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ABSTRACT: 

As the scope of location-based applications and services 
further reach into our everyday lives, the demand for 
more robust and reliable positioning becomes ever more 
important. However indoor positioning has never been a 
fully resolved issue due to its complexity and necessity to 
adapt to different situations and environment. Inertial 
sensor and Wi-Fi signal integrated indoor positioning 
have become good solutions to overcome many of the 
problems. Yet there are still problems such as inertial 
heading drift, wireless signal fluctuation and the time 
required for training a Wi-Fi fingerprint database. The 
collaborative Wi-Fi fingerprint training (cWiDB) method 
proposed in this paper enables the system to perform 
inertial measurement based collaborative positioning or 
Wi-Fi fingerprinting alternatively according to the current 
situation. It also reduces the time required for training the 
fingerprint database. Different database training methods 
and different training data size are compared to 
demonstrate the time and data required for generating a 
reasonable database. Finally the fingerprint positioning 
result is compared which indicates that the cWiDB is able 
to achieve the same positioning accuracy as conventional 
training methods but with less training time and a data 
adjustment option enabled.  

KEYWORD: collaborative positioning, indoor 
positioning, Wi-Fi fingerprint, SLAM 

 

1. INTRODUCTION 

With the advancement in smartphone technologies 
nowadays, location based services (LBS) are no longer 
just a trendy fashion of future fantasies. As LBS 
applications expand from military and government 
departments into commercial and normal everyday lives, 
the positioning and navigation coverage also moves 
gradually into more complicated environments and out of 
the working range of conventional Global Navigation 
Satellite Systems (GNSS). Over the years, different 
signals and methods have been be explored to achieve 
robust positioning in diverse environments [1-2]. Low 
cost inertial sensors, i.e. the accelerometers within 
smartphones, are handy gadgets to provide basic 
acceleration and heading data for pedestrian dead 
reckoning (PDR) navigation. Wireless network signal 

based positioning, such as Wi-Fi fingerprinting, have 
become widely applied in indoor positioning due to the 
high availability of Wi-Fi signals in urban environments 
[3-4].  

A common problem with inertial navigation systems 
(INS) is the severe gyro drift that becomes increasingly 
obvious as time increases. Therefore a correction is 
usually applied [5-6]. On the other hand, Wi-Fi based 
positioning accuracy is not time related. However 
wireless signals can be unstable due to hardware and 
environmental influence, which causes inaccuracy in 
positioning [7]. A popular positioning method based on 
Wi-Fi signals is the Wi-Fi fingerprinting method, which 
provides positioning based on received signal strength 
(RSS) patterns in designated areas [8-9]. The user is 
required to train a database during the offline phase by 
collecting RSS from wireless access points (AP) in a 
number of selected locations known as fingerprints. 
During the positioning phase, the user compares the 
observed RSS to the pre-trained fingerprints for 
positioning estimation. The positioning accuracy relies on 
the applied positioning algorithm as well as the accuracy 
and up-to-date details of the fingerprint database. 
Therefore, in order to achieve accurate positioning, 
training for the database can be very time consuming. On 
the other hand, this method is inconvenient for a new 
environment or an environment where internal layout or 
AP locations may change frequently [9-10].  

To reduce the time and human labour required for 
database training, Wi-Fi Simultaneous localisation and 
mapping (SLAM) has been applied [11-12] to enable a 
quicker way of learning the signal pattern around a new 
environment based on inertial measurements and building 
information. SLAM was originally applied in robotic 
navigation where robots learn the relative environmental 
features during navigation and enable quicker and more 
accurate positioning as the process carries on [13]. It 
allows the system to navigate in a new environment with 
no a prior knowledge of the environment. Features could 
also be learned with respect to maps when available. 
SLAM has also been applied to learn other features of the 
building for improved navigation solutions [14]. 

Whether positioning based on fingerprinting or Wi-Fi 
SLAM, it is vital that the positions associated with the 
fingerprints are accurate. Otherwise, the positioning 
solution could only become more and more biased. 
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Collaborative positioning improves user positioning 
accuracy and reliability by applying network constraints 
when the user has no prior knowledge of the signal 
fingerprints. A number of nearby users may form a 
network and the ranging measurements are measured 
between each user of the network. Corrections are applied 
to adjust each user position until they all obey the relative 
ranging constraint [15].  

