance domain,
for two routes collected in the same sections of a building. As Figure 5.14a shows, both
routes were collected in different walking velocities, since the length of both signals is
different. After the conversion, Figure 5.14b shows both routes in the distance domain,
as it can be seen from the alignment of both signals.

Then, a linear interpolation is done, considering the timestamps and the accumulated

displacements of the referred pair of steps.

Finally, through the same process of the Wi-Fi radio data conversion, the lists that

store the timestamps that identify sections with the same cluster and the timestamps of

the straight sections are also converted to the distance domain.

5.3 Geomagnetic Similarities

The third stage of this process regards the identification of similarities between the col-

lected data. This identification aims to find overlaps between routes. An overlap happens

when two segments of two different routes are collected in the exact same place. Since

there is no annotation of the absolute positions where the routes are acquired, the identi-

fication of overlaps relies on the evaluation of the data collected from the sensors of the

smartphone.

As it was introduced in Subsubsection 2.3.2.2, the magnetic field pervasively avail-

able in every building has great potential for the similarities identification. The unique

patterns created by the construction materials and electrical equipment in every build-

ing motivate the comparisons between magnetic field data, to identify similar signals,

which correspond to overlaps between routes. For this reason, the process of identifying

overlaps is done, in this work, with comparisons between the magnetic field data.

After the magnetic data is obtained, and before the further mentioned processes, a
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smoothing filter was applied to the data, in order to reduce the acquisition noise. The

filter in this algorithm is implemented in the novainstrumentation package for Python1.

5.3.1 Data Segmentation

Before the data comparison, a segmentation process divide the data into interesting sec-

tions, using the values previously obtained by the clustering stage and the identification

of straight sections.

This process deals with the clustering results first, by segmenting the magnetic data by

the intervals retrieved at this stage. These intervals are now represented by the distances

that correspond to each timestamp. Then, the segmentation by straight sections takes

into consideration the already segmented data. Within these segments, the algorithm

will verify which portions are included between the intervals of the straight sections list,

to segment the data again.

However, the previous requirement of a minimum number of steps is still considered,

and only the new segments that fulfil the minimum of five steps are retrieved. This

requirement is very important for the further comparisons. For example, if two very large

segments are identified to be similar, it is possible to be more sure that they are effectively

an overlap, than if two very small segments are identified, since the small pattern might

happen in more than one place of a building.
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Figure 5.15: Illustration of the data segmentation process, considering the information of
the previously defined sections with the same cluster and sections with the same direction,
as it is described in the legend. The segmentation only happens when the new segments
have a minimum number of five steps.

After the segmentation process, the retrieved segments to be compared in the next

stage are a small portion of the full acquisitions, as it can be seen in Figure 5.15. However,

this few number of sections to be compared do not represent a problem, since the data

collected with crowdsourcing comes in large quantities. Moreover, it is preferable to only

use reliable data in the floor plans and fingerprints construction process, to avoid the

addition of errors.

1Available in https://github.com/hgamboa/novainstrumentation (visited on 09/17/2018).
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5.3.2 Time Series Similarities

The process of identifying overlaps between the collected data is one of the most impor-

tant stages of this thesis. It is done through the comparison of the previously retrieved

segments. The algorithm compares every pair of segments in the three axes, as long as

they are labelled with the same cluster.

Since the magnetic field data is available in the distance domain, instead of the time

domain, it is possible to consider that all the data is aligned. For this reason, both lock-

step and elastic measures (Subsection 2.5.1) can be used for this purpose. Having this in

mind, and due to the fact the DTW is computationally heavy, the WPA was the chosen

measure, being able to find the optimal alignment between a window of a given time

series to another full time series.

Before the data comparison, WPA requires the identification of the window to be slid.

Since this comparison aims to take advantage of the unique pattern of the magnetic field,

the window identification process starts by identifying the maximum peak of every seg-

ment’s magnitude. Then, the window for each segment is retrieved around its identified

peak, with a defined length of 50 points (5 meters), except in the cases that the segments

are smaller.

With these non-annotated data, it is impossible to know if two acquisitions were

retrieved in the same or opposite directions. To solve this, each window will slide through

every segment in both directions, as long as they have the same cluster. The result of the

WPA measure is a function that stores the distance of Equation 2.5, for each alignment

of the window and the signal. The potential overlapping point is the index where the

function has the minimum value. An overlap is identified every time the value of the

minimum index is below a threshold, that was defined empirically to be 0.005, but can

be changed depending on the need of more or less overlaps. If the minimum of the

computed function is below the threshold, the algorithm tries to extend the window,

within the limits of both segments that are being compared, and recomputes the WPA

measure.

Every overlap is characterised by an importance index, given by the minimum dis-

tance of the last WPA function, obtained with maximum achieved length of the window.

The lower the index, the more the confidence in the overlap.

After the identification process, this stage returns a list that contains every identified

overlap, with information about their characteristics, to be processed in the map matching

stage. For each overlap, the list stores the identification of the segments of both routes,

the positions of the overlap in both segments, the direction of the comparison, the size of

the window and finally the distance value that characterises the quality of the overlap.

