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Abstract
As dcvicc technologies such as VLSI and Multichip Module (MCM) become mature, 

and larger and denser memory ICs arc implemented for high-performancc digital 
systems, power dissipation becomes a critical factor and can no longer be ignored 

cither m normal operation of the system or under test conditions One of the 
major considerations m test scheduling is the fact that heat dissipated during test 
application is significantly higher than during normal operation (sometimes 100 

- 200% higher) Therefore, this is one of the recent major considerations in test 
scheduling Test scheduling is strongly related to test concurrency Test concurrency 
is a design property which strongly impacts testability and power dissipation To 

satisfy high fault coverage goals with reduced test application time under certain 
power dissipation constraints, the testing of all components on the system should 
be performed m parallel to the greatest extent possible

Some theoretical analysis of this problem has been carried out, but only at IC 
level The problem was basically described as a compatible test clustering, where the 

compatibility among tests was given by test resource and power dissipation conflicts 
at the same time From an implementation point of view this problem was identified 

as an Non-Polynomial (NP) complete problem In this thesis, an efficient scheme for 

overlaying the block-tcsts, called the extended tree growing technique, is proposed 
together with classical scheduling algorithms to search for power-constrained block- 
test scheduling (PTS) profiles m a polynomial time Classical algorithms like list- 
based scheduling and distribution-graph based scheduling arc employed to tackle at 
high level the PTS problem This approach exploits test parallelism under power 
constraints This is achieved by overlaying the block-tcst intervals of compatible 
subcircuits to test as many of them as possible concurrently so that the maximum 
accumulated power dissipation is balanced and does not exceed the given limit 

The test scheduling discipline assumed here is the partitioned testing with run to 
completion A constant additive model is employed for power dissipation analysis 

and estimation throughout the algorithm
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Chapter 1 

Introduction

1.1 Thesis Scope

1 1 1  D igital Testing

Testing is an activity which aims at finding design errors and physical faults De­
sign errors arc introduced by designers during the product development process 
The testing of design errors, sometimes called design verification, tries to find dis­

crepancies between the design specification and its implementation Physical faults 

comprise fabrication errors, fabrication defects and physical failures [ABF94] 
Production testing is twofold test pattern generation and test application 

In the test pattern generation phase, test vectors are generated while m the test 

application phase, the test vectors arc applied to the circuit under test The test 
application phase is firstly dedicated to production testing, but is later launched 
again in field or depot testing and, therefore, it is important that it be as short 

as possible The test pattern generation task can be carried out manually by the 
designer or automatically Automatic Test Pattern Generation (ATPG) is either 
done by an ATPG tool or by built-in circuitry The latter technique is called Built- 
In Self-Test (BIST)

1 1 2  Low-Power D esign for Test

In general, Design for Testability (DFT) circuits operate m two modes normal 
mode and test mode The circuit’s registers, when activated during test mode can 

be m states that are not reachable in normal mode As a result, state transitions
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that are not possible during normal mode arc possible during test mode Therefore, 

during testing, sequences that could lead to much larger power dissipation may 

be applied to the circuit compared with sequences that are applied during normal 

mode Even though designs might be optimized for low-power dissipation during 

normal mode, the test mode could still damage the chip, unless the testing was 
optimized for low power dissipation as well Therefore, low-power design for test 
has become a promising new topic for research and is the wider scope of this thesis

1 1 3  High-Level Test and Low-Power Synthesis

Test synthesis is a design automation technique which is motivated by the high 

complexity of current designs and large testing costs Test synthesis is meant to 
optimize a circuit for testability while keeping within reasonable limits or even 

improving performance, area or power characteristics Test related activities, such 

as test generation and test application, usually represent a relatively big share of 

the total design and development cost Thus, the mam idea of test synthesis is to 
improve testability of the design during early synthesis steps, which is expected to 

reduce the testing costs Test synthesis can be performed at different levels but 
the early synthesis steps are assumed to be employed at high levels High-level test 
optimization can be performed in both behavioural and structural domains

The excessive heat dissipation is tied to trends such as circuit miniaturization 

and deep-submicron technologies and is a serious problem for portable products 
Very Large Scale Integration (VLSI) circuits running in test mode may consume 
more power than when running m normal mode [Zor93] Therefore, the heat dis­
sipated during test application influences the test design methodology for practical 

circuits and has to be taken into consideration at early design stages, 1 e at high 
levels

Lately, the major concerns of VLSI designers as area, performance, cost, relia­
bility, and power dissipation are usually optimized by High-Level Synthesis (HLS) 
separately However, this has begun to change and, for example, power is be­
ing optimized with respect to a design’s performance or testability, and vice-versa 
Several factors have contributed to this trend but the driving factor has been the 

remarkable growth of the class of mobile computing devices and wireless commu­

nications systems which demand robust solutions, high-speed computation, and 

complex functionality with low power consumption [Ped96]

D CU - December 2001
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1 1 4  Test Parallelism  vs Power C onstraints

In a power conscious VLSI/System on Chip (SOC) design, under normal system 
operation, only a few blocks or modules are simultaneously activated, while other 

blocks are m the power-down mode to minimize the power dissipation Under 

test conditions, however, in order to test the system m the shortest possible time, 
it is desirable to concurrently activate as many blocks as possible provided that 

the power dissipation limit of the system is not exceeded A good example in 

the testing of a MCM is the multi-level integrated BIST strategy [ZB97] In this 

attractive approach for testing MCMs, as many BIST blocks as possible execute tests 
m parallel Under normal operation, blocks arc not simultaneously activated and 
hence, the inactive blocks do not contribute much to power dissipation However, a 
concurrent execution of BIST m many blocks will result m high power dissipation 

which might exceed the maximum power dissipation limit Therefore, an intelligent 
way of scheduling these blocks to run m parallel to the highest extent possible (so 

that the power limit is not exceeded) is desirable

1 1 5  Power-Constrained Test Scheduling

Test application time and power dissipation arc nowadays two very important issues 

that have to be taken into consideration during high-level synthesis and optimiza­
tion Otherwise the test cost, test design time and the cost involved in the cooling 
systems for the power dissipated during test can become higher than the cost of 
circuit design and manufacturing without test considerations On the other hand, 

more and more products arc designed for mobile applications These products are 
designed to be low-power for their normal functions, but their testing may exceed 
specified power limits The avoidance of this dangerous condition implies the need 
for test optimization and test scheduling m order to decrease the test cost and test 
application time having m mmd low-power solutions The complexity of this prob­
lem turns out to be Non-Polynomial (NP) and thus sub-optimal search solutions 

have to be proposed
The components which are required to perform a test (test control logic, test 

buses, test pattern generators, signature analyzers, Block Under Test (BUT), and 
any intervening logic) arc known as test resources and they may be shared among 

BUTs Each activity or ensemble of activities requiring a clock period during the

D CU  - December 2001
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test mode and occurring m the same clock period, can be considered as a test 
step A block test is the sequence of test steps that correspond to a specific part 
of hardware (block) The testing of a VLSI/SOC system can be viewed as the 
execution of a collection of block tests The steps in a step sequence belonging to 
the same block test can be pipelined and steps from different block tests can be 
concurrently executed, if there are no resource conflicts between the steps Two 

major types of test parallelism approaches have been identified m the literature 

thus far

• block-test scheduling, which deals with tests for blocks of logic These po­
tentially consist of many test vectors and are regarded as indivisible entities 
for test scheduling It deals with more abstract descriptions (from Register 

Transfer (RT) to system levels),

• test pipelining, which deals with the test steps that need to be applied and 
the resources to be utilized m a specific temporal order It is applied at lower 

levels of abstraction, where the structure of the datapath is known m detail 

(logic or RT level),

Block tests and test steps have their resource sets used to build up their test 
plans Depending on the test design methodology selected, once a resource set 
is compiled for each test tt> then it is possible to determine whether they could 

run m parallel without any resource conflict A pair of tests that cannot be run 

concurrently is said to be incompatible Each application of time compatible tests 

is called a test session, and the time required for a test session is named test length 
From this point of view, circuits fall, in general, into two classes circuits in which 

all tests are equal m length and circuits m which the tests are unequal m length
Test scheduling fixes the order m which tests are applied during test execution 

Test schedules must be implemented by additional circuitry for test control, test 
pattern generation and test response evaluation Test schedules affect test execution 
time, fault coverage, hardware overhead cost and power dissipation Initially, test 
scheduling methods were proposed to minimize test application time with given fault 
coverage requirements Later, test scheduling methods that trade off test execution 

time over test application hardware have been defined More recently, the power 
dissipation issue within the test scheduling problem has been raised and proposed 

as a promising research topic [CSA97]

D CU - December 2001
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If pi(t) is the instantaneous 
power dissipation during test U and 
Pj(t) is the instantaneous power dis­
sipation during test t j , then the 

power dissipation of a test session 
consisting of just these two tests is 
approximately pi(t) +  Pj(t). Usu­
ally this instantaneous power is con­

strained so as not to exceed a power 

dissipation limit, Pmaxi if they were 
meant to be executed in the same 

test session. The power dissipation

Power 
Dissipation

power dissipation = 14

5 10 
Test Length

Figure 1.1: Block-Test Example

p(sj) for a test session Sj can be defined as: p(sj) = while the power
constraint in test scheduling is defined as: p(sj) < Pmax Vj. At high level a fixed 
value Pi is used to estimate the power dissipation of a test [AB86]. In figure 1.1 the 

power dissipation and test length parameters of a test example are given.

POWER
DISSIPATION

M A X IM A L POWER DISSIPATION = 14

test session 2

PD = 14
TL = 10

t2

test session 1

PD = 12
T L - 8

test session 4
test session 3

PD =
TL

10 20 
TOTAL TEST APPLICATION TIM E f  25

PD = 5
TL ■ 3

TIM E 1 1 1 1--
30

(a) Datapath Example (b) Fully Sequential Test Schedule
Figure 1.2: Test Scheduling Example

In order to have a better understanding of the above mentioned definitions a 
short example is given next. Say that the datapath from figure 1.2(a) has been 
synthesized from the following code: IF  cond ition  THEN f = a * b + c ELSE f

condition^

D C U  - D ecem ber 2001
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= a -  b /c  The allocated resources arc registers Ri, ,R$ and a multiplexer 
M U X  If the functional units are to be tested, then four tests have to be run 

¿1 ,^2) ¿3? and ¿4 The test resource sets for each test are t\ = {R\,  R 2, ^ 4}, ¿2 — 
{R2,R^ ,R5}, h  =  {R3, # 4, MUX,  R 6}, and t4 = {Ri,  R$, MUX ,  R6} In figure 
1 2 (b) the power dissipation and test length parameters of tests tu  , t4 arc given 
By looking at their test resource sets, the test resource compatibility relationship 

between tests can be compiled t\ is incompatible with any other tests because R 2 is 

a conflicting resource for t\ and ¿2» R 4 is a conflicting resource for ti and ¿3, and R\ 
is a conflicting resource for t\ and £4 In the same way ¿2 , £3, and £4 are incompatible 
with any other tests from the test set

Different power-test scheduling solutions arc given for this short test set in figures 
1 2(b), 1 3(a), and 1 3(b) Figure 1 2(b) depicts the pessimistic case when all the 

tests have to be sequentially executed in different test sessions because of the above 
given test resource incompatibility Figure 1 3(a) depicts an improved power-test 

scheduling solution where £2 and ¿4 can run m parallel if R$ is a Concurrent 
Built-In Logic-Block Observation (CBILBO) register and, thus, it would not be a 

conflicting test resource anymore The total test application time of the test schedule 
has decreased from 25 m figure 1 2 (b) to 21 m figure 1 3(a), while the maximal power 
dissipation has increased from 14 to 20 A shorter test application time (18) would 

be obtained for a lower maximal power dissipation (19) for the power-test scheduling 

solution given m figure 1 3(b), if tests t2 and ¿3 were simultaneously stimulated by 
register # 3  as a Pseudo-Random Pattern Generator (PRPG), while tests t\ and ¿4 

were simultaneously stimulated by register R\ as a PRPG The test application time 
improvement is achieved by running tests 12 and ¿3 m parallel m one test session, 

and tests ti and £4 in parallel in another test session
In order to achicvc this test parallelism, different test subscssions are generated in 

the same test session in figures 1 3(a) and 1 3(b) For example the test subsessiori24 
and test subsesstony (gap) run inside test session2 m figure 1 3(a) In figure 1 3(b) 
test subsessions called test subsession23 and test subsessioriu are generated to 
run test t% in parallel with t2, and test i4 m parallel with respectively Gaps 
test subsession? and test subsessioni> can also be seen m figure 1 3(b) after the 
insertion of tests ¿3 and t4 m parallel with tests t2 and ti, respectively These gap 

test subscssions could be exploited by executing othci tests compatible with ¿2 and 

ti and with test length shorter than the gap’s length
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(a) Power-Test Schedule (b) Improved Power-Test Schedule
Figure 1.3: Power-Test Schedule Examples

1.2 Thesis Structure

The structure of the thesis is briefly described here. The second chapter gives a 
theoretical background for the topics dealt with in the thesis. Special attention is 

given to the test scheduling problem which is discussed in detail. Then, the third 
chapter formulates and models the Power-Constrained Block-Test Scheduling (PTS) 

problem. Definitions and explanations of the terms used in the thesis are given 
in this chapter. Chapter four describes the first set of algorithms proposed as 
greedy solutions in the context of the PTS problem. They are the so-called list 
scheduling approaches. The fifth chapter carries on with the distribution-graph 

based algorithms, which are more intelligent approaches. Chapter six focuses on 
the experimental side of the implemented algorithms. A comparison between the 
different proposed approaches is given as a basis for the conclusions debated in 
the last chapter. Chapter seven gives, based on the experiments in chapter six, a 
list of advantages and disadvantages of the algorithms proposed in the thesis. The 
disadvantages can be a starting point for further work. Other topics adjacent with 
the problem discussed in the thesis are also envisaged and proposed as a basis for 

future work.

D C U  - D ecem ber 2001



8

Chapter 2 

Theoretical Background

This chaptcr is meant to give the reader an idea of the test scheduling models, 

methodologies, techniques and terminology relevant to this thesis First of all, the 
bigger scope is described by enumerating m the first two sections the High-Level 
Test Synthesis (HLTS) and High Level Low-Powcr Synthesis (HLLPS) techniques 
proposed so far m the literature Next, the scope is shrunk by giving a few solutions 
for test parallelism and test application time improvement Eventually, the topic 
of this thesis is given Test scheduling is one of the most used techniques for test 

parallelism improvement and it will be described m deeper detail here along with 

its previous work

2.1 High-level Test Synthesis Techniques
HLS tries to find at high-level a good trade-off among design’s testability, perfor­

mance, area and power consumption High-Level Test Synthesis (HLTS) is usually 

carried out by DFT specific transformations together with traditional HLS meth­
ods It uses high-level testability measures as one factor of the cost function to 
guide the synthesis process There are two mam trends m HLTS methodology 
One of these implicitly addresses test synthesis in HLS systems and testability con­
straints are used together with other constraints (timing, area, power), while the 
objective function has a testability component The other carries out test synthesis 

by test-improvement transformations based on a testability analysis scheme These 

transformations can be achieved m both, behavioural and structural domains, at 

both algorithmic and Register Transfer Level (RTL)
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Different approaches have been proposed so far both in the behavioural and 

structural domains, at algorithmic or RT levels A survey on HLTS was given 

m [WD96] The following approaches have been reported for HLTS structural 

test-pomt insertion [Gu96, DP94b] or its behavioural equivalent, tcst-statemcnt in­
sertion [CKS94] Test-register minimization is another approach achieved either by 

HLS techniques or by RTL transformations [Avr91, AM93, HP93, PCH91] Loop 

detection and elimination is another technique achievable through HLS, usually 
during the allocation stage I-path (unaltered data transfer path, see subsection 

2 5 2) detection and utilization [AB85b, DP94a] is usually applied after scheduling, 

through allocation and binding Test application control enhancement is another 

approach and test scheduling is one of the known techniques (see section 2 5) to 
accomplish that Test session minimization is an approach related to test schedul­

ing being employed as one of the above test control enhancement techniques By 
partitioning for testability [GKP95, Gu96] the test synthesis can be optimized as 

well Input/output variable spreading over as many registers as possible [LWJA92] 

is another HLTS solution Test behaviour addition [PCH91] is a promising new ap­

proach Two structural techniques have been so extensively used m literature that 
they have become mature The full-scan approach of chaining all the test registers 
and the partial-scan approach of selecting an optimum set of test registers so that 

the wanted testability/area-overhead ratio is achieved [MTOM96, GB95]

Test path insertion is necessary m 

order to observe a component, and 
minimization of conflicts between tests 
is important as it directly affects test 

concurrency, and therefore test time 
These two criteria are considered at 
each stage of behavioural and structural 
synthesis in [OH97] The behavioural 
and structural test synthesis problem 
was decomposed m [OH97] into the fol­
lowing five components as shown in fig­
ure 2 1 Dataflow Scheduling for Testability where HLS scheduling defines intercon­
nect to test registers by placing scheduling cuts between operations while testability

Figure 2 1 Test Synthesis Approach
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is taken into consideration Binding for Testability which is performed to facilitate 

easy accessibility of chip components from registers and I/O  pms by defining RTL 

interconnect Test Register Selection where a subset of datapath registers used to 

test the datapath modules is selected for use as test registers Test Path Defini­
tion stage generates the paths through which test data propagate in test mode are 

defined by determining the multiplexor configurations during testing Finally, the 
test Scheduling stage schedules each test operation (test step for test pipelining or 
block-test for block-test scheduling) to a particular test control step m order to gen­

erate a test plan to run on the test scheme of the hardware structure The hardware 

structure can be an RTL structure for test pipelining (see subsection 2 5 3) or any 

level m the test hierarchy for block-test scheduling (see subsection 2 5 4)

The approach m [OH97] employs a HLS solution to generate RTL circuits which 

guarantee concurrent controllability and observability of all hardware components 

from test registers Thus, the difficulty of test scheduling is shifted to higher lev­

els where the amount of information to be dealt with is sensibly smaller, while 
testability metrics are used to estimate the impact of HLS design decisions on the 

test concurrency problem The goal was to limit the test scheduling problem to a 
structural solutions like pipeline or non-pipelme BIST microarchitectures (sec fig­

ure 2 10 m section 2 5 3) A slightly different approach was theoretically formulated 

m [BKH97], where the idea was to evaluate the RTL test scheduling solutions, to 

identify the bottleneck spots m the RTL datapath and backannotate them to a 

transformational HLS system m order to repeat the synthesis process to get rid of 
possible test scheduling bottlenecks Thus, the first approach [OH97J synthesizes 
based on estimations, while the second approach [BKH97] is based on more precise 

evaluations, but may have a longer synthesis cycle
Among the HLTS techniques enumerated above, the test scheduling techniques 

arc studied m this thesis Test scheduling deals with the optimization of test session 
sequences in order to achieve a short test application time, a simplified test control 
or an optimum power dissipation A test session can be based on any means of 
generating and applying a test The BIST methodology is the most widely used 
ATPG solution, but it is not the only one dealing with the test session concept 

[MKRT95] Test paths are sought to carry out the test on a piece of hardware to 

be tested during a test session Test paths usually share some hardware (registers, 

Arithmetical Logic Unit (ALU)s, multiplexors, buses), thus creating conflicts and
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forcing the need for multiple test sessions The above HLTS methodologies have 

been proposed to synthesize data paths to avoid the test conflicts between the test 

sessions Unfortunately, this is not an ultimate and sufficient solution for overall 
design optimization Total test application time and power dissipation throughout 

it can be optimized by test scheduling techniques

2.2 High-level Low Power Synthesis Techniques
Lately, plenty of solutions for power-efficient synthesis have been reported m the 

literature [Ped96, MK96] The range of solutions also span the behavioural and 

structural domains between the algorithmic and RT levels A survey of these tech­
niques can be found m [Ped96] Among the most widely used low-power design 
techniques the following can be enumerated low-power module selection, power­
conscious storage allocation and data mapping solutions, low-power module sharing, 

parallel operators on time-critical paths, pipelining, algebraic transformations for 

low power, number representation selection, operator shutdown, low-supply voltage 
The above techniques have recently been used at high-level for low-power de­

sign However, they arc beyond the scope of this thesis The approach adopted in 

this thesis will require from the low-power design results only the high-level power 
estimation values for the test sessions to be scheduled A more detailed explanation 

of this approach will be given m chapter 3

2.3 Test Methodology and Terminology
Two basic test philosophies have been proposed so far functional test and struc­
tural test Functional testing attempts to cxcrcisc a chip as it would be used during 
the execution of its normal functionality On the other hand, structural testing 
uses a chip logic model with a fault model to hypothesize the behaviour of defec­
tive circuits, which enables the creation of automatically-generated test patterns 
[WNML94] Judging by the way testing is applied, testing techniques can be clas­
sified into two categories online testing and off-line testing Online testing is 
run during the normal functional operating conditions [AAMH98] Two different 

modes of online testing have been defined Concurrent online testing takes place 
simultaneously with normal system operation Nonconcurrent online testing takes
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place while normal operation is temporarily suspended (idle state) On the other 

hand off-line testing deals with testing a system when it is not carrying out its 
normal functions and it is applicable at the manufacturing, field or depot testing 
Functional off-line testing deals with the execution of a test based on a functional 

description of the Circuit Under Test (CUT) Structural off-line testing deals with 

the execution of a test based on the structure of the CUT and an explicit structural 

fault model may be used

In this thesis, test scheduling approaches are proposed at high-level and do 

not constrain the type of testing which has to be employed for the tests to be 

scheduled The test scheduling here is supposed to be applied to tests lunnmg in 

the test mode Only test sessions are supposed to be scheduled by this approach 
Therefore, throughout this thesis, an off-lme testing approach is employed as test 

methodology for the designs the actual test scheduling approach is meant for
Addressing the test parallelism problem assumes that a Testable Design Method­

ology (TDM) [AB86] is adopted beforehand A TDM deals with the complete pro­
cess of adopting one or more different testing architectures mapped on different 

blocks of the design It also has to avail of an easily testable structure optimized 

by HLTS The known ways of testing the structure up to date are using external 

and/or built-m test hardware
The lowest level considered in this thesis for test scheduling application is RTL 

Examples of well-known TDMs at RTL are scan path, Built-In Logic-Block Obser­

vation (BILBO), syndrome testing, and autonomous testing The structural aspects 
of a TDM can be best modelled by a template like the one given m [AB86] and de­
picted m figure 2 2(a) A TDM template conveys information about the type of 

structure, referred to as kernel, to which the TDM is applicable The template 
also indicates the required Built-in Test (BIT) structures and the connection paths 
which must exist between them and the kernel As an example a methodology for 
BILBO is given in figure 2 2 In addition to the structural aspect of a TDM, there is 
also an operational one A test scheme together with a test plan specify how a test 
methodology is to be executed [AB86] The main aspects specified by a test scheme 
arc the generation of test vectors, the transfer of the test vectors to the structure 

(kernel) to be tested, the propagation of the test vectors through the kernel, the 

transfer of response data to some response analysis circuit, and the processing of the 
response data The test plan is a stepwise activation of the operations enumerated
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m a test scheme
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(a) Test Template (b) Structure Under Test
Figure 2 2 Testable Design Methodology
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Test schemes and test plans consist of three sections a head, a body, and a 
tail The body of a test scheme describes the on-chip actions that constitute the 

life cycle of a single test vector from the time it is generated until its effects on the 
kernel have been captured and processed In addition to the actions in the body 
of a scheme which must be executed once for every test vector, a test scheme often 

has a head (tail) section in which initialization (closing) actions are specified
Two schemes to apply the tests were defined m [AS98] test per clock scheme 

(e g , BILBO, circular BIST [EW91]) and test per scan scheme (scan-based test like 
Self-Testing Using MISR and Parallel SRSG (STUMPS) [SM97]) In a test-per-scan 
scheme, all or part of the registers are set-up as test registers Thus, in test mode 
they form a chain called a scan path The test registers are fed with test vectors 
by means of a scan path When each test register has received its test vector, the 
whole circuit is evaluated during one clock when the circuit is running m the normal 
mode During this clock, test vectors are applied to the logic and the response is 
captured m the same test registers Then the response is shifted out by means of 

the same scan path, while new test vectors could be shifted in at the same time 
On the other hand, m a tcst-per-clock scheme, some test registers are enhanced 

such that in special test modes they autonomously generate patterns or compact
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test responses The most widely used TDM m this scheme is BIST A test-per-clock 
scheme has advantages with respect to test application time, but it often requires a 
higher hardware overhead than the test-per-scan scheme For example, a CBILBO 

register can simultaneously generate test patterns and compact test responses, but 
it contains two registers instead of one As a result, test scheduling is simplified, 

while test application time is reduced, but the test registers have doubled at least 

A test plan has the same general form as a test scheme but it is usually rendered 

by pipeline functionality A test plan is the sequence of actions that have to be run 

m order to implement a given test scheme These actions can be naturally organized 

into a number of steps, such that the actions m one step can all be executed in one 
clock period Each activity or the ensemble of activities requiring a clock period 
and occurring m the same clock period can be considered as a test step which is 

considered the basic element of test pipeline modelling [SK92] The test of hardware 

consists of the repetitive execution of the same sequences of test steps with different 

data values and through different hardware stages (resources) The execution starts 

at one or more test sources and terminates at one or more test sinks A test 
function is the sequence of test steps that correspond to a specific part of hardware 

(a sequence of hardware stages) and the control configuration established during 

the execution of one iteration of a test
Testing of a VLSI system can be viewed as the execution of a collection of test 

functions In order to increase their parallelism and, thus, decrease the test time, 

three approaches can be considered Firstly, an overlap m the time domain available 

via pipelining, which permits concurrent execution of test functions Secondly, 
different test functions can also be concurrently executed m the space domain 
due to parallel functional units, 1 e , if their execution utilizes separate hardware 
structures Finally, further reduction in testing time can be achieved if different 
test functions can be scheduled to utilize shared hardware at different times during 
their execution

2.4 Test Parallelism and Test Time Reduction
Approaches to reduce the test application time by restructuring the test sequence 
can be divided into the following two classes Firstly, the static test sequence 

reduction approaches which do not increase the complexity of test generation They
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put together the tests generated by a test generator m such an order that the overall 

application time is reduced Basically, there are two approaches rearranging the 
test strings [Diw91, FM91] or reordering the flip-flops (registers) [GB91, MM91] 
Secondly, the dynamic test sequence reduction approaches that try to reduce the 

number of test vectors by carefully assigning the unspecified input signal values to 
binary constants and thus reduce the number of test vectors [PS92, LS92] There 
are also other ATPG techniques to reduce the test application time by optimizing 

the test vector sets, but they are beyond the scope of this thesis

2.4 1 Single Scan Path  Reconfiguration

For self-testable (e g , BIST) circuits the first test (sub)session lasts until the sub- 

circuit with the smallest test length has been completely tested Afterwards, test 

patterns arc applied only to the remaining subcircuits [NNB92, GB91] proposed 
techniques to order the registers included m a single scan path such that the total 

test application time is minimized
A reconfiguration approach was given m [NB95, NB93] for single scan paths in 

order to minimize the shifting time m applying test patterns on a device The mam 

idea was to employ multiplexers to bypass registers that are not accessed frequently 
m the test process and hence reduce the overall test application time

In [LKL93] the reduction of test application time for the general scan designed 

circuits was studied Given a scan path, the test application time can be reduced by 
exploiting and eliminating unnecessary scan operations The reduction problem was 
investigated from three aspects test generation, selective scan, and rearrangement 

of scan path A two phase test generation strategy was proposed the scanless phase 

for easy-to-detect faults and the scan phase for hard-to-detect faults Selective scan 
methods were then proposed because it is not always necessary to control and 
observe every scanned element m every test vector application Finally, a technique 
for the rearrangement of scan path was proposed based on a scan elements ordering 

heuristic

2 4 2 M ultiple Scan Path  Reconfiguration

A more comprehensive and integrated method was proposed in [OBT91] to reduce 
the test application time by reducing the number of test vectors and shift-opcrations

DCU - December 2001



Multiple Scan Path Reconfiguration 16

Firstly, a scan path organization was earned out by ordering the scan registers in 

a scan path and by distributing the scan registers m multiple scan paths Then a 
scan test scheduling was done by overlaying shift operations of different tests and 

by parallel scheduling of different tests

Multiple-scan chain restructuring techniques were also described m [LCH98] It 

was noticed there that multiple scan chain architectures require a large pin overhead 
and they are not supported by boundary scan The solution was to allow a single 

input line to support multiple scan chains In [NGB92, NGB93] a different length 
multiple scan chain approach was proposed in order to assign those scan elements 

that are more frequently used to the shortest scan chains
The STUMPS architecture is another solution to the pm overhead problem In 

[KW98] this idea was used in order to synthesize a pattern generator to simultane­

ously stimulate all scan chains and decrease test application time

2 4 3 Test Structure Insertion and O ptim ization

There are many attempts to reduce the area overhead at the same time with the 

optimization of test scheduling by sharing the hardware elements Unfortunately, 

reduction of area overhead and testing time turn out to be conflicting objectives 

In [KTH88] the authors addressed the issue of BILBO minimization using the min­
imal set cover technique The area optimization, thus obtained, is followed by the 

determination of a test schedule using the graph colouring approach in [KS82J 
In [BWBM92] the same problem was formulated as an Integer Linear Program­
ming (ILP) as well as a graph search problem with a heuristic cost function

A systematic approach has been developed in [LNB91] to provide designers with 
a set of testable versions for a given design, ranging from minimal test time solution 
to the minimal area overhead solution An expert selection system is employed to 
operate as an intelligent BIST design advisor

A large amount of work was earned out by Strode and Wunderlich m tradmg-off 
the test application time and test area overhead by test register insertion, configu­
ration and test scheduling A test structure insertion and optimization technique is 
initially given m [SW95] for the test-per-clock scheme, emphasizing the advantages 
of CBILBO methodology A unified method for assembling all the single tests to a 

global schedule is then presented m [SW94] In order to reduce the BIST hardware 

overhead, the number of evaluated signatures was minimized there It was also
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observed m [SW86] that test schedules have an impact on the number of signatures 

that have to be evaluated These last two approaches utilize the mutual influence 
of signatures to construct test schedules such that only the signatures at the pri­

mary outputs must be evaluated The relationship between the structure of the test 
schedules and the hardware costs is then investigated in [Str92] and the knowledge 

about it is used to guide the search for an optimal schedule from both, time and 
cost point of view Based on the same concepts a gate-level to RTL test scheduling 
approach is given m [SW92] Here, 1-bit test cells arc inserted at gate level, and 

initial test schedules are constructed Based on the information m these schedules, 

test cells that can be controlled m the same way are assembled to test registers 

Finally, a test schedule at RTL is constructed, to reduce both BIST hardware and 

test application time, while a minimal set of test control signals is determined

2.5 Test Scheduling

Test concurrency is a design prop­
erty which strongly impacts on testabil­
ity To satisfy high fault coverage goals 
with reduced test application time, the 

testing of all components on the chip 
should be performed m parallel to the 
greatest extent possible The structure 

of the circuit (number and characteris­
tics of test paths), however, may not permit concurrent observation of all com­
ponents For example, two components whose results arc observed by the same 
test register cannot be concurrently observed In figure 2 3 ([OH97]) the test path 
is depicted in solid line, while the MUX multiplexer could be a possible testing 
bottleneck if both adders, adder\ and adder2 try to set up test paths through the 
multiplexer The test concurrency problem is magnified when DFT area overhead 

is an issue, because removing test registers from a datapath increases the number 

of components which must be observed by each remaining test register Therefore, 
HLS is used to generate datapaths whose components are concurrently testable to

2 5 1 Test Scheduling Goal
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Figure 2 3 BIST Datapath Example
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the highest extent possible [OH97] Then test schemes or plans must be defined 

to execute the concurrent testing of each component However, even if the above 

solution is employed to achieve a high test concurrency, it cannot be a 100% success 
In Very Large Scale Integration (VLSI) circuits, a large device count exists with 

a relatively few input/output pms Moreover, BIST, which is the most used testing 

technique, is minimized as much as possible to keep under control its area overhead 
This results in complex structures for which test generation is difficult, consisting of 

long tests with high input/output traffic during testing In the VLSI environment, 
desirable goals for BIST are to eliminate as much test generation as possible, to 
permit a fairly general class of failure modes, to permit easy circuit initialization 
and observation, to reduce input/output pm signal traffic, to reduce test length 

Although BIST techniques manage to achieve a number of the goals listed above, 

for very large circuits with extensive BIST resources, the testing time can still be 
quite long if the tests for the various parts of the circuits are executed sequentially 

In such cases, m order to reduce testing time and fully exploit the power of the 

BIST resources, it is essential to control the testing process so that full use is made 

of the potential parallelism available
Typically, physical paths must be established from the test pattern generators 

to the inputs of the BUT and from the BUT to the response compressors/analyzers 
The blocks which are required to perform a test (test control logic, Test Pattern Gen­

erator (TPG), compressors/analyzers, BUT, and any intervening logic) are known 
as test resources Test resources may be shared among BUTs For example, testing 

schemes exist, like CBILBO, in which the Signature Analyzer (SA) for one BUT 
can be used as an input stimulus (TPG), for another BUT Also, for those blocks 

which lie on the periphery of a chip, a portion of the test resources may he off-chip 
Two major types of test parallelism approaches have been identified in the liter­

ature thus far One approach, named block test scheduling (macro-test scheduling 
or block-level test scheduling) [CKS88, KS82], deals with tests for blocks of logic, 
which potentially consist of many test vectors and are regarded as indivisible entities 
for test scheduling Furthermore, there is no temporal relationship between the test 
vectors m different block tests other than that defined by the usually rare conflicting 

use of resources The other approach [AB85a, AB86], called test pipelining (micro- 

tcst scheduling or test-step level scheduling), deals with test steps which have to 
be applied and resources utilized m a specific temporal order Intuitively, test-step
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level scheduling is applied at lower levels of abstraction, where the structure of the 
datapath is known in detail (logic or RT level) while block-level test scheduling deals 
with higher levels, namely a more abstract description (RT or system levels) Most 
of the approaches formulated so far for test pipelining were given m the structural 

domain at lower levels (mainly logic level) Lately, though, a trend to behavioural 
and register transfer level approaches [CSA97, BKH97, OH97] has been noticed In 

the case of block test scheduling a system level structure is taken into considera­

tion, where the blocks represent processors (datapaths and controllers), memories 

and buses
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To summarize, an efficient test 
scheduling model has to provide suf­

ficient information about the con­

tention over test resources and to 

exploit the deterministic and repet­
itiveness characteristics of test­
ing All information required can 
be summarized by the following 
generic set of components for each

test function the number of tests 
Figure 2 4 Circuit Under Test Example tQ fac apphedi thc accesslblhty rc.

quiremcnts in terms of test and/or system resources, and additionally, in the case 

of test pipelining, the execution picture for one iteration of the test step sequence

2 5 2 Test Scheduling M odel

The steps m a test step sequence (test plan) belonging to a test function can be 
pipelined and, steps from different test functions (test blocks) can be concurrently 
executed if there are no resource conflicts In both, block test scheduling and test 
pipelining approaches, block-tests and test steps, respectively, have their resource 
sets used to build up test schemes or paths Depending on thc TDM selected, once a 
resource set is compiled for each test tu then it is possible to define a compatibility 

relation between tests [CY92]
In a resource allocation graph, a resource node that is connected to more than 

one tost indicates possible contention between thc tests for use of that resource
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For the design example taken from [CY92] and depicted m figure 2 4 the resource 

allocation graph is depicted m  figure 2 5 It consists of combinational logic denoted 

by Ct and registers denoted by A BILBO TDM is assumed and a serial scan 

path is available for initializing TPGs and for observing the resulting signatures m 

SAs The use of the resources m this structure can be illustrated, for example, by 

test ¿4 of C4, which uses as inputs the registers R 2 and R q and the register R$ as 

output

Since the test path for C4 has an output branch through C5, there is m the 

resource allocation graph an edge between £4 and C5 as well Thus the resource set 

for test ¿4 is R 2, Re, ^ 9, C*, C5, and R 7  because of C 5  The resource set for test 

£5 is R 2, Rs, C4, i?7, C5 and R$ Resources R 2 and Rq are input resources to C4, 

which is one of the input resources for C§ during test £5 Furthermore, during the 

test £2 of C2, one of the resources is C 3  which overlaps C 2  C 2  is also m the resource 

set of test £3

A pair of tests that cannot be run 

concurrently, will be said to be incom­

patible Otherwise, they arc compati­

ble Each application of time compat­

ible tests is called a test session, and

the time required for a test session is

m ~ . referred to as test length Such rcla-
Figure 2 6 Test Incompatibility Graph

tions can be represented by Test Com­

patibility Graph (TCG) or by the complementary Test Incompatibility Graph (TIG) 

(figure 2 6) In a Test Compatibility Graph (TCG) an edge is drawn between node

t % and node t 3 if test t t and test t 3 are compatible A TCG or TIG can be used

as a basis for scheduling the tests so that the total testing time is minimized In 

general, circuits fall into two classes circuits m which all tests arc equal in length
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and circuits m which the tests arc unequal m length Based on this classification, 

the following two problems may be stated Firstly, to find a test schedule such that 

the total time to run all tests is minimum provided that each test t t takes T  units 
of time to run completely Secondly, to find a test schedule so that the total time 

to run all tests is minimum provided that a test t t takes Tt units of time to run 

completely
A clique is a maximal subgraph of a TCG and represents a maximal set of tests 

which can be run concurrently When power consumption is also considered in the 
scheduling of tests, the clique solution is not sufficient The nodes, or equivalently 

the tests, in the same clique are time compatible only with respect to the resource 
constraints They may not be compatible from the power consumption point of 
view as executing all tests m the same clique might exceed the maximum power 

limit imposed by the technology In such a case, they must not be scheduled in the 
same test session

Tests ¿1 , ¿2, 5 tp can run concurrently if and only if they form a complete
subgraph G% m the TCG [CKS88] A Concurrent Test Set (CTS) is a set of tests 

which may be run concurrently improving the test parallelism Intuitively, m order 

to obtain an optimal schedule, the number of CTSs should be as small as possible 

The order in which the CTSs associated with different cliques G% are run is not 
important from testing point of view, but might be important from power dissipation 
point of view (see section 3 2 2) For tests which appear m more than one CTS, it 
is possible to delete all but one occurrence of such tests The decision to eliminate 

redundant executions of a particular test is usually dependent on the test control 
implementation It is possible to exploit these duplicate test executions to reduce 

aliasing m Signature Analyzers (SAs) [CKS88] For each execution of a test, a 
different configuration of the SA corresponding to a different polynomial can be 
used This has been shown to reduce the probability of aliasing [WI95]

Test Scheduling Model 21

A higher-level approach can be found 
m [LNB91, AB85b, H094] where an I- 
path based test methodology was adopted 
A K-port was defined as an input/output 

REG3 ' ' re g 5 ‘ port of a kernel An I-path was defined
TEST PATH 1 TEST PATH 2 here as a data path from a primary input

Figure 2 7 Hard Conflict Example
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or a register to a K-port or from a K-port to a primary output or a register so that 

data can be transferred unaltered. A test session was defined as the execution of a 
set of tests for some kernels. For each test session a test plan is required. This plan 
specifies how to initialize test hardware, perform tests for kernels, and observe final 
signatures. A K-port is said to be testable if it is covered by at least one I-path. 
A kernel is said to be testable if each of its K-ports is testable and no conflicts 

exist between the I-paths of its K-ports. Two I-paths are said to have a Forbidden 
Conflict (FC) if they cannot co-exist in a testable design. Two I-paths are said to 

have a Hard Conflict (HC) if they cannot be operated in the same test session. Two 

I-paths are said to have a Soft Conflict (SC) if they can be operated in the same 

test session but restrictions on their schedule exist.

In [OH97] HC occurs when one test 

path uses a register as an Multiple In­
put Signature Register (MISR), while 
another test path uses the same reg­

ister as a PRPG (see figure 2.7). The 
FCs are considered HCs in [OH97] and 
are no longer forbidden by using the 
CBILBO registers. Then HCs between 

test paths are structurally eliminated 

by using either a BILBO or CBILBO 

register, which acts as both Linear Feedback Shift Register (LFSR) and MISR. 

In the same way a SC appears when two test paths share intermediate registers, 

multiplexors, buses, or functional units at the same control step (see figure 2.8). 
SCs are avoided by using test scheduling to exclude the concurrent execution of 
the hardware-sharing operations. The use of test scheduling to avoid SCs results 
in reduced testing throughput which can be alleviated through pipelined testing. 
Partial-intrusion BIST given in [OH97] is such a test pipelining technique and is 
described in the last paragraph of subsection 2.5.3.

2.5.3 Test P ipelining

In most cases, the processing of test vectors according to the test plan can be 
pipelined through a circuit, thus reducing the total test time by increasing the

T E S T  PA TH  1 T E S T  PATH 2

Figure 2.8: Soft Conflict Example
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throughput The manner of overlapping the processing of test vectors leads to the 
concept of pipelined test scheduling or test pipelining There are two approaches 
known in the literature for test pipelining The first one is to schedule test steps for 

already pipelined hardware architectures The second one is to pipeline test steps 

for non-pipelmed architectures, such that no test resource conflicts are met

Scheduling tests for parallel and pipelined units differs from traditional multi­
processing and multipipehne scheduling m the following ways Firstly, the data 

dependencies between consecutive executions of test functions are nonexistent m 
test pipeline scheduling For example, there is no data dependency between test 

vectors Therefore, there is no concern with regard to precedence and order of ex­
ecution Secondly, the application of test functions is very repetitive, focusing on 
scheduling repetitive actions instead of transient actions Thirdly, a test function 

must be executed on the specific hardware block to be tested, whereas in traditional 
pipeline scheduling the pipelined operations can be executed for different resource 

allocation solutions Therefore, allocation to parallel resources m test pipelining is 

quite constrained However, if some resource allocation is required, it is assumed 

to have been done prior to scheduling Finally, traditional static pipeline reserva­

tion tables and the associated state diagrams used to allocate hardware units for 
single pipelines become impractical when dealing with multiple pipeline configu­

rations The conclusion of these differences is that traditional pipeline scheduling 
approaches are not suitable for test pipeline scheduling As a consequence, ap­
proaches specifically for test pipeline scheduling have appeared scheduling tests for 
already pipelined umts [SK88, SK89, SK92] and test step pipelining [AB85a, AB86] 

The approach proposed m [SK92] generates a test schedule for testing already 

pipelined structures In order to achieve a minimum overall testing time for multiple 
test functions with multiple test steps, while retaining simple test control, the idea 
was to partition the test functions into sets The test functions’ steps m a given 
set were repetitively issued with different test values until all test data had been 
applied A conflict occurred in the test schedule when multiple initiations of the 
same or different test functions attempted to simultaneously utilize any one resource, 
l e , in the same clock period

In [AB85a, AB86] test step pipelining techniques were given that focused on 

generating test functions with improved throughput The throughput improvement 
was attempted by inserting idle steps (No Operations NOPs) into a test function
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(a) Higher Throughput (b) Lower Throughput

Figure 2 9 Pipelined BIST Test Schedules

Minimizing the overall test time was achieved however at logic level because the 

test function application was rather detailed

Because pipelined testing enables multiple iterations of a test path to be executed 
in parallel, it is possible for a conflict to occur when two different iterations of the 

same test path share hardware at the same control step However, a conflict is 

not caused when two iterations share the use of a non-test register, as long as the 
flow of test data through the physical hardware components is not altered For 
example, the test schedule for the BIST structure m figure 2 3 is given in figure 
2 9 and it depicts the temporal sequence of test data propagation From figure 2 9 
it can be seen that, since the two register storage operations are actually identical 
operations m two different iterations of the same test path, the flow of test data 
through the physical hardware components remains the same m both schedules 
[OH97] demonstrated that a conflict is not caused when two iterations share the use 
of a non-test register, as long as the flow of test data through the physical hardware 

components is not altered That is, the test vector m the aforementioned register 

has to be constant This is the case in figure 2 9(a) where, m order to have a higher 
test throughput, req\ must have the same test vector value throughout the high

DCU - December 2001



Test Pipelining 25

throughput test In this case, because the value of regi does not change, the two 

PR PG  registers to feed its inputs are useless (their content has to be constant), 

while the adder +1 is not tested in this mode (only adders +2 and +3 are tested) 
In order to also test adder +1, a lower throughput mode has to be employed (see 

figure 2 9(b)), m which reg\ is used as an un-confhctmg test resource Thus, its 

content can be changed at each step permitting for the test of adder +1
In [OH97, H094], pipelined testing was made possible by the use of partial- 

intrusion B IST  approach as illustrated m figure 2 10(a) This is a widely used 
HLTS technique (see section 2 1), which assumes an intelligent selection and trans­

formation of a certain number of registers into BIST registers to increase design 

testability The rest of the logic is tested without reducing test throughput by 

using the non-test registers to propagate test data and pipeline it this way The 

selective BIST intrusion is driven by the fault-cover age/area-over head ratio initially 
given to be achieved By using simple registers to store intermediate test values, 

test pipelining was enabled because each test path could be segmented into time- 

discrete stages In the case of figure 2 10(a) partial-mtrusion BIST also reduced the 
need for test register insertion because the stimuli for a test stage could be supplied 

by the previous stage rather than a test register A pruning approach was employed 
to perform a gradual scheduling, incrementally removing scheduling options The 
algorithm in [H094] was a repetition of three steps conflict evaluation, conflict 

avoidance, and unfeasible test option pruning They defined a legitimate BILBO  
embedding (see figure 2 10(b)) as a structure consisting of a kernel, a driving path 

for each input port (kernel port or K-port) and a receiving path for each output port 
of the kernel The conflict was modelled here like m [LNB91, AB85b] (see subsection

(a) Pipelined Testing Through REG (b) BILBO Non-pipelmed Testing

Figure 2 10 Partial-Intrusion BIST Approach
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2 5 2) Two embeddings were considered fully compatible if the I-paths between 

them did not have conflicts They could be executed m the same test session to 

reduce the total test time When the I-paths between two different embeddings had 
SCs, reservation tables for their test plans had to be analyzed to obtain the test 

time for executing them m one test session, and the test time for executing them 
in sequence If the former was shorter, these two embeddings were called partially 

compatible Only fully and partially compatible embeddings were considered for 
concurrent execution

2 5 4 Block-Test Scheduling

UNIT TO TESTE

PROCESSOR P1

DATAPATH D

MULTIPLEXER MA

MULTIPLEXER MB

I ALU Ä)

SHIFTERS

STATUS F

CONTROLLER C

REGISTER FILE R

PROCESSOR P2

PROCESSOR P3

PROCESSOR P4

PROCESSOR Pn

CONTROL UNIT U

(a) Block Diagram of the Unit (b) Partial Testing Hierarchy
Figure 2 11 Block Test Hierarchy to Schedule

As a parenthesis, one can say that BIST scheduling is applicable to both test 
pipelining and block-test scheduling, where blocks are considered BILBO sandwiches 
and are the lowest level blocks m the test hierarchy RTL is the lowest level consid­
ered for block-test scheduling m a hierarchical test model In figure 2 11 a general 
perspective of the overall parallelism and the corresponding hierarchical model for 
block-test scheduling is presented The block diagram of the structure to be tested 
may include bus elements (bus B ), processors (Pi, P2, , Pn) and an overall
control unit as m figure 2 11(a) Moreover, every processor can contain a data­
path, a local controller, a bus interface and memory (register hie) Furthermore, 
the datapath can consist of functional elements (ALU, shifters, coders/decoders), 

multiplexors, status registers The test schedule of the entire unit is the result of 

parallelism investigations carried out for each block of the test hierarchy given in
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figure 2 11(b) Each test tx  m figure 2 11(b) represents the test of block X  from 
the blockwise hierarchy depicted m figure 2 11(a) Some of the known approaches 

proposed for the block-test scheduling problem are presented next
In [KS82, CKS88, CY92] compatibility relations between complete test sequences 

for different hardware blocks were derived based on the total absence of resource 

conflicts m the execution of the tests Heuristic-based algorithms using classical 
graph colouring were employed to generate test schedules The work presented 

in [SW94] assumes that during HLS or during top-down design, test circuitry has 
already been added at the RT level, and the circuit has been segmented into subcir­

cuits that are surrounded by test registers Block-tests are considered as test units 

to be clustered m test sessions if they are compatible Compared with other similar 
approaches, the block-test approach given m [SW94] takes into consideration the 

precedence relations (precedence tree) between block-tests In order to minimize the 
number of test sessions, the set of test units must be clustered into a minimal num­
ber of subsets with pairwise compatible test units A similar approach was found m 
[OH93], where a HLS system was extended to include BIST test path generation for 
test application time minimization The approach minimizes the test application 

time, firstly by minimizing the test application time of each individual module to 
be tested, and, secondly, by maximizing the concurrency between the testing of dif­

ferent paths Another block-level approach was formulated m [BKH97] to deal with 

the scheduling problem for equal and unequal length tests A clique partitioning 
method was described there to schedule the tests m the datapath having the control 

part logic synthesized already
In the block-level approaches mentioned above, the solution to the test schedul­

ing problem is more or less based only on theoretical analysis From an implemen­
tation point of view, several parts of these test scheduling algorithms, especially, 
the identification of all cliques in a graph and the covering table minimization tech­
nique, belong to the class of NP-complcte problems Therefore, heuristic-driven 
algorithms must be employed to obtain practical and near-optimal solutions Even 
though the schedule m [CSA97] is proved to be the optimum test schedule, no suit­
able practical algorithm for the test scheduling problem has yet been implemented 
Moreover, the approach theoretically given m [BKH97] does not suggest any pos­

sible practical solutions for the proposed algorithms, while the level of abstraction 
of the considered intermediate circuit design is a mixed RTL/gate level one mixed
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RTL/gate level datapath and gate-level control 

2 5 5 Test Scheduling H euristics

In principle, the search for an optimal test schedule requires a complete scan for all 
possible sequential and concurrent combinations of test functions in different test 
sessions The outcome of the scan is obviously limited between serializing the issu­

ing of all test functions and finding the best possible parallel issuing that saturates 
the system bottlenecks, 1 e , fully utilizes one or more of the most constraining bot­

tlenecks of the system at the effective test application time Therefore, the sum of 

the application times of all the tests provides a loose upper bound on the total test 

application time, while the maximum of the sums of the application times for tests 
using a common resource provides a loose lower bound for the effective test applica­

tion time The test scheduling problem for test application time minimization with 
or without power constraints is surely an NP-completc task Different heuristics 

have been proposed, based on the optimization approaches presented next The 

heuristics proposed early m literature to generate solutions for the test scheduling 

problem have mamly been applied at gate-level [SK88, SK92, AB86] or for mixed 
RTL/gate-level [BKH97] designs Lately, trends to highcr-levels, RTL and algorith­

mic level, have emerged [OH97, CSA97, CKS88]
Two stepwise-improvement heuristic-based algorithms were employed as greedy 

approaches in [SK92] The first one was applied to the equal test length scheduling 
problem for test time minimization in pipeline structures [SK92] Some steps of this 

heuristic are based on the partitioning approach The second stepwise-improvement 
heuristic-based algorithm was applied to the unequal test length scheduling problem 

Even though this heuristic algorithm does not feature any hill-climbing mechanism a 
scheduling history is kept for tabu labels on unsuccessful motions Reference [NA99] 
used the tabu search-based heuristic to seek for BIST testable hardware solutions 
with a primary goal of minimizing test application time and to minimize BIST 
hardware overhead as the secondary goal Then a graph partitioning algorithm was 
employed to group modules of the same type that can be tested m parallel with 
the same test resources An integer linear programming solution was generated 
m [BWBM92] for the test scheduling problem This one was used to partition in 

sets the test plans such that the overall time overhead and area overhead were 

simultaneously minimized
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Test compatibility partitioning was by far the most commonly used technique for 

test scheduling In [CSA97] this approach was used firstly to schedule equal length 

tests under power constraints by resource and power compatibility compliance The 

test application time minimization was carried out by a covering table minimization 
technique Secondly, m [CSA97, CY92], the scheduling of unequal length tests under 

power constraints was achieved again taking into account the resource and power 

compatibility and by employing the covering table minimization technique
A compatibility technique was proposed m [CKS88] to schedule equal length 

tests for test time minimization A resource compatibility graph was constructed 

and a graph colouring technique was used for test application time minimization 

Then the same approach for scheduling unequal length tests was studied in order to 
minimize the test application time The unequal length tests set was transformed 

beforehand into a larger set of equal length tests [CKS88]
The problem of scheduling equal length tests was approached m [BKH97] by the 

clique partitioning technique which was induced by the resource conflicts between 
tests Then the scheduling of unequal length tests was tackled m [BKH97, SW94] 

by clique (or chromatic) partitioning also induced by the resource conflicts between 
tests and test application moments Conflicts between tests can also be induced by 

the conflicts between the control signals that are used to drive the RTL test paths 
[BKH97] Two approaches were proposed m [CY92] The first one, called clustered 

partitioning test scheduling was similar to the unequal-length test scheduling de­

scribed above The second one, called non-clustered partitioning test scheduling 

made use of the idle times left m the clustered test-compatible sessions, when the 

long compatible tests were still running while the short ones had completed The 

same problem of wasting idle times withm the clustered test-compatible sessions 
was noticed m [Xia94], thus a test subsession partitioning was proposed there The 
idea behind the subsession level granularity was to get a finer grained conflict model 
between test resources

A clique partitioning approach, based again on test resource compatibility, was 
proposed m [AB86] as a solution to the test pipelining problem A weighted cluster 
partitioning approach was used m [Che91] to cluster the block-tests in test sessions 
by assigning a weight to each edge in the compatibility graph The value of the 

weight was used to select the best choice from a set of equally viable candidates 
The weight was given by the benefit of combining two block-tests in a test session
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Compatibility partitioning, based on maximum cliquc partitioning or minimum 

covering partitioning (graph colouring) algorithms, is an NP-complete problem The 
graph colouring technique tries to colour each node in a graph such that no two ad­
jacent nodes (nodes with a common edge) have the same colour The problem of 

finding a minimum cover of the Test Incompatibility Graph (TIG) is equivalent to 

finding its minimum colouring The set of nodes having the same colour m a mini­

mum colouring of a TIG is analogous to the CTS described m subsection 2 5 2 In 

[CKS88, KS82], this problem has been solved using a suboptimal covering algorithm 

Studies were performed for random test graphs These studies showed that even 

for a reasonable number of tests the required computation became excessive This 
was primarily due to the very large number of cliques generated, which produced 

enormous covering tables These results prompted the need to find a heuristic that 

can generate a good solution without enumerating all of the cliques of the TCG 
In the following chapters a different model of the test scheduling problem is pro­

posed to enable the development of heuristic algorithms Moreover, the heuristical 
algorithms always keep the power dissipation under a given limit

Scheduling Equal Length Tests

The procedure employed to carry out the search for scheduling equal length tests 

was presented in [KS82, CKS88] as consisting of the following steps

1 construct the TCG of the circuit,

2 find G, the set of all cliques of the TCG Let G = {Gi,<32, ,G r }, where

each Gt is a clique of the TCG

3 by using a covering table, find a minimal subset S  of G such that (Js Gx =  
{¿i, ¿2, , iq}, the set of all tests in the TCG,

4 schedule all the tests m each Gx from S to run concurrently The total testing 
time is | S | * T, where | S  | denotes the size of the set S

Scheduling equal length tests has been formulated then at RT level [BKH97], 

but it actually was applied at a mixed RT - gate level However, it is very similar to 

the approach detailed above The BIST methodology has been presumed as well

DCU - December 2001



Scheduling Unequal Length Tests 31

Scheduling Unequal Length Tests

In the unequal length test problem, 

a test U requires Ti units of time to run 

completely. Moreover, if two tests t\ 
and t2 can run concurrently and T\ >

T2, then both t\ and t2 are initiated si­

multaneously and ¿2 will finish before t\.
Consider now the TCG shown in figure 

2 .12  which is taken from [CKS88, KS82] Figurc 2  12; Unequal Length TCG 
as an example. Suppose that the time
for the completion of each of the tests is T\ — T3 =  T5 =  2T, T2 =  T4 =  T6 =  T. 
Three possible schedules for this example are depicted next.