A SLAM-like collaborative Wi-Fi fingerprint database 
training (cWiDB) approach is introduced in this paper to 
enable a quicker and more accurate collection of RSS 
fingerprints.  A network of mobile users that are in the 
same indoor environment achieves position estimations 
through pedestrian dead reckoning (PDR) measurements 
obtained from mobile devices. The PDR solutions of the 
users are constrained by relative ranging measurements 
among each other, which reduce the inertial measurement 
errors and biases, improving the positioning accuracy 
significantly as introduced in [16]. Meanwhile, each user 
collects Wi-Fi RSS and stores the measurement with the 
positioning estimation. A Gaussian Process (GP) 
regression [17] is carried out at certain epochs to generate 
fingerprints for the whole indoor environment based on 
the collected data. The collaborative positioning enhances 
positioning accuracy in a complicated environment thus 
can provide the positions for fingerprint training. 
Moreover, positioning robustness and flexibility is 
improved significantly, while users have the option of 
performing PDR, collaborative ranging or Wi-Fi based 
positioning based on available sensors and number of 
users.  

This paper firstly introduces a Wi-Fi fingerprint 
training method through collaborative positioning. This is 
compared to a database ground truth to analyse how much 
data is needed for dynamic training. Various different 
training data is compared to verify the improvement   
collaborative positioning and Wi-Fi data collection is 
proposed to enable quicker data collection and reduce 
database training time. Finally, the positioning results 
based on the generated database are compared for analysis 
on the required amount of data for efficient database 
training. 

2. WI-FI INDOOR POSITIONING  

2.1 Wi-Fi positioning methods 

Wireless network based positioning generally relies on 
two different methods: multi-lateration and scene analysis. 
Lateration requires the user to achieve ranging 
estimations from the receiver to multiple signal 
transmitters based on the signal strength path loss model,  

ோܲ௑ሺ݀ሻ ൌ ௗܲ଴ െ ͳͲ݊    ଵ଴ ݀ ൅ ܽ ܨܣܹכ ൅  (1) ߝ

where  ୢ ଴ is the RSS at a reference distance, usually 1m 
away from the transmitter, ݊ is the space loss factor 
which varies in different environments,     is the wall 
attenuation factor and ܽ is the number of obstructions in 
between the receiver and transmitter,  ɂ is a zero mean 
normally distributed noise. The position of the receiver is 

calculated based on the distance and angle between the 
transmitters and the receiver. Due to interference, 
multipath and obstruction inside buildings, wireless 
signals tend to be quite noisy. The actual observation  ෩ୖ ଡ଼ሺ ሻ  and the estimated  ෡ୖ ଡ଼ሺ ሻ  from the model can 
differ more than 20dB which could lead to errors up to ten 
metres. This in result reduces the multi-lateration 
positioning accuracy, especially in an indoor environment.  

A typical scene analysis method is the fingerprinting 
method, which consists of two steps. The first step is the 
training phase, where someone must select a number of 
training points within the area of interest and collect the 
actual signal strength  ෩ୖ ଡ଼ሺ ሻ from all of the transmitters 
or access points (AP) which forms a signal pattern of the 
specific location. This not only takes into account the 
distance between the current location and the AP, but also 
the obstruction and interference in between, hence is 
unique for each location. These RSS patterns which 
indicate a specific location or area of the building are 
known as fingerprints and stored into a database. During 
the positioning phase, the user obtains the current set of 
RSS readings at the location that needs to be positioned 
and compare it with the fingerprints in the database. 
Usually the location of k fingerprints with the closest RSS 
to the current RSS, known as k-nearest neighbours (kNN), 
is obtained to estimate the current position.  

Fingerprinting is able to take into account the fact that 
signals can be interfered by walls and furniture. As long 
as the affecting factor remains the same, the signal pattern 
will remain relatively stable. In fact, the uniqueness of 
fingerprints gives credit to the varying signal pattern 
produced by the disturbance from walls etc. Therefore, 
fingerprinting usually achieves better positioning 
performance. The biggest problem with fingerprinting is 
that training for the database requires a huge amount of 
human labour, which increases the risk of human error 
and also time cost. Moreover, the database needs to be re-
trained and updated each time the infrastructure changes 
to maintain a valid database for positioning.  

The collaborative training method discussed in this 
paper greatly reduces the training time and human effort 
by integrating the training data from multiple users at 
different locations and different training time. The 
fingerprint database for the building is then generated 
based on the training data using Gaussian Process (GP) 
regression. This enables a quick and efficient way of 
training the fingerprint database, which is also much 
easier to maintain and update.  