For the dataset of this work, the similarities identification process applied to the

172 segmented straight sections found 414 overlaps. In order to verify the quality of

this results, to every segment of each route an index was attributed, that identifies the

corridor of the building where they were collected. This process was done automatically
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by a developed algorithm that processes the annotated coordinates of all routes, and the

taps on the smartphones made by the users, as it is described in Subsection 4.2.2. Since a

tap was made in every turn, which registered their timestamps, it was possible to identify

the corridor where the segment was collected. Thus, by comparing the location indexes

of the overlaps, it was possible to conclude that, among all identified overlaps, only two

were not correct.

Besides this evaluation, a total of 6048 overlaps actually happened. Although the 414

identified overlaps might seem low comparing to the total number of real overlaps, it

is preferable to have more certainty in the used data, discarding some part of it, than

the opposite. With the large amount of available data, that continues to grow with the

deployment of the system, it is possible to only rely on a small portion of data, to obtain

the best results. As it will be seen in the next stages, these assumptions are sustained by

the results that were obtained.

5.4 Map Matching

The fourth stage of this algorithm consists on the construction of the buildings’ floor

plan, a process from now on called map matching. Contrarily to this thesis PoC, where a

map for every possible combination of overlaps is constructed, the amount of data that is

dealt in the solution with real data does not allow this approach. Instead, the algorithm

processes one overlap at the time, and tries to conjugate all the information to construct

as few maps as possible.

The constructed maps are two dimensional matrices, where every cell represents

a relative position (x, y). The resolution of the constructed maps was defined as one

square meter, since it is considered to be a sufficient approximation to provide satisfactory

localisation results. The construction will begin at the centre of the matrix, where the

first route will be mapped. Then, every cell will store the number of routes that passed by.

The final constructed map can thus be viewed as a greyscale image, where the denser cells

represent the places of the building where more users passed. These cells are expected to

be the main corridors of a building.

An example of the map matching process is illustrated in Figure 5.16. The algorithm

starts by ordering the retrieved overlaps from the last stage, by their importance index.

This way, the overlap with the highest similarity value is processed first, reducing the

possibility of error. Stage 1 of the first iteration matches the routes of the first overlap,

where their common segment is identified with the red colour in Figure 5.16. Then, at

stage 2, the algorithm searches over all overlaps to select the ones that have one of the

already matched routes, with the same segment in common. Then, the corresponding

routes of these retrieved overlaps are matched. After this process, in stage 3 of the same

Figure, the algorithm retrieves, from the remaining overlaps, every overlap that has in

common the segments of the routes already in the map. When the remaining overlaps
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have neither of the routes in the map, a final map is reached. Until all the overlaps are

mapped, this process restarts to create as many final maps as necessary.

final maps

best map

best map

stage 3stage 2stage 1

Figure 5.16: Illustration of the map matching process, where several maps are constructed.
In stage 1 the best non-mapped overlap is chosen, and the corresponding routes are
matched. The stage 2 maps every overlap that happened in the same segment, identified
by the red colour. In stage 3, overlaps that happened in the other segments of the mapped
routes will also be mapped, until the final map is reached, where no more overlaps can
be mapped. Finally, the best produced map is chosen.

In more detail, an overlap identifies common segments between two routes. The

overlaps can only be mapped when one of the routes is already in the map. The matching

process firstly identifies the positions of the overlapping segment in the already mapped

route. The new route is matched by the transformation of its positions, ensuring that the

overlapping segment has the same coordinates in both routes. If the overlapping segment

in both routes obtained different orientations in the trajectories reconstruction process,

due to erroneous estimations of the dead reckoning techniques, a rotation matrix given

by the difference between the two segments’ directions is applied in order to rotate the

new route into the same orientation of the mapped one. Additionally, a translation is also

applied, ensuring the same coordinate system between routes. Finally, the new route, that

already has the same coordinates of the mapped on the overlapping segment, is added to

the matrix that stores the map. Each cell of the matrix, representing a coordinate of the

space, stores the number of times that a route passed by. Thus, the process of adding a

route to the map consists on making an increment to the values of the matrix’s cells with

the same coordinates of the positions of the new route.

After the map matching process is finished, a list with all the created maps is obtained.

The possible high number of maps is mainly due to the high variability of the data, which
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might affect the overlaps identification in some areas. Although all the constructed maps

might carry correct information about the building, the map with the highest number of

routes is chosen as the final floor plan, since it is the one that contains more information.

In Figure 5.17, the final result of the map matching process is represented.
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Figure 5.17: Resulting floor plan from the map matching process. Each cell of the matrix
stores the number of times that a route passed by, as it is possible to understand in the
scale of the Figure.

The obtained map contains the reconstructed trajectories of 58 routes. Comparatively

to the total of 135 routes, this number represents 43% of the collected dataset. This

apparently low number does not represent a problem, since the large amount of available

data allows the exclusion of acquisitions with low confidence. Even with the major part

of the dataset excluded from the constructed floor plan, the shape of the building is still

defined, as it can be seen in Figure 5.17. The excluded routes happened for two reasons.

The first is the fact that the collected signals have high variability, be it for the different

sensors’ characteristics of the used smartphones, or for the conditions of the acquisition,

as the time of the day, or the presence of non-fixed objects that cause interferences. The

second reason is the fact that the segmentation constrains sometimes eliminated all the

data of a route, due to its small segments.