Figure 2.13: Nonpartitioned Testing

For the first case, suppose test t2 can be modified to take 2T  units of time to 

run completely or alternatively t2 can be stopped and its results saved. Thus, only 

on completion of all tests (t\, t2, ts) can the analysis of all tests’ results be internally 
performed by a local controller or externally performed after the results have been 
accessed. This approach is called nonpartitioned testing in [CKS88, KS82] and is 

depicted in figure 2.13.

Figure 2.14: Partitioned Testing with Run to Completion

If local test analysis hardware exists internally, then local control can be provided 

to process each test independently. Therefore, in such an environment, t\ proceeds 

uninterrupted while a new test, say which is compatible with t\ (¿5 is incompatible
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with t2) can be initiated However, it is important to note that each test once 

initiated must run to completion This approach is called partitioned testing with 

run to completion m [CKS88] and is given m figure 2 14

The third possibility exists if a mechanism which permits storing and restoring 

of test state is available Tests ¿i and arc interrupted upon completion of test t2, 

the results of test t2 along with the status of tests t\ and £3 are saved The results 

of t2 can be analyzed and a new set of tests can be started Figure 2 15 depicts the 
case when test 11 needs only be restarted from its interrupted state after restoring 

its status at interruption while the unfinished segment of £3 is completed at a later 

time This approach is called partitioned testing in [CKS88]

Figure 2 15 Partitioned Testing

In the above cases it was assumed that the time spent m saving and restoring 

of the partial state and results of a test and the time spent in the comparison of 

results is negligibly small compared to the duration of any segment of the test If 

the time overhead due to interruption is not small, then such time should also be 
added to the total time for testing [CKS88] Moreover, in the previous sections 

most of the testing was considered to be applied to kernels Kernels were usually 
considered functional logic However, an additional set of tests must be applied to 

registers and switching units (multiplexors) [OH97]
The theoretical approach enunciated m [BKH97] to give a solution to the schedul­

ing problem with unequal length tests, was to introduce a coefficient A: < 1 and 
break the longest length test tmax of a compatible clique into smaller length periods 
t k =  fc * tmax and spread the other compatible tests over these time slots (new test 
sessions) Figure 2 16(a) depicts an example of a test scheduling result generated 
by scheduling m a classic manner unequal length tests With the new heuristic, 
the result was that shorter length tests were sequentially executed m parallel with 

longer length test (see figure 2 16(b)) The benefit resulted is a more balanced 

schedule m terms of power consumption with less idle time This is the goal of 

the work presented in this thesis, but a power dissipation constraint is taken into
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consideration as well However, the scheduling algorithms arc based on a process of 

trade-off between tests’ power/concurrency and the total test application time As 

it can be noticed m figure 2 16(b), tests ¿2, ¿3 and i4 are run m parallel with test t i7 
but the Total Test Application Time (TAT) has increased from T A T  = T\ in figure 

2 16(a) to T A T  = T2 +  T3 -f T4 in figure 2 16(b)
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(a) Unbalanced Test Schedule (b) Balanced Test Schedule

Figure 2 16 RTL Test Schedule Solutions
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Chapter 3 

PTS Problem  Scope

The VLSI/SOC test problem is very complex and not practical to be dealt with at 

low levels Test application time is one aspect of any test strategy which deserves a 

sustained focus since it obviously affects the turnaround time (because the produc­

tion test time increases along with the test application time) The heat dissipated 
during test application has started to heavily influence the design of test methodolo­

gies for large circuits It was reported m [Zor93] that one of the major considerations 
in test scheduling was the fact that heat dissipated during test application can be 

significantly higher than that during circuits’ normal operation This is because one 
of the goals of testing optimization is to minimize test application time, thus the 

test session parallelism is high There is a high probability that high power con­

sumption spikes of several tests could overlap and, therefore, power-conscious ways 
of scheduling them are to be sought Test application sequences that minimize the 
total test time while keeping the power dissipation under a limit should be searched 

for
The approaches proposed m this thesis solve the so-called unequal-length block- 

test scheduling problem [CKS88], because it deals with tests for blocks of logic, 
which do not have equal test lengths It is meant to be part of a system-level block- 
test approach to be applied on a modular view of a test hierarchy The modular 
elements of this hierarchy could be given m any HLS domain, between the system 
and RT levels (see figure 3 1) subsystems, backplanes, boards, MCMs, Integrated 

Circuits (IC)s (dies), macro blocks and RTL transfer blocks The lowest level block 

the test hierarchy accepts is RTL, and at this level it is assumed that a test-step level 

scheduling (see subsection 2 5 3) has already been carried out Generally speaking
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Figure 3.1: Example of System Under Test

any node in the hierarchy (apart from the leaves) has different subnodes. Every 

test node U is characterized by a few parameters, which are determined after the 
test scheduling optimization has been applied on the node. These features are given 

in figure 3.2: test application time Tj or Test Length (TL), power dissipation Pi, 
and test resource set i^ . This approach assumes a bottom-up traversing of the test 
hierarchy within a divide and conquer strategy. Thus, in this thesis it is assumed 

that the parameters of the RT level block-tests have already been optimized by 
test-step level scheduling approaches. Furthermore, the parameters of higher-level 

blocks are optimized by the algorithms proposed in this thesis by making use of the 
parameters of their sub-blocks. An expanded tree growing technique is employed 

here to generate the block-test schedule profile at any node level above the RTL 
one. This is carried out in order to minimize the overall test application time while 
analyzing and optimizing as much as possible the characteristics of power dissipation 
during testing.

The first section of this chapter describes the problems of system testing and the 
approaches currently employed to solve them. Emphasis is placed on the core testing 
techniques and core related scheduling approaches. Then, the second section gives 
a brief survey of the power-conscious test parallelism techniques. Here, a closer 
picture of the previous work on power-constrained test scheduling algorithms is 

taken. Finally, the model proposed for the aforementioned system testing problem 
under power constraints is described. The proposed power-test model is an efficient 
straight-forward description of the hierarchical system testing in terms of power,
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RESOURCE SETS: 
Ri Ro

T IM E  LENGTH POWER DISSIPATION

Figure 3.2: First Example of Node Under Test

test length and test resources. Efficient algorithms are then proposed in the next 

two chapters based on this power-test model.

3.1 System Testing

Since the size of today’s digital SOC designs are well beyond the capabilities of 
most design teams, the effective use of such large capacities suggests, even demands, 

the ability to reuse existing designs [And97]. Nowadays the industry community 

provides reusable cores to their customers. A core is typically a hardware descrip­

tion language model of today’s standard ICs, e.g., Digital Signal Processor (DSP), 

Reduced Instruction Set Computer (RISC) processor, Dynamic Random Access 
Memory (DRAM). Such cores may be available in synthesizable RTL (soft) form, 
gate-level netlist form (synthesized RTL or firm form), or layout-level “hard macro” 
form [Zor97]. Thus, the core synthesis and its testing are two topics under sustained 

research lately.
In system testing a core should be well characterized with respect to the test, 

power dissipation during test, and fault coverage. The core internal test prepared 
by a core creator needs to be adequately described, portable and ready for plug and 
play, i.e. for interoperability, with the SOC test. In order to have an interoperable 
internal test of a core, it needs to be described in a commonly accepted standard 

format. Such a standard is currently being developed by the IEEE P1500 [Zor97]. 
In addition to the test integration and interdependence issues, the SOC composite 

test requires adequate test scheduling. The scheduling is needed to meet a number 

of system level requirements, such as total test time, power dissipation limit and
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area overhead Also, test scheduling is necessary to run intra-core and inter-core 
tests in a certain order, so as not to impact on the testing contents of individual 

cores or modules The mtra-corc testing follows in principle the well-known testing 

methodologies (c g, BIST) proposed so far
Interest m MCMs has lately grown rapidly as the benefits m miniaturization, 

higher performance and reliability continue to be demonstrated m a wide range of 
commercial and military electronic products The production test and field test of 

huge MCM designs could suffer from test application time and power dissipation 

(during test mode) points of view, unless they have been optimized during test 

development Thus, the complexity and the dimensions of such electronic systems 

like MCMs determine the need for additional test application time optimization 

with power dissipation constraints
Most of today’s electronic systems arc a big challenge for test designers For ex­

ample, taking the case of the highly integrated switching system given m [Hug97], 
which has up to 77 dense logic boards containing hundreds of high pin count VLSI 
devices, the thought of testing that system can be compared to a bad dream This 

kind of system can be thought of as a hierarchical structure like m figure 3 1 start­
ing at highest level with backplanes, continuing downwards with boards, complex 

VLSI circuits, MCMs, Application Specific Integrated Circuit (ASIC)s, embedded 

cores, blocks, down to RTL transfer blocks Withm the hierarchy, the most diffi­

cult elements to test are the complex VLSI and MCM elements which are a testing 

bottleneck for big systems like the one mentioned above This is due to the lack 
of efficient solutions for interfacing the large BIST structures mside these elements 

and the Boundary Scan (BS) structures around them

3 1 1  Core Testing

Cores may come with a wide range of functionalities and m hierarchical compositions 
like the structure from figure 3 3 described m [Zor97] Because today’s VLSI chips 
use multiple cores from different providers the testing problems and the power 
dissipation during it are exacerbated The interconnection of cores withm the chip 
and the ability to perform an effective test on the final device are the two key issues 

that all core users must face The test concurrency of a core-based system’s testing 

depends largely upon the core supplier’s application interface, that is the set of 

signals and resources by which the core connects to the rest of the chip
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Figure 3 3 A General Hierarchical Test Structure

Furthermore, in system testing, the failure mechanisms differ from those m pro­
duction and the test time and power requirements (e g for BIST) may be different 
Hence, a core should be well characterized with respect to test, fault coverage and 
power consumption (m both normal and test modes) Ideally, the internal test 

should be a composite one, containing modular sections with different character­
istics This is fully achievable m a system consisting only of soft cores, where an 

overall test strategy is possible after optimizing the tests at every level of the sys­

tem in a bottom-up manner (RTL transfers, block level, IC level, chip level, MCM 
level, SOC level) The most common methods supporting core test were given m 
[And97] This was implemented, firstly, by providing parallel multiplexed access 

from chip pms to promote core functional tests to run m the complete chip The 
test concurrency was decreased when there were more core I/O  than chip pms or 

when routing was complex The next step was to encapsulate cores m a Joint Test 
Action Group (JTAG)-like boundary scan ring to run m parallel isolated core tests 
with little need for external support Finally, scan or BIST techniques were used to 
test each core and to provide internal controllability and observability, and connect­
ing core test paths together (possibly serially) Unless multiple cores can be tested 
in parallel, system test time can be unacceptably long Fortunately, BIST is an 
autonomous testing method and, therefore, was considered ideal for modular-based 

systems [Zor97]
The core test scheme has to provide as well a modular interface to allow in­

tegration of a hierarchical test control scheme and allow potential sharing of test 

resources at higher levels [Zor97] In order to achieve high fault coverage with low
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area overhead and low power dissipation for complex SOCs, a specific BIST tech­

nique is needed for cach module [Zor98] There arc BIST strategies like the one in 
[Zor90] which tried to solve this problem by utilizing a divide and conquer approach 
to enhance the overall controllability and observability However, this strategy was 

still reported as having pending problems m isolating and accessing the boundaries 

of the modules on one hand, and m automating the process of assembling the set 

of mter-module and mtra-module tests m the complete chip, on the other hand 

[Ben97]
Macro Test is an approach for testing embedded modules as stand-alone units, 

and hence is very suited to core-based testing From this point of view it is very 
suitable for hierarchical approaches It supports every type of test access, including 
parallel direct access, serial scan and BIST, as long as the access is sufficient for 

the particular module under consideration Macro Test is based on the following 
concepts [ML99] A test is broken into a test protocol and test patterns, where the 

test protocol describes how to apply the test patterns to the inputs and observe the 
outputs of the macro under consideration Then a translation of macro-level tests 

to IC-level tests is done by test protocol expansion Thus, Macro Test and test 

protocol expansion are designed to support multiple levels of hierarchy in a design 

This concept is useful for the approach presented m this thesis The various core 
tests, once expanded to chip level, can either be applied m a simple sequential order, 

or scheduled by the test protocol scheduler [MA98] The test protocol scheduler 
tries to execute as many as possible of the various core tests m parallel in order to 
reduce test time However, the power dissipation increase while reducing the test 

application time was not taken into account
The test methodologies for SOC designs have selected mostly hierarchical ap­

proaches to tackle the modular structures The approach proposed m this thesis 
works with any core test standard because the cores are particular cases of design 

blocks

3 1 2  Core Test Scheduling

For a core-based design, with a given set of cores, and given corresponding expanded 

test protocols and sets of test patterns, test protocol scheduling (TPS) tries to 

schedule the various expanded test protocols such that the total test vector set of 

the IC is minimized [MA98] It was also proved there that the test scheduling at
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test protocol level offers a good trade-off between test vector set reduction and the 

computational effort required to achieve this
[Cha99] proposed an optimal solution approach for the test scheduling problem 

for core-based systems It was based on a mixed-mtcger linear programming model 

However, this approach featured a non-polynomial complexity In order to handle 

such systems, a shortest-task-first heuristic scheduling algorithm was proposed in­

stead Given a set of tasks (test sets for the cores), a set of test resources and a test 

access architecture, the test scheduling solution m [Cha99] referred to the problem 

of determining start times for the tasks such that the total test application time 

was minimized Other approaches like [Mea98, ZMD98] addressed the core testing 

at system level by focusing only on the design of efficient test access architectures 

[SDY98J addressed the problem of selecting a test set for each core from a set of 

test sets provided by the core vendor and scheduling these tests m order to minimize 

the testing time Each test set consisted of a subset of patterns for BIST and a subset 

of patterns for external testing This approach requires the core vendor to provide 

multiple test sets for each core, with the test sets containing varying proportions 

of patterns for BIST and external testing The scheduling problem was formulated 
as a combinatorial optimization problem and solved heuristically Two restrictive 
assumptions were made m this approach every core had its own BIST logic, 1 c , 
the BIST components of the test sets for any two cores could be assigned identical 

starting times, and external testing could be carried out for only one core at a time, 

1 e , there was only one test access bus at the system level
A simple greedy heuristic was also proposed for core test scheduling under power 

constraints in [LP99] Moreover, the same work was developed in [LPOOb, LPOOa], 

as a technique for test scheduling and design of test bus infrastructure at the same 
time Test application time and test bus length and width were minimized while 
constraints on power consumption and test resources were considered That ap­
proach had two stages firstly, a greedy heuristic was repetitively used to select at 
a low computational cost a non-optimal solution, then a simulated annealing ap­
proach was used to optimize the solution These algorithms took into account the 
power dissipation during idle and active states of the cores during test application 

However, the disadvantage of these core test scheduling approaches was that they 

were aimed only at the particular case of core-only based designs
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3.2 Power-Conscious Test Parallelism
Power dissipation during test has not yet been thoroughly researched, though, in 

recent years, portable and mobile communications have attracted the researchers 
attention m this direction For example, m the technological domain the proposed 

solutions were to test with reduced operation frequency and to oversize power supply, 
package and cooling to stand the increased current during testing A few structural 
domain approaches tackled the power dissipation problem during test application at 

logic level such as switching activity conscious ATPG, scan latch reordering, test 
vector reordering, and test vector inhibiting Unfortunately, the above approaches 

are not efficient at high levels The only efficient solution known at system-level is 

to partition the system under test and propose an appropriate test planning and 

scheduling for it [Zor93] (see subsection 3 2 2) Nevertheless, not many practical 

solutions have been found that are able to solve the test scheduling problem under 

power constraints at high level This thesis proposes a feasible solution in the next 

chapters to sort out this problem Before that, this section describes the power 
dissipation problem during test application and surveys the mam techniques known 

to have been applied m solving this problem Then, the focus will be on the previous 

work on power-constrained test scheduling techniques

3 2 1 Power M inim ization During Test Application

The correlation between consecutive test vectors generated by an ATPG is very low, 
since a test is generated for a given target fault without any consideration of the 
previous vector m the test sequence It was observed that the ordering of both scan 
flip-flops and the test patterns influences power and energy [DCPR98, CD94c, DC94, 
CD94a, CD94b, WG99, WG97b, WG97a, WG98, WG94, CFN+98, CFN+99] Some 
of the above techniques [WG98, WG97a, CD94d] were proposed for deterministic 
test patterns, the rest were more or less aimed at BIST methodologies Apart from 
the techniques proposed at a higher level (by test scheduling), most of the above 
techniques were given at logic level and can be classified into those that apply to 
test-per-scan BIST schemes and those that apply to tcst-per-clock BIST schemes 

In test-per-scan BIST, a test pattern is applied to the CUT (via a scan chain) 

every m  +  1 clock cycles, where m  is the number of flip-flops m the scan chain 

The response is captured into the scan chain and scanned out during the next m

DCU - December 2001



Power Minimization During Test Application 42

clock cycles while the next test vector can be scanned m simultaneously Several 

low power testing strategies were proposed for scan-based BIST In [HW98], the 
authors proposed a modification of the scan cell design in such a way that the CUT 
inputs remained unchanged during shift operation This novel design for scan path 

elements allows significant energy savings compared to a standard scan-based BIST 

scheme In [WG99] a low-transition random pattern generation technique was pro­
posed to reduce signal activity in the scan chain A /c-mput AND gate and a T 

latch were used to generate high correlation between neighboring bits m the scan 

chain, thus reducing the number of transitions and hence the average power In 

[GW99] it was proposed to combine the toggle suppression technique from [HW98] 

with the use of additional logic in the scan path design for suppressing random pat­
terns which did not contribute to the increase of fault coverage Weighted Switching 

Activity (WSA) was used in [GW99] as a metric for energy consumption since in 
static Complementary Metal-Oxide Semiconductor (CMOS) circuits the switching 

contributes to over 90% of the total energy consumption [DM95]
A post-ATPG phase was proposed to reduce power dissipation for full-scan 

[CD94c, CD94a, CD94b] and for pure combinational [DC94] circuits [DCPR98] 
used a transition graph for low power consumption m scan circuits and combina­

tional circuits In the full-scan ease, first of all, a fixed scan-latch ordering was 

assumed and a test-vector ordering was computed, by a greedy heuristic, m or­

der to minimize the power dissipation during test application Then two heuris­

tics (random ordering heuristic and simulated annealing) were used to minimize 
the power dissipation by both, the scan-latch ordering and tcst-vcctor ordering 
Finally, switching activity was inhibited in the embedded combinational logic by 

circuit disabling methods while the test values were scanned-in and scanned-out 
In test-per-clock BIST, the outputs of a test pattern generator are directly con­

nected to the inputs of the CUT At each clock cycle a new test pattern is applied 
and the response is loaded into the response analyzer Switching activity m the 
CUT can be reduced by generating test vectors from TPGs that cause less tran­
sitions at circuit inputs In this sense, [WG97b] proposed a BIST strategy based 
on two different speed LFSRs Their objective is to decrease the overall internal 

activity of the circuit by connecting inputs with elevated transition density to the 

slow LFSR This approach reduces the average power consumption with no loss of 

fault coverage, but not the same is guaranteed to be happening with the peak power

DCU - December 2001



Power Minimization During Test Application 43

consumption In order to minimize the energy dissipation during test, [GGLP99a] 

proposed a reseeding scheme together with a vector inhibiting technique to tackle 
the increased activity during test operation of hard-to-test circuits that contain 
pseudo-random resistant faults An enhancement of this technique is proposed in 
[MGF+99] where the filtering action is extended to all the non-detcctmg vectors of 
the pseudo-random test sequence However, these techniques do not prevent the 
circuit from an excessive peak power consumption either A different technique was 
proposed m [GGL+99] m order to reduce the energy consumption by cleverly select­

ing the parameters (seed and polynomial) of the LFSR TPG The work m [ZRB99] 

modifies the LFSR by adding weight sets to tunc the signal probabilities of the 

pseudo-random vectors in order to decrease the energy consumption and increase 
the fault coverage Unfortunately, the area overhead imposed by the weighted TPG 

may represent a severe limitation for the use of this approach In [GGLP99a], a 
test-per-clock BIST that can reduce overall energy consumption during entire test 

application time was proposed This technique also fails to consider power dissipa­

tion spikes which can damage the CUT in a short period of time Furthermore, it 

is not applicable to test-per-scan BIST
The term adjacency test was first introduced m the context of pseudo-exhaustive 

BIST [CK85] It means that only a single transition is applied at the primary 
inputs of the CUT at each clock cycle of the test session In other words, it means 
that the Hamming distance between vectors of the test sequence is always one 
[CFN+98, CFN+99] It was proved in [GLPS98] that there is a strong correlation 

between the Hamming distance of vectors of a given test sequence and the switching 

activity induced in the CUT
A BIST pseudo-random pattern generator for test-per-clock was designed m 

[GGLPOO] to reduce average power and peak power It consisted of an adjacency- 
based TPG plus a conventional pseudo-random TPG (1 e a LFSR) Each test 
pattern generated by the mixed TPG was thus composed of two parts in one part 
only one bit was changed and, m the second part bits were randomly generated from 
the LFSR The idea behind the use of such a structure is to reduce the number of 
transitions on primary inputs for each clock cycle of the test application session 
Thus, only for the primary inputs needing a high fault coverage a LFSR was still 

used
[GGLP99b] proposed a test vector reordering technique for a given test sequence
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m order to minimize the average and peak power during test operation The tech­
nique considered combinational or full scan sequential circuits and did not modify 

the initial fault coverage The technique proceeded as follows Firstly, an initial 
deterministic test sequence for the considered CUT was derived from an ATPG 
program Next, from the signal transition probability on primary inputs calculated 

from the initial test sequence, the transition density was computed at each input 

ATPG for the minimization of heat dissipation during test application was pro­

posed for combinational [WG98, WG97a] and scanned [WG94] circuitry Test vec­
tors generated by the proposed ATPG were shown to decrease heat dissipation 

during test application by a significant factor Three cost functions, namely, transi­
tion controllability cost, transition observability cost, and transition test generation 
cost were defined to be employed by the ATPG proposed for combinational circuitry 

The ATPG proposed in [CFN+98, CFN+99, WG94] reduced heat dissipation dur­
ing testing of sequential circuits with full-scan by exploiting all don’t cares that 
occurred during scan shifting, test application, and response capture in order to 
minimize switching activity m the CUT For the completely specified test patterns, 

papers [CFN+98, CFN+99] modelled the solution space as a Euclidian Travelling 

Sales Person (TSP) which is NP-hard, but several existing efficient polynomial-timc 

approximation algorithms could be applied On the other hand, the approach m 
[WG94] used an iterative improvement bipartitioning algorithm to assign values to 

the don’t cares so as to maximize the blocking of unwanted transitions
A gate-level low-energy BIST strategy based on circuit partitioning was pro­

posed m [GGLP99c] The strategy could be applied to both test-per-clock and test- 
per-scan BIST schemes and consisted of partitioning the original circuits into two 

structural subcircuits so that each subcircuit could be successively tested through 
two different BIST sessions By partitioning the circuit and planning the test ses­
sion, the switching activity m a time interval (1 e the average power dissipation) 
as well as the peak power consumption were minimized Moreover, the total energy 
consumption during BIST was also reduced since the test length required to test 
the two subcircuits was roughly the same as the test length for the original circuit

3 2 2 Power-Constrained Test Scheduling

The absence of resource conflict for a pair of tests docs not mean these two tests 

can be applied concurrently, because the total power consumption must not exceed
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the maximum power limit m order to guarantee proper operating conditions during 
test and thereafter For example, memories are organized into blocks of many fixed 

sizes Under normal system operation, exactly one block is activated per mem­

ory access while other blocks are m the power-down mode to minimize the power 
consumption In the testing environment, however, in order to test the memory 

system m the shortest possible time, it is desirable to concurrently activate as many 

blocks as possible provided that the power consumption limit of the system is not 

exceeded Another example is the testing of MCMs An attractive approach for 

testing MCMs is to use BIST blocks executing m parallel Under normal operation, 

blocks are not simultaneously activated and hence, the inactive blocks do not con­
tribute significantly to the total power dissipation However, a concurrent execution 
of BIST in many blocks will result m high power dissipation which might exceed the 

maximum power dissipation limit To ensure the reliability of the system, execution 

of the self-test blocks must be scheduled m such a way that the maximum power 

dissipation limit is not exceeded at all times during test
The power dissipation requirements can be satisfied during test application m 

several ways For the test scheduling problem at least two solutions exist [CSA97] 
clock(s) can be slowed down to reduce the average dynamic power dissipation, or 

the tests can be executed m sequential order such that no two tests are overlapped 
m time These methods are just two extremes m the attempt to reduce the power 

dissipation during test application, both at the expense of the total test time A 

better way of scheduling the tests would be to minimize the total test time by 

maximizing test parallelism while satisfying the power constraints
Most of the proposed block-test scheduling techniques address only logic-level 

blocks m order to schedule for test time minimization by using parallelism, or to 
schedule for area overhead optimization by sharing test resources m data path blocks 
[CKS88] These techniques are certainly valid for logic-level or, at most, RT level 
blocks However, they cannot, for example, schedule BIST of blocks m parallel for a 
complex VLSI device, due to their power and noise dissipation impact during BIST 

execution
The BIST scheduling approach given m [Zor93] was one of the first to take 

into account power dissipation during block-test scheduling It performed global 

optimization considering also other factors such as block type, adjacency of blocks 

(device floor plan), but the latter are usually unknown at high-level Moreover, m
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complcx VLSI circuit designs, the block-test set is large and varies m test lengths 

Therefore, this approach failed to provide any polynomial complexity algorithm to 
solve this problem, focusing only on defining and analyzing it

The problem of minimizing power dissipation during test application was ad­

dressed at higher levels m [CSA97, CSA94] In [CSA97] the scheduling problem 

of equal length tests with power constraints was formulated The objective was to 
find a power-constrained test schedule that covered every test in at least one test 
session such that the total time required for testing was minimum The solution 

was obtained m two steps identifying the solution space and then searching the 

solution space for an optimum solution For solution space identification the fol­

lowing definitions were given Power Compatible Set (PCS) is a set of tests that 
can be executed concurrently, 1 c , they are time compatible and satisfy the power 

constraints Maximum PCS is a PCS to which no compatible tests can be added 
without exceeding the maximum power consumption limit For the unequal length 

test case the maximum PCS, dealt with m the equal length test case (sec subsec­
tion 2 5 5), was first expanded m order to enlarge the solution space to include all 

the possible optimum solutions for the unequal length test problem under power 

constraints

3.3 PTS Problem Modelling
The Power-Constrained Block-Test Scheduling (PTS) problem was first analyzed 

m [CSA97] at IC level, but this was only a theoretical analysis It is, basically a 
compatible test clustering problem, where the compatibility among tests is given by 

test resource and power dissipation conflicts at the same time However, the identi­
fication of all cliques m the graph of compatible block-tests belongs to the class of 
NP-complete problems, thus it is not practical An extended tree growing heuristic 
is proposed instead m this thesis together with classical scheduling algorithms to 
deal with the PTS problem The approach has a polynomial complexity, which is 
very important for the efficiency of the system-level test scheduling A constant ad­
ditive model is employed for power dissipation analysis and estimation throughout 

the approach and it will be described next The proposed approach belongs to the 

so-called unequal-length block-test scheduling class, because it deals with tests for 

blocks of logic, which do not have equal test lengths The order of the tests within
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the test sets of the various modules in the circuit is not considered in this approach 

The test scheduling discipline assumed here is the partitioned testing with run to 

completion defined m [CKS88] (see subsection 2 5 5)

3 3 1 H ig h -L e v e l P o w e r  D is s ip a t io n  E s t im a t io n

Five parameters are important to evaluate the power properties of a B IS T  archi­

tecture Most of them are enumerated m [GW99] The consumed power (energy) 

directly corresponds to the switching activity and has an impact on battery lifetime 

and junction temperature during testing It is obtained by integrating power on 

a cycle by cycle basis over the test application time The time-averaged power 

(average power) is the consumed power divided by the test time This parameter 

is important as hot spots and reliability problems may be caused by constantly 

high power consumption The maximum power (peak power) corresponds to the 

highest power consumption value during the test time If the maximum power ex­

ceeds certain lim its the functionality of the circuit may be affected temporarily or 

even permanently This parameter is used to size power buses to meet worst case 

noise margins The Root Mean Square (RMS) power is used for circuit sizing to 

meet electromigration guidelines The instantaneous power is used to determine 

the allowable parasitic inductance presented m the device These values are used 

for the minimization of ground bounce effects

The instantaneous power, p(i), is the power dissipation at any time instant t 

p(t) =  i(t)  x v(t),  where i(t) and v(t)  are the instantaneous current and voltage 

m the circuit The voltage in general docs not vary and is equal to the power 

supply, i e v(t) — Vm If is the instantaneous power dissipation of test t% and 

p3 (t) is the instantaneous power dissipation of test t3, then the power dissipation of 

a test session consisting of just these two tests being overlapped is the sum of the 

instantaneous power of test t% and t3 as can be seen m figure 3 4 depicted m [CSA97] 

Usually this instantaneous power is constrained so as not to exceed a maximum 

power dissipation lim it, P m ax However, in reality the instantaneous power for each 

test vector is hard to obtain since it depends m a CM OS circuit on the number of 

zcro-to-one and one-to-zero transitions, which m turn could be dependent on the 

order of execution of test vectors (see subsection 3 2 1 ) Consequently, different 

test schedules will result m different instantaneous power dissipation profiles for the 

same test In [CSA97], m order to simplify the analysis, a fixed power value Pt was
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assigned to all test vectors in tx such that at any time instant when the test tx is in 

progress the power dissipation was no higher than Px

In this thesis the above described approach for power analysis is adapted to work 

with the proposed P TS algorithms At high-level, accurate power evaluation is im­

possible and the only solution is power estimation Thus, a constant additive model 

is employed for power estimation A constant power dissipation value is associated 

with each block-test tx The total power dissipation at a certain moment of the 

test schedule is computed by simply summing the power dissipation of the running 

block-tests The power dissipation Px of a test tx could be estimated at a high-level 

m three ways Firstly, P% can be defined as the average power dissipation over all 

test vectors in t% This definition might be overly optimistic m the analysis of power 

dissipation when many test vectors are simultaneously applied, since the average 

value cannot reflect the instantaneous power dissipation of each test vector Hence, 

it might lead to an undesirable test schedule which exceeds the power dissipation 

lim it of the device at some time instants Secondly, Px can be defined as the max­

imum power dissipation (peak power) over all test vectors m t% This is the upper 

bound power dissipation m tx and its definition is pessimistic m this case since it 

disallows two tests tx and t3 , whose peak power occur at different time instants, from 

being scheduled m the same test session as shown m figure 3 4 However, the test
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schedule obtained with this definition guarantees the maximum power dissipation 

lim it of the device to be observed at all times Thirdly, an RMS power dissipation 

can be employed when the instantaneous power dissipation is prone to power spikes 

and a more accurate estimation is sought The RMS power formula is given in 

equation 3 1 The RMS power value is located between the average and maximum 

power values and it is sometimes called the effective power value The higher the 

number of spikes in the power distribution, the smaller the difference between the 

RMS and maximum power values Though, as it w ill be seen m chapter 6, the RMS 

power value is usually closer to the average power value

In the test environment, the difference between the above different power estimation 

values for each test is often small [CSA97] since the objective is to maximize the

the lowest level block considered m the test hierarchy is the R T L  and, at this level 

it is assumed that a test-step level scheduling has already been applied Moreover, 

using the approach proposed here to optimize the blocks m the test hierarchy from 

the lowest level (RTL) to the top level (system level), the differences between the 

power values could be further ignored That is because at each level, after the P TS 

algorithm is applied, it is believed that the circuit activity (power consumption) is 

maximized and balanced

Therefore, it is reasonable to define Pt as the maximum power dissipation over 

all test vectors m t t [CSA97] Hence, m the subsequent analysis, Pt is assumed to be 

the maximum power dissipation of test However, the statement of the problem 

and the constraints given are independent of the method of assigning values to P% 

for a test t% Thus, the power dissipation PS] for a test session s3 can be defined as 

Ps3 =  whilc the power constraint in test scheduling as defined in [CSA97]

is PSj <  Pmax V j To ensure the reliability of the system, the P TS problem 

is formulated as the approach used to schedule tests m such a way that the power 

dissipation lim it is not exceeded at all times during test Basically, by test scheduling

(3 1)

3 .3 ,2  P T S  P r o b le m  F o rm u la t io n

circuit activity so that the circuit can be thoroughly tested m the shortest possible 

time This aspect is true especially with the approach proposed in this thesis where
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all the time compatible block-tests are found and, their overlaying and/or sequencing 

is carried out with the goal of determining a sequence exhibiting a minimum total 

test application time When power dissipation is also considered m the scheduling of 

tests, the block-tests scheduled m the same test session may not be compatible from 

the power dissipation pomt of view, because, by executing all tests in the same test 

subsession, the accumulated power dissipation might exceed the maximum power 

lim it imposed by the technology To overcome this problem an efficient scheme 

for overlaying the block-tests, called extended tree growing technique, is proposed 

m the next subsection to work together with some classical scheduling algorithms 

adapted in the next two chapters to find near-optimal solutions m a polynomial time 

From this point, throughout the thesis, by test (when used) is meant block-test for 

simplicity

3 3 3 T re e  G ro w in g  T e c h n iq u e

Due to the wide range of test lengths exhibited by the block-test set applied to 

a complex V L S I circuit, it is possible to schedule some short tests to begin when 

subcircuits with shorter testing time have finished testing, while other subcircuits 

with longer testing time have not (if they are compatible) The tree growing tech­

nique given m [JPP89] is very productive from this pomt of view That is because 

it is used to exploit the potential of test parallelism by merging and constructing 

the Concurrent Test Set (CTS) This is achieved by means of a binary tree struc­

ture (not necessarily complete), called compatibility tree, which is based on the 

compatibility relations between tests

Nevertheless, a big drawback m [JPP89] is that the compatibility tree is a bi­

nary one This lim its the number of children test nodes that could be overlapped to 

the parent test node to only two In reality the number of children test nodes can 

be much larger, as in the example depicted m figure 3 5 Therefore an Extended 

Compatibility Tree (E C T ), given by means of a generalized tree, is proposed here 

to overcome this problem The sequence of nodes contained m the same tree path 

of an E C T  represents an expansion of the C T S  Given a partial scheduling chart of 

a C T S , a test t  can be merged in this C T S  if and only if there is at least one tree 

path P  m the corresponding compatibility tree of the C T S , such that every test 

contained in the nodes of P  is compatible with t  The compatibility relationship 

has three components Firstly, tests have to be compatible from a resources pomt
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of view. Appendix A gives a comprehensive analysis of the test resource compat­

ib ility problem. Secondly, the test length of the nodes in a tree path have to be 

monotonously decreasing from root to leaf. Thirdly, the power dissipation accumu­

lated on the above tree path should be less than or equal to the power dissipation 

constraint Pmax-
A merging step example is given in figure 3.5. The partial test schedule chart is 

given at the top, while the partially grown compatibility tree is given at the bottom. 

Let us assume that tests t2, ¿3 and ¿4 are compatible with t\ ,  while they are not 

compatible with each other. Also assume that T l5 T2, T3 and T4 are, respectively, 

the test lengths of tests t\ ,  t2, ¿3 and ¿4, and say T2 -I- T3 <  T\. Finally, assume 

that test ¿4 has to be scheduled in the partial test schedule depicted in figure 3.5(a). 

As can be seen, there is a gap GAP\ given by the following test length difference: 

GAPi =  T\ — (T2 +  T3). Thus, a merging step can be achieved, if T4 <  GAP \ , by 

inserting ¿4 in the partial test schedule and its associated E C T  as in figure 3.5(b).

The process of constructing C TSs is implemented by growing the E C T  from the 

roots to their leaf nodes. The root nodes arc considered test sessions, while the 

expanded tree paths are considered their test subsessions. When a new test has to 

be merged to the C T S , the algorithm should avail of all possible paths in the E C T . 

In order to keep track of the available tree paths and to avoid the complexity of the 

generalized tree travel problem, a list of potentially Expandable Tree Path (ETP ) 

is kept. This list is kept by means of special nodes that are inserted as leaf nodes 

in each E T P  of the expanded compatibility tree. These leaf nodes are called gaps 

and are depicted as hatched or shaded nodes in figure 3.5. There are two types of 

gaps. The first set of gaps (hatched) are those “rest gaps” left behind each merging
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Rest (Hatched) Gap

Shaded Gap

Figure 3.6: Test Scheduling Chart and E C T  Example

step, as in the cases of GAP\ and GAP\ — t4 in the above example. They are 

sim ilar to the incomplete branches of the binary tree from [JPP89]. The second set 

of gaps (shaded), are actually bogus gaps generated as the superposition of the leaf 

nodes and their twins as in the equivalence given at the right in figure 3.5. They 

are generated in order to keep track of “non-sat uratcd” tree paths, which arc also 

potential ETPs. By “non-saturated” tree path is meant any E T P  with accumulated 

power dissipation still under the given power dissipation lim it. The root nodes (test 

sessions) are considered by default “shaded” gaps before being expanded.

3 .3 .4  P o w e r-T e s t  S c h e d u lin g  C h a r t

The test scheduling chart example given in figure 3.6 is the test schedule solution 

generated by the List Scheduling Based P TS Algorithm (PTS-LS) (detailed in chap­

ter 4) on its application to the 20 Block-Test Set (BTS) depicted in figure 3.7 and 

given in subsection 4.1.3. In order to have a more intuitive representation, the test 

scheduling chart in figure 3.6 can be easily translated into a P TS chart in figure 

3.8. This representation gives a clear view of the power dissipation distribution over 

the test application time. The power-test characteristics of the schedule solution
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Figure 3.7: Second Example of Node Under Test

in figure 3.8(a) are given in figure 3.8(b). These characteristics are defined and 

explained next.

3 .3 .5  P o w e r-T e s t  S c h e d u lin g  C h a r t  C h a ra c te r is t ic s

The characteristics of a power-test scheduling chart (e.g., figure 3.8(a)) are de­

fined as follows (see figure 3.8(b)): Test Length (TL), Maximal Accumulated Power 

Dissipation (M PD), Average Power Dissipation (APD), Power Dissipation Disper­

sion (PDD), and RMS power dissipation (RMS). T L  represents the total test ap­

plication time of the test scheduling solution. M PD is the maximum power dissi­

pation over the final power-test scheduling solution. APD  is considered the ideal 

M PD when all the E T P s exhibit the same accumulated power dissipation, that is, 

the power dissipation is fully balanced over the power-test scheduling chart. It is 

calculated with formula: A P D  =  ( J 2 i L P i  * Ti)/TL.  The rectangle given by APD  

and T L  would be the ideal power-test scheduling chart and, therefore, the ideal test 

scheduling profile. PDD is directly proportional to the accumulated power dissi­

pation dispersion over the power-test scheduling chart, which is considered to be 

given by the area left unused inside the power-test rectangle having M PD and T L  as 

sides. PDD is calculated as the difference between M PD and APD . RMS gives the 

root mean square value for the power dissipation distribution of a scheduling chart 

(see formula 3.1). A ll these power-test characteristics are used by P TS algorithms 

(see chapters 4 and 5) to analyze and improve their scheduling solutions.

P D D  -  M P D  * T L  -  « - V  M P D  _  ,  M P D  -  A P D
TL TL
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Figure 3.8: P T S  Charts of P T S -LS  Approach Solution

3 .3 .6  A d a p te d  C la s s ic a l S c h e d u lin g  A lg o r i th m s

A clear parallel between the HLS scheduling problem and the power-constrained test 

scheduling (PTS) problem can be noticed by looking at the sim ilarities between the 

c-steps in HLS and the test sessions (subsessions) in P TS, between operations (HLS) 

and block-tests (PTS), and between hardware resource constraints (HLS) and power 

dissipation constraints (PTS). Therefore, there is an obvious coincidence between 

the process of assigning operations to c-steps (HLS scheduling) and the process of 

assigning block-tests to test (sub)sessions (PTS). The biggest achievement of the 

tree growing technique is that proven efficient HLS algorithms can be easily applied 

to the P TS problem modelled as an extended tree growing process.