2.2 Training the fingerprint database 

Usually, the database is trained by selecting a number 
of locations, known as training points (TPs), which covers 
the entire area of interest. The user would put a data 
collection device, e.g. laptop, mobile phones etc., at each 
TP and collect a series of RSS vectors from each AP in 
the building. A large number of RSS should be collected 
at each location to gather enough information on the 
variance and stability of the signal from each AP over 



time. Each fingerprint vector is structured as ሼሺݔ௡ǡ ௡ሻȁܴܵܵ௡ଵǡݕ ௡ଵǡߪ ܣ ଵܲǡ ǥ ǡ ܴܵܵ௡௠ǡ ௡௠ǡߪ ܣ ௠ܲሽ . ሺݔ௡ǡ  ௡ሻis the position of the nth TP, ܴܵܵ௡௠is the meanݕ
RSS of the mth AP at the nth TP, ߪ௡௠  is the standard 
deviation of the mth AP at nth TP,  ܣ ௠ܲ  is the unique 
identification of the AP, usually the MAC address. The 
uniqueness of the fingerprint is enhanced by the number 
of APs found and the amount of RSS collected.  

Fingerprint-based positioning is achieved by searching 
through the database and finding the location that is most 
similar to the current RSS vector. Thus to achieve more 
accurate positioning results, the fingerprints should cover 
the floor plan in more detail, i.e. the more TPs the better. 
However, no matter how much TPs are selected, it is 
almost impossible to precisely cover the entire floor plan. 
A common way of selecting TPs is to divide the area into 
evenly distributed square grids. The RSS data is collected 
within each grid and assume that the RSS remains the 
same within the grid. Typical grid sizes are 1m×1m, 
2m×2m [18]. Smaller grids ensure a more detailed 
database. However it will also be more time consuming.  

A way of making up the data loss due to large grid 
size is to select sparse TPs and then generate the RSS at 
denser grid sizes by applying Gaussian Process (GP) as 
described in [12]. This is valid based on the assumption 
that the RSS from a certain AP is spatially correlated 
within a certain distance according to the path loss model.  

If ሼ ǡ ௜ݕ ሽ are samples drawn from a noisy processݕ ൌ ݂ሺ ௜ሻ ൅  (2)    ߝ

where each ݔ௜  is an input sample and ݕ௜ is the target or 
observation value, ߝ  is assumed to be a zero mean 
normally distributed noise. Gaussian process estimates the 
posterior distributions over functions f from the training 
data which is specified by a mean function ݉ሺݔሻ and a 
covariance function, or kernel ݇ሺݔǡ  ᇱሻ. This is specifiedݔ
by the kernel which describes the correlation between two 
input values ݔ௣ andݔ௤ . In this paper, the squared 
exponential kernel is applied, ݇൫ ௣ǡ  ௤൯ ൌ ௙ଶ    ሺെߪ ଵଶ௟మ ห ௣ െ  ௤หଶሻ (3) 

where ߪ௙ଶ  is the signal variance, ݈  is a length scale that 
defines the strength of correlation over a distance. The 
covariance function for observations is defined as    ሺ ሻ ൌ  ൅  (4)  ܫ௡ଶߪ

where ߪ௡ଶ  is the Gaussian observation noise, K is the ݊ ൈ ݊ covariance matrix of the input values thus   ሺ௜ǡ௝ሻ ൌ݇ሺ ௜ ǡ  ௝ሻ. The RSS observations and their locations are 
input into the system to train for the hyperparameters ߠ ൌ ௡ଶǡߪۃ ݈ǡ  which define the functions based on the ۄ௙ଶߪ
training data. Theses parameters are then used to predict 
RSS for other locations in the building during the 
prediction process based on the predicative distribution ݌ሺכݕȁ כǡ  ǡ  ሻ ൌ ǡכ ሻȁכ ሺ݂ሺ݌ሻሻכ ȁ݂ሺכݕሺ݌׬  ǡ  ሻ ݂ሺ כሻ (5) 

The locations of the TPs are input as   while the RSS 
are the target values  . The building is divided into 
1m×1m grids are included in  כ and the RSS at each 
location כݕ  is predicated based on the trained functions. 
The covariance of the predicted function is given by the 
covariance function.   

3. METHODOLOGY 

3.1 Database structure 

Wi-Fi SLAM builds a relationship between the RSS of 
the mobile receiver and its estimated location. The signal 
measurement noise is assumed to be normally distributed 
and independent. The receiver scans for the Wi-Fi RSS 
while moving in the area of interest and associate this 
data with the location that it was collected. The 
collaborative training method is a SLAM-like method 
which performs positioning and trains the Wi-Fi 
fingerprints simultaneously through multiple users.    

The fingerprint positioning solution is achieved by 
comparing the current RSS from available APs at an 
unknown location to the fingerprints in the database. 
Therefore, whether the fingerprints can accurately reflect 
its position is vitally important. As described in Section 
2.2, the fingerprint structure typically consists of a 
reference location and the RSS from each AP at the 
location. Signal strength fluctuation means that the signal 
strength could vary over a range of 5dB to 10dB or even 
more at any single location when the equipment is static. 
Thus one single RSS is barely sufficient to act as a precise 
location indicator.  