5.5 Floor Plan Filtering

As it is possible to conclude from the evaluation of Figure 5.17, the produced floor plan

has an approximate shape of the covered areas of the test building, available in Figure

4.2. However, it is possible to see that floor plan has its denser areas blurred, mainly

due to the dead reckoning errors. To improve this aspect, and to produce a clean floor

plan suitable to be used in fingerprinting-based IPS, the results from map matching are

subject to a process of filtering.
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The final output of this stage will be a binary floor plan, that identifies the walkable

and non-walkable areas. To decide which filtering protocol is the best for the produced

floor plans, several methods were tested. The following methods were implemented and

tested individually and in combinations:

• Noise Removal: This operation aims to remove the pixels, or the positions, that have

a value below a threshold. To avoid the manual determination of these threshold,

the following measures were tested:

– Mean of all map’s cells.

– Mean of a cell’s neighbourhood.

– Median of all map’s cells.

– Percentile of several values, for all map’s cells.

• Closing: This morphological operation (Subsection 2.5.2) is applied with the objec-

tive of removing the gaps between the cells, wrongly erased by the noise removal

operations.

After an evaluation of all the aforementioned techniques, the combination that pro-

duced the best results consisted in the application of a noise removal below the mean

of the full map, followed by a new noise removal below the median. Finally, a closing

operation was applied to correct the errors created by the noise removal processes. The

closing operation uses an implementation from the scikit-image package for Python [82].

Figure 5.18 shows the final floor plan obtained with the developed algorithm.
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Figure 5.18: Final floor plan obtained after the filtering process. This matrix stores a
binary value, that is set to 1 (blue colour) in the reconstructed areas of the building. The
coordinates are relative, since the algorithm does not have an absolute reference of the
location of the building.

It is possible to evaluate this result with a comparison between this floor plan and the

one that was expected, given by the building’s map with all the covered areas, available in
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Figure 4.4. The main conclusion is that the constructed floor plan has represented most

of the areas of the real building, with approximate dimensions. However, two problems

can be detected with the floor plan evaluation.

The first problem consists on the missing areas of the original floor plan. This problem

was originated by the fact that the dataset did not contemplate a sufficient number of

routes in the missing areas, as in the rest of the building. Besides this, the walkable

areas of the used building are not very long, comparing to a hospital, for example. The

lower limits applied in the retrieval of the sections of the same cluster and with the same

heading discarded segments of several routes, where more overlaps could have been

found.

The second detected problem happens in mapped areas, where in reality they are

map constrains. The filtering caused this effect, and is due to the fact that the corridors

of the dataset’s building are very close, which caused the closing operation to merge

near separate areas. However, in reality, this error has a very small effect in the final

deployment of this solution, since it only has a few meters.

5.6 Fingerprints Retrieval

After the construction of floor plans, the environmental fingerprints of the collected data

have to be retrieved, in order to accomplish the objectives of this thesis.

The fingerprints retrieved in this work are matrices that store in each cell the informa-

tion about the collected signal, with a resolution of one square meter. They have the same

shape as the floor plans, and their retrieval process works similarly both for the magnetic

field and the Wi-Fi radio data.

For the magnetic field, four fingerprints are retrieved, one for each axis of the magne-

tometer, and a fourth that stores the magnitude values. The algorithm iterates over all

routes that are mapped in the final floor plan. With the magnetic data in the distance

domain, each displacement point is interpolated with the route’s positions on the floor

plan, to compute the corresponding coordinates of each point. Then, if the computed

position is included on the floor plan, the data that corresponds to the displacement point

is stored in the same coordinates in the fingerprint of each axis. After the iteration is fin-

ished, the algorithm finds the mean value of the data points stored in every position of the

fingerprints. Figure 5.19 shows the obtained geomagnetic fingerprint of the magnitude

of all axes.

In order to evaluate the obtained fingerprints, Figure 5.20 shows the corresponding

fingerprint of Figure 5.19, collected by the traditional methods, with a resolution of

0.04 m2. As it can be seen, the values of the same zones of both floor plans are very

similar, even though the floor plans have considerable variations. The left area of the

obtained fingerprint corresponds to the left area of the original fingerprint, where both

intensities are approximate. Although the darker area around the cell (52, 27) in Figure

5.20, considering the (x, y) referential, is not visible in the corresponding zone of Figure
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Figure 5.19: Retrieved geomagnetic fingerprint for the magnitude of all axes. The finger-
print has a resolution of one square meter. Each colour represents a different magnetic
field intensity, as it is described in the Figure’s scale.

5.19, it is possibly due to the fact that the upper limit of the constructed floor plan is

lower than the real. Furthermore, in the area corresponding to the coordinates (21, 1)

and (21, 2) of Figure 5.19, the intensity does not reach the value of the same area in the

original fingerprint, due to the lower resolution of the constructed fingerprints, where

the high intensity peak is diluted by its neighbours.
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Figure 5.20: Geomagnetic fingerprint for the magnitude of all axes, collected by the
traditional methods. The resolution of the fingerprints is of 0.04 m2. The intensity of the
magnetic field in each cell is represented by a different colour, as it is described in the
Figure’s scale.

