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Abstract

Recently, various sensors as well as wireless communication technologies such as

Wi-Fi and Bluetooth Low Energy (BLE) have been equipped with smartphones. In

addition, in many cases, users use a smartphone while on the move, so if a wireless

communication technologies and various sensors are used for a mobile user, a better

user experience can be provided. For example, when a user moves while using Wi-Fi,

the user experience can be improved by providing a seamless Wi-Fi service. In addi-

tion, it is possible to provide a special service such as indoor positioning or navigation

by estimating the user’s mobility in an indoor environment, and additional services

such as location-based advertising and payment systems can also be provided. There-

fore, improving the user experience by using wireless communication technology and

smartphone’s sensors is considered to be an important research field in the future.

In this dissertation, we propose three systems that can improve the user experi-

ence or convenience by using Wi-Fi, BLE, and smartphone’s sensors: (i) BLEND: BLE

beacon-aided fast Wi-Fi handoff for smartphones, (ii) PYLON: Smartphone based In-

door Path Estimation and Localization without Human Intervention, (iii) FINISH:

Fully-automated Indoor Navigation using Smartphones with Zero Human Assistance.

First, we propose fast handoff scheme called BLEND exploiting BLE as secondary

radio. We conduct detailed analysis of the sticky client problem on commercial smart-

phones with experiment and close examination of Android source code. We propose

BLEND, which exploits BLE modules to provide smartphones with prior knowledge

of the presence and information of APs operating at 2.4 and 5 GHz Wi-Fi channels.

BLEND operating with only application requires no hardware and Android source code

modification of smartphones. We prototype BLEND with commercial smartphones and

evaluate the performance in real environment. Our measurement results demonstrate

that BLEND significantly improves throughput and video bitrate by up to 61% and
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111%, compared to a commercial Android application, respectively, with negligible

energy overhead.

Second, we design a path estimation and localization system, termed PYLON,

which is plug-and-play on Android smartphones. PYLON includes a novel landmark

correction scheme that leverages real doors of indoor environments consisting of floor

plan mapping, door passing time detection and correction. It operates without any user

intervention. PYLON relaxes some requirements for localization systems. It does not

require any modifications to hardware or software of smartphones, and the initial lo-

cation of WiFi APs, BLE beacons, and users. We implement PYLON on five Android

smartphones and evaluate it on two office buildings with the help of three participants

to prove applicability and scalability. PYLON achieves very high floor plan mapping

accuracy with a low localization error.

Finally, We design a fully-automated navigation system, termed FINISH, which

addresses the problems of existing previous indoor navigation systems. FINISH gen-

erates the radio map of an indoor building based on the localization system to deter-

mine the initial location of the user. FINISH relaxes some requirements for current

indoor navigation systems. It does not require any human assistance to provide naviga-

tion instructions. In addition, it is plug-and-play on Android smartphones. We imple-

ment FINISH on five Android smartphones and evaluate it on five floors of an office

building with the help of multiple users to prove applicability and scalability. FINISH

determines the location of the user with extremely high accuracy with in one step.

In summary, we propose systems that enhance the user’s convenience and experi-

ence by utilizing wireless infrastructures such as Wi-Fi and BLE and various smart-

phone’s sensors such as accelerometer, gyroscope, and barometer equipped in smart-

phones. Systems are implemented on commercial smartphones to verify the perfor-

mance through experiments. As a result, systems show the excellent performance that

can enhance the user’s experience.
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Chapter 1

Introduction

1.1 Motivation

Over the last few years, with the dramatic growth of mobile devices such as smart-

phones and table PCs, wireless communication technologies such as Wi-Fi and Blue-

tooth Low Energy (BLE) have become an essential and indispensable part of our ev-

eryday life, supporting ever increasing demand of users for various types of services.

Especially, users use their smartphones while on the move maintaining wireless con-

nection with Wi-Fi and BLE, and there are possibilities to provide better services using

wireless communication technologies.

When smartphone users roam while using mobile applications, Wi-Fi handoff be-

tween Wi-Fi access points (APs) should be conducted. In addition, if the location of

the user is given, location-based service (LBS) such as indoor navigation or targeted

area advertisement can be provided to the user. To provide LBS, indoor localization

technology should be preceded. Therefore, three different services for user experience

enhancement will be introduced in the dissertation.

Fast Wi-Fi handoff: When smartphone users roam while using mobile applications,

handoff between Wi-Fi access points (APs) should be conducted in a timely manner

in order to provide continuous service. However, we frequently experience that smart-

1



phone maintains AP connection with very low signal strength even though nearby

APs can provide much higher signal strength, which means smartphone does not per-

form handoff properly. Such undesirable behavior of smartphone, known as sticky

client problem [1], has been considered one of the most annoying problems that causes

smartphone users to simply deactivate Wi-Fi. To overcome the sticky client problem,

smartphone needs to perform fast handoff on time to nearby APs which can provide

higher throughput. However, to find nearby APs relying on a single Wi-Fi interface, it

is needed to scan all Wi-Fi channels even if there is no available AP, since it has no

prior knowledge of when, i.e., exact timing to scan, and where, i.e., operating channel

of APs, to scan. Motivated by the fact that the handoff dedicated to smartphone should

be supported, we set our goal as designing a practical and simple handoff scheme,

which is directly applicable to smartphones.

Indoor localization and navigation: Despite considerable research effort, localiza-

tion systems are rarely deployed in the real world. One reason is due to device het-

erogeneity that is difficult to deal with in practice. For instance, the most common ap-

proaches for indoor localization are based on Wi-Fi fingerprinting. These approaches

work well with RSSI maps and prior knowledge of AP locations. In other words, they

should generate an RSSI map for each device. In fact, obtaining AP location informa-

tion is difficult, and received signal strength indicator (RSSI) map generation is a labor-

intensive and time-consuming data gathering process. To address the aforementioned

indoor localization problems, we propose a novel path estimation and localization sys-

tem that works without human intervention. The main idea behind PYLON is to use

entrances (i.e., doors) of a building as landmarks under Wi-Fi and BLE infrastructure.

Using IMU sensors and RSSIs of Wi-Fi and BLE, the user’s smartphone just collects

movement data, e.g., step count, step frequency, walking direction, while walking. The

server estimates the user’s approximate path and performs landmark correction, using

the actual floor plan.

2



1.2 Overview of Existing Approaches

1.2.1 Wi-Fi handoff for smartphones

SyncScan [2] periodically scans Wi-Fi channels to obtain information about nearby

APs before handoff. DeuceScan [3] uses spatiotemporal graph to predict the next AP.

As a similar approach, D-Scan [4] and Proactive Scan [5] eliminate Wi-Fi scanning

delay by actively probing all Wi-Fi channels. However, since above schemes have no

prior knowledge of nearby APs, they cannot prevent unnecessary Wi-Fi scanning.

SWIMMING [6] and WGTT [7] focus on fast vehicular handoff. SWIMMING

supports seamless Wi-Fi-based Internet access with “group unicast” manner. All APs

have to be configured with the same MAC and IP addresses to provide group uni-

cast. WGTT proposes fine-grained AP selection and queue management algorithm in

picocell environment. It is difficult to directly apply in practice because additional

infrastructure and hardware/software modification of AP are inevitable to implement

WGTT.

802.11k [8] allows an associated AP to provide site report of potential candi-

date APs according to the movement of a mobile station (STA). On the other hand,

802.11r [9] optimizes authentication process to remove authentication delay. When

STA enters mobility domain, it finishes authentication process before actual handoff

occurs. However, 802.11r is not widely adopted because it focused on enterprise net-

work, which needs infrastructure, and is unsuitable for home deployment [10].

Another approach to seamless handoff makes simultaneous connection with mul-

tiple APs in link or transport layer. MultiNet (also known as VirtualWi-Fi [11]) and

Juggler [12] allow STA to associate with multiple APs on different Wi-Fi channels

in a round robin manner. FatVAP [13] focuses on balancing the traffic load of multi-

ple APs. However, above approaches cannot be implemented in application layer. In

Critoru et al. [14], STA associates with multiple APs through MPTCP subflow for

each AP. Authors argue that MPTCP is available in the iOS 7. However, MPTCP in
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iOS uses cellular and a single AP rather than multiple APs.

MultiScan [15] leverages extra Wi-Fi interface to make a connection to a candidate

AP before disconnecting the current one. The commercial smartphone has only a sin-

gle Wi-Fi interface and adding an additional Wi-Fi interface is impractical. In [16,17],

AP is equipped with multiple Wi-Fi interfaces, where one interface is set to operate as

an exclusively reserved channel for the Wi-Fi scanning purpose. The STA has to know

the reserved channel of candidate AP in advance.

All the above approaches cannot be directly applied to smartphone because they

need modified hardware or source code to be implemented on smartphone. In BLEND,

smartphone can find nearby APs and perform handoff only through the application.

No hardware and Android source code modification is required, and BLEND can also

coexists with other BLE or Classic Bluetooth (BT) connections with smart devices,

e.g., smart band or headphone.

1.2.2 Indoor path estimation and localization

Dead Reckoning: Recent developments in micro-electromechanical systems allow

multiple sensors, such as accelerometer, magnetometer, and gyroscope, to be inte-

grated into a small inertial sensor module [18]. IMUs, consisting of accelerometers,

magnetometers, and gyroscopes, become cheaper and are mounted on handheld de-

vices, especially smartphones.

Since all the information required to estimate human movements [19], such as

heading direction, acceleration, and rotation velocity, is recorded on IMU sensors, the

smartphone using dead-reckoning tracks the path that a user passes, if the initial loca-

tion of the user is known [20–22]. For path estimation of the user, the dead-reckoning

system uses steps counted by the accelerometer and moves the user’s location in the

direction of the progress by the step length, determined by the gyroscope or magne-

tometer. IMU sensor readings are integrated and averaged [23]. However, a signifi-

cant drawback is error propagation of sensor readings, even a small error magnified
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through integration. Complementary approaches leverage virtual landmarks created

by the existing infrastructure of Wi-Fi to prevent accumulation of errors [24, 25]. We

use landmarks, i.e., doors, to compensate for error accumulation due to drift in sensor

readings.

Landmark-Based Localization: As mentioned above, one solution for error propaga-

tion of IMU sensors is a landmark-based approach that compensates for drift in sensor

readings. Walkie-Markie [24] defines APs as landmarks to fuse crowdsourced user

trajectories obtained from IMU sensors on smartphones. However, it requires repeated

trajectories of multiple users for the same pathway. JigSaw [26] utilizes crowdsens-

ing images captured from mobile users and extracts the location, size, and orientation

information of each landmark object from images. But it is not easy to leverage the im-

ages taken by users considering privacy issues. AcMu [27] pinpoints mobile devices

with trajectory mapping, and uses them as mobile reference points to collect real-time

RSSI samples only when static. It takes days to months for RSSI sample collection to

provide accurate localization services. ACMu has limitations in its immediate appli-

cation to unknown environments. The recent work iVR [28] uses security surveillance

cameras installed in an indoor space, and employs a particle filter to fuse data from

multiple systems including vision, radio, and IMU sensors. It is more difficult to use

video of security surveillance cameras when considering privacy and security issues,

compared to using only radio signals of Wi-Fi or BLE. In PYLON, we are free from

data collection from multiple users, images taken by users, or video from surveillance

cameras. PYLON can be easily applied to unknown environments.

1.2.3 Indoor navigation

Localization-based Navigation System: Localization and Navigation have been ex-

tensively studied in the robotic area [29]. By fusing odometer outputs using IMU sen-

sor readings, robots can compute travel distances, perform accurate localization, and

navigate themselves to the destination based on the floor map. In several robotic sys-
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tems, additional sensing techniques using laser [30], infrared [31], and camera [32] are

also used for ranging and navigation purposes. However, the motion of human is more

complicate, and the limited sensing capabilities of smartphones also challenge to both

localization and navigation.

To address the aforementioned challenges, numerous localization techniques us-

ing smartphones have been proposed [33–40]. They can be broadly categorized as

infrastructure-based (e.g, Wi-Fi, BLE, GPS, and cellular) or infrastructure-free (e.g.,

dead reckoning) localization system. Each of them has its own advantages and disad-

vantages. GPS can provide accurate positioning in outdoor open spaces but encounters

fading signals in an indoor environments. Using radio signals, such as Wi-Fi and BLE,

usually requires fingerprinting data to realize localization. In case of dead reckoning,

it suffers from cumulative errors and the usage of smartphones.

Peer-to-peer Navigation System: The navigation systems using leader-follower model

have been proposed [29, 41–43]. An electronic escort system was proposed by us-

ing crowd encounters information and dead-reckoning techniques [41], but it requires

pre-deployed audio beacons which limits its applicability. A vision-guided navigation

system, termed Travi-Navi [42], enables a user to easily bootstrap and deploy indoor

navigation system without help of indoor localization system, but guiders need to hold

the smartphone vertically and steadily during walking to achieve a better image quality.

FollowMe [29] uses compute-intensive particle filtering as the navigation engine, and

minimizes the constraints imposed on users by providing wider usage (i.e., in multi-

level buildings, semi-outdoors). FollowUs [43] is incrementally-deployable navigation

by automatically generating the trace with the data of multiple users. However, above

two navigation systems require assistance of user. The leader needs to input the initial

location and destination to provide navigation service, which is vulnerable to the false

input of the leaders of malicious users.
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1.3 Main Contributions

1.3.1 BLEND: BLE Beacon-aided Fast Handoff for Smartphones.

We envision the approach of BLEND to be increasingly practical and feasible for the

following reasons. First, many of today’s APs mentioned above are equipped with

WPAN modules. Furthermore, legacy APs without BLE modules can be easily con-

nected with BLE module through a USB port. Second, most commercial smartphones

are equipped with Bluetooth module. BLE is supported beginning Android 4.3 Jelly

Bean launched in 2013, and no hardware modification is required on smartphone.

Third, the application-layer solution is possible through user-friendly Android appli-

cation programming interfaces (APIs) of BLE.

Our major contributions are summarized as follows:

• We conduct detailed analysis of the sticky client problem on commercial smart-

phones with experiment and close examination of Android source code. Through

the comprehensive study, we figure out that the sticky client problem is caused

by 1) unacceptably long scanning interval and 2) lack of handoff mechanism.

• We propose BLEND, which exploits BLE modules to provide smartphones with

prior knowledge of the presence and information of APs operating at both 2.4

and 5 GHz channels. BLEND operating with only application requires no hard-

ware and Android source code modification of smartphone. To our best knowl-

edge, BLEND is the first BLE-aided handoff scheme.

• We also propose an advanced version of BLEND that can be applied to smart-

phone enabling hidden Android API, which optimizes scanning through modi-

fication of Android source code.

• We prototype BLEND with commercial smartphones and evaluate the perfor-

mance in real environments. Our measurement results demonstrate that BLEND

significantly improves throughput and video bitrate by up to 61% and 111%,
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compared to a commercial Android application, respectively, with negligible

energy overhead.

1.3.2 PYLON: Smartphone Based Indoor Path Estimation and Localiza-

tion with Human Intervention.

Unlike other localization systems, PYLON does not require RSSI fingerprint data, lo-

cations of Wi-Fi APs and BLE beacons, and the initial location of the user. More-

over, PYLON does not need any additional hardware or software modifications on the

smartphone. We have implemented PYLON on five different Android smartphones and

evaluated it in an office building. Our experimental results show that PYLON achieves

localization performance within an average error of 1.42 m, exploiting floor plan map-

ping and door passing time detection.

In summary, the main contributions of this paper are threefold:

• We design a path estimation and localization system, termed PYLON, which

is plug-and-play on Android smartphones. PYLON includes a novel landmark

correction scheme that leverages real doors of indoor environments consisting

of floor plan mapping, door passing time detection and correction. It operates

without any user intervention.

• PYLON relaxes some requirements for localization systems. It does not require

any modifications to hardware or software of smartphones, and the initial lo-

cation of Wi-Fi APs, BLE beacons, and users. In addition, on-site investiga-

tions for fingerprint or trace data collection which are labor-intensive and time-

consuming is not necessary. PYLON can be directly applied to unknown indoor

environments.

• We implement PYLON on five Android smartphones and evaluate it on two office

buildings with the help of three participants to prove applicability and scalability.
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PYLON achieves very high floor plan mapping accuracy with a low localization

error.

1.3.3 FINISH: Fully-automated Indoor Navigation using Smartphones

with Zero Human Assistance.

To bootstrap the indoor navigation services with zero human assistance, we ask the

following question: Can we enable users to easily bootstrap indoor navigation ser-

vices without any assistance or intervention of users? In this paper, we provide an

answer through the systematic design and implementation of FINISH with the help

of a real-world floor plan. Unlike other navigation system, FINISH does not require

fingerprint data and assistance of the users. We have implemented FINISH on five dif-

ferent Android smartphones and evaluated it in the whole floors of an office building.

Our experimental results show that FINISH achieves 100% initial location accuracy

with in one step and provides timely navigation instructions.

In summary, the main contributions of this paper are threefold:

• We design a fully-automated navigation system, termed FINISH, which ad-

dresses the problems of existing previous indoor navigation systems. FINISH

generates the radio map of an indoor building based on the localization system

to determine the initial location of the user.

• FINISH relaxes some requirements for current indoor navigation systems. It

does not require any human assistance to provide navigation instructions. In

addition, it is plug-and-play on diverse Android smartphones.

