11 research outputs found

    Dynamic Scheduling, Allocation, and Compaction Scheme for Real-Time Tasks on FPGAs

    Get PDF
    Run-time reconfiguration (RTR) is a method of computing on reconfigurable logic, typically FPGAs, changing hardware configurations from phase to phase of a computation at run-time. Recent research has expanded from a focus on a single application at a time to encompass a view of the reconfigurable logic as a resource shared among multiple applications or users. In real-time system design, task deadlines play an important role. Real-time multi-tasking systems not only need to support sharing of the resources in space, but also need to guarantee execution of the tasks. At the operating system level, sharing logic gates, wires, and I/O pins among multiple tasks needs to be managed. From the high level standpoint, access to the resources needs to be scheduled according to task deadlines. This thesis describes a task allocator for scheduling, placing, and compacting tasks on a shared FPGA under real-time constraints. Our consideration of task deadlines is novel in the setting of handling multiple simultaneous tasks in RTR. Software simulations have been conducted to evaluate the performance of the proposed scheme. The results indicate significant improvement by decreasing the number of tasks rejected

    A Multi-layer Fpga Framework Supporting Autonomous Runtime Partial Reconfiguration

    Get PDF
    Partial reconfiguration is a unique capability provided by several Field Programmable Gate Array (FPGA) vendors recently, which involves altering part of the programmed design within an SRAM-based FPGA at run-time. In this dissertation, a Multilayer Runtime Reconfiguration Architecture (MRRA) is developed, evaluated, and refined for Autonomous Runtime Partial Reconfiguration of FPGA devices. Under the proposed MRRA paradigm, FPGA configurations can be manipulated at runtime using on-chip resources. Operations are partitioned into Logic, Translation, and Reconfiguration layers along with a standardized set of Application Programming Interfaces (APIs). At each level, resource details are encapsulated and managed for efficiency and portability during operation. An MRRA mapping theory is developed to link the general logic function and area allocation information to the device related physical configuration level data by using mathematical data structure and physical constraints. In certain scenarios, configuration bit stream data can be read and modified directly for fast operations, relying on the use of similar logic functions and common interconnection resources for communication. A corresponding logic control flow is also developed to make the entire process autonomous. Several prototype MRRA systems are developed on a Xilinx Virtex II Pro platform. The Virtex II Pro on-chip PowerPC core and block RAM are employed to manage control operations while multiple physical interfaces establish and supplement autonomous reconfiguration capabilities. Area, speed and power optimization techniques are developed based on the developed Xilinx prototype. Evaluations and analysis of these prototype and techniques are performed on a number of benchmark and hashing algorithm case studies. The results indicate that based on a variety of test benches, up to 70% reduction in the resource utilization, up to 50% improvement in power consumption, and up to 10 times increase in run-time performance are achieved using the developed architecture and approaches compared with Xilinx baseline reconfiguration flow. Finally, a Genetic Algorithm (GA) for a FPGA fault tolerance case study is evaluated as a ultimate high-level application running on this architecture. It demonstrated that this is a hardware and software infrastructure that enables an FPGA to dynamically reconfigure itself efficiently under the control of a soft microprocessor core that is instantiated within the FPGA fabric. Such a system contributes to the observed benefits of intelligent control, fast reconfiguration, and low overhead

    RISPP: A Run-time Adaptive Reconfigurable Embedded Processor

    Get PDF
    This Ph.D. thesis describes a new approach for adaptive processors using a reconfigurable fabric (embedded FPGA) to implement application-specific accelerators. A novel modular Special Instruction composition is presented along with a run-time system that exploits the provided adaptivity. The approach was simulated and prototyped using and FPGA. Comparisons with state-of-the-art appl.-specific and reconf. processors demonstrate significant improvements according the performance and efficiency

    Efficiently and Transparently Maintaining High SIMD Occupancy in the Presence of Wavefront Irregularity

    Get PDF
    Demand is increasing for high throughput processing of irregular streaming applications; examples of such applications from scientific and engineering domains include biological sequence alignment, network packet filtering, automated face detection, and big graph algorithms. With wide SIMD, lightweight threads, and low-cost thread-context switching, wide-SIMD architectures such as GPUs allow considerable flexibility in the way application work is assigned to threads. However, irregular applications are challenging to map efficiently onto wide SIMD because data-dependent filtering or replication of items creates an unpredictable data wavefront of items ready for further processing. Straightforward implementations of irregular applications on a wide-SIMD architecture are prone to load imbalance and reduced occupancy, while more sophisticated implementations require advanced use of parallel GPU operations to redistribute work efficiently among threads. This dissertation will present strategies for addressing the performance challenges of wavefront- irregular applications on wide-SIMD architectures. These strategies are embodied in a developer framework called Mercator that (1) allows developers to map irregular applications onto GPUs ac- cording to the streaming paradigm while abstracting from low-level data movement and (2) includes generalized techniques for transparently overcoming the obstacles to high throughput presented by wavefront-irregular applications on a GPU. Mercator forms the centerpiece of this dissertation, and we present its motivation, performance model, implementation, and extensions in this work