Regarding the Wi-Fi radio, the process of retrieving fingerprints is the same as the

magnetic field. However, the fingerprints are different. Here, a fingerprint for every AP,

both in the 2.4 and 5 GHz bands, stores the RSS values in dBm. Then, a final filtering is

done to eliminate fingerprints that have few data points, since their usability is limited.
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In Figure 5.21, a Wi-Fi radio fingerprint is displayed with the information of one AP of

the test building, in the 2.4 GHz band, identified by the BSSID 84:b8:02:fc:12:9.
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Figure 5.21: Obtained Wi-Fi radio fingerprint for the AP 84:b8:02:fc:12:9 of the test
building, with the signal transmitted in the 2.4 GHz radio band. The fingerprint has a
resolution of one square meter, where the colour of each cell identifies a different strength,
as it is given by the Figure’s scale.

Again, with the objective of evaluating the retrieved fingerprint, Figure 5.22 shows

the original fingerprint for the same AP, in the same frequency band. The original finger-

print is also represented with a resolution of one square meter. This lower resolution is

explained by the low sampling rate of the Wi-Fi radio data (see Table 4.1), which hinders

an accurate collection of data for a resolution of 0.04 m2, as in the magnetic field finger-

prints. Besides this, the variability of the Wi-Fi radio signal is not so expressive then the

magnetic field’s, which allows the reduction of data points. The original fingerprint is

often represented outside the map’s borders due to the difference of resolutions between

the floor plan (0.04 m2) and the fingerprint (1 m2). However, this difference does not

affect the localisation process. After the comparison of the fingerprints of Figures 5.21

and 5.22, it is possible to conclude that both decay patterns are very consistent, where

the area around the (13, 10) coordinate of the first Figure and the area around the (62, 27)

coordinate of the second Figure, in the (x, y) plane, are approximately the same position

of the building, and have the higher strength for the represented AP. For this reason, it is

expected that these positions are the location of the AP in the building.

To support the presented results, which sustain the hypothesis that is possible to

construct fingerprints with crowdsourced data, the remaining retrieved fingerprints are

represented in Appendix B, both for the magnetic field and the Wi-Fi radio data. Along

with every retrieved fingerprint, the original fingerprints for the same axis, APs and

radio bands are also represented with the objective of providing a way of comparing the

obtained results.
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Figure 5.22: Wi-Fi radio fingerprint for the AP 84:b8:02:fc:12:9, collected with the tradi-
tional methods. The signal is transmitted in the 2.4 GHz radio band and the strength of
the Wi-Fi radio in each cell is represented by a different colour, as it is described in the
Figure’s scale.

5.7 Real Scenario Test

One of the main advantages of collecting fingerprints via crowdsourcing is that every

point of a fingerprint stores information of several acquisitions. Contrarily, the traditional

method of collection uses data from only one passage in each position, as it is explained in

Subsection 2.3.1. Due to the extensiveness of this process, sometimes data from missing

positions is interpolated, considering the decay of their neighbours.

For this reason, it is expected that crowdsourced fingerprints can provide a better basis

for infrastructure-free IPS, thus providing a better accuracy in the positioning phase. To

verify these assumptions, an experiment was conducted. Using the PIL solution, the

obtained and the original fingerprints were tested with the data of all routes that pass

through the existing areas of the reconstructed map of Figure 5.18. Since it would not

be fair to test the localisation with routes that pass in non-mapped zones, the routes

HCrowd00, HCrowd03, HCrowd04, HCrowd06, HCrowd10, HCrowd17, HCrowd19,

HCrowd20, HCrowd22, HCrowd25 and HCrowd27 are the ones that can be tested, as it

is possible to verify in Appendix A.

To provide the localisation, the PIL solution uses magnetic field fingerprints with a

resolution of 0.04 m2 and Wi-Fi radio fingerprints with a resolution of 1 m2. To meet

these requirements, the fingerprints retrieved in Section 5.6 were processed. The geo-

magnetic fingerprints were recomputed to consider the new resolution. However, this

process resulted in an incomplete fingerprint, where several gaps appeared between the

data points. To overcome this problem, the algorithm that interpolates the collected fin-

gerprints by the traditional methods (see Subsection 2.3.1) was applied to compute the

unmapped positions. The result of this process was the interpolated fingerprints of every

axis. Figure 5.23 shows the interpolated geomagnetic fingerprint for the magnitude of

all axes, in the new resolution of 0.04 m2. The resulting interpolations for the remaining
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magnetometer axes are also available in Appendix B.
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Figure 5.23: Interpolated geomagnetic fingerprint for the magnitude of all axes, from the
values of Figure 5.19, with the new resolution of 0.04 m2. The colours in the Figure’s
scale represent the different magnetic field intensities.

The Wi-Fi radio fingerprints required for the test are already in the same resolution,

so a conversion is not necessary. However, the low sampling rate of the Wi-Fi signal

sometimes originates sparse data points. Although this problem is expected to disappear

with a larger dataset, the retrieved fingerprints that verified this problem were corrected.

To achieve this, the same algorithm that interpolates the Wi-Fi radio fingerprints was

used, and the resulting interpolations are available in Appendix B, along with the cor-

responding obtained and original fingerprints. The fingerprint of Figure 5.21 is already

complete, so the applied algorithm produced an interpolation equal to the original.

