
Online Scheduling for Real-Time

Multitasking on Recon�gurable Hardware

Devices

A Thesis submitted for the degree of Doctor of Philosophy

By

Guy Wassi-Leupi

Department of New Media & Technologies,

Faculty of Design, Media & Management,

Buckinghamshire New University

Brunel University, London

July, 2011

Abstract

Nowadays the ever increasing algorithmic complexity of embedded applications requires the designers to

turn towards heterogeneous and highly integrated systems denoted as SoC (System-on-a-Chip). These

architectures may embed CPU-based processors, dedicated datapaths as well as recon�gurable units.

However, embedded SoCs are submitted to stringent requirements in terms of speed, size, cost, power

consumption, throughput, etc. Therefore, new computing paradigms are required to ful�l the constraints

of the applications and the requirements of the architecture.

Recon�gurable Computing is a promising paradigm that provides probably the best trade-o� between these

requirements and constraints. Dynamically recon�gurable architectures are their key enabling technology.

They enable the hardware to adapt to the application at runtime. However, these architectures raise new

challenges in SoC design. For example, on one hand, designing a system that takes advantage of dynamic

recon�guration is still very time consuming because of the lack of design methodologies and tools. On the

other hand, scheduling hardware tasks di�ers from classical software tasks scheduling on microprocessor

or multiprocessors systems, as it bears a further complicated placement problem.

This thesis deals with the problem of scheduling online real-time hardware tasks on Dynamically

Recon�gurable Hardware Devices (DRHWs). The problem is addressed from two angles :

(i) Investigating novel algorithms for online real-time scheduling/placement on DRHWs.

(ii) Scheduling/Placement algorithms library for RTOS-driven Design Space Exploration (DSE).

Regarding the �rst point, the thesis proposes two main runtime-aware scheduling and placement techniques

and assesses their suitability for online real-time scenarios. The �rst technique discusses the impact of

synthesizing, at design time, several shapes and/or sizes per hardware task (denoted as multi-shape task),

in order to ease the online scheduling process. The second technique combines a looking-ahead scheduling

approach with a slots-based recon�gurable areas management that relies on a 1D placement. The results

show that in both techniques, the scheduling and placement quality is improved without signi�cantly

increasing the algorithm time complexity.

Regarding the second point, in the process of designing SoCs embedding recon�gurable parts, new design

paradigms tend to explore and validate as early as possible, at system level, the architectural design space.

Therefore, the RTOS (Real-Time Operating System) services that manage the recon�gurable parts of the

SoC can be re�ned. In such a context, gathering numerous hardware tasks scheduling and placement

algorithms of various complexity vs performance trade-o�s in a kind of library is required. In this thesis,

proposed algorithms in addition to some existing ones are purposely implemented in C++ language, in

order to insure the compatibility with any C++/SystemC based SoC design methodology.

Key-words: FPGA, Recon�gurable SoC, DES, Modelling, Scheduling, Placement, RTOS.

i

Acknowledgments

This work was carried out in two institutions : at Faculty of Design, Media & Mana-

gement, Buckinghamshire New University, High Wycombe (UK), and, in the Computer

Architecture team at ETIS/CNRS lab, ENSEA, University of Cergy (France).

I would like to take this opportunity to thank Professor Geo� Lawday for giving me the

opportunity to undertake this thesis dissertation. I would also like to express my gratitude

to him for being always understanding and encouraging even when I felt stressed.

I am sincerely thankful to my supervisors Dr Kevin Maher from Buckinghamshire New

University and Dr Amine Benkhelifa from ETIS lab, University of Cergy, for their valuable

supervision and support over the years.

I owe a great debt to Professor François Verdier from University of Nice Sophia-

Antipolis who advised, encouraged, and inspired my research. I have been blessed with two

experts in recon�gurable computing, Amine and François. They have shown generosity

and availability towards my research project.

I am grateful to Professor John Boylan and Buckinghamshire New University for sup-

porting me with the funding necessary to carry out my research. I also gratefully thank the

ETIS lab for providing me with extra funding along with a suitable research environment.

I would like to thank Professor Chris Hudson, Professor Inbar Fijalkow, Professor

Bertrand Granado, Dr Peter Wilkinson, Laura Bray, Howard Bush, William Lishman, Dr

Anne Evans, sta� at Buckinghamshire New University and sta� at ETIS lab, University

of Cergy, for their support and advice. I will not forget my fellow research students and

my former colleagues from Buckinghamshire New University and the ETIS lab. We have

been sharing very fruitful discussions.

Thanks to Paul & Lucy Tanyi, Antoine & Ariane Kamina, Bernard Mankem, Julius

Ebokolle, Premkumar Elangovan, Knowledge Mpofu, Indrachapa Bandara and many oth-

ers that are not personally named here. They all made my life in UK enjoyable and

sociable. Thanks to Randolph Boyd for its availability.

ii

My family has been a constant source of understanding, encouragement and love.

Thanks to my brothers and sisters, Michel, Alex, Theresine and Anne-Marie for their

constant support and love. They always believed in me.

iii

I dedicate this work to my beloved parents Jeanne-d'Arc Beumani and Emmanuel Leupi

to my wife Lydie-Flore, to my little princesses Jane-Veronica, Lise-Nahomie

and to Françoise-Soul-angel.