• We implement FINISH on five Android smartphones and evaluate it on five

floors of an office building with the help of multiple users to prove applicability

and scalability. FINISH determines the location of the user with extremely high

accuracy with in one step.
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1.4 Organization of Dissertation

The rest of the dissertation is organized as follows.

Chapter 2 presents BLEND, BLE beacon-aided fast Wi-Fi handoff for smartphones.

First, we conduct preliminary experiment to observe the sticky client problem with

smartphones, and figure out causes of the problem. To solve the problem, BLEND

exploits BLE to provide smartphones with prior knowledge of the AP information

without Wi-Fi scanning, and to realize plug-and-play by installing only the Android

application. We prototype BLEND and demonstrate the performance with various ex-

periments.

In Chapter 3, we propose PYLON, smartphone based indoor path estimation and

localization without human intervention. PYLON is a path estimation and localiza-

tion system, which is plug-and-play on Android smartphones. PYLON relaxes some

requirements of the current localization systems, and then does not require any hu-

man intervention. We implement PYLON and conduct experiments using five different

Android smartphones on two office buildings.

Chapter 4 presents FINISH, fully-automated indoor navigation using smartphones

with zero human assistance. FINISH generates the radio map of an indoor building

based on the localization system to determine the initial location of the user. FINISH

relaxes some requirements for current indoor navigation systems. It does not require

any human assistance to provide navigation instructions. We implement FINISH on

five Android smartphones and evaluate it on five floors of an office building with the

help of multiple users to prove applicability and scalability.

Finally, Chapter 5 concludes the dissertation with the summary of contributions

and discussion of the future research directions.
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Chapter 2

BLEND: BLE Beacon-Aided Fast Wi-Fi Handoff

for Smartphones

2.1 Introduction

Over the past few years, the extreme proliferation of smartphones has made Wi-Fi

an indispensable wireless technology in our daily lives. Wi-Fi is expected to serve

as a hub for immense mobile applications and data traffic in the future [44]. Well-

known mobile applications include twittering, video streaming, and Voice over IP, and

smartphone users frequently use these applications on the move.

When smartphone users roam while using mobile applications, handoff between

Wi-Fi access points (APs) should be conducted in a timely manner in order to provide

continuous service. However, we frequently experience that smartphone maintains AP

connection with very low signal strength even though nearby APs can provide much

higher signal strength, which means smartphone does not perform handoff properly.

Such undesirable behavior of smartphone, known as sticky client problem [1], has been

considered one of the most annoying problems that causes smartphone users to simply

deactivate Wi-Fi. To overcome the sticky client problem, smartphone needs to perform

fast handoff on time to nearby APs which can provide higher throughput.
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In relation to the aforementioned problem, there have been several studies to trig-

ger fast handoff, by utilizing only a single or multiple Wi-Fi interfaces. The first ap-

proach exploits only a single Wi-Fi interface to minimize Wi-Fi scanning and handoff

delay [2–5, 45]. However, to find nearby APs relying on a single Wi-Fi interface, it

is needed to scan all Wi-Fi channels even if there is no available AP, since it has no

prior knowledge of when, i.e., exact timing to scan, and where, i.e., operating chan-

nel of APs, to scan. The second approach leverages multiple Wi-Fi interfaces. That is,

the secondary Wi-Fi interface is dedicated to scanning purpose to reduce scanning de-

lay [16, 17] or pre-association with nearby APs [15]. Using multiple Wi-Fi interfaces

is inapplicable to smartphones, since commercial smartphones have only a single Wi-

Fi interface. As a result, with the above approaches, there is no way to acquire prior

knowledge of nearby APs without Wi-Fi scanning.

However, recent studies show that it is possible to detect nearby APs by utilizing

a collocated wireless personal area network (WPAN) radio such as Bluetooth and Zig-

Bee [46–49]. The motivation of the existing work is to minimize energy consumption

caused by unnecessary Wi-Fi scanning. Accordingly, as the above approach, WPAN

radio can give clue to find nearby APs before handoff and provides the possibility to

overcome the limitation of smartphone equipped with a single Wi-Fi interface. In ad-

dition, state-of-the-art APs such as Samsung Connect Home [50] and Google Wi-Fi

AP [51] are embedded with Bluetooth 4.1 and Zigbee as well as Wi-Fi. Therefore, we

expect there is a chance to exploit WPAN.

Motivated by the fact that handoff dedicated to smartphone should be supported,

we set our goal as designing a practical and simple handoff scheme, which is di-

rectly applicable to smartphones. In this paper, we propose fast handoff scheme called

BLEND exploiting Bluetooth Low Energy (BLE) as secondary radio.

Each AP collocated with BLE periodically transmits BLE advertising packet con-

taining its information such as operating channel and channel utilization. Upon an

advertising packet reception, smartphone can acquire prior knowledge about exis-
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tence and information of nearby APs without Wi-Fi scanning. After that, if handoff

is needed, smartphone performs Wi-Fi scanning and estimates throughput using re-

ceived signal strength indicator (RSSI) and channel utilization. Based on the estimated

throughput, smartphone performs handoff to the nearby AP if it can provide better

throughput.

We envision the approach of BLEND to be increasingly practical and feasible for

the following reasons. First, many of today’s APs mentioned above are equipped with

WPAN modules. Furthermore, legacy APs without BLE modules can be easily con-

nected with BLE module [52] through a USB port. Second, most commercial smart-

phones are equipped with Bluetooth module. BLE is supported beginning Android

4.3 Jelly Bean launched in 2013, and no hardware modification is required on smart-

phone. Third, the application-layer solution is possible through user-friendly Android

application programming interfaces (APIs) of BLE.

Our major contributions are summarized as follows:

• We conduct detailed analysis of the sticky client problem on commercial smart-

phones with experiment and close examination of Android source code. Through

the comprehensive study, we figure out that the sticky client problem is caused

by 1) unacceptably long Wi-Fi scanning interval and 2) lack of handoff mecha-

nism.

• We propose BLEND, which exploits BLE modules to provide smartphones with

prior knowledge of the presence and information of APs operating at both 2.4

and 5 GHz Wi-Fi channels. BLEND operating with only application requires

no hardware and Android source code modification of smartphone. To our best

knowledge, BLEND is the first BLE-aided handoff scheme.

• We also propose an advanced version of BLEND that can be applied to smart-

phone enabling hidden Android API, which optimizes Wi-Fi scanning through

modification of Android source code.
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• We prototype BLEND with commercial smartphones and evaluate the perfor-

mance in real environments. Our measurement results demonstrate that BLEND

significantly improves throughput and video bitrate by up to 61% and 111%,

compared to a commercial Android application, respectively, with negligible

energy overhead.

2.2 Related Work

2.2.1 Wi-Fi-based Handoff

SyncScan [2] periodically scans Wi-Fi channels to obtain information about nearby

APs before handoff. DeuceScan [3] uses spatiotemporal graph to predict the next AP.

As a similar approach, D-Scan [4] and Proactive Scan [5] eliminate Wi-Fi scanning

delay by actively probing all Wi-Fi channels. However, since above schemes have no

prior knowledge of nearby APs, they cannot prevent unnecessary Wi-Fi scanning.

SWIMMING [6] and WGTT [7] focus on fast vehicular handoff. SWIMMING

supports seamless Wi-Fi-based Internet access with “group unicast” manner. All APs

have to be configured with the same MAC and IP addresses to provide group uni-

cast. WGTT proposes fine-grained AP selection and queue management algorithm in

picocell environment. It is difficult to directly apply in practice because additional

infrastructure and hardware/software modification of AP are inevitable to implement

WGTT.

802.11k [8] allows an associated AP to provide site report of potential candi-

date APs according to the movement of a mobile station (STA). On the other hand,

802.11r [9] optimizes authentication process to remove authentication delay. When

STA enters mobility domain, it finishes authentication process before actual handoff

occurs. However, 802.11r is not widely adopted because it focused on enterprise net-

work, which needs infrastructure, and is unsuitable for home deployment [10].

Another approach to seamless handoff makes simultaneous connection with mul-
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tiple APs in link or transport layer. MultiNet (also known as VirtualWi-Fi [11]) and

Juggler [12] allow STA to associate with multiple APs on different Wi-Fi channels

in a round robin manner. FatVAP [13] focuses on balancing the traffic load of multi-

ple APs. However, above approaches cannot be implemented in application layer. In

Critoru et al. [14], STA associates with multiple APs through MPTCP subflow for

each AP. Authors argue that MPTCP is available in the iOS 7. However, MPTCP in

iOS uses cellular and a single AP rather than multiple APs.

MultiScan [15] leverages extra Wi-Fi interface to make a connection to a candidate

AP before disconnecting the current one. The commercial smartphone has only a sin-

gle Wi-Fi interface and adding an additional Wi-Fi interface is impractical. In [16,17],

AP is equipped with multiple Wi-Fi interfaces, where one interface is set to operate as

an exclusively reserved channel for the Wi-Fi scanning purpose. The STA has to know

the reserved channel of candidate AP in advance.

All the above approaches cannot be directly applied to smartphone because they

need modified hardware or source code to be implemented on smartphone. In BLEND,

smartphone can find nearby APs and perform handoff only through the application.

No hardware and Android source code modification is required, and BLEND can also

coexists with other BLE or Classic Bluetooth (BT) connections with smart devices,

e.g., smart band or headphone.

2.2.2 WPAN-aided AP Discovery

The motivation for exploiting low-power WPAN technologies for Wi-Fi is to reduce

large energy consumption caused by unnecessary Wi-Fi scanning. Especially, recent

several researches have addressed the problem of finding nearby APs through WPAN.

In [46–48], WPAN is exploited to predicts the existence of nearby APs by detecting

the signature of periodic Wi-Fi beacon frame through RSSI sampling. These schemes

require computational cost and have false positive to detect AP depending on Wi-Fi

channel utilization. Since they ceaselessly conduct RSSI sampling, detecting AP is
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impossible when WPAN connection exists. In addition, in the case of Zigbee, an ex-

ternal transceiver is needed on smartphone. Blue-Fi [49] predicts nearby APs based on

history of heterogeneous network connections and location. However, Blue-Fi is diffi-

cult to operate in an unknown environment without history. In conclusion, none of the

above approaches deals with fast handoff, and there is no handoff scheme exploiting

BLE.

2.3 Background

2.3.1 Handoff Procedure in IEEE 802.11

IEEE 802.11 standard defines handoff procedure as the following three phases: scan-

ning, authentication, and re-association. In scanning phase, STA scans Wi-Fi chan-

nels to find APs in vicinity and to acquire information such as RSSI of APs [5].

If STA determines an AP to perform handoff, STA and the AP exchange authenti-

cation request and response during authentication phase. After authentication phase,

re-association request and response are exchanged during re-association phase, then

handoff procedure finishes. Handoff delay represents time between scanning phase

and re-association phase. Typically, both authentication and re-association phases are

less than 20 ms [2]. The scanning phase empirically accounts for 95% of handoff de-

lay [53] and has been a goal to minimize for fast handoff in literature.

2.3.2 BSS Load Element in IEEE 802.11

IEEE 802.11e [54] defines Basic Service Set (BSS) Load element field, which can be

optionally included in beacon and probe response. BSS Load element is composed

of station count, channel utilization, and available admission capacity. Station count

indicates a total number of STAs currently associated with an AP. Channel utilization

is defined as the ratio of time that the AP sensed the medium was busy. Available

admission capacity defines remaining amount of time via explicit admission control.
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BSS Load element information can be used by STAs when performing handoff.

2.3.3 Bluetooth Low Energy

Bluetooth 4.0 specification [55] defines Classic BT and BLE. BLE is a low-power

and short-range wireless communication technology operating on 2.4 GHz unlicensed

band. BLE uses 40 physical channels separated by 2 MHz from 2402 MHz to 2480

MHz. Three of 40 channels are used as advertising channels with center frequencies

of 2402, 2426, and 2480 MHz. BLE beacon, which represents device equipped with

BLE module, periodically broadcasts advertising packet on advertising channels. The

interval of advertising packet is in range of 100 ms to 10.24 s.

Advertising packet is composed of preamble, access address, cyclic redundancy

check (CRC), and packet data unit (PDU). Preamble is used for detection of adver-

tising packet, synchronization, and automatic gain control. Access address defines the

type of BLE packet, e.g., advertising packet. CRC is used to check the validation of

advertising packet. PDU includes header field which contains MAC address of BLE

beacon, advertising data, and information about advertising packet, e.g., transmission

power and packet length.

2.4 Sticky Client Problem

In this section, we experimentally confirm that the sticky client problem occurs on

commercial smartphones. Moreover, we analyze the causes of the sticky client problem

by investigating experiment results and Android source code [56], especially focusing

on Wi-Fi scanning and handoff operations.

2.4.1 Sticky Client Problem of Commercial Smartphone

We conduct an experiment in a controlled office environment where floor plan is illus-

trated in Fig. 2.1. AP 1 and AP 2 operate on different channels of 5 GHz and trans-
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Figure 2.1: Indoor office topology for our experiments. Each point represents locations

of smartphone.

mission power of both APs is set to the maximum value of 15 dBm. We use Google

Nexus 5 with Android 6.0.1 Marshmallow for the experiment. The smartphone is ini-

tially located at P1 for 20 s, moves from P1 to P2 with an average walking speed of

1 m/s, and then stays at P2 for the last 20 s. In scenario 1 (S1) and scenario 2 (S2),

smartphone is initially associated with AP 1 and AP 2, respectively. Both APs gener-

ate saturated UDP traffic only when smartphone is associated. We measure throughput

and RSSI at smartphone every second during 60 s and repeat measurement five times.

Figs. 2.2a and 2.2b represent average throughput and RSSI in time domain. In S1,

throughput and RSSI decrease as smartphone moves away from AP 1. When smart-

phone reaches P2, we expect that smartphone performs handoff to AP 2. However,

smartphone never performs handoff to AP 2 even though RSSI of AP 1 is −81 dBm

and RSSI of AP 2 is 15 dBm higher. Similar to above phenomenon, smartphone does

not perform handoff to AP 1 at first 20 s in S2. We observe the sticky client problem

in both scenarios. The smartphone does not perform handoff even if RSSI of the as-

sociated AP is extremely low and there exists another AP which can support higher

RSSI. If smartphone performs handoff as Ideal, throughput can be enhanced by 65.7%
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Figure 2.2: Average throughput and RSSI results. Ideal denotes the uppermost curves

of S1 and S2 assuming that smartphone performs handoff ideally.
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as shown in Fig. 2.2c.

2.4.2 Cause of Sticky Client Problem

To analyze causes of the sticky client problem, we examine conditions to trigger Wi-Fi

scanning through measurement and Android source code. Next, we investigate whether

smartphone performs handoff when Wi-Fi scanning is triggered.

Scanning operation

To examine Wi-Fi scanning operation in Android, we investigate the source code of

Android 6.0.1 Marshmallow. The scanning can be triggered by two different roots: Wi-

FiService and startScan. Wi-FiService is the system service of Android, and startScan

is Android API. Both of them trigger Wi-Fi scanning as an active scanning by default.

During the active scanning, STA transmits a probe request and listen for probe re-

sponses from APs. Wi-FiService starts Wi-Fi scanning when the screen of smartphone

turns on. The Wi-Fi scanning interval starts at 40 s, increases to 60, 80, 120, 160,

240, 360 s, and then maintains 360 s. We also double-check that smartphone performs

Wi-Fi scanning with the above intervals through packet capture using Airpcap [57].

However, Wi-FiService never performs Wi-Fi scanning while the screen turns off. In

case of the startScan, it triggers Wi-Fi scanning whenever called by Android appli-

cation manually. Therefore, smartphone depends on Wi-FiService for Wi-Fi scanning

with long time intervals if startScan is not called by application. As a result, Wi-Fi

scanning operation of Android is insufficient to support fast handoff on time without

startScan.

Handoff operation

We conduct an experiment to observe handoff operation of Android smartphones when

scanning is manually triggered. Google Nexus 5 and Samsung Galaxy S7 are used for

the experiment. The smartphones are located at P1 in Fig. 2.1 and associated with AP 2

20



for 60 s. We trigger startScan by force with the minimum Wi-Fi scanning interval of

the API. The minimum Wi-Fi scanning intervals of Nexus 5 and Galaxy S7 are 1 s

and 3.5 s, respectively. During the experiment, smartphones do not perform handoff to

AP 1 even though average RSSI of AP 2 is −81 dBm while that of AP 1 is −44 dBm.

As a result, the sticky client problem cannot be resolved by triggering Wi-Fi scanning,

and hence, appropriate handoff operation is absolutely necessary.

2.5 BLEND: Proposed Scheme

It is essential to perform Wi-Fi scanning and handoff at appropriate timing to over-

come the sticky client problem. In BLEND, smartphone can explicitly acquire the exis-

tence and information about candidate AP through reception of advertising packet. By

exploiting acquired information such as the channel number and channel utilization,

smartphone determines the best AP to perform handoff by estimating performance im-

provement. We also proposed an advanced version of BLEND, which selectively scans

Wi-Fi channel where a candidate AP exists.

2.5.1 Advantages and Necessities of BLE as Secondary Low-Power Ra-

dio

The main concept of BLEND is that BLE beacon collocated with AP periodically

transmits advertising packet to notify the existence of AP. Considering that BLE is

short-range wireless technology compared with Wi-Fi, receiving advertising packet

on smartphone can guarantee that there is AP in the vicinity without Wi-Fi scanning.