With the fingerprints in the required resolutions, the test was conducted. The PIL

algorithm processes the data of the given acquisitions to identify the dead reckoning pa-

rameters. Then, the algorithm uses the reconstruction of the trajectories and the magnetic

and Wi-Fi radio fingerprints to retrieve the location of each step. Using an implemented

particle filter (see Subsection 2.3.1), the progressively propagated particles are compared

to the fingerprints. Then, the returned position corresponds to the weighted centroid

of all meaningful particles. To evaluate the accuracy of the localisation, the coordinates

of the trajectories are annotated to serve as ground truth. With the identification of the

cumulative displacement of each step, the corresponding ground truth coordinates are

computed. Then, the difference between the retrieved location and the ground truth posi-

tion identifies the error of each step. Table 5.1 has identified the mean of the errors of all

tested routes, where the mean and the maximum errors of each route were progressively

computed.

The outcomes of the real scenario test are satisfactory, where the obtained results

for both retrieved and original fingerprints are very similar. Although the errors for
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Table 5.1: Results obtained in the real scenario test with the retrieved and original fin-
gerprints. Each cell represents the mean and the standard deviation for the mean and
maximum errors of all tested acquisitions.

Retrieved Fingerprints Original Fingerprints

Mean Error (m) 4.37± 1.98 3.66± 1.81

Maximum Error (m) 6.53± 2.62 5.71± 2.25

the constructed fingerprints are higher than the errors for the original ones, the values

differ less than a meter. This difference does not affect the localisation purposes in most

applications, since a mean error of 4.37 m would probably still conduct the user to the

correct space, as an office or a room. Furthermore, the continuous growing of the dataset

will allow the enhancement of the results. While the currently available floor plan hinders

some real locations to be returned, a more accurate floor plan, where all or almost all of the

areas of the building are mapped will solve this issue. Besides this, with the conjugation

of the environmental data of more routes will produce more accurate fingerprints.

5.8 Discussion

The results obtained through the development of this algorithm support the hypothesis

that is possible to implement a system to provide infrastructure-free indoor localisation,

without the extensive effort of mapping fingerprints. Furthermore, since this solution

does not require the floor plan of the building to map the fingerprints, the costs of the

implementation are practically non-existent.

Although the final obtained floor plans and fingerprints have some faults, it is possible

to verify that they almost accurately represent the test building. Besides this, the fact that

a system like this can collect data continuously, the floor plans and the fingerprints can

be continuously improved, providing increasingly better localisation results.

Comparatively to the acquisition time of the fully deployed solution, where it is ex-

pected that the system is utilised by users almost permanently, the acquired 95 minutes

of the used dataset represent a very small part of the total data that will be available. For

these reasons, the further development of this solution is supported, toward the creation

of a system capable of using the continuously coming data to improve and update the

floor plans and fingerprints, when necessary.
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6
Conclusions and Future Work

In this final chapter, an overview over the developments achieved during this thesis is

presented, as well as a balance of the obtained results. Then, some future guidelines are

suggested to the continuous improvement of the developed solution.

6.1 Conclusions

The ageing of the world’s population has been motivating the scientific community to

develop new technological solutions, to ensure an improved quality of life to the older

adults. One of the innovative technologies that has a major role in the AAL tasks aims to

provide localisation-based services indoors, that can be used to guarantee the safety of

the elderly, or simply to ease their daily life.

However, the current available IPS are not easily deployed, due to the high costs on

installation and maintenance. Infrastructure-free systems do not require the investment

on equipment for every building, but they demand an extensive setup phase, where the

fingerprints of the buildings need to be acquired.

The objective of this project was to improve this process, through the elimination of

the human intervention on the mapping of fingerprints. With the use of crowdsourcing,

this thesis proposes an algorithm for the automatic construction of floor plans and envi-

ronmental fingerprints, to be deployed in any building. To do that, the algorithm relies on

the processing of inertial and environmental data, collected without any annotation from

smartphones. While the inertial data is used to infer the trajectories described by the

users, the environmental data is compared to each other, to find similarities that identify

overlapping sections. Then, these overlaps are used to match the inferred trajectories, to

obtain the buildings’ floor plans and fingerprints.

79



CHAPTER 6. CONCLUSIONS AND FUTURE WORK

The first stage of this thesis consisted in testing the viability of the use of environmen-

tal data, such as the Wi-Fi radio and the magnetic field, to find the required similarities.

For this purpose, a PoC was developed, that simulates both the inertial and the environ-

mental data, thus avoiding the high variability of real scenarios. The obtained results

sustained the initially proposed hypothesis, where similarities between different simu-

lated routes were correctly identified.

For real scenarios, a dataset was constructed considering the features of crowdsourc-

ing data. However, an annotation protocol was created, to allow the validation of the

progressively obtained results.

Using the acquired data, the final algorithm was developed, and the floor plan and

the fingerprints of a test building were obtained. To achieve this, several steps where

taken. Firstly, the Wi-Fi radio data was clustered using an unsupervised machine learning

technique, which allowed the division of the dataset into similar groups, that represent

small areas of the building. After the processing of the inertial data, where the trajectories

described by the users were inferred, the data was segmented in straight line sections.