    Online scheduling for real-time multitasking on reconfigurable hardware devices

    Get PDF
    Nowadays the ever increasing algorithmic complexity of embedded applications requires the designers to turn towards heterogeneous and highly integrated systems denoted as SoC (System-on-a-Chip). These architectures may embed CPU-based processors, dedicated datapaths as well as recon gurable units. However, embedded SoCs are submitted to stringent requirements in terms of speed, size, cost, power consumption, throughput, etc. Therefore, new computing paradigms are required to ful l the constraints of the applications and the requirements of the architecture. Recon gurable Computing is a promising paradigm that provides probably the best trade-o between these requirements and constraints. Dynamically recon gurable architectures are their key enabling technology. They enable the hardware to adapt to the application at runtime. However, these architectures raise new challenges in SoC design. For example, on one hand, designing a system that takes advantage of dynamic recon guration is still very time consuming because of the lack of design methodologies and tools. On the other hand, scheduling hardware tasks di ers from classical software tasks scheduling on microprocessor or multiprocessors systems, as it bears a further complicated placement problem. This thesis deals with the problem of scheduling online real-time hardware tasks on Dynamically Recon gurable Hardware Devices (DRHWs). The problem is addressed from two angles : (i) Investigating novel algorithms for online real-time scheduling/placement on DRHWs. (ii) Scheduling/Placement algorithms library for RTOS-driven Design Space Exploration (DSE). Regarding the first point, the thesis proposes two main runtime-aware scheduling and placement techniques and assesses their suitability for online real-time scenarios. The first technique discusses the impact of synthesizing, at design time, several shapes and/or sizes per hardware task (denoted as multi-shape task), in order to ease the online scheduling process. The second technique combines a looking-ahead scheduling approach with a slots-based recon gurable areas management that relies on a 1D placement. The results show that in both techniques, the scheduling and placement quality is improved without signi cantly increasing the algorithm time complexity. Regarding the second point, in the process of designing SoCs embedding recon gurable parts, new design paradigms tend to explore and validate as early as possible, at system level, the architectural design space. Therefore, the RTOS (Real-Time Operating System) services that manage the recon gurable parts of the SoC can be re fined. In such a context, gathering numerous hardware tasks scheduling and placement algorithms of various complexity vs performance trade-o s in a kind of library is required. In this thesis, proposed algorithms in addition to some existing ones are purposely implemented in C++ language, in order to insure the compatibility with any C++/SystemC based SoC design methodology.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    A Reconfigurable Processor for Heterogeneous Multi-Core Architectures

    Get PDF
    A reconfigurable processor is a general-purpose processor coupled with an FPGA-like reconfigurable fabric. By deploying application-specific accelerators, performance for a wide range of applications can be improved with such a system. In this work concepts are designed for the use of reconfigurable processors in multi-tasking scenarios and as part of multi-core systems

    Bioinformatics

    Get PDF
    This book is divided into different research areas relevant in Bioinformatics such as biological networks, next generation sequencing, high performance computing, molecular modeling, structural bioinformatics, molecular modeling and intelligent data analysis. Each book section introduces the basic concepts and then explains its application to problems of great relevance, so both novice and expert readers can benefit from the information and research works presented here

    Block-level test scheduling under power dissipation constraints

    Get PDF
    As dcvicc technologies such as VLSI and Multichip Module (MCM) become mature, and larger and denser memory ICs arc implemented for high-performancc digital systems, power dissipation becomes a critical factor and can no longer be ignored cither in normal operation of the system or under test conditions. One of the major considerations in test scheduling is the fact that heat dissipated during test application is significantly higher than during normal operation (sometimes 100 - 200% higher). Therefore, this is one of the recent major considerations in test scheduling. Test scheduling is strongly related to test concurrency. Test concurrency is a design property which strongly impacts testability and power dissipation. To satisfy high fault coverage goals with reduced test application time under certain power dissipation constraints, the testing of all components on the system should be performed m parallel to the greatest extent possible. Some theoretical analysis of this problem has been carried out, but only at IC level. The problem was basically described as a compatible test clustering, where the compatibility among tests was given by test resource and power dissipation conflicts at the same time. From an implementation point of view this problem was identified as an Non-Polynomial (NP) complete problem In this thesis, an efficient scheme for overlaying the block-tcsts, called the extended tree growing technique, is proposed together with classical scheduling algorithms to search for power-constrained blocktest scheduling (PTS) profiles m a polynomial time Classical algorithms like listbased scheduling and distribution-graph based scheduling arc employed to tackle at high level the PTS problem. This approach exploits test parallelism under power constraints. This is achieved by overlaying the block-tcst intervals of compatible subcircuits to test as many of them as possible concurrently so that the maximum accumulated power dissipation is balanced and does not exceed the given limit. The test scheduling discipline assumed here is the partitioned testing with run to completion. A constant additive model is employed for power dissipation analysis and estimation throughout the algorithm

    International VLBI Service for Geodesy and Astrometry 2014 Annual Report

    Get PDF
    IVS is an international collaboration of organizations which operate or support Very Long Baseline Interferometry (VLBI) components. The goals are: 1. To provide a service to support geodetic, geophysical and astrometric research and operational activities. 2. To promote research and development activities in all aspects of the geodetic and astrometric VLBI technique. 3. To interact with the community of users of VLBI products and to integrate VLBI into a global Earth observing system
    corecore