I wish Jeanne d'Arc, Françoise and Jeanne witnessed this achievement

I am quite sure, they are all smiling on me up there

iv

Contents

1 Introduction 1

1.1 Precis of Embedded Systems and Research Rationale 1

1.2 Raison D'être for using Recon�gurable Hardware Devices in Embedded SoCs 3

1.2.1 Dynamic and Online Embedded Applications 4

1.2.2 Technology Advances, Market and Costs Constraints 8

1.3 Related Research Issues . 11

1.3.1 System-On-Chip Design Overview 11

1.3.2 Recon�gurable System-On-Chip Design 13

1.3.3 Operating System for Recon�gurable System-On-a-Chip 17

1.4 Contribution of the Thesis . 18

1.4.1 Algorithms for Online Real-Time Scheduling & Placement 18

1.4.2 Scheduling & Placement Algorithms for OS-driven Design Space

Exploration . 19

1.5 Outline of the Thesis . 19

2 Dynamically Recon�gurable Architectures vs Implementation Alterna-

tives 22

2.1 Introduction . 22

2.1.1 The Switch from Analog to Digital Signal Processing 23

2.1.2 The most common DSP Functions 24

2.1.3 Software vs Hardware Platforms 24

v

2.2 Software Implementation Platforms . 25

2.2.1 General Purpose Processors (GPPs) 25

2.2.2 Programmable Digital Signal Processors (DSPs) 28

2.3 Hardware Implementation Platforms . 29

2.3.1 ASIC Implementation . 30

2.3.2 Fine and Coarse Grain Recon�gurable Arrays Implementation . . . 31

2.4 ASIP/ASSP Implementation . 32

2.5 Fine-grained Recon�gurable Hardware Devices 33

2.5.1 Introduction . 33

2.5.2 FPGA Architectures . 33

2.5.3 FPGA Technology . 34

2.5.4 FPGA Structures . 35

2.5.5 SRAM-based FPGA . 36

2.5.6 Heterogeneous FPGAs . 41

2.5.7 FPGA Design Flow . 44

2.5.8 FPGA Modular Design for Runtime Partial Recon�guration 46

2.5.9 Coupling with the Host Processor 48

2.5.10 Types of Recon�guration . 51

2.5.11 Con�guration Hierarchy . 53

2.6 Coarse-grained Recon�gurable Arrays . 55

2.6.1 Raison D'être . 55

2.6.2 Presentation . 55

2.7 Platform-Based Design . 56

2.7.1 Introduction . 56

2.7.2 De�nition . 57

2.7.3 OS for Recon�gurable Platforms 58

2.8 Conclusion of the Chapter . 62

vi

3 Background and Related Work 64

3.1 Introduction . 64

3.2 Real-Time Systems . 65

3.2.1 Hard vs Soft Real-Time . 66

3.2.2 Requirements for Real-Time Computer Systems 66

3.3 Real-Time Scheduling . 67

3.3.1 Introduction . 67

3.3.2 Real-Time Tasks . 67

3.3.3 Di�erent Scheduling Problems . 71

3.3.4 Objective Functions . 74

3.3.5 O�ine Scheduling . 75

3.4 Online Scheduling . 76

3.4.1 Introduction . 76

3.4.2 Di�erent Online Paradigms . 76

3.4.3 Performance Analysis . 78

3.4.4 Schedulability Analysis . 80

3.5 RT Scheduling for Uniprocessor Systems 80

3.5.1 Rate Monotonic (RM) . 80

3.5.2 Deadline Monotonic (DM) . 81

3.5.3 Earliest Deadline First (EDF) . 81

3.5.4 Least Laxity First (LLF) . 82

3.5.5 List Scheduling (LS) . 82

3.5.6 Uniprocessor Scheduling Model for Recon�gurable Hardware . . . 82

3.6 RT Scheduling for Multiprocessor Systems 87

3.6.1 Multiprocessor Scheduling Problem 88

3.6.2 Multiprocessor Platforms . 88

3.6.3 Partitioned vs Nonpartitioned Scheduling Strategies 89

3.6.4 Multiprocessor Scheduling Model for Recon�gurable Hardware . . 90

3.7 Online Real-Time Scheduling on Recon�gurable Hardware Devices 93

vii

3.7.1 Online Scheduling Without-Looking-Ahead and Related Work . . . 94

3.7.2 Online Looking-Ahead Scheduling and Related Work 98

3.8 Tasks Placement and Related Work . 105

3.8.1 Online Placement Issues . 105

3.8.2 Free Area Partitioning . 107

3.8.3 Data Structure to store the State of the Recon�gurable Array . . . 110

3.8.4 Fitting Strategies . 113

3.8.5 Related Work . 116

3.9 Fragmentation and Related Work . 122

3.9.1 Internal and Intra-task Fragmentations 124

3.9.2 External Fragmentation . 125

3.9.3 Related Work . 125

3.10 Conclusion of the Chapter . 134

4 Proposed Methodology, Models and Metrics 136

4.1 Introduction . 136

4.2 Methodology . 137

4.2.1 Introduction . 137

4.2.2 Proposed Methodology . 137

4.2.3 Running two MERs-based Algorithms on an Embedded Processor . 139

4.2.4 Lessons Learnt from Preliminary Results and Conclusion 143

4.3 Models . 146

4.3.1 Real-Time Tasks and Applications Modeling 146

4.3.2 Recon�gurable Devices Area Models 152

4.3.3 Scheduler Model . 155

4.3.4 Placer Model . 156

4.4 Metrics . 158

4.4.1 Recon�gurable Hardware Resources Metrics 158

4.4.2 Tasks Metrics . 158

viii

4.4.3 Application Metrics . 159

4.4.4 Scheduling Metrics . 161

4.4.5 Feasible Schedule . 164

4.5 Global Simulation Model and Compatibility with the OVeRSoC Design

Methodology . 164

4.5.1 An UML Overview of the Global Simulation Model 165

4.5.2 The Importance of Using a C++ Based Simulation Model 166

4.6 Conclusion of the Chapter . 168

5 Proposed Algorithms for Online Real-Time Scheduling & Placement 169

5.1 Introduction . 169

5.2 Tasks Parameters Based Global Scheduling 170

5.2.1 Temporal parameters based scheduling (Basic, EDF, LLF, etc.) . . 173

5.2.2 Geometric parameters based scheduling (BSF, SSF, etc.) 175

5.2.3 Combining Geometric and Temporal parameters for scheduling . . 176

5.3 Slots-based Scheduling . 177

5.3.1 n X 1D variable size slots scheduling 177

5.3.2 1D variable slots looking-ahead scheduling 181

5.3.3 1D variable slots scheduling with minimum makespan 183

5.4 Placement Strategies for 2D Looking-Ahead Scheduling 187

5.4.1 A Ternary Tree structure for Looking-Ahead Scheduling 187

5.5 Multi-shape based Tasks Scheduling . 191

5.5.1 Raison d'être for multi-shape tasks 192

5.5.2 The multi-shape basic algorithm 194

5.6 Conclusion of the Chapter . 196

6 Simulation Results of the Algorithms Proposed to Solve Online Real-

Time Scheduling Issues 197

6.1 Introduction . 197

6.2 Building the Inputs and the Testing Environment 198

ix

6.2.1 Hardware Tasks Characterization 198

6.2.2 Estimating the Size of Tasks . 199

6.2.3 Final Inputs Values for Experiments 200

6.2.4 The Running Environment . 201

6.3 Tasks Parameters Based Scheduling . 201

6.3.1 Chip Utilization Ratio and Tasks Rejection Ratio 201

6.3.2 Runtime Overhead . 202

6.3.3 Conclusion on parameters based scheduling 205

6.4 Multi-shape Tasks Based Scheduling . 205

6.4.1 Multi-shape Tasks . 205

6.4.2 Chip Utilization Ratio and Tasks Rejection Ratio 208

6.4.3 Makespan and Runtime Overheads 213

6.4.4 Conclusion on multi-shape scheduling 218

6.5 Horizon Looking-Ahead Scheduling Algorithms 218

6.5.1 Horizon Looking-Ahead Scheduling using a Ternary Tree 219

6.5.2 1D Variable Slots Looking-Ahead Scheduling 221

6.6 Conclusion of the Chapter . 223

7 Conclusion and Future Work 225

7.1 Discussions . 225

7.2 Key Contributions . 226

7.2.1 Algorithms for Online Real-time Scheduling/Placement on DPRHWs 226

7.2.2 Scheduling/Placement algorithms library for RTOS-driven design

space exploration . 229

7.3 Hypothesis and Limitations . 230

7.4 Future Work . 231

Appendix 245

7.5 Appendix A : Table classifying related work on scheduling and placement

strategies . 245

x

7.6 Appendix B : Additional Simulation Results 248

7.7 Appendix C : Tables of algorithms and data structures implemented . . . 256

7.8 Appendix D : Size of IPs from the Xilinx core generator 260

7.9 Appendix E : DA Implementation of a Multi-shape Hardware Task : the

FIR Filter . 261

7.9.1 Distributed Arithmetic as an enabling technique 262

7.9.2 Implementing Y using LUT-based DA 263

7.9.3 Throughput vs recon�gurable resources trade-o� 265

xi

List of Figures

1.1 Programmable device market segment share in 2011 (Xilinx, Company re-

ports). 3

1.2 Processing requirements for wireless access protocols (Schüler and Tan, 2004) 5

1.3 The increase in logic density in FPGA over one decade and over the corre-

sponding process technology (Koch and Torresen, 2010). 10

1.4 Main levels in the generic design �ow of a SoC 12

1.5 Generic architecture of a Recon�gurable System-On-Chip. 14

1.6 Hardware/Software Co-Design shortens the design process(Fujitsu, 2002) . 15

1.7 Productivity gap according to ITRS (The International Technology Roadmap

for Semiconductors, www.itrs.net) . 16

2.1 A simpli�ed representation of a Digital Signal Processing System 23

2.2 Sequential execution. (a) a single operation at a time (b) sequential execu-

tion (c) pipelined execution providing higher throughput. 26

2.3 The Von Neumann architecture. 26

2.4 Data�ow representation of one instruction performing an N th-order (N + 1

taps) FIR �ltering. 30

2.5 Mask cost exponentially grows with technology. 32

2.6 Simpli�ed structure of an FPGA. 34

2.7 Truth table of function S = f (a, b, c) and its mapping using a 3 inputs

Look-Up-Table. 37

2.8 A logic element or con�gurable logic block 38

xii

2.9 An Adaptive Logic Module in Altera Stratix V architecture (courtesy Altera). 39

2.10 A Slice (SLICEL) in a Xilinx Virtex 5 FPGA architecture (courtesy Xilinx). 40

2.11 Altera Stratix-V �oor plan (Altera, www.altera.com). 43

2.12 Xilinx Virtex II Pro FPGA with up to 4 hard core embedded proces-

sors(Xilinx, www.xilinx.com). 43

2.13 Design �ow for FPGA-based systems embedding a programmable processor. 45

2.14 Modular design enables dynamic module swapping. 47

2.15 FPGA as co-processor . 50

2.16 FPGA based SOPC (left) and embedded FPGA (eFPGA) 50

2.17 Con�guration hierarchy model. 53

2.18 A view of the OveRSoC methodology with emphasis on DRA (dynamically

recon�gurable architecture) management. 59

2.19 OS services exploration in OveRSoC design methodology (Miramond et al.,

2009a) which maps the system level part of the generic design �ow of SoC

(see �gure 1.4). 60

2.20 Flexibility vs Performance of implementation platforms. 62

3.1 Model of a Real-Time system . 65

3.2 Di�erent periodic real-time task according to their release time 70

3.3 Aperiodic task and sporadic task. 71

3.4 Periodic, sporadic and aperiodic tasks . 71

3.5 Uniprocessor model for recon�gurable hardware devices with time sharing

compound tasks. 84

3.6 Compound tasks timing characteristics . 84

3.7 Uniprocessor model for recon�gurable hardware devices with space sharing

compound tasks . 86

3.8 Equal sizes and unequal sizes partitioning of a DPRHW (dynamically and

partially recon�gurable hardware device) 92

3.9 Looking-ahead vs without-looking-ahead scheduling approaches 95

xiii

3.10 Managing areas availability or occupancy in looking-ahead scheduling (e.g.

horizon and stu�ng algorithms, Steiger et al., 2004) 100

3.11 An example of 1D Horizon and Stu�nd scheduling algorithms (Steiger et al.,

2004) . 100

3.12 Intelligent Stu�ng (IS) scheduling algorithm using 1D placement (Marconi

et al., 2008) . 103

3.13 Nonoverlapping vs overlapping partition; vertical vs horizontal split for

overlapping partition . 108

3.14 Placing a task in an overlapping rectangle 109

3.15 Maximum empty rectangles . 109

3.16 A binary tree used as a data structure that records the state of the FPGA 111

3.17 Scheduling tasks on a 7 X 6 recon�gurable array using a 1D placement model114

3.18 2D placement model of tasks on a 7 X 6 recon�gurable array 115

3.19 3D view of the 2D placement model illustrated in �gure 3.18 116

3.20 Algorithms execution time comparison between KAMER algorithm (Bazargan

et al., 2000) and 1D Cluster-based algorithm (Ahmadinia et al., 2004) . . 118

3.21 The hash matrix approach (a), the hash table (b) rectangle insertion/deletion

in the hash matrix (c), (d) and (e) (Walder et al., 2003) 120

3.22 Placing tasks m1 and m2 on an heterogeneous recon�gurable architecture

(Koester et al., 2005) . 121

3.23 Defragmentation strategies: complexity grows with performance 123

3.24 Intra-task and internal fragmentation . 126

3.25 A fragmented FPGA: the free space available on the chip is su�cient to

insert the arriving task, but its shape doesn't allow it. 126

3.26 Bazargan's adjacency graph: bigger rectangles restoration process (Bazargan

et al., 2000) . 128

3.27 Footprint Transform (Walder and Platzner, 2002) 129

3.28 Using horizontal line to manage free space Ahmadinia et al. (2004) 131

xiv

4.1 A simple architecture of a recon�gurable SoC 138

4.2 Scheduling one task on the recon�gurable array using a MERs-based place-

ment algorithm. 141

4.3 Scheduling the end of a task using a MERs-based scheduling algorithm. . 141

4.4 Time for �nding a MER (Maximum Empty Rectangle) 143

4.5 Scheduling timing and overheads (staircase) 144

4.6 Evolution (over one decade) of the con�guration time of a full FPGA when

considering the fastest possible con�guration speed (Koch and Torresen,

2010). 144

4.7 A hardware task model: 2D view (b) and 3D view (a) 147

4.8 Di�erent states of a hardware task . 149

4.9 An application as a set of boxes (taskgraph). 152

4.10 Simple models of homogeneous and heterogeneous recon�gurable array . . 154

4.11 The global simulation model . 156

4.12 The placer model and its di�erent functional parts. 157

4.13 An UML overview of the global simulation model of the DPRHW-OS for a

recon�gurable platform. 166

5.1 1D-like partitioned scheduling . 178

5.2 1D improved horizon scheduling algorithm, also denoted as 1D variable size

slots horizon (1D-VSSH) . 182

5.3 List scheduling vs optimal scheduling of n tasks on m identical processors;

ei is the execution time of task Ti . 184

5.4 Ternary tree structure : splitting and updating processes 190

5.5 Multi-shape tasks provides more �tting opportunities (e.g. T3 provides 5

variants). 192

5.6 Flow chart of the multi-shape algorithm that selects task version to be placed.194

6.1 Summarizing the scheduling problem as de�ned in this thesis. 198

xv

6.2 Utilization ratio (top), rejection ratio (middle) and quality metrics (bottom)

: comparative results for EDF, LLF, SSF and BSF scheduling algorithms. 203

6.3 Scheduling runtime overhead, number of scheduling calls and cumulative

scheduler runtime overheads : comparative results on EDF, LLF, SSF and

BSF scheduling algorithms. 204

6.4 Di�erent combinations of multi-shape tasks for variants of multi-shape

scheduling algorithm . 207

6.5 Multi-shape scheduling algorithms: simulation results of the utilization ra-

tio, comparison with the Basic scheduling. 208

6.6 Multi-shape scheduling algorithms: simulation results of the tasks rejection

ratio, comparison with the Basic scheduling. 209

6.7 Utilization ratio, tasks rejection ratio and di�erential quality metric URqm

(with α = 0.5) : comparative results for basic scheduling and multi-shape

scheduling algorithms. 212

6.8 The average makespan : comparative results for multi-shape and Basic

scheduling algorithms. 214

6.9 Multi-shape scheduling algorithms : the simulation results of the scheduling

runtime overhead, with basic scheduling as reference scheduling. 215

6.10 Di�erential quality metrics for horizon-EAAF, horizon-SFAF, Basic and

EDF scheduling algorithms. 220

6.11 Rejection delay for horizon-EAAF, horizon-SFAF, Basic and EDF schedul-

ing algorithms. 220

6.12 Tasks rejection ratio, recon�gurable array utilization ratio and di�erential

quality metric for the proposed 1D variable slots horizon scheduling, com-

pared to 1D and 2D horizon scheduling from Steiger et al. (2004) 223

7.1 The tasks rejection ratio for paramaters based scheduling and multi-shape

tasks based scheduling. 249

xvi

7.2 The recon�gurable array utilization ratio for paramaters based scheduling

and multi-shape tasks based scheduling. 250

7.3 The runtime overheads of without-looking-ahead scheduling algorithms (para-

maters based scheduling and multi-shape tasks based scheduling) 251

7.4 The number of scheduler invocations for without-looking-ahead schedul-

ing algorithms (paramaters based scheduling and multi-shape tasks based

scheduling) . 252

7.5 The cumulative runtime overheads for without-looking-ahead scheduling al-

gorithms (paramaters based scheduling and multi-shape tasks based schedul-

ing) . 253

7.6 Tasks parameters based scheduling algorithms vs multi-shape algorithm :

Simulation on a large number of tasks (10 sets of 5000 tasks). 254

7.7 Serial Distributed Arithmetic . 264

7.8 Serial-Parallel Distributive Arithmetic . 264

7.9 Example of resources utilization for di�erent DA implementation of a FIR

�lter . 265

xvii

List of Tables

2.1 Comparative table of implementation platforms for DSP applications (Adam,

2002) . 62

3.1 Tasks to schedule on an FPGA of size 7 X 6 114

3.2 Comparison of the simulation results with the 1D-placement approach (Koester

et al., 2005) . 122

4.1 Simulation paremeters for tasks and the recon�gurable array (FPGA) . . 142

5.1 A pseudo code of the tasks parameters-based scheduling algorithm 171

5.2 A pseudo code of the basic scheduling algorithm 174

5.3 A pseudo code of the 1D variable slots scheduling algorithm 180

5.4 Tasks parameters for 1D variable size slots looking-ahead scheduling . . . 181

5.5 A pseudo code of the 1D variable slots with minimum makespan algorithm 186

5.6 Example of tasks parameters for horizon-SFAF and horizon-EAAF schedul-

ing algorithms . 189

6.1 Approximate sizes of most common IPs (hardware tasks). 199

6.2 Simulation results for looking-ahead scheduling using a ternary tree : com-

parison with basic scheduling and EDF scheduling. 219

7.1 Related work on scheduling and placement strategies (homogeneous recon�-

gurable array model) . 246

xviii

7.2 Related work on scheduling and placement strategies (heterogeneous recon�-

gurable array model) . 247

7.3 Scheduling algorithms implemented. 256

7.4 List of placement algorithms implemented. 257

7.5 List of placement structures implemented (1): The areas partitioning (ex-

isting works are cited and those from us are highlighted). 258

7.6 List of placement structures implemented (2): Finding �tting areas and

merging free areas (existing works are cited and those from us are highlighted).259

7.7 Few IPs for Virtex2pro FPGAs from the XILINX Core Generator System1. 260

xix

Nomenclature

Afpga : Area or total amount of resources on the recon�gurable array (FPGA)

ai : Release time of a task or job Ti

Apload : Relative application load or the relative amount of resources required to complete

an Apk on a given recon�gurable array of size Afpga = W ·H

Apn : Application consisting of n jobs (or set of n tasks or jobs)

ar : Aspect ratio of a hardware task

ci : Execution or processing time of task Ti

di : Absolute deadline of task Ti

Di : Relative deadline of task Ti

ei : Execution or processing time of task Ti

ftav , rtav : Average �ow time or response time of a job sequence or tasks set

fti , rti : Response time or �ow time of a scheduled task Ti

fttot , rttot : Total �ow time or response time of a job sequence or tasks set

fi : Finishing time of a task or job

hi : Height of hardware task Ti

Hp : Hyper-period of a periodic tasks set

Ji : Job number i, with i = 1...n

li : Laxity of a task Ti

m : Number of processors or resources available for jobs processing

Mi : Processor number i in a multiprocessor system which consists of m processors

M1,M2, ...,Mm

mk : Scheduling makespan or length of the scheduling

n : Number of jobs to be processed

na : Number of jobs accepted by the scheduling algorithm, among the k jobs in the

application Γk, where na ≤ k, and k = na + nj

Nacc : Number of accepted tasks or jobs

nj : Number of jobs rejected by the scheduling algorithm, among the k jobs in the

application Γk, where nj ≤ k

Nrej : Number of rejected tasks or jobs

Pi : Period of a periodic task Ti

xx

Rdi : Rejection delay of a task Ti

ResAp : Total amount of resources required to complete all the k jobs Ji=1...k of an

application Apk

ResTi : Total amount of resources required to complete an instance of a hardware

task Ti

RjΓk(%) , Rj_(%) : Tasks rejection ratio

rtav , ftav : Average �ow time or response time of a job sequence or tasks set

rti , fti : Response time or �ow time of a scheduled task Ti

rttot , fttot : Total �ow time or response time of a job sequence or tasks set

resΓ : Computation load of an application Γk relative to a given recon�gurable

array of size Afpga = W ·H.

ResΓ : Computation load or total amount of resources required to complete appli-

cation Γk.

si : Starting time of a task or job

td : Absolute deadline of a set of tasks or an application

tD : Relative deadline of a set of tasks or an application

Ti : Task number i, with i = 1...n

trej : Rejection time of a task or job

Ufpga(%) : Utilization ratio of an FPGA of size Afpga = W ·H on which an application

Apk has been scheduled

URqm : Di�erential quality metric of a scheduling on a recon�gurable hardware

device

U (t)
Γ : Time utilization factor of a set of tasks Γ

U (t)
Ti : Time utilization factor of task Ti

wi : Width of hardware task Ti

wr : Width ratio between a task and its �tting slot or cluster

wti : Waiting time of a scheduled task Ti

W , H : Width and Height of the recon�gurable hardware device (e.g. FPGA)

xi : X coordinate of hardware task Ti

yi : Y coordinate of hardware task Ti

xxi

α : Machine(s) or processor(s) environment

β : Application to process on the machine along with its constraints (e.g. time,

precedence, etc...)