For gather a general idea of how much signal 
fluctuation to expect at a specific location, the training 
time should extend over ten minutes or even hours and 
days. This increases the time and labour cost. Training for 
the database collaboratively and during a positioning 
phase saves a huge amount of time and effort. However it 
does means that only one RSS will be collected at a 
specific location, or a scatter of RSS within a small area. 
Therefore the generated fingerprints will take the form of 
the basic structure without the signal fluctuation indicator ߪ௡௠. Although this could mean that less information is 
provided as a positioning indicator initially, but further 
data accumulates quickly as training is operated 
collaboratively.  

3.2 Collaborative training 

Training for the fingerprint database is a very time 
consuming task and has to be redone to maintain 
positioning reliability when changes have taken place. 
The collaborative Wi-Fi fingerprint training method is 
introduced to reduce the training effort by integrating the 
information collected by a number of users into one 
system. This method firstly relies on the collaborative 
positioning among a number of mobile users to produce 
the reference positions for the RSS fingerprints. 
Fingerprints record the estimated position of the actual 



RSS, the MAC address of each visible AP and the 
corresponding RSS. 

The collaborative positioning algorithm is constrains 
the measurement error by applying a relative ranging 
constraint. Each user in the collaborative network 
propagates forward based on the PDR prediction model as 
in Eq.(6).  ൤ ො୩ ො୩൨ ൌ ቈ ො୩ିଵ ൅  ොሺ୲ȁ୲ିଵሻ    Ʌ෠ሺ୲ȁ୲ିଵሻ ො୩ିଵ ൅  ොሺ୲ȁ୲ିଵሻ    Ʌ෠ሺ୲ȁ୲ିଵሻ቉  (6) 

where ሺ ො୩ିଵǡ  ො୩ିଵሻ is the user position at time k,  ොሺ୲ȁ୲ିଵሻ is 
the step length estimation between time k-1 and k, Ʌ෠ሺ୲ȁ୲ିଵሻ 
is the heading estimation during the step. Ranging 
estimations between users are obtained from other 
wireless signals and applied as a constraint to eliminate 
the inertial measurement error. The position estimation of 
each user within the network will be forced to a relative 
geometry which fits the ranging estimation. This in result 
increases the positioning accuracy and serves as the 
estimated position of the measured RSS.  

The cWiDB method gathers the Wi-Fi RSS data from 
during the collaborative positioning process and stores the 
fingerprint data as training data. When a descent amount 
of training data have been collected to cover a certain area, 
the data is used to generate a fingerprint database for the 
area of interest. The GP output mean will be used as the 
fingerprint RSS for each location.  

3.3.1 Fingerprint combination 

The ranging measurement builds a link here between 
the collected RSS data. The training data from the users 
can be combined and applied in three different ways.  

If the distance between the two users is above a 
separation threshold, it would be regarded that the users 
are not in the same area of interest. Their training data 
would be stored separately and used to generate 
individual database.  

If their distance is within the separation threshold but 
above the integration threshold, their training data would 
be considered to be within the same area of interest. It 
would then be applied to generate a single database.  

If the any of the collected training data distance is 
within the integration threshold, they would be regarded 
as correlated and adjusted to form one fingerprint for the 
database.   

3.3.2 Fingerprint confidence factor 

The standard deviations of all history training data that 
are within the integration thresholdߪ௡௠  is obtained 
periodically and acts as a confidence indicator for the 
fingerprints in the location. If the training data for any 
location appears to continuously differ from historical 
data and ߪ௡௠ remains a high value, it is considered that 
the Wi-Fi properties at that location have changed. 
Previous fingerprints will no longer be reliable and valid 
information for positioning, hence replaced by new 
fingerprints generated from new training data.  

As the users are spread out in various locations within 
the area, the fingerprint database can be generated fairly 
quickly. The confidence factor for old fingerprints will be 
updated based on new data. The procedure is shown as 
below in Figure 1.  

User1: Obtain 

position estimation 

and collect Wi-Fi RSS 

User n: Obtain 

position estimation 

and collect Wi-Fi RSS 

Is the distance within 

certain threshold?

Dis > threshold
Separ. Thre> Dis > integ. 

thre
Dis < Separ.Thres

Generate separate 

FPDB

Generate single 

FPDB

Generate Confidence 

indicator ʍ 

Combine and update

Updated FPDB

...

 
Figure 1 Flowchart for generating a database  

4. TRIALS AND RESULTS  

4.1 Conventional database 

To understand the required density and location setup 
of the training data to generate an accurate fingerprint 
database, different training methods are compared. The 
same Toshiba laptop, where the wireless adapter is Intel® 
Centrino® Advanced-N 6200, is used throughout the 
trials. Four APs are located on Floor A of NGB, each 
transmitting signals at both the 2.4GHz and 5GHz 
frequency. As the signal characteristics are different on 
each frequency, thus the two different frequency signals 
will be treated separately. Hence a full database consists 8 
MAC address groups, each denoted as AP1a (2.4GHz), 
AP1b (5GHz), AP2a, AP2b, AP3a, AP3b, AP4a and 
AP4b respectively, as indicated in Figure 2.  