A classical HLS register allocation algorithm such as the Left-Edge Algorithm 

(LEA ) is firstly adapted in chapter 4. The approach, consisting of three algorithms, 

is named Left-Edge Algorithm Based P TS Approach (P T S -LE A ). The HLS List 

Scheduling (LS) algorithm is employed in chapter 4 as a greedy List Scheduling 

Based P TS Algorithm (PTS-LS). In P T S-LS , the next test session expansion is 

carried out using a local priority function. The local priority function is given by 

a system of two lists. The first one is the list of block-tests left at a ccrtain mo­

ment to be scheduled, which are ordered by the block-test mobility. The second 

one is the list of test (sub)sessions to be expanded that are ordered by their ac­

cumulated power dissipation. Local priority functions do not render all the time 

optimal solutions. Therefore, global priority functions are preferable. The main
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difference between List Scheduling (LS) and Force-Directed Scheduling (FDS) ap­

proaches is the forecasting ability of their priority functions A  Force function is 

employed m Force-Directed Scheduling Based P TS Algorithm (PTS-FD S) (see chap­

ter 5) to steer the test scheduling so that the final solution has a more balanced 

test powcr-dissipation The Distribution Variance Based P TS Approach (P TS-D V ), 

given in chapter 5, is aimed at achieving a balanced schedule by merely assessing the 

Power-Concurrency Distribution Graphs (PCD G ) and the effect of block-test/test- 

subsession assignments Unlike the P T S-FD S approach, the time consuming stage 

of Forces calculations is avoided by using the Distribution Variance (DV) function, 

resulting m a more computationally efficient solution Finally, a mixed classical 

scheduling approach is also proposed m chapter 5 in order to improve the test con­

currency having assigned power dissipation lim its It is called Mixed LS - FDS Based 

PTS Approach (PTS-LSFD S) In this case a sequence of list and distribution-graph 

based scheduling algorithms, mentioned above, is adapted to tackle the P T S prob­

lem Firstly, a P T S -LS  algorithm is run in order to rapidly achieve a test scheduling 

solution with a near-optimal test application time Then the power dissipation dis­

tribution of this solution is balanced by applying a P T S-FD S algorithm

In conclusion the work described in this thesis comes as an answer to the call 

for proposals enunciated m [CSA97] In the next two chapters algorithmic solutions 

arc given to solve the PTS problem modelled m this chapter
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Chapter 4 

List Scheduling Based Approaches

In this chapter two list scheduling based P TS approaches arc proposed and detailed 

The first approach is based on a lcft-cdge algorithm and has three different imple­

mentations Then a list scheduling algorithm is implemented to solve the same P T S 

problem

4.1 Left-Edge Algorithm Based Approach

The P TS problem stated in [CSA97] is by far an NP-complete problem The goal 

m this section is to project the Left-Edge Algorithm (LEA ) [HS71, KP87] onto the 

block-level test scheduling problem as a greedy approach The algorithm is supposed 

to be applied at the node level of the modular test hierarchy described m chapter 

3 The L E A  algorithm is well known for its application in channel-routing tools for 

physical-design automation [HS71] The goal of the channel routing problem was 

to minimize the number of tracks used to connect points on the channel boundary 

Two points on the channel boundary are connected with one horizontal (l e , parallel 

to the channel) and two vertical (i e , orthogonal to the channel) wire segments 

Since the channel width depends on the number of horizontal tracks used, the LEA  

algorithm tries to pack the horizontal segments into as few tracks as possible The 

L E A  algorithm was first applied in the field of high-level synthesis to solve the 

registcr-allocation problem [KP87], m which variable lifetime intervals correspond 

to horizontal wire segments and registers to wiring tracks The input to the LE A  

algorithm, given in [KP87], was a list of variables to be allocated with registers A 

lifetime interval, with start time and end time, was associated with each variable
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The list of variables was sorted on two keys the start time of the variables as the 

primary key to sort them in ascending order, and the end time as the secondary key 

to sort in descending order the variables with the same start time The algorithm 

had to run through the list of variables several times until all variables had been 

assigned to registers

The high level of sim ilarities between the register allocation task and the kind 

of block-test scheduling problem tackled m this thesis led to the application of LEA  

algorithm to the Power-Constrained Block-Test Scheduling (PTS) problem In the 

P TS version of L E A  algorithm (P TS -LEA ) block-tcsts take the place of variables, 

while the test sessions (subscssions) are the former registers Thus, the input to 

the P T S -L E A  algorithm is a list of tests to be allocated to different test sessions 

(subscssions) with the goal to minimize the total test application time, while keeping 

the power dissipation withm the given lim its The test resource compatibility is 

compiled for each test entry m the B TS table before the algorithm is run as m 

appendix 7 3 3

The “variables list” m this algorithm is a list of tests sorted by the following 

two keys their test application time (test length) is used as the primary key to sort 

the list m a descending order, and their estimated power dissipation is used as the 

secondary key to sort the tests with the same test application time in a descending 

order as well During each run through the list, tests are assigned to test sessions 

(subscssions) by generating other test subsessions m order to obtain better packing 

density Throughout the algorithm, the power dissipation accumulated along each 

test session (subscssion) has to comply with the given power dissipation constraint 

There are three travel approaches that can be followed through the test session 

list The first one assumes a travelling down through the test list once for every 

generated gap (hatched or shaded, see subsection 3 3 3) until further merging cannot 

be performed anymore withm the existent gaps (test subscssions) This approach 

uses exactly the list travelling approach from the L E A  algorithm Every newly 

generated gap is considered a newly “allocated register” The second approach 

assumes the allocation of a new test session anytime a test from the list cannot 

be assigned to the existent gaps The new test session consists of the test that 

can not be accommodated withm the existent gaps Every newly generated gap is 

considered a newly “allocated register” as well The third approach is a mixture of 

the two mentioned above The idea is to consider only the test sessions as “allocated
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registers” That is, once a new test session has been allocated, a run through the full 

test list is carried out to check for the remaining tests that could be accommodated 

in the current set of gaps A  new test session is allocated only when there are no 

more tests in the list compatible with the gaps existent in the current test session

4 1 1  A lg o r i th m  P s e u d o c o d e

PSE U D O C O D E  1
osort all th e  te s ts  by th e ir m obility  m  two steps (tes t length , pow er d issipation), 
om itialize th e  GrowingTree and  th e  GapsList,
owhile th e re  are  unscheduled te s ts  { /*B lockTestL ist is no t em p ty * /

•  if (GapsList is em pty) th e n  {

-  CurTest — head o f BlockTestList y

-  insert CurTest as th e  ta il of GrowingTree roo ts , /* n ew  te s t session*/

-  m ake CurTest “used” ,

-  rem ove CurTest from  BlockTestList,

-  generate  a  TwinGap gap as th e  tw in  of C urTest,

-  in sert TwmGap in to  GapsList, } /* if* /

•  else {

-  Cur Gap — head  of GapsList,

-  CurTest =  head of Comp L i s t c u rGaP5

-  while CurGap is th e  head of GapsList A N D  CurTest d id  no t reach th e  end

O f  C o m p  L l s t C urG ap  {

* if (TcurTest < TCurGap A N D  PDcurGap +  PDcurTest < PD m AX AND  
CurTest N O T  “used” ) th en  {

SCH ED U LE(Cur Test,CurGap,GrowingTree^Gap^Li si,
BlockTestList), /*schedu les CurTest in to  th e  pow er-test scheduling 
ch a rt and  in serts  it in to  th e  GrowingTree, m arks CurTest “used” * / 

break,}

* else CurTest = Cm Test — ► next, /* n e x t in th e  Comp L i s t c UrG a p * /

-  } /* w hile* /

-  if (CurGap is still th e  head of GapsList) th en
/* i t  m eans th e re  sure no com patib le te s ts  left for CurGap * /

* rem ove CurGap from  th e  GapsList,

•  } /* e ise* / } /* w h ile* /
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The pseudocodes of all three approaches are given below m this subsection The 

data structures used to implement them are the following the GrowtngTree  to 

model the E C T , the Gaps List  to model the list of potentially expandable gaps 

(shaded and hatched gaps), and the BlockTestList to keep the ordered but not 

yet merged tests CurTest  is the test to be merged at each iteration Cur Gap 

is the gap under focus at each iteration in order to see whether it is expandable 

(compatible) with the CurTest  In the pseudocode the term “used” means that 

the test has already been merged in the E C T  Twm Gap  is the newly generated 

shaded gap at every iteration It will not be inserted m the GapsList anymore after 

its generation if its resulting compatibility list is null, 1 e it will not be an E T P  

RestGap  is meant to keep the hatched gap generated at every iteration if it is not 

null, 1 e CurTest  docs not cover completely Cur Gap, that is TcUrGaP > TcurTest 

Additionally, Tnode, P D node and Comp Listnode arc, respectively, the test length, the 

power dissipation and the compatibility list of the node, which can be cither a test 

or a gap If a new gap (test subsession) is generated inside the current one, the new 

one replaces the current gap m the GapsList and GrowtngTree, and the procedure 

is repeated having a new GapsList The first approach of the P T S -L E A  approach 

is given above

As can be figured out from the pseudocode itself, the algorithm is repeated 

until all the tests in the in itial BlockTestList  are scheduled m the E C T  If the 

list of currently available gaps (GapsList) is empty then a new test session (and 

indirectly a new gap) is generated with the current test which is removed from 

the BlockTestList  If the GapsList  is not empty then the first gap in the list is 

taken for further expansion Its compatibility list is spanned starting with the test 

exhibiting the lowest mobility (long test length and high power dissipation) The 

first unscheduled yet test m the BlockTestList which turns out to be compatible 

with the current gap is scheduled m the Growing Tree  generating two new gaps 

(twin and rest) BlockTestList and GapsList structures are updated then as well 

If the current gap turns out to be uncxpandablc it is removed from the GapsList 

and the process is repeated for the next gap in the list

The second approach of the P T S -L E A  algorithm is following below Its algo­

rithm is proven m chapter 6, by experimental results, to be the most different to 

the first approach out of the P T S -L E A  algorithms If m the first approach the algo­

rithm was trying to find a block-test in the BlockTestList  to be accommodated in
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the current gap, m the second pseudocode it is the other way around That is, for 
the current test the algorithm tries to find a suitable gap to accommodate it out of 
the already existent ones in the GapsList The algorithm is repeated for each test 
left in the BlockTestList The SCHEDULE  procedure is the same with the one 
invoked m the first pseudocode and will be detailed after the third pseudocode

PSE U D O C O D E  2
osort all th e  te s ts  by th e ir m obility  m  two steps (te s t length , pow er d issipation), 
oim tialize th e  GrowmgTree and  th e  GapsList, 
oCurTest =  head  of BlockTestList
owhile th e re  are  unscheduled te s ts  { / * BlockTestList is n o t em p ty * /

•  Cur Gap — head of GapsList,

•  while Cur Gap d id  not reach th e  end of GapsList A N D  CurTest N O T  “used” {

-  if (TcurTest < TCurGap A N D  CurTest C O M PA TIB LE comp hstCurGap AND
P L )  C ur Gap "f-  P L )C u r T e s t  — P L ^ m a x ) t h e n  {

* SCH ED U LE( Cur Test,CurGap,GrowmgTree,GapsList,
B lockTestList), /*schedules CurTest in to  th e  pow er-test scheduling 
ch a rt and in serts  it in to  th e  GrowmgTree, m arks CurTest “used” * /

* break,}

-  else Cur Gap =  Cur Gap — ► next, /*  nex t m  th e  GapsList* /

•  } /* w h ile* /

•  if (CurTest N O T  “used” ) th e n  {

-  insert CurTest as th e  ta il of GrowmgTree roo ts , /* n ew  te s t session*/

-  m ake CurTest “used” ,

-  rem ove CurTest from  BlockTestList,

-  generate  a  NewGap gap as th e  tw in  of CurTest,

-  insert NewGap as th e  ta il o f GapsList, }

•  CurTest =  th e  new head of BlockTestList, 

o} /* w h ile* /

The third pseudocode approach, detailed below, is a hybrid of the first two 
Here, both lists, BlockTestList and GapsList, are run through at the same time
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For each test m the BlockTestList a gap is sought in the Gaps List to be expanded 
with it

P SEU D O C O D E  3
osort all th e  te s ts  by th e ir  m obility  in two steps (tes t length , power dissipation), 
om itiahze th e  GrowmgTree and  th e  GapsList,
owhile th e re  a re  unscheduled te s ts  { / * BlockTestList is no t em p ty * /

•  if (GapsList is em pty  (initialized)) th en  {

-  CurTest =  head of BlockTestList,

-  insert CurTest as th e  ta il o f GrowmgTree roo ts, /* n ew  te s t session*/

-  m ake CurTest “used” ,

-  rem ove CurTest from  BlockTestList,

-  generate  a TwmGap gap as th e  tw in  of C urTest,

-  insert TwmGap in to  GapsList, } /* if* /

•  for all th e  te s ts  left in  th e  BlockTestList {

-  CurTest =  head of BlockTestList,

-  Cur Gap =  head  of GapsList,

-  while CurGap d id  no t reach  th e  end of GapsList A N D  C urT est N O T  “used” 

{
* if (TcurTest < TcurGaV A N D  CurTest C O M PA TIB LE Comp ListcurGap 

A N D  PDcurGap +  P D CurTest < PD max) th en  {

SCHEDULE(CurTest)CurGap,GrowingTree,GapsList,
BlockTestList), /*schedules CurTest in to  th e  pow er-test scheduling 
ch a rt and  in serts  it in to  th e  GrowmgTree, m arks CurTest “used” * / 

break,}

* else CurGap = CurGap — ► next, /* n e x t in  th e  GapsList*/

-  } /* w h ile* /

-  CurTest = CurTest — ► next, /* n e x t m  th e  BlockTestList*/

•  } /* fo r* /

•  u p d a te  th e  GapsLivt, 

o} /* w h ile* /
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The difference between the first and the third pseudocode is small, which will also 
be proved experimentally In the third pseudocode a new test session is generated 
only when there is no test in the BlockTestList to be accommodated in any of the 
available gaps (test subsessions) of the current test session to be expanded On the 
other hand, m the first pseudocode a new test session is generated only when there 
is no test to be accommodated in any of the available gaps (possibly from different 
test sessions) in the GapsList at each iteration However, the experiments prove in 
chapter 6 the similarity between these two approaches, which also proves the fact 
that usually most of the gaps available for expansion at each iteration belong to one 
test session This is not the case m the second pseudocode, which is experimentally 
proved to generate most of the time better results than the other two approaches 
This could be explained by the fact that the second approach can select the next 
tcst-to-test subsession assignment from a wider range of options (gaps belonging to 
different test sessions)

SCH ED U LE(CfwrTe6i, CurGap, GrowingTree, GapsList, BlockTestList) {
•  generate  RestGap = CurGap — CurTest only if resu lting  TRestGap /  0,

TftestGap = TcurGap TcurTesti

P  D  RestG ap  =  P  ̂ C u r G a p  j

-  Comp ListRestGap =  Comp LlStcurGapy

•  generate  TwinGap as th e  tw in  gap of C urTest,

-  T j^w tnG ap — T c u rT e s t 'i

P & T w tn G a p  =  P  ̂ C u r T e s t  "t-  P D C u rG a p y

-  Comp LlStTwinGap =  Comp ListcurTestH Comp LlStcurGapi

•  rem ove CurGap from  th e  GrowingTree,

•  in sert CurTest and  RestGap in place o f CurGap, /* if  TRe3tGap is no t zero*/

•  in sert TwinGap in to  th e  GrowingTree as th e  unique offspring of C urTest,

•  rem ove CurGap from  th e  Gaps L ist,

•  IN SER T (TwinGap, RestGap,Gaps L ist), /*  in serts th e  new ly gen era ted  gaps into
th e  GapsList*/

•  m ake CurTest “used” (m erged),

•  rem ove CurTest from  BlockTestList},
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The pseudocode of the S C H E D U L E  is given above The SCHEDULE proce­

dure schedules (merges) the current test into the G rowm qTree , and subsequently 

removes it from the BlockTestList  As can be seen in figure 3 5 from section 3 3 3, 

the merging step implies the generation of shaded and hatchcd gaps The hatched 

gap m the SCHEDULE procedure is called RestGap  It represents the space (gap) 

left behind each merging step Therefore it inherits the accumulated power dissipa­

tion and compatibility list data from the former test subsession, but, on the other 

hand, the test length is the rest of test time left after the merging step If the test 

time left is null, there is no RestGap  generated TwmGap  represents the twin of 

the just merged test and, therefore, their test length is the same TwmGap's power 

dissipation value is the sum of the power dissipation of the test scheduled in the 

former gap and the power dissipation of the gap TwmGap's compatibility list is 

the intersection between the compatibility list of the previous E T P  (gap) and the 

compatibility list of the just merged test If the resulting compatibility list is null 

it means that the newly generated TwinGap  is born “saturated” and there is no 

point to take it into account for further expansion Thus, it is inserted into the 

GrowingTree , but not into the GapsList  Another way of avoiding the useless 

assignation of TwinGap  to the GapsList is to check the difference between the 

power dissipation constraint and TwmGap's accumulated power dissipation The 

tests left unscheduled yet which have power dissipation characteristics higher than 

this difference arc removed from TwmGap's  compatibility list If its compatibility 

list becomes empty after this step then the TwinGap  is not inserted in the GapsList 

anymore

The INSERT procedure mentioned in the above pseudocode is meant to update 

the GapsList anytime another gap is generated and inserted There arc five different 

approaches which can be used to insert the newly generated gaps into the GapsList

• the Most Recently Used (MRU) insertion - the newly generated gaps arc 

inserted at the beginning (head) of the GapsList so that they would be the 

first to be processed at the subsequent iterations,

• the Least Recently Used (LRU) insertion - the newly generated gaps are in­

serted at the end (tail) of the GapsList  so that they would be the last to be 

processed at the subsequent iterations,

• the In-Situ (IN SITU ) insertion - the newly generated gaps are inserted right
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m the place of the gap expanded with the current test For example, if the 

current gap is at the ith position in the GapsList then the newly generated 

gaps (rest and twin) take up the i th and i +  1 th positions m the list,

• the Random (RAND) insertion - the newly generated gaps are randomly in­

serted m the GapsList This approach would resemble a simulated annealing 

approach if a smart search engine is employed,

• the ORD insertion - the newly generated gaps are kept ordered m the GapsList 

by their power dissipation

However it should be mentioned here that, basically, different power-test schedul­

ing charts are obtained running the same algorithm by choosing different insertion 

approaches for the GapsList This is due to the fact that the GapsList gives the 

sequence of processing the gaps within the algorithm The MRU approach of the 

I N S E R T  procedure is detailed next

IN S E R T (TwinGapi RestGap, GapsList) { /* m se rts  th e  new ly generated  gaps into 
th e  GapsList*/

•  insert RestGap as th e  head of GapsList, /* if  T R estGap not nu ll* /

•  in sert TwmGap as th e  head  of GapsList,
/* if  Comp ListfwmGap 1S n o t null O R  is no t consisted of te s ts  such th a t P D tx > 
^ r n o i  T L ) rp w in Qap ^ t t E  C o m p  L lS t fw in G a p * / }

4  1 2  A lg o r i th m  C o m p le x ity

The complexities of all three L E A  approaches is given next The complexity of the 

first pseudocode is 0 ( N 2) This is given by the two nested while loops, one to run 

through the GapsList and another one to run through the BlockTestList  The 

number of tests in the BlockTestList  is in itially N, but it decreases each step by 

one Theoretically, the number of gaps in the GapsList  can be at most N  for all 

three pseudocodes, when cither all the tests arc run sequentially or they are run all 

concurrently and their test lengths are all different These two extremes hardly ever 

happen during the real test sets However, by the time the tests are scheduled the 

BlockTestList is empty Therefore the order of computational complexity of 0 ( N 2) 

is too pessimistic for this algorithm The complexity of the second pseudocode is 

0 ( N 2) as well In this case this is given by the two nested while loops, one to travel
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inside the BlockTestList and the other one to travel inside the Gaps List. The 

arguments given above about the dimensions of the BlockT estList  and Gaps List 

are true here as well. The complexity of the third pseudocode is 0 ( N 3) because 

it contains three nested loops and each of them has a maximum length oi N. N  

is the number of in itial tests to be scheduled. The external while loop is used 

to repeat the solution search until all the tests are scheduled. The middle for 

loop travels through the BlockT estList  for every newly generated test session. The 

inner most while loop travels through the GapsList. However, the dimension of 

BlockTestList  is decreasing at each step and therefore 0 ( N 3) is a pessimistic order 

of computational complexity as well.

4 .1 .3  T e s t S c h e d u lin g  E x a m p le

MAXIMAL - POWER ' *» DISSIPATION

NO POWER 
DISSIPATION 
CONSTRAINT

TOTAL TEST APPLICATION TIME

(a) First Approach - MRU Insertion (b) Second Approach - MRU Insertion

Figure 4.1: P TS Charts Without Power Constraints - 10 B TS

The following example should provide a deeper insight into the working and the 

results of these three algorithms. Figure 4.1 depicts comparatively the power-test 

scheduling results of the first and second pseudocodes generated without any power 

dissipation constraint for the B TS given next. Suppose the following ten tests (10 

BTS) are to be scheduled under an average power constraint (PD C =  12) with the 

second algorithm using a MRU insertion approach and that their parameters are 

specified in the order: power dissipation, test length and their compatibility list.

testi(power dissipation, test length, {compatibility list})

For sim plicity reasons, the tests listed below are already ordered by test length
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and power dissipation keys as depicted m figure 3 2 from chapter 3

¿l(9 , 9, {t2, ¿3^5) ¿6^85^9})
¿2(4 ,8, h
¿3(1, 8, {ii, ¿2,U, 17, ¿9, ¿10})
t4(6,6, {t3, t5, t7, t8})
*5( 5 , 5 ,  {¿ 1 , ¿4, ^9, ^10} )  

t 6 ( 2 , 4 ,  { ¿ 1 , *7, *85 ¿9} )  

£7 ( l ,  3 , {¿ 2, ¿3j ¿4; ¿65 *8: ¿9} )

¿8(4 , 2, {¿1, ¿2, ¿4) ¿63 ¿7, ¿9) ¿10})
¿9(12, 1, {ti, ¿3, ¿5, ¿6, ¿85 ¿10})

¿10(7, 1, {¿3^ 5, ¿8; M )

The initial values for the data structures used mside the algorithm arc 
GrowingTree(GT) = 0 , GapsList(GL) = 0, BlockTest List (BTL) =
{¿1^2, ¿3, ¿4, ¿5,i6^7,*8^9)iio}3 CurrentTest(ct) =  0 , CurrentGap(cg) = 0 , 
TwmGap(tw) =  0, RestGap(rg) =  0, while PDmax — 12 is the power dissipa­
tion constraint Since the number of tests to be scheduled is ten, there are ten mam 
steps all together, which are depicted m figure 4 2

Step 1 The first test is selected from BTL (at =  ti) m order to merge it to 
the GT but, since GL is initially empty, the first test session is generated (see the 
first step from figure 4 2) A twin gap twtl is generated and inserted in GL so that 
GL =  {¿wtl}, while the ti node inserted into GT is shaded

Step 2 At the beginning of the second step BTL — {t2, ¿3, ¿4, h > ¿6: t7) t8, tg, ii0} 
and GL = Thus, ct = t2 and eg =  twtl Even though ct and eg are
compatible from the test length and the resource point of view, the accumulate 
power dissipation would be PD t2 -I- PDtWtl =  13, which is higher than the PDmax 
constraint Therefore, ii and t2 cannot run m parallel and the solution is sequential 
as m the second step of figure 4 2 After this step BTL = {¿3, ¿4, ¿5, tG, ¿7, t8, ¿9, ¿10} 
and GL = {twt2, twtl}

Step 3 The next test to be scheduled is ct =  ¿3, while the head of GL is 
eg — twt2 Because ct and eg are compatible from all points of view, they can be 
scheduled m parallel A rest gap rg is not generated here because Tts — TtWh = 0,
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TEST SCHEDULE CHARTS TREE GROWING STEPS BLOCK TEST LIST
(a) (b) (c)

Figure 4.2: Tree Growing Steps Example (Second Pseudocode with MRU Insertion)

thus t2 (twt2) and ¿3 overlap completely. A twin gap tw  =  tw i23 is generated though 

with the following parameters: TtWt =  Ti3, PDtWt23 =  PDtWt2 + PDt3 =  5 and 

Comp.ListtWt23 =  Comp.ListtWt2 fl Comp.Listt3 =  { t \ , t 7}. The new GapsList is 

GL =  { tw t23, tw tl}, while the test list is BTL =  { ¿ 4 , i 5, t 7, tg, t9, ¿10}.

Step 4. During the 4th step, the test ct =  t 4 has to be scheduled. Initially, eg =  

tw t23 is checked for compatibility with ct =  1 4, but they are not compatible because 

Comp.ListtWt23 =  {¿1,^7}, and ¿4 0 Comp.ListtWt23. Thus, the algorithm proceeds 

to the next gap in G L , that is eg =  tw tl , but ¿4 is not compatible with ti  either. 

Therefore, a new test session is generated for f4 and, consequently, a twin gap tw t4 is
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also generated, updating GL — { tw u , tw t23, tw t l} and B T L  = {t5, i6, ¿73 ¿8, ¿9j ¿10} 
Step 5 For this step ct = ¿5 and eg = tw t4, and they are compatible from all 

points of view Thus, a RestGap  and a TwinGap  have to be subsequently generated 
and then inserted into the GapsList and GrowmgTree  structures The RestGap  

rgu has the following parameters Trgt/i = Tu — Tts = 1, P D rgt  ̂ = P D U = 6 

and Comp Listrgu — Comp L is ttA =  {¿3, t5, i 7, t8} The TwinGap tw t45 has the 
following parameters Tiwtj5 =  Tto =  5, P D tWti5 =  PDtwH +  ^ A d = 11 and 
Comp ListtWt = Comp L is ttA D Comp L istt& = {0 }, and ,therefore, it will not be 
inserted into the GapsList anymore Thus, after this step GL = {rgu , tw t23, tw t,} 

and BTL = {¿6, ¿7, ¿8^9, ¿10}
Step 6 During this step the test ct — ¿6 has to be scheduled The algo­

rithm goes through the GapsList starting with eg = rgu (not compatible from 
the resource point of view), then eg — tw i23 (not compatible from the resource 
point of view), and ending with eg = tw tl The last gap, eg — tw tl , is compatible 
with ct = t$ A RestGap rg = rgtl is generated having the following parameters 
Trgtl =  ~ Tt6 = 5, P D rgti -  P D tl =  9 and Comp L istrgti =  Comp Listtl =

{¿23 ¿3, ¿5, ¿6, ¿83 ¿9} The TwinGap tw tl6 is generated with the following param­
eters TiWti& = T(6 =  4 , P D tWtl6 = P D tWtl + P D tG = 11 and Comp ListtWtl6 = 
Comp L isttWti fl Comp L istt& = {¿8, ¿9} Then both gaps will be inserted into the 
GapsList GL  = {tw tl6 ,rg t l ,rg t4 Jtwt23}, while B T L  = {t7, t8, t9j¿10}

Step 7 In order to schedule ct =  ¿7, the algorithm has to find firstly a 
gap compatible with it t 7 is incompatible with eg = tw tl6 and eg — rgtl from 
test resources point of view t7 is also incompatible with eg = rgu because the 
gap’s test length is shorter than the test length of t 7 However, t 7 is compati­
ble with eg = tw t23 Therefore, a RestGap rg — rgt23 is generated having the 
following parameters Trgt2 3 — TtWt23 Ttl — 5, P Drgt23 PDiWt23 5 and
Comp L ist rgt23 = Comp L isttwt23 = {^,¿7} Because both t\  and t 7 have already 
been scheduled at this stage, and rgt23 is not compatible with any other tests, it 
would be pointless to insert this gap into the GapsList  The TwinGap tw t237 has 
the following parameters TtWt237 = TtWt? = 3, PD tWt237 =  P Dtm23 +  PDt7 = 6 and 
Comp L isttWt237 = Comp L istiWt<̂  fl Comp Lzstt7 = {0 } Because its compatibil­
ity list is empty, it will not be inserted into the GapsList either After this step 

GL  =  { tw tl6,rg t„ r g u }, while B T L  =  {¿8^9^10}
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Step 8. The ct =  t$ test cannot be scheduled in eg =  tw tl6 because the ac­

cumulated power dissipation would overflow, it cannot be merged with eg =  rgtl 

for the same reason, and cannot be scheduled in eg =  rgti because the test length 

left Trgu =  1 is not enough for Tts =  2. Thus, a new test session t8 is gen­

erated together with its twin gap tw t% (P D tWi =  P D t8 =  4). Consequently, 

GL  =  { tw ta, twtie, rgtl , rgt i} and BTL  =  {£9, ¿10}*

Step 9. V irtually the same happens during this step because the power dis­

sipation of ct =  tg  is P D t9 =  12 , which is already equal to P D max so that 

ct =  tg  could not be power dissipation compatible with any of the existing gaps: 

tw t8, tw tl6, rgt l, rgu . Therefore, a new test session tg  is generated together with its 

twin gap twtg. Consequently, GL =  {tw t9, tw t8, tw tl6, rgtl , rgu } and BTL =  { ¿ i0}.

(a) Power-Test Scheduling Chart (b) Characteristics of the PTS Chart

Figure 4.3: P TS Charts W ith Power Constraints (PD C =  12) - 10 B TS

Step 10. During the last step ct — ¿10 is scheduled in gap eg =  twt8, because it is 

not compatible with eg =  tw t9 for the same power dissipation reasons. A RestGap 

rg =  rgt8 is generated having the following parameters: Trgtg — Tt8 Tt io — 1, 

P D rgt =  P D t8 =  4 and Comp.Listrgts =  Comp.Listt8 =  { i i , t 2,*4,*65i 7, i 9,iio }- 
Since all tests in the compatibility list have already been scheduled it would be 

pointless to insert this RestGap  into the GapsList. The TwinGap tw t8 10 has the 

following parameters: TtWts io =  TtWtio =  1 , P D tWts 10 =  P D tWts 4- P D tl0 =  11 and 

Comp.Listtwts =  Comp.ListtWt8 n  Comp.Listtl0 =  {tg}.

The final power-test scheduling chart for this example is given in figure 4.3. Fig­

ure 4.3(a) depicts the final power-test scheduling chart for the stepwise test schedul­

ing example described above. Figure 4.3(b) depicts the power-test characteristics 

of the test scheduling solution given in figure 4.3(a).

Another example is given below where the number of tests is doubled. For this
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TOTAL TEST APPLICATION TIME = 41 TOTAL TEST APPLICATION TIME = 49

(a) Without Power Constraints (b) With Power Constraints PDC = 15
Figure 4.4: P TS Charts of First P T S -L E A  Approach - 20 B TS

example only the power-test charts of the final test scheduling solutions are given. 

This example is depicted in figure 3.7. The B TS is given below:

testi(power dissipation, test length , {compatibility list})

¿l(3, 12, {£4, ¿5, ¿8? ¿9? ¿10? ¿12? ¿15? ¿16? ¿17? ¿19? ¿20})

¿2(5, 11, {¿3? ¿4? ¿5? ¿9? ¿12? ¿13? ¿14? ¿17? ¿19? ¿2o})

¿3(9, 9, {¿2,¿5? ¿7? ¿10? ¿11? ¿12? ¿13? ¿14? ¿17? ¿18})

¿4(12 , 8, {¿1, ¿2, ¿7, ¿9? ¿11? ¿14? ¿15? ¿17? ¿19})

¿5(4, 8, {¿1, ¿2, ¿3? ¿6? ¿7? ¿8? ¿12? ¿15? ¿17? ¿18? ¿20})

¿6(2, 8, {*5, ¿7, *9, ¿11, ¿14, ¿17? ¿20})

¿7(1 , 8, {¿3, ¿4?¿5,¿6? ¿9? ¿12? ¿14? ¿15? ¿16? ¿18? ¿19? ¿20})

¿8(7,6, {¿1, ¿5, ¿9? ¿10? ¿11? ¿14? ¿16? ¿17? ¿19? ¿20})

¿9(6, 6, {¿l, ¿2, ¿4? ¿6? ¿7? ¿8? ¿11? ¿12? ¿15? ¿17? ¿19})

¿lo(7, 5, { ¿ l, ¿3, ¿8? ¿11? ¿15? ¿16? ¿17? ¿18})

¿ll(5 , 5, {¿3, ¿4, ¿6? ¿8? ¿9? ¿10? ¿14? ¿16? ¿18? ¿20})

¿12(H ? 4, {¿1, ¿2, ¿3? ¿5? ¿7? ¿9? ¿13? ¿14? ¿16? ¿19})

¿13(2,4, {¿2,¿3? ¿12? ¿15? ¿16? ¿17? ¿18? ¿19})

¿14(3, 3, {¿2, ¿3? ¿4? ¿6? ¿7? ¿8? ¿11? ¿12? ¿16? ¿18? ¿20})

¿15(1? 3, {¿l, ¿4, ¿5? ¿7? ¿9? ¿10? ¿13? ¿16? ¿17? ¿18})

¿16(5, 2, {¿1, ¿7, ¿g,¿10? ¿11? ¿12? ¿13? ¿14? ¿15? ¿17? ¿19? ¿20})

¿17(4, 2, {¿1, ¿2?¿3? ¿4? ¿5? ¿6? ¿8? ¿9? ¿10? ¿13? ¿15? ¿16? ¿18? ¿19? ¿20})

¿18(12, 1, {¿3? ¿5? ¿7? ¿10? ¿11? ¿13? ¿14? ¿15? ¿17? ¿19? ¿20})

¿19(8, 1? {¿1? ¿2? ¿4? ¿7? ¿8? ¿9? ¿12? ¿13? ¿16? ¿17? ¿18? ¿20})

¿20(7, 1, {¿1? ¿2?¿5? ¿6? ¿7? ¿8? ¿11? ¿14? ¿16? ¿17? ¿18? ¿19})
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NO MAXIMAL POWER CONSUMPTION CONSTRAINT
MAXIMAL POWER "n DISSIPATION AVERAGE POWER 1241 DISSIPATION

RMSPOWER POWER ” U.28DISSIPATION - 16J9 DISSIPATION DISPERSION

*20 

*14 | *7

tl7

*it
*10

*18

/*I6
*19

.‘15
tl3

TOTAL TEST APPLICATION TIME = 46

MAXIMAL POWER DISSIPATION CONSTRAINT = 15

MAXIMAL POWER AVERAGE „ RMSPOWER ‘ 15 DISSIPATION =3 J5 POWER = ,L4S POWER = <217DISSIPATION DISPERSION DISSIPATION DISSIPATION
‘Wjll

*10
in

*18
*20
.*15

tul TlME
TOTAL TEST APPLICATION TIME = 49

(a) Without Power Constraints (b) With Power Constraints PDC = 15
Figure 4.5: P TS Charts of Second P T S -L E A  Approach - 20 B TS

Figures 4.4, 4.5 and 4.6 are the scheduling results of the 20 B TS example using 

the first, the second and the third approaches, respectively, and employing the 

MRU gap insertion. Figures 4.4(a), 4.5(a), and 4.6(a) are the scheduling results 

without power constraints. Figures 4.4(b), 4.5(b), and 4.6(b) are the scheduling 

results with a maximum power constraints of 15. It can be seen that a power 

dissipation constraint forces the power-test scheduling to a more balanced power 

dissipation throughout the test application time, while obvious power dissipation 

spikes could be seen in figures 4.4(a), 4.5(a) and 4.6(a) due to the lack of power 

constraints. However, when there are power constraints, the total test application 

time increases as in figures 4.4(b), 4.5(b) and 4.6(b). Therefore, it is obvious that the 

power constraint is the only mechanism for cutting the spikes from the power-test 

scheduling charts, but this mechanism also increases the total test application time. 

Even though the test scheduling solutions of the first and third pseudocodes are not 

the same in these examples, chapter 6 w ill experimentally prove their sim ilarity.

POWERDISSIPATION
NO MAXIMAL POWER DISSIPATION CONSTRAINTPOWERMAXIMAL DISSIPATION - 13-#7tl7 n*-----------POWER “27 DISPERSION* DISSIPATION AVERAGE

POWER *l3-’3 DISSIPATION
  POWER “ 15.82DISSIPATION

MAXIMAL POWER DISSIPATION CONSTRAINT = 15

MAXIMAL .. POWER AVERACE RMSPOWER " 15 DISSIPATION -3JS POWER “llM POWER “ *1.17DISSIPATION DISPERSION DISSIPATION DISSIPATION

*11
*10

l 16 *19

MB l 1,4 r
TOTAL TEST APPLICATION TIME = 41 TOTAL TEST APPLICATION TIME = 50

(a) Without Power Constraints (b) With Power Constraints PDC = 15
Figure 4.6: P TS Charts of Third  P T S -L E A  Approach - 20 B TS
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4.2 List Scheduling Approach

This scction describes the projection of the HLS version of the LS algorithm on 

the P TS problem This approach is therefore called P T S -LS  In the List Schedul­

ing (LS) algorithm [Dav81] a hardware constraint was specified and the algorithm 

attempted to minimize the total execution time by using a local priority function 

to defer operations when resource conflicts occurred The operations were sorted 

m topological order (top to bottom) using the precedences dictated by data and 

control dependencies m the Control/Data-Flow  Graph (CD FG ) The sorted opera­

tions were then iteratively scheduled into control steps The set of operations that 

could be placed m a control step (c-step) were then evaluated These operations 

were called ready operations If the number of ready operations of a single type 

exceeded the number of hardware modules available to perform them, then one or 

more operations had to be deferred The selection of the deferred operation was 

determined by a local priority function which depended on all operations that could 

be scheduled m the current control step The priority function was called mobility 

or urgency m [Dav81]

In terms of running through the list structures, the LS approach is sim ilar to the 

P T S -L E A  approach given m section 4 1 where an iterative tree growing technique 

was proposed to minimize the total test application time by deferring the tests 

when the power dissipation was exceeded during merging a new test to one of the 

Expandable Tree Path (ETP )s Actually, the first P T S -L E A  pseudocode turned 

out to be almost the same as the P T S -LS  algorithm In the P T S -LS  algorithm, the 

tests are in itially also ordered by their test length as the first key and then by power 

dissipation as the second key The sorted tests are then iteratively scheduled into 

test (sub)sessions (ETPs) and when the power dissipation is exceeded the tests to 

be currently scheduled arc deferred to another test (sub) session (ETP )

Applying the LS approach on the P TS problem, a power dissipation constraint 

is also specified The local priority function is considered to be the test mobility 

modelled m the next section, while the compatibility relation has three components 

as well (power dissipation, test length and resource conflicts) A  test is ready for 

scheduling into a test (sub)session if it is not m conflict (i e , it is compatible) with 

all the tests already scheduled m the aforementioned test (sub)session The algo­

rithm attempts also to minimize the total test application time by using a local 

priority function to defer ready tests when compatibility conflicts occur as a result
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of scheduling one of them In contrast to the HLS version of the LS approach, the 

surplus of ready tests in each iteration m the P T S -LS  approach is not deferred di­

rectly They are indirectly deferred when they cannot be scheduled to the currently 

expanding test subscssion due to the newly accumulated parameters of the new E T P  

after the scheduling of one of them Conflicts can arise when one has to schedule 

the remaining of the previously ready tests Firstly, the accumulated power dissipa­

tion in the new test subsession is getting close to the power dissipation constraint 

and, therefore, the previously ready tests might not be able to be accommodated 

anymore m the power dissipation space left after scheduling one ready test The 

power dissipation space left after scheduling the last test is the difference between 

the power dissipation constraint and the newly accumulated power dissipation in 

the expanded test subsessions Secondly, the test length of the newly generated 

test subsessions may be shorter than the test length of the previously ready tests 

Finally, the compatibility lists of the test subsessions generated after a test assign­

ment may not still contain the previous ready tests It was observed that some 

ready tests could become incompatible (1 e , become not ready) to the resulting test 

subsessions (ETPs) after the scheduling of one of them Thus, the fastest and most 

efficient way is to firstly schedule during each iteration in the current gap (ETP ) 

the test “ready” for that gap with the lowest mobility Then, after the new E T P s 

arc generated, new sets of ready tests are compiled for them And most probably 

some of the previously ready tests become not ready anymore Thus, the in itially 

ready tests that could not be scheduled anymore m the new resulting E T P s are 

considered indirectly deferred during each iteration

Test Mobility Function

A parallel can be drawn between the test scheduling under power dissipation con­

straints and the operation scheduling under hardware resource constraints A mo­

bility function can be defined for the power-constrained test scheduling problem as 

well Since every test tx has a test length Tx and a power dissipation a local pri­

ority function called test mobility T M x can be defined for each test tx as the inverse 

of the product of the test length Tx and their power dissipation Px T M t =  

Intuitively, the probability of scheduling a test into a test subsession is higher the 

higher the test mobility T M t is The mobility of a test tx is inversely proportional 

to its dimensions In figure 3 2 the dimension of a test t t is the area of the rectangle
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having its test length T% and its power dissipation P% as sides The bigger this area 

the smaller the mobility By simply employing this test mobility function model the 

experimental results proved that it is unproductive This can be explained by the 

fact that m the tree growing approach the tests’ length m an E T P  is monotonously 

decreasing from root to leaf A test can not be scheduled m an E T P , where the 

leaf’s test length is shorter than the test length of the test This is due to the fact 

that tests have to be scheduled in an E T P  m the order of their test lengths There­

fore, the runaround solution for the tree growing approach was to split test mobility 

into two, its test length component and its power dissipation component Thus, 

like m P T S -L E A , in P T S -LS  tests are sorted m topological order by using their test 

length as primary key to order m descending order, and their power dissipation as 

secondary key, to order tests having the same test length m a descending order as 

well Therefore, the P T S -LS  approach is sim ilar to the P T S -L E A  approach, the 

mam difference being the ordering of gaps list by gaps’ power dissipation

4 2 1 A lg o r i th m  P s e u d o c o d e

The data structures used m the pseudocode are the same as the ones used m 

the P T S -L E A  approach The Growing Tree  to model the E C T , GapsList to 

model the ordered list of potentially expandable gaps (shaded and hatched gaps), 

BlockTestList  to keep the ordered tests CurTest  is the test to be scheduled 

(merged) at a certain iteration CurGap  is the gap under focus at a certain iteration 

to see whether it is expandable (compatible) with the CurTest  In the pseudocode 

“used” means that the test has already been merged m the E C T  Twm Gap  is the 

newly generated shaded gap at every iteration and it w ill not be inserted in the 

GapsList anymore after its generation, if its resulting compatibility list is null or 

the accumulated power dissipation is not less than the maximum power dissipation 

constraint minus the total power dissipation of all tests RestGap  is meant to keep 

the hatched gap generated at every iteration if it is not null, 1 e CurTest  does not 

cover completely CurGap
In the P T S -LS  pseudocode the tests are in itially sorted by their mobility and 

then stored m the BlockTestList At the same time the growing tree structure 

and the gaps list are initialized as well Two versions of the P TS algorithm can 

be proposed Firstly, the P T S -LS  approach does not have an in itial set of test 

sessions (roots m the growing tree) to start with and builds it during the algorithm’s
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cxccution In this case the growing tree and the gaps list are in itially set to the 

first (longest test length) test from the already sorted BlockTestList  Secondly, the 

P T S-LS  approach can be applied on a power-test schedule generated by a first run of 

P T S -LS  In this case only the set of roots from the above mentioned schedule is used 

as the set of in itial test sessions on which further power-test expansion optimization 

will be carried out Thus, the growing tree and the gaps list arc set to this roots 

list This approach is called Squared List Scheduling P T S Algorithm (P T S -LS2) 

because the P T S-LS  algorithm is run twice on the BTS

Throughout the algorithm the Gaps List  is kept ordered in ascending order by 

the gap’s (test subsessions) accumulated power dissipation as the first key, and 

also m ascending order, by their test length, for the gaps which have the same 

accumulated power dissipation This is carried out in order to select for further 

expansion at each iteration the test subsessions which consume less power Thus, 

there is a higher probability of decreasing the power dissipation difference between 

the test subsessions (ETPs) of the growing tree Consequently, the power dissipation 

would be more balanced

The algorithm is iterative Every iteration looks for the test with the longest test 

length and the lowest mobility to be scheduled in the test subsession (ETP ) with the 

lowest accumulated power dissipation CurGap  is the first gap from the GapsList, 

which is the one with the lowest accumulated power dissipation Next, CurGap's 

induced compatibility list is run through from the test with the lowest mobility to 

the one with the highest mobility The first test (C urTest) which is assignable 

(compatible from all points of view) to the CurGap  is scheduled in it Another pair 

of gaps (twin and rest) is generated and they have to be inserted m the GapsList 

so that the list is still ordered by gaps’ accumulated power dissipation If no test in 

the CurGap''s compatibility list can be scheduled then the CurGap  is removed from 

the GapsList and the algorithm continues with the next gap from the list, which is 

actually the new head of the list When all the gaps from the GapsList are removed 

a new test session is generated exactly like at the beginning of the algorithm during 

the initialization of the GapsList Namely, the GapsList is set to TwinGap  of the 

first (the one with the lowest test mobility among those tests with the longest test 

length) test still m the sorted BlockTestList The GrowingTree  expands with a 

new test session generated to run the same test The SC H ED U LE procedure m 

the above pseudocode is sim ilar to the one used by the P TS approach, but m this
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implementation the gaps are kept ordered m the Gaps List  by their accumulated 

power dissipation

PSE U D O C O D E of PTS-LS A L G O R IT H M  
osort all th e  te s ts  by th e ir m obility  in two steps (te s t length , pow er dissipation), 
oinitialize th e  GrowmgTree, th e  BlockTestList and  th e  GapsList, 
om itialize th e  tim e co n stra in t to  th e  in itia l num ber of te s t subsessions,
-GapsList is o rdered  by gaps’ pow er dissipation ,
-while ( th e re  are  unscheduled tes ts ) do { /* BlockTestList is n o t em p ty * /

•  if (GapsList is em pty) th e n  {

-  CurTest =  head of BlockTestList,

-  insert CurTest as th e  ta il of GrowmgTree ro o ts , /* n ew  te s t session*/

-  m ake CurTest “used” ,

-  rem ove CurTest from  BlockTestList,

-  generate  a  TwmGap gap as th e  tw in  o f C urTest,

-  insert TwmGap in to  GapsList, } /* if* /

•  else {

-  CurGap — th e  head of GapsList,

-  CurTest =  th e  head  of Comp ListcurGap,

-  whlle(Tc-ur7’esi > TcurGap O R  PDcurGap + PDcurTest > PDmax O R  C uiTest 
“used” ) do

* CurTest =  CurTest — ► next, /* n e x t in th e  Comp L ist CurGap* /

-  if (a CurTest Was found AN D TcurTest < TcurGap A N D  PDcurGap +
PDcurTest < PL>max A N D  CurTest N O T  “used” ) th e n  {

* SCHEDULE(CW !resi, CurGap, GrowmgTree, GapsList, BlockTestList),

* b reak , }

-  else rem ove CurGap from  GapsList,

o} /*w hile* /

4 2 2 A lg o r i th m  C o m p le x ity

The complexity of this approach is 0 ( N 2) becausc it is structured on two nested 

while loops (one to run through the BlockTestList  and another one to run 

through the GapsList) which are dependant on the in itial number of tests m the
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BlockTestList. However, as for the P T S -L E A  algorithms described in the previous 

section, the above order of computational complexity is rather pessimistic since the 

number of gaps in the GapsList virtually never gets to a degree of N, which is the 

in itial number of tests (see subsection 4.1.2).

4 .2 .3  T e s t S c h e d u lin g  E x a m p le

(a) PTS-LS Algorithm Chart (b) PTS-LS2 Algorithm Chart

Figure 4.7: P TS Charts of LS-based Algs. No Power Constraints - 10 B TS

The two examples in subsection 4.1.3 are experimented in this subsection with 

the LS-based approaches. For the first example (10 B TS example) figure 4.7(a) 

depicts the P TS solution given by the P T S-LS  algorithm. It is sim ilar to the ones 

given by the first and third P T S -L E A  pseudocodes. Figure 4.7(b) depicts the im­

proved solution after the second run of the P T S-LS  algorithm. It can be seen that 

test ig is shifted and accommodated in the test session running test t§. This change 

generates a power-test scheduling chart which exhibits balanced power dissipation 

characteristics for the same test application time. Both power-test charts in figure

4.7 are generated without power constraints. As for the solutions generated with 

power dissipation constraints, this very small B TS example is not the best example 

because the solutions for a small number of tests (thus a small solution space) are 

sim ilar under power dissipation constraints. The second example is run for the 20 

B TS in itially given in subsection 4.1.3, and is commented on in order to point out 

the advantages and disadvantages of the P T S -LS  and P T S -L S 2 approaches.

This second B TS example is meant to provide the reader with a better un­

derstanding of the results generated by the PTS-LS-based algorithms. In figures
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POWER
DISSIPATION 3«4

NO MAXIMAL POWER DISSIPATION CONSTRAINT
AVERAGE
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POWER DISSIPATION - 8-07 DISPERSION

MAXIMAL POWER DISSIPATION CONSTRAINT = 15

MAXIMAL AVERAGE ,, „ RMS POWERPOWER "15 POWER ”n-41 POWER “ti*I DISSIPATION =338DISSIPATION DISSIPATION DISSIPATION
‘20

‘to
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INt i|  M4

TOTAL TEST APPLICATION TIME = 41 TOTAL TEST APPLICATION TIME = 50

(a) Without Power Constraints (b) With Power Constraints PDC =  15

Figure 4.8: P T S  Charts of P T S -LS  Approach - 20 BTS

4.8 and 4.9 the results of the P T S-LS  algorithm are given, both, without (fig­

ures 4.8(a), 4.9(a)) and with (figures 4.8(b), 4.9(b)) power dissipation constraints 

(.P D max =  15). Figure 4.8 depicts the power-test scheduling charts, while figure 4.9 

exhibits the power-test characteristics of the aforementioned charts.

It can be seen in figures 4.8(b) and 4.9(b) that a tighter power dissipation con­

straint forces the power-test scheduling results generated by the P T S-LS  algorithm 

to exhibit a more balanced power dissipation characteristic throughout the test ap­

plication time. At the same time obvious power dissipation spikes could be seen in 

figures 4.8(a), 4.9(a) due to the lack of power dissipation constraints. This means 

the power dissipation is less balanced when the P T S -LS  algorithm is loosely con­

strained. This is a big disadvantage of the P TS solutions generated by the P T S-LS  

algorithm. Intuitively, when there are tighter power dissipation constraints the total 

test application time increases.

On the other hand, it can be seen that the P TS charts given in figure 4.10 are

* ! MAXIMAL POWER DISSIPATION CONSTRAINT = 15
A V E R A G E  POWER ,I-42 DISSIPATION

POWER DISSIPATION - 3.5* DISPERSION

TOTAL TEST APPLICATION TIME = 50

(a) Without Power Constraints (b) With Power Constraints PDC =  15

Figure 4.9: P T S  Charts’ Characteristics of P T S-LS  Algorithm - 20 B TS
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NO MAXIMAL POWER DISSIPATION CONSTRAINT
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*19
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t \ t2'
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MAXIMAL POWER DISSIPATION CONSTRAINT = 15

MAXIMAL , POWER “1 DISSIPATION
AVERAGE ,, POWER RMSPOWER *II‘4J DISSIPATION =33« POWER ”DISSIPATION DISPERSION DISSIPATION

TOTAL TEST APPLICATION TIME = 44

*20

*10
*13

TOTAL TEST APPLICATION TIME = 50

(a) Without Power Constraints (b) With Power Constraints PDC = 15

Figure 4.10: P TS Charts of P T S -L S 2 Approach - 20 BTS

improved by a second run of the P T S -LS  algorithm. Thus, the P T S -L S 2 approach 

gives a more balanced power-test scheduling chart even without power dissipation 

constraints. However, the disadvantage of it is that the total test application time 

also increases even for loose power dissipation constraints. This is due to the greedy 

characteristic of the P T S -LS  algorithm. This characteristic is rendered by the local 

priority function which steers these algorithms. The P TS approaches proposed in 

the next chapter can overcome this problem by employing a global priority function.