Therefore, BLE can overcome the limitation that smartphone has no prior knowledge

of nearby APs before Wi-Fi scanning caused by single Wi-Fi interface. In addition,

information such as channel utilization to help handoff decision is conveyed through

the payload of advertising packet. Including the information of AP into the payload of

advertising packet is the most important factor to allow BLEND to work in applica-
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Figure 2.3: Overall architecture of BLEND.

tion layer. The payload of advertising packet can be delivered directly to application

layer through BLE Android API. Therefore, BLEND can operate without any addi-

tional hardware and Android framework modification. Since BLEND makes no BLE

connection, it can operate without interfering other BLE connections, e.g., wearable

devices.

In fact, it is possible to design BLEND through only Wi-Fi without BLE. BSS load

element including channel utilization can be optionally contained in Wi-Fi beacon.

However, using Wi-Fi alone has two drawbacks. First, smartphone should perform Wi-

Fi scanning in a periodic or event-driven manner to find nearby APs. Second, even if

Wi-Fi beacon contains channel utilization, there is no direct root to deliver information

in Wi-Fi beacon to application layer. In order to utilize information in Wi-Fi beacon,

firmware modification of smartphone is inevitable. We rule out such approach because

it is impractical and not feasible to modify the firmware of all smartphones.

2.5.2 Overall Architecture

Fig. 2.3 shows the overall architecture of BLEND. In AP, available channel occupancy

ratio (ACOR) is updated in ACOR updater. ACOR conceptually represents chan-

nel idle ratio (CIR). BLE beacon periodically transmits advertising packet containing

information of AP including ACOR When BLE receiver in smartphone receives ad-

vertising packet from BLE beacon, Wi-Fi scanner triggers scanning event depending
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on scanning allowance indicator (SAI). SAI adaptively allows Wi-Fi scanner to per-

form scanning event. Based on RSSI from scanning result, achievable PHY rate (aR)

is selected. Throughput estimator calculates achievable throughput (aTH) and effec-

tive ACOR (eACOR) of AP using ACOR, aR, and ongoing airtime ratio (OAR).

OAR conceptually represents the ratio of airtime consumed by smartphone itself. Fi-

nally, decision maker determines whether to perform scanning and handoff using aTH

and eACOR, and allows Wi-Fi scanner to scan channel depending on SAI.

2.5.3 AP Operation

ACOR updater

To allow smartphone to determine whether or not to perform handoff based on the

expected performance improvement, ACOR updater calculates ACOR every second.

We first define channel idle ratio (CIR) which represents the ratio of channel idle time

during the last 1 s.

CIR = 1− Tbusy, (2.1)

where Tbusy is channel busy ratio during the last 1 s which includes the time when AP

sends and receives packets. To avoid fluctuation ofACOR due to burst traffic,ACOR

is defined as the exponentially weighted moving average (EWMA) of CIR as follows:

ACOR = α·CIR+ (1− α)·ACOR. (2.2)

BLE beacon

BLE beacon takes ACOR from ACOR updater whenever ACOR is updated, and

periodically transmits proposed advertising packet. Fig. 2.4 shows proposed advertis-

ing packet format. The proposed format basically follows Eddystone beacon format,

which is open BLE beacon format from Google [58]. We modify advertising data field

to contain information of AP. The proposed advertising data field includes Eddys-
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Figure 2.4: Proposed advertising packet of BLEND.

tone header, identifier (ID), channel, ACOR, and AP address.1 Eddystone header is

required to maintain Eddystone advertising packet format. ID is needed to verify pro-

posed advertising packet. Channel and AP address indicate the channel number and

MAC address of AP, respectively. The rest of data field (11 B) is reserved, which can

contain more information about AP.

2.5.4 Smartphone Operation

BLE receiver

It receives advertising packet through monitoring three BLE advertising channels.

Upon receiving advertising packet, BLE receiver checks ID field to confirm whether

received advertising packet is proposed advertising packet of BLEND. If receiving

proposed advertising packet, BLE receiver reads channel, ACOR, and AP address

fields.
1The proposed advertising packet format does not break Eddystone beacon format, and hence, smart-

phone can receive the proposed advertising packet without defining a new BLE profile.
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Table 2.1: IEEE 802.11n PHY rate and Rx sensitivity.

PHY rate (Mb/s) 6.5 13 19.5 26 39 52 58.5 65

Rx sensitivity (dBm) −94 −91.7 −89.2 −86.1 −82.5 −77.9 −76.3 −74.7

Wi-Fi scanner

It takes AP information whenever BLE beacon receives proposed advertising packets

and updates RSSI of AP to determine achievable PHY rate (aR).

RSSI update: Wi-Fi scanner operates in two ways based on AP address. If AP address

is the same as MAC address of associated AP (APa), Wi-Fi scanner skips scanning

because RSSI of APa is periodically updated without extra scanning.2 On the other

hand, if AP address is different from APa’s, it means that candidate AP (APc) exists

in the proximity. Therefore, Wi-Fi scanner carries Wi-Fi scanning out to update RSSI

of APc. In the advanced version of BLEND, Wi-Fi scanning is performed in only one

channel that APc is operating.

Achievable PHY rate: is selected for a given RSSI after updating RSSI of AP. We

use receive (Rx) sensitivity values of BCM4339 Wi-Fi chipset [59] for IEEE 802.11n.

We employ the Rx sensitivity values of BCM4339 because Nexus 5, a primary smart-

phone for performance evaluation, is equipped with BCM4339.3 The Rx sensitivity

represents the minimum RSSI value that satisfies 90% packet delivery ratio (PDR) for

each PHY rate as shown in Table 2.1. aR is selected as the maximum PHY rate that

satisfies PDR 90% for a given RSSI. For example, if RSSI is −76 dBm, 58.5 Mb/s is

selected.4

2RSSI of current associated AP is updated every 3 s in Android by default.
3It is also possible to employ different Rx sensitivity values for different smartphone model depending

on the embedded Wi-Fi chipset. However, using a common set of values seems to be also acceptable as we

observe that the performance is not much affected even if we use a common set for a different smartphone

in Section 2.6.
4In fact, there is application-level Android API named getLinkSpeed, which returns aR in Mb/s of

only associated AP. However, we observe that the API cannot reflect real-time aR transition, and hence,
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OAR updater

ACOR of APa is affected by its own traffic on the smartphone. Throughput of APa

cannot be determined directly by using ACOR of APa. We define ongoing airtime

ratio (OAR) which is the ratio of airtime consumed by transmission and reception of

itself during the last 1 s. OTA updater calculates OAR every second using EWMA

with the same weighting factor (α) as that used for ACOR to maintain consistency

between OAR and ACOR:

OAR = α·
(
txBits+ rxBits

aRa

)
·1
t

+ (1− α)·OAR, (2.3)

where txBits and rxBits are the number of transmitted and received bits through

Wi-Fi during the last t s, respectively, and aRa is the latest achievable PHY rate of

APa. We set t to 1 s. Note that OAR updater at smartphone does not need to be syn-

chronized with ACOR updater at AP. In the case ofAPc,OAR is zero because no data

is exchanged between APc and the smartphone.

Throughput estimator

calculates achievable throughput (aTH) using aR, ACOR, and OAR.

Achievable throughput: The operation of throughput estimator differs from APa to

APc. When we estimate aTH of APa, OAR should be added to ACOR to reflect

the airtime used by smartphone running throughput estimator. We here define effective

ACOR (eACOR), which is the sum of ACOR and OAR, as follows:

eACOR = ACOR+OAR. (2.4)

In case of APc, eACOR is same as ACOR because OAR of APc is zero. After

obtaining eACOR, aTH is calculated by a product of aR and eACOR:

aTH = aR · eACOR, (2.5)

we use the Rx sensitivity table. Also, the API cannot provide aR of candidate APs.
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where aTH conceptually represents the throughput when smartphone fully utilizes

the channel during idle time as eACOR with aR. After calculating aTH , Throughput

estimator updates both aTH and eACOR of AP.

Decision maker

makes handoff and scanning decisions based on aTH .

Handoff decision: BLEND determines whether to perform handoff to AP c based on

aTH . To avoid ping-pong effect, previous approaches [2, 60] utilize handoff hystere-

sis (∆). BLEND also utilizes hysteresis so that smartphone performs handoff if the

following condition is satisfied:

aTHa + ∆ < aTHc, (2.6)

where aTHa and aTHc are achievable throughput of APa and APc, respectively. If

aTHc is higher than the sum of aTHa and ∆, the smartphone performs handoff. In

BLEND, ∆ is calculated as follows:

∆ = eACORa·δ, (2.7)

where eACORa is effective ACOR of APa and δ is 6.5 Mb/s, which is the minimum

throughput difference between adjacent PHY rates as shown in Table 2.1. Therefore,

handoff is triggered only when aTHc is larger than aTH obtained with one step higher

achievable PHY rate of APa for a given eACORa.

Scanning decision: Thanks to advertising packet fromAPc, smartphone can explicitly

recognize the existence of the APc. However, if smartphone triggers scanning event

every time it receives advertising packet, unnecessary scanning event can be triggered.

Therefore, we define scanning allowance indicator (SAI) to avoid unnecessary scan-

ning event, which is set to true if the following scanning condition (2.8) is satisfied.

aTHa + ∆ < rTH, (2.8)
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where ∆ is the same hysteresis used at handoff decision, and rTH is a reference

throughput. Scanning condition implies that scanning event can be triggered only

when aTHa is significantly lower than rTH . It is not desirable to set a constant rTH

because the required throughput differs for service type in smartphone. Therefore,

BLEND needs to adapt rTH to trigger scanning event depending on the situation, and

hence, rTH is controlled by the following two ways.

First, when smartphone triggers scanning event but (2.6) is not satisfied, it means

that there is no appropriate AP to perform handoff. In this case, to reduce overhead

due to unnecessary scanning, rTH decreases to aTHa. Note that aTHa is lower than

rTH because scanning condition (2.8) is satisfied. Second, once rTH is set to an

extremely low value by the above operation, it is difficult to satisfy (2.8), thus causing

a problem of not allowing scanning at all. To avoid such problem, rTH is updated

to aTHa if aTHa is larger than rTH to allow scanning aggressively for fast handoff

when smartphone receives advertising packet of APa.

2.5.5 Verification of aTH estimation

We validate aTH estimation process with a simple experiment for 60 s. The exper-

iment is conducted using a smartphone (Nexus 5) without mobility. AP generates

20 Mb/s downlink traffic to the smartphone between 10 s and 40 s. The AP broad-

casts advertising packet every 500 ms, and the smartphone receives advertising packet

and updates ACOR. Average RSSI of smartphone is −79 dBm.

Fig. 2.5 shows the estimation results. First, aR is selected to be 39 Mb/s since

RSSI is −79 dBm (cf. Table 2.1). ACOR and OAR are converged to 0.52 and 0.47,

respectively, after traffic generation starts. eACOR, the sum of ACOR and OAR, is

0.99, which means the smartphone can occupy up to 99% of channel. However, since

ACOR is bound to 0.98 due to Wi-Fi beacon even if there is no data traffic at all,

eACOR is overestimated by 1%. Therefore, aTH is 35.1 Mb/s, which is the product

of aR and eACOR. We identify that aR and aTH estimation work well with 1% error
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Figure 2.5: Verification of eACOR and aTH.
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of eACOR even if traffic is generated.

2.6 Performance Evaluation

2.6.1 Implementation and Measurement Setup

Implementation: APs are configured by Hostapd-2.5 with Ubuntu 14.04 Linux lap-

tops equipped with Qualcomm Atheros AR9380 chipsets. We modify the latest ath9k

device driver, backports-4.2.6-1 [61], to implement ACOR updater. Ubertooth [52], an

open source Bluetooth platform equipped with CC2400 transceiver, is attached to each

AP for BLE beacon through a USB port. Ubertooth transmits advertising packet every

second with the proposed advertising packet format described in Section 2.5.3.5 The

operations of BLEND are implemented as an Android application on smartphone. By

default, smartphone performs full scanning, which scans all 2.4 GHz and 5 GHz Wi-Fi

channel. For the advanced version of BLEND, direct scanning (DS), which perform

Wi-Fi scanning only selected channel, is implemented by enabling Android hidden

API, i.e., customizedScan. We set α, a weighting factor of EWMA, as 0.2 for ACOR

and OAR calculation.

Measurement setup: We conduct our experiments in two scenarios: 1) saturated traf-

fic scenario and 2) video streaming scenario. We conduct all experiments in the topol-

ogy described in Fig. 2.1. The APs operate at channels 40 and 48 in 5 GHz, respec-

tively, and transmission power is set to 15 dBm. In the saturated traffic scenario, the

measurement environment is the same as that in Section 2.4.1. In video streaming sce-

nario, we use ExoPlayer [62] that is an Android open-source video player supporting

dynamic adaptive streaming over HTTP (DASH). We encode a 120 s video clip with

16 bitrates from 0.5 Mb/s (320x240) to 15 Mb/s (1920x1080) using FFmpeg [63].6 All
5We set the interval of advertising packet to 1 s, which is the minimum scanning interval of Nexus 5,

to avoid redundant transmission of advertising packet.
6Full high definition video (1920x1080) can be supported in both Galaxy S7 and Nexus 5.
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experiments are repeated five times.

We evaluate BLEND in comparison with the following schemes:

• Legacy: operates without any additional handoff scheme.

• Wi-Fi Manager (WM): with this commercial application [64], smartphone per-

forms scanning event periodically every T interval without condition. When

RSSI from the associated AP is under −65 dBm, smartphone performs hand-

off to a candidate AP supporting 10 dB higher RSSI than the associated AP. To

enable fast handoff, we set scanning interval T to 3 s, the minimum configurable

value in the application.

• Wi-Fi Only (WO): this home-made application triggers scanning event every T

interval only when RSSI is under −65 dBm. We set T to 3 s. Handoff decision

is the same as that of WM.

• BLEND w/ DS: the advanced version of BLEND, which performs DS. BLEND

w/ DS also works with an application on smartphone by enabling Android hid-

den API.

• Ideal: the uppermost performance assuming that the smartphone performs hand-

off ideally.

To evaluate the detail operation of BLEND, we use Nexus 5 for saturated traffic

scenario. In video streaming scenario, both Nexus 5 and Samsung Galaxy S7 are used

to show the device and Android version independence. Due to the unavailability of An-

droid hidden API for Galaxy S7, BLEND w/ DS cannot be implemented in Galaxy S7.

We also measure the average energy of Nexus 5 using Monsoon power monitor [65].

2.6.2 Saturated Traffic Scenario

Fast handoff with the help of advertising packet: Fig. 2.6 presents throughput and

RSSI results of saturated traffic scenario. Legacy, BLEND, and BLEND w/ DS show
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Figure 2.6: Throughput and RSSI results of BLEND and comparison schemes for sat-

urated traffic scenario without background traffic.
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the maximum throughput during the first 20 s. However, both WM and WO show

degraded and fluctuating throughput due to unnecessary scanning event. WO triggers

scanning event every 3 s since RSSI is less than −65 dBm as shown in Fig. 2.6b.

After 20 s, throughput values of all the schemes decrease as the smartphone moves

away from the associated AP. Throughput and RSSI of Legacy continuously decrease

since Legacy does not perform handoff to AP 2 even if RSSI goes under −80 dBm.

Throughput of WM still fluctuates even after handoff because it periodically triggers

scanning event regardless of RSSI. In cases of BLEND, BLEND w/ DS, and WO,

smartphone performs handoff to AP 2 and show the maximum throughput after 40 s.

We also observe that BLEND and BLEND w/ DS perform handoff to AP 2 earlier

than WM and WO. With the help of advertising packet sent by AP 2, BLEND and

BLEND w/ DS make a decision to trigger scanning event every 1 s, thus enabling fast

handoff without unnecessary scanning event. This fast handoff enhances throughput

of BLEND and BLEND w/ DS than that of WO and WM between 30 s and 40 s.

Handoff and scanning performance: We evaluate BLEND and comparison schemes

in terms of delay and overhead. Fig. 2.7a shows average delay per scanning and hand-

off. As explained in Section 2.3, handoff delay is the sum of scanning, authentica-

tion, and re-association delay. Each delay is measured based on state transitions of

Wi-FiManager, the primary API to manage all aspects of Wi-Fi connectivity in appli-

cation layer. Scanning delay is calculated as time difference between the start time of

scanning event, i.e., the time when StartScan() function is called at application, and

the time when scanning event finishes. Handoff delay is calculated as time difference

between the start time of scanning event and the time when handoff from AP 1 to

AP 2 is completed. Since WM, WO, and BLEND perform full scanning, scanning

and handoff delay have no difference. However, BLEND w/ DS can perform scanning

only for AP 2’s channel with the help of advertising packet, and hence, BLEND w/

DS significantly reduces scanning delay by up to 92%. Considering authentication and

re-association delay, BLEND w/ DS can reduce handoff delay up to 81% compared to
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other schemes.

Fig. 2.7b shows average scanning overhead and scanning count during measure-

ments. Scanning overhead denotes the ratio of total scanning time to 60 s, and scan-

ning count is the number of scanning events during 60 s. WM always triggers scanning

events every 3 s, thus resulting in the largest scanning overhead and count. WO contin-

ues scanning events until performing handoff to AP 2, and hence, scanning overhead

is 19.6%. However, BLEND and BLEND w/ DS reduce scanning overhead to 7.8%

and 0.6%, respectively, because they trigger scanning only when handoff is required.