γ : The objective function of a scheduling

Γ , Γn : Set of tasks or jobs , set of n tasks or jobs

℘i : Priority of a task Ti

∀i : For all i

∃ : There exists⋂
, ∩ : Intersection⋃
, ∪ : Union

∈ : Belongs to

xxii

Acronyms

ADAS Advanced Driver Assistance Systems

ASIC Application Speci�c Integrated Circuit

ASIP Application-Speci�c Instruction set Processors

ASSP Application-Speci�c Standard Parts

BF Best Fit

BSF Biggest Size First

CAD Computer Aided Design

CDMA Code Division Multiple Access

CLB Con�gurable Logic Block

CMOS Complementary Metal Oxyd Semiconductor

CPLD Complex Programmable Logic Device

DDR Double data rate

DRHW Dynamically Recon�gurable Hardware Device(s)

DPRHW / DPRHWs Dynamically and Partially Recon�gurable Hardware Device(s)

DPRHW-OS Operating System for Partially and Dynamically Recon�gurable Hardware

DRA Dynamically Recon�gurable Architecture

DSE Design Space Exploration

DSP Digital Signal Processor/Processing

EAAF Earliest Available Area First algorithm

EDA Electronic Design Automation

EDF Earliest Deadline First

EDGE Enhanced Data Rates for GSM Evolution

EEPROM Electrically-erasable programmable read-only memory

ETIS Equipes Traitement de l'Information et Systèmes

xxiii

FF First Fit

FPGA Field Programmable Gate Array

GPP General Purpose Processor

GPRS General Packet Radio Service

GPS Global Positioning System

GSM Global System for Mobile Communications

HDL Hardware Description Language

HLL High Level Languages

HPC High Performance Computing

HSCSD High Speed Circuit Switched Data

HSTL High Speed Transceiver Logic

HW / SW Hardware/Software

IC Integrated Circuit

IDE Integrated Design Environment

IP Intellectual Property

ISP Instruction-set-processor

IT Information Technology

ITRS The International Technology Roadmap for Semiconductors

JTAG Joint Test Action Group

KAMER Keeping All Maximum Empty Rectangles

LAN / WLAN Local Area Network / Wireless LAN

LUT Look-Up Table

LVCMOS Low Voltage CMOS

LVTTL Low Voltage Transistor-Transistor-Logic

MAC Multiply-Accumulate

xxiv

Mbps Millions of bits per second or megabits per second

MBps Megabytes per second.

MER Maximum Empty Rectangle

MIMO Multiple Input Multiple Output

MIPS Million Instructions Per Second

MMAC Millions of Multiply Accumulate

MPSoC Multi-Processors System-On-a-Chip

MSDL Merge Server Distribute Load

NF Next Fit

NRE Non-recurring engineering

OFDM Orthogonal Frequency Division Multiplexing

OS Operating System

OS4RHD Operating System for Recon�gurable Hardware Devices

PC Personal Computer

PDA Personal Digital Assistant

PE Processing Element

PLD Programmable Logic Device(s)

QAM Quadrature Amplitude Modulation

QoS Quality of Service

RC Recon�gurable Computing

RFT Right First Time

RISC Reduced Instruction Set Computer

RSOC Recon�gurable System-On-a-Chip

RT Real-Time

RTOS Real-Time Operating System

xxv

SDR Software De�ned Radio

SERDES Serializer/deserializer

SFAF Smallest Fitting Area First algorithm

SIMD Single Instruction Multiple Data

SoC System-On-a-Chip

SoPC System-On-a-Programmable-Chip

SRAM Static Random Access Memory

SSF Smallest Size First

SSTL Series Stub Terminated Logic

TTM Time to market

UART Universal Asynchronous Receiver/Transceiver

UML Uni�ed modeling language

UMTS Universal Mobile Telecommunications System

VLSI Very Large Scale Integration

W-CDMA Wideband Code Division Multiple Access

WCET Worst Case Execution Time

1D-VSSH 1D Variable Size Slots Horizon algorithm

1D-VSSS 1D Variable Size Slots Stu�ng algorithm

3G 3rd Generation radio communications system

xxvi

Chapter 1

Introduction

Dynamically recon�gurable hardware devices such as FPGAs1 are becoming the enabling tech-

nology for true hardware multitasking in embedded systems and high performance computing.

Such devices are increasingly used in heterogeneous System-On-a-Chip designs. This thesis copes

with the problem of scheduling online real-time hardware tasks on recon�gurable hardware de-

vices. As online real-time applications are targeted, scheduling algorithms are combined with

appropriate placement strategies in order to provide low scheduling runtime overheads. Online

real-time scheduling requires on-the-�y recon�guration (partially or not) of the recon�gurable

device in a reasonable amount of time, depending on the targeted application domain. This

work targets data�ow oriented embedded applications as they are the most suitable for hardware

implementation.

1.1 Precis of Embedded Systems and Research Rationale

The following summary is a plain English introduction to embedded systems, which is given to ad-

dress a wide audience, and in particular a résumé of embedded recon�gurable systems that relate

to the area of research set out in this PhD thesis. Embedded electronic systems cover an extensive

range of topics whereby dedicated programmable electronic systems are the key mechanisms in

aircraft �y-by-wire systems, satellite navigation, vehicle engine management and entertainment

systems along with space vehicle control and communication, machine tool control, cameras, mo-

bile telecommunications, robots and toys, etc. Today the number and variety of embedded system

1 Field Programmable Gate Array

1

1. Introduction Raison D'être for Recon�gurable Computing

applications appears to be endless. However, although there are a multitude of embedded systems

in production, the challenges facing designers are signi�cant as recent technological advances are

pushing the boundaries of engineering, such as high-speed digital design coupled with constraints

in power consumption and the increasing complexity of information communication, together with

the increased demands of new compliance standards for improved interoperability and reliability.

Nowadays, as technology advancement for the semiconductor industry is driven by Moore's

Law2, a complete system with numerous functionalities can be implemented on the same integrated

circuit chip. Such a system is denoted as SoC3 or MPSoC4 when integrating more than one proces-

sor core (e.g. general purpose processors, domain speci�c processors, etc.), dedicated processing

blocks like voice encoding/decoding, cryptography, etc.), memory blocks, inputs/outputs blocks,

inter-blocks communication media along with other analog blocks (RF blocks, ADC/DAC blocks,

antenna, MEMS sensors, etc.) as pictured in �gure 1.5, on page 14.

One consequence of the complexity of designing modern embedded systems has been the

introduction of new university courses in signal integrity engineering (as communication bandwidth

is ever increasing) and embedded system architecture, especially the so-called SoC. Concurrent

with the new undergraduate courses, there is a surge in novel post graduate research programmes

associated with embedded systems engineering.

An important area of embedded systems development is telecommunications, where the next

generation of cellular telephony and broadband radio are seen as signi�cant areas of research.

Future telecommunication and radio systems will require a step change in architectural design,

software complexity and associated computing power to achieve the improvements envisaged for

the next generation of telecommunication functionality. In the past, these challenges have been

solved by adding dedicated digital signal processors (DSPs) known as ASICs5 to conventional

General Purpose Processors (GPP) or programmable DSP6. A custom hardware such as an ASIC

is used to provide the processing performance required by a given application and consume less

power while a GPP or a programmable DSP brings more �exibility to the system.

However, designed as a SoC or not, this architecture is not seen as su�cient to meet the ever

increasing demands of embedded applications presented above.

2 Gordon Moore, the co-founder of Intel, predicted in the 1960s that processor through-put would

double every eighteen months
3 System-on-a-Chip
4 Multi-Processors SoC (System-on-a-Chip)
5 Application Speci�c Integrated Circuits
6 Digital Signal Processor

2

1. Introduction Raison D'être for Recon�gurable Computing

1.2 Raison D'être for using Recon�gurable Hardware De-

vices in Embedded SoCs

One solution to the step change requirements in embedded system architectural design is the

evolution of SRAM7-based PLDs8 such as FPGAs. Although FPGAs were �rst introduced in the

mid 1980s by Xilinx, the recently introduced devices are highly developed. By providing some

form of post-fabrication hardware programmability, these devices are the enabling technology for

recon�gurable computing. Today, as shown in �gure 1.1, Xilinx shares the market lead with Altera

in programmable solutions. These companies are proposing architectural solutions that bridge the

gap between general programmable processors and custom integrated circuits and that provide

the computational power and �exibility required for future systems. Nevertheless the advances in

recon�gurable hardware technology (e.g. SRAM-based FPGA and similar devices) in particular

its dynamic runtime recon�gurability, have brought new possibilities in embedded systems design.

Indeed, dynamically recon�gurable hardware devices provide more �exibility and silicon area re-

use in addition to their intrinsic parallelism (spatial implementation) as illustrated in �gure 2.20

on page 62. However such architectures raised new challenging design issues. The principal area

of interest of this research can be summarized through two main points listed below:

Figure 1.1: Programmable device market segment share in 2011 (Xilinx, Company reports).

7 Static Random-Access Memory (SRAM) is a type of semiconductor memory which does not require

to be preiodically refreshed, as SRAM memory uses bistable latching circuitry to store each bit. However

the data are lost when the memory is not powered.
8 Programmable Logic Devices

3

1. Introduction Raison D'être for Recon�gurable Computing

• The lack of embedded systems design methodologies leveraging dynamic recon�gurability

of FPGA-like recon�gurable hardware devices, when they are incorporated in such systems

in general, and especially when they are on the same silicon die (SoC).

• The need of an Operating System - like manager to cope with the scheduling and placement

of hardware tasks in heterogeneous embedded systems (on a single intergrated circuit or

not) featuring such a recon�gurable fabric.

There are three main but non-exhaustive reasons for developing recon�gurable architectures

are :

1. The dynamicity of new embedded applications.

2. The market and manufacturing costs constraints.

3. Advances in recon�gurable hardware devices technology.

1.2.1 Dynamic and Online Embedded Applications

Embedded computer systems provide more possibility to interact with their environment (e.g.

the user or another computer system in its neighborhood). Hence, embedded applications are

becoming more dynamic and require more computation power to process all incoming or outgoing

data and more often in a safety-critical context.

Hereinafter are few and non-exhaustive embedded dynamic applications:

Example of Software De�ned Radio

Next generation mobile telecommunication terminals will require �exibility and high performance

under low-power and size constraints. Indeed, they will be expected to be �exible in order to

dynamically adapt to any wireless infrastructure, download and run applications o�ered by ser-

vices providers, while providing reliable functionalities, such as Personal Digital Assistant (PDA),

mobile phone, MP3 player, Global Positioning System (GPS), Audio/Video streaming, messag-

ing, and other multimedia services available on future networks. To achieve this aim, mobile

terminals will need architectures that are fast enough to run complex algorithms at high data

rates, typically 10 Mbps to 100 Mbps (as pictured in �gure 1.2, from Schüler and Tan, 2004),

and �exible enough to accommodate various new standards and protocols. Software De�ned Ra-

dio (SDR) concept is at the nearly ultimate stage of this evolution. A software radio implies an

embedded computer system where the functionality of the mobile terminal should be de�ned in

4

1. Introduction Raison D'être for Recon�gurable Computing

Figure 1.2: Processing requirements for wireless access protocols (Schüler and Tan, 2004)

software, so that it enables full programmability and adaptability on-the-�y. Consequently, such

an `all-in-one' device could be used everywhere in the world giving global mobility without adding

new hardware, regardless of the number of global wireless communication standards. Nevertheless

SDR requirements are stringent, where �exibility entails a powerful recon�gurable computational

capability with multifunctionality. Moreover, successful SDR systems will require to operate un-

der severe constraints (e.g. reduced power consumption and physical size, low cost, etc.). These

systems are di�cult to achieve with GPP processors, programmable DSP and ASICs; even though

modern microprocessors and programmable digital signal processors are quite �exible and have

bene�ted from fabrication advances and tool development over recent years. Processor technol-

ogy has reached an unexpected plateau that contradicts Moore's law. Today manufacturers have

found that increasing the processor clock speed and reducing the processor device size has led

to undesirable heat problems and unacceptable power consumption. Modern processor manufac-

turers have chosen to provide multiple processors within a single integrated circuit to advance

Moore's Law, but the software complexity of parallel processing has thwarted their progress. SDR

designers have chosen to use dedicated hardware and coprocessors to provide high-performance,

low power systems. But the latter solution lengthens the design process while not providing the

�exibility needed in software de�ned radio applications. To overcome these de�ciencies in �exibil-

ity, a dedicated component, such as an ASIC, could be used for each telecommunication standard

or protocol. With this approach the �exibility is achieved by switching from one component to

5

1. Introduction Raison D'être for Recon�gurable Computing

another to meet the required standard or protocol. The main advantage is that high-performance

is easily achieved, since each custom component is optimized for a particular standard. Except

that with the proliferation of standards this solution is not cost e�ective because of the resulting

size of the silicon die, where the cost of an integrated circuit is related exponentially to die size.

Also such an embedded system would su�er from weight, power consumption and time to market

disadvantages.

Example of electronic embedded in transportation systems

In transportation systems (e.g. aerospace, avionics, car, railway, etc.), functionalities assigned to

the embedded computer are no longer limited to basic control and multimedia tasks. Indeed, the

on-board computer increasingly consists of sophisticated systems performing complex real-time

analysis on data collected by numerous sensors in order to assist pilots in critical �ight situations.

In any case, such systems are expected to be more and more intelligent, and require ever increasing

computing capabilities allowing them to process in real-time the data collected, in order to take

rapid decisions while insuring security and safety to the users. The on-board computer must

drive these systems which react in real-time to dangerous and unexpected situations. Example of

such systems are radar systems, auto-pilot systems, collision-detection systems, communication

systems, etc.

Example of an Automatic Target Detection and Tracking System

Automatic target detection and tracking is an important area of research in video processing

thanks to its great potential in military and civil applications. Example of such applications

�eld are navigation, security, robotics, vehicular communications, etc. One of the challenging

applications �eld is aerospace and defense where there is a need to detect, recognize and track

�ying targets (e.g. missiles, drones, �ghters, etc.). Target detection and tracking is a good

example of dynamic and computationally intensive application. It aims to detect, identify and

track targets mostly in infrared image sequence with a given spatial and temporal resolution. The

spatial resolution gives the size of each frame in the video (e.g. 640 x 512) and the temporal

resolution gives the number of frames per second (e.g. 25 Hz for 25 fps). The dynamicity of the

application relies on non predictable spatial and temporal factors such as:

• the date and the position of appearance of a target(s) on the visual �eld.