Then, the retrieved segments were compared to each other using the magnetic field data

and a time series similarities measure, the WPA, to identify overlaps between different

routes. Next, the floor plan of the building was constructed and filtered, and finally, the

fingerprints were obtained. Although the developed algorithm was tested in an office

building, the created process allows the application of this algorithm in any building.

The results achieved in this thesis show that the developed method has significant

potential to be applied in infrastructure-free IPS. Although some faults have been pointed

out to the obtained floor plans and fingerprints, it is expected that, with a larger dataset,

these problems will disappear.

As a final conclusion, the accomplishments achieved during the development of this

project support the proposed hypothesis, that it is possible to automatise the setup phase

of infrastructure-free IPS, thus extending the range of applications of indoor location,

especially in the AAL scope.

6.2 Future Work

Although the satisfactory results obtained during the development of this thesis, the

created algorithm has some room to improve.

Firstly, the process of adding new routes to the fingerprints should be considered,

where new acquisitions are continuously being received, and the floor plans and finger-

prints are progressively modified. In order to deal with buildings with several floors,

the proposed algorithm should be adapted. For example, by using the variation of atmo-

spheric pressure to detect the transitions between floors, it will be possible to identify the

Wi-Fi clusters of each floor and build with the necessary different maps.

Still regarding this topic, some decisions have to be done, to establish the way the final

solution operates. It is necessary to understand the minimum number of acquired routes
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to start the system, so a preliminary map can be obtained. This number might be low,

where a simple map with the merge of two routes can be initially constructed. However,

in this way, the deployed solution will initially offer a low accuracy, that will be increased

with the introduction of new data to the fingerprints. Contrarily, if the minimum number

of routes is higher, the solution will require an initial acquisition time, where the system

collects the crowdsourced data, but cannot provide the localisation feature. Still, this

setup phase might not be too long, being reduced to a few hours, for example, in a large

building as a hospital, where hundreds of people pass by daily. Thus, some tests have to

be conducted to understand which process is the best, considering the requirements of

each application.

Furthermore, the process of updating the floor plans and fingerprints has to be chosen.

It is necessary to understand which characteristics and behaviours of the upcoming data

will trigger the modification process. For example, the minimum number of new routes

that pass by an unknown area has to be decided, so this new area can be classified as truly

existent, instead of erroneous, and consequently added to the floor plan. On the other

hand, since layout modifications on the building can happen, where previously existent

corridors might be eliminated, it is also important to understand the required time to

eliminate an existing zone of the floor plan.

Besides the tests and decisions regarding the technical features of this system, some

stages of the algorithm can still be improved. The features used in the Wi-Fi radio clus-

tering allowed the obtainment of satisfactory results. However, other features might also

be applied, as well as other unsupervised machine learning algorithms. The data seg-

mentation, which only considers straight line sections, can also be modified, to study the

possibility of using the curves to retrieve useful information. Concerning the comparison

of the magnetic field data, different time series similarities measures can be implemented,

as the DTW, to substitute or confirm the results of the applied WPA. Moreover, new

environmental sources can be added to the system in order to improve its accuracy, as the

ambient sound or the atmospheric pressure.

Finally, after all the decisions have been made, and before the deployment of the de-

veloped solution in any fingerprinting-based IPS, final tests have to be done, with respect

to the performance of the algorithm, as its usability and computational complexity.
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A
Dataset’s Routes Design

This Appendix presents the design of the created routes within the test building. With

several acquisitions of each route, collected by several users using both used smartphones

(Nexus 5 and Nexus 6P), a total of 135 routes were acquired. The following Figures show

the trajectories of routes from HCrowd00 to HCrowd21:

Start

End

HCrowd00

HCrowd02

HCrowd01

HCrowd03

Figure A.1: Design of routes HCrowd00 to HCrowd03 of the dataset. Each route is
represented by a different colour, as it is explained in the Figure’s legend. The green and
red circles express the start and end of each route, respectively.
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Start

End

HCrowd04

HCrowd06

HCrowd05

HCrowd07

Figure A.2: Design of routes HCrowd04 to HCrowd07 of the dataset. Each route is
represented by a different colour, as it is explained in the Figure’s legend. The green and
red circles express the start and end of each route, respectively.

Start

End
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HCrowd10

HCrowd09

HCrowd11

Figure A.3: Design of routes HCrowd08 to HCrowd11 of the dataset. Each route is
represented by a different colour, as it is explained in the Figure’s legend. The green and
red circles express the start and end of each route, respectively.
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Start

End

HCrowd12

HCrowd14

HCrowd13

HCrowd15

Figure A.4: Design of routes HCrowd12 to HCrowd15 of the dataset. Each route is
represented by a different colour, as it is explained in the Figure’s legend. The green and
red circles express the start and end of each route, respectively.