In case of BLEND w/ DS, scanning overhead is drastically reduced thanks to DS.

Various channel utilization: For various channel utilization (CU) of AP 1’s channel,

we generate background UDP traffic. CU 0, CU 30, and CU 60 denote that smartphone

can utilize maximum 100%, 70%, and 40% of AP 1’s channel, respectively. Fig. 2.8

shows average throughput and handoff completion latency (HCL) under various CU.

HCL represents difference between the time when smartphone starts to move (20 s)

and the time when smartphone finishes handoff. When smartphone cannot fully utilize

AP 1’s channel due to the background traffic, it is advantageous to perform handoff

to AP 2 more quickly. Therefore, HCL of Ideal decreases as CU increases. Thanks

to throughput estimator, HCL of BLEND also decreases as CU increases, and hence,

BLEND can achieve average throughput close to Ideal in every CU. Note that WM

and WO do not consider CU, HCL of WM and WO do not decrease as CU increases.

BLEND can achieve higher throughput than WM and WO up to 61% and 24%, respec-

tively. BLEND w/ DS shows similar results to BLEND, but BLEND w/ DS achieves

slightly higher average throughput than BLEND due to DS. Legacy does not perform

handoff, and hence, its throughput is less than that of all other schemes.

2.6.3 Video Streaming Scenario

We evaluate the performance of BLEND and measure energy consumption during

video streaming. The smartphone is initially associated with AP 1 and stays at P3.
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Figure 2.9: The snapshot of video bitrate for Nexus 5.

Average RSSI of both AP 1 and AP 2 is equally −70 dBm at P3. There is no traffic

on both channel of APs at first, but saturated background traffic is generated only on

AP 1’s channel after 60 s, which means CU of AP 1’s channel is almost 100.

Snapshot of video bitrate: Fig. 2.9 shows a time snapshot of video bitrate from

Nexus 5. Legacy can support the maximum video bitrate for the first 60 s, but bitrate

drops sharply during the next 60 s due to background saturated traffic. In case of WM

and WO, video bitrate is even lower than Legacy due to unnecessary Wi-Fi scanning.

WM and WO do not take into account CU for handoff, and hence, smartphone does

not perform handoff to AP 2. On the other hand, with BLEND and BLEND w/ DS,

smartphone performs handoff quickly when background saturated traffic is generated,

and hence, the maximum video bitrate is supported for the most of time. Since the

interruption of video traffic of BLEND w/ DS is shorter than BLEND during handoff

due to DS, BLEND w/ DS recovers to the maximum bitrate within 1 s much faster

than that of BLEND, i.e., 7 s.

Average bitrate and energy consumption measurement: Figs. 2.10a and 2.10b show

average video bitrate and energy consumption of Nexus 5. Legacy shows the lowest

energy consumption because there is no Wi-Fi scanning at all. WM and WO con-

sume 0.44 mWh and 0.67 mWh more energy, respectively, compared to Legacy due to
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unnecessary Wi-Fi scanning. In addition, WM and WO show lower video bitrate com-

pared to that of Legacy because the interruption of video traffic due to Wi-Fi scanning.

However, thanks to fast handoff and intelligent Wi-Fi scanning operation of BLEND,

it achieves 104% and 111% higher video bitrate compared to WM and WO, respec-

tively. BLEND w/ DS shows 0.5 Mb/s higher bitrate compared to that of BLEND due

to DS. The reason that the energy consumption of BLEND and BLEND w/ DS is

0.67 mWh and 0.63 mWh higher than that of Legacy is playing higher video bitrate

consumes more energy. However, it is a negligible cost to support almost maximum

video quality.

Device independence: Fig. 2.10c presents average video bitrate from Galaxy S7. Be-

cause BLEND w/ DS requires enabling Android hidden API, experiment is conducted

without BLEND w/ DS in Galaxy S7. Galaxy S7 shows 9.0 Mb/s, which is almost same

as Nexus 5. BLEND shows the highest average bitrate of 12.6 Mb/s, which is 173%

and 152% higher than WM and WO, respectively. The average bitrate on Galaxy S7

excluding Legacy is lower than that of Nexus 5 because Galaxy S7 has two times

longer Wi-Fi scanning delay compared to Nexus 5.

2.7 Summary

We have proposed BLEND, a novel and practical fast handoff scheme for smartphone

in IEEE 802.11, based on the in-depth investigation of smartphones’ Wi-Fi scanning

and handoff operation. BLEND enables fast handoff to candidate AP by solving the

sticky client problem. Our solution is aided by BLE beacon that broadcasts collocated

AP’s information with advertising packet. We have implemented a prototype as an An-

droid application. With BLEND, smartphone finds target AP and performs fast handoff

based on throughput estimation, handoff decision, and adaptive scanning. Our experi-

ment results confirm the practicality, feasibility, and performance of BLEND in diverse

environments. We observe that BLEND enhances throughput and video bitrate by up
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shows always the highest video bitrate without significant energy overhead.
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to 61% and 111%, respectively, compared to the commercial Android application. As

future work, we plan to reflect coexistence with legacy AP, which has no BLE mod-

ule and design more fine-grained throughput estimation algorithm reflecting multiple

spatial streams and channel bandwidth.
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Chapter 3

PYLON: Smartphone based Indoor Path Estimation

and Localization without Human Intervention

3.1 Introduction

Recently, indoor location-based services (LBS) and applications have attracted a lot

of attention due to their social and commercial values, with the market value expected

to reach US$10 billion by 2020 [66]. Generally, the service quality of LBS depends

on the accuracy of location estimation for a user. Therefore, it is very important to

precisely estimate the user’s location, as well as to track the path the user has traveled.

For example, in markets, sales can be increased by placing popular items in locations

where many people pass by. In office buildings, we can use users’ route information

to estimate hotspot candidates, and relocate or increase Wi-Fi access points (APs) to

provide better Wi-Fi services. LBS benefits from path estimation of users to provide

better services [24].

Despite considerable research effort, localization systems are rarely deployed in

the real world. One reason is due to device heterogeneity that is difficult to deal with

in practice. For instance, the most common approaches for indoor localization are

based on Wi-Fi fingerprinting. These approaches work well with RSSI maps and prior
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knowledge of AP locations. In other words, they should generate an RSSI map for each

device [67–69]. In fact, obtaining AP location information is difficult, and received sig-

nal strength indicator (RSSI) map generation is a labor-intensive and time-consuming

data gathering process.

Some recent efforts aim to alleviate the pain of RSSI map construction by ex-

ploiting inertial measurement units (IMUs), including accelerometers, gyroscopes, and

magnetometers, that are mounted on most smartphones today [35, 36]. These read-

ings represent movement characteristics of a user and help the smartphone to track

the walking path of the user, i.e., dead reckoning. However, there are some problems

with dead reckoning using IMU sensors. First, sensor drift accumulates quickly over

time, so tracking accuracy lasts only for a short time. Second, dead reckoning tracks

the walking path, not the exact location of the user. To determine the exact location,

knowing the user’s initial location is essential, so human intervention is inevitable.

To address the aforementioned indoor localization problems, we propose a novel

path estimation and localization system, called PYLON, that works without human

intervention. The main idea behind PYLON is to use entrances (i.e., doors) of a building

as landmarks under Wi-Fi and Bluetooth Low Energy (BLE) infrastructure. PYLON is

an application, running on a smartphone and a back-end server. Using IMU sensors

and RSSIs of Wi-Fi and BLE, the user’s smartphone just collects movement data, e.g.,

step count, step frequency, walking direction, while walking. The server estimates the

user’s approximate path and performs landmark correction, using the actual floor plan.

The central component of PYLON is landmark correction. It is a novel way to

take advantage of widely-deployed Wi-Fi and BLE infrastructure, enabling the user to

get accurate path estimation and localization. PYLON generates virtual rooms where

the user is considered to have passed. It uses a data mining approach to generate vir-

tual rooms according to collected RSSIs. Our proposed floor plan mapping algorithm

maps the generated virtual rooms to the real-world floor plan. Then PYLON estimates

rooms that the user has actually passed through. After conducting the floor plan map-
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ping, PYLON estimates the time when the user passed through each door, using the

real-world floor plan. The path roughly generated by IMU sensors is corrected by the

doors that the user passed through. Leveraging doors as landmarks, PYLON eliminates

cumulative errors in IMU sensors such as location and walking direction, and traces

roughly generated paths without human intervention. In addition, PYLON applies a

particle filter to increase the accuracy of path estimation and localization.

Unlike other localization systems, PYLON does not require RSSI fingerprint data,

locations of Wi-Fi APs and BLE beacons, and the initial location of the user. More-

over, PYLON does not need any additional hardware or software modifications on the

smartphone. We have implemented PYLON on five different Android smartphones and

evaluated it in an office building. Our experimental results show that PYLON achieves

localization performance within an average error of 1.42 m, exploiting floor plan map-

ping and door passing time detection.

In summary, the main contributions of this paper are threefold:

• We design a path estimation and localization system, termed PYLON, which

is plug-and-play on Android smartphones. PYLON includes a novel landmark

correction scheme that leverages real doors of indoor environments consisting

of floor plan mapping, door passing time detection and correction. It operates

without any user intervention.

• PYLON relaxes some requirements for localization systems. It does not require

any modifications to hardware or software of smartphones, and the initial lo-

cation of Wi-Fi APs, BLE beacons, and users. In addition, on-site investiga-

tions for fingerprint or trace data collection which are labor-intensive and time-

consuming is not necessary. PYLON can be directly applied to unknown indoor

environments.

• We implement PYLON on five Android smartphones and evaluate it on two office

buildings with the help of three participants to prove applicability and scalability.
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PYLON achieves very high floor plan mapping accuracy with a low localization

error.

3.2 Background and Related Work

3.2.1 Infrastructure-Based Localization

The lack of compatibility of GPS for indoor localization has led to diverse approaches

that use alternative systems such as camera [70], acoustic [71–74], and infrared [75].

These systems require the deployment of infrastructure or specially designed hardware

to realize localization for indoor environments. While each approach has its own ad-

vantages (e.g., sub-meter level localization accuracy in the case of acoustic systems),

requiring specific hardware or infrastructure is a barrier to the wide adoption of these

localization systems [38]. SpotFi [76] uses CSI to calculate the angle of arrival (AOA)

of multipath components to achieve decimeter-level accuracy. LiFS [77] achieves pas-

sive localization by taking advantage of the shadow effect caused by people blocking

the line-of-sight paths of the Wi-Fi links. A recent approach proposes a localization

system [78] based on RSSI of the 60 GHz wireless LAN, also known as mmWave,

compliant with the IEEE 802.11ad standard [79]. However, since mm-Wave devices

and APs are not yet widely deployed, it is hard to directly apply mmWave-based lo-

calization to the current infrastructure.

In addition to the mmWave-based localization, visible light localization systems

have been proposed recently. These systems use the frequency of a measured light

with camera [80] or measure the light intensity through ambient light sensors built

on smartphones [81–83]. However, light-based localization is not compliant to tradi-

tional fluorescent lights in the building, and requires additional hardware to apply to

light emitting diodes (LED). Since the measured light intensity is used for localiza-

tion, it is difficult to accurately specify a position when there exists strong ambient

light interference (e.g., sunlight during the daytime). To address the aforementioned
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limitations of infrastructure-based localization, we propose PYLON, focusing on ap-

plicability. We take advantage of wide deployment of Wi-Fi and BLE to increase the

cost-effectiveness of localization systems, and design PYLON that works plug-and-

play on smartphones, thereby improving practicality significantly.

3.2.2 Fingerprint-Based Localization

Many indoor localization schemes adopt fingerprint approaches to determine the user’s

location [68, 69, 84–87]. The localization system in [36], based on measuring and

matching radio signals of Wi-Fi or Bluetooth, leverages the already deployed infras-

tructure to provide significant cost benefits. However, fingerprint-based localization

requires a labor intensive work to measure RSSI at every location in the points of in-

terest, and then it should build a fingerprint database. This approach is pioneered by

Radar [67] and Horus [88] that identify different causes for the wireless channel vari-

ation, resulting in better accuracy with lower complexity. SurroundSence [89] builds a

database based on ambience fingerprinting such as light, color, Wi-Fi, etc.

The above approaches require site investigation of a specific area to create a fin-

gerprint database comprising RSSI measurements at known locations. The fingerprint-

based localization lacks flexibility in dynamic environments (e.g., variation of AP

placement), and hence database construction has to be repeated at each new point to

maintain the system. However, PYLON does not require any site investigation and it is

flexible to environmental changes, which eliminates the drawbacks of the fingerprint-

based system.

3.2.3 Model-Based Localization

An alternative way, which avoids a labor intensive task of fingerprint-based localiza-

tion, is to use a radio propagation model to estimate the RSSI at a given location x,

according to the transmit power Pt and the distance dx between the transmitter and a

given location [90]. A popular model is the log-distance path-loss model that calcu-
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lates the RSSI as Px = Pt − γlog(dx) + N , where N represents the noise term [91].

These approaches sacrifice localization accuracy to eliminate database construction

efforts. The irregular signal propagation in indoor environments caused by obstacles

(e.g., walls) decreases location accuracy, and hence the extension of this model has in-

corporated the irregularity of signal propagation [33, 67, 88, 92, 93]. These approaches

show the limitations in localization accuracy, due to the inaccuracy of models [94].

PYLON does not require any prior knowledge of locations of users or APs.

3.2.4 Dead Reckoning

Recent developments in microelectromechanical systems allow multiple sensors, such

as accelerometer, magnetometer, and gyroscope, to be integrated into a small iner-

tial sensor module [18]. IMUs, consisting of accelerometers, magnetometers, and gy-

roscopes, become cheaper and are mounted on handheld devices, especially smart-

phones. Since all the information required to estimate human movements [19], such as

heading direction, acceleration, and rotation velocity, is recorded on IMU sensors, the

smartphone using dead-reckoning tracks the path that a user passes, if the initial loca-

tion of the user is known [20–22]. For path estimation of the user, the dead-reckoning

system uses steps counted by the accelerometer and moves the user’s location in the

direction of the progress by the step length, determined by the gyroscope or magne-

tometer. IMU sensor readings are integrated and averaged [23]. However, a signifi-

cant drawback is error propagation of sensor readings, even a small error magnified

through integration. Complementary approaches leverage virtual landmarks created

by the existing infrastructure of Wi-Fi to prevent accumulation of errors [24, 25]. We

use landmarks, i.e., doors, to compensate for error accumulation due to drift in sensor

readings.
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3.2.5 Landmark-Based Localization

As mentioned above, one solution for error propagation of IMU sensors is a landmark-

based approach that compensates for drift in sensor readings. Walkie-Markie [24] de-

fines APs as landmarks to fuse crowdsourced user trajectories obtained from IMU

sensors on smartphones. However, it requires repeated trajectories of multiple users

for the same pathway. JigSaw [26] utilizes crowdsensing images captured from mo-

bile users and extracts the location, size, and orientation information of each landmark

object from images. But it is not easy to leverage the images taken by users considering

privacy issues. AcMu [27] pinpoints mobile devices with trajectory mapping, and uses

them as mobile reference points to collect real-time RSSI samples only when static. It

takes days to months for RSSI sample collection to provide accurate localization ser-

vices. ACMu has limitations in its immediate application to unknown environments.

The recent work iVR [28] uses security surveillance cameras installed in an indoor

space, and employs a particle filter to fuse data from multiple systems including vi-

sion, radio, and IMU sensors. It is more difficult to use video of security surveillance

cameras when considering privacy and security issues, compared to using only radio

signals of Wi-Fi or BLE. In PYLON, we are free from data collection from multiple

users, images taken by users, or video from surveillance cameras. PYLON can be easily

applied to unknown environments.

3.2.6 Simultaneous Localization and Mapping (SLAM)

In robotics and computer vision communities, simultaneous localization and mapping

(SLAM) is developed as a technique for jointly estimating the location of a robot

and the map of an environment [95, 96]. While a robot equipped with sensors, such

as camera, sonar, and radar, has the capability of navigating an area of interest, the

limitations of a smartphone hinder use of the SLAM technique [97–99]. To realize

SLAM, robot sensors detect landmarks or obstacles, and the robot helps to illustrate

the discovered area map according to the sensing data. However, it is impractical to
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adopt standard SLAM for smartphone-based localization [25].

While early research on SLAM uses Kalman Filter for localization, it applies only

to the linearly modeled position of a robot that follows a Gaussian distribution. To

apply the robot’s position for a nonlinear and non-Gaussian distribution, Monte Carlo

Localization (MCL) [100] presents a version of Markov localization as part of SLAM.

MCL, also known as particle filter localization, applies sampling-based methods to

approximate the probability distribution. It uses particles to represent possible states.

Whenever the robot moves, MCL shifts particles to predict new state and re-samples

according to recursive Bayesian estimation. Finally, the particles converge to the actual

location.

There have been efforts leveraging IMU sensors and radio signals to apply SLAM.

FootSLAM [101] uses foot-mounted IMU sensors to construct an inertial map. Wi-Fi-

SLAM [102] uses a Gaussian process latent variable model to build an RSSI map and

models human movement as a hidden variable. Semi-supervised localization [103] es-

timates the location of other users according to RSSI dissimilarities. Zee [36] reduces

RSSI map generation efforts with the help of the real-world floor plan. LiFS [84] lever-

ages the floor plan and the relationship between rooms including the door, which are

the overlapped components of PYLON. LiFS requires RSSI samples of the area of in-

terest at the intersection, and the training phase is essential to match the floor plan

and raw RSSI data. PYLON does not require fingerprint data for the training process.