34 MAXIMAL POWER DISSIPATION CONSTRAINT = 15
POWER DISSIPATION - 33* DISPERSION

TOTAL TEST APPLICATION TIME = 44 TOTAL TEST APPLICATION TIME

(a) Without Power Constraints (b) With Power Constraints PDC = 15

Figure 4.11: P TS Charts’ Characteristics of P T S -L S 2 Approach - 20 B TS
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Chapter 5 

Distribution-Graph Based  

Approaches

A distribution-graph based approach is adapted in this chapter to tackle the prob­

lem of unequal-length block-test scheduling under power dissipation constraints 

As in the previous chapter, the extended tree growing technique is also used m 

combination with classical HLS scheduling algorithms m order to improve the test 

concurrency having assigned power dissipation lim its The goal is to achieve a bal­

anced test power dissipation by employing a distribution-graph based global priority 

function like force [PK89] or distribution variance [KAHA97]

As presented m the previous chapter, with the LS-based algorithms the tests 

are in itially ordered by their test mobility before being scheduled The sorted 

tests are then iteratively scheduled into the available test (sub)sessions The next 

test (sub)session expansion is carried out using the test mobility as a local prior­

ity function Local priority functions do not render all the time optimal solutions 

Therefore, global priority functions arc preferable The mam difference between 

the LS algorithm and the Force-Directed Scheduling (FDS) algorithm is the fore­

casting ability of their priority functions For example, the FDS algorithm given in 

[PK89] uses a global priority function called Force The time consuming stage of 

Force calculations can be avoided by using a Distribution Variance (DV) function, 

resulting m a more computationally efficient solution The so-called Mean Square 

Error (MSE) function employed in [KAHA97] is also a distribution-graph based 

global priority function

Efficient distribution-graph based algorithms have been presented in [PK87,
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PK89, KAHA97] In these algorithms, a global time constraint was specified and 

the algorithms attempted to minimize the number of resources required to meet 

that constraint The time constraint was typically given m terms of the number of 

control steps allowed for the execution of a specified behaviour The mam strength 

of the algorithm is the use of a global measure of concurrency to guide the schedul­

ing process In this chapter, the Force function is firstly employed to steer the 

assignment of tests to test (sub)sessions The selection of a test subsession in which 

a selected test w ill be placed is based on the objective to achieve a balanced dis­

tribution of power dissipation and test concurrency Then, m the following section 

the D V  function is employed to achieve a balanced schedule merely by assessing 

the Power-Concurrency Distribution Graphs (PCD G ) and the effect of tcst/test- 

subsession assignments Finally, the aforementioned classical scheduling algorithms 

are combined in order to further improve the test concurrency Actually, for this 

last case a sequence of list and distnbution-graph based scheduling algorithms is 

adapted to tackle the P TS problem

5.1 Force-directed Scheduling Approach

The intent of the FDS algorithm m [PK89] was to reduce the number of required 

functional units (registers and buses) by balancing the concurrency of the operations 

assigned to them, but without lengthening the total execution time In contrast to 

other constructive approaches like the LS-bascd ones, the FDS algorithm docs global 

analysis of the operations and control steps when selecting the next operation to 

be scheduled and therefore it is more computationally expensive but renders better 

results

Concurrency balancing helps to achieve high utilization - or low idle time - of 

structural units, which m turn minimizes the number of units required This idea 

is adapted here to carry out a power-constrained test scheduling The objectives 

here arc to achieve a test concurrency and power dissipation balance along with 

test application time minimization, given certain power dissipation lim its Thus, 

the operations to be scheduled in High-Level Synthesis (HLS) arc equivalent to the 

tests to be scheduled m Power-Constramed Block-Test Scheduling (PTS), the con­

trol steps (or c-steps m HLS scheduling) are sim ilar to test (sub)sessions (PTS),
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and the hardware resource constraints (HLS) are sim ilar to power dissipation con­

straints (PTS) A tree growing technique [JPP89] is also used together with the 

FD S algorithm m order to generate and keep track of the test subsessions of the 

Extended Com patibility Tree (E C T ) It can be noticed that the set of Expandable 

Tree Paths E T P s m the growing tree changes throughout the algorithm's execution 

because they are expanded and then replaced with new test subsessions (hatched 

and shaded nodes) Consequently, the set of test subsessions is dynamic for the 

P T S-FD S approach, while their equivalent in FD S (the set of c-steps) is static 

This is one of the three mam differences that exist between FDS and P T S-FD S 

The P T S-FD S algorithm is iterative, with one test scheduled m each iteration 

It has been seen in section 4 2 when it came to talk about the test mobility function, 

that the order of test assignments affects the scheduling process That is due to 

the fact that a test can not be scheduled m an E T P , where the test subsession’s 

test length is shorter than test’s test length The following approach is adapted 

to obtain optimum results First, all tests are ordered by their test mobility as in 

section 4 2 At each iteration the P T S-FD S algorithm schedules the first test in 

the sorted list The selection of the test subsession m which this test will be placed 

is based on the objective of achieving a balanced distribution of power dissipation 

and test concurrency m each test subsession This is achieved by employing a 

Total Force global priority function This function is obtained by using the three 

step algorithm proposed with the FD S approach [PK89] Next, the adapted FDS 

algorithm to tackle the P TS problem is presented by analogy with the original HLS 

version of FD S algorithm

Determination of time frames (test subsession sets)

In the FD S approach, the first step consists of determining the time frames of 

each operation by evaluating the As Soon As Possible (ASAP) and As Late As 

Possible (ALA P) schedules The time frames are contiguous m FD S and represent 

the sequence of c-steps where operations could be scheduled On the other hand, 

in the P T S -FD S  approach the time frame of a test is the set of test subsessions 

(ETPs) where the test can be placed The E TP s expandable at a certain moment 

with a test do not have to be adjacent and, therefore, the time frame of a test in 

P T S-FD S is not or docs not have to be contiguous This is the second outstanding 

difference between the FDS and P T S-FD S approaches
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The objective of FD S is to achieve a balanced operation concurrency In FDS 

the probability of assigning an operation to any of the c-steps m its time frame is 

assumed to be equal For example, if an operation’s time frame contains 3 c-steps, 

then the probability of assigning this operation to any of the 3 c-steps is 1 /3  On 

the other hand, the goal of P T S -FD S  is mainly to balance the power dissipation 

and, indirectly, the test concurrency, while keeping the test application time as 

tight as possible In order to balance the power dissipation, the heuristic should 

avail at each iteration of a means of predicting the power dissipation distribution 

along the test application time m the next iteration Each test t% to subsession ts 3 

assignment affects the power dissipation distribution in a different way Therefore, 

at each iteration this prediction is mandatory in order to select the test-to-test sub­

session assignment that exhibits the most balanced prediction of power dissipation 

distribution This w ill help the algorithm to choose the assignment which w ill most 

probably balance the power dissipation distribution This prediction is called in this 

thesis Power-Concurrency Distribution Graphs (PCD G ) because it is meant to give 

a measure of both power dissipation and, indirectly, test concurrency distribution

The probable power dissipation distribution of the new schedule after assigning 

test t% to subsession ts3 is obtained by adding the probable power dissipation contri­

bution of test t % to the power dissipation already accumulated in test subsession ts3 

A simple uniform probability was used by FDS to give the probability of assigning 

an operation to a c-step In P T S -FD S  this is replaced by the probability of V s  

power dissipation that would be added to the power dissipation accumulated in test 

subsession ts3, if test t% was assigned to subsession ts 3 Intuitively, this probability 

has to be proportional to t^s power dissipation and the probability of assigning test 

t t to subsession t s 3 Therefore, it is calculated as the product between V s  power 

dissipation and its assignment probability Assign prob{Uits3)

PCDG(tlytSj) = Pu * AssignProb{tt ,ts3), (5 1)

The assignment probability Assignprob(tz, ts3) is proportional to the uniform 

probability of assigning test t t to one of the test subsessions from its current time 

frame At the same time the assignment probability should have a component to 

give a prediction of the compatibility between test t z and other tests m the compat­

ib ility list of test subsession ts3 Unfortunately, the test clustering related problems 

are proven to be NP-complete (see subsection 2 5 5) Therefore, only a probabilistic
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measure of the test compatibility between tests can be employed To model com­

prehensively even this probabilistic measure is a difficult task m itself [MD, JYOO] 

It is considered a general problem of random graph theory and combinatorics This 

conclusion was drawn m collaboration with a group of mathematicians The task 

of modelling probabilistically the test compatibility has proven to be very complex, 

even though eventually some formulas have been generated However, these formu­

las are very complex themselves with a lot of factorial (computationally heavy) com­

ponents Instead, a very simplified version of these formulas is used in the approach 

proposed in this chapter, and it is described below Having this prediction problem 

sorted out by probabilistic means, the assignment probability A s s ig n p ^ ^ ,  ts3) of 

a test t t to a test subsession ts3 is defined as the product of

• compatibility probability ComppTOb{tu ts3) between t% and other tests 

assignable to the same test subsession ts3 (tests m the compatibility list of 

ts}),

• uniform probability Probfa) of assigning test t t to one of its time frame’s 

subsessions This probability is the same as the one employed m FDS

AssignProb(ti, U3) =  CompProb{]tXi ts3) * Prob(tt ) (5 2)

The compatibility probability be­

tween test t t and subsession ts 3 is sim­

plified to the probability that test t t 

would be compatible with other tests 

in tSy'b compatibility list For instance, 

take the partial schedule in figure 5 1 as 

an example It is the partial schedule 

obtained m figure 3 5 from subsection 

3 3 3 after the merging step Suppose 

now that test t x is next to be scheduled 

Say it exists m the compatibility lists of 

test subsessions tw i3 and rgx, but

not m t w ^ s  compatibility list The question is which test subsession out of t w ^  

iu >13 and rgi is the best to be further considered for expansion with 1 The more

t t
tw12 tw,3 tW|4 rgj

I  i l l  compatibility
l ists

t

7 tests

t
t

11 tests

15 tests

Figure 5 1 Partial Test Schedule

DCU - December 2001



tests m the compatibility lists, the harder it is to answer this question Intuitively, 

in order to know exactly which test subsession ts3 should be expanded at this stage 

with all the test compatibility cliques including t t should be generated for each 

test subsession compatibility list This way it would be known which of the other 

tests from ts^s  compatibility list could be further scheduled in the twin gap of t t 

and the rest gap of ts 3 after V s  scheduling in ts 3 Unfortunately, the clique parti­

tioning problem is NP-complete and this algorithmic option is out of the question 

Moreover, one scheduling decision taken at each iteration based on the set of parti­

tioned cliques would not guarantee the final optimal solution On the other hand, 

the goal of PTS is to minimize the total test application time while keeping the 

power dissipation under the given lim it Therefore, intuitively, the goal would be 

here, that by scheduling tx m any of the available test subsessions, to leave as many 

as possible open options for further expansion m the existing test subsessions Oth­

erwise, if test subsessions are “saturated” prematurely with the tests scheduled at 

each iteration, then the rest of the tests m the compatibility list w ill be forced to 

generate new test sessions This way the number of test sessions (roots) that would 

be generated increases and so does the total test application time This leads to the 

conclusion that test t t should be scheduled to the test subsession that has m test 

subsessions’ compatibility list the highest number of tests compatible with t%

For example, suppose now that m figure 5 1 tw u  contains 7 tests, twi$ contains 

15 tests, and rgi contains 11 tests Intuitively, it can be stated that there is a higher 

probability of finding tests compatible with t% m tw\$ because t w has the highest 

number of tests m the compatibility list The following formula is employed as an 

approximation to measure the probability that t% is compatible with other tests in 

ts3 s compatibility list
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CompProb(tu tSj) =  i

0 i f  tt IN C O M P A T IB L E  TO ts3i

1 -  %f K ±  1 A N D  Nmcomp > K -  1, (5 3)

1 t f  K  = 1 OR Ntncomp < K -  1

where Nincarflp is the number of tests from V s  incompatibility list, N  is the total 

number of tests left unscheduled and K  is the number of tests compatible with 

test subsession ts3 The incompatibility list of t z includes the other tests incom­

patible with it from all points of view, that is power dissipation, test length and 

test resources The way the above formula is given is equivalent to calculating the 

improbability that test tz would be incompatible with all the other tests m ts^s
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compatibility list The reasoning behind formula 5 3 is simple Firstly, the proba­

bility that t% would be incompatible with all the other tests in ts3 h compatibility

list is calculated This probability corresponds to -  itp m formula 5 3 Then,
N — l

the inverse of this probability is calculated to get the probabilistic formula of test 

compatibility This inverse gives the probability that t t would be compatible with 

at least one test in ts3's compatibility list

At each iteration it is known how many unscheduled tests are incompatible with 

(Nmcomp) j ¿tnd how many tests are in the compatibility list of subsession ts3 (K ) 

The question is, what is the probability that the rest of K  — 1 tests from is /s  

compatibility list are all incompatible with t p  To answer this question, two other 

questions have to be answered Firstly, m how many ways K  — 1 tests can be chosen 

out of the N  ~ 1  (without test t t) unscheduled tests? The answer is in (K  — 1)- 

combmations of N — 1 tests Secondly, m how many ways K —1 tests can be chosen to 

be all incompatible with test i p  The answer is in (K  — l)-combmations of Nmcomp 

tests known to be incompatible with t x Knowing the answer to the latter two 

questions, the probability that test tz would be incompatible with all the other tests
CK- 1

in t s j ’s compatibility list can be calculated by -  *kc-T? Then, the improbability of
C N - 1

this event is easily calculated (improbabilityevent =  1 — probabilityevent)

Intuitively, the probability m formula 5 3 is 1 when t t is the only test in ts3’s 

compatibility list, that is, K  =  1 This is also equivalent with saying that t% has 

the highest chance of being scheduled to ts3 without affecting the time frame of any 

other test The probability is also 1 when Ntncarnp < K  — 1 That is, t t is known to 

be incompatible with a number of tests (Ntnc&mp) and this number is less than the 

number of other tests m t s / s  compatibility list Thus, t t can not be incompatible 

with all other tests in ts3's compatibility list

It is important to say that mathematically speaking, the above assumptions 

are an oversimplification of the compatibility problem described here That is, in 

the presented compatibility problem, the Nincomp values above are not independent 

outcomes and the compatibility probability problem becomes a lot more complex 

Mathematically speaking, if an event must result in one of the mutually exclusive 

(independent) outcomes 0 i , 02, ,O n with probabilities P i,P 2 , ,P n, respec­

tively, than the probability of this event is Pevent =  P \*  P%* * Pn This is not

the case m the test compatibility problem described m this thesis For example,
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say there are £ i,£2, •••>£*; unscheduled tests at a certain iteration. Say the probabil­

ity of the outcome that tu is incompatible with all the other tests is Pu, and the 

probability of the outcome that tv is incompatible with all the other tests is Pv. 

For the test compatibility problem described in this thesis, the probability Puv of 

the outcome that tu and tv are incompatible with all the other tests is not equal 

to the product of Pu and Pv probabilities. Therefore, formula 5.3 is far from being 

exact when the incompatibility relations between all the tests in the Block-Test 

Set (BTS) are simultaneously taken into account. However, the higher the number 

of assumptions/relations included in the probability formula, the more complex it 

gets. This work proves that formula 5.3 is a good trade-off between its precision 

and its computation complexity and this will be seen in chapter 6.

Consider the example from figure

5.2 where the block-tests are the same 

as those given in chapter 1 . Suppose we 

have the following test resource compat­

ibilities: t\ is compatible with £3 ( i?4 =

C B ILB O , R 2 7̂  PR PG ), ¿2 is compati­

ble with £3 (R3 =  PR PG ) and £4 (R$ =

C B ILB O ), £3 is compatible with £1 and

£2, and £4 is compatible with £2. Figure

5.3 depicts the test compatibility graph 

built for the example described above. Using formula 5.3 the following compatibility 

probabilities are determined and explained in table 5.1.

C re atio n  of d istrib u tio n  graphs

tl • b*2
The next step in the FD S algorithm is to /

take the sum of the same type operations’ /

scheduling probabilities for each c-step of the ---------- • t4
Control/Data-Flow  Graph (CD FG ). The re-

Figure 5.3: Com patibility Graph
suiting Distribution Graphs (DGs) indicate in

FD S the concurrency of sim ilar operations. For each Distribution Graphs (DG), the 

distribution in c-step i is given by: DG(i) =  J2ojmtyPe Prob(Opn, z), where the sum

Figure 5.2: P TS Example I
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ti <-> tSj Probability Compprob(ti,tSj) Reasons (N =  2 in all cases)
o f  Compatibility values K, Nificompti values because

ts tw i Comp prob(h, tw i) =  1 K  = 1 CompListtWl =  {t3}
Nincompt,  =  1 IncompListt3 =  {¿4}

¿3 <-► tw2 Compprob (¿3, tw2 ) = K  = 2 CompListtW2 = { ts ,t4}
=  1 -  C l/C l = 0 /V — 1 iy incompta -*• IncompListt3 =  {̂ 4}

t4 <-> tW‘2 CompprobiU,tW2 ) — K  = 2 CompListtW2 =  {¿35*4}
= 1 -  C \!C \  =  0 NincomptA ^ IncompListt4 =  {¿3}

Table 5.1: Com patibility Probabilities for Figure 5.2 Example

is taken over all operations of a given type and ProbiOpn, i) is the probability of 

an operation to be assigned in the z-th c-step.

On the other hand, the next step 

in P T S-FD S is to take the sum of 

the power-test probabilities for all fea­

sible test/test subsession assignments 

and add them on top of the power 

dissipation accumulated already in the 

partial power-test chart. The result­

ing Power-Concurrency Distribution 

Graphs (PCD G ) indicate the power dis­

sipation expectations and, indirectly, 

the possible test concurrency distribu­

tion of the future test scheduling solu­

tion. P C D G ’s formula in each test sub­

session tSj is:

PCDG(tSj) =  PtSj +  ^  P C D G tk{tSj), where  (5.4)
tk

P C D G tk(tSj) =  Ptk * CompProb(tk, tSj) * Prob(tk, t s j ), (5.5)

with tk being the set of tests assignable to tSj.
For the above example, the P C D G  values for tw\ and tw 2 are calculated next 

based on formulas 5.4 and 5.5 and depicted in figure 5.4.

PCDG
PCDG... =14.5

EXPANDABLE
TEST

SUBSESSION

Figure 5.4: P C D G  Example
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PCDG(tw  i) =  P t^+ P C D G t& W !)

= PtWl +  Pt3 * Compprob(t3, tw i) * Prob(t3)

=  12 +  5* 1*0 5 =  14 5,

PCDG{tw2) = PtW2 + PCD Gt3{tw2) + PCD Gu (tw2)

= Ptw2 +  p t3 * Compprob{t3,tw2) * Profr(i3) +  * Com pprob^, tw2) * Pro6(t4)

-  14 +  5 * 0 * 0 5  +  6 * 0 * 1  =  14

An interesting aspect that has to be emphasized here is that P C D G t/l(tW2 ) =  

PtW2 That ib, there are no other P C  D G t3 (tW2 ) and P C D G t4 (tw2) values to be 

added to PtW2 This is due to the fact Compprob(t4 , tw 2) =  CompProb(h, tw2) =  

0, because ¿3 and £4 are the only tests m tw21s compatibility list and they are 

incompatible with each other However, it can be seen in figure 5 2 that £3 and 

¿4 could be executed sequentially m tw 2 , even though they are not test resource 

compatible Probably a non-null compatibility probability would be more adequate 

For the above small example this test length compatibility between ¿3 and ¿4 is 

obvious and easy to check, but m general it would be harder to check for cases 

when tsj s compatibility list is large However, instead of predicting this case by 

the P C D G  formula, the algorithm checks this by temporarily assigning a test to a 

test subsession and recalculating all the probabilities

Another intuitive aspect of the P C D G  formula given m 5 5 is that it should also 

include a time component The test time length component has not been employed 

in this algorithm for several reasons For example, if the Ptk * Ttk component is 

used in formula 5 5 instead of the power Ptk component, then P C D G  turns into 

an energy distribution graph On the other hand, the P T S  algorithms proposed m 

this thesis are meant to balance the power dissipation by reducing the power spikes 

Moreover, the mam goal of the hierarchical approach proposed here is to optimize 

the power and test characteristics of the test hierarchy by parsing the modular test 

hierarchy in a bottom-up fashion (see subsection 3 3 2) Now an overall optimized 

power dissipation can be obtained throughout the system’s testing mamly by bal­

ancing the power dissipation at each level of the system’s modular test hierarchy 

Thus, at any level in the test hierarchy the power dissipation is considered balanced 

if the differences between the maximum, average and RMS power dissipation val­

ues (see subsection 3 3 1) are minimized Therefore, since the P C D G  formula is a 

prediction component in the cost function (Force) m order to achieve minimized
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power differences it should predict the power dissipation distribution rather than 

the energy consumption distribution On the other hand, speaking m terms of tech­

nology, power dissipation spikes could be sometimes neglected if they are isolated 

In this case the distribution graph has to look at the overall energy consumption 

rather than at the difference between maximum and average values of the power 

dissipation thorughout the test application time

The PTS approach proposed here docs not yet tackle any technological pecu­

liarity Such a technological case necessitates a more complex formulation to both 

predict the energy consumption and ignore the power dissipation spikes Moreover, 

a complex fine tuning would have to be carried out on the formulation dedicated to 

the aforementioned particular technological cases These approaches are not cov­

ered m this thesis and are left for future research

Calculation of Forces

The final step m FDS is to calculate the force associated with scheduling unsched­

uled operations to every possible c-steps The final step in P T S-FD S is to calculate 

the force associated with scheduling the first test from the ordered list to each com­

patible test subscssion In P T S-FD S, for a given test t t the force m test subsession 

tSj is given by

ForcetXtSj) =  P C D G (ts3) * (5 6)

where P C D G (ts3) is the predicted power dissipation value in ts 3 and xtSj(tt) is the 

increase (or decrease) of t t 's probability in ts 3 after assignment The assignment 

is done by temporarily reducing i t’s time frame (expandable test subsession set) to 

the test subsession selected for expansion

The Self Force in FD S is a quantity that reflects the effect of an operation- 

to-c-step assignment on the overall operation concurrency In P T S-FD S, the Self 

Force is a quantity that reflects the effect of a test-to-test subsession assignment on 

the overall power dissipation distribution and, indirectly, on the test concurrency 

distribution This Self Force is positive if the assignment causes an increase of 

power dissipation dissimilarity, and is negative for a decrease The Self Force 

associated with the assignment of test tx to one of the test subsessions ts 3 is
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S e lf  Forcet^ t Sj =  ^  Forceu (ts3), (5 7)
ts} € SETSit

where ts3 e S E T S tt is the Set Of Expandable Test Subsessions ts3 with which is 

compatible For the example given above the following forces arc calculated

S e lf  Forcet3-+tw1 =  Forcet^ tWl +  Forcet3-» tW2

=  PCD G (tw{)  * xtwi (t3) 4- P C D G ^ x ^ ) * ( i3)

=  14 5* (5 * 1 * 1  — 5 * 1 * 0  5 ) +  14 *(5 * 0 * 0  — 5 * 0 * 0  5) 

=  14 5 * 5 * 1 * 0 5  =  36 25,

S e lf  Forcet^ tw 2 =  Forcet3-> tW2 4- Forcet^ tWl

= POTG^u^) * zttuafa) + Pd>G(itwi) * x£lUl (¿3)

=  14 *(5 * 1 * 1  — 5 * 0 * 0  5 ) +  14 5* (5 * 0 * 0  — 5 * 1 * 0  5) 

=  14 * 5 +  14 5 * (—2 5) =  70 — 36 25 =  33 75,

Self  ForcetA->tw2 =  Fortet4->tw2

= PC-DG(iw2) * £¿«*(£4)
=  14 *(6 * 1 * 1  — 6 * 0 * 1 )  =  14 *6 =  84

where, for example, the term PCDG(tw\) * xtWl(ts) is arrived at as below

P C D G (tw 1 ) * x twl(h) =  P C D G {tw 1 ) * ( P C D G ,t3 (tw 1 ) - P C D G t3(tw 1))

=  P C D G (tw i)  * (P C D G t^ t^  -  P C D G H{twi))

=  P C D G (tw i)  * (Pt3 * C om p'p^ tz ,  twi)  * Prob'fo) -  

- P Í3 * CompProb(tz,tw\) * Prob(t3))

=  14 5 * (5 * 1 * 1 -  5 * 1 * 0 5) =  36 25,

where P CjD G ¿3(¿Wi) =  PCDGt^tw!  1S the P C D G ^ w i)  value after t3 has been 

assigned to tw  1 In this ease both Comppro6( í3,íiü i)  and Prob'(t3) values become 1 

(CompProb(ts,tw  1) was 1 before the ¿3 —► ¿Wi assignment as well)

The Self Force was demonstrated m the FDS approach to be equal to the 

difference between the average distribution for the e-steps bounded by the new time 

frame, and the average for the c-stcps of the in itial one [PK89] By analogy, the
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same formulation stands for P T S-FD S, as can be seen in the formula 5 8 below 

Using the FDS formulation, the force associated in P T S-FD S with the reduction of 

an in itial time frame (bounded by the in itial set of expandable test subsessions) to 

a new time frame (bounded by the final set of expandable test subsessions) i& given 

by the following equation

V -  P C D G '{ t S]) P C D G ft S j)
S d f F o r c e ,„ u, =  £   E  , (5 8)

tSj£FSts tSj€lSti,
where FSts and l S ts are, respectively, the final and the in itial set of test subsessions 

expandable with tt, having, respectively, N F S ts and N IS ts elements

Calculation of Forces 92

Incompatibility Forces

In order to optimize the power dissipation (test concurrency) throughout the test 

application time, it is necessary to assign tests to test subsessions such that the 

powcr-dissipation/test-concurrcncy distribution is balanced However, assigning a 

test to a specific gap (expandable test subsession) often affects the time frames 

(i e , the set of test subsessions to where they can be assigned) of the other in itially 

“ready” tests, which may become incompatible with the test subsessions (twin gap 

or shaded gap) newly generated after the assignment This can happen because 

scheduling a test, say t ti is equivalent to reducing its test subscssion set to one test 

subsession, say ts3 This modification could propagate to the test subsession set 

of the other tests (in itially assignable to ts3) which may become unassignable to 

subscssion ts3 (actually the test subsessions generated inside ts3 after the insertion 

of tx to it) hereafter

The above mentioned tests (in itially assignable to ts3) could become incompati­

ble with the newly generated test subsessions from different points of view Firstly, 

the accumulated power dissipation has almost reached the lim it and consequently 

no other tests can be scheduled in the new test subsession (twin gap) Secondly, 

the test length of the newly generated test subsessions (rest gap and twin gap) is 

smaller than the test length of the tests left to be scheduled Thirdly, they are sim­

ply incompatible with the test just assigned, from a test resource utilization point 

of view, and im plicitly they are incompatible with the test subsession (twin gap) 

resulting from the assignment
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Thus, a test-to test subsession as­

signment usually creates additional 

forces that can reduce or even counter 

the globally intended improvement.

Therefore it is important that they are 

accounted for. The force calculation 

must be performed for all tests which 

become incompatible. These forces are 

named incompatibility forces in this ap­
proach and they are calculated like the Figure 5.5: PTS Example II

normal forces and added to the Self Force. After forces of all incompatible tests 

have been calculated and added to the Self Force, the test subsession exhibiting the 

lowest Total Force is selected for test assignment. It has been seen in section 4.2, 

when it came to talk about the test mobility function, that in itially all tests are 

ordered by their mobility. Then, at each iteration the P T S-FD S algorithm sched­

ules the first unscheduled test from the sorted list to the test subsession, giving the 

lowest Total Force.

The partial P TS schedule from fig­

ure 5.5 is taken as an example to 

show how Total Forces arc calculated.

The difference between the partial P TS 

schedule from figure 5.5 and the partial 

P TS schedule from figure 5.2 is test £4.

In figure 5.5, test £4 has a lower mo­

bility, that is Tt/l =  8, Pt4 =  9, and 

CompListt/i =  {¿1, 2̂}* At this stage of 

the partial P TS schedule, test U has to 

be scheduled. It can be scheduled to ei­

ther tw\ or tW2 • The unscheduled tests 

arc £4 and £3, and their time frames are 2 for both, i.e. {tw 2 , tw i} .  Their compati­

b ility probabilities are given in table 5.2.

Figure 5.6: P C D G  Before Scheduling
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ti <-> tsj Probability CompProb (ti, tSj ) Reasons (N =  2 in all cases)
o f  Compatibility values K 1 Nincompti values because

¿3 <—> tui\ Compprob (£3 ? twi ) = K  =  2 CompListtWl =  {£3 , ¿4}
=  1 -  C l/C l  =  0 N • = 1111 ncompt  ̂ — IncompListta =  {£4}

t \  «-> tui\ Compprob{t4,tWi) =
=  1 -  C l/C l  =  0

K  =  2 CompListtWl =  {¿3 , ¿4}
NincomptA ~  1 IncompListta =  {£3}

¿3 <-> tw2 Compprob (£3 5 tw2 ) = K  = 2 CompListtW2 — 1 ^35^4}
=  1 -  C l/C l  =  0 Nincompn =  1 IncompListta =  {¿4}

t \  <-> tw2 Compprob (¿4, tw2 ) = K  =  2 CompListtW2 = {¿3 , ¿4}
= 1 -  C l/C l  =  0 AT — 1*yincomptA — 1 IncompList^  =  {£3}

Table 5.2: Com patibility Probabilities for Figure 5.5 Example

The P C D G  before scheduling t4 is depicted in figure 5.6. If t\  is scheduled in 

tw2, then two test gaps are generated: tw 24 {TtW24 =  8, Ptw24 =  14 +  9 =  23, 

CompListtW24 =  { 0 }) and rg2 (Trg2 =  10 -  8 =  2 , Prg2 =  14, CompListrg2 =  {¿3})- 

¿3 can be scheduled to neither tw 24 nor rg2. If ¿4 is scheduled then Com ppr^ ts , tw\) 

becomes 1 because K  =  1 for tw \ s  compatibility list and A^ncompt3 becomes 0. Then 

¿3 could be scheduled only to tw\ and the new compatibility probability would be 

Compprob(t3 ,tw i)  =  1. The new P C D G  is depicted in figure 5.7(a). Then the 

Total Force is given in the equation below by ¿4’s Self Force (first two components) 

and ¿3’s Incompatibility Force generated by the fact that £3 can not be scheduled 

anymore in tw2.

(a) If ¿4 is Scheduled in tw2 (b) If t± is Scheduled in tw\

Figure 5.7: P CD G s After i 4’s Scheduling
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Total Forcet4^tw2 =  Forceu ^ tW2 +  ForcetÂ tWl +  IncompFt^ tW2 +  IncompFt3̂ tWl

=  14 *(9 * 1 * 1  — 9 * 0 * 0  5 ) +  12 *(9 * 0 * 0  — 9 * 0 * 0  5) +

+ 1 4  * ( 5 * 0 * 0  — 5 * 0 * 0  5 ) +  12 *(5 * 1 * 1  — 5 * 0 * 0  5)

=  126 +  0 +  0 +  60 =  186

where, for example, the term F  or cet4^ tw2 1S calculated as presented next

Forcet^ tW2 =  PCDG{tw2) * (PCDG'u (tw2) ~ PCDGu (tw2))

=  PCDG(tw2) * (PCDGu ^tw* ~ PCDGU (tw2))

= PCDG(tw2) * (Pt4 * Comp!Prob (¿4, tw2) * Prob' (i4) -  

-F t4 * CompProb{U,tw2) * Prob(t4))

= 14 *(9 * 1 * 1  — 9 * 0 * 0  5) =  126,

If U is scheduled m tw  1, then the test gap is tw u  (Ttwx4 =  8, Ptwu =  12 +  9 =  2 1 ,

CompListtWl4 =  { 0 }) Rest gap rg\ is not generated anymore because (Trgi =

8 — 8 =  0) ¿3 can not be scheduled to tw  14 If t4 is scheduled then Compprob(t3 , tw2) 

becomes 1 because K  — 1 for tw2 s compatibility list and Ntncarnpt becomes 0 Then 

¿3 could be scheduled only to tw 2 and the new compatibility probability would be 

Compprob{ts, tw2) =  1 The new P C D G  is depicted m figure 5 7(b) In this case 

the Total Force is given below by t^s Self Force and t3’s Incompatibility Force 

generated by the fact that t3 can not be scheduled anymore m twj

Total Forceu ^ tWl =  Forceu ^ tWl +  Forceu ^tw 2 +  IncompFt:î tWi +  IncompFt3->tW2 

=  12 *(9 * 1 * 1 —9 * 0 * 0  5) 4-14 *(9 * 0 * 0  — 9 * 0 * 0  5) +

+12 *(5 * 0 * 0 - 5 * 0 * 0  5 ) +  14 *(5 * 1 * 1 - 5 * 0 * 0  5)

=  108 +  0 +  0 +  70 =  178

Total Forcet^twi is smaller than Total Forcet4-+tw2J thus t4 w ill be scheduled 

m twi

5.1 1 A lg o r i th m  P s e u d o c o d e

To make it clear it is emphasized here that there is an important conceptual dif­

ference between the original FD S algorithms and the P T S-FD S algorithm This is
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considered to be the third difference between the FDS and P T S-FD S algorithms 

Basically, this difference is given by the fact that m the former algorithm the Total 

Forces for each feasible test-to-test subsession assignment are calculated and the 

one with the lowest force is taken for scheduling On the other hand, in P TS-FD S, 

only the first test m the ordered test mobility list is considered for scheduling at 

each iteration The Total Forces of all its feasible test subsession assignments arc 

calculated and the lowest force dictates the choice of the test subsession to be ex­

panded next

PSE U D O C O D E  of P T S-FD S A L G O R IT H M  
osort all th e  te s ts  by th e ir  m obility  in two steps (tes t length , pow er d issipation), 
oinitialize th e  GrowingTree, th e  BlockTestList and  th e  GapsList, 
owhile (th ere  a re  unscheduled tests) do { /* BlockTestList is no t em p ty * /

•  evaluate tim e fram es for all tests ,

•  while (th ere  are  te s ts  having null tim e fram es) do{

-  CurTest =  th e  first o u t of BlockTestList having null tim e fram e

-  insert CurTest as th e  ta il of GrowingTree roo ts  /* n ew  te s t session*/ and  
m ake CurTest “used” ,

-  rem ove CurTest from  BlockTestList,

-  generate  a  TwmGap gap as th e  tw in  of C urTest,

-  insert TwmGap in to  GapsList,

-  evaluate tim e fram es for all te s ts , } /* w hile* /

•  CurTest =  th e  head of BlockTestList,

•  u p d a te  p o w er/concurrency  d is trib u tio n  graphs,

•  if ( th e re  a re  m ore th a n  one te s t subsessions in CurTest's tim e fram e) do{

-  calculate CurTest's Self Forces for every feasible te s t subsession assign­
m ent,

-  add  incom patib ility  forces to  Self Forces,

-  SCH ED U LE C urTest to  th e  te s t subsession exh ib iting  th e  lowest Total 
Force a t  assignm ent, } /* if* /

•  else SCH ED U LE Cm Test to  th e  te s t subsession, 

o} /* w h ile* /
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The P T S-FD S algorithm i& iterative, with one test scheduled in each iteration 

The data structures used in it arc the same as in the LS-bascd approaches (see 

subsection 4 1 1 )  Its pseudocode is given above Tests arc in itially ordered before 

being scheduled The sorted tests are then iteratively scheduled into the available 

test (sub)sessions (ETPs) The first stage of the algorithm detects the test having 

null time frames These tests w ill be considered as test sessions and inserted as 

roots into the Growing Tree  In the second stage, CurTest  is assigned each time 

with the first test from the BlockTestList, which is the one with the longest test 

length (and then highest power dissipation) Then, the time frames of all the tests 

arc updated and they arc further used to update the P C D G  The latter is then 

used to calculate the Forces for every feasible CurTest-CurGap  assignment, where 

Cur Gap is iteratively assigned with all the gaps from Gaps List The Cur Gap, that 

exhibits the lowest Total Force for the assignment with CurTest  test, is finally 

expanded with C urT est , which is then removed from BlockTestList

The SCHEDULE procedure is the same as the one implemented in the LS- 

bascd approaches m the previous chapter It carries out the scheduling of a test 

into the GrowmgTree  and its subsequent removal from the BlockTestList  As it 

can be seen m figure 3 5, the merging step implies the generation of shaded and 

hatched gaps The hatched gap m the SCHEDULE procedure is called RestGap 

It represents the space (gap) left behind cach merging step Therefore it inherits 

the accumulated power dissipation and test resource compatibility list data from the 

former test subsession, but, on the other hand, the test length is the test time left 

after the merging step Obviously, if the test time left is null, there is no RestGap  

generated TwmGap  represents the twin of the just merged test and, therefore, 

its test length is the same as the newly scheduled test Its power dissipation is 

the sum of the test subsession’s power dissipation before assignment and the power 

dissipation of the test just scheduled Its compatibility list is the intersection of 

the previous E T P ’s compatibility list with the compatibility list of the just merged 

test If the resulting compatibility list is null it means that the newly generated 

Twm Gap  is born “saturated”, and there is no point in taking it into account for 

further expansion Thus, it is inserted into the Growm gTree , but not into the 

Gaps List
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5 1 2  A lg o r i th m  C o m p le x ity

The complexity of the P T S -FD S  algorithm can be derived m the same way as the 

complexity of FDS Firstly, each iteration of the algorithm schedules at least one 

test This implies there can be at most N  iterations, where N  is the in itial 

number of tests Secondly, withm each iteration, for a test to be scheduled, there 

are at most N  test subsession (gaps) for which forces must be calculated This 

assumption is a very conservative upper bound because it is only m the worst 

case, where all tests arc totally incompatible, that the maximum possible number 

of test subsessions making up the test’s time frame is equal to N  (total number 

of tests) Finally, for each tentative test-to-test subscssion assignment, there may 

be at most N-l  tests incompatible with the current one to be affected, and their 

incompatibility force must also be calculated The combined effect of the above 

three considerations yields the combined 0 ( N S) complexity For the P T S-FD S, 

one method can be applied m order to reduce substantially the complexity and 

is sim ilar to the one presented m [PK89] In [PK89] the complexity was reduced 

by performing a preliminary reduction of all time frames which exceed a constant 

maximum allowable height H Forces are then calculated in the usual fashion, and 

all long time frames are reduced simply by removing from the time frame the c-steps 

exhibiting the highest forces Sim ilarly m the P TS, approach the test subsessions 

sets can be limited to a certain number H and the scheduling complexity would 

then be reduced to 0 ( H N 2)} where H is a predefined constant Forces are then 

calculated m the usual fashion as well That is, all big test subsession sets arc 

reduced by removing from the test subsession set, the test subscssions exhibiting 

the highest forces

5.1  3 T e s t S c h e d u lin g  E x a m p le

The same two B TS examples given m subsection 4 1 3  are used here to provide a 

deeper insight into the workings and the results of this algorithm The 10 B TS 

is repeated below For this example, the in itial values for the data structures are 

GT  =  0, GL — 0, B T L  =  ¿3, ¿4, ¿5, ¿6, ¿7, ¿9, ¿10} The algorithm is repeated

until all the tests arc scheduled Each iteration starts with the scheduling of the 

unassigned tests that have null time frames Thus, the lowest mobility tests with null 

time frames are made roots of the GT  and the time frames are then updated This
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repeats until every unused test from B T L  has a non-zero time frame Then, tests are 

scheduled according to their mobility Since the number of tests to be scheduled is 

ten, there arc ten mam steps all together, which are depicted in figure 5 8 Following 

this the scheduling steps from figure 5 8 executed by the first algorithm of the P T S - 

L E A  approach arc detailed

testz(power dissipation, test length, {compatibility list})

¿ i(9 ,9, {£2, h ,  £5,£6, ¿8, £9})

£2(4 ,8, {£1 , £3» £7» £s})

£3(15 8, {£1 , £2j £4, £75 £9» £10})

£4(6, 6, {£3, £5, £7, £3})

£5(5,5, {£1 , £4, £9, £10})

£e(2,4, {£1, £t5 £s, £9})

£7(1 ,3, {£2, £3, £4, £63 h ,  £9})

£s(4,2 , {£1 , £2, £4, tG? £7, £9, £10})

£9(12 , 1 , {£1 , £3, £5, £6, £7, £8: £10})

£io(7,1, {£3, £5? £8) £9})

Step 1  Tim e frames of all tests 

m B T L  arc null bccausc there are no 

test (sub)sessions in GL  Therefore, 

the first test (£1) is selected from BTL  

for scheduling It is merged to GT  as root A twin gap tw  1 is generated and inserted 

m GL so that GL — {£wi}, while node £1, inserted into G T , is shaded Then £1 is 

removed from BTL

Step 2 The time frames of 

the unused tests from B T L  are up­

dated Their new time frames arc 
Table 5 4 Data Structures (After Step 1) rpp =   ̂ rpp _   ̂ _  q ^  _

¿2 5 ¿3 5 ¿4 5 ¿5

l , T F i6 =  1 ,T F £7 =  0,TFts =  1 ,TF tQ =  l ,T F tl0 =  0  £4  is the next test in the 

sorted B T L  having null time frame Consequently, it is selected for schedule during 

this step The structures become GL =  { tw \ , tw 4 }, while B T L  consists of the tests 

left with the following updated time frames TF t2 =  l ,T F t3 =  l ,T F tb =  2 ,TFt& =

B T L *2 *3 t4 ¿5 i6 *7 *8 £g <10
I t 1 1 0 1 1 0 1 1 0

G L { t w i )

G T *1 is  merged as root

BTL *1 *2 *3 t4 ¿5 *6 ¿7 Î8 i9 *10
TF 0 0 0 0 0 0 0 0 0 0
GL { 0 }
GT {0}

Table 5 3 Data Structures (Step 0)
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TEST SCHEDULE CHARTS TREE GROWING STEPS BLOCK TEST LIST 

(a) (b) (c)
Figure 5.8: Tree Growing Steps Example (P TS-FD S Approach)

1 ,TF t7 =  1 ,T F i8 =  2 ,TF t9 =  1 ,TF tl0 =  0.

B T L <2 *3 <5 «6 *7 *8 *9 <10
T F 1 1 2 1 1 2 1 0

G L { ttu j, tw4 )

G T ¿4 is  merged as root

Step 3. tio is scheduled next be­

cause it is the only test left having 

null time frame. The structures are 
Table 5.5: Data Structures (After Step 2) now: GL  =  { tW utw4 , tw 10}, while

BTL consists of the tests left, with the following updated time frames: TFt2 =  

1,TF*3 =  l ,T F h =  2 ,TFt6 =  1 ,TFt7 =  1 ,TFtg =  2 ,TFtg =  2.
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Step 4 As can be seen above there

arc no tests left with null time frames

Thus ¿2 1S to be scheduled next be- 
Table 5 6 Data Structures (After Step 3) causc lt 1S the next m thc sorted BTL

Force values are to be calculated for its assignments to each test subsession (gap) 

from its time frame, and the one with the lowest Total Force value gives thc 

test subsession where 1 2 w ill be scheduled The P C D G  is updated during each 

step using formula 5 4 Because its time frame is equal to one test subsession 

(twi),  there is no need to update the P C D G  and subsequently, there is no need 

to calculate the Total Force of assigning ¿2 to tw  1 The structures become 

GL =  {rg i , tw 2 , tw 4 ,twio},  while tests left m B T L  have thc following updated 

time frames TFh =  1 ,TF tb =  1 ,T F i6 =  0,TF tl =  1 ,TF t% =  2 , T F i9 =  2

Step 5 Test t$ has now a null

time frame Therefore, it w ill be

scheduled as root in GT and removed 
Table 5 7 Data Structures (After Step 4) from BTL GL beComes GL =

{ tw Q, rp i, tw2, iu>4, twio}, while BTL's tests have the following time frames TFts =  

1 ,TF U =  1 ,T F i7 =  2 ,TF t8 =  3 ,T F i9 =  3

Step 6 Test t3 is to be scheduled 

next Its time frame is one (tW2 ) A f­

ter its scheduling to tw2, GL becomes 
Table 5 8 Data Structures (After Step 5) ^  r g u tw4, tw10} tw3 is not gener-

atcd because its resulting compatibility list is empty Then, rg2 is not generated 

either because its test length is zero, t 2 and £3 having the same test length Now, 

B T U s tests have the following time frames TFtb =  1, TFtl — 2, TFts =  21 TFtg — 3 

As can be seen, there is no need to calculate thc Total Force m this step cither 

However, it is going to be calculated here m order to give an example of how thc 

Total Force and its components (Self and Incompatibility Forces) arc generated 

In order to calculate any force, the P C D G  has to be calculated first For the 

P C D G , thc compatibility probability is needed Thc calculations arc made ac­

cording to formulas 5 3, 5 4, 5 6, and 5 7 and arc given below The first set of 

calculations are made on thc Comppro^t^ts^  values The first set represents

BTI É3 £5 *7 *8 *9
TF 1 1 2 3 3
GL {rqi tui2 tw4 tu>io ttlig}
GT tß is merged as root

BTL *3 «5 *0 t? <8 49
TF 1 1 0 1 2 2
GL {»*51 tti>2 tli)4 tlUiO}
GT 12 is scheduled in twj

BTL t2 <3 to *6 ¿7 *8 *9
TF 1 1 2 1 1 2 2
GL {tu/l tw4 tiuio}
GT ¿10 18 merged as root
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the Compprob{tx, tSj) values before the scheduling of ¿3 m tw2, while the second 

set of Compprobfa, ts3)s arc calculated after the scheduling of ¿3 in tw2 The 

Compprob(tlyts3)s before scheduling £3 to tw 2 arc calculated as m table 5 9

tt *-> tSj Prob CompProbiU, tbj) Reasons (N = 5 in all cases)
of Comp values K : Ntncomptt values because
£5 <-»■ tW4 CompProb(t5,tw4) = K  =  3 CompListtW4 =  {¿ 5 î ¿ 7 , £ » }

=  1  — C f / C f  =  0 5 Nmcompt  ̂ =  ^ IncompListts =  { ¿3, £7,  £s }
£7 tWq Compprob (£7,  tW4 )  =  1 #  =  3 CompTjistfaû  — { £ 5? £7? £3}

/V  — 1J v zn c o m p i7 — i IncompListtj =  { £ 5}

¿8 <-► tu>4 Compprob (t$ ,  tW4 ) = K  =  3 CompListiWi =  { £ 5,  £7,  £ 8 }
=  1 — C2/C4 =  0  8 3 /V — 2i ’ m c o m p tR — " IncornpListi8 — { £ 3, £5}

£9 <-> tw 10 CompProb(t9,tw10) =  1 CompListuuw =  {£9}

încomptQ — 0 Incomp Listt9 =  { 0 }

£3 <-> tW2 Compprob(t3,tw2) =  
=  1 - C i / C i  =  0 5

K  — 2 CompListtW2 =  { £ 3,  £ 8 }

i ¥ m c o m p n  ^ IncompListt3 =  { £ 5, ¿8}

CN
SOX00 Compprob ( i 8 ,  tw2 )  = K  = 2 CompListfw  ̂ =  { £ 3,  £ 8 }

=  1  -  C 21 / C J  = 0 5 Ntncomptu ~  2 lncornpListt8 =  { £ 3, £5}
£9 <-► rg\ Compprob(tg} rg\)  =  1 i r  =  i CompListrgi — { £ 9}

^ tncompto ~  0 hicompListig =  { 0 }

£7 <“ ► tWQ Co7TipProb{t7,twG) =  1 K  =  3 CompListlw& =  { £ 7,  £8 , £9}
N  = 1J v i ncompty, A IncompListt7 =  { £ 5}

tg <"► tWQ Compprob(tg}twe) = K  =  3 CompListtwQ =  { £ 7, £8̂ 9}
=  1  -  C f / C j  =  0  8 3 ^ *n c o 7 n p t R — 2 IncornpListta =  { £ 3,  £5}

£9 <-» twe Cornpprob(t9,twG) =  1 K  =  3 CompListtwe =  { £ 7,  £ 8 , £9}
AT — 0J 'm c o m p ( g IncompListtg =  { 0 }

Table 5 9 Compatibility Probabilities Before Scheduling ¿3 to tw 2

The below figure gives by means of two tables an overview of the change of 

Com pProb(tt ) tSj)  values before and after scheduling ¿3 to tw 2 After scheduling ¿3 

to tw 2, the CompProbit^ ts3)s arc calculated as in table 5 10

Compproh lest Subsessions
Tosta ÎHJ4 £*«10 1 tl,;2 rgi ttliß

«3 0 5
0 j

«7 1 1
«8 0 83 0 5 1
to 1 1 1

Compproft Test SubsesMioiis
Tests ii«4 J ito 10 tw'i 1 rg2 1 rq j { itu6

0 67
<7 1 1
<8 1 1
¿9 1 1 1

(a) Compprob Before £3’s Scheduling (b) Compprob After £3’s Scheduling

Figure 5 9 CompProt, Values m Step 6

In figure 5 10 the P C D G  values before the scheduling of test ¿3 into test subses­

sion tw 2 arc depicted Figure 5 11  depicts the P C D G  values after the scheduling of 

test i 3 into test subscssion tw 2 rg2 is not generated because its test length is null 

(Trg2 ~  TtW2 —Tts =  8 -8  =  0)
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ti <-> tsj Prob, 
o f Comp.

Compprob(ti, tsj) 
values

Reasons (N =  4 in  all cases)
K ì Nincompti values because

ts <-+ tw3 CompProb{tg,twz) =  0 K  =  0 CompListtWin =  {0 }
TV- — 1•£Vt ncomptR — IncompListt 8 =  {£5}

tg <-> rg2 C ompProb {tg ,rg2) =  0 ^resi =  0
£5 <-► tW4 C ompprob (£5, £u>4 ) =  

=  1 - C f / C f  =  0.67
/C =  3 CompListtW4 =  {£5, £7, £s}

Nincomptr, =  ^ IncompListtg =  { £ 7 ,£ s }
£7 <-> £u?4 Compprob{tT,tw4) =  1 K  =  3 CornpListtW4 =  { £ 5,  £7^ 8}

Nincompt7 =  1 IncompListt7 =  {£5}

¿8 tw4 Compprob (tg, tW4 ) =  1 K  =  3 CompListtW4 =  { £ 5,  £7,  £ 8 }
/V- = 1iy tncomptH — -1 IncompListte =  {£5}

tg tWio C o r a p p r o b ^ iw io )  =  1 x  =  1 CompListtWl0 =  {tg}
Nincomptn ~  0 IncompListtg =  {0 }

tg «-♦ rgi ComppTOb(tg,rg\) 1 =  1 CompListrgi =  {£9}

NincomptQ =  0 IncompListtg =  {0 }

£7 £ll>6 Compprob(t7,tws) =  1 i f  =  3 CompListtwe =  { £ 7,  £ 8 , £9}
Nincompt7 ~  1 IncompListt7 =  {£5}

<-> £w6 C ompprob (tg, fitte ) =  1 K  = 3 CornpListtW6 =  {£7, £ s , £9}

Nincompm = ^ IncompListts =  {£5}
£9 <-> tw6 Compprob(tg,tw6) =  1 K = 3 CompListtwQ = { £ 7,  £ 8 , £9}

NincomptQ ~  0 IncompListtg =  {0 }

Table 5.10: Com patibility Probabilities After Scheduling ¿3 to tw 2

Figure 5.10: P C D G  Before i 3’s Scheduling - Step 6
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rg, tw3 rg3 tw4 tw6 tw10
Figure 5 .11: P C D G  After ^ ’s Scheduling - Step 6

Then the Total Force of assigning i 3 to tw 2 is given below. It is the sum of 

i 3’s Self Force of assigning it to the test subsession tw 2 and the Incompatibility 

Forces. One Incompatibility Force is given by the fact that scheduling test ¿3 to 

test subsession tw2, means that test tg can not be scheduled in this test subsession 

anymore. That is due to the fact that the new twin gap tw$ is not compatible with 

tg, because ¿3 is not compatible with tg, and the rest gap rg23 has a null test length 

(7i2 =  Tt3). Another Incompatibility Force is given by the possible assignment of 

test tg to the other two test subsession (tw4 and tw^).

TFt3^tw 2 =  Ft3-+tw2 +  I  ncompFt8- ,tW4 +  IncompFt8^ tw2 +  IncompFt8^ tw<i

= PCDG[tw2) * Xt$—*tw2 +  PCDG(twA) * x tg—*tw4 + PCDG(tw2) * x t8^ tW2 +

=  +PCDG(tg) * x t8-*tw6

= 14.17 * (1 * 1 * 1 -  1 * 0.5 * 1) + 10.11 * (4 * 1 * 0.5 -  4 * 0.8(3) * 0.33) +

+14.17 * (4 * 0 * 0.5 -  4 * 0.5 * 0.33) +  7.61 * (4 * 1 * 0.5 -  4 * 0.83 * 0.33)

=  7.08 +  8.99 -  9.4 +  6.77 =  13.39.