• the identity of the target(s) (type, shape, size and number of objects in a frame, etc.).

6

1. Introduction Raison D'être for Recon�gurable Computing

• its trajectory (direction and speed of each object, etc.).

The system obviously consists of two major parts :

1. a static part which detects and recognizes objects in a video frame (detection sub-system).

2. a more dynamic part which tracks objects in the video sequence (tracking sub-system).

Detection aims to identify all the objects and connected components in the image. It uses

functions such as Sobel and/or Canny edge detection, blobs detection, surface �lling-in, objects'

surrounding rectangles calculation, thresholding, erosion and dilation, etc.

The tracking sub-system performs detected objects tracking using following steps :

• initializing the tracking algorithm using objects' surroundding rectangles along with blobs

previously built.

• applying the tracking algorithms (e.g. CAMSHIFT) on detected blobs.

• updating the size of objects' surrounding rectangles and the list of connected components.

One key feature of such a system is that on a video frame, many objects tracking should be

performed concurrently and the number of tracked objects may evolve over time. This makes

the scenario even more dynamic. Therefore, performant and evolvable computation resources are

needed. As the number of objects to pursue is unknown beforehand, one approach is to implement

in software the detection (or static) part of the system, and to dynamically instantiate on demand

tracking functions on dynamically recon�gurable hardware. Doing so, one tracking function block

per target is implemented (as a thread) on the dynamically recon�gurable hardware, thus taking

advantage of �exibility and performance of such hardware.

Example in car design (e.g. System detecting driver fatigue)

Cars are becoming more equipped with systems which improve global safety by providing more

assistance to the driver. The driver safety is improved by systems capable of detecting its sleepiness

(e.g. Bandara and Hudson, 2006). In addition pedestrians safety is improved by the Advanced

Driver Assistance Systems (ADAS). The ADAS requires a high computation capability to achieve

vision functionalities (stereovision, pattern recognition, complex scenes analysis) in a very short

timeframe in order to detect pedestrians and thus reduce the number of accidents.

In all the above cited applications, cost and power consumption constraints have to be added

to the aforementioned safety (reliability, hard real-time sensitivity, high computing capability, etc.)

7

1. Introduction Raison D'être for Recon�gurable Computing

and security constraints. In addition, image processing is involved in most of these applications.

Thanks to its inherently parallelism, image processing has proven to be suitable for hardware im-

plementation. Most of the time, output pixels could be concurrently computed . Recon�gurable

architectures are good candidates for implementing such applications. Indeed, they suit to applica-

tions where huge amount of data (image, sound, etc.) are processed in parallel and periodically. In

addition, they provide an upgradability or hardware programmability which increases the system

lifetime and therefore decreases the non-recurring engineering costs.

1.2.2 Technology Advances, Market and Costs Constraints

1. Reducing non-recurring engineering (NRE) costs

Current and future research trends into embedded System-on-a-Chip (SoC) design are dic-

tated by key factors such as market demands and technology advances. New research

trends on recon�gurable hardware devices (especially FPGAs) result from these key factors,

as these devices are currently seen as a solution to successfully design complex embedded

systems; in particular the design of systems submitted to stringent constraints of the above-

mentioned applications. The current market for wireless handsets is driven by factors such

as price, �exibility, functionality and mobility; put simply, a handset has to be light weight,

all inclusive and with extended battery life. Moreover, consumer electronic products such

as wireless handsets have relatively short life cycles. The merciless competition between

mobile service providers and handset design conspire to ever decrease prices and increase

functionality. Consequently, the main challenge is to reduce production costs while providing

more functionality and �exibility to consumers. While designing new products, shortening

Time-To-Market (TTM) and increasing Right-First-Time (RFT) are important aspects that

reduce non-recurring engineering (NRE) costs, as NRE costs of integrated circuit (IC) de-

sign are rocketting today. Many research projects in Electronic Design Automation (EDA)

mainly aim to achieve those two aforementioned purposes (short TTM and high RFT). For

example, FPGA-based platforms have been promoted for complex ASIC rapid prototyping.

A rapid prototyping allows the designers to shorten the design process, to prevent design

failures and to avoid costly redesign by validating their designs earlier and by prototyp-

ing their concepts within a reduced timeframe. Furthermore, designers are incorporating

recon�gurable hardware in their designs, leading to cost e�ective products and enabling the

release of new products without re-manufacturing the integrated circuit chip. FPGA-based

8

1. Introduction Raison D'être for Recon�gurable Computing

designs are even preferred to an ASIC based system for the implementation of low-volume

applications thanks to their very low non-recurring engineering (NRE) cost.

2. Modern recon�gurable hardware technology impacting SoC design

Although a recon�gurable device like the FPGA typically has a higher power consumption

than a comparable ASIC, the FPGA technology is evolving and current devices allow de-

signers to consider FPGA as a computing resource for hardware acceleration. However,

FPGAs are mainly used for rapid prototyping and glue logic purpose, nonetheless FPGAs

are challenging programmable DSP processors by embedding hardwired DSP blocks, such as

multipliers and distributed memories. Also, processor cores are currently embedded within

FPGA structures (�gure 2.16 on page 50). In so doing, an embedded hard-core or softcore

processor core allows the designer to combine on a single FPGA all the bene�ts provided

by a Von Neumann architecture with the parallelism provided by a spatial implementation.

What is more important and a pivotal consideration in this research is recon�guration ca-

pabilities of Dynamically Recon�gurable Hardware Devices like FPGAs, which allow them

to bridge the gap between hardware and software platforms implementation (�gure 2.20 on

page 62). Even though programmable and dedicated DSPs remain the traditional implemen-

tation platforms for digital signal processing applications, many studies and demonstration

platforms (e.g. Blyler, 2005; Petersen, 1995; Tessier and Burleson, 2001) have shown that

using recon�gurable hardware devices, such as FPGAs, provides the best trade-o� between

�exibility, performance and power consumption, especially in digital signal processing ap-

plications. FPGA programmability brings out a �exibility lacking in ASICs, while FPGA

spatial structure is more suitable for to intrinsic data parallelism found in DSP functions.

Thus, all these factors point the way forward for the FPGA to provide a signi�cant perfor-

mance improvement over traditionally implemented embedded system platforms.

Current advances in semiconductor technology allow FPGAs to integrate more than 10 mil-

lion gates9 on a single chip while running at a relatively low frequency (e.g. 500 MHz).

9 Achronix Semiconductor Corp. announced (in fall 2010) strategic access to Intel Corporation's 22nm

process technology, and plans to develop the most advanced FPGAs, the Achronix Speedster22i FPGA

family. The device will provide more than 2.5 M LUTs in size, equivalent to an ASIC of over 20 million

gates.

Altera Stratix 5 FPGAs as well as Xilinx Virtex-7 FPGAs both manufactured at 28 nm process technology,

provide more than one million LUTs, which is more than double the size of logic and memory available in

Stratix or Virtex-II FPGAs. One million LUTs are enough to instantiate on the FPGA tens of softcore

9

1. Introduction Raison D'être for Recon�gurable Computing

Figure 1.3 depicts such an increase in LUT density over the last decade. In consequence,

unlike the microprocessor, Moore's Law will still drive the FPGA market for the near fu-

ture. One example is the FPGA Stratix 5 from Altera 10, manufactured at 28 nm process

technology. Moreover, today complete systems are integrated on a single chip. Whereby,

this so called System-on-a-Chip (SoC) allows designers to integrate on single silicon dies

one or more embedded processor cores executing software in addition to classical hardware,

such as an ASIC, In/Out device, memory, Intellectual Property (IP) blocks and FPGA

programmable hardware. Nonetheless, SoC design requires new design paradigms and rep-

resents an active area of embedded system research. SoC design approach reduces the total

silicon size required for the SoC, and correspondingly its cost. An exciting prospect is that

the inclusion of a recon�gurable FPGA within a SoC could provide solutions to some of the

demanding requirements of future embedded system applications.

Figure 1.3: The increase in logic density in FPGA over one decade and over the

corresponding process technology (Koch and Torresen, 2010).

Fortunately, latest trends in recon�gurable hardware devices technology show improvements

in capacity (decreasing transistor size and consumption), performance (increasing clock

frequency) and recon�gurability (partial on-the-�y, see chapter 2, section 2.5 from page 33).

CPUs along with the required peripherals.
10 The Altera Stratix 5 FPGA was announced in January 2010 and planned to be available in 2011

(Altera, 2010a,b)

10

1. Introduction Related Research Issues

To summarize, using recon�gurable hardware in embedded systems design could reduce design

costs by lowering non-recurring-engineering costs and by providing a computation platform com-

bining �exibility and performance.

1.3 Related Research Issues

1.3.1 System-On-Chip Design Overview

As stated previously, systems to design are becoming increasingly complex in order to satisfy

application demands. In addition, technology allows huge systems to be integrated on a single

chip, making their design more di�cult. Such a so-called System-on-a-Chip (SoC) is in growing

need for new design paradigms. Because of the increasing complexity, new design methodologies

emphasize system level design. Design stages could be divided in three main levels (or less) as

shown in �gure 1.4 and summarized below :

1. System Level (�gure 1.4)

System performance is evaluated early and various partitioning decisions are made. While

engineering a new system, �rst speci�cations of the application are done at high level of

abstraction according to system requirements. At that level, abstract models and templates

of di�erent implementation technologies from di�erent vendors are �rst included in order

to pre-de�ne the architecture, to take partitioning decisions and to evaluate mapping needs

for each target. System level simulation then allows the designer to evaluate in a reasonable

amount of simulation time, the performance impacts using di�erent architecture alterna-

tives. The system architecture is re�ned by providing System Level simulation with cycle

accurate models of the architectural blocks and requirements of the application.

In the case of a SoC with a recon�gurable part, the recon�gurable hardware is seen as a com-

puting resource among others like instruction set processors or dedicated processors. The

reason for incorporating recon�gurable parts are expressed through systems requirements

(e.g. a given mix of recon�gurability, upgradability and performance). So, the impacts

of scheduling, placement and recon�guration overhead on the global performance of the

system is also evaluated. Academic and commercial research groups are proposing various

system level co-design methodologies and tools for few application domains (e.g. wireless

communication and multimedia systems).

11

1. Introduction Related Research Issues

Figure 1.4: Main levels in the generic design �ow of a SoC

2. Design Level (�gure 1.4)

Speci�cation is re�ned and veri�cation process customized to suit the chosen implementa-

tion technologies and related design tools. Di�erent parts of the system (recon�gurable and

�xed hardware, software) are individually designed and then integrated in a single model in

order to be model-checked by the veri�cation process previously customized. At this level,

all details of the implementation platforms are needed (processors, memories, external IPs,

FPGAs, etc.) and vendor design and simulation tools are used. For example if dynamically

recon�gurable hardware (DRHW) is involved, the FPGA technology along with its simu-

lation and emulation tools are chosen during speci�cation re�nement with respect to the

recon�gurability needed (partial, dynamic, etc.). Vendor tools are used during integration

and co-veri�cation steps.

3. Implementation level (�gure 1.4)

where the whole design is implemented using commercial and technology-dependant tools.

The �xed hardware part (ASIC) is also manufactured and the �nal text is done on the �nal

product for its quali�cation.

12

1. Introduction Related Research Issues

1.3.2 Recon�gurable System-On-Chip Design

As stated above and illustrated in �gure 1.4, designing an electronic system (on chip or not)

always follows a number of steps ranging from system level speci�cation to �nal implementation

(including mask generation for ASIC design). Over the years, EDA11 tools have evolved, providing

sometime push-button processes to design electronic systems. However, as SoCs are turning more

heterogeneous (�gure 1.5) by integrating recon�gurable hardware devices in addition to sequential

processors and dedicated hardwired components, designers are facing new paradigms of computing

and programming. Consequently, new automatic mapping methods of algorithms on the platform

are needed, in order to take into account the additional �exibility brought by recon�gurable

hardware devices. Indeed, such a platform allows the system to modify its hardware functionalities

at run-time (on-the-�y) following the changing needs of applications. As for any ASIC design, a

post-manufacture failure would be of very costly. One has to guarantee the expected behaviour

(RFT12) of the system before manufacturing. Unfortunately, dynamic hardware recon�gurability

in addition to the traditional software �exibility leads to systems with less predictable behaviour,

making the integration and validation of software parts (running on programmable processors) and

hardware parts (running on dedicated and recon�gurable hardware) more challenging. Current

tools do not enable an accurate assessment of dynamicity criteria brought both by the software

and recon�gurable hardware. Hence, design methodologies along with tools still have a long way

to go before fully exploiting the potential capabilities of recon�gurable hardware devices.

As illustrated in �gure 1.5, a SoC containing one or many recon�gurable hardware fabrics is

denoted as RSoC13. SoCs are turning to Multi-Processors SoC (MPSoC) integrating on a single

chip many programmable and dedicated processors, customized blocks (voice encoder/decoder,

cryptography, etc.), memory blocks, I/O blocks, various communication media (hierarchical buses,

NoC14, etc.), ADC15 /DAC16 blocks, RF17 front ends, heterogeneous blocks like sensors and

MEMS18, and sometime recon�gurable hardware blocks like FPGAs (�gure 1.5).

In order to re�ne aims and objectives of this research, here below are discussed few additional

11 electronic design automation
12 Right First Time
13 Recon�gurable System-On-Chip
14 Network on chip
15 Analog to Digital Converter
16 Digital to Analog Converter
17 Radio Frequency
18 Micro-Electro-Mechanical Systems

13

1. Introduction Related Research Issues

Figure 1.5: Generic architecture of a Recon�gurable System-On-Chip.

challenges brought by the increasing use of DRHW19 in SoCs design. These issues are identi�ed

at di�erent stages in the design process.