Instead, the real-world floor plan and only RSSI data collected during the user’s walk

are used.

3.3 System Overview

PYLON is performed on two entities: a smartphone and a server as shown in Figure 3.1.

Data collection module and data processing module operate on the smartphone. Data

collection module collects RSSIs of Wi-Fi/BLE and reads IMU sensors such as gy-
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Figure 3.1: System architecture of PYLON.

roscope and accelerometer. Data processing module calculates RSSI differences of

Wi-Fi/BLE and roughly generates the route of a user based on walking direction es-

timation, step detection, and step length estimation by using IMU sensor readings.

Landmark correction is conducted to estimate the path and location of the user with

the help of the real-world floor plan, and PYLON applies the particle filter on the server

to improve estimation accuracy of the path and location.

3.3.1 Notable RSSI Signature

PYLON applies landmark correction to estimate the path and location of the user. In-

vestigating the spatial and temporal characteristics of Wi-Fi and BLE signals, we find

an interesting wireless radio signal characteristic that could be used in indoor localiza-

tion. The major observation is that received signal strength significantly decreases or

increases while the user passes through a door. As shown in Figure 3.2, the RSSI of

the same AP sharply changes as the user passes through the door between two adjacent

rooms at 10 s. Therefore, the characteristics of RSSI can be used to detect the exact

timing of the user passing through a door and to differentiate between two different

rooms.
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Figure 3.2: Sharp RSSI change when the user passes the door.

3.3.2 Smartphone Operation

Data Collection Module. We use radio devices (i.e., Wi-Fi and BLE) and IMU sensors

(i.e., accelerometer and gyroscope) of a smartphone for data collection. The smart-

phone triggers Wi-Fi scanning periodically to receive packets from multiple APs and

to collect RSSIs [104]. BLE beacons transmit advertising packets periodically, and the

smartphone uses the received advertising packets to collect RSSIs when its Bluetooth

module is on. That is, RSSIs of Wi-Fi and BLE are collected upon packet reception.

In IMU sensors, the accelerometer returns the acceleration force along x, y, and z

axes including the gravity, and the gyroscope returns the speed of rotation around x,

y, and z axes. Accelerometer and gyroscope readings are used to estimate the user’s

movement.

Data Processing Module. Raw RSSIs of Wi-Fi and BLE are transformed into RSSI

stacking differences to represent the cumulative difference between an RSSI to other

RSSIs [105]. Since RSSI contains the characteristics of each device, PYLON uses RSSI

stacking differences to eliminate device dependency. It also uses them to generate vir-

tual rooms for landmark correction.
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Figure 3.3: Detailed procedure of landmark correction. Landmark correction operates

in four steps.

For IMU sensors, gyroscope data is integrated into the time domain to get the walk-

ing direction of the user, and passes through a low-pass filter to remove high-frequency

noise. We count the peak of the acceleration magnitude of 3-axis to estimate the num-

ber of steps for the user, where each peak is considered one step. According to the in-

terval of repetitive peaks, we determine the step frequency to estimate the step length.

Then, we choose the step length estimation model that has a linear relationship with

the step frequency. Combining the walking direction, step detection, and step length

estimation, we roughly estimate the walking path of the user. Finally, the smartphone

transmits RSSI stacking differences, movement and path information to the server.

3.3.3 Server Operation

Landmark Correction. The main role of landmark correction is to adjust the loca-

tion and orientation of the user’s path, using the real-world floor plan and collected

data from the smartphone. In landmark correction, we use doors as landmarks, i.e.,

reference points, because the user should pass through a door to move from a room

to another room. Figure 3.3 shows four components for landmark correction in detail

that are essential in PYLON. First, applying a data mining approach for RSSI stacking

differences, PYLON generates virtual rooms. Second, PYLON uses a simple and novel

floor plan mapping algorithm to match virtual rooms to the real-world floor plan. Third,

PYLON detects the exact time whenever the user passes through a door according to

the floor plan mapping. We assume that PYLON knows the door location owing to the
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real-world floor plan. Finally, if PYLON considers that the user goes through a door,

it uses the location information of the door to correct the errors in the location and

orientation of the user’s path.

Particle Filter. The problem that the path may pass through walls after landmark cor-

rection still remains. Since walking through walls is not physically possible, we adopt

a particle filter to adjust the estimated path so that the user’s path does not touch the

walls. The particle filter is a non-parametric form of Bayesian estimation, commonly

used in computer vision and tracking. It helps to estimate the user’s path and location

with high accuracy.

3.4 Path Estimation

Step detection, step length estimation, and walking direction estimation are key ele-

ments to track the moving path of a user. Once PYLON is initialized, it continuously

detects each step, and estimates walking direction and step length. The role of path

estimation, i.e., dead reckoning, is to roughly generate the walking route of the user,

without requiring very high accuracy. We apply landmark correction and then the par-

ticle filter for an accurate estimation of the user’s path and location.

3.4.1 Step Detection

PYLON detects the user’s step in accelerometer readings. Since the maximum magni-

tude of 3-axis of the accelerometer occurs when the user’s heel strikes the ground [106],

we design a step detection algorithm to detect the peak of accelerometer reading. To

make step detection independent of the orientation of the smartphone, we consider

only the magnitude of 3-axis [29]. We simply obtain the magnitude of the accelerom-

eter reading as

a =
√

(a2x + a2y + a2z). (3.1)
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To extract the smoothed magnitude of the accelerometer reading, we first use a low-

pass filter that removes high-frequency noise, caused by random movement of the

smartphone. The low-pass filter operates online on the smartphone, using the following

exponentially weighted moving average:

aavg = (1− α) · ai + α · aavg, (3.2)

where ai is the ith raw magnitude of the accelerometer reading, and aavg is its average

after passing through the low-pass filter. The default value of α is set to 0.8.

After the low-pass filter smoothing, we apply a peak detection algorithm that uses

a sliding window to find peaks of aavg. If aavg is larger than the other sample values

collected within the window size tw, and the slope product of the rightmost and left-

most samples of aavg is less than 0 (i.e., slope sign change), we consider the sample of

aavg a peak (i.e., user’s step). Since the user’s step frequency is generally lower than

3Hz [35], the default value of tw is set to 0.33. Figure 3.4 shows filtered accelerome-

ter readings, where the red line represents filtered data and blue dots indicate detected

peaks, i.e., steps. It shows our step detection algorithm performs well.
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3.4.2 Step Length Estimation

There are several barriers for estimating the accurate step length for each user. It is not

practical to ask each user to manually label step data so that the system trains the step

model. Since body profiles such as height and weight, affect estimation accuracy, the

generic model alone can not lead to high accuracy. In addition, the user’s step model

may change over time even for the same person. We apply the step model proposed

in [35] to address the above issues. The authors in [35] propose a personalization

algorithm that starts with a generic model and collects user data on the fly to train the

model. They set up a system to collect more than 4000 steps from 23 users with various

physical characteristics. They choose the frequency model [107] as their generic step

model, which shows a clear trend that the step length has a linear relationship with the

step frequency. The step frequency, i.e., walking frequency, is the number of detected

steps per second. We express the model as

Ls = a · fs + b, (3.3)

where Ls is the estimated step length, fs is the step frequency, and a and b are the

coefficients.

3.4.3 Walking Direction

Walking direction estimate is an important component in path estimation. For this, we

use the gyroscope, which measures the angular velocities around x, y, and z in rad/s.

The degree of rotation, i.e., walking direction, is obtained by integrating gyroscope

readings. During a turn, the axis of rotation of the body always faces the center of

the earth (i.e., the direction of gravity) [29]. The same axis as the direction of gravity

shows the highest accelerometer reading on average. Since the gyroscope measures

angular velocities on each axis of the smartphone, we first determine the orientation of

the smartphone using the gravity value of 3-axis of the accelerometer.

54



PYLON uses the rotation degree of a single axis to represent the direction of gravity.

While the rotation degree of the single axis can not perfectly measure the rotation of

the user, PYLON applies additional algorithms of landmark correction in Section 3.6,

to compensate for inaccuracy of estimation generated from the single axis. We also

apply the low-pass filter to the rotation degree to eliminate high-frequency noise.

3.4.4 Location Update

We update the user’s location according to step detection, step length estimation, and

walking direction estimation. Basically, location update is performed per step basis.

PYLON detects the user’s step and calculates the location of the user based on the

estimated step length and walking direction. All steps of the user are considered to

be heading to the walking direction at the estimated step length. Since we have no

prior knowledge of the initial location and orientation of the user, we estimate only the

walking path. If the user takes the kth step, we update the kth location as

xk = xk−1 + Ls · cos(θ),

yk = yk−1 + Ls · sin(θ).
(3.4)

As noted earlier, Ls is the estimated step length, θ is the walking direction, and xk

and yk are the location of the smartphone from the perspective of the initial location.

However, since we do not know the initial location and orientation of the user, we

can not confirm the user’s exact location as shown in Figure 3.5. Therefore, we apply

landmark correction to address this issue. Again, path estimation roughly generates the

walking path of the user, and PYLON corrects the location and orientation of the user

with landmark correction.
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Figure 3.5: Examples of the possible walking path without additional information such

as initial location and orientation.

3.5 Landmark Correction Part 1: Virtual Room Generation

We generate virtual rooms according to RSSI stacking differences, and conduct floor

plan mapping, door passing time detection, and path correction. In this section, we

first describe how to generate virtual rooms and a virtual floor plan. We use virtual

rooms and a real-world floor plan to create a virtual floor plan and a physical floor

plan, respectively, and perform floor plan mapping.

3.5.1 RSSI Stacking Difference

The first step for virtual room generation is collecting RSSI data of Wi-Fi and BLE on

the smartphone. There is no human intervention when the smartphone collects RSSI

data. The user just walks or sits in an office, shopping mall, or coffee shop. The smart-

phone collects RSSIs of Wi-Fi and BLE upon packet reception. If there are n Wi-Fi

APs and BLE beacons in total in a building, we can represent RSSI samples of nWi-Fi

APs and BLE beacons as

R = [r1, r2, · · ·, rn], (3.5)

where ri denotes the RSSI of the ith Wi-Fi AP or BLE beacon. We can use raw RSSIs

as they are, but they are very different on various devices even if devices are at the

same location and time [104]. Therefore, we use the difference relationship between

RSSI values to overcome the device dependency problem. We leverage the concept of
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RSSI stacking difference to represent the cumulative difference between one RSSI and

other RSSIs [105]. RSSI stacking differences embody RSSI gap relations at specific

locations and times, and show a relatively more stable feature of radio signals than raw

RSSI values. We transform RSSI to the RSSI stacking difference, using

wi =

n∑
j=1

I(ri − rj > 0)(ri − rj), (3.6)

where I is an indicator function, i.e., characteristic function. The indicator function

can be represented as

I(z > 0) =


1, if z > 0

0, else,
(3.7)

where all elements of z that are larger than 0 have the value 1. Based on the RSSI

stacking difference, PYLON generates virtual rooms and a virtual graph.

3.5.2 Virtual Room Generation

PYLON generates virtual rooms based on RSSI stacking differences and determines

the number of rooms that the user passes through. To this end, we apply a data min-

ing approach for RSSI stacking differences and adopt K-means clustering technique.

K-means clustering demonstrates its high accuracy and efficiency in [105]. To apply

K-means clustering to our problem, we should determine the cluster number k that

equals the number of rooms that the user actually passes through. We choose the el-

bow method [108] to determine the cluster number. For easy understanding, we take

an example in a real-world floor plan of a building as shown in Figure 3.6.

A user walks through corridors and rooms alphabetically, starting at corridor A

and ending at room D as shown in Figure 3.6a. The smartphone collects RSSIs of Wi-

Fi and BLE while the user is walking, and calculates RSSI stacking differences. The

server determines the cluster number, using the elbow method, and conducts K-means

clustering. In this example, the cluster number k is determined as 4, which equals

the number of rooms that the user passes through. All data including RSSI stacking
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Figure 3.6: Example of a user trace in the real-world building and, virtual room gener-

ation, and a logical floor plan.
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differences and information of path estimation is divided into four clusters. Figure 3.6b

shows four virtual rooms generated by K-means clustering, and y axis represents the

virtual room state. The state of each virtual room is randomly assigned by clustering.

There are four state transitions between virtual rooms over time. In addition, we can

infer the relationship between virtual rooms from Figure 3.6b. That is, the virtual room

3 is connected to all the other virtual rooms 1, 2, and 4.

3.5.3 Virtual Graph Generation

Based on virtual rooms and their relationships, we construct a logical floor plan of

virtual rooms. The logical floor plan illustrates the relationship between virtual rooms,

using a graph. The graph is formally defined as an undirected graph G = (N,E)

where a node n ∈ N denotes a virtual room and an edge (u, v) ∈ E represents that

virtual rooms u and v are reachable from each other. The logical floor plan of virtual

rooms is referred to as virtual graph Gv hereafter.

We generate Gv according to the relationship between virtual rooms as shown in

Figure 3.6b. The user moves from virtual room 1 to 3 at 20 s first. According to the

relationship, we generate two nodes, i.e., nodes 1 and 3, and one edge, i.e., (1, 3), as

part of Gv. The virtual room state changes from virtual room 3 to 2 at 24 s. Then we

add a new node 2 and an edge (2, 3) toGv. The virtual room state changes from room 2

to 3 at 62 s. However, since virtual rooms 2 and 3 are already in Gv, there is no change

in Gv. Finally, we add a new node to Gv at 68 s. The virtual room state changes from

state 3 to 4. Then we add node 4 and edge (3, 4) to Gv. Figure 3.6c represents the

complete Gv, showing reachability between nodes. We assume that the reachability is

undirected. This means, if node 3 is reachable from node 1, then node 1 is reachable

from 3. Therefore, node 3 is reachable from all the other nodes according to Gv.
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3.5.4 Physical Graph Generation

After constructing virtual graph Gv, we should map Gv to a real-world floor plan.

Before mapping, we also need a logical graph of the real-world floor plan. For con-

venience, the logical floor plan of the real-world floor plan is referred to as physical

graph Gp. Gp is also modeled as an undirected graph. We consider each room and

corridor a node in Gp, and divide a corridor into several segments as shown in Fig-

ure 3.7a. We first divide a corridor into vertical and horizontal segments, for instance,

n1 and n3. The area of a corridor overlapped with vertical and horizontal segments is

considered an independent node, such as n9, because it embodies RSSI characteristics

of both n1 and n3. Therefore, when generating virtual rooms, n9 may be considered

an independent area depending on the clustering result. Considering the reachability

between corridors and rooms, we generate Gp based on the real-world floor plan as

shown in Figure 3.7b.

3.6 Landmark Correction Part 2: From Floor Plan Map-

ping to Path Correction

After constructing a virtual graph Gv and a physical graph Gp, we now conduct floor

map mapping between Gv to Gp in two steps: backbone node mapping and dead-

end node mapping. Before doing this, we determine candidate graph Gc first. Gc is

a subset of Gp and consists of the same number of nodes as Gv. We regard a subset

graph as Gc for Gv that all nodes composing Gc are reachable.

3.6.1 Candidate Graph Generation

Basically, the number of nodes in Gv is less than that in Gp, unless the user moves

around all the rooms of the real-world floor plan. Therefore, more than one subset of

Gp is a candidate forGv. If we denote the number of nodes inGp andGv asNp andNv,

respectively, the maximum number of candidates for Gc is given by Nv combination
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(b) A physical graph

Figure 3.7: A real-world floor plan and a physical floor plan. All rooms and corridors

are considered nodes.
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of Np. However, all subsets can not be Gc. If one subset contains a node that is not

reachable from the other nodes, this subset should be removed from Gc. Since all

rooms are physically connected, all nodes should be reachable from each other.

We give some examples for subsets of Gp. In the case of two subset graphs in

Figure 3.8a, all nodes composing each subset graph are reachable from each other.

Therefore, these two subset graphs can be Gc. However, in Figure 3.8b, two subset

graphs can not be Gc because n2 in the left figure, n4 and n7 in the right figure

lose their reachability from the other nodes. We exclude these subset graphs from Gc

candidates. Therefore, if Gv contains four nodes, 39 subset graphs can be selected as

Gc from 210 subset graphs in the case of Gp shown in Figure 3.7b. The goal of floor

plan mapping is to choose only one Gc as Gv.

3.6.2 Backbone Node Mapping

Now, we conduct floor plan mapping according to Gc. The first step is backbone node

mapping. In graph theory, betweenness centrality is a measure of the node’s central-

ity [109]. Betweenness centrality of each node is measured as the number of the short-

est paths that pass through that node. A node that embodies many shortest paths be-

tween other nodes has high betweenness centrality. Generally, betweenness centrality

of an leaf node in the graph is 0. We can express betweenness centrality of node v as

g(v) =
∑

s 6=v 6=t

σst(v)

σst
, (3.8)

where σst is the total number of the shortest paths from node s to t, and σst(v) is

the number of the paths that pass through v. In Figure 3.7b, n1 and n3 apparently

have higher betweenness centrality than the other nodes, and nodes that have non-zero

betweenness centrality are called backbone nodes. We first perform backbone node

mapping between Gv and Gc, in order of high betweenness centrality.

Figure 3.9 shows the example results of backbone node mapping between two

Gc’s. The left and right graphs representGc andGv, respectively, in Figs. 3.9a and 3.9b.
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Figure 3.8: Subset graphs of the physical graph.
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(b) The second candidate graph and the virtual graph

Figure 3.9: Two examples of candidate graphs and virtual graphs after backbone node

mapping.