The value of TF t3 —► tw 2 is positive, that is V s  assignment to tw 2 is not an 

attractive choice. However, this is the only choice for test t% to be scheduled in the 

actual test schedule without increasing the total test application time. This is the
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P T S-FD S algorithm’s peculiarity that tests arc scheduled by their order m the test 

mobility list

Step 7 During this step, test

i 5 is scheduled to the only test sub-

session (tw4) of its time frame Af- 
Table 5 11 Data Structures (After Step 6) tcr lts schcduimg to tW4> GL  becomes

{r# !, tw w , twG} tw 5 is not generated because its resulting compatibility list is

empty r <?4 is not generated cither because its test length TLtqa =  1 could accom­

modate only test t9, but the latter is not test resource compatible to rg4 B T U s 

tests have the following time frames TFtl =  1 ,TF t& =  1 ,TF t9 =  3

Step 8 After this step, test t7 

is also scheduled to the only test sub­

session (izue) of ^s time frame GL  
Table 5 12 Data Structures (After Step 7) becomcs GL =  { rg i, rg6 , tw 7 , tw 10}

B T L ’s tests have the following time frames TFts — 1 . TFlrj =  4

Step 9 Now, test ¿g is being

scheduled to the only test subsession

(tw7) of its time frame GL  becomes 
Table 5 13 Data Structures (After Step 8) rfl6j rgi) tWs, tw 10} The only test

left has the following time frame TFtg =  5

Step 10  In the last step, 

test tg could be scheduled to one 

of GL's  test subsessions (GL =  
Table 5 14 Data Structures (After Step 9) {rg i ,rg 6 ,rg 7 , tw s , tw w }) Thus, the

first step is to update the P C D G  Using formula 5 3 the following values have

been calculated

Compprob(tg, twio) =  1  0 0 , w h i l e  Prob(tg, tw\o) =  0  2 ,

CornpProb(t<) , rgi) =  1  0 0 , w h i l e  Prob(tg, rgx) = 0  2 ,

CompPTob(tg, rg6) =  1  0 0 ,  w h i l e  Prob(tg, rg6) = 0  2 ,

CompPro^ig, rg7) =  1  0 0 ,  w h i l e  Prob(tg, rg7) = 0  2 ,

Compprob{tq,tw%) — 1  0 0 , w h i l e  Probitg^tws) = 0 2

BTL tgTr 5
GL {rai rg6 rg7 twg
GT ig is merged m tuif

BTL ¿8 tg
TF 1 4
GL {rgi rg6 itu7 ttuio}
GT tf is merged in tuig

BTL 17 fc8 *9
TF 1 1 3
GL {r9l twi0
GT t0 is merged in Ì1/J4

BTL to '7 *8 tg
TF 1 2 2 3
GL {rgi tw4 twjQ ìmjq}
GT Ì3 is merged in tw2
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Figure 5.12: P C D G  - Step 10 (P TS-FD S Approach)

SFtg—ttwiQ — FtQ—>twio “f" ^tg-^rgi “I“ Ftg-»rge + Ftg-»rg7 +
= 9.4(12 * 1.00 * 1.00 -  12 * 1.00 * 0.2) + 11.4(0 -  12 * 1.00 * 0.2) +

+4.4(0 -  12 * 1.00 * 0.2) + 5.4(0 -  12 * 1.00 * 0.2) + 9.4(0 -  12 * 1.00 * 0.2)
= 90.24 -  27.36 -  10.56 -  12.96 -  22.56 = 16.80;

SFtg->rgi = 40.80;
SFtg—>rge = -43.20;
SFt9->rg7 = -22.56;
SFt9-+tWa = 16.80.

Using formula 5.4, P C D G  is generated for test tg and depicted in figure 5.12. 

Because tg  is the last test-block to be scheduled, its compatibility probabilities are 

equal (1.00) for all five gaps. The same happens with the uniform probability of 

assigning tg  to the five gaps, which is 0.2. Thus, the probable distribution calculated 

with the sum from formula 5.4 is 12 * 1.00 * 0.2 =  2.4. It can be seen that on top 

of the already accumulated power dissipation of the gaps, where tg  can be assigned, 

the probable distribution, which is 2.4 for all gaps, is added. Intuitively, in order 

to balance the power dissipation over all the gaps, by assigning tg , the assignment 

should be done to rg$. This is demonstrated by calculating above with formula 5.7 

the Self Forces (SF) associated with the assignment of tg  to each of the five gaps.
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MAXIMAL ACCUMli I.ATED POWER DISSIPATION MPD = 21

: ' :

AVERAGE POWER DISSIPATION 
AVPD = 11

ROOT MEAN SQUARE POWER DISSIPATION 
RMS =11.85

*1«
POWERDISSIPATIONDISPERSION

PDD = 10

NO POWER
DISSIPATION
CONSTRAINT

AVERAGEPOWERDISSIPATION
AVPD-11

ROOT MEAN SQUARE POWER DISSIPATION
RMS =11.49

------
MAXIMAL ACCUMULATED POWER DISSIPATION MPD -  14mm-

TOTAL TEST APPLICATION TIME TL = 20

*10
/

■

'"POWERDISSIPATIONDISPERSION
PDD-3

NO POWER 
DISSIPATION 
CONSTRAINT

TOTAL TEST APPLICATION TIME TL =

(a) PTS-LEA (MRU) Solution (b) PTS-FDS Solution

Figure 5.13: P TS Charts Without Power Constraints - 10 BTS

Test ¿9 is the last unscheduled test. Consequently, it ’s Total Force does not 

have incompatibility components. Thus, the assignment of tg  to rgq gives the lowest 

Total Force and, therefore, it is the assignment carried out in the last step of this 

example. The final power-test scheduling chart of this example is given in figure 

5.13(b) and is compared in figure 5.13(a) with the solution generated by the first 

pseudocode of the P T S -L E A  algorithm. It can be observed how power dissipation 

characteristics can be improved by scheduling test tg  into the test session for test t$  

instead of scheduling it into the test session for test t \ .  Comparing with the P T S-LS  

algorithm, this is possible in the P T S-FD S algorithm by employing a force-directed 

priority function in the gap-selection process of the tree growing technique.

Figure 5.14 gives a comparison between the P TS solution generated by the P T S - 

LS algorithm (the best solution generated in chapter 4 for the 20 B TS example)

POWERDISSIPATION
NO MAXIMAL POWER DISSIPATION CONSTRAINT

AVERAGE POWER " 13,3 DISSIPATION

l15 . *19
Í16 DISSIPATION

M

tu
DISSIPATION

POWER DISSIPATION -8.87 DISPERSION

SÖ
TOTAL TEST APPLICATION TIME = 41

NO POWER DISSIPATION CONSTRAINT

MAXIMAL _ POWER AVERAGE   RMSPOWER “** DISSIPATION -6.02 POWER "I2-9* POWER ->3.91DISSIPATION DISPERSION DISSIPATION DISSIPATION

TOTAL TEST APPLICATION TIME = 44

(a) PTS-LS Solution (b) PTS-FDS Solution

Figure 5.14: P TS Charts Without Power Constraints - 20 BTS
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(a) PTS-LS Solution (b) PTS-FDS Solution

Figure 5.15: P TS Charts W ith Power Constraints (PD C =  15) - 20 B TS

and the one generated by the P T S-FD S algorithm for the 20 B TS example, without 

power constraints. It can be noticed that the P T S -FD S  solution in 5.14(b) exhibits 

a more balanced power dissipation than the P T S -LS  solution given in figure 5.14(a), 

even though the total test application time has increased slightly as well. It will 

be seen in chapter 6 that for very loose power constraints, normally, the P T S-FD S 

algorithm dramatically improves the power dissipation characteristics (comparing to 

P T S -LS  and P T S -LE A ) usually without increasing the total test application time. 

On the other hand, for tighter power constraints as in the case of figure 5.15(b), 

it will be seen in chapter 6 that the P T S -FD S  algorithm generates solutions with 

balanced power dissipation but with longer test application time (comparing again 

to the P T S-LS  and P T S -L E A  approaches). However, the example given in figure 

5.15 is again an exception because the total test application time is not increased 

by applying the P T S-FD S algorithm comparing to the P T S -LS  algorithm).

5.2 Distribution Variance Based Approach

The HLS FD S approach from [KAHA97] was also used the distribution graph con­

cept where a so-called Mean Square Error (MSE) function was used as a priority 

function to schedule operations to c-steps, resulting in a computationally efficient 

solution. The schedule of this approach was constructed iteratively, each individ­

ual operation was considered, assessed and finally scheduled into the most suitable 

c-step. This was unlike the previous HLS FD S algorithm where the influence of 

all unscheduled operations on the schedule was evaluated before the most suitable 

operation to c-step assignment.
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It was proved m [KAHA97] that higher mobility operations have smaller effect on 

the overall operation distribution because of their long time frames, which result in 

lower probability values This means that it is unnecessary to schedule high mobility 
operations early Therefore, the operations were classified m [KAHA97] into a sorted 
list according to operation mobility (from low to high), increasing ASAP time, and 

decreasing number of succeeding nodes This list was used to schedule all operations 

one after another without the need to re-sort the list, thus preserving the algorithm’s 
low complexity On the other hand, it has been explained m section 4 2, that m 

the PTS problem, the test mobility function has to be employed in order to sort 

the initial test list The other two sorting keys mentioned above are not applicable 

to the PTS problem because the order of test application is not important at test 

session level

The algorithm in [KAHA97] had the following steps The first unscheduled 

operation opx was taken out from the sorted list To establish the optimal c-step into 

which this operation was to be scheduled, the operation was tentatively assigned 
to all valid c-steps within its time frame Scheduling an operation into a c-step 

might affect the time frames of its preceding and succeeding operations As a 

result, the probability values of these operations might vary and, therefore, modified 
distribution graph values DG3(type, i) had to be determined for each tentative c-step 
j  assignment, where type represented the type of operation opx To investigate the 
effect of different c-step assignments on the operation distribution, the temporary 
DG'3 was assessed knowing that a good schedule has a balanced DG  Let c-stcpsi2/pe 
be the set of c-steps into which operations of this type could be scheduled Let 

Mtype be the number of such c-steps Then the average DG  value of this type of 

operation over their possible c-step assignment is

AVGtype = t b t -  £  DG(type,z), (5 9)
1#pe itc-itep,,,,.

Let DGf3(type, i) be the distribution graph if operation opx was assigned to c-step 
j  Then the so-called Mean Square Error (MSE) of DG'3(type, i) is an indication of 
the balance of the distribution graph of this operation type

M SE(h type) =  l - J —  £  (DG’̂ typ e^) -  AVGlype) \  ( 5 10)
Y type tec-siepstVpe

There was one MSE value for each operation type and, in order to find an overall 

rate, all MSE values for all types were added
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M S E (j ) = £  Ct-ype M SE (j,type), (5 11)
type

where Ctyve was an optional constant reflecting the cost of the particular hardware 

resource Having determined the MSE values for all valid c-steps, operation opt was 

finally scheduled into the c-stcp j  which resulted m the lowest MSE value This was 

followed by adjusting the time frames of its preceding and succeeding operations 

and updating the DG values This procedure was repeated until all operations were 

scheduled
An aside has to be made here with regard to the mathematical definition of the 

MSE function mentioned above First of all, the formula given in equation 5 10 is 

not a Mean Square Error (MSE) but resembles the Standard Deviation (SD) defini­

tion, which is the square root of the average squared deviations from the mean On 
the other hand, MSE is the average of squared deviations of the current population 

from the values of the previous population (see equation 5 12) The approach in 

[KAHA97] was to calculate the deviation of a new population (l e , DG ' values) 
from the average of the previous population (i e , DG  values) because it was aiming 
at a balanced distribution graph This deviation is calculated with the Standard 

Deviation (SD) formula On the other hand, the MSE formula calculates the devi­

ation of the new population’s values from the values of the previous population In 

terms of distribution graph, by using the MSE formula the algorithm would aim at 
minimizing the difference between the shape of the previous distribution graph and 

the new shape of the distribution graph

MSE{j,type) = I— — ^  (DGf3{type,i) -  DG3{type,i))2, (5 12)
y  t y p e  iGc-stepstvpe

Moreover, mathematically speaking the Average Value (AVG) m Standard De­
viation (SD)’s formula should be constant, which is not the case in the approach 
employed m formula 5 10 Therefore, the term defined in formula 5 10 should be 
called a Deviation from a Mean Target, where the mean target (AVG) changes at 
each iteration

The same idea from [KAHA97] is employed for the PTS algorithm proposed in 

this section with some amendments First of all, Standard Deviation (SD) formula 

was considered, but it turns out that the square root function is superfluous This 

was due to the fact that the SD values had to be compared, and the ordering 

relationship (i e , <, >) between two values is the same for the relationship between
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their square or square root values (convex functions) Therefore, the square of the 

so-called SD from target (AVG) function is eventually implemented which coincides 

with the mathematical definition of Distribution Variance (DV) from Target (AVG) 
Inspired by the approach given in [KAHA97] a Distribution Variance Based PTS 

Approach (PTS-DV) is proposed m this section together with the extended tree 

growing technique to deal with the problem of uncqual-length block-test scheduling 
under power dissipation constraints It aims at achieving a balanced power dissi­

pation throughout the test application time merely by assessing the same Power- 

Concurrcncy Distribution Graphs (PCDG) proposed m the previous section PCDG 

gives the effect of tcst/test-subsession assignments Unlike the PTS-FDS approach 

given in the previous section, the time consuming Force calculations arc avoided 
here by using the DV function, resulting in a more computationally efficient solution 

This is achieved using only the two steps summarized below

D e te r m in a t io n  o f  t im e  fr a m es

The first step consists again of determining the time frames of each test by evalu­
ating the set of test subsessions (ETPs) where the test can be merged The ETPs 
expandable at a certain moment with a test do not have to be adjacent and, there­
fore, a test’s time frame m PTS-DV, as in PTS-FDS, is not or does not have to 
be contiguous The goal of PTS-DV is also to balance the power dissipation and, 
indirectly, the test concurrency, while keeping the test application time as tight 

as possible Therefore, the same power dissipation probability from the PTS-FDS 

approach is to be employed
For the 4 BTS example given in section 5 1 and depicted in figure 5 5, both tests 

¿3 and ¿4 have two test subsessions (twi and tw2) m which they can be scheduled 
That is, the time frames of both tests £3 and t4 consist of the test subsessions tw\ 
and tw2

C r e a t io n  o f  d is tr ib u t io n  g r a p h s

The next step is to take the sum of PCDGtXtSj) values for each possible test/test 
subsession assignment and add them on top of the power dissipation accumulated 

so far m the partial power-test chart The resulting PCDG indicates the power 

dissipation expectations PCDG’s formula is the same one as formula 5 4 given m 

section 5 1
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First, all tests are ordered by their mobilities Scheduling a test t% into a certain 

test subsession ts3 might affect the time frames of other tests As a result, the 

probability values of these tests may vary and modified distribution graph values 

PCDGf(tSj) should be determined for each possible tz —> ts3 assignment To inves­

tigate the effect of different test subscssion assignments on the tests5 distribution, 

the temporary PCD G '(ts3) is assessed knowing that a good schedule has a balanced 
PCDG  The difference between the PCDG  values and the average value AVG  pro­

vides an indication of the distribution balance as m the [KAHA97] approach The 

average value can be obtained from the original PCDG  using the following formula

jvt s —i
A V G = —  PCDG{i), (5 13)

n t s  ^

where N ts is the number of test subsessions in the schedule The distribution 
variance of the temporary PC D G ’ from the AV G  value gives an indication of the 
balance of the power dissipation distribution The DV function to be calculated for 

each tentative assignment of a test tt to a test subsessions ts3 is defined below

/ n t s - i \

W ^ t s ,  = j j -  ^  £  (PCD G '(tSj) -  A V G )2J  , (5 14)

where PCDGf(ts3) are the values of the modified power-concurrency distribution 

graph (in each test subsession ts3) for a tentative t% —► ts3 assignment As in 
[KAHA97], having determined the DVtt-+ts3 values for all valid test subscssions ts3 
(to which test tx can be assigned), the test tt is finally scheduled into the test 
subsession exhibiting the lowest DVtx̂ ts value This is followed by adjusting the 

time frames of the remaining tests m ts^s compatibility list and updating the 
PCD G  values The above steps are repeated until all tests are scheduled

Thus far a uniform time length (one time unit) has been considered for all the 
test subsessions m which the PCDG has been calculated Recall that in the PTS- 
FDS approach, the time length has not been employed m the calculation of the 
Force function The reason behind this is the fact that the PTS algorithms deal 
with the idealistic technological case, where each power spike has to be minimized 
On the other hand, m the PTS-DV approach test subsessions5 time length can be 

employed for the calculation of AVG  and DVti^tsj values in order to better discretise 
the PCDG over the test application time

Creation of distribution graphs 112
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* Nts—1
A V G = —  Y ,  TtSi*PCDG(i), (5.15)

t=0
Thus, an improvement of formulas 5.13 and 5.14 to also take into account the 

time component of test subsessions is given, respectively, in formulas 5.15 and 5.16. 

The AVG  value of the PCDG was calculated before in formula 5.13 by uniformly 

(by one time unit) sampling the PCDG values for each test subsession (in total Nts  

test subsessions). On the other hand, in formula 5.15 the AVG  value of the PCDG 

is calculated this time by sampling the predicted PCDG values for each time unit of 

the total application time or total test length T L  (where T L  = Y lflo  1 That 
is, the predicted PCDG value of test subsession tS j will be sampled TtSj times and 

will have the same constant value P C D G (tS j) .  The D V ti-,tsj values are calculated 
in the same way as in formula 5.16. The distribution is now discretised T L  times. 
Therefore, its population has T L  values. Within each test subsession tSj the new 

PCDG values are constant (P C D G '( tS j)) for TtSj time units.

1 (NTS- 1 \
DVt^ Ui =  Y l  I £  Tt’. * (PCDG’(tSj) -  AVG)2 J , (5.16)

In figure 5.16 are given the PCDG charts for the example given in section 5.1 

and depicted in figure 5.5. Figures 5.16(a) and 5.16(b) are the correspondents, re­

spectively, of figures 5.6 and 5.7(a) after formulas 5.15 and 5.16 have been employed.

PCDG

EXPANDABLE
TEST

SUBSESSION

(a) Before ¿4  is Scheduled in tw2 (b) After ¿4  is Scheduled in tw2

Figure 5.16: PCDGs with Test Length Component

Thus, the PCDG before tentatively scheduling test t\ to any of the expandable
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test subsessions ( tw 2 or tw i)  is depicted m figure 5 16(a) The average value of 

PCDG is now A V G  — (TtW2 * P C D G (tw 2) -f * P C D G ( tw i) ) / (TtW2 +  Ttw2) =  

(140 + 96) /(10 + 8) =  13 11 The PCDG after the tentative scheduling of test 
¿4 m test subscssion tw 2 is given in figure 5 16(b) The DV values generated by 
tentatively scheduling test t 4 to tw 2 and tw x are calculated below From these DV 

values it can be concluded that the smallest deviation is given by the ¿4 —>• tw \  

assignment That is, the power distribution deviation DVtÂ tW2 =  50 28 from the 

average value A V G  — 13 11 of the previous PCDG given by the assignment of 

i4 —► tw 2 is bigger than the deviation D V t4^ tw i =  46 94 generated in the PCDG by 
the £4 —> tw \  assignment

DVt4 —*tw 2 — rp {TtW4 * (PCDG'(tw4) -  A V G f+
-Ltw4 T  rg2 ' J-twi

+TTg2 * (PCDG‘{rg2) -  AVG)2 +  Ttm, * (PCDG’(tWl) -  AVG)2)

=  ^  (8 * (23 -  13 l l ) 2 +  2 * (14 -  13 l l ) 2 +  8 * (17 -  13 l l ) 2)

782 5 +  1 58 +  121 06 905 14 rn
=   18 =  18 =

DVt^ tWi =  1 ( rLw, * (PCDG’(t.ui2) -  A V G f +
tw2 “T tw4 ' J r l̂

+Trgi * (PGDG'{rgi) -  AVG)2 + TtWi * (PCDG'(tw4) -  AVG)2)

= ^  (10 * (19 -  13 l l ) 2 +  0 * (12 -  13 l l ) 2 +  8 * (21 -  13 l l ) 2)

346 92 +  498 01 _  njl
=     = 4 6 9 4

5.2 1 Algorithm Pseudocode

The pseudocode of the PTS-DV algorithm is given below The data structures used 
in it arc the same as m all previous PTS approaches (see subsection 4 1 1 ) As it can 
be seen m the pseudocode, tests are firstly sorted by their test mobility The schedule 
is iteratively developed while individual tests arc considered in order, assessed and 
finally scheduled into the most suitable test subsessions At each iteration one test 
is scheduled The first stage of each iteration detects (as in the PTS-FDS approach) 
the tests having null time frames These tests will be considered as test sessions 
and inserted as roots into the Growing Tree When all the tests left unscheduled 

have time frames different than zero, the first unscheduled test is picked up from the 

sorted list To establish the optimal test subsession into which it will be scheduled, 

test tt is tentatively assigned to each expandable test subsession withm its time
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frame Subsequently, tim e frames are updated for all tests affected by the tentative  

t z — ► t s 3 assignm ent and the PC D G  is constructed Eventually, the result of each 

tentative assignm ent is a DV value At each iteration, t x is scheduled into the test 

subsession t s 3 for which the lowest DV  value was found Then the tim e frames 

of the unscheduled tests are consequently updated together w ith the distribution  

graph PCDG

P S E U D O C O D E  o f  P T S -D V  A lg o r ith m  

o im tia lize  an d  sort a ll t e s t s  accord in g  to  th e ir  t e s t  m o b ility  w ith  tw o  k eys ( te s t  le n g th  

and  p ow er d iss ip a tio n ),

o im tia lize  th e  GrowingTree, th e  BlockTestList a n d  th e  Gaps List, 
ow h ile  th e re  are u n sch ed u led  t e s t s  d o {  / *  BlockT estList is n o t e m p ty * /

•  ta k e  th e  n e x t  te s t  o u t from  th e  so r te d  lis t,

•  ev a lu a te  t im e  fram es for a ll t e s t s ,

•  w h ile  (th er e  are t e s t s  h a v in g  n u ll t im e  fram es) d o {

— CurTest =  th e  first o u t o f  BlockTestList h av in g  n u ll t im e  fram e

— in sert CurTest as th e  ta il  o f  GrowingTree r o o ts  /* n e w  te s t  s e s s io n * / an d  

m ak e CurTest “u se d ” ,

— rem ove CurTest from  BlockTestList,

— g e n er a te  a  TwinGap gap  as th e  tw in  o f  CurTest,

— in sert TwinGap in to  Gaps List,

— ev a lu a te  t im e  fram es for a ll t e s t s ,  } / *  w h i le * /

•  for ea ch  t e s t  su b se ss io n  in to  w h ich  th e  te s t  co u ld  b e  sch ed u led  d o {

— a ssign  t e s t  t% te n ta t iv e ly  to  t e s t  su b se ss io n  ts3,

— u p d a te  t im e  fram es o f  rem a in in g  t e s t s  in  ts3 s  co m p a tib ility  lis t,

— ca lcu la te  d is tr ib u tio n  grap h  for th e  m o d ified  grow in g  tr e e ,

— e v a lu a te  th e  d is tr ib u tio n  varian ce  (D V ) fu n ctio n ,

•  } /» f o r * /

•  S ch ed u le  te s t  in to  th e  t e s t  su b se ss io n  for w h ich  th e  low est D V  va lu e  w as fou n d ,

•  u p d a te  t im e  fram es o f  rem ain in g  t e s t s  in  ts^ s  co m p a tib ility  lis t,

•  u p d a te  d is tr ib u tio n  grap h , 

o} / * w h ile * /
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5.2.2 Algorithm Complexity

The com plexity of the PT S-D V  algorithm can be derived in the following way. 

Firstly, each iteration of the algorithm  schedules one test. This implies there are N  

iterations ( N  is the initial number of tests). Secondly, w ithin each iteration, for a 

test to  be scheduled, there are at m ost N  test subsessions (gaps) for which P C D G  

must be calculated. Finally, for each tentative test-to -test subscssion assignm ent, 

there may be at most N  test subsessions for which the new P C D G ’ values have 

to  be calculated. This assum ption is a conservative upper bound. The combined  

effect of the above three considerations yields the combined 0 ( N 3) complexity.

5.2.3 Test Scheduling Example

Figure 5.17: PC DG  - Step 10 (P T S-D V  Approach)

The PT S solution generated by the PT S-D V  algorithm for the 10 BTS exam ple 

given in subsection 4.1.3 is the sam e as the solution generated by the PT S-FD S  

algorithm in figure 5.13(b). This is the same for both algorithm s because the BTS  

size is too small and both algorithm s converge this tim e to the same solution inside 

a small solution space. Test scheduling steps of this exam ple happen to be exactly  

the same as in figure 5.8. T hat is m ainly due to  the fact that for this BTS exam ple 

only in the last step are taken calculations-based decisions. However, the decision  

in step 10 is not based on Forces anymore, but on DV calculations. First of all, the
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P C D G  is constructed as in figure 5 17, which is an update of figure 5 12 Then, its 

average power dissipation is calculated according to formula 5 15 as below

TL  =  Trgi +  TtW3 +  TtW5 +  Trg4 +  Trge +  Trg7 +  Ttw& +  TtWl0,

Nts~ 1
Y  Tt, * PCDG(i) = Trg, * PCDG(r9l) + Ttw,  * PCDG(tw3) + Tt„K, * PCDG{tw5) +
t=0

+T r94 * PCDG(rg4) +  Trg6 * PCDG(rg6) +  Trg7 * PCDG(rgr) +

~̂ ~Ttw8 * PCDG(tw$) +  TtWi0 * PCDG(tw io )}

AVG
1 8-1

—  ^ r „ ,.P C z ? G ( .)
8-1 

t=0
1 * 1 1  4 +  8* 1 4 +  5* 1 1 +  1 * 6  +  1 * 4 4  +  1 * 5 4  +  2 * 9 4 4 - 1 * 9 4  

1 + 8 + 5 + 1 + 1 + 1 + 2 + 1

=  ^  =  11 1220

Then the D V  values are calculated for each tentative tg —> ts3 assignm ent using  

formula 5 14 Test tg is the last to  be scheduled The set of test subsessions at this 

stage is twiQi r g i 1rgQi tw s Jrg 7 After any of the tentative assignm ents the number 

of gaps increases because a test subscssion is replaced w ith two test subscssions (i e, 

a twin gap and a rest gap) For examplej the assignm ent of tg to  t w io exchanges 

the latter with rg io and tw 9 as in the below calculations of DV tĝ tWl0 The least 

DV value is given by the tg —► rg$ assignm ent (see below)

Nts~ 1
Tt., * (PCDG'its,) -  AVG? =

3=0

= Trgi0 * (PCDG(rg10) -  AVG)2 +  TtWB * (PCDG(tw9) -  AVG)2 +
+Trgi * (PCDG(rg0  -  AVG)2 + Ttm31 (PCDG(tw3) -  AVG)2 +
+Tt„, * (PCDG{twb) -  AVG)2 + Trg. * (PCDG(rg4) -  AVG)2 +

+Trge * (PCDG(rg6) -  AVG)2 +  Ttwa * (PCDG(tws) -  AVG)2 +
+TrS7 * (PCDG(rg7) -  AVG)2,

W t9_ iMl0 =  Ì  (0 * (7 -  11  12)2 +  1 * (19 -  8 875)2 +  1 * (9 -  1 1  12)2+

+8 * (14 -  1 1  12)2 +  5 * (11 -  11  12)2 +  1 * (6 -  11  12)2+
342 29

+ 1  * (2 -  11  12)2 +  2 * (7 -  1 1  12)2 +  1 » (3 -  11  12)2) =  — — =  17 11,
ZU
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(a) Without Power Constraints (b) With Power Constraints = 15

Figure 5.18: PTS Charts of PTS-DV Approach - 20 BTS

DVt9->rgi = 19.51;

DVtg-trge =  1 1 .1 1 ;

DVtg—>tW8 = 17.11;

D Vt^rg7 = 12.31.

In figure 5.18 are depicted the PTS chart solutions given by the PTS-DV algo­

rithm for the 20 BTS example without (figure 5.18(a)) and with (figure 5.18(b)) 

power constraints (PD max =  15). Comparing the PTS charts from figures 5.18, 

5.14, and 5.15 it can be noticed for the 20 BTS that the PTS-DV approach outputs 
more or less the same power-test scheduling charts as generated by the PTS-FDS 
algorithm. This is also due to the fact that the 20 BTS example is still small to be 
able to fully differentiate the characteristics of PTS-FDS and DV algorithms. This 
can be done later on with the examples given in chapter 6.

5.3 Mixed List and Force-directed Approach
Mixed classical scheduling algorithms are proposed here to further improve the 
test concurrency having assigned loose power dissipation limits. A sequence of 
list and distribution-graph based scheduling algorithms is adapted to tackle the 
power-test scheduling problem. The extended tree growing technique is again the 

background technique for these algorithms in order to model the PTS problem. This 

mixed scheduling approach contains mainly two steps. Firstly, a list scheduling- 

based algorithm (PTS-LEA, PTS-LS) is run in order to rapidly achieve a power- 

test scheduling solution with a near-optimal test application time. Then the power
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dissipation distribution of this solution is balanced by applying a distribution-graph 

based scheduling algorithm (PTS-FDS, PTS-DV)

It has been noticed in [MWMVOO] (see chapter 6) that the list scheduling-based 
approaches (PTS-LEA and PTS-LS) rapidly generate results which usually exhibit 
very good test application times The shortcoming of their solutions is that their 
power dissipation characteristics are poor That is because the power dissipation dis­

tribution is not balanced These characteristics can be improved by the distnbution- 
graph based approaches (PTS-FDS and PTS-DV) The distribution-graph based ap­

proaches take more computational time on calculating the global priority function 

(Forces or Distribution Variance (DV)) but render solutions without power spikes 
This is the goal of the two-step approach proposed in this section Firstly, to gen­

erate a solution exhibiting a good test application time using list scheduling-based 

approaches And secondly, to balance the power dissipation distribution of this so­

lution by running on it distribution-graph based approaches With the algorithms 

available in this thesis four versions of this approach can be named

• Mixed LEA - FDS Based PTS Approach (PTS-LEAFDS) - PTS-LEA to ac­
complish the first step and PTS-FDS for the second step,

•  Mixed LEA - DV Based PTS Approach (PTS-LEADV) - PTS-LEA for the 

first step and PTS-DV for the second step,

• Mixed LS - FDS Based PTS Approach (PTS-LSFDS) - PTS-LS for the first 

step an d PTS-FDS for the second step,

• Mixed LS - DV Based PTS Approach (PTS-LSDV) - PTS-LS for the first step 

and PTS-DV for the second step

5 3 1 Algorithm Pseudocode

The pseudocode of PTS-LEAFDS (PTS-LSFDS, PTS-LEADV, PTS-LSDV) algo­
rithms is very simple and, basically, assumes the sequential execution of the PTS- 
LEA (PTS-LS) and PTS-FDS (PTS-DV) algorithms Below is given the simple 
pseudocode of the PTS-LSFDS algorithm, the pseudocode of the other mixed ap­

proaches are very similar
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NO POWER DISSIPATION CONSTRAINT

MAXIMAL POWER AVERAGE .... RMSPOWER "19 DISSIPATION - 6.02 POWER ' IZ-9® POWER “DISSIPATION DISPERSION DISSIPATION DISSIPATION

TOTAL TEST APPLICATION TIME = 44

MAXIMAL POWER DISSIPATION CONSTRAINT = 15

2# - 
It- 14-

MAXIMAL ,, POWER “15 DISSIPATION
14-12-1§-»- t4 *12
4-4

TIME ' U

DISSIPATION DISSIPATION

til

t|3 tl4

4l9

TOTAL TEST APPLICATION TIME = 50

(a) Without Power Constraints (b) With Power Constraints = 15
Figure 5.19: PTS Charts of PTS-LSFDS Approach - 20 BTS

P S E U D O C O D E  o f  P T S -L S F D S  A lgorith m :

-e x e c u te  th e  P T S -L S  a lg o r ith m  on  th e  in itia l BlockTestList;
- in itia lize  th e  GrowingTree k eep in g  o n ly  its  r o o ts  in  th e  stru ctu re;

-e x e c u te  th e  P T S -F D S  a lg o r ith m  on  th e  u p d a te d  ( in itia lize d ) GrowingTree;

In the pseudocode, the intermediate step between the two main scheduling steps 

assumes the updating of the growing tree. The test application time of a power-test 
scheduling solution is equal to the sum of the test lengths given by growing tree’s 

roots. In order to keep this time characteristic unchanged, the distribution-graph 
based algorithm starts re-shuffiing the tests leaving the root tests (test session set) 

unchanged in the growing tree. By using the global priority function the tests are 

re-accommodated in the newly updated growing tree (in the roots test sessions) by 

generating new test subsessions.

5.3.2 Algorithm Complexity

The complexity of the PTS-LS approach is 0 ( N 2), while the complexity of PTS- 
FDS is 0 ( N 3). Since this approach runs PTS-LS and PTS-FDS sequentially, its 
complexity is 0 ( N 3). However, it can be noticed in chapter 6 that even though, 
intuitively, the Central Processing Unit (CPU) time of the mixed scheduling ap­
proach should be approximately the sum of the CPU times taken by the sequenced 
list and distribution-graph based algorithms, this is not the case. The CPU time 
taken by the mixed scheduling algorithms is much longer than the sum of list and 

distribution-graph based scheduling algorithms and the discrepancy grows along 
with the dimension of the BTS. This increase in CPU time is due to the increase
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of the CPU time component given by the distribution-graph algorithm. This fact 

proves the idea that after the first step, by keeping the roots of the growing tree 
as an initial (partial) solution for the second step algorithm, the search space has 
increased. Intuitively, this can be explained by the fact that keeping the roots in the 

growing tree unchanged makes the GapsList bigger from the beginning. Thus, this 

new dimension of the GapsList results in more branches during solution searching.

MAXIMAL POWER DISSIPATION CONSTRAINT = 15

DISSIPATION DISSIPATION DISSIPATION DISPERSION

t.

*10
tl3

È ’
»14

TOTAL TEST APPLICATION TIME = 50

(a) Without Power Constraints (b) With Power Constraints =  15

Figure 5.20: PTS Charts of PTS-LSDV Approach - 20 BTS

5.3.3 Test Scheduling Example

For the same reasons given in subsection 5.2.3 (similarity among the scheduling 

charts generated by PTS-FDS, PTS-DV, and PTS-LSFDS approaches for the 10 

BTS example), here are given only the PTS charts generated for the 20 BTS exam­

ple. Figure 5.19 depicts the results of running the PTS-LSFDS algorithm without 
and with power constraints, while figure 5.20 gives the results for running the PTS- 

LSDV algorithm for the same power constraints conditions.
It can be noticed comparing figures 5.14, 5.15, 5.18, 5.19, and 5.20 that for the 20 

BTS example the distribution-graph based approaches exhibit more or less the same 
features and it is hard to differentiate them with a relatively small BTS example. 
Therefore, in the next chapter more experiments are carried out in order to find out 
the differences between them in terms of advantages and disadvantages. However, 
one can anticipate one of the conclusions of chapter 6. That is, the PTS-LSFDS 
and the PTS-LSDV approaches improve the power dissipation distribution while 

keeping constant the total test application time only for loose power constraints.
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Chapter 6 

Experimental Results

6.1 Implementation
For the im plem entation of the algorithms proposed m this thesis and for their ap­

plication on the testbenches, Visual C + +  was chosen as the developm ent environ­

m ent The reason for using the V isual C + +  environment was the ease of developing  

a sim ple graphical interface Thus, w ith the graphical interface designed, it is easy  

to  handle, stepwise or otherwise, PT S algorithms, testbenches and experim ental 

results The graphical interface is given in figure 6 1 It has basically four split- 

wmdows which are handy when the user tries to  follow step by step how the algo­

rithm works A user can visualize the test set m the top spht-wm dow with all its 

block-tests and their characteristics (test length, power dissipation, test com patibil­

ity list) Then, m the second spht-wm dow, the growing tree’s content and structure 

can be browsed, expanded or suppressed In the third split-window are visualized  

characteristics of the node (one of the growm g-trcc’s nodes) selected by the user in 

the previous split-wm dow T he characteristics of the gaps left for expansion while 

the algorithm  is run are listed in the last spht-wm dow

The user is provided m the dialog bar w ith buttons to run algorithms step by 

step, to  run them  at once, to  generate a test set, and to sim ulate the results of 

all algorithms while power dissipation constraints are ranged from loose to  tight 

E dit-type dialog fields are provided to  give the user the facility of setting the lim its 

between which power dissipation constraint is decreased during sim ulation maximal 

power dissipation constraint, m inim al power dissipation constraint, and the decre­

m ent step size Then, parameters used m the random generation of new testbenches
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Figure 6.1: GUI interface

can be set in the dialog bar as well: m axim al power dissipation characteristic value, 

m inimal power dissipation characteristic value, m axim al test length value, minimal 

test length value and test resource com patibility degree (percentage). If the com ­

patibility degree is left at zero, then the generator assigns to  it a random value 

between 0% and 100%.

Other fields from the dialog bar are the following: number of tests in the BTS to  

be generated; number of testbenches generated for the sam e set of tests, where only  

the com patibility degree between tests is changcd for each of the testbenches. This 

facility is useful when the user wants to see the behaviour of proposed algorithms 

over a range of test resource com patibility degrees. Different random testbenches 

can be developed within seconds. However, testbenches can also be manually gener­

ated by means of dialog bar and menu com m ands, or already generated testbenches  

can be modified by the sam e means.
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The user can also see at each 

step the partial/final power-test 

characteristics of the generated  

schedules by enabling a results  win­

dow like the one depicted m figure 

6 2 A lso, the whole set of algo­

rithm s can be run autom atically on 

the chosen testbenches so that the  

user does not have to interact w ith  

the interface The PTS solutions can be saved in two formats

•  one format to save the structure of the extended growing tree for the currently  

generated test schedule,

•  another format to  save the PT S chart T his format is saved as a series of data  

im portable and further processable m Excel or any other tool similar to it 

Thus, P T S charts can be visualized and processed by Excel-like utilities The  

results saved m this format are used to depict pictures of the PT S charts

6.2 Experimental Results
In practical circuits (e g MCMs) only a few blocks or m odules are activated at 

a certain mom ent, under normal system  operation, while other blocks are in the 

power-down m ode to m inim ize the power dissipation However, m order to test 

the system  m the shortest possible tim e, it is desirable to  concurrently activate as 

many blocks as possible provided that the power dissipation lim it of the system  is 

not exceeded For low com patibility degree B TSs, the PT S algorithms exhibit a 

very short run tim e However, the com plexity of the solution space and the tim e 

allocated for optim al solution search increase a lot w ith  the mcrcasc of com patibility  

degree between tests This convinced the author to focus on the results given by the  

testbenches w ith  a high resource com patibility degree between the test resources 

Actually, th is set of testbenches or real-life cases is what the PT S algorithm s pro­

posed m this thesis is aim ed at

[Xj
[-T est Length-]) pMawrunPO=—j[ p-AvraagePD-j, pAcctm. PD=̂  ffPD Dspetaon-j, 
¡1157 I1 ¡407 11233120 j  [[263900 || 117372 |j
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Figure 6 2 Results W indow
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Because in com plex VLSI circuit designs the BTS is large and varies m test 

length, it is possible to  schedule som e short tests to  begin when subcircuits w ith  

shorter testing tim e have finished testing, while other subcircuits w ith longer testing  

tim e have not (obviously, if they are resource com patible) The author wants to  

prove m this chapter by experim ents that the extended tree growing heuristic  pro­

posed m chapter 3 is very productive from this point of view  Random  testbenches 

m which the test length of the BTS is ranged are generated The experim ents prove 

indeed the efficiency of the proposed algorithms for B T Ss w ith a high resource 

com patibility degree

W hen PT S algorithm s arc em ployed for PT S optim ization at higher levels in 

the modular test hierarchy, there will be a smaller BTS Intuitively, this is due to  

longer test length blocks at higher levels A t system  level the number of blocks 

usually does not exceed a dozen The difficulty of the PT S process is then believed  

to  decrease alm ost exponentially Therefore, the big battle for PTS improvements 

is given at RTL level

The experim ents have been run on a Pentium  II machine of 600MHz All test­

benches apart from the last set were randomly generated The structure of these  

testbenches is given in appendix A This chapter is structured on six mam sets of 

testbenches T he content of the testbenches processed in this chapter is described  

below

•  the first experim ent is run on a 50 BTS randomly generated The degree of 

resource com patibility varies for the sam e BTS w ithin a range from low to 

high The maxim um  power dissipation characteristic value of the tests from  

the BTS is 20 and the their maxim um  test length characteristic value is 20 

T he minimum power dissipation value of the tests from the BTS is 1 and their 

minimum test length value is 1 The te sts’ power and tim e length values arc 

generated w ithout regard to their sim ilarity as will be the case in subsequent 

experim ents,

•  the second experim ent is run on a 50 BTS randomly generated as well This  

tim e the degree of resource com patibility vanes for the same B T S within a 

range from low to high, but with a finer increment, nam ely 10% Thus, 9 

testbenches have been generated for the sam e BTS, w ith the com patibility  

degree ranging from 10% up to 90% The maxim um  power dissipation value 

of the tests from the BTS is 100 and their m axim um  test length value is 100
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The minimum power dissipation value of the tests from the BTS is 10 and 

their minimum test length value is 10,

•  for the third experim ent 9 testbenches consisting also of 50 tests arc generated  

The resource com patibility am ongst the tests is kept constant at 90%, the  

maxim um  test length value of the tests is set at 100, and their minimum  

test length value is set at 10 This tim e a spectrum  of te s ts5 power dissipation  

values is tried out The maxim um  power dissipation values of the test from the  

BTS are kept at 100 all the tim e, but their m inim um  power dissipation values 

are increased stepwise by 10 from 10 to 90 T hese experim ents test the impact 

of BTSs w ith tests exhibiting, on one hand, very different power dissipation  

values and, on the other hand, very similar power dissipation values,

•  the fourth experim ent consists of 9 testbenches w ith 50 tests each The te sts’ 

resource com patibility is kept constant at 90%, and also constant is kept the  

B T S ’s power dissipation spectrum  This tim e the minimum test length value 

of the test from the BTS is increased stepwise by 10 from 10 to 90 Thus, 

the experim ents test the im pact of B T Ss w ith tests having, on one hand, very 

different test length and, on the other hand, very similar test length,

•  the fifth experim ent is the m ost com plex one 27 testbenches are generated for 

varied values of power dissipation, test length and test resource com patibility  

degree Each characteristic is set to  one of the three spectra below

— broad range spectrum, m which the m inim um  value of the test can range 

between 10% and 100% of the maxim um  value,

— average range spectrum , m which the minimum value of the test can 

range between 50% and 100% of the maxim um  value,

— narrow range spectrum , m which minimum value of the test can range 

between 90% and 100% of the maximum value

•  the sixth experim ent is based on a practical case test set which is an extension  

[LPOOb] of the ASIC Z design given m [Zor93] T he test set has 27 tests spread 

over 9 cores, em ploying 11 test resources The BTS has a repetitive structure 

and, intuitively, could be clustered m independent sets

The following simplified notations and acronyms will be used throughout this 

chapter
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•  for PT S algorithm s

-  P I - first version of PT S-LE A  algorithm,

-  P2 - second version of PTS-LEA  algorithm,

-  P3 - third version of PTS-LEA algorithm,

-  LS - PTS-LS algorithm,

-  LS2 - PT S-LS2 algorithm,

-  FDS - P T S-FD S algorithm,

-  DV - P T S-D V  algorithm,

-  P1FD S - PT S-LEA FD S algorithm firstly running P I as the PTS-LEA  

algorithm,

-  P2FD S - PT S-LEA FD S algorithm firstly running P2 as the PTS-LEA  

algorithm,

-  P3FD S - PT S-LEA FD S algorithm  firstly running P3 as the PTS-LEA  

algorithm

-  P1D V  - PT S-LE A D V  algorithm  firstly running P I  as the PTS-LEA  al­

gorithm,

-  P2D V  - PT S-LE A D V  algorithm firstly running P2 as the PTS-LEA  al­

gorithm,

-  P3D V  - PT S-LEA D V  algorithm  firstly running P3 as the PT S-LE A  al­

gorithm,

-  LEAFDS - general case of PT S-LEA FD S algorithms,

-  LEADV - general case of PT S-LE A D V  algorithms,

-  LSFDS - PTS-LSFD S algorithm,

-  LSDV - PTS-LSD V  algorithm,

•  for the gap insertion approach em ployed by the list scheduling based algo­

rithms (i e , PTS-LEA , PTS-LS)

-  MRU - Most Recently Used Insertion,

-  LRU - Least Recently Used Insertion,

-  INSITU - In-Situ Insertion,

DCU - December 2001



First Experiment 128

-  RA N D  - Random  Insertion,

-  ORD - Ordered Insertion,

-  com binations of acronyms are used, e g P2LRU m eans the P2 algorithm  

run w ith the LRU insertion approach for gaps,

•  for the power-test characteristics

-  TL - Test Length,

-  M PD  - M aximal Accum ulated Power D issipation,

-  A P D  - Average Power Dissipation,

-  P D D  - Power D issipation Dispersion,

-  RMS - R oot Mean Square Power Dissipation,

-  CPU - Central Processing Unit tim e taken by the algorithm  (g iv e n  in  

m ill is e c o n d s ) ,

•  PD C  - power dissipation constraint value

6 2 1 First Experiment

•  te s ts ’ resource com patibility degree is ranged from low to high,

•  te sts’ power and test length values are randomly generated w ithout regard to  

their similarity

T he first exam ple gives the schedul­

ing results of the proposed PT S al­

gorithm s for a randomly generated 50 

B T S Their degrees of resource com pat­

ibility are increased w ithm  a range from 

low to  high low (L) 10%, average-low  

(A-L) 30%, average (AV) 50%, average- 

high (A-H) 70% and high (H) 90% The  

values of the other two characteristics of 

the tests from the BTS are randomly generated w ithout regard to  their values’ sim ­

ilarity Section 3 3 5 gives the definitions of the power-test characteristics generated  

by the PT S algorithms

power
rons

PI MRU
TL MPD APD PDD RMS CPU

200 401 33 16 17 18 5 < 1
180 401 33 16 17 18 a 10
160 401 33 16 17 18 5 < 1
140 401 33 16 17 18 5 10
120 401 33 16 17 18 o 10
100 401 33 16 17 18 5 10
80 401 33 16 17 18 5 10
60 401 33 16 17 18 5 10
40 401 33 16 17 18 5 < 1
20 472 20 13 6 6 4 14 5 < 1

Table 6 1 P1M RU Results (L case)
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C a se  L: L ow  (L ) r e so u r c e  c o m p a t ib i l ity  c a se

(a) Pow er-T est C h a rac te ris tic s  (b) P T S  C h a r t (P D C  =  200)

Figure 6.3: Typical Results Generated with P 1MRU (L case)

For the low resource compatibility case, the power-test characteristics (see figure 

6.3(a)) are almost the same for all list-scheduling based algorithms (i.e., all PTS- 
LEA versions and PTS-LS). The characteristics’ values of all the list-scheduling 
based algorithms are almost constant for any given power limit, apart from the 

P 2RAND algorithm. For P2MRU, P2INS, P20RD the values are somehow different 
from the other list-scheduling based algorithms, but within a very small range of 2- 

3%. The typical results of P I MRU over a range of power dissipation constraints from 
loose to tight are given in table 6.1. Their power-test characteristics over the same 
range of power dissipation constraints are plotted in figure 6.3(a). The curves given 

by the power-test characteristics’ values over the power constraints range are almost 
flat, that is they are almost constant. These results prove that the PTS algorithms’ 

effect is diminished by the low degree of test resource compatibility. That is the 
scheduling solution space is reduced by a low resource compatibility between tests, 

and the schedules exhibit similar power dissipation distributions over similar test 
application time values.

The power-test chart of the test schedule obtained by the same algorithm (i.e. 
PI MRU) for a very loose power dissipation constraint (PDC =  200) is given as an 
example in figure 6.3(b). It can be noticed that the power dissipation distribution 
is remotely unbalanced resulting in rather frequent power spikes.

The best results for this test set are obtained for the case without power con­

straints (PDC =  200) and are generated with the P2RAND algorithm. It has to be 

emphasized here that this algorithm gives randomly different results at each itera­
tion. The aforementioned best schedule randomly generated after several iterations
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has the following power-test characteristics which are not very far from the ones 
presented in figure 6.3: TL =  395, MPD =  33, APD =  16.2, PDD =  16.8, RMS =

18.9, CPU =  10 ms. Its PTS chart is depicted in figure 6.4(a). As it can be seen in 
this schedule, there is a big difference between the power constraint value (PDC =  

200) and the MPD value (MPD =  33). That proves the fact that power constraints 

would take effect (i.e., would start constraint) for the low compatibility degree case 
only, when it is set below the MPD =  33 value. The difference between MPD and 
the other power characteristics (i.e. APD, PDD, and RMS) is around 50%, that is 
the charts are very unbalanced.

(a) B est R esu lt (P D C  =  200) (b) W orst R esu lt (P D C  =  180)

Figure 6.4: PTS Charts Generated with P 2RAND (L case)

The worst results are generated by the same P2RAND algorithm for a power 

dissipation constraint value of PDC =  180: TL =  414, MPD =  33, APD =  15.5, 
PDD =  17.5, RMS =  18.3, CPU < 1 ms. Its PTS chart is given in figure 6.4(b). As it 
can be seen the characteristics’ trend of the schedules generated with the P2RAND 
algorithm is not monotonous. However, comparing the charts in figure 6.4, it can 
be noticed that both the best and the worst generated power-test schedules are 
unbalanced for the case of low-degree compatibility. Moreover, the PTS charts 
in figures 6.3(b) and 6.4 are similar in terms of power distribution and power-test 
characteristics. For example, the total test application time characteristic (TL - test 
length), which ranges the most between the previously depicted three PTS charts, 
varies with only 3% between the best and the worst PTS solutions generated by the 
list-scheduling based algorithms.

The experimental results given by the distribution-graph based PTS algorithms 
for the low resource compatibility test set are discussed below. In subsection 5.1.1 

it has been theoretically discussed and demonstrated that there was an important
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conceptual difference between the original FDS algorithm  and the PT S-FD S al­

gorithm It is further em phasized and experim entally proven here that the cxact 

im plem entation of the FDS algorithm  does not give good results for the PTS prob­

lem For exam ple, the results generated by this cxact im plem entation for a PD C  =  

200 (but actually for any power constraint) arc far from the ones given by the other 

(list-schedulm g and distribution-graph based) algorithm s TL =  426, M PD =  33, 

A PD  =  15 1, P D D  =  17 9, RMS -  17 8, CPU -  300 ms

For the low com patibility degree 

testbenches, all the distribution-graph  

based algorithms (1 e , PT S-FD S, PTS- 

DV) have the sam e results over the  

PD C  range Only the C PU varies 

slightly (see table 6 2) The PTS- 

FDS algorithm  generated the following 

schedule characteristics for loose power 

constraints (PD C  =  200) TL =  395, 

M PD  =  33, A P D  =  16 2, P D D  =  16 8, RMS -  18 8, C PU  =  301 ms

Again, for the low resource com pat­

ibility testbcnchcs, the further applica­

tion of the FDS (DV) algorithms on 

the schedules generated by the LS al­

gorithm s, i c the use of the LSFDS  

(LSDV) algorithms, does not help at 

all However, the typical LSFDS  

(LSDV) results are given above in table 

6 3 for the sequence of P1M RU - FDS  

algorithms

C a se  A L  A v e r a g e - lo w  (A L ) r e so u r c e  c o m p a t ib i l i t y  c a s e

As it was experienced m the previous exam ple, the characteristics arc alm ost the  

same for all list-schedulm g algorithms This tim e though, comparing figures 6 3(b) 

and 6 5(b), it can be noticed that the power distribution m the latter is slightly  

less spiky than the former T he results generated for this test set are very sim ­

ilar to those of the previous test set Firstly, the characteristics’ curves over the

power
cons

PI MRU FDS
TL MPD APD PDD RMS CPU

200 401 33 16 17 18 5 411
180 401 33 16 17 18 5 393
160 401 33 16 17 18 5 398
140 401 33 16 17 18 5 402
120 401 33 16 17 18 5 405
100 401 33 16 17 18 5 389
80 401 33 16 17 18 5 407
60 401 33 16 17 18 5 412
40 401 33 16 17 18 5 409
20 483 20 13 3 6 7 15 6 410

Table 6 3 P lM R U -F D S  Results (L case)

power
cons

DV
TL MPD APD PDD RMS CPU

200 397 33 16 2 16 8 18 8 271
180 397 33 16 2 16 8 18 8 270
160 397 33 16 2 16 8 18 8 270
140 397 33 16 2 16 8 18 8 270
120 397 33 16 2 16 8 18 8 260
100 397 33 16 2 16 8 18 8 271
80 397 33 16 2 16 8 18 8 271
60 397 33 16 2 16 8 18 8 281
40 397 33 16 2 16 8 18 8 291
20 472 20 13 6 6 4 Id 4 250

Table 6 2 DV  Results (L case)
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(a) Characteristics of P1MRU Results (b) Best Result (PDC =  200)

Figure 6.5: Typical Results Generated with P1MRU (A-L test set)

range of power dissipation constraints are almost constant. Secondly, the power-test 

characteristics’ values again are slightly different for the P2MRU, P2INS, P20RD 

algorithms comparing with the other list-scheduling based algorithms. However, 

the differences also remain within a 2-3% range.