Start

End

HCrowd16

HCrowd18

HCrowd17

HCrowd19

Figure A.5: Design of routes HCrowd16 to HCrowd19 of the dataset. Each route is
represented by a different colour, as it is explained in the Figure’s legend. The green and
red circles express the start and end of each route, respectively.
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Start

End

HCrowd20 HCrowd21

Figure A.6: Design of routes HCrowd20 and HCrowd21 of the dataset. Each route is
represented by a different colour, as it is explained in the Figure’s legend. The green and
red circles express the start and end of each route, respectively.
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B
Retrieved, Interpolated and Original

Fingerprints

This Appendix aims to provide a way of evaluating the results obtained with the devel-

oped algorithm of Chapter 5. This is done through a representation of all the fingerprints

retrieved in several stages of the algorithm, for the collected environmental data, to be

used in any infrastructure-free IPS. For the magnetic field data, the results of the three

axes of the magnetometer are displayed, as well as their magnitude. For the Wi-Fi radio,

the fingerprints of each detected AP in the 2.4 and 5 GHz bands are also shown.

The following Figures are organised in sets three to allow a proper evaluation of

the results. The top Figure of each page identifies the retrieved fingerprints of Section

5.6, after the floor plan construction process. These fingerprints are mapped within the

constrains of the floor plan, since the localisation process will not allow the positioning

in impossible zones.

Then, the corresponding interpolated fingerprints computed in Section 5.7 are dis-

played in the middle Figure, which were used to test the results of the algorithm in a real

scenario. The interpolation of the magnetic field creates fingerprints with a higher reso-

lution of 0.04 m2, to match the requirements of the PIL solution. On the other hand, the

Wi-Fi radio interpolation generates fingerprints with the same resolution of one square

meter, but is done to compute the missing positions, considering the Gaussian decay

pattern of the Wi-Fi signal.

Finally, to visually compare the outcomes of the fingerprint retrieval process to the

traditional method of collection, the original fingerprints are shown in the last Figure

of each page. They correspond to the same axis, AP and radio band of the remaining