First of all, the conventional static training method is 
applied to establish a ground truth for the fingerprint 
database. These TPs are combined of two groups. The 
first group of 56 TPs are selected to cover the entire 
accessible areas in the Nottingham Geospatial Building 
(NGB) Floor A, which is around two TPs in a small office 
room and four to six TPs in a large room. The second 
group of 56 TPs in located in two specific rooms where 
one room represents an average meeting room with no 
obstruction and the other a heavily obstructed store room 
with metal shelves. The density of these TPs is 1m×1m, 
which is very detailed. During training, a laptop is placed 



at each location to collect the Wi-Fi RSS data for around 
fifteen to thirty minutes until at least 100 vectors from 
each of the four APs on Floor A are collected. The mean 
and standard deviation of all the collected RSS for each 
AP at each location is obtained and stored into the 
database. GP is then applied based on the training data to 
generate a denser database. The resulting database will be 
referred to as the static GP fingerprint database, denoted 
as sDB. This is the best possible solution for fingerprint 
database training as it covers the entire training area in 
detail but it is also very time consuming. Training for the 
112 points requires almost five days. The selected TPs are 
shown in Figure 2 and the generated database for the 
2.4GHz signal is shown in Figure 3. 

 
Figure 2 TPs for static DB 

 

(a) AP1a  (b) AP2a 

 

(c) AP3a  (d) AP4a 

Figure 3 GPDB (sDB)  

To verify how different the GP fingerprints are 
compared to the training RSS, the RSS at each TP is 
compared to the GP generated database fingerprints at 
various distances from the TP, i.e. from 1m up to 6m. 3 
sets of values are listed in Table 1. We can see here that 
when the GP generated RSS is not over a distance limit 
from the TP location, the RSS is only slightly different 
from training data. Thus there is no need for 1m by 1m 
training. However, when the distance between the TP and 
the fingerprint is over 6m, the RSS difference does not 
increase. It actually remains the same level or even 
reduces slightly, which does not mean that a TP data can 
be used to generate fingerprints that are 10m away. It 

simply indicates that there is no correlation due to such a 
long distance.   

Table 1 RSS Difference of TP and sDB (dB) 

m 
AP1 AP2 AP3 AP4 

ȟRSS ɐ ȟRSS ɐ ȟRSS ɐ ȟRSS ɐ 

1 3.47 4.52 1.90 2.46 2.61 3.57 12.94 7.83 

3 3.62 4.67 4.26 5.67 2.83 3.91 13.13 8.74 

6 4.74 5.79 5.36 6.90 4.64 5.94 13.54 9.55 

To examine the training quality based on different TP 
density in different environments, the TPs from the first 
group that lie in the two rooms mentioned above are 
extracted to generate a database for each room 
respectively.  The training density for the first group is 4, 
i.e. 4TPs in a single room. The second group of TP 
density for the two rooms, R1 and R2, are 24 and 32 
respectively. A second set of database is generated for 
each room based on the second group of TP. Table 2 lists 
the RSS difference between the first database and second 
database. Results show that for R1, which is the non-
obstruction room, TP density does not affect the database 
quality too much. Therefore, less TP is required. The 
database quality for R2 is much worse due to obstructions 
inside the room. However, the databases for 5GHz signal 
give better performance in such cases. 

Table 2 RSS Difference of different density (dB) 

 
AP1 AP2 AP3 AP4 

a b a b a b a b 

R1 2.65 2.12 3.19 2.78 1.77 3.34 8.92 2.97 

R2 10.94 3.77 8.00 7.65 17.68 12.62 8.16 5.89 

4.2 Building the fingerprints 

The dynamic training method is applied here, which is 
part of the collaborative training. Three different 
trajectories, denoted as T1, T2, T3 and T4, of varying 
length and locations within NGB Floor A are chosen as 
the training trajectory where training data will be 
collected during the collaborative positioning phase. 
Users follow each of the different routes and collect RSS 
data using a laptop respectively. GP is then applied to 
generate a fingerprint database based on the training data, 
which will be referred to as the dynamic database (dDB), 
denoted as dDB1a, dDB1b, dDB2 and dDB3 respectively. 
For experimental purposes, the training data will always 
be within the separation threshold. Thus they can be 
applied to generate one database. 