The typical (apart from the P2 algo­

rithms mentioned above) result is again 
the one given by P I MRU. For a power 
constraint of 200 the characteristics are: 
TL =  301, MPD -  41, APD =  21.3, 

PDD =  19.7, RMS =  23.5, CPU =  
10 ms. As for the previous test set, 
the exceptions arise for the P 2 algo­

rithms. For example, the results given 
by P2MRU (P2INS, P20RD) for a power constraint of 200 are: TL =  312, MPD =  

40, APD =  20.6, PDD =  19.4, RMS =  22.1, CPU =  10 ms. An expected exception 
are the P2RAND results given in table 6.4.

Again, the results generated by the distribution-graph based algorithms exhibit 
more or less the same behaviour as the list-scheduling: the results’ values are almost 
constant over a range of power dissipation constraints. For example, for a power 
constraint of 200 the characteristics are, for both FDS and DV algorithms: TL =  

301, MPD =  41, APD =  21.3, PDD =  19.7, RMS =  23.1, CPU =  1522 ms.
With the LSFDS algorithm, the FDS algorithms do not improve the re­

sults/characteristics of the charts given by the LS algorithms, again because of 

the low degree of compatibility amongst test resources.

power
const.

P2RAND
TL MPD APD PDD RMS CPU

200 303 46 21.2 24.8 22.8 10
180 320 40 20 20 21.7 10
160 309 46 20.8 25.2 22.7 10
140 320 43 20 23 21.8 10
120 323 43 19.9 23.1 21.6 10
100 320 46 20 26 21.9 10
80 303 48 21.2 26.8 23 10
60 322 40 19.9 20.1 21.8 10
40 320 35 20 15 21.6 10
20 394 20 16.3 3.7 16.7 10

Table 6.4: P 2RAND Results (AV case)
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A difference worth m entioning is the CPU  tim e used by the list-schedulm g based  

algorithms and the distribution-graph based ones T his C PU tim e difference in­

creases w ith the increase of resource com patibility as can be seen m the following 

tcstbcnchcs This is because higher resource com patibility corresponds to more re­

laxed constraints and, therefore, it takes a longer tim e to  search through the bigger 

solution space

C a se  A V  A v e r a g e  (A V ) r e so u r c e  c o m p a t ib i l it y  c a se

For the first tim e the powcr-tcst 

characteristic curves are not flat This 

trend is going to be em phasized with  

the next two testbenches of th is exam ­

ple Beginning roughly w ith  this level of 

resource com patibility degree (average - 

50%), the PT S algorithm s start show­

ing their effects for tight power con­

straints T hat is, starting w ith an av­

erage level of resource com patibility, the tight power constraints are a stronger 

factor than the com patibility degree that drives the PT S algorithm ’s solution space 

search Thus far the resource com patibility constraints seemed to limit the solu­

tion space more than the power constraints Moreover, the CPU tim e invested by 

these algorithm s is still around 10 ms for list scheduling-like algorithms, but for 

the distribution-graph based algorithm s the CPU  tim e has increased from dozens 

of m illiseconds to following values FDS =  16 s, DV  =  2 5 s (for PD C  =  200) The 

LSFDS algorithms take, for the same exam ple, C PU tim es of up to 30 s

This tim e, the typical results generated by P I MRU are given m table 6 5 How­

ever, exceptions again are the P2 (e g , P 2 0 R D ) algorithms which exhibit as in the  

previous cases a longer (11% for loose PD C ) TL, but lower valued power character­

istics (less than 3 % for loose PDC)

The distribution-based algorithms still do not generate better results than the  

list-schedulm g based algorithms T he power dissipation constraint is still less sig­

nificant to  PT S algorithm s’ search engine than the low com patibility (high conflict) 

between the test resources The LSFDS algorithms do not improve the LS results, 

but lather they worsen the results at this stage

power
const

P1MRU
TL MPD APD PDD RMS CPU

200 204 79 31 4 47 6 37 4 10
180 204 79 31 4 47 6 37 4 10
160 204 79 31 4 47 6 37 4 20
140 204 79 31 4 47 6 37 4 20
120 204 79 31 4 47 6 37 4 10
100 204 79 31 4 47 6 37 4 20
80 204 79 31 4 47 6 37 4 10
60 209 58 30 7 27 3 35 10
40 242 40 36 5 13 5 28 5 10
20 371 20 17 3 2 7 17 6 10

Table 6 5 P I MRU Results (AV case)
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C a se  A H  A v e r a g e -h ig h  (A H ) r e so u r c e  c o m p a t ib i l i t y  c a se

The first obvious thing is the CPU  

tim e increase from previous exam ple 

(average com patibility degree) because 

the search space is increased w ith higher 

com patibility degree of test resource 

sets T he results are the same for all 

five insertion types, for P I , P3 and list 

scheduling algorithms The typical re­

sults are given m table 6 6

Again, the second pseudocode al­

gorithm  generates slightly better re­

sults (8% shorter TL and 1% lower 

M PD ) For exam ple, the RA N D  inser­

tion gives th is tim e constantly the best 

results The distribution-based algo­

rithms give for the first tim e constantly  

better results than the list-scheduling  

based ones The FDS and D V  algo­

rithms give alm ost the sam e results For exam ple, table 6 7 gives the results gener­

ated by both  FD S and DV algorithms for P D C  =  200 Thus, the distribution-graph  

based algorithm  improved for this exam ple the TL characteristic by 16% (from 154 

to  130) and the power characteristics by ~  10% (e g M PD  by 9 57%, from 94 to  

85)

A s for the LSFDS type of algorithms, a comparison of the P2M R U and P2M RU- 

DV algorithms is given here, as an exam ple, for a power constraint PD C  of 200 

The initial result given by P2M RU TL =  151, M PD  =  93, A PD  =  42 5, P D D  =  

50 5, RMS =  46 9, C PU  =  20 ms has been improved with the LSDV algorithm  to  

TL -  151, M PD =  67, A P D  =  42 5, P D D  =  24 5, RMS =  44 9, C PU =  31946 ms 

Thus, while the TL is kept constant, the results’ power characteristics have been  

improved by 28% at the expense of a 32 seconds longer C PU tim e

power
const

DV
TL MPD APD PDD RMS CPU

200 130 85 49 3 35 7 55 1 3084
180 130 85 49 3 35 7 55 1 3085
160 130 8 L> 49 3 35 7 55 1 3094
140 130 85 49 3 35 7 55 1 3094
120 130 8o 49 3 35 7 j 5 1 3094
100 130 85 49 3 35 7 55 1 3104
80 136 80 47 2 32 8 53 1 2944
60 148 59 43 3 15 7 46 6 2954
40 187 40 34 3 5 7 35 3 3205
20 356 20 18 2 18 2 3485

Table 6 7 DV Results (AH case)

power
const

PlMRU
TL MPD APD PDD RMS CPU

200 lo'i 94 41 6 i>2 4 51 7 20
180 154 94 41 6 52 4 51 7 20
160 154 94 41 6 52 4 51 7 20
140 1 j 4 94 41 6 52 4 51 7 20
120 154 94 41 6 52 4 51 7 20
100 154 94 41 6 52 4 51 7 20
80 156 41 1 79 37 9 48 3 30
60 159 60 40 3 19 7 44 30
40 193 40 33 2 6 8 34 7 30
20 348 20 18 4 1 6 18 6 30

Table 6 6 P3M RU Results (AH case)
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C a se  H  H ig h  (H ) r e so u r c e  c o m p a t ib il ity  c a se

N ext the P T S algorithm s arc run 

for a 50 random ly chosen BTS, where 

the degree of test resource com patibil­

ity  is high (around 90%) Previous ex­

amples have shown that solution space’s 

dim ensions arc directly proportional to  

the degree of resource com patibility be­

tween tests The higher the resource 

com patibility degree, the larger the so­

lution space is cxpcctcd to be Moreover, it is expected that the features of the  

PT S algorithms could be better distinguished for bigger solution spaces T he most 

im portant thing to be em phasized here after assessing the results is that the PTS- 

LS and PTS-LEA  algorithms could be classified into two groups The first one is 

comprised of P I , P3, and LS algorithm s and the second one is made up by the P2  

algorithms

Now, the P I , P3, and LS algorithms are firstly exam ined m order to analyze 

the characteristics of their results which arc chosen from a big solution space The  

typical results generated by these algorithm s for a high resource com patibility test 

set are given m table 6 8 The other algorithm s’ (apart from P2 s) results range 

as usual around the aforementioned values On the other hand, the P2 algorithm s 

generate invariably different results for each test set and for each different insertion  

strategy For exam ple, in table 6 9, the results of P2M RU and P 2 0 R D  algorithms 

show how different the characteristics of P2 algorithm ’s results for different insertion  

strategies are This behaviour has been noticed starting w ith the previous test set 

Namely, for the low, average-low and average resource com patibility testbenches,

power
cons

P2MRU P20RD
TL MPD APD PDD | RMS CPU TL | MPD APD PDD RMS CPU

200 111 113 j 7 8 55 2 66 8 30 85 120 7o 4 44 6 81 30
180 111 113 o7 8 55 2 66 8 30 85 120 75 4 44 6 81 30
160 111 113 57 8 55 2 66 8 10 85 120 75 4 44 6 81 30
140 111 113 57 8 55 2 66 8 31 85 120 75 4 44 6 81 30
120 111 113 57 8 55 2 66 8 30 85 120 75 4 44 6 81 20
100 125 95 51 i 43 7 58 2 30 94 92 68 2 23 8 72 5 30
80 125 79 ■51 3 27 7 j 6 7 30 121 80 53 27 58 30
60 127 60 50 5 9 v> 52 8 30 134 60 47 9 12 1 49 6 30
40 189 40 33 9 6 1 34 8 30 190 40 33 8 6 2 34 7 30
20 356 20 18 2 18 2 20 365 20 17 6 2 4 17 7 20

Table 6 9 P T S Characteristics of P2 A lgorithm s’ Results (H ease)

power
const

P3MRU
TL MPD APD PDD RMb CPU

200 99 197 64 8 132 2 90 9 20
180 99 180 64 8 115 2 87 7 30
160 99 160 64 8 95 2 84 20
140 99 139 64 8 74 2 80 6 20
120 100 120 64 1 55 9 76 7 20
100 108 100 59 4 40 6 69 3 30
80 109 80 58 8 21 2 64 6 20
60 139 60 46 1 139 49 7 30
40 183 40 35 5 36 4 30
20 345 20 18 6 1 4 18 8 30

Table 6 8 P3M RU Results (H case)
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the P2 algorithms’s results were exhibiting longer TL characteristics, but lower 
power characteristics. For the last two testbenches (average-high and high), P2 
algorithms generate more balanced power distribution results. Some of their results 

have even the TL characteristics improved compared with the results given by the 

first set of list-scheduling based algorithms (i.e., P I, P3, and LS). In comparison to 

the typical P3MRU results from table 6.8, it can be noticed that the MRU insertion 

strategy of the P2 algorithm generates 10% longer TL characteristic results with a 

43% improvement of the MPD characteristic for loose power constraints. For the 

ORD insertion strategy, the P2 algorithm generates a 14% shorter TL characteristic 
results improving this time by only 39% the MPD characteristic.

(a) P I  M R U  R esu lts  (b) P 2M R U  R esu lts

Figure 6.6: PTS Characteristics’ Curves Comparison (PI and P2 Algs., H Case)

The curves of the PTS characteristics featured by the results generated with 
the list-scheduling based algorithms, over a range of power constraints from loose 
to tight, are depicted in figure 6.6. Comparing the two sets of curves from figure 
6.6(a) and figure 6.6(b), there is one interesting aspect. Namely, while the APD 
and RMS curves have more or less the same trends in both graphs, it is not the case 
of the MPD and PDD curves. In figure 6.6(a) the MPD and PDD curves are rather 
strictly decreasing for a more stringent power constraints. On the other hand, 
in figure 6.6(b) these curves have a strictly decreasing trend only for the second 
part (i.e., for tighter power constraints), whereas in the first part they are flat. 
The explanation of this behaviour is that the P2 (for example, P2MRU in figure 
6.6(b)) algorithm, with its several insertion strategies, generates for loose power 

constraints results that exhibit more balanced power distribution charts. Therefore, 
the P2 algorithm is a list-scheduling based algorithm that behaves in alike manner 

to the distribution-based algorithms. This is the reason why P2 was exhibiting
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(a) P I  M R U  c h a rt (b) P2M R U  c h a rt (c) P 2 0 R D  c h a rt

Figure 6.7: PTS Charts of LS-based Algorithms (PDC =  200, H case)

throughout this first experiment slightly better power characteristic results than 

the other list-scheduling based algorithms. Unfortunately, the more balanced power 

characteristics of P2 algorithm’s results did not preserve for all previous testbenches 

the short TL characteristics exhibited by the results of the other list-scheduling 
based algorithms.

In order to further emphasize the difference between the P2 algorithm and other 

list-scheduling based algorithms, a comparison of PTS chart examples is given in fig­
ures 6.7 and 6.8. Figure 6.7 depicts the PTS charts generated by P 1MRU, P2MRU 
and P20RD algorithms for loose power constraints (PDC =  200). Figure 6.8 de­

picts the PTS charts generated by P I MRU, P2MRU and P20RD algorithms for 
tighter power constraints (PDC =  140). It can be noticed that figures 6.7(b) and 

6.7(c) are, respectively, identical to figures 6.8(b) and 6.8(c). This is explained by 

the fact that P2 algorithms generate more balanced power distribution charts than 

the other list-scheduling based algorithms. This observation is reinforced in table

6.9, which proves that the power-test characteristics of the P2 algorithms’ results 
are invariantly identical for power constraints ranging from loose (PDC =  200) to 

average (PDC =  120). Therefore, it can be stated that the power constraint is not 
the most important factor which drives P2 algorithm’s search engine. This is not

(a) P I  M R U  c h a rt (b) P2M R U  c h a rt (c) P 2 0 R D  c h a rt

Figure 6.8: PTS Charts of LS-based Algorithms (PDC =  140, H case)
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the case for the other list-scheduling based algorithms, where the power constraint 

is the most important driving factor. In figure 6.7(a), the power distribution of the 

results generated by the PI MRU algorithm is remotely unbalanced because of the 

loose power constraint. Figure 6.8(a) shows how the power constraint limits the 
maximum power (MPD) characteristic of the chart, bringing it close to the average 
power (APD) characteristic.

Case H: High (H) resource compatibility case 138

power
cons.

FDS DV
TL MPD APD PDD RMS CPU TL MPD APD PDD RMS CPU

200 88 103 72.9 30.1 77.4 5858 95 102 67.5 34.5 73.3 4326
180 88 103 72.9 30.1 77.4 5798 95 102 67.5 34.5 73.3 4366
160 88 103 72.9 30.1 77.4 5808 95 102 67.5 34.5 73.3 4326
140 88 103 72.9 30.1 77.4 5818 95 102 67.5 34.5 73.3 4356
120 88 103 72.9 30.1 77.4 5809 95 102 67.5 34.5 73.3 4347
100 105 99 61.1 37.9 67.5 4978 108 97 59.4 37.6 67.1 4096
80 117 80 54.8 25.2 60 3896 114 78 56.3 21.7 59.6 4186
60 138 60 46.5 13.5 49.2 22973 138 60 46.5 13.5 49.2 3956
40 185 40 34.7 5.3 35.5 7381 185 40 34.7 5.3 35.4 4376
20 351 20 18.3 1.7 18.4 14601 349 20 18.4 1.6 18.5 4346

Table 6.10: PTS Characteristics’ Comparison (Distribution-based Algs., H case)

Amongst the distribution-based PTS algorithms (i.e., FDS and DV) the best 

results are given by the FDS algorithm (as can be seen in the time-power char­

acteristics in table 6.10), but at an expense of computation time (see CPU time 

characteristic in the same table). The shape of their result characteristic curves 

drawn over a range of power dissipation constraints are at first sight somewhat 
similar to the ones generated with the PTS-LS and PTS-LEA algorithms. Only 

the characteristic values seem to be different (see figure 6.9). A closer comparison 
of all the results generated by the PTS algorithms is given in the next conclusive 
subsection.

Table 6.11 proves that the LSFDS (e.g., P3MRU-FDS, P1MRU-FDS) algorithms 
manage to improve the power characteristics of the initial LS (e.g., P3MRU) results.

(a) F D S  R esu lts  (b) P 2M R U -F D S  R esu lts

Figure 6.9: PTS Characteristics’ Curves Comparison (FDS and LSFDS Algs.)
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power
cons.

P3MRU-FDS P3MRU-DV
TL MPD APD PDD RMS CPU TL MPD APD PDD RMS CPU

200 103 93 62.3 30.7 67.1 15913 99 114 64.8 49.2 73.1 5668
180 103 93 62.3 30.7 67.1 15563 99 114 64.8 49.2 73.1 5563
160 103 93 62.3 30.7 67.1 15642 99 114 64.8 49.2 73.1 5738
140 103 93 62.3 30.7 67.1 15553 99 114 64.8 49.2 73.1 5798
120 100 81 64.1 16.9 66.5 17215 100 119 64.1 54.9 73.8 5127
100 108 79 59.4 19.6 62.4 16264 115 100 55.8 44.2 64.7 5187
80 109 77 58.8 18.2 61.3 16264 124 80 51.7 28.3 58.9 5628
60 159 60 40.3 19.7 43.2 17825 139 59 46.1 12.9 48.9 5158
40 187 40 34.3 5.7 35.4 15257 187 40 34.3 5.7 35.7 4577
20 345 20 18.6 1.4 18.8 16874 345 20 18.6 1.4 18.8 3064

Table 6.11: PTS Characteristics’ Comparison (LSFDS Algorithms, H case)

For loose power dissipation constraints, the P3MRU-FDS (or P1MRU-FDS) algo­

rithms balance in most of cases the power dissipation characteristics keeping the TL 

characteristic unchanged (i.e., no increase). However, there are cases when, even 

though the TL time happens to get slightly increased, it pays off to have a much 
better power characteristic as it is the case of P3MRU-FDS results in table 6.11. 
This point is arguable though in cases when the power constraint is loose and MPD 

is below the constraint because a decreased PDD might not offer a real advantage 
or improvement. In this event the solution which gives the lowest TL might be 
preferable regardless of other power dissipation balance improvement. It is up to 
the user to decide over this TL/PDD trade-off.

The P3MRU-FDS algorithm does not improve the TL characteristic of the initial 
P3MRU solution due to the quality of the set of roots taken over by the FDS 

algorithm from the solution given by the P3MRU. This is a drawback of LSFDS 

algorithms because there are even cases (rare though)when the FDS solution already 

exhibits better TL values than the initial LS solutions. In these cases it is a waste 
of time to generate the initial solution with the LS algorithm. On the other hand 

the P3MRU-DV algorithm improves the power dissipation characteristics without 
increasing the TL.

(a) T L  C urves (b) M P D  C urves

Figure 6.10: PTS Characteristics’ Curves Comparison (H case) I
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200 180 1EO 140 120 100 BO 60 40 20
power constraint

(a) A P D  C urves (b) P D D  C urves

Figure 6.11: PTS Characteristics’ Curves Comparison (H case) II

Conclusions

The shapes of the PTS characteristics’ curves over the range of power constraints 
are somewhat similar for all the PTS algorithms, as could be seen in figures 6.6 and

6.9. Figures 6.10, 6.11, 6.12 further emphasize these similarities by depicting and 
comparing the PTS characteristics’ curves for all of the PTS algorithms proposed 
in this thesis. If the power constraints are reasonably loose, with the increase of 
test resource compatibility degree, more tests can be accommodated in parallel. For 

the first experiment, these two factors proved to be the key constraining elements. 
Therefore, from low (e.g., see figure 6.3(a)) to high (e.g., see figure 6.6(a)) degree 
resource compatibility, the total test application time TL values decrease (see figure 

6.42(a)). And for high degree resource compatibility in figure 6.10(a), the total test 

application time TL increases at the same time with the increase of (e.g., tightening) 
power constraints. A notable difference between the PTS algorithms’ results are the

-P1MRU
-P20RD
FDS
DV
-P1MRU-FDS
- P 1MRU-OV

-P1MRU 
-P20RD 
FDS 

-DV 
-P1MRU-FDS 
-P1MRU-OV

power constraints

(a) R M S C urves (b) C P U  tim e  C urves

Figure 6.12: PTS Characteristics’ Curves Comparison (H case) III
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curvcs of the M PD and P D D  characteristics (see figures 6 10(b) and 6 11(b)) of the 

P2 and all distribution-graph based algorithms, on the one hand, and the rest of 

list-scheduling based algorithms on the other hand Namely, in figures 6 10(b) and 

6 11(b) the curves of the M PD and P D D  characteristics of the P I  MRU algorithm  

are overall strictly decreasing throughout the power constraint’s increase, which is 

not the case for the curves of the M PD and P D D  characteristics generated by the 

other kinds of PT S algorithms for loose power constraints

The A P D  curves are depicted m figure 6 11(a) They arc almost constant for 

loose power constraints This is due to the fact that the TL curvcs are alm ost 

constant for loose power constraints and A P D  is the ratio between the area taken  

by the PT S charts and their tota l test tim e TL (see subsection 3 3 5) The TL  

characteristics generated by the list-scheduling based algorithms are almost constant 

for loose power constraints even though the M PD or P D D  characteristics arc not 

This is due to the fact that for loose power constraints the list-scheduling based  

algorithms (apart from the P2 algorithm) generate unbalanced solutions (see figure 

6 7(a)) T hat is, the power constraint being the only factor that can be used to  get 

more balanced power distribution results w ith the same total application tim e as it 

is the case of the charts generated by P1M RU m figures 6 7(a) and 6 8(a) In these  

figures, for the same total application tim e, a better power distribution solution was 

obtained by running the P1M RU algorithm  w ith a tighter power constraint (PD C  

=  140) This was m contrast w ith the other kind of PT S algorithms (l e , P2 and 

distribution-graph based algorithms) which gave balanced power distribution charts 

w ithout im posing a tighter power constraint

Compared w ith the aspects discussed in the previous paragraph, the RMS char­

acteristics’ curves m figure 6 12(a) for the P I MRU algorithm  are somewhere in 

between the M PD characteristic curve and the A P D  one This is explained by the 

fact that the RMS values of the PT S results should be between the M PD  value and 

the A P D  one This is because they are independently calculated using formula 3 1 

m subsection 3 3 1 giving a value that is proportional to  the quantity of spikes in 

the power distribution The less spikes, the closer the RMS value to the A P D  one 

Otherwise, the RMS value increases towards the M PD  one

For the first experim ent the C PU tim e of the PTS algorithms range from the  

L case to the H case w ithm  the following values all the list-scheduling based algo­

rithms (including the P2 algorithm s) take from less than 10 ms (L case) to  less than
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(a) P2IN S c h a rt (b) FD S c h a rt (c) P 2IN S F D S  c h a rt

(d) P3M R U  c h a rt (e) D V  c h a rt (f) P 3M R U D V  c h a rt

Figure 6.13: PTS Charts (PDC =  200, H case)

35 ms (H case); the FDS algorithms’ CPU time values range between 600 ms (L 
case) to 6 - 20 s (H case); the DV algorithms take CPU time range between 400 ms 
(L case) to 4 - 5 s (H case); the LSFDS algorithms take between 300-400 ms (L case) 

to 15 - 40 s (H case); the LSDV algorithms take between 200-300 ms (L case) to 5 - 

6 s (H case). The CPU time for the H case over a range of power constraints from 

loose to tight is depicted in figure 6.12(b). The FDS-based algorithms are the only 

exception from the constant curves exhibited by all the other PTS algorithms. This 

exception could be explained by the higher computational complexity of the force 

priority function. Intuitively, it was expected that the total CPU time required by a 
LSFDS or LSDV algorithm would be the sum of the time spent by the LS algorithm 

and the time spent to run the FDS algorithm, plus the reset (initialization) stage 
between the algorithms. In reality, the CPU time of the LSFDS (LSDV) algorithms 
is longer than the expected accumulated CPU time, especially for the LSFDS ones. 
This is due to the fact that the solution search space of the LS and FDS algorithms 
is smaller than the one the LSFDS deals with. The computation complexity of the 
PTS algorithms is given by the number of tests and the number of gaps at each step. 
The LS and FDS algorithms start from scratch without any gap in the list, and at 

each step it deals only with a certain number of gaps, which proves to be smaller 

than the number of gaps corresponding to the number of roots of the growing tree 

generated by the LS algorithm. This increases the computation time of the FDS
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(DV) algorithm and, therefore, the computation time of the overall LSFDS (LSDV) 
algorithm as well.

(a) P2IN S  c h a rt (b) FD S  c h a rt (c) P 2IN S F D S  c h a rt

(d) P3M R U  c h a rt (e) D V  c h a rt (f) P 3M R U D V  c h a rt

Figure 6.14: PTS Charts (PDC =  100, H case)

One of the expected conclusions is that the distribution-graph based algorithms 

generate, for reasonably loose power constraints, PTS profiles that exhibit more 
balanced power dissipation distributions as shown by the examples in figures 6.13 
and 6.14. That is, the solutions given by distribution-graph based algorithms have 

smaller PDD and MPD values, but they are more computationally expensive than 
the list-scheduling based algorithms. Moreover, while the FDS algorithm is more 
computationally expensive than the DV one, the solutions given by the former are 

generally more balanced. At the same time, all PTS algorithms exhibit almost 
the same scheduling solutions for tight power dissipation limits or low resource 
compatibility degrees, when the solution space is actually narrowed.

To conclude this experiment and recapitulate the features of the results given by 
the PTS algorithms, let’s compare the PTS charts in figures 6.13 and 6.14. The first 
set of PTS solutions (figure 6.13) are generated without power constraints, whereas 
the second set (figure 6.14) are generated for an average-tight power constraint. It 

can be seen in figure 6.13 that the charts of LSFDS (figure 6.13(c)) and LSDV (fig­

ure 6.13(f)) algorithms are better in terms of PTS characteristics than the results 

given by all the list-scheduling based algorithms (see figure 6.13(d)). Only the P2 

algorithms (see figure 6.13(a)) make an exception from the above stated rule. It can
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be noticed that there is also a significant difference, m term s of the PT S charac­

teristics’ quality, between the list-schedulm g based algorithms (apart from P2) and 

the distnbution-graph based algorithms (figures 6 13(b) and 6 13(e)) However, the  

differences between the distribution-graph based algorithm s (l e , FDS and DV) and 

the combined algorithms LSFDS (LSDV) arc not significant, even though a small 

improvement is noticed w ith  the combined algorithms But the differences between  

the list-schedulm g based algorithm s’ (apart from P 2) results and the LSFDS (LSDV) 

ones arc significant This qualitative differences decrease w ith tighter power con­

straints as can be seen m figure 6 14 For tighter power constraints, the LSFDS  

(LSDV) algorithms struggle to  both  balance the power dissipation distribution of 

the initial PT S charts given by the LS algorithms, and to  com ply w ith the power 

dissipation constraints, also having this tim e a tim e constraint The tim e constraint 

is given by the total application tim e of the tests m the roots of the resulting grow­

ing tree generated by the LS algorithm  W hen the power dissipation constraint 

becom es tight, the FDS step of the LSFDS algorithm  fails to  com ply anymore with  

the additional test tim e constraint given by the solution of the LS step This could  

happen, but rarely, even for loose power dissipation constraints For exam ple, com ­

pare the results generated by the P3M RU and P3M R U-FDS algorithms from tables 

6 8 and 6 11, respectively In conclusion, the LSFDS algorithms are efficient only for 

loose power dissipation constraints and high degrees of test resource com patibility  

Therefore, from now on, the LSFDS algorithms are discussed under loose power 

constraints, which is the context of their applicability

Another set of PT S algorithms, which were proposed m subsection 4 2 1, arc 

the PT S-LS2 algorithms However, they proved to  generate worse results even than  

the ones obtained by running the initial PTS-LS algorithms This is explained by 

the inability of the local priority functions em ployed m this kind of algorithms to 

render optim al solutions Therefore, these algorithm s will not be under focus in this 

chapter at all

Since the characteristic differences between the PT S results decrease w ith  the  

tightening of power dissipation constraints, for tight power constraints it is advisable 

to  em ploy the list-scheduling based algorithms rather than the distnbution-graph  

based ones, because otherwise the CPU  tim e difference between the two types of 

algorithms is unjustified
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6 2.2 Second Experiment

•  te s ts ’ resource com patibility degree is ranged from low to high with a finer 

granularity than m the first experim ent,

•  te sts’ power and test length values are randomly generated w ithm  a wide 

range (different test length and power values)

T he second experim ent is similar to the first one The BTS is different and 

the test resource com patibility degree is ranged this tim e from 10% to 90%, w ith a 

higher resolution, that is, with an increment step o f 10% Thus, the experim ents 

are run in the second exam ple on 9 testbenches The results are similar There are 

only a few notable isolated exceptions from the results obtained m the first exam ple 

and they will be discussed next

For a 20% com patibility degree between the test resources the LSFDS algorithm  

succeeds m improving the power characteristics for the P2 results by 24%, which  

was not the case in the first exam ple On the other hand, for a com patibility degree 

of 30%, the P2 algorithm  gives results for the first tim e visibly worse than the 

other LS algorithms(8%  on the TL characteristic and an average 13% on the power 

characteristics) For the same case the FDS algorithms have more or less the same 

results as the LS ones For the 40% com patibility degree case it was noticed that 

the LSFDS algorithms start improving the power characteristics at the same tim e 

with a lengthening of TL The FD S algorithms also start generating better results 

than the LS ones

For the 50% com patibility degree case, the FDS algorithms m anage to generate 

results exhibiting an average 35% better power dissipation characteristics than the  

LS ones, while the TL characteristic ranges w ithm  a 4% increase and a 1% decrease 

margins The same features are noticed w ith  the LSFDS results

For the 60% com patibility degree case, another exception of the P 2 algorithms 

is noticed in comparison w ith the LS ones Here the TL characteristic is increased  

by 10% m order to get an improvement of 27% w ith the power characteristics No 

major changes of the results generated by the FDS and LSFDS compared w ith the  

ones given by the respective algorithms in the previous (50% com patibility degree) 

case arc present

For the 70% com patibility degree case, the exception of the P2 algorithm s men­

tioned m the previous paragraph is repeated, but this time TL is mcrcascd up to
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(a) P I  M R U  R esu lts  (b) P2M R U  R esu lts

Figure 6.15: PT S Characteristics’ Curves (Second Experiment, 90% case) I

10%, while the power characteristics are improved by 46%. The FDS and LSFDS  

algorithms do not overrule the trend of the previous cases.

For an 80% test resource com patibility degree, it has been noticed that the FDS  

and LSFDS algorithm s improve the characteristics as expected, but some of them  

happen to increase very slightly the test length (TL).

For the case of 90% test resource com patibility degree the same conclusions can 

be drawn as for the previous experim ent (i.e., the first experim ent). Figure 6.15 

depicts the characteristics of the results given by the P I algorithm, as an exponent 

of the list-scheduling based algorithms, and the P2 algorithm. The P2 algorithm  

generates solutions similar to the distribution-graph based algorithm s even though  

it belongs to the list-scheduling based algorithm s’ category. Figure 6.16 depicts the  

characteristics of the results given by the FDS and DV algorithms, as exponents 

of the distribution-graph based algorithms. The only notable differences between  

the above m entioned figures and the ones depicted for the H case of the previous

(a) FD S R esu lts  (b) DV R esu lts

Figure 6.16: PT S Characteristics’ Curves (Second Experiment, 90% case) II
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experim ent (i.e., the first one) are the M PD and P D D  characteristics. This is due to  

the fact that the P D D  values are the arithm etic difference between the M PD values 

and the A PD  values. And the A PD  characteristics have usually the same shape and 

similar values (see figures 6.11(a), 6.21(a) and 6.21(b)) for all the results generated  

by different PT S algorithm s for the same experim ental case. The RMS character­

istics are most of the tim e similar and slightly higher than the A PD  characteristics 

(compare figures 6.12(a), 6.22(a) and 6.22(b), respectively, w ith figures 6.11(a), 

6.21(a) and 6.21(b)). Thus, the PD D  characteristics are considered to reflect in 

the usual cases the behaviour of the M PD characteristics (compare figures 6.11(b), 

6.20(a) and 6.20(b), respectively, w ith figures 6.10(b), 6.19(a) and 6.19(b)). There­

fore, from now on, unless exceptions are encountered in the PD D  characteristics, 

only the M PD characteristics will be em ployed to  discuss the differences between  

the results generated by different PT S algorithms.

Comparing the curve of the M PD characteristics generated by P1M RU in figure 

6.15(a) w ith the one generated by the sam e algorithm for the H case in the previous 

experim ent (figure 6.10(b)), it can be noticed that the former starts w ith a flat 

region. This is due to the fact that above a power constraint value of PD C  =  950 

(see figure 6.15(a)) it can be considered that there are no power dissipation lim its

(for the 90% test resource com patible BTS exam ple given here).

Conclusions

Overall, it can be stated  here 

that the results of the previous 

experim ent and the current one 

lead to  the sam e conclusions, as 

their results are similar. How­

ever, it should be em phasized here

that the P 2R A N D  algorithm  con­

stantly  m aintains its already known 
Figure 6.17: P2R A N D  Results (Second Exp.)

behaviour of generating from the 

worst to  the best results throughout the experim ental cases (see their results’ char­

acteristics in figure 6.17). This way it manages quite often to reach the near-optim al

power constraints
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solutions by avoiding local minima. This fact supports the idea of em ploying near- 

optim al algorithms to  the PT S problem. T hese algorithm s are known to be able 

to  jum p out from the local m inim a during the search and continue to  seek for the  

near-optimal solutions. T he difference between the P2R A N D  algorithm and a near- 

optim al one is the lack of an intelligent mechanism to  steer the search process. An  

intelligent mechanism would have the feature of weighing the best solutions at each 

iteration in a global manner (global priority function).

6.2.3 Third Experiment

•  te sts’ power dissipation parameters are ranged from similar to different values;

•  te s ts ’ resource com patibility degree and test length values are randomly gen­

erated within a wide range (i.e., different values).

In this experim ent the BTSs are generated by ranging their te sts’ power dissipa­

tion values (see section 3.1 in chapter 3) from very similar values to very different 

ones. Figures 6.18, 6.19, 6.20, 6.21, and 6.22 depict the curves of the characteristics 

(TL, M PD, PD D , A P D , and RMS) generated by the selected algorithms (P1M RU, 

P 2 0 R D , FD S, D V). However, only the extrem e cases are compared because the  

interm ediate ones exhibit results w ithin the m etam orphoses of the characteristics’ 

curves between these two extrem es. The curves in figures 6.18(a), 6 .19(a), 6.20(a), 

6.21(a), and 6.22(a) are given for the case where the BTS consists of tests w ith a 

high resource com patibility degree, very different TL and very different PD  values. 

On the other extrem e, figures 6.18(b), 6 .19(b), 6.20(b), 6 .21(b), and 6.22(b) are the  

characteristics generated by the sam e algorithm s as above for a BTS with different

(a) D ifferent Pow er V alues (b) S im ilar Pow er V alues

Figure 6.18: TL C haracteristics’ Curves Comparison (Third Experim ent)
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(a) D ifferent Pow er V alues (b) S im ilar Pow er V alues

Figure 6.19: MPD Characteristics’ Curves Comparison (Third Experiment)

TL and similar PD values. That is, the algorithms were run in the second set of 

figures for the case where the BTSs have tests with high compatibility degree, and 
totally different TL and PD values.

In general, these curves demonstrate the previous statement that the TL and 
MPD curves characterize almost entirely the results. That is, the curves of the 
TL and MPD characteristics can be considered representative for the whole set of 

characteristics (TL, MPD, APD, PDD, RMS). For example, the curve of the MPD 

characteristic resembles the PDD one (see figures 6.19(a) and 6.20(a)), while the 
curve of APD and RMS are similar as well (see figures 6.21 and 6.22). Moreover, 

the APD (figure 6.21) and RMS (figure 6.22(a)) curves have the same kind of shape 

for all PTS algorithms run on the same BTS, as it is also the case of the TL curves 

in figure 6.18. Only the MPD characteristics’ curves in figure 6.19(b) and the 
PDD characteristics’ curves in figure 6.20(b) make up a slightly separate case. This 

emphasizes again the particular case of having similar power value BTS. Namely, for

(a) D ifferent Pow er V alues (b) S im ilar Pow er V alues

Figure 6.20: PDD Characteristics’ Curves Comparison (Third Experiment)
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(a) D ifferent Pow er V alues (b) S im ilar Pow er V alues

Figure 6.21: APD Characteristics’ Curves Comparison (Third Experiment)

the second case presented in this experiment (similar power value tests) the curves 

of characteristics generated by all types of PTS algorithms are the same. Therefore, 

the general conclusion that can be drawn in this experiment is that for a set of tests 

(BTS) with similar power values the (fast but greedy) list-scheduling based PTS 
algorithms are a sufficient approach.

By looking at the aforementioned figures it can be noticed that the PTS algo­
rithms generate almost the same results under any power constraint for BTS cases 

where tests have similar power values. For example, in figure 6.19(b) the MPD 
curves are almost identical for any PTS algorithm, which is not the case in figure 

6.19(a). This is further emphasized by the P2RAND algorithm where the zig-zag 

curves in figure 6.17 (for the case of tests with different power values) become linear 

in figure 6.23 (for the case of tests with similar power dissipation values). More­
over, the power characteristics become linear for all types of algorithms (see figures 

6.19(b), 6.21(b), and 6.22(b)).

(a) D ifferent Pow er V alues (b) S im ilar Pow er V alues

Figure 6.22: RMS Characteristics’ Curves Comparison (Third Experiment)
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The P D D  characteristics’ curves 

(figure 6.20(b)) are different be­

cause it is zoom ed closer than  

the other characteristics (see power 

axe scale values). Only for 

very loose power constraints do 

the distribution-graph based algo­

rithms generate slightly different 

(better) results than all (even the  

P2 ones) list-scheduling based algo­

rithms. Compared with the results generated by the list-scheduling based algorithms 

with loose power constraints, the power dissipation characteristics of the results gen­

erated by the FDS algorithm  are up to 9% better, and the TL characteristics are 

also improved (decreased) by 4%. Under the same conditions (very loose power 

constraints), the DV algorithm achieves a 9% improvement of M PD at the same 

tim e with a 4% improvement of TL.

Figure 6.23: P2R A N D  R esults (Third Exp.)

1200
1000

TL-365 
MPD-696 
APD-387 
PDD -269 
RMS - 427.9 
CPU-20

101 151 201 281
told lesi application lime

181 201 281 
total test application time

(a) Different Power Dissipation Values (b) Similar Power Dissipation Values

Figure 6.24: PT S C harts’ Comparison (Third Experim ent)

The charts from figures 6.24(a) and 6.24(b) are generated by the P2M RU algo­

rithms w ith loose power constraints. It can be seen that the total test application  

tim e for loose power constraints does not change much. Actually, the tota l test 

application tim e of all the results generated for the third experim ent vary within a 

±5%  lim it. Exceptions are the results generated for very tight power constraints, 

where the power constraint value is alm ost equal to  the te s ts ’ power dissipation  

parameter. It is an expected result because in this case the schedule is a pure se­

quential application of all the tests in the BTS. This is due to the fact that no tests
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can be run in parallel under the given power lim it which is alm ost equal to  the  

power dissipation values of all the tests in the BTS.

An im portant conclusion can be drawn by looking at figures 6.18(b) and 6.19(b). 

Namely, the characteristics of the results generated by all PT S algorithms are al­

m ost the same when tests in the BTS exhibit a high resource com patibility degree, 

different TL values, and similar PD  values. In these cases the application of list- 

scheduling based algorithm s is sufficient to  achieve good results.

The LSFDS-like algorithm s preserve their features drawn in the previous ex­

periments. For exam ple, for the first case, when the BTS has tests w ith different 

power values, the LSFDS algorithm s improve the M PD characteristic by 33%, while 

keeping the TL characteristic constant. The LSDV algorithms improve by up to  

53% the M PD characteristic, by deteriorating the TL characteristic w ith  16%. For 

the second case, when the BTS has tests w ith similar power values, the figures are 

the same for both kinds (i.e., LSFDS and LSDV) of algorithms. Namely, they im­

prove by 10% the M PD characteristic, while keeping the TL constant. The fact that 

the results are similar proves again that the solution searching process was slightly  

constrained by the sim ilarity between the power values of B T S ’s tests.

6.2.4 Fourth Experiment

•  te s ts ’ application tim e (test length) parameters exhibit values within a wide 

range, from similar to different values;

•  te s ts ’ resource com patibility degree and power values are randomly generated  

within a wide range (i.e., different values).

(a) D ifferent T est L en g th  V alues (b) S im ilar T est L en g th  V alues

Figure 6.25: M PD Characteristics’ Curves Comparison (Fourth Experim ent)
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(a) D ifferent T est L en g th  V alues (b ) S im ilar T est L eng th  V alues

Figure 6.26: TL Characteristics’ Curves Comparison (Fourth Experiment)

The fourth experiment is meant to bring under focus the behaviour of the results 
generated by the PTS algorithms for BTS cases where, this time, the tests’ TL values 

vary from different to similar. Figures 6.25, 6.26, 6.27, and 6.28 draw, respectively, 

the MPD, TL, PDD, and APD characteristics’ curves for the same PTS algorithms 

employed in the previous experiment. The RMS characteristics’ curves are not 

depicted here because they have similar shape as the APD ones. Comparing the 

curves in figures 6.19(a), 6.25(a), and 6.25(b), it could be concluded that results in 

all three cases have similar features. Moreover, it could be stated that no matter 

whether the TL values of the tests in the BTS are different or similar, the results 
behave the same for high resource compatibility and different PD values. However, 

there are a few differences between the curves in figures 6.19(a), 6.25(a), and 6.25(b). 

Namely, in figure 6.25(a), the P20RD algorithm’s MPD curve is, for rather loose 
power constraints (i.e., the upper-half range), somewhere half way between the 

PIMRU’s curve and the other algorithms’ MPD curves, whereas in figure 6.25(b),

(a) D ifferent T est L en g th  V alues (b) S im ilar T est L en g th  V alues

Figure 6.27: PDD Characteristics’ Curves Comparison (Fourth Experiment)
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(a) D ifferent T est L en g th  V alues (b) S im ilar T est L eng th  V alues

Figure 6.28: APD Characteristics’ Curves Comparison (Fourth Experiment)

surprisingly, the P20RD algorithm exhibits the best results. However, the difference 

between the P20RD algorithm’s results and the ones generated by the distribution- 
graph based algorithms (FDS and DV) are not major.

The PDD curves follow the same behaviour as the MPD ones, as can be seen in 
figures 6.27(a) and 6.27(b). As opposed to the curves of the MPD characteristics, 

the TL curves in figure 6.26 exhibit the features already experienced in the previous 

experiments. However, the exceptional aspect of the TL characteristics’ curves in 

this example, compared with the previous ones, is that the list-scheduling algorithms 

(i.e., P 1MRU and P20RD) generate results in figure 6.26(a) (apart from the case 

of tight power constraints) with obviously shorter total test application times.

The PTS chart solutions generated by the PI MRU and DV algorithms under 

very loose power constraint for a BTS example where the tests’ TL values are dif­
ferent (first case of this experiment) are compared in figure 6.29. The most obvious 

thing after drawing the charts in figures 6.29(a) and 6.29(b) is the power balance

(a) P I  M R U  c h a rt (b) DV c h a rt

Figure 6.29: PTS Charts’ Comparison (Fourth Experiment) I
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difference between them. Even though the PI MRU algorithm has shorter total 

test application time, its power dissipation distribution is extremely unbalanced, 
whereas it is the opposite case for the DV algorithm.

w 400a.
J  300■o
I 200Da. 100

TL “  494 
MPD =562 
APD» 462.6 
PDD-99.4 
RMS » 470.5 
CPU«* 35691

® Ii i i i i  11T111 111 rrv iii 1 11 i' iii Ti I 11 11 ili  ili Ti I if r i r 
1 46 91 136 181 226 271 316 361 406 451

total test application time

(a) P20RD chart (b) FDS chart

Figure 6.30: PTS Charts’ Comparison (Fourth Experiment) II

In figure 6.30 the PTS chart solutions generated by the P20RD and FDS al­

gorithms for a power constraint of PDC =  700 are compared, for a BTS example 
where the tests’ TL values are similar. The PTS chart generated by P20RD in 

figure 6.30(a) is surprisingly almost perfect. This is further emphasized by the very 
low PDD characteristic value comparing with the MPD one.

The MPD and TL characteristics exhibited by the results generated by the 
LSFDS types of algorithms are presented next. Only the results for loose power 
constraints are given, as in the previous experiments. When the BTS has tests 
with different test length values, the LSFDS algorithms (e.g., P1MRUFDS) improve 
the MPD characteristic by 35% at the same time with the lengthening of the TL 
characteristics by 13%. On the other hand, the LSDV algorithms improve by up to 

30% the MPD characteristic, by lengthening the TL characteristic with only 8%. 
When the BTS is consisted of tests with similar test length values, the LSFDS 
algorithms decrease the power (e.g., MPD) characteristics of the results generated 
by the LS approaches by 36%, while keeping the TL one constant. The LSDV 
algorithms decrease the power characteristics by 34% keeping TL constant again.

6 . 2 . 5  F i f t h  E x p e r i m e n t

• runs experiments on a large number of BTSs, in which all tests’ parameters 

(i.e, test length, power dissipation and test resource compatibility) are simul­

taneously ranged and given values from similar to different with each BTS;
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(a) T L  C urves (b) M P D  C urves

Figure 6.31: PTS Characteristics’ Curves Comparison (Fifth Experiment) I

The fifth experiment, which is the largest, is a mixture of all the previous experi­
ments, that is, all three parameters of BTS’s tests (i.e., test length, power dissipation 

and test resource compatibility degree) are varied at the same time. The character­
istics of the generated results are not far from the expected combination of the ones 
discussed in the previous experiments. Therefore only a few cases will be discussed 

in this section. Those experimental cases that previously generated rather excep­

tional results are discussed first in order to see if they conform with the previous 
conclusions. Then, the following three cases that have not been considered before 

are going to be studied:

• two BTS cases where the minimal values of their TL and PD parameters are 
half of the maximal ones;

• a BTS case where the tests’ resource compatibility degree is high, and their 

TL and PD parameters have similar values.

Figure 6.31 depicts the TL (figure 6.31(a)) and MPD (figure 6.31(b)) charac­
teristics of the results generated by the representative PTS algorithms, which were 
run on a BTS similar to the second case discussed in the third experiment (tests 
with high resource compatibility degree, different test length values and similar 
power values). Comparing pairwise figure 6.31(a) with figure 6.18(b) and figure 
6.31(b) with figure 6.19(b), it can be noticed that they are of similar shape. The 

only remarkable difference is that this time the FDS and DV algorithms give better 

power characteristics than the P20RD one (by 18% - 19%) a lengthening of the 

test application time (by 12% - 14%). Again, both the LSFDS and LSDV types of 

algorithms generate the same results improving by 17% the MPD characteristic of
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the list-scheduling based algorithms for an increase by 7% of the TL characteristic.

(a) T L  C urves (b) M P D  C urves

Figure 6.32: PTS Characteristics’ Curves Comparison (Fifth Experiment) II

Figure 6.32 depicts the TL (figure 6.32(a)) and MPD (figure 6.32(b)) character­

istics of the results generated by the same PTS algorithms, run on a BTS similar 

to the second case discussed in the fourth experiment (tests with high resource 

compatibility degree, similar test length and different power values). Comparing 
pairwise figure 6.32(a) with figure 6.26(b) and figure 6.32(b) with figure 6.25(b), 

it can be noticed again that they are of similar shape. However, this time the re­

sults of the P20RD algorithm do not exhibit better power-test properties than the 

distribution-based algorithms as in the fourth experiment. The LSFDS and LSDV 
types of algorithms generate again exactly the same results for the same BTS re­

ducing by 47% the MPD characteristic of the list-scheduling based algorithms for 

an 16% increase of the TL characteristic.

Figures 6.33 and 6.34 depict the TL (figure 6.33(a)), MPD (figure 6.33(b)), PDD 

(figure 6.34(a)), and APD (figure 6.34(b)) characteristics of the results generated

(a) T L  C urves (b) M P D  C urves

Figure 6.33: PTS Characteristics’ Curves Comparison (Fifth Experiment) III
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(a) P D D  C urves (b) A P D  C urves

Figure 6.34: PTS Characteristics’ Curves Comparison (Fifth Experiment) IV

by the same PTS algorithms for the BTS described next. In this BTS, the tests’ 

resource compatibility degree is high, and the minimal values of their TL and PD 

parameters are half of the maximal ones. This is a rather exceptional case, because 

the results of the P20RD algorithm do exhibit better power-test properties than 

the distribution-based algorithms as in the fourth experiment. Figure 6.34(a) proves 

that the results of P20RD are more balanced than the others, because the PDD 

characteristics’ values are below the ones exhibited by the other PTS algorithms. 

However, these unpredictable exceptions fade away with the decrease of test resource 
compatibility degree as could be noticed in figure 6.35. Thus, in this figure the curves 
of the characteristics start to get flattened over the range of power constraints when 

BTS’s resource compatibility reach an average degree. The BTS in this case is 
consisted of tests with an average degree of test resource compatibility, and with 
the minimal values of their TL and PD parameters being half of the maximal ones. 