1. System speci�cation and Hardware/Software Codesign

Obviously, using DRHW adds more complexity in traditional hardware software integra-

tion and veri�cation. Emerging hardware/software Co-design methodologies are allowing

designers to specify and re�ne their systems in uni�ed environments (Ptolemy, Polis) and

languages (SystemC (www.systemc.org), SystemVerilog (www.systemverilog.org), Celoxica

(2000), ImpulseC (www.impulseaccelerated.com), etc.). As illustrated in �gure 1.6, hard-

ware/software co-design shortens the design time by enabling concurrent design of hardware

and software parts of the system. Unlike the traditional design methodology, the trend today

is to delay the partitioning stage of the design to allow the movement of a task schedul-

ing from hardware (dedicated or recon�gurable) to software and, conversely, to be kept as

�exible as possible during the design process. Previously, hardware/software partitioning

was clearly de�ned as a spatial (or functional) partitioning. But the advent of DRHDs

has provided the motivation for new research in hardware/software partitioning. Indeed,

dynamically recon�gurable hardware has �lled the gap between hardware and software,

making the partitioning process both temporal and spatial (e.g. Chehida and Auguin, 2002;

19 Dynamically Recon�gurable Hardware Devices (e.g. FPGAs)

14

1. Introduction Related Research Issues

Kaplan et al., 2003).

Figure 1.6: Hardware/Software Co-Design shortens the design process(Fujitsu, 2002)

As stated above, at a time when Moore's Law is getting less pro�table for microprocessor

improvement, it is getting meaningful to increase performance by adding more recon�-

gurable hardware along with distributed memories and by using pipelining. Hence, as most

of research challenges in embedded SoC design which tend to leverage silicon technology

advances, FPGA research also falls within the global problem known as `the productivity

gap'. It states that thanks to Moore's Law, integration technology is growing faster than

the ability of the engineers and design tools to bene�t from the doubling of through-put

every eighteen months. As shown in �gure 1.7, the gap between the number of logic gates

that can integrate a single chip and the number of logic gates designers could integrate in

their design using existing design methodology and tools increases over years at about the

rate predicted by Gordon Moore.

2. C to hardware compilation

Unlike microprocessor implementation using high level C-like languages, mapping algo-

rithms in �ne grain recon�gurable hardware (e.g. FPGA) is still a complex and almost

manual task. Indeed, this is done using low level Hardware Description Languages (HDLs).

The designer must specify his design almost at bit level, reminding the early days of mi-

croprocessor programming. While taking the FPGA as an example, since it remains the

�nest grain recon�gurable hardware device, its design process is quite similar to the ASIC

design. In addition, compiling an algorithm to target an FPGA is noticeably complicated

as FPGA, unlike a microprocessor, does not have an instruction set. To overcome those

problems and exploit the overriding FPGA advantages, numerous researchers (e.g. Athanas

and Silverman, 1993; Gokhale and Stone, 1998; Gokhale et al., 2000; J. L. Tripp and Hutch-

15

1. Introduction Related Research Issues

Figure 1.7: Productivity gap according to ITRS (The International Technology Roadmap

for Semiconductors, www.itrs.net)

ings, 2002) and companies (e.g. MathWorks, www.mathworks.com)20 have addressed High

Level Languages (HLL) and their compilers to target recon�gurable hardware. Another

example is the Furthermore, a solution consists of designing coarse-grained recon�gurable

architectures which would be easier to target with High Level Languages as detailed in the

next paragraph.

3. Need of coarse-grained recon�gurable architectures

To overcome some of the previously discussed limitations, new coarse-grain recon�gurable

architectures with limited con�gurability compared with FPGAs were investigated. Coarse-

grained architectures are customized to suit a speci�c class of applications. In such a so-

called word level granularity architecture, the recon�guration is done at functional level

(instead of gate level like in FPGAs). As in the example in Schüler and Tan (2004), a

recon�gurable processor consisting of an array of con�gurable and interconnected arith-

metic logic units (ALUs) and enabling high level parallelism is a good example of this

type of architecture. Although, such application oriented architectures are not as suited

as �ne-grained FPGAs to implement a multipart function at the bit level. However, a

20 e.g. The Simulink HDL Coder from MathWorks generates bit-true and cycle-accurate, synthesizable

Verilog and VHDL code from Simulink models and MATLAB code. The generated HDL code can be sim-

ulated and synthesized using industry-standard tools and then implemented on FPGAs and ASICs. The

main advantage of this so-called Model-Based Design approach it to relies on the same model throughout

the design, enabing FPGA-in-the-loop cosimulation and accelerating veri�cation and time-to-market.

16

1. Introduction OS Recon�gurable SoC

coarse-grained recon�gurable hardware saves a signi�cant amount of circuit area, power

and recon�guration overhead compared to a traditional FPGA based system. As discussed

in Gokhale and Graham (2006) and Ebeling et al. (1996), the trend is to develop high

level languages and dedicated compilers for such architectures, with the hope that they

will be easier to target than �ne grain architectures such as FPGAs. Later in Chapter 2

these concepts and architectures will be brie�y presented alongside their associated research

areas.

1.3.3 Operating System for Recon�gurable System-On-a-Chip

As stated in previous sections, many of today's embedded applications, such as signal and image

processing for mobile telecommunications, wireless multimedia, automotive electronics, avionics

and robotics, demand an increasingly dynamic performance and variable functionality. To meet

these needs, FPGA developers provide large-scale devices to allow embedded system designers

to consider the use of an FPGA as a computing resource at the same level as a microproces-

sor or a programmable DSP processor. A consequence of FPGA runtime partial recon�guration

and embedded dedicated blocks is the need for a resources manager acting like an Operating-

System. This resources manager being capable of e�ciently managing both the microprocessor

and the recon�gurable hardware part of the architecture (e.g. implemented on an FPGA) that

run respectively software tasks and hardware tasks. In a traditional Operating System (OS),

software tasks are sequentially created, run, pre-empted and/or deleted, allowing them to se-

quentially use a single microprocessor in a time-shared basis. In the case of the FPGA/ISP21

architecture, the OS may be viewed as an additional abstraction layer which hides the details

of the underlying microprocessor and recon�gurable hardware part from the software designer

(e.g. Steiger et al., 2004). By extending this principle to recon�gurable hardware, an OS can

provide a hardware abstraction layer which eases the sequential and spatial implementation of

hardware tasks on recon�gurable blocks (e.g. Mignolet et al., 2003). This allows multitasking on a

recon�gurable hardware platform. Therefore, in a recon�gurable system with both hardware and

software tasks the OS concept is extended to an Operating System for Recon�gurable Systems.

As stated in Nollet et al. (2003), the principal aim of an Operating System for a Recon�gurable

SoC is the simplicity of designing recon�gurable hardware platforms and e�cient management

of the associated computing resources. What is exciting are the new research areas initiated by

21Instruction Set Processor

17

1. Introduction Contribution of the Thesis

Operating System for RSoC and, moreover, recon�gurable computing system design. Resources

allocation, HW/SW partitioning, tasks scheduling, placement, routing, pre-emption, migration

(hardware/softare, hardware/hardware) are few of the challenges involving numerous groups (e.g.

Compton et al., 2002; Walder and Platzner, 2002; Noguera and Badia, 2004) investigating new

recon�gurable FPGA/ISP architectures along with their programming models and implementa-

tion.

1.4 Contribution of the Thesis

There are two major contributions in this thesis :

1.4.1 Algorithms for Online Real-Time Scheduling & Placement

As just stated above, designing an operating system for recon�gurable systems is a key challenge in

RSoC design as it raises a number of issues. Among these issues, this thesis will focuse especially

on algorithms which are suited to the scheduling and placement of online real-time hardware

tasks on dynamically recon�gurable architectures. Hardware tasks scheduling and placement

aim to e�ciently and dynamically schedule and place modules on the dynamically recon�gurable

hardware devices. Therefore, the algorithms will always seek the best trade-o� between two,

sometimes con�icting objectives: the algorithms runtime overhead and the scheduling/placement

quality in terms of chip utilization ratio, chip fragmentation, tasks rejection ratio, makespan, etc.

To enable multitasking and hardware virtualization on partially recon�gurable hardware devices,

recon�guration time overheads and area fragmentation are among the issues to overcome. The

algorithms proposed in this thesis are mainly applied to partially recon�gurable hardware device.

In the proposed methodology, scheduling algorithms runtime overheads are sometime evaluated

on real platforms featuring an embedded processor, instead of desktop or laptop computers. For

example, two algorithms (Cui and Deng, 2007; Handa and Vemuri, 2004c) are implemented on

a Microblaze softcore processor instantiated on a Xilinx Spartan 3E FPGA. By doing so, as the

methodology relies on more accurate experiments, the online real-time constraints are more likely

to be accurately assessed. Di�erent models of elements that are involved (recon�gurable fabric,

scheduler, placer, application) are also proposed and discussed in Chapter 4. However, these

models do not consider inter-tasks communication and communication between the CPU part and

the recon�gurable hardware device, as communication is beyond the scope of this thesis.

18

1. Introduction Outline of the Thesis

1.4.2 Scheduling & Placement Algorithms for OS-driven Design Space

Exploration

System level co-design methodologies are widely accepted as an approach to overcome the in-

creasing complexity of SoC design. As an Operating System aims to manage all the resources of

a given platform, architecture de�nition could be done from an OS perspective. An OS-driven

methodology for RSoC design has been proposed in Miramond et al. (2009a). Initiated by the

French national research council, the OveRSoC project (Miramond et al., 2009a) aims to develop a

complete model of an RSoC platform in order to investigate services a real time Operating System

(RTOS) for RSoC should provide. Such Operating System for RSoC should manage processing

resources that are on the chip, including the dynamically recon�gurable hardware parts of the

RSoC. Consequently, as dynamically recon�gurable hardware is involved, hardware tasks schedul-

ing and placement, hardware context switching, hardware/software task migration are pivotal to

this research. Our contribution to the OveRSoC design methodology intends to provide DRHDs

models and a set of scheduling and placement algorithms. Indeed, at system level simulation, while

performing architecture de�nition and mapping (�gure 1.4, page 12) these models and algorithms

help in exploring various mapping solutions and in tuning the system partitioning accordingly. As

the methodologies such the OveRSoC rely on a SystemC-based simulation engine, the models de-

scription and most of the scheduling and placement algorithms implementation are done in C++

in this work.

1.5 Outline of the Thesis

This �rst chapter has presented a snapshot of embedded systems that use recon�gurable hard-

ware devices like FPGAs. Put simply, this introduction has striven to explain how the use of

state-to-the-art recon�gurable hardware devices can be used as processing resources in embedded

systems to enhance their performance; however their use raises signi�cant new issues, especially

in embedded RSoC design. These issues range from hardware/software partitioning to hardware

tasks scheduling and placement.

The main focus of this thesis is on the latter problem, with an emphasis on the online real-time

context. However, there a two main aspects of RSoC design to be highlighted as the contribution

of the thesis :

1. The �rst aspect acts at runtime, where appropriate algorithms for online real-time schedul-

19

1. Introduction Outline of the Thesis

ing and placement of hardware tasks on dynamically and partially recon�gurable hard-

ware devices are required. Novel methods for improving the quality of the online real-time

scheduling and placement of hardware tasks on recon�gurable hardware devices are pro-

posed and assessed.

2. The second aspect acts at design or compilation time, and that consists of feeding a given

system level design methodology with scheduling and placement algorithms for dynami-

cally recon�gurable architectures. This thesis assumes that the Design Space Exploration

(DSE) of the RSoC is OS-driven. Several scheduling and placement algorithms are imple-

mented in addition to the newly proposed algorithms. The suitability of these algorithms

for C++/SystemC-based RSoC design methodology (e.g. OVeRSoC methodology) is estab-

lished.

The rest of the thesis consists of 6 chapters and they are organized as follows:

Chapter 2 gives a comparative presentation of di�erent implementation architectures for signal

processing in order to see which category �ts the dynamically recon�gurable hardware devices.

The chapter concludes with explanation on how the above mentioned second aspect of this research

can be applied to a Platform-Based Design approach.

Chapter 3 starts with a theoretical background on scheduling problems. In order to point out

similarities between microprocessors scheduling and recon�gurable hardware devices scheduling,

the chapter �rst presents both problems. It then emphasizes speci�c challenges raised by the

scheduling of hardware tasks on dynamically and partially recon�gurable arrays. The chapter

ends with a literature review on placement strategies and the resulting recon�gurable hardware

fragmentation.

Chapter 4 relies on the previous chapters and on preliminary experiments to draw the proposed

methodology for scheduling and �tting online real-time hardware tasks on DPRHW22. Based on

these accurate experiments, the chapter demonstrates the need for a trade-o� between the schedul-

ing algorithm and the underlying placement strategy. The chapter emphasizes the importance of

providing more than one size and/or shape per hardware task. In addition, Chapter 4 presents

di�erent models and related metrics used to assess the performance of the aforementioned schedul-

ing and placement algorithms. The end of the chapter discusses on how these models and metrics

22 DPRHW : dynamically and partially recon�gurable hardware devices.

20

1. Introduction Outline of the Thesis

can be used at system level design stage with any SystemC-based SoC architecture exploration

(e.g. OVeRSoC methodology for DSE 23).

Chapter 5 is an in-depth study of the designed algorithms that deal with the online real-time

scheduling of hardware tasks. The proposed multi-shape scheduling algorithms are backed up

with novel recon�gurable areas management strategies which are suitable for online looking-ahead

scheduling algorithms. Along the chapter, whenever possible, the suitability of the proposed

scheduling algorithms for online real-time problems is emphasized.

In Chapter 6, performance of the scheduling algorithms and placement strategies proposed to

schedule online real-time tasks on DPRHW are presented and discussed using simulation results.

These latter are expressed through metrics such as the algorithms runtime overhead, the tasks

rejection ratio, the recon�gurable hardware utilization ratio and the scheduling makespan.

Chapter 7 concludes the thesis. The review of the work presented in the thesis is summarized,

highlighting the contribution to the body of knowledge. The results from all the experiments

are summarized to establish the primary hypothesis of the thesis, regarding the online real-time

scheduling of hardware tasks on DPRHWs. This chapter also suggests possible future directions

of the research, and emphasizes the RSoC design challenge aspect.