The RSS difference between the data from the 
dynamic TPs and those static TPs from Section 4.1 that 
are within a certain distance are listed in Table 3. As 
signal acquisition is less stable while the receiver is 
moving and more disturbance occurs from the collecting 
person himself, therefore it can be anticipated that the 



dynamic training data is noisier. The RSS difference is 
within 15dB up to 3m between the TPs, which is within 
the RSS fluctuation range itself. Again, once the distance 
is over 4m, the variance drops and correlation fails.  

Table 3 RSS Difference between dynamic and static TPs (dB) 

 1m 2m 3m 4m 

ǻRSS 9.85 12.55 13.39 19.36 

ı 10.61 10.49 15.91 8.58 

Figure 4 show the four different training trajectories 
where data is collected in 2-3 second intervals along the 
path and the colours specify the RSS of the collected data. 
Red indicates high RSS (highest is -30dB) and blue 
indicates low RSS (lowest -100dB). 

  
(a) dDB1a AP1a   AP1b 

  
(b) dDB1b AP1a    AP1b   

  
(c) dDB2 AP1a   AP1b 

   

(d) dDB3 AP1a   AP1b  

Figure 4 Training data from AP1 for all dDB 

Due to signal fluctuation, the RSS from one single AP 
is always a random value that lies within a range when 
collected at a static point. This is the reason why 
conventional training requires the receiver to collect RSS 
data over a long period of time and record the standard 
deviation. However in dynamic training, only one RSS 
data can be collected at each location. The final database 

could be biased if the RSS fluctuation range is not taken 
into account. Another problem in dynamic training is that 
some of the signals from certain APs are very weak and 
unstable at some locations, hence no data is collected 
during dynamic training, resulting in a fingerprint vector 
such as ሼሺݔ௡ǡ ௡ሻȁܴܵܵ௡ଵǡݕ ௡ଵǡߪ ܣ ଵܲǡ ǡ݈݈ݑܰ ܣ ଶܲǡ ǥ ǡ ǡ݈݈ݑܰ ܣ ௠ܲሽ  . 
These empty RSS vectors are set to -100dB. A large 
amount of empty data at a certain location indicates 
unstable signal which is usually because the AP is too far 
away or too much disturbance in between, thus should 
best be ignored in positioning. However, from the training 
data, we can see that 5GHz signals reflect more accurately 
the signal strength throughout the building with respect to 
the AP. On the other hand, the RSS from AP(a) is much 
more noisier and can be misleading in reflecting the 
locations. The training data for DB3 from AP1a in one of 
the rooms varied as much as 30dB, as shown in Figure 
4(d).  

Figure 5 shows the RSS difference between dDB1a 
and sDB of AP1 and AP3. Areas that are not covered by 
dynamic training data can be ignored. We can still see 
that signal fluctuation and other disturbances cause the 
RSS to differ and especially in the area near the AP. The 
difference between the 5GHz signal database is also 
smaller 

  

(a) AP1a   (b) AP1b 

  

(c) AP3a   (d) AP3b 

Figure 5 RSS Difference between DB and sDB for dDB1a 

To improve the data quality of dDB, the training data 
from different paths are integrated collaboratively to 
generate one database. This enables the combination of 
data collected at different locations and also at different 
times, denoted as cDB. cDB generates database from 
more sufficient data and longer time span. This in result 
captures the RSS fluctuation and environment 
disturbances. 

Collaborative training greatly extends the training data 
coverage, such as combining the training data of DB1a 
and DB1b. It also increases the RSS data for a small area 
of interest. Instead of computing the standard deviation of 
the RSS at one single TP as in the conventional method, a 
cluster of RSS data within the integration threshold is 



regarded to reflect one common location. Therefore, as 
more collaborative training data is collected, more RSS 
can be found that are within the integration threshold. 
This information can then be used to derive the 
confidence indicator for specific locations.   

4.3 Database results 

To analyse the training quality of the dynamic 
database, the RSS difference between dDB and sDB as 
well as cDB and sDB is compared. First of all, the 
fingerprint locations and RSS that are covered by training 
points are extracted. In regards to Figure 5, the RSS 
difference for all APs between each dDB and sDB is 
listed in Table 4.   

Table 4 RSS Difference between dDB and sDB (dB) 

 

dDB1a dDB1b dDB2 dDB3 

ȟRS

S 
ɐ 

ȟRS

S 
ɐ 

ȟRS

S 
ɐ 

ȟRS

S 
ɐ 

1 
a 6.60 5.01 8.04 5.28 

10.2

9 
5.26 

12.8

5 
10.8

1 

b 5.60 3.88 9.22 6.33 4.59 3.44 4.99 4.70 

2 

a 4.02 3.26 4.97 4.54 7.42 6.25 6.64 7.64 

b 9.62 8.68 8.40 6.45 
16.4

1 
9.52 8.28 6.91 

3 
a 7.67 5.76 7.36 4.81 9.22 6.32 8.67 8.21 

b 9.52 7.53 9.68 8.90 6.88 5.17 7.07 6.21 

4 
a 5.49 3.33 

14.3

9 
8.99 8.51 6.07 

15.9

7 
8.18 

b 7.20 5.14 7.71 5.13 4.28 3.35 5.24 4.07 

Each dDB lies within the separation threshold 
therefore can be combined to generate one database. The 
training data for dDB1a and dDB1b are combined to 
generate cDB1; dDB1 and dDB2 are combined to generate 
cDB2; dDB1, dDB2 and dDB3 are combined to generate 
cDB3.  