For the initial case discussed in this paragraph, it can be added that the LSFDS

(a) T L  C urves (b) M P D  C urves

Figure 6.35: PTS Characteristics’ Curves Comparison (Fifth Experiment) V
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(a) T L  C urves (b) M P D  C urves

Figure 6.36: PTS Characteristics’ Curves Comparison (Fifth Experiment) VI

and LSDV types of algorithms also generate the same results for this BTS case 
improving by 36% the MPD characteristic of the list-scheduling based algorithms 
keeping the TL characteristic constant.

Figures 6.36 and 6.37 depict the TL (figure 6.36(a)), MPD (figure 6.36(b)), PDD 
(figure 6.37(a)), and APD (figure 6.37(b)) characteristics of the results generated 

by the same PTS algorithms for the final BTS case discussed in this experiment. 
In this BTS case, the tests’ resource compatibility degree is high, and their TL 

and PD parameters are both very similar. If the TL (figure 6.36(a)) and MPD 

(figure 6.36(b)) characteristics do not forecast anything special, the PDD (figure 

6.37(a)) and APD (figure 6.37(b)) characteristics show the reality behind. Figure 

6.37(a) proves that the results of P20RD compete again with the results of the 

distribution-graph based algorithms. This kind of BTSs, where the tests’ test length 
and, especially, power dissipation values are similar, proved to generate quite often 

unpredictable and exceptional results. The only element which neutralizes this effect

(a) P D D  C urves (b) A P D  C urves

Figure 6.37: PTS Characteristics’ Curves Comparison (Fifth Experiment) VII
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is the tests’ resource compatibility degree. Its decrease flattens the characteristics’ 
curves regardless of the other tests’ parameters.

Finally, it can be added here that the LSFDS and LSDV types of algorithms 
seem to generate results with the same behaviour for any kind of BTS cases. In this 

particular case, both types of algorithms improve by 19% the MPD characteristic of 

the list-scheduling based algorithms keeping the TL characteristic constant. Com­
paring the results generated by all the LSFDS (LSDV) types of algorithms it seems 
that the MPD characteristics are improved more for BTSs with similar test time 

values than the cases with similar power values. However, this decrease of MPD 

values is very often at the cost of a slight increase of the total test application time, 
and only for loose power constraints.

6.2.6 Sixth Experiment

• real case example - extended ASIC Z design.

(a) T L  C urves (b) M P D  C urves

Figure 6.38: PTS Characteristics’ Curves Comparison (Sixth Experiment) I

For the sixth example a real case is considered. An extended case [LPOOb] of 
the ASIC Z design given in [Zor93] is experimented with the PTS algorithms. The 
test set has 27 tests spread over 9 cores. The whole testbench is listed in appendix 
A. Characteristics’ curves results arc depicted in figures 6.38 and 6.39 over a range 
of power dissipation constraints. Unfortunately, the results of the experiments run 

here cannot be compared with the ones given for the ASIC Z case in [Zor93, CSA97]. 

That is due to the fact that the test scheduling discipline assumed in [Zor93, CSA97] 

is the nonpartitioned testing defined in [CKS88], whereas the one assumed in this 

thesis is the partitioned testing with run to completion. The nonpartitioned testing
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(a) A P D  C urves (b) R M S C urves

Figure 6.39: PTS Characteristics’ Curves Comparison (Sixth Experiment) II

assumes that no tests can be started until all tests in the previous session are 
completed, which is the opposite of the assumption in this thesis.

The test resource compatibility degree for the ASIC-Z case ranges from 30% for 

the subset of the tests tu , ¿2*, tsi, • • •, t9i, 34% for the subset of tests ¿ie, tie, he, • •, 

tge, 85% for ¿26) ¿46, ¿56, ¿76, 93% for ¿36, and up to 96% for the subset t6b, tgb, t9b. 
This is an interesting case of mixture between the behaviour of results generated 

for subsets with low compatibility degree and others with very high compatibility 
degree. Therefore the solution space has two parts, one where the search space is 

big (for high resource compatibility degree between tests) and another where the 

search space is small (for low resource compatibility degree between tests). From the 
graphs depicted in figures 6.38 and 6.39 it can be noticed that the power constraint 

of 900mW (aimed at in [Zor93]) is too high for a test scheduling discipline with run 
to completion for the BTS given in [LPOOb] The difference comes from the different 
test scheduling disciplines employed in both, our and their, approaches. For the test

151 201 251 301
total test applcation time

TL = 441 
MPD- 500
APD = 228.2 
PDD “ 271.8 
RM S = 276.7 
CPU -  190

1 51 101 151 201 251 301 351 401
total test applcation time

(a) 800 Pow er C o n s tra in t (b) 540 Pow er C o n s tra in t

Figure 6.40: FDS Charts’ Comparison (ASIC-Z, Sixth Experiment)
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scheduling discipline adopted in th is thesis the maxim um  power constraint should  

be around 600mW

The results are the expected ones, judging by the experim ents run beforehand  

However, an exceptional shape m the characteristics’ curves can be noticed for the  

results generated by the FDS algorithm  The suboptim al results generated between  

600 and 400 can be blam ed on the fact that probably the priority function (i e, force) 

failed to  make the right decision at a certain stage of the iterative solution search 

process Figure 6 40 com pares the power-test charts of two solutions generated  

by the FDS algorithm  before and m the m iddle of the exceptional part m entioned  

above A s it can be seen the FDS algorithm  fails to  accom m odate some of the 

blocks along the chart and piles them  up at the beginning of the chart This kind 

of sub-optim al decision could be pruned by em ploying more sophisticated priority 

functions, to  take into account such particular experim ental cases

The LSFDS and LSDV types of algorithms generate again exactly the same 

results for the ASIC-Z BTS improving by 47% the M PD  characteristic of results 

generated by the list-scheduling based algorithms, keeping the TL characteristic 

constant

6 2 7 Experimental Conclusions

This chapter ends with a few overall mam conclusions over the set of PTS algo­

rithms proposed m this thesis First of all it is recalled that the testbenches used 

in m ost of the experim ents have been randomly generated The values (resource 

com patibility degree, test length, power dissipation) assigned to B T S ’s tests have 

been generated w ith a uniform distribution The proposed PT S algorithms m this 

work have been experim ented taking into account the conclusions and suggestions 

of previous work That is, it has been stated  m [CSA97] that m the test environ­

m ent the difference between the power estim ation values (e g , M PD , A P D , RM S) 

for each test is expected to  be sm all since the objective is to  m axim ize the circuit 

activity so that the circuit can be thoroughly tested  m the shortest possible tim e 

Therefore, the PT S algorithms try to m inim ize the differences between the power 

estim ation values, such that the accum ulation of these differences is m inimized in 

the bottom -up traversing of the test hierarchy (see chapter 3) Thus, P D D  is the  

power characteristic that was under focus m the experim ents while the difference 

betw een the M PD  and A P D  values was used to judge the quality of similar PT S
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results. The smaller the difference the more balanced the power dissipation distri­

bution. [JPP89] estim ated but did not prove that the larger the distribution range 

(T L max — T L min) among the test lengths of the individual tests, the better should  

be the performance that could be achieved in terms of balancing the power dissipa­

tion distribution and achieving good overall test application tim e. This hypothesis 

is experim entally proven to be wrong in this thesis (see the fourth and fifth experi­

m ents). To further prove this, figure 6.41 shows how the P D D  characteristics of the  

results generated by the PT S algorithms do not necessarily improve for the variance 

from small (90% sim ilarity between TL values) to  large (10% sim ilarity between TL  

values) distribution ranges of T L max — T L min. Moreover, to  prove the contrary, 

figure 6.41(b), which depicts the P D D  characteristics of the results generated by the  

FDS algorithms, shows that the extrem es (i.e., sm allest and largest T L max — T L min 

distribution ranges) generally exhibit from the P D D  characteristic’s point of view, 

the poorest results, i.e. the least balanced.

(a) P 1M R U  A lgo rithm  (b) FD S A lgo rithm

Figure 6.41: P D D  Characteristics’ Curves for Various Test Length Ranges

T he experim ental results prove that there are several constraints that im plicitly  

steer the PT S search process. Moreover, there is a certain order or priority of their 

im pact or influence on the PT S algorithm s’ search engines. R esults dem onstrate 

that the power constraints and the test resource com patibility have more im pact 

on the PT S solutions, while the te s ts ’ length (TL) and the power dissipation (PD ) 

have less im pact. Figure 6.42 depicts the TL and M PD characteristics’ curves of the  

PT S results generated for a variance from sm all (10%) to large (90%) distribution  

ranges of the test resource com patibility degree. It can be noticed here that the  

power constraints have the highest influence on the PT S results, but this influence 

weakens with the decrease of test resource com patibility degree. The test resource
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(a) T L  C h a ra c te r is tic s ’ C urves (b) M P D  C h a ra c te r is tic s ’ C urves

Figure 6.42: Curves for Various Resource Compatibility Ranges (P20RD)

compatibility degree is overall the second most important constraint and the first 

most important test parameter within a BTS judging by the priorities stated above. 

The TL and PD test parameters do not have a large impact on the characteristics. 

However, they do not exhibit a consistent influence on the behaviour of the PTS 

results, as can be seen in figures 6.43, 6.44, 6.45, and 6.46. They show the TL and 

MPD characteristics for the results generated for the PI MRU (figures 6.43 and 6.45) 
and FDS (figures 6.44 and 6.46) algorithms. This paragraph leads to an important 

design recommendation that every effort be made in hardware to maintain the test 

parallelism and to insure a high test resource compatibility amongst block-tests.

Two main categories of PTS algorithms have been proposed in this thesis. The 

first one is the so-called list-scheduling based PTS algorithms (i.e., PTS-LEA and 

PTS-LS) described in detail in chapter 4. The second set of algorithms are the 
distribution-graph based PTS algorithms (i.e., PTS-FDS and PTS-DV) and are

(a) T L  C h a ra c te r is tic s ’ C urves (b) M P D  C h a ra c te r is tic s ’ C urves

Figure 6.43: Curves for Various Test Length Ranges (P1MRU) I
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(a) T L  C h a ra c te r is tic s ’ C urves (b) M P D  C h a ra c te r is tic s ’ C urves

Figure 6.44: Curves for Various Test Length Ranges (FDS) II

thoroughly described in chapter 5. The main difference between these two categories 

of PTS algorithms is the priority function used to steer the solution searching pro­
cess. The list-scheduling based algorithms are considered greedy heuristics where a 
local (list) priority function is used. The results generated by these algorithms were 

expected to be not as good as the ones generated by the distribution-graph based 
algorithms which employ a global priority function.

The experiments proved that even the list-scheduling algorithms can be parti­

tioned into two categories. The first one consists of the first and third approaches 

of the PTS-LEA algorithm, plus the PTS-LS algorithms itself. The power dissipa­

tion is less balanced when these algorithms are loosely constrained. On the other 

hand when there are tighter power dissipation constraints the total test applica­

tion time increases, but the power dissipation characteristics are forced to improve. 
The second set of list-scheduling algorithms are the different insertion strategies of

(a) T L  C h a ra c te r is tic s ’ C urves (b) M P D  C h a ra c te r is tic s ’ C urves

Figure 6.45: Curves for Various Power Ranges (P1MRU) I
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(a) T L  C h a ra c te r is tic s ’ C urves (b) M P D  C h a ra c te r is tic s ’ C urves

Figure 6.46: Curves for Various Power Ranges (FD S) II

the second approach of the PTS-LEA  algorithm. T hese algorithms can occasionally  

generate results com parable w ith that of distribution-graph based algorithms. How­

ever, m ost of the tim e their results are qualitatively somewhere between the results 

generated by the first category of list-scheduling algorithm s and the distribution- 

graph based algorithms. Moreover, there are even cases (e.g., those BTSs which 

consisted of te sts’ with a high degree of resource com patibility, different tim e length  

and similar power values) when these algorithms (P 2 0 R D  in this chapter) generate 

the best results. Otherwise, the PT S-D V  algorithm s generate more balanced power 

distribution results, but take longer tim e. The PT S-FD S algorithms seem to  give 

better (balanced) results but w ith even higher CPU  tim e. However, there are tim es 

when these power balancing achievem ents are obtained at the expense of a slightly  

longer total test application time.

In general, the PTS-LSFD S algorithms (i.e., LSFDS and LSDV) give PTS  

solutions exhibiting better power characteristics than both list-scheduling and  

distribution-graph based algorithms. Therefore, this algorithm  is the m ost ben­

eficial when the test application tim e of the solution by list-scheduling based algo­

rithms are shorter than the test application tim e of the solution by distribution- 

graph based algorithms. This benefit would justify the longer run tim e of the 

PTS-LSFD S (LSFDS) and PTS-LSD V  (LSDV) type of algorithms, which is longer 

than the sum of the tim e needed to run the list-scheduling and distribution-graph  

based algorithm s sequentially.

A special category of PT S algorithm s is the list-scheduling based algorithms
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which em ploy the random (R A N D ) insertion strategy Their random insertion fea­

ture helps them  at tim es to jum p out from the local m inim a and generate surpris­

ingly good results Unfortunately, these algorithms generate bad results w ith the  

same frequency as they generate good results Thus, it seems that an intelligent 

solution search engine has to  be used so that it will always generate near-optim al 

solutions This fact leads to the conclusion that near-optim al algorithms can be 

successfully em ployed to generate the best results

Since the difference between the characteristics of the results generated by dif­

ferent PT S algorithms reduces w ith the tightening of power dissipation constraints, 

it is advisable for tight power constraints to use list-scheduling based algorithms 

rather than distribution-graph based ones T he list-schcduhng based algorithms 

take considerably shorter CPU tim es than the other types of PT S algorithms More­

over, it is noticed that the C PU tim es used even increase som etim es (especially for 

the distribution-graph based algorithms) w ith  the increase of power constraints 

Since the differences between their results decreases w ith the tightening of power 

constraints, it is advisable to avoid any w aste of tim e The sam e advice can be 

given when PT S algorithms are to be applied on testbcnchcs similar to the sec­

ond testbench of the third experim ent (1 e, tests w ith high degree of test resource 

com patibility, different test length values and sim ilar  power values)

W hen the C PU tim e invested m running the PT S algorithms to  achieve a near- 

optim al power-test schedule is not an issue, a com prehensive approach can be em ­

ployed This approach would assume the extensive application of all the PT S al­

gorithms in order to generate all the possible results, under any power constraint 

(from very loose to very tight) Then, the user would only need to select the PT S  

solution which suits the design needs best according to the suitable M PD, A PD , 

RMS, P D D , and TL characteristics (which normally should be given within some 

m axim al and minimal lim its) Therefore, the generated results arc supposed to  

be studied and weighed by the user in order to find the best suitable power-test 

compromise The power dissipation constraint range could also be spanned with a 

user-selectable increment of step size depending on the level of com plexity the user 

is ready to pursue for the solution search process
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Chapter 7 

Conclusions and Future Work

7.1 Conclusions
The work described m this thesis p ioposes a polynom ial-tim e solution to the  

N P-com pletc Power-Constrained Block-Test Scheduling (PT S) problem stated  in 

[CSA97] It is actually the first approach proposed as a solution to the aforemen­

tioned problem It is based on classical List Scheduling (LS) and Force-Directed  

Scheduling (FD S) algorithm s in High-Level Synthesis (HLS) adapted to  an extended  

tree growing modelling  of the PT S problem

This work focuses only on the high-level P T S problem The proposed algo­

rithms are m eant to  be part of a system -level block-test approach to be applied  

on a modular view of a test hierarchy T he modular elem ents of this hierarchy 

could be subsystem s, backplanes, boards, M ultichip M odules MCMs, ICs (dies), 

macro-blocks and Register Transfer Level (RTL) blocks T his approach assumes a 

bottom -up traversing of the hierarchical test m odel w ithm  a divide and conquer 

optim ization style

The algorithms given m the thesis deal w ith tests for blocks of logic, which do 

not have equal test length Thus, they arc unequal-length block-test scheduling 

algorithm s The test order w ithin the test sets of various m odules in a circuit is 

not considered m the algorithm  The test scheduling discipline assum ed here is 

the partitioned testing with run to completion  as defined m [CKS88] A constant 

additive model is em ployed for power dissipation analysis and estim ation throughout 

the approach

The algorithms im plem ented here are a projection of the classical LS and FDS
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algorithms on the extended tree growing m odelling of the PT S problem The first 

category of scheduling algorithm s are the LS-based ones, including Left-Edge Algo­

rithm (LEA) and List Scheduling (LS) algorithm, as described m  chapter 4 They  

have been successfully experim ented on the PT S problem T hese algorithms are 

fast but the obtained schedules lack the balanced power dissipation property desir­

able for the PT S solutions The second set of algorithm s are the distribution-graph  

based PT S algorithms, given m chapter 5 T hese algorithms use a global priority  

function  to  balance the power dissipation distribution of the PT S solutions The  

PT S-FD S algorithm  gives overall balanced power-test schedules even for tighter 

power constraints The Distribution Variance (D V )-based PT S approach is another 

algorithm from the distnbution-graph based category It is less tim e consum ing 

than the FDS-based algorithm  and gives more balanced power-test schedules than  

the LS-based algorithms The m ixed PT S approaches given m section 5 3 generate 

the best power-test schedules, but only for very loose power constraints However, 

they are the m ost tim e consum ing approaches

All the PT S algorithms proposed in this thesis use greedy heuristics that are able 

to  generate good schedules m a polynom ial tim e This is very im portant for the 

rapid system  prototyping o f tod ay’s V L SI/SO C  designs T hey feature a polynom ial 

com plexity but do not guarantee the optim al solutions Therefore, for more refined 

schedules, the near-optim al algorithms will have to  be sought and will be more 

expensive in terms of com putation tim e

7.2 Contributions
The mam contribution of this thesis is that it proposes for the first tim e a polyno­

mial com plexity approach to tackle the N P-com plete problem of power-constrained  

block-test scheduling [CSA97] The extended tree growing technique developed m  

this thesis combined w ith the adapted classical scheduling algorithm s can quickly 

generate good schedules for the PT S problem Moreover, the modular test hierar­

chy proposed to  tackle the PT S problem at system  level is a flexible and general 

approach that can be applied to  any kind of system  test hierarchy'-

In order to  achieve all the above m entioned features of the P T S approach defined 

m this thesis, a survey of high-level test scheduling and low-power design is carried 

out and system atically presented m chapter 2 This chapter gave a general view of
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tod ay’s test design problems having in mind power dissipation constraints Then, 

a deeper and more detailed survey is presented m chapter 3, where, eventually, the  

topic of this thesis is identified, formulated and m odelled This topic is chosen from  

the field of low-power test design surveyed m section 3 2 Previous work m the  

field of power'constrained block-test scheduling (sec subsection 3 2 2) proved to be  

insufficient for the requirements of current technological trends Therefore, the work 

in this thesis is the first practical solution to the problem analyzed and described  

m [CSA97]

An efficient approach is then formulated in chapter 4 and chapter 5 that adapt 

classical scheduling algorithm s to work with an extended tree growing technique 

for generating good schedules for the PT S problem T hese schedules are rapidly 

generated but they are not guaranteed to  be the optim um  PT S solutions Near- 

optimal algorithms that can generate optim al or near-optim al solutions for the PT S  

problem arc proposed m the next section T hey can be the basis of future research 

work towards finding efficient solutions to other scheduling problems in the field of 

system -level low-power testing design like dynamic power managem ent during test

7.3 Future Work
Future work will be m three mam directions One is to  further research the powcr- 

constramed block-test scheduling field Firstly, a finer tuning of the PT S algorithms 

proposed m this thesis has to be carried out to  take into account real technological 

aspects of the PTS problem The second research direction is to  apply near-optim al 

search algorithms to the PT S solution space In order to give full freedom to these 

near-optim al search algorithms a different m odelling of the power-test solution space 

has to be sought The third direction is to  investigate the applicability of the PT S  

algorithms to other power-test related scheduling fields like power-test scheduling  

with dynam ic frequency, m ultiple voltage supply scheduling or burn-m power-test 

scheduling

7 3 1 Technological Aspects of PTS Problem

The distribution-graph based PT S algorithms proposed in chapter 5 are aimed at 

balancing power dissipation during test application tim e w ithout taking into account 

the technological aspects o f particular power dissipation cases For exam ple, m
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Figure 7.1: Power-Test Scheduling Charts

figure 7.1 the power dissipation spike given by test ¿9 in figure 7.1(a) and the obvious 

power spike in figure 7.1(b) could be ignored if they do not last for a long period of 

time. The mathematical formulation of the Power-Concurrency Distribution Graphs 

(PCDG) in chapter 5 is not meant to deal with these particular cases. Therefore, 

further research work is needed to tackle the particular technological aspects of 
power dissipation during test application time. Moreover, finer tuned mathematical 

formulations of the PCDG might be found in this context to emphasize more the 
energy consumed during test application time than the power dissipation peaks at a 
certain moment. That is, thus far the MPD and PDD values were the characteristic 

values used to drive the search for the best solutions. But if the total energy over 
test application time is to be more important, then characteristic values like PDD 
and RMS should be of more interest.

The PTS algorithms proposed in this thesis were tackling the problem of power- 
constrained test scheduling, where the solution search was aiming for the shortest 
total test application time, making sure that the power dissipation barrier is not 
crossed. Thus, it was a power-constrained total test application time minimization 
algorithm. However, there might be cases when the total test application time might 
be seen as a constraint and the goal could be to minimize the power dissipation 

over the aforementioned application time. This is another research direction to be 

pursued in future.
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The PTS algorithms proposed m this thesis try to optimize the power-test char­
acteristics of the design in the test mode However, these techniques will be re­
searched in future as possible approaches for tackling the power-test optimization 

m the normal mode as well Thus, an extrapolation of the powcr-constramed test 

scheduling techniques proposed here will be applied to the problem of scheduling 

operations in the normal functional mode In order to make this extrapolation, the 

PTS algorithms will have to deal with another level of constraint, which will be the 

precedence relationship between the operations to be scheduled

7 3 2 Near-Optimal PTS Approaches

The biggest drawback of the tree growing heuristic is that the solution space is 

shrunk by the fact that the power-test scheduling charts should have low-mobility 

tests as roots (or close to roots), while high-mobility tests arc leaves (or close to 
leaves) This is due to the fact that the test length of the nodes (test) in a tree 
path (ETP) have to be monotonously decreasing from root to leaf (see subsection 

3 3 3) Thus, having the solution space diminished, the heuristics proposed m this 

thesis, even though they are fast, they can not guarantee the optimum power- 

test schedules This would not happen if the tests had the freedom to be placed 

anywhere in the power-test schedule Therefore, as future work, it is proposed here 

to model the map of power-test schedules as a puzzle game, where each puzzle piece 

(block-test) has to find its own place m the optimum power-test schedule Thus, 
the compatibility relationship between the block-tests will have one component less 
(see subsection 3 3 3) Namely, the test length of the nodes (block-tests) m the 

power-test schedule do not have to be monotonously decreasing from root to leaf 
Actually, the root and leaf terms disappear for the puzzle model Therefore, the idea 
of tree path becomes useless and the compatibility relationship reduces to the two 
classic power-test compatibility conditions (sec subsection 3 3 2) Firstly, m order to 
run tests in parallel, they have to be compatible from a conflicting resources point of 
view Secondly, the power dissipation accumulated at any moment during parallel 
test application should be less than or equal to the power dissipation constraint 
PD1 ¿ -/m ax

Moreover, the RAND insertion version of the second PTS-LEA pseudocode has 

constantly exhibited surprises throughout the experiments m chapter 6 by gener­

ating results from the worst to the best This was due to the fact that the PTS
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algorithms proposed m this thesis do not have a mechanism to steer through the 

randomly generated search space Therefore, application of near-optimal algorithms 
like simulated annealing, tabu scarch or genetic algorithms to the PTS problem is 
a promising research topic to be investigated

The above described puzzle game resembles the two dimensional block con­
strained placement problem [SV97] or the bin packing technique employed for local 
repacking/rearrangement during Field Programmable Gate Array (FPGA) recon­

figuration [DE97] The former approach has to solve the two constrained placement 

problems during the generation of VLSI macro-cell layouts The latter is used dur­

ing FPGA reconfiguration, when partial rearrangement is required to alleviate the 
fragmentation of free logic elements that occurs on space-shared run-time reconfig- 

urable FPGA systems

Simulated Annealing

A Simulated Annealing (SAn) [KGV83] algorithm is a neighborhood search algo­
rithm where the neighbourhood is sampled at random It differs from the greedy 
algorithms m the fact that a neighbour giving rise to an increase in the cost func­

tion may be accepted This acceptance will depend on a control parameter (called 

temperature) and the magnitude of the increase By allowing uphill moves in a 
controlled manner, Simulated Annealing (SAn) provides a mechanism to allow the 

algorithm to escape from local optima The algorithm starts with an initial solu­
tion A neighbor of this solution is then randomly selected If the selected solution 

is better than the current solution, it will always be accepted and become the next 

solution If the selected solution is worse, it will be accepted with a probability 
factor Therefore, at the beginning when the temperature t is high, the probabil­
ity of accepting a worse neighbour and making an uphill move is high With the 
reduction of temperature, this probability decreases

Tabu Search

Tabu Search (TS) [Hal96] is a neighbourhood-search method which employs intelli­

gent search and flexible memory technique to avoid being trapped at local optima 
As in the case of simulated annealing, Tabu Search (TS) is a high-level heuristic 

procedure used to guide other methods towards an optimal solution TS is based on 

the assumption that intelligent search should be based on more systematic forms of
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guidance rather than random sclcction It also exploits flexible memory to control 

the search process The mam mechanism for exploiting memory is to classify a sub­
set of the neighborhood moves as forbidden (called tabu) TS maintains a selective 
history of the states encountered and/or the moves executed during the search

Genetic Algorithms

A Genetic Algorithm (GA) [SP94, SV97] is a high-level algorithm which performs 

a multi-directional search by maintaining a population of potential solutions The 
population undergoes a simulated evolution from one generation to another at each 

generation the relatively good solutions reproduce, while the relatively bad solutions 
die The goodness or badness of the solutions are defined by a cost function In 

the Genetic Algorithm (GA) an optimization problem is mapped into the problem 

of finding the most fit individual withm a population during an evolution process 

Fitness is measured by a fitness function, which is related to the objective function 

of the optimization problem A GA starts with a set of initial solutions Each 
solution is encoded as a chromosome which is represented as a string of bits from a 

binary alphabet To generate new solutions there are two typical operations which 

are performed on the solutions of the present generation crossover and mutation 

For the crossover operation, two solutions Si and S2 of the current generation are 
selected and the chromosome corresponding to a new solution is produced The new 
chromosome is the result of mixing a part of the chromosome of Si, with a part of 

that corresponding to S2 This means that the new solution inherits certain features 
of its two parent solutions The mutation operator, on the other hand, produces a 
small, random perturbation to a given solution (chromosome)

7 3 3 Dynamic Power Management During Test

Dynamic power management is a system-level low power design technique aiming 
at controlling performance and power levels of digital circuits and systems, by ex­
ploiting the idleness or the activity of their components It can be seen m figure 7 2 
that for the same set of block-tests, different solutions can be generated if stretch­

ing techniques are applied to block-tests In this case test ¿9 from figure 7 2(a) is 

stretched and rescheduled m figure 7 2(b) The stretching technique is to expand 

the test application time (test length) of the block-tests with the goal of making full 
use of the remaining power dissipation below the constraint m the scheduling charts
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TOTAL TEST APPLICATION TIME -  26 TOTAL TEST APPLICATION TIME -  25

(a) W ith o u t S tre tch ed  B lock-T ests (b) W ith  S tre tch ed  B lock-T ests

Figure 7.2: Test Scheduling Example with Block-Test Stretching

The result of stretching can decrease the power dissipation by either voltage scaling 

or dynamic frequency clocking or it can increase the fault coverage by increasing 

the number of test vectors. In the latter case the power dissipation distribution is 

expected to be approximately the same. That is, even though the test application 

time will be increased to apply further test vectors, the power dissipation values are 

considered, during their application, to be around the same constant power dissipa­
tion value associated with the block-test by the high-level power estimation process 
(see subsection 3.3.1).

Pow er-Test Scheduling w ith  V oltage Scaling

Most techniques to lower power consumption of ICs assume static behaviour. That 
is, circuit and system parameters are chosen at design time to minimize power 
dissipation. Power-down techniques can be used to make power dissipation directly 
proportional to the computational workload [MK96]. Power dissipation can be 
reduced if a variable power supply is used in conjunction with a variable clock- 
speed processor. The basic idea is to lower supply voltage and slow the clock during 
reduced workload periods instead of working at a fixed speed and idling.

Datapath scheduling techniques and behavioural synthesis techniques with mul­
tiple supply voltages were recently proposed [CP97, JR97, LHW97, RS95] as power 
optimization techniques. The proposed scheduling techniques refer to the assign­
ment of a supply voltage to each operation in a data flow graph so as to minimize 

the average energy consumption for given computation time or throughput con­

straints or both. In the past few years, low power techniques by dynamic voltage
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scaling have been studied [GC97, NNSaB94, WH96] and efficient scheduling algo­
rithms for these techniques arc being sought For example, [NNSaB94] presents 
a technique that combines self-timed circuitry with a mechanism that adaptively 
adjusts the supply voltage to the minimum possible, taking mto account process 
variations, operating conditions and data dependent computation times The ap­

proach m [NNSaB94] finds the optimal voltage based on adaptive methods, while 
the approach m [IY98] is based on static scheduling technique which treats dynam­

ically variable voltage [IY97] The PTS algorithms proposed m this thesis and the 
near-optimal algorithms mentioned m subsection 7 3 2 can be linked with the dy­

namic voltage scaling techniques to efficiently search the solution space to find good 
power-test profiles

Power-Test Scheduling with Dynamic Frequency

In [RVB98, KRV99, RVB96] dy­
namic frequency techniques are pre­
sented as a solution to the power 
minimization problem In the dy­

namic frequency scheme all units 
arc driven by a single clock line 

which changes frequency at run

time depending on the functional
Figure 7 3 DFC Architecture

unit active at that time as m figure
7 3 Dynamic Frequency Clocking (DFC) utilizes the fact that different (e g , adders, 
multipliers etc ) can be clocked at a different frequency based on their critical path 
delay The idea in [KRV99] proposes a time and resource constrained scheduling al­
gorithm which utilizes the concepts of DFC and Multiple Voltage Scheduling (MVS) 
Only the frequency is changed m [KRV99] dynamically, while the supply voltage 
for each Functional Unit (FU) is fixed from one of the available levels (5 OV, 3 3V, 
2 4V) Self-timed systems have also been suggested to take advantage of data de­
pendencies (workload) [GC97]
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Nobody proposed so far, though, a way to mix these techniques with the power- 

constrained test scheduling problem These dynamic-frequency technological so­
lutions can be efficiently combined with the power-test scheduling techniques de­
scribed at the beginning of this subsection (7 3 3)

Test Scheduling for Monitored Burn-In

INFANT
The growing size and complexity of 

VLSI/SOC designs and the reduction m 
feature sizes makes production of reli­

able chips a challenging task Stress 
testing is an effective method to im­
prove product reliability In figure 7 4 

failure probability is plotted against 
time This curve is known as the bath-
* u Ti. u xu ± Figure 7 4 Bath Tube Curvetub curve [DC96J It can be seen that

failure probability is high in the early period of product life This is known as
infant mortality It is explained by the presence of “weak ICs” in the production
lots Such ICs contain imperfections which are a consequence of manufacturing 

defects “Weak ICs” fail soon after passing production testing Therefore, during 
stress testing ICs are subjected to stress conditions and the “weak ICs” fail and arc 
not shipped out improving product reliability

ICs are stressed m a variety of ways such as burn-in, power cycling, temperature 
cycling, voltage variations, clock variations Burn-m, the standard method used 
in industry so far for stressing ICs, is to subject ICs to high temperature and 
high voltage for an extended period [Hna84] Burn-m induces cumulative stress 
failures During burn-m, cyclic sequences are applied over an extended period of 
time such that the switching activity m the circuit is maximized Typically burn- 
in is performed for an extended period, usually several hours So, while selecting 
vectors for burn-m, it would be of more concern that the ability of the resulting 

burn-m test sequence to dissipate power rather than its application length

There arc different kinds of burn-m (static burn-m [Hna84], high-voltage cell 

stress testing [Hna84], dynamic burn-m [DC96, DCNP95]), but only the monitored 
burn-m is of interest to us for future rcscarch
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Burn-m is used to eliminate infant mortality in VLSI/SOC designs because it 

induces cumulative stress failures There are three kinds of burn-m Static burn- 
in applies a DC bias to the device at an elevated temperature (normally 125°C) 
[Hna84] Then, m high-voltage cell stress tests are created to rapidly test memories 
and involves cycling through all memory addresses [Hna84] The dynamic burn-m 
applies a random sequence on all the clocks and address lines [DC96, DCNP95] 
Finally, monitored burn-m assumes testing during dynamic burn-m and is becom­
ing widespread becausc of long electrical test times associated with large circuits 

[DCNP95]
Only the monitored burn-m is of interest to us for future research This burn-m 

is a combination of dynamic burn-m, high voltage cell stress testing and electrical 
functional pattern testing Monitored burn-m is a technique m which devices are 

operated at an elevated temperature (125°C) and voltage (8-8 5V) for an extended 
period of time while subjecting all devices under test to functional testing using 
complex test patterns This is followed by a short duration at a lower temperature 
(-85°C) and voltage (5 5V) during which parametric testing is performed This 

cycle is performed in a few hours range Since the time to burn-m the devices 
has already been committed, the functional testing when performed in this parallel 
manner is essentially for free In the traditional manner, the functional testing is 
performed after burn-m to detect failures Because this approach is a serial process 

it is expensive and, thus, the test time can be reduced by overlapping these test 
steps With VLSI/SOC designs, out of necessity, test time must be increased to 
effectively validate good parts due to their sheer complexity Thus monitored burn- 
in solves those problems and allows long test time at reasonable cost to thoroughly 
assess the inherent quality of the VLSI/SOC designs There are some advantages 
m using the monitored burn-m against dynamic burn-m [DCNP95] It utilizes the 
“dead time” during burn-m testing Carefully ordered test vectors can stress 
circuit nodes to their maximum During dynamic burn-m, if the input vectors are 
not carefully chosen, switching activity m some parts may not be sustained at a 
higher level If a junction breaks down during burn-m, monitored burn-m will make 
it easier to detect the location of the fault

The drawbacks of the traditional monitored burn-m were defined m [DCNP95] 

In dynamic burn-m, selection of vectors is not restricted to a test set, and higher 
switching activity can be generated than for monitored burn-m The latter requires
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a tester throughout the burn-m process and the cost of tying down a tester for a long 
period could be prohibitively high Also, m monitored burn-m the output of test 
application has to be latched back to scan registers A solution to these drawbacks 
is the BIST monitored burn-m Thus, a BIST-based test methodology can be used 

to carry out the functional test during burn-m itself At the same time the first 
drawback mentioned above would be avoided by the pseudo-random nature of BIST 

test methodology The second drawback is also avoided with the BIST monitored 
burn-m approach

All the monitored burn-m approaches are given at logic or test vector level 
One possible future research direction would be to increase the switching activity 
at higher levels, where the logic-level transition maximization can be replaced with 
block-level switching maximization For each high-level node m a system-test hi­
erarchy (given as a set of subnodes with their block-tests) the task of a monitored 
burn-m test scheduling algorithm would be to generate an effective block-test sched­
ule to maximize the stressing of the node By maximizing the stress at any node 
level, the stress would hierarchically accumulate at system level Thus, to extrap­

olate the work proposed m this thesis, the stressing maximization at system level 
can be achieved by maximizing the power-test characteristics at node-level in the 
modular test hierarchy described m chapter 3
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X  G u  R T  L e v e l  T e s t a b i l i t y  I m p r o v e m e n t  b y  T e s t a b i l i t y  A n a l y s i s  a n d  

T r a n s f o r m a t i o n s  P h D  t h e s i s ,  L m k o o p m g  U n i v e r s i t y ,  1 9 9 6

S  G e r s t c n d o r f c r  a n d  H  J  W u n d e r l i c h  M i n i m i z e d  P o w e r  C o n s u m p t i o n  

f o r  S c a n - B a s e d  B I S T  I n  P r o c e e d i n g s  o f  T h e  I E E E  I n t e r n a t i o n a l  T e s t  

C o n f e r e n c e , p a g e s  7 7 - 8 4 ,  1 9 9 9

J  H a l l b e r g  H i g h - L e v e l  S y n t h e s i s  u n d e r  L o c a l  T i m i n g  C o n s t r a i n t s  

M a s t e r ’s  t h e s i s ,  L m k o o p m g  U n i v e r s i t y ,  1 9 9 6

E  R  H n a t e k  T h o u g h t s  o n  V L S I  B u r n - I n  I n  P r o c e e d i n g s  o f  T h e  I n ­

t e r n a t i o n a l  T e s t  C o n f e r e n c e , p a g e s  5 3 1 - 5 3 4 ,  1 9 8 4

I G  H a r r i s  a n d  A  O r a i l o g l u  F i n e - G r a i n e d  C o n c u r r e n c y  m  T e s t  

S c h e d u l i n g  f o r  P a r t i a l - I n t r u s i o n  B I S T  I n  P r o c e e d i n g s  o f  T h e  E u r o ­

p e a n  D e s i g n  &  T e s t  C o n f e r e n c e , p a g e s  1 1 9 - 1 2 3 ,  1 9 9 4

H  H a r m a n a m  a n d  C  P a p a c h n s t o u  A n  I m p r o v e d  M e t h o d  f o r  R T L  

S y n t h e s i s  w i t h  T e s t a b i l i t y  T r a d e o f f s  I n  P r o c e e d i n g s  o f  T h e  I n t e r n a ­

t i o n a l  C o n f e r e n c e  o f  C o m p u t e r - A i d e d  D e s i g n , p a g e s  3 0 - 3 5 ,  1 9 9 3

A  H a s h i m o t o  a n d  J  S t e v e n s  W i r e  R o u t i n g  b y  O p t i m i z i n g  C h a n n e l  

A s s i g n m e n t  w i t h i n  L a r g e  A p e r t u r e s  I n  P r o c e e d i n g s  o f  T h e  8 t h  D e s i g n  

A u t o m a t i o n  C o n f e r e n c e  W o r k s h o p , p a g e s  1 5 5 - 1 6 9 ,  1 9 7 1

W  J  H u g h e s I I I  S y s t e m  L e v e l  B o u n d a r y  S c a n  i n  a  H i g h l y  I n t e g r a t e d  

S w i t c h  I n  P r o c e e d i n g s  o f  T h e  I E E E  I n t e r n a t i o n a l  T e s t  C o n f e r e n c e ,  

I T C ’9 7 , , p a g e s  6 3 6 - 6 3 9 ,  1 9 9 7
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[ H W 9 8 ]

[ I Y 9 7 ]

[ I Y 9 8 ]

[ J P P 8 9 ]

[ J R 9 7 ]

[ J Y O O ]

[ K A H A 9 7 ]

[ K G V 8 3 ]

[ K P 8 7 ]

[ K R V 9 9 ]

[ K S 8 2 ]

[KTH88]

A  H e r t w i g  a n d  H  J  W u n d e r l i c h  L o w  P o w e r  S e r i a l  B u i l t - I n  S e l f - T e s t  

I n  P r o c e e d i n g s  o f  T h e  I E E E  E u r o p e a n  T e s t  W o r k s h o p ,  p a g e s  4 9 - 5 3 ,  

1 9 9 8

T  I s h i h a r a  a n d  H  Y a s u u r a  O p t i m i z a t i o n  o f  S u p p l y  V o l t a g e  A s s i g n ­

m e n t  f o r  P o w e r  R e d u c t i o n  o n  P r o c e s s o r - B a s e d  S y s t e m s  I n  P r o c e e d i n g s  

o f  T h e  7 t h  W o r k s h o p  o n  S y n t h e s i s  a n d  S y s t e m  I n t e g r a t i o n  o f  M i x e d  

T e c h n o l o g y , p a g e s  5 1 - 5 8 ,  1 9 9 7

T  I s h i h a r a  a n d  H  Y a s u u r a  V o l t a g e  S c h e d u l i n g  P r o b l e m  f o r  D y n a m i ­

c a l l y  V a r i a b l e  V o l t a g e  I n  P r o c e e d i n g s  o f  T h e  I n t e r n a t i o n a l  S y m p o s i u m  

o n  L o w - P o w e r  E l e c t r o n i c s  a n d  D e s i g n , p a g e s  1 9 7 - 2 0 2 ,  1 9 9 8

W  B  J o n e ,  C  P a p a c h n s t o u ,  a n d  M  P e r e i r a  A  S c h e m e  f o r  O v e r l a y ­

i n g  C o n c u r r e n t  T e s t i n g  o f  V L S I  C i r c u i t s  I n  P r o c e e d i n g s  o f  D e s i g n  

A u t o m a t i o n  C o n f e r e n c e , p a g e s  5 3 1 - 5 3 6 ,  J u n  1 9 8 9

M  C  J o h n s o n  a n d  K  R o y  D a t a p a t h  S c h e d u l i n g  w i t h  M u l t i p l e  S u p p l y  

V o l t a g e s  a n d  L e v e l  C o n v e r t e r s  A C M  T r a n s a c t i o n s  o n  D e s i g n  A u t o m a ­

t i o n  o f  E l e c t r o n i c  S y s t e m s , 2 ( 3 )  2 2 7 - 2 4 8 ,  J u l  1 9 9 7

J  J a n s s e n  a n d  R  Y a s s a w i  P r i v a t e  D i s c u s s i o n  ( D a l h o u s i e  U n i v e r s i t y  

&  T r e n t  U n i v e r s i t y ,  C a n a d a ) ,  1 9 9 9 - 2 0 0 0

P  K o l l i g ,  B  M  A l - H a s h i m i ,  a n d  K  M  A b b o t t  E f f i c i e n t  S c h e d u l i n g  

o f  B e h a v i o r a l  D e s c r i p t i o n s  m  H i g h - L e v e l  S y n t h e s i s  I E E  P r o c e e d m g s -  

C o m p u t e r s  A n d  D i g i t a l  T e c h n i q u e s , 1 4 4 ( 2 )  7 5 - 8 2 ,  M a r  1 9 9 7

S  K i r p a t n c k ,  C  D  G e l a t t ,  a n d  M  P  V c c c h i  O p t i m i z a t i o n  b y  S i m u ­

l a t e d  A n n e a l i n g  S c i e n c e , 2 2 0 ( 4 5 9 8 )  6 7 1 - 6 8 0 ,  1 9 8 3

F  J  K u r d a h i  a n d  A  C  P a r k e r  R E A L  A  P r o g r a m  f o r  R e g i s t e r  A l ­

l o c a t i o n  I n  P r o c e e d i n g s  o f  T h e  24 t h  D e s i g n  A u t o m a t i o n  C o n f e r e n c e , 

p a g e s  2 1 0 - 2 1 5 ,  1 9 8 7

V  K r i s h n a ,  N  R a n g a n a t h a n ,  a n d  N  V i j a y k r i s h n a n  E n e r g y  E f f i c i e n t  

D a t a p a t h  S y n t h e s i s  U s i n g  D y n a m i c  F r e q u e n c y  C l o c k i n g  a n d  M u l t i p l e  

V o l t a g e s  I n  P r o c e e d i n g s  o f  t h e  1 2 t h  I n t e r n a t i o n a l  C o n f e r e n c e  o n  V L S I  

D e s i g n , p a g e s  4 4 0 - 4 4 5 ,  1 9 9 9

C  R  K i m c  a n d  K  K  S a l u j a  T e s t  S c h e d u l i n g  i n  T e s t a b l e  V L S I  C i r ­

c u i t s  I n  P r o c e e d i n g s  o f  T h e  I n t e r n a t i o n a l  S y m p o s i u m  o f  F a u l t -  T o l e r a n t  

C o m p u t e r s , p a g e s  4 0 6 - 4 1 2 ,  J u n  1 9 8 2

K  K i m ,  J  G  T r o n t ,  a n d  D  D  H a  A u t o m a t i c  I n s e r t i o n  o f  B I S T  H a r d ­

w a r e  U s i n g  V H D L  I n  P r o c e e d i n g s  o f  T h e  2 5 t h  I E E E  D e s i g n  A u t o m a ­

t i o n  C o n f e r e n c e , p a g e s  9 - 1 5 ,  1 9 8 8
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[ K W 9 8 ]

[ L C H 9 8 ]

[ L H W 9 7 ]

[ L K L 9 3 ]

[ L N B 9 1 ]

[ L P 9 9 ]

[ L P O O a ]

[ L P O O b ]

[ L S 9 2 ]

[ L W J A 9 2 ]

[ M A 9 8 ]

[ M D ]

G  K i e f e r  a n d  H - J  W u n d e r l i c h  D e t e r m i n i s t i c  B I S T  w i t h  M u l t i p l e  S c a n  

C h a i n s  I n  P r o c e e d i n g s  o f  t h e  I E E E  I n t e r n a t i o n a l  T e s t  C o n f e r e n c e , 

p a g e s  1 0 5 7 - 1 0 6 4 ,  1 9 9 8

K - J  L e e ,  J - J  C h e n ,  a n d  C - K  H u a n g  U s i n g  a  S i n g l e  I n p u t  t o  S u p ­

p o r t  M u l t i p l e  S c a n  C h a i n s  I n  P r o c e e d i n g s  o f  t h e  I E E E  I n t e r n a t i o n a l  

C o n f e r e n c e  o n  C o m p u t e r - A i d e d  D e s i g n , p a g e s  7 4 - 7 8 ,  1 9 9 8

Y  R  L m ,  T  T  H w a n g ,  a n d  A  C  H  W u  S c h e d u l i n g  T e c h n i q u e s  f o r  

V a r i a b l e  V o l t a g e  L o w  P o w e r  D e s i g n s  A C M  T r a n s a c t i o n s  o n  D e s i g n  

A u t o m a t i o n  o f  E l e c t r o n i c  S y s t e m s , 2 ( 2 )  8 1 - 9 7 ,  A p r  1 9 9 7

W  J  L a i ,  C  P  K u n g ,  a n d  C  S  L m  T e s t  T i m e  R e d u c t i o n  i n  S c a n  

D e s i g n e d  C i r c u i t s  I n  P r o c e e d i n g s  o f  E u r o A s i c  C o n f e r e n c e , p a g e s  4 8 9 -  

4 9 3 ,  1 9 9 3

S  P  L m ,  C  A  N j m d a ,  a n d  M  A  B r e u e r  A  S y s t e m a t i c  A p p r o a c h  f o r  

D e s i g n i n g  T e s t a b l e  V L S I  C i r c u i t s  I n  P r o c e e d i n g s  o f  T h e  I E E E  C o n ­

f e r e n c e  o f  C o m p u t e r  A i d e d  D e s i g n ,  I C C A D ’9 1 , p a g e s  4 9 6 - 4 9 9 ,  1 9 9 1

E  L a r s s o n  a n d  Z  P e n g  A n  E s t i m a t i o n - b a s e d  T e c h n i q u e  f o r  T e s t  

S c h e d u l i n g  I n  P r o c e e d i n g s  o f  T h e  I n t e r n a t i o n a l  C o n f e r e n c e  o n  E l e c ­

t r o n i c  C i r c u i t s  a n d  S y s t e m s , 1 9 9 9

E  L a r s s o n  a n d  Z  P e n g  A  T e c h n i q u e  f o r  T e s t  I n f r a s t r u c t u r e  D e s i g n  

a n d  T e s t  S c h e d u l i n g  I n  P r o c e e d i n g s  o f  T h e  D e s i g n  a n d  D i a g n o s t i c s  o f  

E l e c t r o n i c  C i r c u i t s  a n d  S y s t e m s  W o r k s h o p , 2 0 0 0

E  L a r s s o n  a n d  Z  P e n g  T e s t  I n f r a s t r u c t u r e  D e s i g n  a n d  T e s t  S c h e d u l ­

i n g  O p t i m i z a t i o n  I n  P r o c e e d i n g s  o f  T h e  I E E E  E u r o p e a n  T e s t  C o n f e r -  

e n c e , 2 0 0 0

S  Y  L e e  a n d  K  K  S a l u j a  A n  A l g o r i t h m  t o  R e d u c e  T e s t  A p p l i c a t i o n  

T i m e  i n  P u l l  S c a n  D e s i g n s  I n  P r o c e e d i n g s  o f  T h e  I E E E  I n t e r n a t i o n a l  

C o n f e r e n c e  o n  C o m p u t e r - A i d e d  D e s i g n , p a g e s  1 7 - 2 0 ,  1 9 9 2

T - C  L e e ,  W  H  W o l f ,  N  K  J h a ,  a n d  J  M  A c k c n  B e h a v i o r a l  S y n t h e s i s  

f o r  E a s y  T e s t a b i l i t y  m  D a t a  P a t h  A l l o c a t i o n  I n  P r o c e e d i n g s  o f  t h e  

I n t e r n a t i o n a l  C o n f e r e n c e  o n  C o m p u t e r  D e s i g n , p a g e s  2 9 - 3 2 ,  O c t  1 9 9 2

E  J  M a n m s s c n  a n d  J  A e r t s  T e s t  P r o t o c o l  S c h e d u l i n g  f o r  E m b e d d e d -  

C o r e  B a s e d  S y s t e m  I C s  I n  P r o c e e d i n g s  o f  T h e  I E E E  I n t e r n a t i o n a l  

W o r k s h o p  o n  T e s t i n g  E m b e d d e d  C o r e - B a s e d  S y s t e m s  ( T E C S ) ,  p a g e s  

5  3 - 1  -  5  3 - 9 ,  1 9 9 8

D i s c r e t e  M a t h e m a t i c s  a n d  A l g o r i t h m s  N e t w o r k  ( D m a n e t )  

h t t p  / / w w w  z p r  u m - k o c l n  d e / d m a n e t
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[ M c a 9 8 ]

[ M G F + 9 9 ]

[ M K 9 6 ]

[ M K R T 9 5 ]

[ M L 9 9 ]

[ M M 9 1 ]

[ M T O M 9 6 ]

[ M W M V O O ]

[ N A 9 9 ]

[ N B 9 3 ]

[NB95]

E  J  M a n n i s s e n  a n d  c t  a l  A  S t r u c t u r e d  a n d  S c a l a b l e  M e c h a n i s m  f o r  

T e s t  A c c e s s  t o  E m b e d d e d  R e u s a b l e  C o r e s  I n  P r o c e e d i n g s  o f  T h e  I n ­

t e r n a t i o n a l  T e s t  C o n f e r e n c e , 1 9 9 8

S  M a m c h ,  A  G a b a r r o ,  J  F i g u e r a s ,  P  G i r a r d ,  L  G u i l l e r ,  C  L a n d r a u l t ,  