fingerprints in the same page.
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Figure B.1: Retrieved geomagnetic fingerprint for the X axis, with the defined resolution
of one square meter. Each colour represents a different magnetic field intensity, as it is
described in the Figure’s scale.
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Figure B.2: Interpolated geomagnetic fingerprint for the X axis, from the values of Figure
B.1, with the new resolution of 0.04 m2. The colours in the Figure’s scale represent the
different magnetic field intensities.
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Figure B.3: Geomagnetic fingerprint for the X axis, collected with the traditional methods.
The resolution of the fingerprint is 0.04 m2. The intensity of the magnetic field in each
cell is represented by a different colour, as it is described in the Figure’s scale.
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Figure B.4: Retrieved geomagnetic fingerprint for the Y axis, with the defined resolution
of one square meter. Each colour represents a different magnetic field intensity, as it is
described in the Figure’s scale.
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Figure B.5: Interpolated geomagnetic fingerprint for the Y axis, from the values of Figure
B.4, with the new resolution of 0.04 m2. The colours in the Figure’s scale represent the
different magnetic field intensities.
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Figure B.6: Geomagnetic fingerprint for the Y axis, collected with the traditional methods.
The resolution of the fingerprint is 0.04 m2. The intensity of the magnetic field in each
cell is represented by a different colour, as it is described in the Figure’s scale.
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Figure B.7: Retrieved geomagnetic fingerprint for the Z axis, with the defined resolution
of one square meter. Each colour represents a different magnetic field intensity, as it is
described in the Figure’s scale.
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Figure B.8: Interpolated geomagnetic fingerprint for the Z axis, from the values of Figure
B.7, with the new resolution of 0.04 m2. The colours in the Figure’s scale represent the
different magnetic field intensities.
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Figure B.9: Geomagnetic fingerprint for the Z axis, collected with the traditional methods.
The resolution of the fingerprint is 0.04 m2. The intensity of the magnetic field in each
cell is represented by a different colour, as it is described in the Figure’s scale.
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Figure B.10: Retrieved geomagnetic fingerprint for the magnitude of all axes. The finger-
print has a resolution of one square meter. Each colour represents a different magnetic
field intensity, as it is described in the Figure’s scale.
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Figure B.11: Interpolated geomagnetic fingerprint for the magnitude of all axes, from the
values of Figure B.10, with the new resolution of 0.04 m2. The colours in the Figure’s
scale represent the different magnetic field intensities.
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Figure B.12: Geomagnetic fingerprint for the magnitude of all axes, collected with the
traditional methods. The resolution of the fingerprints is of 0.04 m2. The intensity of the
magnetic field in each cell is represented by a different colour, as it is described in the
Figure’s scale.
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Figure B.13: Obtained Wi-Fi radio fingerprint for the AP 84:b8:02:fc:12:9 of the test
building, with the signal transmitted in the 2.4 GHz radio band. The fingerprint has a
resolution of one square meter, where the colour of each cell identifies a different strength,
as it is given by the Figure’s scale.
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Figure B.14: Interpolated Wi-Fi radio fingerprint for the AP 84:b8:02:fc:12:9 in the 2.4
GHz radio band, from the values of Figure B.13. The fingerprint has a resolution of one
square meter and the colours in the Figure’s scale represent the different strengths.
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Figure B.15: Wi-Fi radio fingerprint for the AP 84:b8:02:fc:12:9 in the 2.4 GHz radio band,
collected with the traditional methods. The resolution of the fingerprint is one square
meter. The strength of the Wi-Fi radio in each cell is represented by a different colour, as
it is described in the Figure’s scale.
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Figure B.16: Obtained Wi-Fi radio fingerprint for the AP 84:b8:02:fc:12:9 in the 5 GHz
radio band. The fingerprint has a resolution of one square meter, where the colour of
each cell identifies a different strength, as it is given by the Figure’s scale.
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Figure B.17: Interpolated Wi-Fi radio fingerprint for the AP 84:b8:02:fc:12:9 in the 5 GHz
radio band, from the values of Figure B.16. The fingerprint has a resolution of one square
meter and the colours in the Figure’s scale represent the different strengths.
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Figure B.18: Wi-Fi radio fingerprint for the AP 84:b8:02:fc:12:9 in the 5 GHz radio band,
collected with the traditional methods. The resolution of the fingerprint is one square
meter. The strength of the Wi-Fi radio in each cell is represented by a different colour, as
it is described in the Figure’s scale.
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Figure B.19: Obtained Wi-Fi radio fingerprint for the AP 28:6f:7f:0c:66:1 in the 2.4 GHz
radio band. The fingerprint has a resolution of one square meter, where the colour of
each cell identifies a different strength, as it is given by the Figure’s scale.
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Figure B.20: Interpolated Wi-Fi radio fingerprint for the AP 28:6f:7f:0c:66:1 in the 2.4
GHz radio band, from the values of Figure B.19. The fingerprint has a resolution of one
square meter and the colours in the Figure’s scale represent the different strengths.
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Figure B.21: Wi-Fi radio fingerprint for the AP 28:6f:7f:0c:66:1 in the 2.4 GHz radio band,
collected with the traditional methods. The resolution of the fingerprint is one square
meter. The strength of the Wi-Fi radio in each cell is represented by a different colour, as
it is described in the Figure’s scale.
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Figure B.22: Obtained Wi-Fi radio fingerprint for the AP 28:6f:7f:0c:66:1 in the 5 GHz
radio band. The fingerprint has a resolution of one square meter, where the colour of
each cell identifies a different strength, as it is given by the Figure’s scale.
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Figure B.23: Interpolated Wi-Fi radio fingerprint for the AP 28:6f:7f:0c:66:1 in the 5 GHz
radio band, from the values of Figure B.22. The fingerprint has a resolution of one square
meter and the colours in the Figure’s scale represent the different strengths.
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Figure B.24: Wi-Fi radio fingerprint for the AP 28:6f:7f:0c:66:1 in the 5 GHz radio band,
collected with the traditional methods. The resolution of the fingerprint is one square
meter. The strength of the Wi-Fi radio in each cell is represented by a different colour, as
it is described in the Figure’s scale.
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Figure B.25: Obtained Wi-Fi radio fingerprint for the AP 44:e4:d9:3e:f8:4 in the 2.4 GHz
radio band. The fingerprint has a resolution of one square meter, where the colour of
each cell identifies a different strength, as it is given by the Figure’s scale.
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Figure B.26: Interpolated Wi-Fi radio fingerprint for the AP 44:e4:d9:3e:f8:4 in the 2.4
GHz radio band, from the values of Figure B.25. The fingerprint has a resolution of one
square meter and the colours in the Figure’s scale represent the different strengths.
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Figure B.27: Wi-Fi radio fingerprint for the AP 44:e4:d9:3e:f8:4 in the 2.4 GHz radio band,
collected with the traditional methods. The resolution of the fingerprint is one square
meter. The strength of the Wi-Fi radio in each cell is represented by a different colour, as
it is described in the Figure’s scale.
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Figure B.28: Obtained Wi-Fi radio fingerprint for the AP a8:9d:21:98:13:8 in the 2.4 GHz
radio band. The fingerprint has a resolution of one square meter, where the colour of
each cell identifies a different strength, as it is given by the Figure’s scale.
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Figure B.29: Interpolated Wi-Fi radio fingerprint for the AP a8:9d:21:98:13:8 in the 2.4
GHz radio band, from the values of Figure B.28. The fingerprint has a resolution of one
square meter and the colours in the Figure’s scale represent the different strengths.
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Figure B.30: Wi-Fi radio fingerprint for the AP a8:9d:21:98:13:8 in the 2.4 GHz radio
band, collected with the traditional methods. The resolution of the fingerprint is one
square meter. The strength of the Wi-Fi radio in each cell is represented by a different
colour, as it is described in the Figure’s scale.
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Figure B.31: Obtained Wi-Fi radio fingerprint for the AP f4:cf:e2:4f:9d:0 in the 2.4 GHz
radio band. The fingerprint has a resolution of one square meter, where the colour of
each cell identifies a different strength, as it is given by the Figure’s scale.
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Figure B.32: Interpolated Wi-Fi radio fingerprint for the AP f4:cf:e2:4f:9d:0 in the 2.4
GHz radio band, from the values of Figure B.31. The fingerprint has a resolution of one
square meter and the colours in the Figure’s scale represent the different strengths.
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Figure B.33: Wi-Fi radio fingerprint for the AP f4:cf:e2:4f:9d:0 in the 2.4 GHz radio band,
collected with the traditional methods. The resolution of the fingerprint is one square
meter. The strength of the Wi-Fi radio in each cell is represented by a different colour, as
it is described in the Figure’s scale.
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