Table 5 lists the mean RSS difference between each 
cDB and sDB. The overall RSS difference is reduced 
when the training data from different path are combined.  

Table 5 RSS Difference between cDB and sDB 

 cDB1 cDB2 cDB3 

ȟRSS ɐ ȟRSS ɐ ȟRSS ɐ 

1 
a 5.75 6.15 8.45 6.38 3.50 7.89 

b 5.48 3.77 4.88 4.23 2.93 4.63 

2 
a 4.70 3.94 5.30 4.59 1.53 6.52 

b 11.01 7.98 8.18 6.96 5.63 6.65 

3 
a 7.39 5.42 7.19 7.47 5.25 6.36 

b 3.98 6.27 6.06 4.70 1.67 4.74 

4 
a 4.55 3.27 5.30 3.22 7.26 6.43 

b 5.70 2.87 6.45 4.74 5.89 4.81 

As an example, Figure 6 shows the RSS difference 
between DB1a, DB1b and sDB, as well as the RSS 

difference of the combine database cDB1 and sDB. 
Combining the training data extends the fingerprint 
coverage and produces overall fingerprints that agree 
better with the ground truth.  

 

(a) DB1a and sDB (b) DB1b and sDB 

 (c) cDB1 and sDB 

Figure 6 RSS Difference between dDB and sDB 

However, users in the collaborative network may 
come across each other and the collected training data 
sometimes lie within the integration threshold. This may 
happen at the same time when two users are very close to 
each other, or at different times when a user enter an area 
where previous data has already been collected by another 
user. These data can be integrated to update the database 
with a confidence factor based on how much variance is 
seen in the data. If the data are collected within a short 
period, the variance will be regarded as signal fluctuation. 
However, if the timespan lengthens and the RSS 
difference between new data and history data remains a 
high level, the system should consider discarding the old 
data and update the database with new data only. As an 
example, the training data for dDB3 for collected in two 
parts. Part1 consists of data collected in the first round in 
the building and part2 is the collected in the second round. 
RSS variance can already by identified between the two 
part data.  

 
(a) dDB3 part1 and sDB (b) dDB3 part2 and sDB 

(c) d- DB3 and sDB 

Figure 7 RSS Difference between dDB3 Parts and sDB (AP4a) 



Figure 7(a) and (b) shows the RSS difference between 
the fingerprint database that was generated from each part 
of the training data and the ground truth. In Figure 7(c), 
the RSS difference is reduced as the two part training data 
is combined. The difference for data from each AP is 
listed in Table 6. The difference between the fingerprints 
generated from the two parts is also listed. A smaller 
difference between the two parts results in a better result 
when the two part data is integrated.  

Table 6 RSS Difference between dDB3 parts and sDB (dB) 

 p2-p1 p1 p2 dDB3 

AP1 
a 12.20 12.22 18.23 12.85 

b 5.56 5.70 6.68 4.99 

AP2 
a 4.59 4.50 19.24 6.64 

b 11.61 9.16 9.64 8.28 

AP3 
a 15.04 13.35 13.11 8.67 

b 9.90 9.40 6.81 7.07 

AP4 
a 10.40 18.79 16.60 15.97 

b 4.76 6.24 6.09 5.24 

4.4 Fingerprint positioning 

Fingerprint based positioning estimates the user 
position by finding the fingerprint location whose RSS 
vector matches best with the current user RSS readings. 
In a scenario where users enter an unfamiliar environment 
fingerprinting cannot be used as no prior Wi-Fi 
fingerprints are available. However nearby users can be 
found to share their location and relative ranging 
information.   

The coarse position of each user in the same 
environment is estimated based on the inertial 
measurements, which are obtained from a low-cost 
inertial sensor. These users may then form a network and 
obtain ranging estimations between each other. During 
this process, each user can begin to record Wi-Fi RSS 
data which will be stored as initial training data. In the 
following procedure, two different update methods may 
be carried out based on the available measurements. 
Collaborative positioning and training is carried out when 
more than one user is in the network. When the user loses 
connection with other users, positioning is switched to 
fingerprinting to maintain position updates.  