Nodes for Gc and Gv are illustrated with circles and stars, respectively. We represent

nodes mapped by backbone node mapping in red color. Since betweenness centrality

of n1 and n3 is 3 in Gc, they are mapped first because their betweenness centrality is

the highest. Since leaf nodes have betweenness centrality of 0, they are not backbone

nodes. We perform backbone node mapping in all 39 Gc’s, and then conduct dead-end

node mapping to match the rest of the nodes.
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3.6.3 Dead-end Node Mapping

Dead-end nodes represent the rest of nodes that are not mapped by backbone node

mapping. Generally, dead-end nodes are leaf nodes of a graph, and logically symmetric

in most cases. Mapping for dead-end nodes is not an easy task, relying on only the

logical graph Gv and Gc. Therefore, we use a relative location of each node to map

dead-end nodes perfectly. In Gc, we can determine the exact location of each node

according to the real-world floor plan. We define the location of each node as the center

of a room or corridor, following the real-world floor plan. When PYLON generates Gv

using RSSI stacking differences, we can obtain the relative location of each node in

Gv, thanks to path estimation. Therefore, we can determine the relative location of

each node in both Gv and Gc. Leveraging the relative locations, we conduct dead-end

node mapping.

Cosine similarity is a measure for similarity between two non-zero vectors of an

inner product space, which measures the cosine of the angle between them [110]. It

is not a magnitude but the judgment of orientation. The cosine similarity has a value

between −1 and 1. If two vectors have the same orientation, the cosine similarity is

1. Two vectors in diametrically opposite orientation have the cosine similarity of −1,

independent of their magnitude. We can represent the cosine similarity of two vectors

A and B as

cosine similarity = cos(θ) =
A ·B
||A||||B||

. (3.9)

We leverage the concept of cosine similarity for dead-end node mapping, using

backbone nodes. For easy understanding, we take two examples for dead-end node

mapping as shown in Figure 3.10. Nodes mapped by dead-end node mapping are col-

ored in green. In the case of Figure 3.10a, we generate three vectors from n1 to n2,

n8, and n9 in each Gc and Gv. Therefore, we generate a total of 9 (= 3 × 3) cosine

similarity values. PYLON first conducts node mapping in order of high cosine similar-

ity. In this example, since the vectors from n1 to n8 in Gc and Gv show the highest

cosine similarity, n8 is mapped first. Afterwards, n2 is mapped following the above
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Figure 3.10: Two examples of candidate graphs and virtual graph after dead-end map-

ping.

process, and n9 is mapped last. In this way, we conduct dead-end node mapping until

all the nodes are mapped. In the case of Figure 3.10b, we generate three vectors from

n3 to n1, n4, and n6 in each Gc and Gv. According to the cosine similarity, n4, n6,

and n1 are mapped in order.

3.6.4 Final Candidate Graph Selection

If one Gc exactly fits Gv, the cosine similarity value of each vector from backbone

nodes to all dead-end nodes should be 1 in both Gc and Gv. Therefore, we choose one

Gc as Gv, which shows the highest average cosine similarity. Figure 3.11a shows the

66



0 10 20 30 40
Candidate Graph Index

-1

-0.5

0

0.5

1

C
os

in
e 

S
im

ila
rit

y

(a) The average cosine similarity of 39 candi-

date graphs

0 4 8 12 16
x (m)

0

5

10

15

20

y 
(m

)

n1

n3
n4

n6

(b) 25th candidate graph that shows the highest

average cosine similarity

0 4 8 12 16
x (m)

0

5

10

15

20

y 
(m

)

n1
n2

n3
n4

n5 n6

n7

n8
n9
n10

(c) The physical graph completing the mapping

algorithm

Figure 3.11: The average cosine similarity of candidate graphs and final answer of

mapping algorithm.
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average cosine similarities for all the 39 Gc’s. Among 39 Gc’s, the 25th Gc shows the

highest cosine similarity, which we choose asGv. Figure 3.11b shows that the 25th Gc

is composed of n1, n3, n4, and n6, and Figure 3.11c shows the exact position of the

25th Gc in the real-world floor plan. From the mapping results, we know about transi-

tions between rooms or corridors in the real-world floor plan over time. Therefore, we

can correct the location and orientation of the user’s path, using landmarks.

3.6.5 Door Passing Time Detection

Backbone node mapping and dead-end node mapping aim to correct the location and

orientation of the user’s path, using landmarks. We leverage room entrances, i.e., doors

represented on the real-world floor plan, as landmarks to compensate for the cumula-

tive error of IMU sensor readings. Since the real-world floor plan of a building is given,

door locations are known values. We use the location of each door to compensate for

the cumulative error and should find the exact time when the user passes the door. If

we know the exact door passing time, we can correct the location and orientation of the

user’s path according to the door location. Therefore, we reuse a clustering result as

shown in Figure 3.6b to find the exact door passing time. The clustering result shows

room state changes over time. The more accurate the door passing time, the better the

accuracy in path estimation and localization.

However, it is challenging to find the exact door passing time, using the clustering

results alone. The time period during which a virtual room state undergoes the ping-

pong effect is observed when the room state changes as shown in Figure 3.12a. This

means that the clustering result can not directly imply the exact door passing time. To

solve this problem, we design a sliding window to minimize the ping-pong effect and

to prevent the distortion of state change. We consider at least two steps are required

to completely change the room state that the user stays in. The sliding window helps

to determine how many beacons we can receive while changing two steps. We can
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(b) The new virtual room state after applying the sliding window

Figure 3.12: The clustering results before and after applying the sliding window.
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express the window size as

W =
2

fs
· 1

Ibeacon
· SN , (3.10)

where fs is the step frequency, Ibeacon is the beacon interval, and SN is the number of

Wi-Fi APs or BLE beacons that the smartphone can receive. Since RSSI samples are

collected whenever the smartphone receives beacons when PYLON generates virtual

rooms, we set the unit of the sliding window to the number of beacons. We apply the

sliding window to the old state (i.e., the result of clustering) to generate a new state,

which eliminates the ping-pong effect, as follows.

statenew(i+W ) = mode(stateold(i+ 1, i+ 2, · · · , i+W )), (3.11)

where i represents the ith state. We take a mode value (i.e., the state that appears

most often) of the old state in the sliding window as the new state. As a result, we

successfully eliminate the ping-pong effect, and find the exact door passing time when

the state changes, as shown in Figure 3.12b.

3.6.6 Path Correction

We are now ready to correct the user’s path and location, using the door passing time.

Note again that PYLON maps virtual rooms to the real-world floor plan through virtual

room generation and floor plan mapping, and finds the exact door passing time based

on the clustering result. If the user passes a door, PYLON determines the exact location

and orientation of the user’s path. For the sake of clarity, we use an example to explain

the path correction. First, we should know when the user passes the first door. After

conducting floor plan mapping, we know about room state changes of the path in the

real-world floor plan as shown in Figure 3.12b. The room state change from n3 to n6

at 24 s is important. Since n3 is a corridor and n6 is a room, the user goes through

the door for the first time at 24 s. Therefore, using parallel transference, we move the

user’s path to the location of the first detected door.
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We mark the location of the first door with a blue dot in Figure 3.13, and move the

path up to the blue dot, used as an anchor. However, we still can not have confidence

about the orientation of the user’s path as shown in Figure 3.13a. To find its orienta-

tion, we take an assumption that the user moves vertically into the door when passing.

Therefore, PYLON modifies its orientation to the vertical angle of the door, and finds

the exact path as shown in Figure 3.13b. Each time the user passes through a door,

PYLON corrects the location and orientation of the user’s path.

3.7 Particle Filter

PYLON realizes path estimation without human intervention, thanks to landmark cor-

rection. However, the problem that the user passes through a wall still remains. Fig-

ure 3.14 shows the path estimation by landmark correction, which is not perfect. The

black dotted line represents the ground truth path of the user, the gray line, i.e., Legacy,

shows the estimated path through dead reckoning, which leverages IMU sensors only,

and the blue line is the estimated path after landmark correction (LC). For Legacy,

the initial location and orientation of the smartphone is provided for easy comparison.

Compared to Legacy, LC provides higher accuracy in path estimation after the user

passes through the first door. However, LC shows that the user still passes through

walls in the area marked with two circles in yellow. Since this is not physically possi-

ble, we apply a particle filter to keep the user’s path in a corridor or room with the help

of the real-world floor plan [35].

To keep the user’s path in a corridor or room, we adopt the particle filter whose

concept is illustrated in Figure 3.15. Initially, the particles (i.e., samples) are generated

around the estimated point, and all particles are equally weighted. Each particle moves

according to the movement of the user step by step, and is constrained by the real-
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(a) The parallel transference of the path to the first door

(b) The path corrected the orientation with door

Figure 3.13: The example of parallel transference and the orientation corrected path.
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world floor plan. Therefore, the kth location of the i-th particle is updated as:

xik = xik−1 + (Ls + δik) · cos(θ + γik),

yik = yik−1 + (Ls + δik) · sin(θ + γik),
(3.12)

where Ls and θ are the estimated step length and the walking direction, respectively,

while δik and γik are the zero mean Gaussian noise.

PYLON checks whether the movement of each particle violates any indoor con-

straints such as moving into the wall. These particles are considered dead, and we set

their weight to 0. The remaining particles (i.e., live particles) equally absorb the total

weight of dead particles, which increases the weight of live particles. Then, through

the re-sampling process, we generate new particles around the live particles, and assign

the weight of the dead particles equally to the new ones. This makes the total weight of

all the particles greater than 1. Therefore, we normalize the weight of all the particles

by the total weight.

The distribution of particles reflects the likelihood of the real position. We calculate

the weighted average of all the particles as the filtered point. In PYLON, we use 1000

particles to filter the estimated point of the user, and vary the number of particles

from 100 to 5000. The localization accuracy does not increase when the number of

particles exceeds 1000. Therefore, we set the number of particles to 1000, considering

the localization accuracy and computational complexity. By doing so, the particle filter

in PYLON helps the user’s path correctly follow the ground truth value without passing

through walls, different from that in Legacy and LC.

3.8 Performance Evaluation

3.8.1 Implementation and Measurement Setup

We conduct experiments for a test area of 418 (19 × 22) m2 in an office building,

and use four Wi-Fi APs and seven BLE beacons. In Figure 3.7a, doors are colored in

red and Wi-Fi APs and BLE beacons are represented by small grey circles. Wi-Fi APs
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Figure 3.14: The paths of Legacy, LC, and PYLON.
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Dead particle

Wall

Estimated point

Filtered point

Figure 3.15: An illustrative example of the particle filter.

74



are commercial off-the-shelf devices, and BLE devices are Estimote BLE beacons

that support iBeacon and Eddystone [111]. Each BLE beacon periodically transmits

BLE advertising packets every 100 ms that equals the Wi-Fi AP beacon interval. We

develop PYLON as an application on the Android OS of five smartphones to cover

device heterogeneity: Nexus 5, Nexus 6p, Pixel 2, Pixel 3, and Galaxy S10.

Since Nexus 5 was released in 2013 and Galaxy S10 in 2019, we experimented

with the smartphones that have been released in the last 7 years. The application is

plug-and-play and collects RSSI data of Wi-Fi/BLE, gyroscope, and accelerometer.

Three users participate in performance evaluation of floor plan mapping accuracy, door

passing time estimation, and localization including step detection and walking direc-

tion estimation. Each user holds a smartphone in hand. However, we did not impose

any constraints on the direction of the smartphone (e.g., horizontal or vertical holding)

while walking. To evaluate the performance of path estimation and localization, we

experiment with three different traces as shown in Figure 3.16.

We compare PYLON with the following three schemes: Legacy, PF and LC.

• Legacy estimates the user’s location using only IMU sensors of the smartphone.

It requires the initial location and orientation of the user. The result of path

estimation module of PYLON is the same as that of Legacy.

• PF applies the particle filter to Legacy. It requires the initial location and orien-

tation of the user to apply the particle filter [35].

• LC applies only the landmark correction module to Legacy. It is a downgraded

version of PYLON and does not require any information from the user like

PYLON. Landmark correction compensates for location and orientation errors

according to door locations.
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(c) The third trace passing n1, n2, n3, n4, and n6

Figure 3.16: The example of three traces.
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Figure 3.17: Performance of step detection.

3.8.2 Step Detection Accuracy

We first evaluate the performance of step detection on the five smartphones. In the case

of the step detection, we conduct the experiment with 20 users. The average step de-

tection errors are shown in Figure 3.17. Since LC, PF, and PYLON correct the location

and walking direction error in their own way, the step detection is the only common

part of PYLON and all the comparison schemes. The errors in step detection are below

3.2% in all the smartphones, and the average error on the five smartphones is 2.2%,

which means a step counting error of 2.2 in 100 steps. Landmark correction of PYLON

contributes to the compensation for these small errors.

3.8.3 Floor Plan Mapping Accuracy

As shown in Figure 3.16, traces 1 and 2 contain four rooms and two doors, and trace

3 contains five rooms and three doors. The accuracy of floor plan mapping affects the

overall performance of PYLON. We first show the snapshots of the ground truth floor

plan mapping of the three traces. Figure 3.18 shows the graphs of virtual rooms after
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conducting floor plan mapping. Red and green colored stars represent backbone nodes

and dead-end nodes, respectively. According to the ground truth floor plan mapping

results, we measure the mapping accuracy of all the smartphones with respect to the

three traces.

Note again that the average cosine similarity for floor plan mapping represents the

similarity between the final candidate graph and the virtual graph. Figure 3.19 and

Figure 3.20 show floor plan mapping accuracy and the average cosine similarity of the

three traces. In the both figures, the x-axis represents the trace number. Figure 3.19

shows that all the schemes show higher than 90% of floor plan mapping accuracy

regardless of the smartphones and traces. The average mapping accuracy of all the

smartphones and traces reaches 97%, which is sufficiently high. Figure 3.20 shows

the average cosine similarity between the candidate graph and the virtual graph af-

ter conducting mapping. The average cosine similarity is higher than 0.91 for each

smartphone and trace. The average cosine similarity of all the smartphones and traces

is 0.96, which shows that the floor plan mapping is successful, leading to the high

similarity between Gc and Gv.

3.8.4 Door Passing Time

After successfully conducting floor plan mapping, PYLON determines the time when

the user passes a door. Since landmark correction corrects the location and orientation

of the user’s path using the door passing times, finding the exact passing times affects

the performance of path estimation and localization. When the difference between

the ground truth time and the estimated time by PYLON is large, landmark correction

rather increases the inaccuracy of the path estimation and localization. To collect the

ground truth data, we record the time through PYLON application whenever the user

passes a door.

Figure 3.21 shows the CDF of the difference between the ground truth time and

the estimated time in PYLON. The results show that the time differences are smaller
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Figure 3.18: The examples of three traces for correct floor plan mapping.
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Figure 3.19: Accuracy performance of floor plan mapping.
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Figure 3.20: The average cosine similarity of mapping result.
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than 2 s and the average differences lie between 0.57 and 0.72 s for all the smart-

phones. Considering that the average step frequency of the users is 0.69/s, PYLON

detects the door passing time in one step on average. Considering that at least two

steps are required for room change, i.e., passing the door, PYLON accurately detects

the door passing time. Figure 3.22 shows a snapshot of walking direction, i.e., orienta-

tion, corrected by landmark correction according to the door passing time. Landmark

correction compensates for walking direction errors whenever the user passes doors at

24, 40, and 60 s, and consequently the walking direction errors remain below 10 de-

grees in LC. However, in Legacy, gyroscope readings contribute to error accumulation,

therefore the walking direction error increases up to 27 degree for 75 s.

3.8.5 Walking Direction and Localization Performance

We evaluate path estimation performance of PYLON in terms of errors in walking di-

rection estimation and localization. We record the ground truth locations of the user

during the experiments to obtain the walking direction estimation and localization per-

formance. PYLON compares the direction and distance difference of each point be-

tween the ground truth location and the estimated location. Figure 3.23 shows the

walking direction estimation performance of PYLON and the comparison schemes.

Figure 3.23a shows the CDF of walking direction estimation errors for Nexus 5, and

Figure 3.23b presents average performance on the remaining smartphones with bar

graphs. In Figure 3.23a, PYLON shows the highest walking direction estimation per-

formance compared with the other schemes.

Legacy does not correct the user’s orientation, so it shows the worst performance in

the walking direction estimation. PF slightly reduces the walking direction estimation

errors thanks to the particle filer. However, the particle filter can not correct the orien-

tation error greatly in the case of a room where particles do not hit a wall (i.e., staying

alive). In terms of the walking direction estimation, LC outperforms Legacy and PF

because the orientation is exactly corrected using the door passing times. Figure 3.23b
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Figure 3.22: A snapshot of corrected walking direction in LC.
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Figure 3.23: Walking direction estimation performance.

0 2 4 6 8
Localization Error (m)

0

0.2

0.4

0.6

0.8

1

C
D

F

Legacy
PF
LC
PYLON

(a) The CDF of localization error for Nexus 5

Legacy PF LC PYLON
0

2

4

6

8

Lo
ca

liz
at

io
n 

E
rr

or
 (

m
) Nexus 5

Nexus 6p
Pixel 2
Pixel 3
Galaxy S10

(b) The average localization error

Figure 3.24: Localization performance.

shows the average walking direction estimation errors of all the schemes. The aver-

age walking direction estimation error also shows the same trend as mentioned before.