23 Design Space Exploration

21

Chapter 2

Dynamically Recon�gurable

Architectures vs Implementation

Alternatives

2.1 Introduction

The previous chapter introduced recent advances in embedded digital signal processing (DSP)

applications and discussed various design challenges brought by these advances. The chapter also

pointed out the exponential increase of bit rates that require current and future communications

applications (up to 100 Mbits on 4G wireless channels). Through FPGAs, the also presented how

the development of recon�gurable architectures is bringing new considerations in embedded SoC

design.

This chapter will present the most known digital architectures used to implement Digital Signal

Processing functions in embedded systems and their distinctive features. The chapter slightly

discusses the assets and the drawbacks of each architecture, according to criteria such as time-

to-market, performance, price, silicon area, development ease, power consumption and feature

�exibility.

The processors platforms for DSP implementation can be classi�ed in two main families:

1. Software or sequential processors

2. Hardware or parallel processors (sometime used as co-processors).

22

2. Dynamically Recon�gurable Architectures Introduction

However, the new trend is to combine both sequential and parallel processors in an appropriate

proportion in order to achieve a given goal. The chapter will also point out the suitability of

recon�gurable computing systems for future embedded System-on-a-Chip applications. The chap-

ter ends by an in depth presentation of recon�gurable hardware architectures, with an emphasis

on FPGAs architecture.

2.1.1 The Switch from Analog to Digital Signal Processing

In its earlier days, Signal Processing was performed using analog circuits. These circuits were

processing signals in their continuous form. They consist of passive (resistances, capacitances,

diodes, inductances, etc...) and active (transistors, integrated circuits, etc...) components. But

thanks to the advances in digital circuit design in general and microprocessor technology in parti-

cular, Signal Processing progressively moved to the digital domain. Today, Digital Signal Proces-

sing is used in a wide range of applications (wireless communications, medical imaging, avionics,

automotive, etc. . .). Figure 2.1 illustrates the basic principle of a DSP system in which an analog

signal used as input is �rst converted to a sequence of numbers, which are digitally processed

to achieve a given purpose. The numeric results are then converted back to produce the desired

analog output.

Figure 2.1: A simpli�ed representation of a Digital Signal Processing System

Processing digital data brings out many advantages over analog signal processing. Particu-

larly, digital data are easier to manipulate (multiplexing, �ltering, compression, errors detection

and correction, arithmetic operations, etc. . .). Indeed, programmable processors provide all the

�exibility of software programming. However the frequency range in DSP processors is limited

compared to analog circuits because of the Analog-to-Digital Converter (ADC) and the Digital-

to-Analog Converter (DAC) frequency limitations. In addition, DSP solutions tend to be more

complex and consume more power.

23

2. Dynamically Recon�gurable Architectures Introduction

2.1.2 The most common DSP Functions

Nowadays, DSP applications are ubiquitous. They can be found in many consumer devices in-

cluding mobile handsets (such as mobile phone, personal assistant, digital camera, GPS, etc.),

TVs, DVDs players, games console, etc. Hence, the main applications of DSP are audio signal

processing, digital image processing, speech processing and digital communications. The most

common DSP functions found in those applications are listed below:

• Filtering

• Transform (e.g. Bilinear, Fast-Fourier, Discrete-cosine)

• Convolution

• Modulation and demodulation (e.g. MIMO, QAM, etc.)

• Multiplexing and demultiplexing

• Signal generation

2.1.3 Software vs Hardware Platforms

DSP algorithms could be implemented in embedded electronic systems using di�erent platforms.

Choosing a given platform depends on the design trade-o�s such as performance, power and price

to be achieved. The most common platform implementation of DSP functions are:

• General Purpose Processors (e.g. Pentium, PowerPC) and Microcontroller Units (e.g. ARM

Cortex-M3). RISC architectures are more used.

• Programmable Digital Signal Processors (DSP) which are digital processing oriented micro-

processors.

• Application-Speci�c Integrated Circuits (ASICs) which are dedicated components optimized

to run speci�c DSP functions at the best performance and the lowest power consumption.

• Programmable hardware devices (e.g. FPGAs or PLDs) which are components capable of

implementing any DSP algorithms in a parallel way and which provide a kind of hardware

programmability.

• Other variants such as Application-Speci�c Instruction set Processors (ASIP) or Application-

Speci�c Standard Parts (ASSP), coarser grain recon�gurable devices and RISC/GPP archi-

tectures. Those variants combine speci�c implementation platforms cited above in order to

overcome some of their drawbacks.

24

2. Dynamically Recon�gurable Architectures Software Platforms (GPPs)

Those implementation platforms could be globally divided in two main families, depending

on how computations are performed: Software (or sequential) implementation and Hardware (or

parallel) implementation.

2.2 Software Implementation Platforms

Software implementation platforms are based on Von Neumann machine in which a single instruc-

tion (or operation) is performed at a time, as shown in �gure 2.2 (a). General Purpose Processors

(GPP), Microcontrollers (MCU) and Digital Signal Processors (DSP) are such platforms. They

are denoted as sequential architecture processors since in principle each operation is executed in

sequence on a single Arithmetic and Logic Unit (ALU) circuit controlled by an instruction mem-

ory (�gure 2.3). By changing the content of the instruction memory in an appropriate way (using

the Instruction Set of the processor), almost any function or algorithm could be implemented as

a sequence of basic operations (�gure 2.2(a)). As shown in �gure 2.2(b), each instruction is im-

plemented following the traditional Von Neumann computer cycles of Instruction Fetch (IF) and

Decoding (D), operands Read (R), instruction Execute (EX) and result Write back (W). Hence,

�ve cycles (one at a time) are needed to achieve a single instruction, in contrast with parallel

architectures. Consequently, sequential processors are totally �exible and capable of handling

tasks from a very wide range of applications. Depending on the application, this full �exibility

could be at the expense of power consumption and/or a low performance or quality of service.

Hence, trade-o�s between �exibility and performance of sequential processors had led to several

architectures each optimized for a given goal or a given class of applications.

2.2.1 General Purpose Processors (GPPs)

A GPP is the most popular sequential processor. It is a single integrated circuit that mainly

contains a Central Processing Unit (CPU). As shown in �gure 2.3, a GPP relies on a Von Neumann

architecture that consists of a CPU (hosting a Control Unit and an Arithmetic and Logic Unit),

a single central memory which holds both instructions and data, and an Input/Output unit for

external communication. The Control Unit (CU) extracts instructions from memory, decodes and

executes them, calling on the Arithmetic and Logic Unit (ALU) if necessary in order to perform

arithmetic and logical operations on read operands, and then writes back the results in data

memory.

One limitation of Von Neumann architecture is known as the Von Neumann bottleneck where

25

2. Dynamically Recon�gurable Architectures Software Platforms (GPPs)

Figure 2.2: Sequential execution. (a) a single operation at a time (b) sequential execution (c)

pipelined execution providing higher throughput.

Figure 2.3: The Von Neumann architecture.

26

2. Dynamically Recon�gurable Architectures Software Platforms (GPPs)

the throughput (data transfer rate) between the CPU and memory is limited compared to the

amount of available memory. On one hand, the CPU processing speed and memory size have

constantly increased following the Moore's law. Pentium and PowerPC processors are a few

examples of such architectures that can easily be clocked at 2GHz or more. Hence, they are

used in systems such as personal computers, workstations or any other application where power

consumption is not a predominant concern. On the other hand, the Von Neumann architecture

derives less bene�t from the Moore's law as both data and instructions are accessed in the memory

through the same port as illustrated in �gure 2.3, thus limiting the transfer rate. This architecture

has evolved over the years to reduce this bottleneck.

A way of reducing the Von Neumann bottleneck is to store data and program in two separated

memories. It is the philosophy behind Harvard architecture that enables concurrent instruction

and data access and rises the bandwidth between the CPU and the memory. Nowadays, Harvard

architecture (or a modi�ed Harvard architecture) is used in DSP processors and most of Micro-

controllers. This architecture eases Instruction Level Parallelism (ILP or the so-called pipelining)

as some of the �ve cycles (cited above and illustrated in �gure 2.2(b)) could be performed con-

currently if they do not belong to the same instruction. For instance, Instruction Fetch (IF) and

operands Read (R) cycles need to access respectively instruction memory and data memory. As

depicted in �gure 2.2(c), if belonging to two di�erent instructions, these two cycles could be run

concurrently thanks to the fact that instruction memory and data memory have separated access

ports. Even the execution (EX) cycle of a third instruction could be on the run at the same time.

These overlappings in instruction cycles execution are limited by dependency between instructions,

especially when a given instruction is fed by data resulting from another one. Pipelining adds

more parallelism in the architecture. The resource (silicon die) utilization ratio and instructions

execution throughput are increased accordingly.

To summarize, in a GPP, very high performance at high clock rates comes at the cost of power

consumption.

Microcontroller units (MCUs) integrate on a single chip a processor core, memory,

and programmable input/output peripherals. They are processors tailored for control purposes.

Indeed, increasing the clock rate of CPU-based architectures to meet the rising requirements of

embedded applications will never su�ce. As previously stated, CPU-based architectures can easily

run at high clock speeds and provide a �exibility that allow them can handle any signal processing

function. But they are not suitable for embedded applications because of the resulting power

27

2. Dynamically Recon�gurable Architectures Software Platforms (DSPs)

consumption. Thus, many vendors have designed lower speed MCUs (compared to GPPs) in order

to target embedded power-aware applications. As they are control oriented, MCUs are capable of

running embedded real-time operating systems. However, the new trend is to derive many sub-

families of MCUs, where each sub-family o�ers speci�c extensions for a given application domain.

For example, some MCUs provide a good system trade-o� for some basic DSP applications by

coupling some DSP functionalities with their CPU. Therefore their instruction set is enriched

with dedicated DSP instructions. The ARM Cortex-A8 is an example of an MCU where the ARM

NEON SIMD 1 accelerator is attached to the CPU. Even with these improvements, MCUs are

far from meeting processing requirements of highly intensive DSP applications since they are not

designed for this purpose. One example among many is their numeric accuracy which is usually

very low and rarely reaches 32 bits. This is not su�cient in most of embedded DSP applications.

Multiprocessor architectures are another solution of increasing performance level by

adding more parallelism in the architecture while limiting the clock rate. They enable more

instruction level parallelism (ILP), but remain unsuitable for embedded devices because of the

resulting power consumption.

2.2.2 Programmable Digital Signal Processors (DSPs)

Digital Signal Processors are programmable processors optimized for digital signal processing

oriented applications. Thanks to their ever decreasing power supply, DSP processors are also

power e�cient. Thus, they are very well suited to mathematically intensive applications embedded

in SoCs. Their Harvard architecture along with other architectural improvements attempt to

achieve a kind of parallelism in order to o�er a high MIPS (Million of Instructions Per Second)

and MMACS signal processing performance that is competitive with FPGAs and ASICs.

In addition, DSP processors have been proven excellent for short time to market. Indeed, most

of digital signal processing algorithms are written in C and C-like programming languages easier

to implement on sequential processors. Similar to other software programmable processors, many

tools (compilers, code generators) and libraries (DSP functions, IPs) have been developed over the

years to ease DSP implementation and code reuse. Hence, a DSP processor is orders of magnitude

easier to target than a hardware implementation platform, even if in some exceptional cases some

portions of the code are written in assembling language to optimize the implementation.

1 Single Instruction Multiple Data

28

2. Dynamically Recon�gurable Architectures Hardware Platforms

Nowadays, unlike the above-mentioned general-purpose DSP processors, DSPs vendors are

moving to a more market-speci�c approach in DSPs architectures. The new trend is to design

DSPs that target a more speci�c market. In doing so, these DSPs architectures provide the

required performance and propose various solutions for the speci�c market without sacri�cing their

programmability and their reusability. Examples of DSP processors are TI's TMS320C6000 (with

its Multi-MAC VLIW architecture), TI's C55, TI's C64, ADI's Black�n and CEVA-X families,

etc.

Summarizing, sequential processors are �exible and easy to program. They provide the best

silicon area e�ciency since a �xed structure (e.g. a single ALU) is used sequentially to perform a set

of micro-instruction under the control of a Control Unit. They are slower in terms of computation

throughput and more power-hungry as increasing operation speed (clock rate) increases the power

consumption accordingly. As architectures are continuously improved, the gap between di�erent

sequential processors presented above is narrowing , as most of the processors are based on Harvard

architecture (see �gure 2.20 on page 62).

In this thesis, an application (resp. a task) designed to run on a software platform is referred to

as software application (resp. software task).

2.3 Hardware Implementation Platforms

In a hardware implementation, processing is undertaken in parallel. Each instruction is imple-

mented as a custom logic circuit. Hence, several intructions mapped directly in hardware can be

executed at the same time (in single cycle), in contrast with sequential processor. One example

is illustrated in �gure 2.4 where a whole Finite Impulse Response (FIR) �lter is implemented as

a single instruction which is performed in one clock cycle. Operations needed to implement the

N th-order �lter (N multiplications and N − 1 additions) occurred in parallel at each clock cycle;

the only constraint being the signal propagation through the longest path between the input Xn

and the output Yn of the logic circuit. One output sample is delivered per clock cycle, in contrast

with a software implementation. Indeed, in a Von Neumann architecture the above 2N − 1 arith-

metic operations are sequentially done on the single Arithmetic and Logic Unit (ALU) as basic

instructions which cannot overlap.

This example of a FIR �lter (�gure 2.4) seen as an instruction also shows that the size and

the complexity of an instruction are arbitrary. Many instructions could be pipelined in order to

implement a bigger instruction or operation. Doing so, instructions are performed in parallel at

29

2. Dynamically Recon�gurable Architectures Hardware Platforms (ASICs)

Figure 2.4: Data�ow representation of one instruction performing an N th-order (N + 1 taps)

FIR �ltering.

each stage of the pipeline. The depth of the pipeline is only limited by data dependencies within

the implemented application and the available implementation resources on the circuit (e.g. num-

ber of gates in an ASIC or number of Con�gurable Logic Blocks in an FPGA).

Thanks to the fact that hardware implementation allows the designer to tailor their circuit for a

speci�c application with maximum parallelism, it yields highest performance in terms of through-

put, but lacks �exibility. Fortunately, today's FPGAs tends to overcome this lack of �exibility by

enabling runtime recon�gurability.