During the collaborative positioning and fingerprint 
training process, the measurement update comes from the 
collaborative ranging measurements as described in 
Section 3.3. Each user position is forced to remain within 
the relative ranging constraint. Simultaneously, the users 
collect RSS data and the range between the users also 
decides whether the collected RSS from each user are 
combined to generate a fingerprint database as individual 
data or to update the confidence factor for the same 
location.  

If collaborative ranging becomes unavailable after an 
initial fingerprint database has been generated, the Wi-Fi 
fingerprinting approach will be applied instead and Wi-Fi 

SLAM can be implemented to maintain the position and 
environment information.  

To compare the fingerprinting accuracy of each 
different database, a trajectory is defined along the 
corridor of NGB Floor A. The locations of the potential 
fingerprints are obtained at each step. Those within 3m of 
the true location are considered good fingerprints; if the 
potential fingerprints are 3m away from the true location 
or cover an area over 15m2 even if the true location is 
within this area, they will be considered wrong 
fingerprints; if no potential fingerprints could be found 
from the current RSS, the fingerprint information will be 
empty and the user will simply propagate based on 
inertial measurements only.  

 
Figure 8 Fingerprint results 

Table 7 lists the probability of good, empty and wrong 
fingerprints for each database based fingerprinting. The 
fingerprinting result from cDB2 is better than either 
dDB1 or dDB2 but still worse than dDB3. Therefore 
improvements can still be made to improve the fingerprint 
database.  

Table 7 Fingerprint quality (%) 

 Good Empty Wrong 

dDB1 60.4 16.4 23.2 

dDB2 63.4 9.5 27.1 

dDB3 83.3 / 16.7 

cDB2 77.4 2.6 20 

sDB 83 / 17 

The fingerprinting results indicate that building a 
fingerprint database from very detailed training data, e.g. 
TP density of 1m by 1m, is unnecessary. Due to signal 
noise, a set of RSS vectors usually represent more than 
one location. Therefore in result, no matter how detailed 
the fingerprint database is, it is always hard to pinpoint 
the fingerprint to the exact location of the true position. 
However, this does not mean that ten fingerprints would 
be enough to cover an entire building. From the different 
training data densities and the fingerprinting results, we 
can see that when the user is moving inside the building 
and data is being collected dynamically, at least two 



fingerprints is required to cover a regular shaped and 
sized room. At least one fingerprint is needed to cover an 
area of 10m2 in a corridor or open foyer.   

Fingerprint positioning accuracy not only depends on 
the accuracy of the database but also the fingerprint 
weighting method. Therefore different fingerprinting 
methods may vary according to accuracy and positioning 
requirements. The database generated from this method 
could be specified according to user needs.  

5. CONCLUSIONS AND FUTURE WORK 

Indoor positioning faces more challenge due to 
complicated environment and lack of positioning signals 
such as GNSS signals. Therefore a robust indoor 
positioning system needs to cope with different 
positioning situations adaptively and adjust positioning 
methods according to available signals. This paper 
introduces a collaborative Wi-Fi fingerprint database 
training method which reduces the time and human labour. 
The collaborative training method is based on a 
collaborative positioning method which positions users 
using inertial measurements and relative ranging 
information. The fingerprint databases that were 
generated by conventional and dynamic methods and 
from different training density and location were 
compared for database quality as well as positioning 
accuracy.   

Results show that training for the fingerprint database 
simultaneously during collaborative positioning is able to 
achieve the same accuracy level as conventional training 
method. The proposed cWiDB training method achieves 
efficient positioning as multiple users are able to provide 
reliable positioning and greatly reduce the training time. 
Furthermore, most indoor PDR positioning relies on the 
availability of an internal map of the building. This 
collaborative approach eliminates the need of such 
information thus saves time and manpower.  As Wi-Fi 
signals develop in recent years, 5GHz signal become 
more common in both office and home wireless 
connection. Their signal characteristics differ to those 
signals in the 2.4GHz band and give better fingerprinting 
performance in the indoor environment mostly due to 
their shorter ranging ability. 

The application of cWiDB also enables the system to 
start up without prior knowledge of the Wi-Fi fingerprint 
which is useful for users who enter a new environment. 
The training data is collected during the positioning 
process. Based on the relative distance between the 
collected data, the system decides whether to combine the 
training data and generate a database with larger coverage 
or update old database with new confidence factor.  

The system may be further developed so that the RSS 
difference between users can be applied to update the 
measurement weight during collaborative positioning and 
work in a SLAM-like method. This enables further 
flexibility between collaborative positioning based on 
inertial measurement or Wi-Fi data. The received signal 

quality for different devices should also be considered as 
this directly affects the integration quality of training data 
from different users.  
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