PYLON shows the best performance regardless of smartphone types and its errors are

below 6.4 degrees in all the smartphones. PYLON reduces the error by 75.2, 66.7, and

45.8% on average, compared to Legacy, LC, and PF, respectively.

Figure 3.24 shows localization performance in the same way as walking direction

estimation performance. We first show the CDF results of Nexus 5 in Figure 3.24a.

Legacy shows the worst localization performance with an error of up to 8 m, com-
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pared to the other schemes. PF shows better localization accuracy compared to Legacy

thanks to the particle filter. PYLON shows the best localization performance with an er-

ror of less than 2.1 m, compared to the other schemes. Figure 3.24b depicts the average

localization error which shows the same trend as the CDF results. PYLON achieves the

highest localization accuracy. PYLON shows all the average errors less than 1.69 m,

and reduces the localization error by 66.5, 55.4, and 26.1% on average, compared to

Legacy, LC, and PF, respectively. The overall average error of PYLON regardless of

device types is 1.42 m. We evaluate the walking direction estimation and localization

performance of PYLON on the five smartphones, and demonstrate that PYLON out-

performs the comparison schemes. PYLON minimizes cumulative IMU sensor reading

errors using landmark correction, and does not allow the user’s path to go through

walls, thanks to the particle filter.

3.8.6 Impact of WiFi AP and BLE Beacon Number

We initially leverage 11 WiFi APs and BLE beacons in the office building of size

418 m2. Now we randomly eliminate WiFi APs and BLE beacons one by one to fur-

ther examine the localization performance according to the number of WiFi APs and

BLE beacons. As shown in Fig. 3.26, the localization error does not change until the

number of WiFi APs and BLE beacons removed reaches 3. However, the error in-

creases sharply from 5.38 to 12.68 when the number of WiFi APs and BLE beacons

removed has increased from 4 to 9. For the removed number of greater than 4, since

the floor plan mapping and door passing time are less accurate, the landmark correc-

tion can not efficiently correct the user’s location. Therefore, at least 8 WiFi APs and

BLE beacons are required for PYLON to work properly.

3.8.7 Impact of Walking Distance and Speed

We change the walking distance from 50 m to 500 m to evaluate its effect on the local-

ization error. In general, the drift of IMU sensors and localization error increase with
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Figure 3.25: The snapshots of path estimation for the three traces on Nexus 5.
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Table 3.1: Experimental details for different areas

Areas Size (m2) #Sources #Rooms #Doors Length (m)

1 1, 454 17 5 3 58

2 4, 110 39 18 9 270

the walking distance. In Fig. 3.27a, the localization errors stay around 1.38 and 2.02 m

in the case of PYLON and LC, respectively. These schemes correct the user’s loca-

tion with landmark correction and can effectively handle drift accumulation in IMU

sensors. However, the errors in Legacy and PF accumulate up to 27.20 and 7.66 m,

respectively, with the walking distance. Even if PF corrects the user’s walking path

using the particle filter, it is not enough to solve the basic IMU sensor drift problem.

We examine the performance of PYLON according to three different walking speeds:

(1) slow (0.5 m/s), (2) normal (0.7 m/s) (3) fast (1 m/s). As shown in Fig. 3.27b,

PYLON achieves an average accuracy of 1.19, 1.31, and 1.69 m, respectively, for each

walking speed. The faster the user walks, the greater the movement of the human body.

Therefore, the localization error increases due to fluctuations in IMU sensor readings,

especially gyroscope readings.
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3.8.8 Performance on Different Areas

We evaluate the performance in two different office buildings to show the scalability

of PYLON. Fig. 3.28 shows the topology and walking trace of each environment. Fur-

ther experiments are performed on Google Pixel 3 because the performance of PYLON

and the comparison schemes tends to be similar regardless of the type of smartphones.

The experimental details are summarized in Table 1. We repeat the experiments 15

times for each trace on a round trip. Areas 1 and 2 represent office buildings 1 and 2,

respectively. Sources indicated by small grey circles represent WiFi APs and BLE bea-

cons. The number of rooms (#Rooms) means the number of areas that the user passes

through. The number of doors (#Doors) indicates how many times the user has passed

through the door. Fig. 3.29 depicts the performance of PYLON as well as three other

comparison schemes in two different areas. PYLON achieves the best performance in

the both areas. PYLON yields an average localization accuracy of 1.29 m and 1.11 m in

office buildings 1 and 2, respectively. In the case of LC and PYLON, localization errors

are independent of trace length. However, Legacy and PF have no landmark correc-

tion, so the longer the trace length, the larger the error. In conclusion, the experimental

results show that PYLON achieves constant performance regardless of environmental

changes.

3.9 Summary

In this paper, we presented PYLON, a practical path estimation and localization system,

that runs on a server and uses radio signal measurements performed on a smartphone.

PYLON uses room doors as landmarks in indoor environments to realize path estima-

tion and localization. In particular, it introduces a novel floor plan mapping algorithm

that maps the relative positions of virtually generated rooms to the real-world floor

plan. PYLON detects the exact time that the user passes through a door to compensate

for accumulated IMU sensing errors of the smartphone. We implemented PYLON on
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five Android smartphones, and evaluated its performance in an indoor office environ-

ment. We confirmed that PYLON achieves 97% floor plan mapping accuracy with a

localization error of only 1.42 m on average.
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Figure 3.27: Impact of different walking distance and speed.
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(a) Office building 1

(b) Office building 2

Figure 3.28: Two different experimental areas.
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Figure 3.29: Localization performance on different areas.
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Chapter 4

FINISH: Fully-automated Indoor Navigation

using Smartphones with Zero Human Assistance

4.1 Introduction

Despite extensive research into indoor localization, the wide deployment of indoor

navigation systems have yet to be realized. To bootstrap the indoor navigation services

with zero human assistance, we ask the following question: Can we enable users to

easily bootstrap indoor navigation services without any assistance or intervention of

users? In this paper, we provide an answer through the systematic design and imple-

mentation of FINISH with the help of a real-world floor plan. Unlike other navigation

system, FINISH does not require fingerprint data and assistance of the users. We

have implemented FINISH on five different Android smartphones and evaluated it in

the whole floors of an office building. Our experimental results show that FINISH

achieves 100% initial location accuracy with in one step and provides timely naviga-

tion instructions.

In summary, the main contributions of this paper are threefold:

• We design a fully-automated navigation system, termed FINISH, which ad-

dresses the problems of existing previous indoor navigation systems. FINISH
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generates the radio map of an indoor building based on the localization system

to determine the initial location of the user.

• FINISH relaxes some requirements for current indoor navigation systems. It

does not require any human assistance to provide navigation instructions. In

addition, it is plug-and-play on diverse Android smartphones.

• We implement FINISH on five Android smartphones and evaluate it on five

floors of an office building with the help of multiple users to prove applicability

and scalability. FINISH determines the location of the user with extremely high

accuracy with in one step.

4.2 Related Work

4.2.1 Localization-based Navigation System

Localization and Navigation have been extensively studied in the robotic area [29].

By fusing odometer outputs using IMU sensor readings, robots can compute travel

distances, perform accurate localization, and navigate themselves to the destination

based on the floor map. In several robotic systems, additional sensing techniques using

laser [30], infrared [31], and camera [32] are also used for ranging and navigation

purposes. However, the motion of human is more complicate, and the limited sensing

capabilities of smartphones also challenge to both localization and navigation.

To address the aforementioned challenges, numerous localization techniques us-

ing smartphones have been proposed [33–40]. They can be broadly categorized as

infrastructure-based (e.g, Wi-Fi, BLE, GPS, and cellular) or infrastructure-free (e.g.,

dead reckoning) localization system. Each of them has its own advantages and disad-

vantages. GPS can provide accurate positioning in outdoor open spaces but encounters

fading signals in an indoor environments. Using radio signals, such as Wi-Fi and BLE,

usually requires fingerprinting data to realize localization. In case of dead reckoning,
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it suffers from cumulative errors and the usage of smartphones.

4.2.2 Peer-to-peer Navigation System

The navigation systems using leader-follower model have been proposed [29, 41–43].

An electronic escort system was proposed by using crowd encounters information and

dead-reckoning techniques [41], but it requires pre-deployed audio beacons which

limits its applicability. A vision-guided navigation system, termed Travi-Navi [42],

enables a user to easily bootstrap and deploy indoor navigation system without help

of indoor localization system, but guiders need to hold the smartphone vertically and

steadily during walking to achieve a better image quality. FollowMe [29] uses compute-

intensive particle filtering as the navigation engine, and minimizes the constraints im-

posed on users by providing wider usage (i.e., in multi-level buildings, semi-outdoors).

FollowUs [43] is incrementally-deployable navigation by automatically generating the

trace with the data of multiple users. However, above two navigation systems require

assistance of user. The leader needs to input the initial location and destination to

provide navigation service, which is vulnerable to the false input of the leaders of

malicious users.

4.3 System Overview

This section provides an overview of FINISH, first presenting the system architecture

and then a navigation example to illustrate how FINISH operates.

4.3.1 System Architecture

Basically, FINISH operates on the RSSI-based localization system [40]. This localiza-

tion system can collect RSSI signatures of each room and corridor from multiple radio

sources in indoor environment without human intervention. We borrow this system to

utilize RSSI signatures and to provide indoor navigation service for smartphones with-
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Figure 4.1: Architecture of FINISH.

out the assistance of users. However, the localization system does not consider multi-

floor operation that is essential to indoor navigation service. Therefore, we leverage

pressure sensor (i.e., barometer) to detect the level-change for multi-floor operation.

The barometer is hardware-based sensor that returns ambient air pressure value in hPa.

FINISH consists of a trace collection module and a navigation module, and both

modules exploit RSSI signature and multiple sensors in a smartphones, such as ac-

celerometer, gyroscope, and barometer.

Fig 4.1 shows the overall architecture of FINISH.
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Figure 4.2: An indoor navigation example.

4.3.2 An Example for Navigation

We take an example of indoor navigation for easy understanding as shown in Fig 4.2.

For example, if a meeting will be held in Room 304 on the third floor of our office

building, the visitor needs indoor navigation from the parking lot on the first base-

ment floor. When the visitor enters into the building from the parking lot, FINISH

quickly determines the coarse location of the visitor. If the visitor enters the desti-

nation as “304”, the navigation module calculates the shortest path from the visitor’s

location. The navigation module guides the visitor to the area that an elevator is lo-

cated. FINISH constantly tracks the location of the visitor and detects whether the

visitor takes the elevator or not. If the visitor takes the elevator and get off on the third

floor, navigation module gives instructions to the Room 304. If FINISH considers that

the visitor arrives at the destination, it finishes the navigation.

95



0 50 100 150
Time (s)

986

988

990

992

A
tm

. P
re

ss
ur

e 
(h

P
a)

Nexus5
Nexus6p

Pixel2
Pixel3

S10

(a) Barometer readings

0 30 60 90 120 150 180
Time (s)

0

0.3

0.6

0.9

1.2

1.5

A
tm

. P
re

ss
ur

e 
(h

P
a) Nexus5

Nexus6p
Pixel2
Pixel3
S10

(b) Barometer differences

Figure 4.3: Example of barometer readings for level-change detection.

4.4 Level Change Detection and Floor Decision

4.4.1 Level Change Detection

Note that the localization system that we exploit does not consider multi-floor opera-

tion. Therefore, FINISH needs to detect the level-change of user’s movements from

the initial data collection stage, and we adopt a barometer in smartphones for level-

change detection. We conduct preliminary experiment to understand the nature of the

barometer in different smartphones.

We take a walk using five different smartphones at the same time from the first

basement floor to the third floor using stairs. As shown in Fig. 4.3a, barometer read-

ings decrease three time because an atmospheric pressure decreases as an altitude in-

creases. The barometer readings show the similar trend regardless of device hetero-

geneity, but the absolute values have offset between devices up to 5 hPa. Therefore,

using the absolute barometer value of each device is not practical to detect the level

change considering the device heterogeneity. However, we discover that the gap of

barometer reading maintains for each floor and independents to the device type as

shown in Fig. 4.3b. We calculate the atmospheric pressure p gap between floor using

the standard pressure-height formula [112]:
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h = 44, 330 · (1− (
p

p0
)1/5.255) (4.1)

where h is the altitude in meter, while p and p0 are the measured pressure and sea

level pressure respectively in hPa. The sea level reference does not matter, since we

only use relative height change. Following the Equation 4.1, we can obtain 0.4 hPa gap

between floors if the height difference between floor is considered 3.5 m.

In FINISH, we devise level-change detection algorithm based on the aforemen-

tioned experiments and formula. FINISH first smooths each pressure pn by passing

low-pass filter. The algorithm then tracks the maximal difference between pn and sam-

ples collected with in the last T0 seconds. If the |pn− pm| is greater than the threshold

pth, we consider that level-change is happened. The algorithm records a value fl that

indicates whether the altitude increase/decrease (fl = −1/1) or not (fl = 0). In par-

ticularly, if the step frequency doubles up during the level-change period, we record

an elevator up/down, otherwise we record an stair up/down.

4.5 Real-time navigation

4.5.1 Initial Floor and Location Decision

After collecting traces of users on multiple floor of a building, we have to determine

the initial location of the user to provide real-time indoor navigation service. We can

obtain the RSSI stacking difference data of each room when generating the virtual

rooms. Therefore, FINISH can determine the initial location of the user by comparing

the RSSI stacking difference values between rooms and smartphone. We denote the

RSSI stacking difference of room as

Wi = [wi1, wi2, · · ·, wim], (4.2)
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where m represents the number of beacons. Similarly, the RSSI stacking difference

instantly collected on the smartphone can be represented as

W = [w1, w2, · · ·, wl], (4.3)

where l means the number of beacons that the smartphone can receive the packet.

Since both RSSI stacking differences of rooms and smartphone are non-zero vectors,

we use cosine similarity to determine the initial location of the user. Cosine similarity

is a measure for similarity between two non-zero vectors of an inner product space,

which measures the cosine of the angle between them [110]. It is not a magnitude

but the judgment of orientation. The cosine similarity has a value between −1 and

1. If two vectors have the same orientation, the cosine similarity is 1. Two vectors

in diametrically opposite orientation have the cosine similarity of −1, independent of

their magnitude. We can represent the cosine similarity sim of two vectors Wi and W

as

sim(Wi,W ) =
Wi ·W
||Wi||||W ||

. (4.4)

FINISH determines the initial location of the user to the room that shows the highest

sim.

4.5.2 Orientation Adjustment

After finding the user’s location, the estimating the walking direction is important

to provide navigation instruction. FINISH uses sim to estimate the orientation of the

user. When the initial location is determined, we compare the sim of each room. There-

fore, sims of neighbor rooms of the initial location also can be obtained in the process

of initial location decision. In addition, the gradients of sim value of neighbor rooms

are collected in the walking progress of the user. We adjust the orientation of the user

as the direction from the initial location to the room that shows the highest gradient

value.
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4.5.3 Shortest Path Estimation

Now, we have the knowledge of the initial location and the orientation of the user,

and estimate the shortest path to the destination. The destination information is an

input from the user. FINISH represents the indoor map as a graph from the radio map

generation process. Therefore, the node and cost of the graph can be considered room

and distance between rooms. In graph theory, finding the shortest path is well-known

problem, and Dijkstra algorithm is one of the most popular solution. We adopt Dijkstra

algorithm to estimate the shortest path from the initial location to the destination.

4.6 Performance Evaluation

We conduct experiments for total test area 7, 270m2 in an office building, and use only

BLE beacons. Fig. 4.4 shows the example of deployment of BLE beacons, which are

represented by small circles. Each BLE beacon periodically transmits BLE advertising

packets every 100 ms that equals the WiFi AP beacon interval. We develop FINISH as

an application on the Android OS of five smartphones to cover device heterogeneity:

Nexus 5, Nexus 6p, Pixel 2, Pixel 3, and Galaxy S10. Since Nexus 5 was released in

2013 and Galaxy S10 in 2019, we experimented with the smartphones that have been

released in the last 7 years. The application is plug-and-play and collects RSSI data of

BLE, gyroscope, accelerometer, and barometer.

4.6.1 Initial Location Accuracy

We first evaluate the performance of initial location accuracy on five different area.

We conduct experiment 20 times with Google Pixel 3. Fig. 4.5a shows the average

similarity of areas when the user is located in C(304). The highest similarity shows

in C(304) and the similarities of other neighbor ares are lower that C(304). Therefore,

the similarity can successfully differentiate the location of the user. Fig. 4.5 shows the

mapping accuracy of the initial location of the user. The x-axis represents the initial
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Figure 4.5: Estimation accuracy of initial location.

location of the user, and the y-axis means the ratio of correctly estimate the initial

location. In five locations, FINISH successfully estimate the initial location of the

user with 100% accuracy.

4.6.2 Real-Time Navigation Accuracy

We evaluate the performance of real-time navigation accuracy with room state change

and average similarity. While the user walks from C(309) to 304, FINISH tracks the

walking progress by estimating the real-time location of the user. As shown in Fig. 4.6,
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Figure 4.6: Room state change and average similarity.

FINISH successfully estimates the location of the user every steps until the user ar-

rives at the destination 304. During the room state transition, the average similarity

between the room and smartphone maintains over 0.8, which means the FINISH can

follow the room state change with high similarity.