In any hardware implementation platform, algorithms or functionalities are mapped using Hard-

ware Description Languages (e.g. VHDL, Verilog, etc.) to describe hardware. Such languages

are not suitable for algorithms transcription as it contradicts the traditional sequential way of

human thinking. Even if HDLs are moving to higher levels of abstraction over the years, writing

programs is still a low level and time consuming task for designers. HDLs along with development

environments and designers expertise are far from being as mature as high level C-like sequential

languages targetting sequential processors (e.g. automatic code generation, compilers, etc..).

In this thesis, an application (resp. a task) designed to be implemented on a hardware platform is

referred to as hardware application (resp. hardware task).

The following section presents a couple of hardware implementation platforms.

2.3.1 ASIC Implementation

ASIC implementation is the perfect example of a parallel implementation. Today, ASIC remains

the best candidate for computationally intensive applications (even in real-time DSP embedded

30

2. Dynamically Recon�gurable Architectures Hardware Platforms (FPGAs)

ones). Algorithms are directly mapped into silicon through hardware gates. These gates are tuned

to achieve the highest performance and the lowest power consumption while occupying the smallest

silicon area. For example, if both designed at 90nm technology, cell-based ASIC is faster, can be

up to 40 times smaller and consumes about 10 times less power compared to SRAM-based FPGA

(Bolsens, 2005; Kuon and Rose, 2006). However, ASIC su�ers from its lack of �exibility, since

each ASIC chip is designed and manufactured for a speci�c purpose, and could not be changed or

upgraded anymore. For example, as pointed out in Chapter 1, using ASIC technology to achieve

Software De�ned Radio requirements means designing one ASIC chip for each standard (or func-

tion) in the system. In a system that contains many ASICs, one ASIC would be used at the same

time, while others would remain unused or in an idle state. This approach leads to products with

very large silicon area, high power consumption and consequently, non cost-e�ective. In addition,

modifying a standard or adding new feature leads to a complete redesign of its ASIC.

Embedded applications are facing exponential growth of their requirements, leading to complex

and denser ASICs and SoCs design, integration and validation. This growing complexity lengthens

the design process and consequently delays the time-to-market (TTM). The veri�cation process

became the key point of the design since any failure leads to a costly complete redesign. Further-

more, the non-recurring engineering (NRE) cost of ASICs is also mainly increasing drastically as

the costs of creating masks in today's deep submicron geometries are becoming una�ordable as

shown in �gure 2.5. Design tools are struggling to handle challenges posed by each new technol-

ogy generation. Consequently, an ASIC product could become obsolete before getting into the

market. This makes ASIC implementation cost-e�ective only for high-volume products. However,

in contrast with Von Neumann-like architectures where the clock frequency is reaching a plateau,

ASICs will still bene�t from Moore's law for a while.

2.3.2 Fine and Coarse Grain Recon�gurable Arrays Implementation

Field Programmable Gate Arrays (FPGAs) are known as the �nest grain recon�gurable hardware.

They can implement fairly small pieces of logic (1-bit level). Hence, they are the main alternative to

ASICs. If big enough, an FPGA could implement any digital system. Consequently, they have been

used for ASIC prototyping. As previously stated in Chapter 1, TTM and RFT are the two factors

which fostered FPGA development. The two main technologies are SRAM-based FPGAs and anti-

fuse-based FPGAs. Depending on the technology used, an FPGA could be con�gurable only once

or many times. For example, the main feature of SRAM-based FPGAs is to be recon�gurable

31

2. Dynamically Recon�gurable Architectures ASIP/ASSP

Figure 2.5: Mask cost exponentially grows with technology.

an unlimited number of times. They hold their con�guration in a static memory. They ally

�exibility and performance. Their programmability is not as good as sequential processors, but

their performance is not far below that of ASIC. However, dynamically recon�gurable SRAM-

based FPGAs are seen as an enabling technology for recon�gurable computing. The anti-fuse

FPGAs will not be emphasized in this section, as they do not enable dynamic recon�guration.

A trend in programmable logic devices is to develop coarse grained recon�gurable architectures.

In these latter, the granularity is at word level (8, 16 and/or 32 bits level). This granularity

provides a better performance (thanks to embedded hardwired blocks) and reduces the costs in

terms of con�guration logic, but at the cost of �exibility.

A more detailed study of �ne grain (FPGA) and coarse grain recon�gurable arrays technology is

presented later in this chapter in sections 2.5 and 2.6.

2.4 ASIP/ASSP Implementation

Even though agreeing that SoCs including one or many CPU subsystems and recon�gurable hard-

ware in addition to speci�c hardware blocks are the future of embedded systems design, many

studies (e.g. Hartenstein, 2001a,b; Rabaey, 2001; Jerraya, 2004) argue that a universally e�cient

implementation platform is an illusion. According to them, a general purpose computing tech-

nology platform could never meet di�erent combinations of requirements of di�erent applications.

In addition, Gatherer et al. (2004) stated clearly that FPGAs and recon�gurable processors are

only a stop-gap solution in the march towards an all-soft SDR, despite their numerous advan-

32

2. Dynamically Recon�gurable Architectures FPGA Architectures

tages. Hence, even dynamically recon�gurable platforms have to be optimized for a given class of

applications. Platform-Based design concept presented below aims to follow this trend. Similarly,

one could say that con�gurable processors cited above are used to generate Application-Speci�c

Instruction set Processors (ASIP). ASIPs or ASSPs (Application-Speci�c Standard Parts) are

circuits optimized for a class of products or a particular application domain. ASIPs/ASSPs are

becoming an alternative to ASIC design, thanks to their shorter time-to-market. Indeed, once

they are designed, di�erent versions or new generation of a product could be derived from the

same design. ASIPs/ASSPs are increasingly designed as SoCs integrating multiple cores (processor

cores and semi-programmable circuits). Some application oriented platforms like TI OMAP cited

in the paragraph 2.7 below are referred to as ASSPs. One can say that ASIP/ASSPs are between

ASICs and FPGA, since they are less �exible than FPGA, but provide a better performance.

2.5 Fine-grained Recon�gurable Hardware Devices

2.5.1 Introduction

As previously said, in a �ne grain recon�gurable architecture, the granularity is at the bit-level.

This means that even a one-bit logic function could be implemented on this architecture. This

section presents �ne grain recon�gurable architectures and mainly SRAM-based FPGAs as they

are far the most used to implement dynamic and partial recon�guration. However, this study is

also valuable for other devices like CPLDs or other antifuse-based FPGA, as they rely on the same

principle.

2.5.2 FPGA Architectures

A basic FPGA consists of three major elements as shown in �gure 2.6:

(i). Combinational logic blocks

(ii). Programmable interconnects

(iii). Programmable Input/Output pins

Combinational logic blocks are con�gurable blocks used to implement custom logic functions.

They are denoted as logic elements (LEs) or con�gurable combinational logic blocks (CLBs). These

blocks are generally arranged as a two-dimensional structure and are surrounded by programmable

interconnects. The circuit to be implemented is divided into small modules, each �tting in a

33

2. Dynamically Recon�gurable Architectures FPGA Technology

Figure 2.6: Simpli�ed structure of an FPGA.

logic block. Several blocks are then interconnected using programmable interconnects in order to

implement the whole circuit, if too big to �t in a single block. If the FPGA is reprogrammable, the

implemented function could be changed by updating the content of the con�guration memories.

Input and Output pads are assigned using programmable Input/Output blocks (IOBs). IOBs could

be also programmable as low-power or high-speed connections. If there are enough implementation

resources on the chip, any function could be implemented by interconnecting basic blocks. There

are several types of interconnect, depending on the distance between logic blocks to interconnect.

Special interconnects are dedicated to clock signals.

2.5.3 FPGA Technology

The two main technologies are :

1. Antifuse-based FPGAs

In antifuse-based FPGAs, interconnections rely on antifuses which two terminals are sepa-

rated by a dielectric. Hence, they are of high impedance at their normal state and can be

switched to their low impedance state (fused state) by applying a high voltage which melts

the dielectric and reduces the resistance. The nodes are then connected for good. For this

reason, they are also known as one-time programmable FPGAs. The desired logic function

34

2. Dynamically Recon�gurable Architectures FPGA Structures

is obtain by connecting basic logic elements in the appropriate way. Antifuse technology,

a cheaper technology than SRAM, can achieve higher speeds and occupies less space on

the die. In addition, antifuse technology makes more reliable and secure FPGAs compared

to SRAM-based, safeguarding against cloning, overbuilding, reverse engineering and radia-

tion bombardment. Consequently, antifuse FPGA technology is the best option for satellite

applications. However, as antifuse FPGAs are only one-time-programmable, they are not

suitable for recon�gurable computing and, therefore, are no more detailed in this thesis.

2. Memory-based FPGAs

In memory-based technology, memory parts are either SRAM2 or �ash EEPROM3. SRAM

or �ash EEPROM are used to con�gure both interconnections and logic blocks. Con�gura-

tions are held in the memory. Consequently, unlike �ash EEPROM which are permanently

programmed FPGAs, SRAM-based are volatile and the con�guration is lost at power o�.

However, the SRAM approach is the most widely used in FPGA con�guration.

2.5.4 FPGA Structures

No matter which technology is used, the overall structure of �gure 2.6 remains the same.

Island style architecture

This type of architecture was chosen by Xilinx from the beginning while introducing FPGAs

in 1985. The FPGA consists of a planar array of programmable logic blocks with vertical and

horizontal programmable routing resources.

Sea-of-gates architecture

In this architecture, logic blocks are spread all over the IC chip and routing resources provide a

logarithmic connectivity. Indeed, interconnections are mainly made through neighbor-to-neighbor

routes which are faster, in addition to other general routing resources. Sea-of-gates topology was

used by Xilinx (in its 6000 series) and by Actel (in its ProASIC family).

2 Static Random Access Memory
3 Electrically-Erasable Programmable Read-Only Memory

35

2. Dynamically Recon�gurable Architectures SRAM-Based FPGA

Hierarchical architecture

Hierarchical architecture is the philosophy of Altera. There are several plans in the FPGA, but

these plans are not physical. They correspond to di�erent logic levels. For example, one element

of a logic level may contain elements of a lower logic level, leading to the notion of logic hierarchy.

Each level uses the topology of island style architecture with dedicated routing for each level.

This hierarchical approach both in logic and interconnects provide smaller and more predictable

routing delays, and therefore higher operation frequency.

2.5.5 SRAM-based FPGA

This section focuses on SRAM-based FPGAs technology, as they can be reprogrammed an un-

limited number of times and even during system operation, enabling dynamic (on-the-�y) recon-

�guration. These two features are the main advantages of SRAM technology. In addition, unlike

other technologies, SRAM technology uses standard CMOS4 cells and the whole FPGA can be

fabricated with standard VLSI5 processes. However, SRAM-based technology occupies more chip

area compared to other technology, making them relatively expensive. Furthermore, SRAM con-

�guration memory is power consuming even when its contain remains unchanged. As the SRAM

contents are lost at power-o�, there is a need for an external non volatile storage memory to keep

con�guration data in order to recon�gure the FPGA at power-on.

LUT-based Logic Elements

In SRAM-based FPGAs, each logic element or con�gurable logic block (LE or CLB in �gure

2.8) is built around a LUT6. A LUT can implement any n − inputs combinatorial function (or

sequential by adding a �ip-�op latch at the output). For example in �gure 2.7, a LUT implements

a function by storing its truth table in SRAM memory. Hence, an n− inputs function requires a

2n location SRAM (resp. 3 and 23 in the example of �gure 2.7). Values of function S in the truth

table are pre-stored in the SRAM in a way that each value is at the address corresponding to its

combination of inputs (e.g �gure 2.7 where values 0 and 1 are stored respectively at addresses

101 and 110). The SRAM is then connected to a decoder which uses the input combination

to access the corresponding location and route the correct result of the function to the output.

4 Complementary Metal Oxyd Semiconductor
5 Very Large Scale Integration
6 Look-Up Table

36

2. Dynamically Recon�gurable Architectures SRAM-Based FPGA

One advantage of LUT implementation over static logic gates is that no matter which function is

implemented by the LUT, the delay through the logic element is the same.

Thanks to this �ne grain granularity, a full parallelism (spatial implementation) is achieved

as much as in ASICs. Hence, one can recreate a complete ASIC design in an FPGA by program-

ming and interconnecting basic blocks. This feature made FPGAs suitable for complex ASIC

prototyping.

Figure 2.7: Truth table of function S = f (a, b, c) and its mapping using a 3 inputs

Look-Up-Table.

As shown in �gure 2.8, a LUT-based logic element usually contains an output register which

synchronizes, if necessary, the output with a clock. An n − inputs logic element can implement

up to 22n

di�erent functions only by changing the contain of the SRAM.

The size of LUT inputs is typically 4. Many studies have shown that a LUT size between 3 and

6 provides the best trade-o� between area optimization and delay (e.g. Rose et al., 1990; Singh

et al., 1992; Ahmed and Rose, 2000). More precisely, a 3 to 4 input LUT improves the area, while

a 5 to 6 inputs minimizes delay.

Examples of LUT-based basic building blocks in commercial FPGAs

In most of commercial SRAM-based FPGAs, basic logic elements are grouped in a kind of cluster

which provides faster connections between the LUTs inside the cluster, in addition to registers (�ip-

37

2. Dynamically Recon�gurable Architectures SRAM-Based FPGA

Figure 2.8: A logic element or con�gurable logic block

�ops and latches), multiplexers (used as input and output decoder) as well as some combinational

logic for basic computations (e.g XOR-gates, adders, fast carry chain, etc.).

1. Adaptive Logic Module in Altera Stratix V architecture (�gure 2.9)

Figure 2.9 depicts a high-level block diagram of a LUT-based Adaptive Logic Module (ALM).

An ALM is the basic building block of logic in the Altera Stratix V architecture. It combines

advanced features and e�cient logic utilization.

Each ALM contains a variety of LUT-based resources that can be viewed as two combina-

tional adaptive LUTs (ALUTs) followed by two registers. With up to eight inputs for the

two combinational ALUTs, one ALM can implement various combinations of two functions.

However, the ALM is completely backward-compatible with four-input LUT architectures.