S  P r a v o s s o u d o v i t c h ,  P  T c i x c i r a ,  a n d  M  S a n t o s  L o w  P o w e r  B I S T  b y  

F i l t e r i n g  N o n - D e t e c t i n g  V e c t o r s  I n  P r o c e e d i n g s  o f  T h e  I E E E  E u r o p e a n  

T e s t  W o r k s h o p , p a g e s  1 6 5 - 1 7 0 ,  1 9 9 9

R  S  M a r t i n  a n d  J  P  K n i g h t  O p t i m i z i n g  P o w e r  I n  A S I C  B e h a v i o r a l  

S y n t h e s i s  I E E E  D e s i g n  a n d  T e s t  o f  C o m p u t e r s , 1 3 ( 2 )  5 8 - 7 1 ,  S u m m e r  

1 9 9 6

N  M u k h e r j e e ,  M  K a s s a b ,  J  R a j s k i ,  a n d  J  T s y z e r  A r i t h m e t i c  B u i l t -  

I n  S e l f  T e s t  f o r  H i g h - L e v e l  S y n t h e s i s  I n  P r o c e e d i n g s  o f  T h e  1 3 t h  I E E E  

V L S I  T e s t  S y m p o s i u m ,  V T S ’9 5 , 1 9 9 5

E  J  M a n n i s s e n  a n d  M  L o u s b e r g  T h e  R o l e  o f  T e s t  P r o t o c o l s  i n  T e s t ­

i n g  E m b e d d e d - C o r e - B a s e d  S y s t e m s  I C s  I n  P r o c e e d i n g s  o f  T h e  I E E E  

E u r o p e a n  T e s t  W o r k s h o p , 1 9 9 9

S  P  M o r l c y  a n d  R  A  M a r l e t t  S e l e c t a b l e  L e n g t h  P a r t i a l  S c a n  A  

M e t h o d  t o  R e d u c e  V e c t o r  L e n g t h  I n  P r o c e e d i n g s  o f  T h e  I E E E  I n t e r ­

n a t i o n a l  T e s t  C o n f e r e n c e , p a g e s  4 0 8 - 4 1 1 ,  1 9 9 1

A  M o t o h a r a ,  S  T a k e o k a ,  M  O h t a ,  a n d  M  M u r a o k a  A  P a r t i a l  

S c a n  D e s i g n  A p p r o a c h  B a s e d  o n  R e g i s t e r - T r a n s f e r  L e v e l  T e s t a b i l i t y  

A n a l y s i s  I E I C E  T r a n s a c t i o n s  o n  I n f o r m a t i o n  a n d  S y s t e m s , E 7 9 -  

D ( 1 0 )  1 4 3 6 - 1 4 4 2 ,  O c t  1 9 9 6

V  M u r c s a n ,  X  W a n g ,  V  M u r e s a n ,  a n d  M  V l a d u t i u  A  C o m p a r i s o n  

o f  C l a s s i c a l  S c h e d u l i n g  A p p r o a c h e s  m  P o w e r - C o n s t r a i n e d  B l o c k - T e s t  

S c h e d u l i n g  I n  P r o c e e d i n g s  o f  I E E E  T e s t  C o n f e r e n c e  ( I T C %  p a g e s  

8 8 2 - 8 9 1 ,  2 0 0 0

N  N i c o l i c i  a n d  B  M  A l H a s h i m i  E f f i c i e n t  B I S T  H a r d w a r e  I n s e r t i o n  

w i t h  L o w  T e s t  A p p l i c a t i o n  T i m e  f o r  S y n t h e s i z e d  D a t a  P a t h s  I n  

P r o c e e d i n g s  o f  T h e  D e s i g n ,  A u t o m a t i o n  a n d  T e s t  m  E u r o p e  C o n f e r e n c e  

a n d  E x h i b i t i o n  D A T E ’9 9 , p a g e  a r t i c l e  6 0 ,  1 9 9 9

S  N a r a y a n a n  a n d  M  A  B r e u e r  R e c o n f i g u r a b l e  S c a n  C h a m  A  N o v e l  

A p p r o a c h  t o  R e d u c e  T e s t  A p p l i c a t i o n  T i m e  I n  P r o c e e d i n g s  o f  t h e  

I E E E  I n t e r n a t i o n a l  C o n f e r e n c e  o n  C o m p u t e r - A i d e d  D e s i g n , p a g e s  7 1 0 — 

7 1 5 ,  1 9 9 3

S  N a r a y a n a n  a n d  M  A  B r e u e r  R e c o n f i g u r a t i o n  T e c h n i q u e s  f o r  a  S i n ­

g l e  S c a n  C h a m  I E E E  T r a n s a c t i o n s  o n  C o m p u t e r - A i d e d  D e s i g n  o f  

I n t e g r a t e d  C i r c u i t s  a n d  S y s t e m s , 1 4 ( 6 )  7 5 0 - 7 6 5 ,  1 9 9 5
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[ N G B 9 2 ]

[ N G B 9 3 ]

[ N N B 9 2 ]

[ N N S a B 9 4 ]

[ 0 B T 9 1 ]

[ O H 9 3 ]

[ O H 9 7 ]

[ P C H 9 1 ]

[ P c d 9 6 ]

[ P K 8 7 ]

[ P K 8 9 ]

[PS92]

S  N a r a y a n a n ,  R  G u p t a ,  a n d  M  B r c u e r  C o n f i g u r i n g  M u l t i p l e  S c a n  

C h a i n s  f o r  M i n i m u m  T e s t  T i m e  I n  P r o c e e d i n g s  o f  t h e  I E E E  I n t e r n a ­

t i o n a l  C o n f e r e n c e  o n  C o m p u t e r - A i d e d  D e s i g n , p a g e s  4 - 8 ,  1 9 9 2

S  N a r a y a n a n ,  R  G u p t a ,  a n d  M  A  B r c u e r  O p t i m a l  C o n f i g u r i n g  o f  

M u l t i p l e  S c a n  C h a i n s  I E E E  T r a n s a c t i o n s  o n  C o m p u t e r s , 4 2 ( 9 )  1 1 2 1 -  

1 1 3 1 ,  1 9 9 3

S  N a r a y a n a n ,  C  N j m d a ,  a n d  M  B r c u e r  O p t i m a l  S e q u e n c i n g  o f  S c a n  

R e g i s t e r s  I n  P r o c e e d i n g s  o f  T h e  I n t e r n a t i o n a l  T e s t  C o n f e r e n c e , p a g e s  

2 9 3 - 3 0 2 ,  1 9 9 2

L  S  N i e l s e n ,  C  N i e s s e n ,  J  S p a r s o ,  a n d  K  a n  B e r k e l  L o w - P o w e r  

O p e r a t i o n  U s i n g  S e l f - T i m e d  C i r c u i t s  a n d  A d a p t i v e  S c a l i n g  o f  t h e  S u p ­

p l y  V o l t a g e  I E E E  T r a n s a c t i o n s  o n  V L S I  S y s t e m s , 2 ( 4 )  3 9 1 - 3 9 7 ,  D e c  

1 9 9 4

S  O o s t d i j k ,  F  B e e n k e r ,  a n d  L  T h i j s s e n  A  M o d e l  f o r  T e s t - T i m e  R e ­

d u c t i o n  o f  S c a n  T e s t a b l e  C i r c u i t s  I n  P r o c e e d i n g s  o f  t h e  I E E E  I n t e r ­

n a t i o n a l  C o n f e r e n c e  o n  C o m p u t e r - A i d e d  D e s i g n ,  p a g e s  2 4 3 - 2 5 2 ,  1 9 9 1

A  O r a i l o g l u  a n d  I G  H a r r i s  T e s t  P a t t e r n  G e n e r a t i o n  a n d  T e s t  

S c h e d u l i n g  f o r  S e l f - T e s t a b l e  D e s i g n s  I n  P r o c e e d i n g s  o f  T h e  I n t e r n a ­

t i o n a l  C o n f e r e n c e  o n  C o m p u t e r  D e s i g n , p a g e s  5 2 8 - 5 3 1 ,  1 9 9 3

A  O r a i l o g l u  a n d  I  G  H a r r i s  M i c r o a r c h i t e c t u r a l  s y n t h e s i s  f o r  r a p i d  

B I S T  t e s t i n g  I E E E  T r a n s a c t i o n s  o n  C o m p u t e r - A i d e d  D e s i g n  o f  I n t e ­

g r a t e d  C i r c u i t s  a n d  S y s t e m s , 1 6 ( 6 )  5 7 3 - 5 8 6 ,  J u n  1 9 9 7

C  P a p a c h r i s t o u ,  S  C h i u ,  a n d  H  H a r m a n a n i  S Y N T E S T  A  M e t h o d  

f o r  H i g h - l e v e l  S y n t h e s i s  w i t h  S e l f - T e s t a b i l i t y  I n  P r o c e e d i n g s  o f  T h e  

I n t e r n a t i o n a l  C o n f e r e n c e  o n  C o m p u t e r  D e s i g n , I C C D , p a g e s  4 5 - 6 2 ,  

1 9 9 1

M  P c d r a m  ’T u t o r i a l  a n d  S u r v e y  P a p e r ’ P o w e r  M i n i m i z a t i o n  i n  I C  

D e s i g n  P r i n c i p l e s  a n d  A p p l i c a t i o n s  A C M  T r a n s a c t i o n s  o n  D e s i g n  

A u t o m a t i o n  o f  E l e c t r o n i c  S y s t e m s ,  1 ( 1 )  3 - 5 6 ,  J a n  1 9 9 6

P  G  P a u l m  a n d  J  P  K n i g h t  F o r c e - D i r e c t e d  S c h e d u l i n g  m  A u t o m a t i c  

D a t a  P a t h  S y n t h e s i s  I n  P r o c e e d i n g s  o f  2 4 t h  D e s i g n  A u t o m a t i o n  C o n ­

f e r e n c e . , p a g e s  1 9 5 - 2 0 2 ,  1 9 8 7

P  G  P a u l m  a n d  J  P  K n i g h t  F o r c e - D i r e c t e d  S c h e d u l i n g  f o r  t h e  B e ­

h a v i o r a l  S y n t h e s i s  o f  A S I C s  I E E E  T r a n s a c t i o n s  o n  C o m p u t e r - A i d e d  

D e s i g n  o f  I n t e g r a t e d  C i r c u i t s  a n d  S y s t e m s , 8 ( 6 )  6 6 1 - 6 7 9 ,  J u n  1 9 8 9

D  K  P r a d h a n  a n d  J  S a x e n a  A  D e s i g n  f o r  T e s t a b i l i t y  S c h e m e  t o  

R e d u c e  T e s t  A p p l i c a t i o n  T i m e  i n  F u l l  S c a n  I n  P r o c e e d i n g s  o f  T h e  

I E E E  V L S I  T e s t  S y m p o s i u m , p a g e s  5 5 - 5 9 ,  1 9 9 2
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[ R S 9 5 ]

[ R V B 9 6 ]

[ R V B 9 8 ]

[ S D Y 9 8 ]

[ S K 8 8 ]

[ S K 8 9 ]

[ S K 9 2 ]

[ S M 9 T ]

[ S P 9 4 ]

[ S t r 9 2 ]

[SV97]

S  R a j e  a n d  M  S a r r a f z a d c h  V a r i a b l e  V o l t a g e  S c h e d u l i n g  I n  P r o c e e d ­

i n g s  o f  T h e  I n t e r n a t i o n a l  S y m p o s i u m  o n  L o w - P o w e r  E l e c t r o n i c s  a n d  

D e s i g n , p a g e s  9 - 1 4 ,  1 9 9 5

N  R a n g a n a t h a n ,  N  V i j a y k r i s h n a n ,  a n d  N  B h a v a n i s h a n k a r  A  V L S I  

A r r a y  A r c h i t e c t u r e  w i t h  D y n a m i c  F r e q u e n c y  C l o c k i n g  I n  P r o c e e d i n g s  

o f  t h e  I E E E  I n t e r n a t i o n a l  C o n f e r e n c e  o n  C o m p u t e r  D e s i g n  ( I C C D ) ,  

p a g e s  1 3 7 - 1 4 0 ,  1 9 9 6

N  R a n g a n a t h a n ,  N  V i j a y k r i s h n a n ,  a n d  N  B h a v a n i s h a n k a r  A  L i n e a r  

A r r a y  P r o c e s s o r  w i t h  D y n a m i c  F r e q u e n c y  C l o c k i n g  f o r  I m a g e  P r o ­

c e s s i n g  A p p l i c a t i o n s  I E E E  T r a n s a c t i o n s  o n  C i r c u i t s  a n d  S y s t e m s  f o r  

V i d e o  T e c h n o l o g y , 8 ( 4 )  4 3 5 - 4 4 5 ,  1 9 9 8

M  S u g i h a r a ,  H  D a t e ,  a n d  H  Y a s u u r a  A  N o v e l  T e s t  M e t h o d o l o g y  f o r  

C o r e - b a s e d  S y s t e m  L S I s  a n d  a  T e s t i n g  T i m e  M i n i m i z a t i o n  P r o b l e m  

I n  P r o c e e d i n g s  o f  T h e  I E E E  I n t e r n a t i o n a l  T e s t  C o n f e r e n c e , p a g e s  4 6 5 -  

4 7 2 ,  1 9 9 8

J  S a y a h  a n d  C  R  K i m c  T e s t  S c h e d u l i n g  f o r  H i g h  P e r f o r m a n c e  V L S I  

S y s t e m  I m p l e m e n t a t i o n s  I n  P r o c e e d i n g s  o f  T h e  I n t e r n a t i o n a l  T e s t  

C o n f e r e n c e , p a g e s  4 2 1 - 4 3 0 ,  O c t  1 9 8 8

J  S a y a h  a n d  C  R  K i m e  S c h e d u l i n g  U n e q u a l  L e n g t h  T e s t s  i n  H i g h  

P e r f o r m a n c e  V L S I  S y s t e m  I m p l e m e n t a t i o n s  I n  P r o c e e d i n g s  o f  T h e  

I n t e r n a t i o n a l  C o n f e r e n c e  o n  C o m p u t e r  D e s i g n , p a g e s  5 6 6 - 5 7 0 ,  O c t  

1 9 8 9

J  S a y a h  a n d  C  R  K i m e  T e s t  S c h e d u l i n g  m  H i g h  P e r f o r m a n c e  V L S I  

S y s t e m  I m p l e m e n t a t i o n s  I E E E  T r a n s a c t i o n s  o n  C o m p u t e r s , 4 1 ( 1 )  5 2 -  

6 7 ,  J a n  1 9 9 2

T  M  S t o r e y  a n d  B  M c W i l l i a m  A  T e s t  M e t h o d o l o g y  f o r  H i g h  P e r f o r ­

m a n c e  M C M s  J o u r n a l  o f  E l e c t r o n i c  T e s t m q  T h e o r y  a n d  A p p l i c a t i o n s ,  

1 0  1 0 9 - 1 1 8 ,  1 9 9 7

M  S r m i v a s  a n d  L  M  P a t n a i k  G e n e t i c  A l g o r i t h m s  A  s u r v e y  C o m ­

p u t e r , , 2 7 ( 6 )  1 7 - 2 6 ,  1 9 9 4

A  P  S t r o e l e  S e l f - T e s t  S c h e d u l i n g  w i t h  B o u n d e d  T e s t  E x e c u t i o n  T i m e  

I n  P r o c e e d i n g s  o f  T h e  I n t e r n a t i o n a l  T e s t  C o n f e r e n c e , p a g e s  1 3 0 - 1 3 9 ,  

1 9 9 2

V  S c h n e c k e  a n d  O  V o r n b e r g e r  H y b r i d  G e n e t i c  A l g o r i t h m s  f o r  C o n ­

s t r a i n e d  P l a c e m e n t  P r o b l e m s  I E E E  T r a n s a c t i o n s  o n  E v o l u t i o n a r y  

C o m p u t a t i o n , 1 ( 4 )  2 6 6 - 2 7 7 ,  N o v  1 9 9 7
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[ S W 8 6 ]

[ S W 9 2 ]

[ S W 9 4 ]

[ S W 9 5 ]

[ W D 9 6 ]

[ W G 9 4 ]

[ W G 9 7 a ]

[ W G 9 7 b ]

[ W G 9 8 ]

[ W G 9 9 ]

[ W H 9 6 ]

[WI95]

A  P  S t r o e l c  a n d  H  J  W u n d e r l i c h  S i g n a t u r e  A n a l y s i s  a n d  T e s t  

S c h e d u l i n g  f o r  S e l f - T e s t a b l e  C i r c u i t s  I n  P r o c e e d i n g s  o f  T h e  I n t e r ­

n a t i o n a l  S y m p o s i u m  o n  C i r c u i t s  a n d  S y s t e m s , p a g e s  1 0 5 4 - 1 0 5 7 ,  1 9 8 6

A  P  S t r o d e  a n d  H  J  W u n d e r l i c h  C o n f i g u r i n g  F l i p - F l o p s  t o  B I S T  

R e g i s t e r s  I n  P r o c e e d i n g s  o f  T h e  I n t e r n a t i o n a l  T e s t  C o n f e r e n c e , p a g e s  

1 3 0 - 1 3 9 ,  1 9 9 2

A  P  S t r o d e  a n d  I i  J  W u n d e r l i c h  A  U n i f i e d  M e t h o d  f o r  A s s e m b l i n g  

G l o b a l  T e s t  S c h e d u l e s  I n  P r o c e e d i n g s  o f  T h e  T h i r d  A s i a n  T e s t  S y m ­

p o s i u m , p a g e s  2 6 8 - 2 7 3 ,  1 9 9 4

A  P  S t r o d e  a n d  H  J  W u n d e r l i c h  T e s t  R e g i s t e r  I n s e r t i o n  w i t h  M i n i ­

m u m  H a r d w a r e  C o s t  I n  P r o c e e d i n g s  o f  T h e  I n t e r n a t i o n a l  C o n f e r e n c e  

o n  C o m p u t e r - A i d e d  D e s i g n , p a g e s  9 5 - 1 0 1 ,  1 9 9 5

K  D  W a g n e r  a n d  S  D e y  H i g h - L e v e l  S y n t h e s i s  f o r  T e s t a b i l i t y  A  

S u r v e y  a n d  P e r s p e c t i v e  I n  P r o c e e d i n g s  o f  T h e  3 3 r d  D e s i g n  A u t o m a t i o n  

C o n f e r e n c e ,  p a g e s  1 3 1 - 1 3 6 ,  1 9 9 6

S  W a n g  a n d  S  K  G u p t a  A T P G  f o r  H e a t  D i s s i p a t i o n  M i n i m i z a t i o n  

D u r i n g  T e s t  A p p l i c a t i o n  I n  P r o c e e d i n g s  o f  T h e  I n t e r n a t i o n a l  T e s t  

C o n f e r e n c e , p a g e s  2 5 0 - 2 5 8 ,  1 9 9 4

S  W a n g  a n d  S  K  G u p t a  A T P G  f o r  H e a t  D i s s i p a t i o n  M i n i m i z a t i o n  

D u r i n g  S c a n  T e s t i n g  I n  P r o c e e d i n g s  o f  T h e  3 4 t h  D e s i g n  A u t o m a t i o n  

C o n f e r e n c e , p a g e s  6 1 4 - 6 1 9 ,  1 9 9 7

S  W a n g  a n d  S  K  G u p t a  D S - L F S R  A  N e w  B I S T  T P G  f o r  L o w  H e a t  

D i s s i p a t i o n  I n  P r o c e e d i n g s  o f  T h e  I E E E  I n t e r n a t i o n a l  T e s t  C o n f e r ­

e n c e , , p a g e s  8 4 8 - 8 5 7 ,  1 9 9 7

S  W a n g  a n d  S  K  G u p t a  A T P G  f o r  H e a t  D i s s i p a t i o n  M i n i m i z a ­

t i o n  D u r i n g  T e s t  A p p l i c a t i o n  I E E E  T r a n s a c t i o n s  o n  C o m p u t e r s ,  

4 7 ( 2 )  2 5 6 - 2 6 2 ,  F e b  1 9 9 8

S  W a n g  a n d  S  K  G u p t a  L T - R T P G  A  N e w  T e s t - P e r - S c a n  B I S T  T P G  

f o r  L o w  H e a t  D i s s i p a t i o n  I n  P r o c e e d i n g s  o f  T h e  I E E E  I n t e r n a t i o n a l  

T e s t  C o n f e r e n c e ,  p a g e s  8 5 - 9 4 ,  1 9 9 9

G  Y  W e i  a n d  M  H o r o w i t z  A  L o w  P o w e r  S w i t c h i n g  P o w e r  S u p p l y  f o r  

S e l f - C l o c k e d  S y s t e m s  I n  P r o c e e d i n g s  o f  T h e  I n t e r n a t i o n a l  S y m p o s i u m  

o n  L o w - P o w e r  E l e c t r o n i c s  a n d  D e s i g n , p a g e s  3 1 3 - 3 1 7 ,  1 9 9 6

Y  J  W u  a n d  A  I v a n o v  S i n g l e - R e f e r e n c e  M u l t i p l e  I n t e r m e d i a t e  S i g n a ­

t u r e  ( S R E M I S )  A n a l y s i s  f o r  B I S T  I E E E  T r a n s a c t i o n s  o n  C o m p u t e r s , 

4 4 ( 6 )  8 1 7 - 8 2 5 ,  J u n  1 9 9 5
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[ W N M L 9 4 ]

[ X i a 9 4 ]

[ Z B 9 7 ]

[ Z M D 9 8 ]

[ Z o r 9 0 ]

[ Z o r 9 3 ]

[ Z o r 9 7 ]

[ Z o r 9 8 ]

[ZRB99]

D  L  W h e a t e r ,  P  N i g h ,  J  T  M e c h l e r ,  a n d  L  L a c r o i x  A S I C  T e s t  C o s t  

S t r a t e g y  T r a d e - o f f s  I n  P r o c e e d i n g s  o f  T h e  I E E E  I n t e r n a t i o n a l  T e s t  

C o n f e r e n c e , 1 9 9 4

D  X i a n g  T e s t  S c h e d u l i n g  U s i n g  T e s t  S u b s e s s i o n  P a r t i t i o n i n g  I n  P r o ­

c e e d i n g s  o f  T h e  I n t e r n a t i o n a l  C o n f e r e n c e  o n  C o m p u t e r  D e s i g n , p a g e s  

6 3 - 6 9 ,  1 9 9 4

Y  Z o n a n  a n d  H  B c d e r r  A n  E f f e c t i v e  M u l t i - C h i p  B I S T  S c h e m e  J o u r ­

n a l  o f  E l e c t r o n i c  T e s t i n g  T h e o r y  a n d  A p p l i c a t i o n s , 1 0  8 7 - 9 5 ,  1 9 9 7

Y  Z o r i a n ,  E  J  M a r m i s s e n ,  a n d  S  D e y  T e s t i n g  E m b e d d e d  c o r e - b a s e d  

s y s t e m  c h i p s  I n  P r o c e e d i n g s  o f  T h e  I E E E  I n t e r n a t i o n a l  T e s t  C o n f e r ­

e n c e , 1 9 9 8

Y  Z o r i a n  A  S t r u c t u r e d  A p p r o a c h  t o  M a c r o c e l l  T e s t i n g  u s i n g  B u i l t - I n  

S e l f - T e s t  I n  P r o c e e d i n g s  o f  t h e  I E E E  C o n f e r e n c e  o n  C u s t o m  C i r c u i t s  

C o n f e r e n c e , p a g e s  2 8  3  1 - 2 8  3  4 ,  1 9 9 0

Y  Z o r i a n  A  D i s t r i b u t e d  B I S T  C o n t r o l  S c h e m e  f o r  C o m p l e x  V L S I  

D e v i c e s  I n  P r o c e e d i n g s  o f  T h e  1 1 t h  I E E E  V L S I  T e s t  S y m p o s i u m , 

p a g e s  4 - 9 ,  A p r  1 9 9 3

Y  Z o r i a n  T e s t  R e q u i r e m e n t s  f o r  E m b e d d e d  C o r e - B a s e d  S y s t e m s  a n d  

I E E E  P 1 5 0 0  I n  P r o c e e d i n g s  o f  T h e  I E E E  I n t e r n a t i o n a l  T e s t  C o n f e r ­

e n c e , I T C ’9 7 ,  p a g e s  1 9 1 - 1 9 9 ,  1 9 9 7

Y  Z o r i a n  S y s t e m - C h i p  T e s t  S t r a t e g i e s  I n  P r o c e e d i n g s  o f  t h e  I E E E  

D e s i g n  A u t o m a t i o n  C o n f e r e n c e , p a g e s  7 5 2 - 7 5 7 ,  1 9 9 8

X  Z h a n g ,  K  R o y ,  a n d  S  B h a w m i k  P O W E R T E S T  A  T o o l  f o r  E n e r g y  

C o n s c i o u s  W e i g h t e d  R a n d o m  P a t t e r n  T e s t i n g  I n  P r o c e e d i n g s  o f  T h e  

I E E E  I n t e r n a t i o n a l  C o n f e r e n c e  o n  V L S I  D e s i g n , 1 9 9 9
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Appendix A Testbench Example

I n  t h i s  a p p e n d i x  t w o  t e s t  s e t  e x a m p l e s  a r e  d e t a i l e d  m  o r d e r  t o  g i v e  a n  i d e a  o f  h o w  

t h e  t e s t b e n c h e s  e x p e r i m e n t e d  m  t h i s  t h e s i s  a r e  s t r u c t u r e d  B e c a u s e  t h e  s i z e  o f  t h e  

f i l e  h o s t i n g  a  t e s t a b l e  i n c r e a s e s  w i t h  t h e  t e s t  r e s o u r c e  c o m p a t i b i l i t y  d e g r e e ,  t h e  f i r s t  

t e s t b e n c h  e x a m p l e  c h o s e n  i s  t h e  l o w  c o m p a t i b i l i t y  d e g r e e  ( f i r s t )  e x p e r i m e n t  T h e  

s e c o n d  t e s t b e n c h  e x a m p l e  i s  t a k e n  f r o m  t h e  l i t e r a t u r e  T h e  s t r u c t u r e s  o f  t h e  a b o v e  

m e n t i o n e d  t e s t b e n c h e s  a r e  g i v e n  b e l o w

T h e  f i r s t  t e s t b e n c h  s t a r t s  w i t h  g e n e r a l  i n f o r m a t i o n  a b o u t  i t s  p a r a m e t e r s  l i k e  t h e  

m a x i m a l  a n d  m i n i m a l  p o s s i b l e  p o w e r  d i s s i p a t i o n  v a l u e  f o r  a n y  o f  t h e  b l o c k - t e s t s ,  

t h e  m a x i m a l  a n d  m i n i m a l  p o s s i b l e  t e s t  l e n g t h  f o r  a  b l o c k - t e s t ,  t h e  c o m p a t i b i l i t y  

d e g r e e  p e r c e n t a g e ,  t h e  n u m b e r  o f  b l o c k - t e s t s ,  t h e i r  n a m e s ,  a n d  t h e  m a x i m a l  a n d  

m i n i m a l  p o w e r  d i s s i p a t i o n  c o n s t r a i n t  v a l u e s  o f  t h e  s i m u l a t i o n  r a n g e  A  s t e p  v a l u e  i s  

a l s o  g i v e n  f o r  t h e  d e c r e m e n t a l  s t e p  o f  t h e  p o w e r  d i s s i p a t i o n  c o n s t r a i n t  r a n g e  A f t e r  

a l l  t h i s  i n f o r m a t i o n  t h e  a c t u a l  t e s t b e n c h  c o n t e n t  f o l l o w s  I t  h a s  f i v e  f i e l d s  f o r  e a c h  

b l o c k - t e s t  r e c o r d  t h e  n a m e  o f  t h e  b l o c k - t e s t ,  i t s  e s t i m a t e d  p o w e r  d i s s i p a t i o n ,  i t s  

t e s t  a p p l i c a t i o n  t i m e  ( t e s t  l e n g t h ) ,  t h e  n u m b e r  o f  t h e  b l o c k - t e s t s  c o m p a t i b l e  w i t h  

i t ,  a n d  f i n a l l y  t h e  l i s t  o f  o t h e r  b l o c k - t e s t s  c o m p a t i b l e  w i t h  i t  A  r e c o r d  i s  g i v e n  f o r  

e a c h  b l o c k - t e s t  a n d  t h e y  a r e  s a v e d  m  t h e  f i l e  b e i n g  s o r t e d  b y  t w o  k e y s  t h e i r  t e s t  

a p p l i c a t i o n  t i m e  a s  t h e  p r i m a r y  k e y  t o  s o r t  t h e  l i s t  m  a  d e s c e n d i n g  o r d e r ,  a n d  t h e i r  

e s t i m a t e d  p o w e r  d i s s i p a t i o n  a s  t h e  s e c o n d a r y  k e y  t o  s o r t  t h e  b l o c k  t e s t s  w i t h  t h e  

s a m e  t e s t  a p p l i c a t i o n  t i m e  i n  a  d e s c e n d i n g  o r d e r  a & w e l l
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//L ow  Compatibility Degree Testbench
//G enerated  with the following par imfcters
//P D m ax  = 20 (maximum power dissipation of a block test)
//P D m in  =  1 (minimum power dissipation of a block test)
//T L m ax  = 2o (maximum teat length of a block test)
//T L m m  = 1 (minimum test length of a block tost)
//C D  = 10% (compatibility degree with the other block tests in the list)
//N um ber of block tests j O 
//B lock tests (BT) names
t l  t2 t3 t4 t5 t6 t7 t8 t9 tlO t i l  t l2  t l3  t l4  t l5  t l6  t l7  t l8  t l9  t20 t21 t22 t23 t24 t25
t26 t27 t28 t29 t30 t31 t32 t33 t34 t3o t36 t37 t38 t39 t40 t41 t42 t43 t44 t45 t46 t47 t48 t49 toO
//T h e  Maximal Power Constraint (starting the simulation with) 200
//T h e  Minimal Power Constraint (ending the simulation with) 20
//T h e  Power C onstraint Step 20

BT Name BT PD BT TL Comp BT Nb BT Compatibility List
t l 20 25 4 t3 t l3  t31 t34
t2 17 25 3 t8 t38 t44
t* 11 2o 6 t l  t7  t l2  t l9  t27 t48
t4 8 25 4 t6 t22 t38 t41
t5 4 25 6 t9 t l3  t l7  t29 t34 t47
t6 2 25 4 t4 t23 t37 t44
t7 18 23 5 t3 t9 113 t l7  t50
t8 16 23 6 t2 t22 t30 t34 t40 t43
t9 9 23 5 t5 t7 t i l  t l9  t27

tlO 3 23 2 t37 t48
t i l 19 22 5 t9 t l6  t24 tJO t43
112 13 22 6 t3 t l3  t l8  t28 t38 t48
tl3 o 22 7 t l  t5 t7 t l2  t l4  t23 t33
tl4 1 22 4 tl3  t27 t40 t44
tl5 12 21 3 t30 t46 t50
tl6 14 20 4 t i l  t l7  t32 t37
t l7 9 19 6 t5 t7 t l6  t l9  t23 t42
t l8 6 19 5 tl2  t29 t34 t45 t48
tl9 1 18 6 t3 t9 t l7  t21 t2o t39
t20 12 17 2 132 t50
t21 6 17 3 tl9  t36 t49
t22 11 16 o t4 t8 t27 t42 t46
t23 3 16 8 t6 t l3  t l 7 t29 t33 t39 t44 t48
t24 8 lo 4 t i l  t25 t36 t42
t25 10 14 2 t l9  t24
t26 2 14 4 t33 t38 t4^ t48
t27 5 13 5 t3 t9 t l4  t22 t29
t28 2 13 j t l2  t36 t39 t43 t45
t29 9 12 6 to tl8  t23 t27 t33 tSO
t30 7 11 5 t8 t i l  t l j  t31 t42
t31 5 11 4 t l  t30 t43 t47
t32 4 10 3 t l6  t20 t38
t33 14 9 7 tl3  t23 t26 t29 t35 t43 t48
t34 8 9 4 t l  to t8 t l8
t35 18 8 3 133 t37 t46
t36 11 8 5 t21 t24 t28 t40 t47
t37 8 8 6 t6 tlO t l6  t35 t44 t50
t38 3 8 6 t2 t4 112 t26 t32 t48
t39 1 8 5 tl9  t23 t28 t41 t43
t40 12 7 4 t8 t l4  t36 t46
t41 4 7 2 t4 t39
t42 4 7 6 t l7  t22 t24 t30 t44 t49
t43 11 6 7 t8 t i l  t28 t31 t33 t39 t47
t44 5 6 7 t2 t6 t l4  t23 t37 t42 t50
t45 12 5 4 tl8  t26 t28 t46
t46 8 5 6 t l  > t22 t35 t40 t4o t48
t47 3 5 5 t5 t31 t36 t43 t49
t48 9 4 10 t3 tlO 112 t l8  t23 t26 t33 t38 t46 t50
t49 8 3 3 t21 t42 t47
t50 4 2 7 t7 t l j  t20 t29 t37 t44 t48
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T h e  A S I C - Z  t e s t b e n c h  i s  a l s o  g i v e n  

u s e d  f o r  t h e  f i r s t  t i m e  i n  [ L P O O b ]

/ /  Modified ASIC Z design 
/  /  Each core is tested by an 
/ /  external test a BIST test 
/ /  There is also one interconnection 
/ /  test to a neighbor for each core 
/ /
/ /  Max power(mW) 900

core placement placement test idle
X y name power

TG I 0 0 NONE
ROM1 0 10 t l i 0
ROM1 0 10 t ie 11
ROM1 0 10 t lb 11
RAM 2 0 20 t2i 0
RAM 2 0 20 t2e 9
RAM2 0 20 t2b 9

SAI 0 30 NONE
TG2 10 0 NONE

ROM 2 10 10 t3i 0
ROM2 10 10 t3e 11
ROM2 10 10 t3b 11
RAM3 10 20 t4i 0
RAM 3 10 20 t4e 6
RAM3 10 20 t4b 6

SA2 10 30 NONE
TG4 20 0 NONE

RAM4 20 10 t5i 0
RAM 4 20 10 t5e 4
RAM4 20 10 t5b 4

RL2 20 20 t6i 0
RL2 20 20 t6e 0
RL2 20 20 t6b 0
SA4 20 30 NONE
TG5 30 0 NONE

RAMI 30 10 tlx 0
RAMI 30 10 t7e 10
RAMI 30 10 t7b 10

RL1 30 20 t8i 0
RL1 30 20 t8e 0
RL1 30 20 t8b 0
SA5 30 30 NONE
TG3 40 0 NONE

RF 40 10 t9i 0
RF 40 10 t9e 10
RF 40 10 t9b 10
TC 40 20 NONE

SA3 40 30 NONE

T h i s  t e s t b e n c h  h a s  b e e n  w r i t t e n  a n d

tebt test test core
time gen analy constr

10 TC TC ROM 2
50 TC TC NONE
50 TGI SAI NONE
10 TC TC ROM1
30 TC TC NONE
30 TG2 SA2 NONE

10 TC TC RAM4
50 TC TC NONE
50 TG I SAI NONE
10 TC TC RAM 2
20 TC TC NONE
20 TG2 SA2 NONE

10 TC TC RAMI
11 TC TC NONE
11 TG2 SA2 NONE
10 TC TC RAM3
80 TC TC NONE
80 TG4 SA4 NONE

10 TC TC RF
3o TC TC NONE
35 TG2 SA2 NONE
10 TC TC RL2
70 TC TC NONE
70 TG5 SA5 NONE

10 TC TC RL1
j TC TC NONE
5 TG3 SA3 NONE

b e l o w

test
power

10
140
140

10
120
120

10
140
140

10
106
106

10
48
48
10

176
176

10
141
141

10
148
148

10
48
48
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T r a n s l a t i n g  i t  i n t o  t h e  f o r m a t  u s e d  t o  r u n  t h e  e x p e r i m e n t s  i n  t h i s  t h e s i s ,  t h e  

r e s u l t  w o u l d  b e

//M odified ASIC testbench 
//N um ber of block tests 27 
//B lock tests names
t6e t6b t8e t8b t ie  t lb  t3e t3b t7e t7b t2e t2b t4e t4b toe tob t l i  t2i t3i t4i t5i t6i t7i t8i t9i t9e t9b

BT Name BT PD BT TL CBT Nb BT Compatibility List
t6e 176 80 9 tlb  t2b t3b t4b t5b t6b t7b t8b t9b
t6b 176 80 26 t l i  t ie  t lb  t2i t2e t2b t3> t3e t3b t4i t4e t4b tSi t5e t5b t6i t6e t7i t7e t7b t8i t8e t8b t9i t9e t9b
t8e 148 70 9 t lb  t2b t3b t4b t5b t6b t7b t8b t9b
t8b 148 70 26 tl i  t i e  t lb  t2i t2e t2b t3i t3e t3b t4i t4e t4b t5i t5e t5b t6i t6e t6b t7i t7e t7b t8i t8e t9i t9o t9b
t ie 140 50 9 tlb  t2b t3b t4b t5b t6b t7b t8b t9b
t lb 140 oO 25 t l i  t ie  t2i t2e t2b t3i t3e t4i t4e t4b t5i t5e t5b t6i t6e t6b t7i t7e t7b t8i t8e t8b t9i t9e t9b
t3e 140 50 9 t lb  t2b t3b t4b tob t6b t7b t8b t9b
t3b 140 50 25 t l i  t ie  t2i t2e t2b t3i t3e t4i t4e t4b t5i t5e t5b t6i t6e t6b t7i t7e t7b t8i t8e t8b t9i t9e t9b
t7e 141 35 9 tlb  t2b t3b t4b t5b t6b t7b t8b t9b
t7b 141 35 23 tl i  t ie  t lb  t2i t2e t3i t3e t3b t4i t4e t5i t5e t6i t6e t6b t7i t7e t8i t8e t8b t9i t9e t9b
t2e 120 30 9 t lb  t2b t3b t4b t5b t6b t7b t8b t9b
t2b 120 30 23 t l i  t ie  t lb  t2i t2e t3i t3e t3b t4i t4e t5i t5e t6i t6e t6b t7i t7e t8i t8* t8b t9i t9e t9b
t4e 106 20 9 t lb  t2b t3b t4b t5b t6b t7b t8b t9b
t4b 106 20 23 t l i  t ie  t lb  t2i t2e t3i t3e t3b t4i t4e t5i t je t6i t6e t6b t7i t7e t8i t8o t8b t9i t9e t9b
t5e 48 11 9 t lb  t2b t3b t4b t5b t6b t7b t8b t9b
t5b 48 11 23 t l i  t ie  t lb  t2i t2e t3i t3e t3b t4i t4e t5i t5e t6i t6e t6b t7i t7e t8i t8e t8b t9i t9e t9b
t l i 10 10 8 t lb  t2h t4b t5b t6b t7b t8b t9b
t2i 10 10 8 t2b t3b t4b t5b t6b t7b t8b t9b
t3i 10 10 8 t lb  t2h t3b t4b t6b t7b t8b t9b
t4i 10 10 8 t lb  t3b t4b t5b t6b t7b t8b t9b
t5i 10 10 8 t lb  t2b t3b t4b t5b t6b t8b t9b
t6i 10 10 8 t lb  t2b t3b t5b t6b t7b t8b t9b
t7i 10 10 8 f ib  t2b t3b t4b t5b t6b t7b t8b
t8i 10 10 8 t lb  t2b t3b t4b tob t7b t8b t9b
191 10 10 8 t lb  t2b t3b t4b t5b t6b t7b t9b
t9e 48 o 9 t lb  t2b t3b t4b tob t6b t7b t8b t9b
t9b 48 5 26 tl i  t ie  t lb  t2i t2e t2b t3i t3e t3b t4i t4e t4b toi toe t5b t6i t6e t6b t7i *7e t7b t8i t8e t8b t9i t9e
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Appendix B- Publications

V  M u r c s a n ,  D  C r i s u  a n d  X  W a n g ,  F r o m  V H D L  t o  F P G A  -  A  C a s e  S t u d y  o f  

a  F u z z y  L o g i c  C o n t r o l l e r ,  P r o c e e d i n g s  o f  T h e  I n t e r n a t i o n a l  C o n f e r e n c e  o f  Y o u n g  

L e c t u r e r s  a n d  P h D  S t u d e n t s ,  M i s k o l c ,  H u n g a r y ,  A u g u s t  1 1 - 1 7 ,  1 9 9 7 ,  S e c t i o n  P r o ­

c e e d i n g ,  E n g i n e e r i n g  S c i e n c e  I I ,  p p  8 3 - 9 0

V  M u r c s a n ,  N  N i c o l i c i  a n d  X  W a n g ,  A S I C  D e s i g n  o f  a n  A T M  S w i t c h  F e a t u r i n g  

M u l t i c h a n n e l  B a n d w i d t h  A l l o c a t i o n ,  P r o c e e d i n g s  o f  T h e  S e c o n d  I n t e r n a t i o n a l  C o n ­

f e r e n c e  a n d  E x h i b i t i o n  o n  I n f o r m a t i o n  I n f r a s t r u c t u r e  -  I n f o r m a t i o n  S u p e r  H i g h w a y  

( I C E i r 9 8 ) ,  B e i j i n g ,  C h i n a ,  A p r i l  2 6 - 2 9 ,  1 9 9 8

V  M u r e s a n ,  X  W a n g  a n d  J  J  Y a n ,  A S I C  D e s i g n  o f  a  F u z z y  L o g i c  C o n t r o l l e r ,  

P r o c e e d i n g s  o f  T h e  I A S T E D  I n t e r n a t i o n a l  C o n f e r e n c e  o n  C o n t r o l  a n d  A p p l i c a t i o n s  

( C A ’9 8 ) ,  A u g u s t  1 2 - 1 4 ,  1 9 9 8 ,  H a w a i i ,  U S A ,  p p  9 3 - 9 7 ,  I S B N  0 - 8 8 9 8 6 - 2 7 2 - 9

V  M u r e s a n ,  V  M u r e s a n ,  X  W a n g  a n d  M  V l a d u t i u ,  D e s i g n  a n d  I m p l e m e n t a t i o n  o f  

a  D i d a c t i c  T e s t  S y s t e m  f o r  F P G A  D e v i c e s ,  S p e c i a l  i s s u e  o f  T r a n s a c t i o n s  o n  A u t o ­

m a t i c  C o n t r o l  a n d  C o m p u t e r  S c i e n c e ,  d e d i c a t e d  t o  t h e  T h i r d  I n t e r n a t i o n a l  C o n f e r ­

e n c e  o n  T e c h n i c a l  I n f o r m a t i c s  ( C O N T I ’9 8 ) ,  “ P o h t e h m c a ”  U n i v e r s i t y  o f  T i m i s o a r a ,  

T i m i s o a r a  R o m a n i a ,  O c t o b e r ,  1 9 9 8 ,  p p  2 0 6 - 2 1 5 ,  I S B N  1 2 2 4 - 6 0 0 X

V  M u r e s a n ,  X  W a n g ,  V  M u r e s a n ,  M  V l a d u t i u ,  D i s t r i b u t i o n - G r a p h  B a & e d  A p ­

p r o a c h  a n d  E x t e n d e d  T r e e  G r o w i n g  T e c h n i q u e  i n  P o w e r - C o n s t r a i n e d  B l o c k - T e s t  

S c h e d u l i n g ,  P r o c e e d i n g s  I E E E  N i n t h  A s i a n  T e s t  S y m p o s i u m  ( A T S 50 0 ) ,  D e c  4 - 6 ,  

2 0 0 0 ,  T a i p e i ,  T a i w a n ,  p p  4 6 5 - 4 7 0 ,  I S B N  0 - 7 6 9 5 - 0 8 8 7 - 1 ,  I E E E  C o m p u t e r  S o c i e t y  

O r d e r  N u m b e r  P R 0 0 8 8 7

V  M u r c s a n ,  X  W a n g ,  V  M u i e s a n ,  M  V l a d u t i u ,  A  C o m p a r i s o n  o f  C l a s s i c a l

(
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S c h e d u l i n g  A p p r o a c h e s  m  P o w e r - C o n s  t r a i n e d  B l o c k - T e s t  S c h e d u l i n g ,  P r o c e e d i n g s  

I E E E  I n t e r n a t i o n a l  T e s t  C o n f e r e n c e  ( I T C ’O O ), A t l a n t i c  C i t y ,  U S A ,  O c t o b e r  3 - 5 ,  

2 0 0 0 ,  p p  8 8 2 - 8 9 1 ,  I E E E  C a t  N o  0 0 C H 3 7 1 5 9

V  M u r e s a n ,  X  W a n g ,  V  M u r e s a n ,  M  V l a d u t i u ,  P o w e r - C o n s t r a i n e d  B l o c k - T e s t  

L i s t  S c h e d u l i n g ,  P r o c e e d i n g s  1 1 t h  I n t e r n a t i o n a l  W o r k s h o p  o n  R a p i d  S y s t e m  P r o ­

t o t y p i n g  ( R S P ’0 0 )  S h o r t e n i n g  t h e  P a t h  f r o m  S p e c i f i c a t i o n  t o  P r o t o t y p e ,  P a r i s ,  

F r a n c e ,  J u n e  2 1 - 2 3 ,  2 0 0 0 ,  p p  1 8 2 - 1 8 7 ,  I S B N  0 - 7 6 9 5 - 0 6 6 8 - 2 ,  C a t  N o  P R 0 0 6 6 8

V  M u r e s a n ,  X  W a n g ,  V  M u r e s a n ,  M  V l a d u t i u ,  T h e  L e f t  E d g e  A l g o r i t h m  i n  

B l o c k  T e s t  S c h e d u l i n g  u n d e r  P o w e r  C o n s t r a i n t s ,  P r o c e e d i n g s  2 0 0 0  I E E E  I n t e r n a ­

t i o n a l  S y m p o s i u m  o n  C i r c u i t s  a n d  S y s t e m s  ( I S C A S ’0 0 ) ,  M a y  2 8 - 3 1 ,  2 0 0 0 ,  G e n e v a ,  

S w i t z e r l a n d ,  p p  3 5 1 - 3 5 4 ,  I E E E  C a t  N o  0 0 C H 3 6 3 5 3

V  M u r e s a n ,  X  W a n g ,  V  M u r e s a n ,  M  V l a d u t i u ,  L i s t  S c h e d u l i n g  a n d  T r e e  G r o w i n g  

T e c h n i q u e  m  P o w e r - C o n s t r a i n e d  B l o c k - T e s t  S c h e d u l i n g ,  P r o c e e d i n g s  o f  t h e  I E E E  

E u r o p e a n  T e s t  W o r k s h o p  ( E T W ’0 0 ) ,  M a y  2 3 - 2 6 ,  2 0 0 0 ,  C a s c a i s ,  P o r t u g a l ,  p p  2 7 - 3 2

V  M u r e s a n ,  X  W a n g ,  V  M u r e s a n ,  M  V l a d u t i u ,  T h e  L e f t  E d g e  A l g o r i t h m  a n d  

t h e  T r e e  G r o w i n g  T e c h n i q u e  m  B l o c k  T e s t  S c h e d u l i n g  u n d e r  P o w e r  C o n s t r a i n t s ,  

P r o c e e d i n g s  1 8 t h  I E E E  V L S I  T e s t  S y m p o s i u m  ( V T S ’0 0 ) ,  A p r i l  3 0  -  M a y  4 ,  2 0 0 0 ,  

M o n t r e a l ,  C a n a d a ,  p p  4 1 7 - 4 2 2 ,  I S B N  0 - 7 6 9 5 - 0 6 1 3 - 5

T  K h a d i r ,  V  M u r e s a n ,  M  C o l l i e r ,  X  W a n g ,  T h e  V H D L  M o d e l  O f  A  T h r e e  

S t a g e  A T M  S w i t c h  F e a t u r i n g  A  C e l l - L e v e l  P a t h  A l l o c a t i o n  A l g o r i t h m ,  P r o c e e d ­

i n g s  I A S T E D  I n t e r n a t i o n a l  C o n f e r e n c e  o n  A p p l i e d  I n f o r m a t i c s  ( A I ’0 1 ) ,  I n n s b r u c k ,  

A u s t r i a ,  F e b r u a r y  1 9 - 2 2 ,  2 0 0 1 ,  p p  2 3 5 - 2 4 1

V  M u r e s a n ,  X  W a n g ,  V  M u r e s a n ,  M  V l a d u t i u ,  A  C o m b i n e d  T r e e  G r o w i n g  T e c h ­

n i q u e  f o r  B l o c k - T e s t  S c h e d u l i n g  u n d e r  P o w e r  C o n s t r a i n t s ,  P r o c e e d i n g s  2 0 0 1  I E E E  

I n t e r n a t i o n a l  S y m p o s i u m  o n  C i r c u i t s  a n d  S y s t e m s  ( I S C A S ’0 1 ) ,  M a y  6 - 9 ,  2 0 0 1 ,  S y d ­

n e y ,  A u s t r a l i a ,  p p  K 2 5 5  -  1 ^ 5 8 ,  I E E E  C a t  N o  0 1 C H 3 7 1 9 6 C



\

V  M u r e s a n ,  X  W a n g ,  V  M u r e s a n ,  M  V l a d u t i u ,  M i x e d  C l a s s i c a l  S c h e d u l i n g  A l ­

g o r i t h m s  a n d  T r e e  G r o w i n g  T e c h n i q u e  m  B l o c k - T e s t  S c h e d u l i n g  u n d e r  P o w e r  C o n ­

s t r a i n t ,  P r o c e e d i n g s  1 2 t h  I n t e r n a t i o n a l  W o r k s h o p  o n  R a p i d  S y s t e m  P r o t o t y p i n g  

( R S P ’O l )  -  S h o r t e n i n g  t h e  P a t h  f r o m  S p e c i f i c a t i o n  t o  P r o t o t y p e ,  M o n t e r e y ,  C a l i f o r ­

n i a ,  U S A ,  J u n e  2 5 - 2 T ,  2 0 0 1 ,  p p  1 6 2 - 1 6 7 ,  I S B N  0 - 7 6 9 5 - 1 2 0 6 - 2 ,  C a t  N o  P R 0 0 6 6 8

V  M u r e s a n ,  X  W a n g ,  V  M u r e s a n ,  M  V l a d u t i u ,  G r e e d y  T r e e  G r o w i n g  H e u r i s t i c s  

o n  B l o c k - T e s t  S c h e d u l i n g  u n d e r  P o w e r  C o n s t r a i n t s ,  i n v i t e d  p a p e r ,  t o  b e  p u b l i s h e d  

m  V L S I  D e s i g n  -  I n t e r n a t i o n a l  J o u r n a l  o f  C u s t o m - C h i p  D e s i g n ,  S i m u l a t i o n ,  a n d  

T e s t i n g

198_____________________________________________________________________