4.7 Summary

In this paper, we presented FINISH, an fully-automated indoor navigation system

with zero human assistance, that runs plug-and-play on smartphones. FINISH uses

barometer in level change detection to realize the operation in multiple floor, and

generates the radio map based on the localization system. In particular, it introduce

a novel initial floor and location detection algorithm to completely exclude user in-

tervention. FINISH determines the exact initial location of the user and provides

timely instruction to the desired destination. We implemented FINISH on five An-

droid smartphones, and evaluated its performance in an office environment. We con-

firmed that FINISH achieves 100% accuracy of initial location with in one step of the

user.
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Chapter 5

Conclusion

5.1 Research Contributions

In the dissertation, we have addressed the systems that improve the user experience for

smartphones using wireless communication technologies, especially Wi-Fi and BLE.

In Chapter 2, we have proposed BLEND, BLE beacon-aided fast Wi-Fi handoff

for smartphones. We conduct detailed analysis of the sticky client problem on com-

mercial smartphones with experiment and close examination of Android source code.

We propose BLEND, which exploits BLE modules to provide smartphones with prior

knowledge of the presence and information of APs operating at both 2.4 and 5 GHz

Wi-Fi channels. BLEND operating with only application requires no hardware and An-

droid source code modification of smartphone. To our best knowledge, BLEND is the

first BLE-aided handoff scheme. We also propose an advanced version of BLEND that

can be applied to smartphone enabling hidden Android API, which optimizes Wi-

Fi scanning through modification of Android source code. We prototype BLEND with

commercial smartphones and evaluate the performance in real environments. Our mea-

surement results demonstrate that BLEND significantly improves throughput and video

bitrate by up to 61% and 111%, compared to a commercial Android application, re-

spectively, with negligible energy overhead.
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In Chapter 3, we have presented PYLON, smartphone based indoor path estima-

tion and localization without human intervention. We design a path estimation and

localization system, termed PYLON, which is plug-and-play on Android smartphones.

PYLON includes a novel landmark correction scheme that leverages real doors of in-

door environments consisting of floor plan mapping, door passing time detection and

correction. It operates without any user intervention. PYLON relaxes some require-

ments for localization systems. It does not require any modifications to hardware or

software of smartphones, and the initial location of Wi-Fi APs, BLE beacons, and

users. In addition, on-site investigations for fingerprint or trace data collection which

are labor-intensive and time-consuming is not necessary. PYLON can be directly ap-

plied to unknown indoor environments. We implement PYLON on five Android smart-

phones and evaluate it on two office buildings with the help of three participants to

prove applicability and scalability. PYLON achieves very high floor plan mapping ac-

curacy with a low localization error.

In Chapter 4, we present FINISH, fully-automated indoor navigation using smart-

phones with zero human assistance. FINISH generates the radio map of an indoor

building based on the localization system to determine the initial location of the user.

FINISH relaxes some requirements for current indoor navigation systems. It does

not require any human assistance to provide navigation instructions. We implement

FINISH on five Android smartphones and evaluate it on five floors of an office build-

ing with the help of multiple users to prove applicability and scalability.

5.2 Future Work

As further improvement on the results of this dissertation, there are two research items

regarding indoor navigation system. First, we will extend the experiment area to whole

floors of an office building by constructing the testbed. Second, we will automatically

generate the physical graph by using image processing techniques.

103



Bibliography

[1] J. Shi, L. Meng, A. Striegel, C. Qiao, D. Koutsonikolas, and G. Challen, “A

Walk on the Client Side: Monitoring Enterprise WiFi Networks Using Smart-

phone Channel Scans,” in Proc. IEEE INFOCOM, 2016.

[2] I. Ramani and S. Savage, “SyncScan: Practical Fast Handoff for 802.11 Infras-

tructure Networks,” in Proc. IEEE INFOCOM, 2005.

[3] Y. Chen, M.-C. Chuang, and C. Chen, “DeuceScan: Deuce-based Fast Handoff

Scheme in IEEE 802.11 Wireless Networks,” IEEE Transactions on Vehicular

Technology, vol. 57, no. 2, 2008.

[4] J. Teng, C. Xu, W. Jia, and D. Xuan, “D-Scan: Enabling Fast and Smooth Hand-

offs in AP-dense 802.11 Wireless Networks,” in Proc. IEEE INFOCOM, 2009.

[5] H. Wu, K. Tan, Y. Zhang, and Q. Zhang, “Proactive Scan: Fast Handoff with

Smart Triggers for 802.11 Wireless LAN,” in Proc. IEEE INFOCOM, 2007.

[6] P. Lv, X. Wang, X. Xue, and M. Xu, “SWIMMING: Seamless and Efficient

WiFi-based Internet Access from Moving Vehicles,” IEEE Transactions on Mo-

bile Computing, vol. 14, no. 5, 2015.

[7] Z. Song, L. Shangguan, and K. Jamieson, “WiFi Goes to Town: Rapid Picocell

Switching for Wireless Transit Networks,” in Proc. ACM SIGCOMM, 2017.

104



[8] IEEE 802.11, Part 11: Wireless LAN Medium Access Control (MAC) and Phys-

ical Layer (PHY) Specifications Amendment 1: Radio Resource Measurement

of Wireless LANs., IEEE Std., 2008.

[9] IEEE 802.11, Part 11: Wireless LAN Medium Access Control (MAC) and Phys-

ical Layer (PHY) Specifications Amendment 2: Fast Basic Service Set (BSS)

Transition., IEEE Std., 2008.

[10] M. I. Sanchez and A. Boukerche, “On IEEE 802.11 k/r/v Amendments: Do

They Have a Real Impact?” IEEE Wireless Communications, vol. 23, no. 1,

2016.

[11] R. Chandra and P. Bahl, “MultiNet: Connecting to Multiple IEEE 802.11 Net-

works Using a Single Wireless Card,” in Proc. IEEE INFOCOM, 2004.

[12] A. J. Nicholson, S. Wolchok, and B. D. Noble, “Juggler: Virtual Networks for

Fun and Profit,” IEEE Transactions on Mobile Computing, vol. 9, no. 1, 2010.

[13] S. Kandula, K. C. Lin, T. Badirkhanli, and D. Katabi, “FatVAP: Aggregating AP

Backhaul Capacity to Maximize Throughput,” in Proc. USENIX NSDI, 2008.

[14] A. Croitoru, D. Niculescu, and C. Raiciu, “Towards WiFi Mobility without Fast

Handover,” in Proc. USENIX NSDI, 2015.

[15] B. Vladimir, M. Arunesh, and B. Suman, “Eliminating Handoff Latencies in

802.11 WLANs Using Multiple Radios: Applications, Experience, and Evalua-

tion,” in Proc. ACM IMC, 2005.

[16] S. Jin, M. Choi, and S. Choi, “Multiple WNIC-based Handoff in IEEE 802.11

WLANs,” IEEE Communications Letters, vol. 13, no. 10, 2009.

[17] S. Jin and S. Choi, “A Seamless Handoff with Multiple Radios in IEEE 802.11

WLANs,” IEEE Transactions on Vehicular Technology, vol. 63, no. 3, 2014.

105



[18] W. Kang and Y. Han, “SmartPDR: Smartphone-based Pedestrian Dead Reckon-

ing for Indoor Localization,” IEEE Sensors Journal, vol. 15, no. 5, pp. 2906–

2916, 2014.

[19] P. Zhou, M. Li, and G. Shen, “Use It Free: Instantly Knowing Your Phone At-

titude,” in Proceedings of the 20th Annual International Conference on Mobile

Computing and Networking (MobiCom). Maui, HI, USA: ACM, 2014, pp.

605–616.

[20] A. T. Mariakakis, S. Sen, J. Lee, and K.-H. Kim, “SAIL: Single Access Point-

based Indoor Localization,” in Proceedings of the 12th International Confer-

ence on Mobile Systems, Applications, and Services (MobiSys). Bretton

Woods, NH, USA: ACM, 2014, pp. 315–328.

[21] B. Zhou, Q. Li, Q. Mao, W. Tu, X. Zhang, and L. Chen, “ALIMC: Activity

Landmark-based Indoor Mapping via Crowdsourcing,” IEEE Transactions on

Intelligent Transportation Systems, vol. 16, no. 5, pp. 2774–2785, 2015.

[22] S. He, S.-H. G. Chan, L. Yu, and N. Liu, “Calibration-free Fusion of Step

Counter and Wireless Fingerprints for Indoor Localization,” in Proceedings of

the 17th International Conference on Ubiquitous Computing (UbiComp). Os-

aka, Japan: ACM, 2015, pp. 897–908.

[23] S. Beauregard and H. Haas, “Pedestrian Dead Reckoning: A Basis for Personal

Positioning,” in Proceedings of the 3rd Workshop on Positioning, Navigation

and Communication (WPNC). Hannover, Germany: Shaker Verlag, 2006, pp.

27–35.

[24] G. Shen, Z. Chen, P. Zhang, T. Moscibroda, and Y. Zhang, “Walkie-Markie: In-

door Pathway Mapping made Easy,” in Proceedings of the 10th USENIX Sym-

posium on Networked Systems Design and Implementation (NSDI). Washing-

ton, D.C, USA: USENIX, 2013, pp. 85–98.

106



[25] H. Wang, S. Sen, A. Elgohary, M. Farid, M. Youssef, and R. R. Choudhury,

“No Need to War-drive: Unsupervised Indoor Localization,” in Proceedings of

the 10th Annual International Conference on Mobile Systems, Applications, and

Services (MobiSys). Low Wood Bay, Lake District, UK: ACM, 2012, pp. 197–

210.

[26] R. Gao, M. Zhao, T. Ye, F. Ye, Y. Wang, K. Bian, T. Wang, and X. Li, “Jigsaw:

Indoor Floor Plan Reconstruction via Mobile Crowdsensing,” in Proc. ACM

MobiCom, 2014.

[27] C. Wu, Z. Yang, and C. Xiao, “Automatic Radio Map Adaptation for Indoor

Localization using Smartphones,” IEEE Transactions on Mobile Computing,

vol. 17, no. 3, pp. 517–528, 2017.

[28] J. Xu, H. Chen, K. Qian, E. Dong, M. Sun, C. Wu, L. Zhang, and Z. Yang, “iVR:

Integrated Vision and Radio Localization with Zero Human Effort,” Proc. ACM

Interact. Mob. Wearable Ubiquitous Technol., vol. 3, no. 3, pp. 1–22, 2019.

[29] Y. Shu, K. G. Shin, T. He, and J. Chen, “Last-mile Navigation using Smart-

phones,” in Proceedings of the 21st Annual International Conference on Mobile

Computing and Networking (MobiCom). Paris, France: ACM, 2015, pp. 512–

524.

[30] S. H. Cho and S. Hong, “Map based indoor robot navigation and localization

using laser range finder,” in Proc. IEEE ICARCV, 2010.

[31] A. M. Flynn, “Combining Sonar and Infrared Sensors for Mobile Robot Navi-

gation,” Int. J. Rob. Res., vol. 7, no. 6, pp. 5–14, 1988.

[32] F. Bonin-Font, A. Ortiz, and G. Oliver, “Visual Navigation for Mobile Robots:

A Survey,” Journal of Intelligent and Robotic Systems, vol. 53, no. 3, p. 263,

2008.

107



[33] K. Chintalapudi, A. Padmanabha Iyer, and V. N. Padmanabhan, “Indoor Lo-

calization without the Pain,” in Proceedings of the 16th Annual International

Conference on Mobile Computing and Networking (MobiCom). Chicago, Illi-

nois, USA: ACM, 2010, pp. 173–184.

[34] I. Constandache, R. R. Choudhury, and I. Rhee, “Towards mobile phone local-

ization without war-driving,” in Proc. IEEE INFOCOM, 2010.

[35] F. Li, C. Zhao, G. Ding, J. Gong, C. Liu, and F. Zhao, “A reliable and accurate

indoor localization method using phone inertial sensors,” in Proceedings of the

14th International Conference on Ubiquitous Computing (UbiComp). Pitts-

burgh, PA, USA: ACM, 2012, pp. 421–430.

[36] A. Rai, K. K. Chintalapudi, V. N. Padmanabhan, and R. Sen, “Zee: Zero-effort

Crowdsourcing for Indoor Localization,” in Proceedings of the 18th Annual In-

ternational Conference on Mobile Computing and Networking (MobiCom). Is-

tanbul, Turkey: ACM, 2012, pp. 293–304.

[37] Y. Chen, D. Lymberopoulos, J. Liu, and B. Priyantha, “FM-based Indoor Local-

ization,” in Proc. ACM MobiSys, 2012.

[38] J. Xiong and K. Jamieson, “Arraytrack: A Fine-grained Indoor Location Sys-

tem,” in Proc. USENIX NSDI, 2013.
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초 록

최근스마트폰에Wi-Fi나 BLE와같은무선통신기술뿐만아니라다양한센서가

탑재되고있다.또한,많은경우에사용자들이이동중에스마트폰을활용하기때문

에, 이동성이 있는 사용자에게 무선통신기술과 다양한 센서를 활용한다면 더 나은

사용자경험을제공할수있다.예를들면,사용자가Wi-Fi를활용하면서이동할때,

끊김없는Wi-Fi서비스를제공하여사용자경험을향상시킬수있다.또한,실내환

경에서사용자의이동성를예측하여실내측위기술이나네비게이션과같은특별한

서비스를제공할수있고,위치기반의광고및결제시스템과같은부가적인서비스

또한제공가능하다.따라서,무선통신기술및스마트폰의센서를활용하여사용자

경험의향상은앞으로매우중요한연구분야라고생각된다.

본 논문에서는 Wi-Fi와 BLE, 스마트폰의 센서를 활용하여 사용자의 경험 또

는 편의성을 향상시킬 수 있는 세 가지 시스템을 제안한다: (i) BLEND: BLE의 도

움을 받아 사용자의 이동성이 있을 때, 빠른 Wi-Fi 핸드오프 시스템, (ii) PYLON:

Wi-Fi와 BLE,관성센서,실내도면을활용하여사용자의이동경로예측시스템, (iii)

FINISH: BLE와 관성센서, 기압센서를 활용하여 실내 환경에서의 네비게이션 시

스템.

먼저, BLE의도움을받아빠른Wi-Fi핸드오프를제공하는시스템을제안한다.

시스템 설계에 앞서, 스마트폰에서 빠른 Wi-Fi 핸드오프가 일어날 수 없는지에 대

한원인를실험및소스코드분석을통해파악한다.스마트폰에서는 AP와연결되어

있는시점부터Wi-Fi스캐닝동작을수행하지않도록설계되어있기때문에핸드오

프가 필요한 시점을 파악하여 강제로 스캐닝을 수행하도록 해야한다. 이 과정에서
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BLE의광고패킷을활용하여주변 AP에대한정보를 Wi-Fi스캐닝없이제공할수

있고, 이렇게 얻은 정보를 바탕으로 주변 AP와 현재 연결되어 있는 AP의 성능비

교를 통해 핸드오프를 결정하게 된다. 성능평가를 위해 두 가지의 다른 최신 스마

트폰에 애플리케이션을 통해서 실험을 진행하였고, 그 결과 이동하면서 비디오를

시청할때최대 111%의성능향상을가져왔다.

다음으로, Wi-Fi와 BLE를 활용하여 실내 환경에서 사용자의 이동 경로를 예측

하는시스템을제안한다.최근스마트폰에는기본적으로관성센서가탑재되어있기

때문에, 센서의 값의 분석을 통해서 사용자의 움직임을 예측할 수 있다. 이를 활용

하여, 사용자의 도움 없이 사용자의 이동 경로를 파악할 수 있고 이동 중에 수집된

Wi-Fi와 BLE의 신호세기를 통해서 가상 공간을 생성할 수 있다. 생성된 가상의 공

간을실제실내도면의도움을통해서가상의공간이실제환경에서어떤위치인지

파악하고 실제 문을 랜드마크로 삼아 사용자의 위치를 보정하게 된다. 위와 같이,

Wi-Fi와 BLE, 관성센서, 실내 도면을 활용하여 사용자의 도움 없이 사용자의 이동

경로를파악한다.그결과,종류가다른다섯대의안드로이드스마트폰으로실험하

였을때, 1.42 m의오차를가지고사용자의위치를정확하게예측할수있다.

마지막으로, 앞서 제안한 측위 시스템을 바탕으로, BLE와 관성센서, 기압센서

를활용하여실내환경에서의네비게이션시스템을제안한다.두번째연구의측위

시스템은 단일 층에서 동작했다면 네비게이션의 경우 건물 전체 층에서 동작할 수

있어야한다.따라서,스마트폰에내장되어있는기압센서를활용하여층을구별하

고여러사용자의정보를수집하여건물전체에대해라디오맵을건설한다.건설된

라디오 맵을 기반으로 사용자의 초기 위치를 빠르게 파악하고 사용자가 제공하는

목적지를 바탕으로 최적의 경로를 제시한다. 그 결과, 100% 정확도를 가지고 사용

자의위치를파악하고최단경로를제시하는것을실험적으로보인다.

요약하자면, Wi-Fi 및 BLE와 같은 기반 시설과 스마트폰에 탑재되어 있는 다

양한 센서를 활용하여 사용자의 편의성 및 경험을 향상시키는 시스템을 제안한다.

이를상용스마트폰에구현하여실험을통해성능을검증한다.결과적으로,사용자

의경험을향상시킬수있는우수한성능을보여주는것을확인한다.
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