One ALM can also implement any function with up to six inputs and certain seven-input

functions. In addition to the adaptive LUT-based resources, each ALM contains two pro-

grammable registers, two dedicated full adders, a carry chain, a shared arithmetic chain,

and a register chain. Through these dedicated resources, an ALM can e�ciently implement

various arithmetic functions and shift registers. Each ALM drives all types of interconnects:

local, row, column, carry chain, shared arithmetic chain, register chain, and direct link.

2. A Slice in a Xilinx Virtex 5 FPGA architecture (�gure 2.10) In Xilinx FPGAs,

Con�gurable Logic Blocks (CLBs) are the main logic resources. Each CLB element consists

of two SLICEs (shown in �gure 2.10) and is connected to a switch matrix for access to the

general routing matrix. CLBs and therefore slices are arranged array-wise. The two slices

within the same CLB belong to di�erent column of slices and do not have direct connections

to each other. However, each slice in a column has an independent carry chain which could

be connected to the neighboring slice of the same column. As pictured in �gure 2.10, every

slice contains four look-up tables for logic-function generation, four storage elements, wide-

38

2. Dynamically Recon�gurable Architectures SRAM-Based FPGA

Figure 2.9: An Adaptive Logic Module in Altera Stratix V architecture (courtesy Altera).

function multiplexers, and carry logic. These elements provide logic, arithmetic, and ROM

functions. With up to six independent inputs (e.g. A1 to A6) and two independent outputs

per LUT in the slice, each of the four function generators can implement any arbitrarily

de�ned six-input Boolean function, or implement two arbitrarily de�ned �ve-input Boolean

functions, as long as these two functions share common inputs. Thanks to multiplexers, the

four LUTs could be combined to generate any Boolean function of 7 or 8 inputs in a slice.

Furthermore, some slices (SLICEM, not shown in �gure 2.10) support additional functions

such as storing data using distributed RAM and shifting data with 32-bit registers.

39

2. Dynamically Recon�gurable Architectures SRAM-Based FPGA

Figure 2.10: A Slice (SLICEL) in a Xilinx Virtex 5 FPGA architecture (courtesy Xilinx).

Routing resources

Most of the chip area (60 to 90%) of an FPGA is occupied by routing used to connect logic blocks

between them and to I/O blocks. These programmable interconnects are of di�erent kinds, ranging

from short local wires, general-purpose wires, global interconnect and dedicated clock distribution

networks. The main reason of using di�erent interconnects is to minimize delay throughout the

wire. This is achieved by �nding the best trade-o� between the area size of the wires, distance

separating the bu�ers inserted along the wires, etc. As they provide low impedance, antifuse-

based programmable interconnects are faster than those used in SRAM-based (pass transistors or

three-state bu�ers) or �ash-EEPROM based FPGA.

40

2. Dynamically Recon�gurable Architectures Heterogeneous FPGAs

Programmable IOBs

Input/Output blocks control the data �ow between FPGA external pins and the internal user

logic through programmable interconnects. Input/Output blocks are multistandard, providing

di�erent logical levels (e.g. 3.3-V LVTTL7, multi-voltage LVCMOS, multi-voltage PCI, HSTL8,

SSTL9, etc.), LVDS10 channels, SERDES11 support, EDS12 protection, DDR13 compatibility, and

numerous programmable features (input, output, tri-state, delay, skew rate, etc.).

Digital Clock Manager

Among routing resources, dedicated clock distribution networks appears as a tree of drivers with

bu�ers distributed throughout it in order to minimize delay skew. DCM digitally manages clocks

signals generation and distribution. It also enables delay skew compensation, clock multiplication

and division for multi clock designs.

2.5.6 Heterogeneous FPGAs

Today, FPGAs are increasingly used in many computationally intensive applications. Their archi-

tecture became more heterogeneous, embedding hardwired blocks as shown in �gures 2.11 and

2.12 in order to respond to the market demand. Indeed, its high �exibility comes at the cost of

e�ciency compared to ASIC. As more gates have to operate in the FPGA than in an ASIC for

the same functionality 14, it will consume more power, clock slower and require more silicon area.

But more than ASIC and processors, FPGAs leverage the logic density improvements arising from

technology scaling (the Moore's law). Hence, they are becoming larger and faster, with on-chip

dedicated blocks (memories, multipliers, processors, etc...). These well-designed and well-tested

ASIC blocks are more area e�cient and faster than their CLB-based counterparts. They avoid

the use of considerable amount of logic to implement CLB-resources-greedy functions such as

7 LVTTL/LVCMOS : Low Voltage TTL/CMOS I/O logic switching levels
8 High Speed Transceiver Logic, for fast SDRAM
9 Series Stub Terminated Logic, for reduced latency DRAM (RLDRAM)
10 Low Voltage Di�erential Signaling
11 Serializer/deserializer
12 Electrostatic discharge
13 Double data rate
14 Compared to an ASIC achieving the same functionality and manufactured at the same process

technology (e.g. 90nm), an FPGA clocks 10 times slower and uses 50 times larger silicon area per gate.

This is due to con�guration overhead, logic gates and con�guration memories, routing delays, etc. . . .

41

2. Dynamically Recon�gurable Architectures Heterogeneous FPGAs

multipliers or memories. Furthermore, one or many hard core processors are directly integrated

within the FPGA15, along with various network interfaces and communication modules16. This

new trend could be denoted as multi-grain FPGAs, as it combines �ne-grain and coarse-grain

recon�gurable architecture on the same silicon die. The most common embedded hard blocks are:

Memory Blocks

In data�ow oriented applications like image processing, huge amounts of data need to be regularly

and temporary stored during their processing. Consequently, embedding memory blocks within

the FPGA became crucial for reducing memory access delays. As depicted in �gures 2.11 and

2.12, these blocks are distributed all over the device, providing a very high memory bandwidth

suitable for highly parallel applications. These so-called BlockRAM (BRAM) modules which are

fundamentally 36 Kbits in size, can also be used as two independent 18 Kbit blocks, and provide

single port and dual port access. A single FPGA chip may contain up to 16 Mbits17 memory

spread over the chip.

Embedded DSP Blocks

Embedded DSP blocks (�gure 2.11) provide many MAC18 units. Associated with the aforemen-

tioned BlockRAM embedded memory modules, they ease the implementation of digital signal

processing functions like �lters. Hence, a DSP oriented FPGA can run concurrently hundred of

MAC units19 and thereby far exceed programmable DSP processors performance.

High speed I/O transceivers

High-speed serial I/Os are more used today since serial buses are progressively preferred to parallel

buses. E�ectively, parallel buses need to be synchronized to a clock line, while in serial buses, the

clock signal can be implicitly included in the signal. The GX series of Altera Stratix FPGAs family

15 e.g the PowerPC405-based processor(s) integrated in Xilinx FPGAs (�gure 2.12), or the ARM-based

processors in Altera FPGAs.
16 e.g. built-in PCI Express and 100 Gigabit Ethernet in Altera Stratix V family and Xilinx 7 series,

both leveraging new 28nm process and design innovations to reduce power consumption
17 e.g. Xilinx FPGA Virtex-5 XC5VFX200T integrates up to 456 x 36 Kbits blocks or 912 x 18 Kbits

blocks
18 multiply-accumulate
19 up to 512 multipliers blocks 18-bit x 18-bit in some Stratix V FPGA sub-family

42

2. Dynamically Recon�gurable Architectures Heterogeneous FPGAs

(�gure 2.11) and the FX/TX series of Xilinx Virtex FPGAs family (�gure 2.12) are examples of

FPGAs optimized for high speed serial connectivity. They enable data rate of up to 12.5 Gbps20,

particularly well-adapted to high-throughput telecommunication systems.

Figure 2.11: Altera Stratix-V �oor plan (Altera, www.altera.com).

Figure 2.12: Xilinx Virtex II Pro FPGA with up to 4 hard core embedded processors(Xilinx,

www.xilinx.com).

20 10.3125 Gbps for Xilinx Kintex-7 FPGA Family and 12.5 Gbps for Altera Stratix V FPGA Family

43

2. Dynamically Recon�gurable Architectures FPGA Design Flow

Embedded hard/soft core processors

Figures 2.11 and 2.12 depict the �oor plan of Altera Stratix V FPGA and Xilinx Virtex II Pro

FPGA. The latter could embed up to four IBM PowerPC 405 RISC hard core processors within

its structure (�gure 2.12). The other option is to embed instantiated soft core processors instead

(e.g. Altera Nios II soft core in �gure 2.11), as they provide more �exibility on architecture and

therefore instructions set. By merging hard or soft microcontroller cores in FPGA chips, FPGA

manufacturers have launched the SOPC21 age. A SOPC integrates on a one die one or several

programmable processors (GPP/RISC, DSP), memory, recon�gurable fabrics and some dedicated

blocks. Hence, it combines the programmability and well-tried connectivity of microprocessors

(buses, uart, Ethernet) with the high performance of ASICs and the recon�gurability of FPGAs.

Besides, the merged soft core microprocessor is customizable (pipeline depth, cache size, etc.) by

the designer. Further, as shown in Meyer-Bäse et al. (2006), this soft core allows the designer

to extend its instruction set by implementing some acceleration units in the form of custom

instructions. This processor is referred to as con�gurable processor. Tensilica's Xtensa 22, Altera's

NIOS and Xilinx's Microblaze soft core processors are a few examples of con�gurable processors.

In the literature, Coarse-grained recon�gurable arrays presented below are also referred to as

con�gurable processors.

2.5.7 FPGA Design Flow

Traditional design �ow

In the traditional FPGA design �ow pictured in the grey coloured part of �gure 2.13, a design is

created using a HDL (e.g. VHDL or Verilog) or a schematic capture environment, then synthesized,

placed and routed for a speci�c FPGA. The minimum steps of the design �ow are listed below:

1. Design description in HDL (VHDL, Verilog, SystemC), or through a graphical entry tool

that generates the corresponding HDL code.

2. Simulation to verify the correct behavior.

3. Synthesis.

4. Mapping, placement and routing for a speci�c FPGA.

21 System on a Programmable Chip
22 Tensilica (www.tensilica.com)

44

2. Dynamically Recon�gurable Architectures FPGA Design Flow

5. Binary con�guration �le (bitstream) generation and loading on the targeted FPGA.

Nowadays, most of the above mentioned steps are push-button operations. However, as previously

stated, the �rst step (design entry) using HDLs is still an almost manual and time consuming

task. Indeed, even if C-like languages along with their C-to-hardware compilers are increasingly

investigated23, the resulting FPGA implementation (in case of a successful synthesis) is far from

competing manual design in terms of area e�ciency and timing.

The generated bitstream is downloaded into the FPGA through con�guration interfaces like

JTAG, SelectMap or Slave Serial ports. These ports enable numerous recon�guration techniques,

bitsream encryption and bitstream readback (through the SelectMAP and JTAG interfaces). As

SRAM-based FPGAs are volatile, bitstreams are stored in an external non-volatile memory and

are used by a CPLD24 to con�gure the FPGA at each power on.

Figure 2.13: Design �ow for FPGA-based systems embedding a programmable processor.

23 SystemC (www.systemc.org), Celoxica (2000), ImpulseC (www.impulseaccelerated.com), etc...)
24 Complex Programmable Logic Device

45

2. Dynamically Recon�gurable Architectures Modular Design Flow

SOPC design �ow

As FPGAs enable a SOPC design approach, the design �ow in that case is slightly di�erent. The

design of the software part of the SOPC is integrated in the �ow and the whole process is depicted

in �gure 2.13. The main FPGA manufacturers tools and other third party companies provide

complete IDE25 for SOPC design. Such IDEs are capable of designing both the hardware part

and the software part of the design by:

• supporting the traditional design �ow that automatically runs the whole process, resulting

in a single binary �le (e.g. .bit �le) which contains the con�guration data for the FPGA.

• providing the environment for writing the code and developing the application to run on the

embedded processor (generating the executable �le), generating all communication media

(bus, UART, JTAG, Ethernet, etc.), and �nally producing the binary �le containing the

con�guration data for FPGA and the binary code for the processor.

2.5.8 FPGA Modular Design for Runtime Partial Recon�guration

Modular design �ow is an incremental design approach that di�ers from the above mentioned

traditional design �ow. The main drawback of the latter approach is that if a slight change is

made on an implemented design, the �ve design steps (grey coloured part of �gure 2.13) have to

be completely redone for the entire design, making the redesign or modi�cation process very long.

Originally, Modular design �ow aimed to partition an application into its natural functional

units in a way that each unit corresponds to an independent module. Hence, each module can be

separately designed, tested, modi�ed, validated, implemented and even reused in another design.

Modules can also be third party IPs (intellectual properties) released either as HDL-described

circuits or pre-synthesized netlists.

As Modular Design requires a clear partitioning of the design in di�erent modules, a team of

designers can work independently and concurrently on di�erent modules and later merge them

into one FPGA. This concurrent and hierarchical approach saves time and allows for independent

modules modi�cation and validation while leaving others unchanged and stable. The latter feature

is exploited while designing dynamically and partially recon�gurable designs for SRAM-based

FPGAs. Indeed, recon�guring a module corresponds to changing a functionality by swapping

functional units on the FPGA, each functional unit performing a speci�c task.

25 Integrated Design Environment

46

2. Dynamically Recon�gurable Architectures Modular Design Flow

Figure 2.14: Modular design enables dynamic module swapping.

An example of dynamic recon�guration is pictured in �gure 2.14 where the FPGA can contain

at most two modules at a time. One can switch from one design to another by recon�guring at

least one module of the FPGA. However, because of current lacks in FPGA design tools for partial

runtime recon�guration, the FPGA is block-partitioned and recon�gurable modules are position-

constrained at design time. In the example of �gure 2.14, the FPGA is two-blocks partitioned to

accommodate two classes of recon�gurable modules, module class A and module class B. Modules

of the same class (e.g. modules A, A' and A�) are allocated the same block and the size of the

module cannot exceed the size of the containing block. There is at most one module in a block at

a time and only the modules of the same class can be swapped on their allocated and position-

constrained block. Hence, at a certain point in time and if necessary, one can switch from top

design 1 to top design 2 by swapping module A for module A' without a�ecting the module B.

The Xilinx ISE encompassing the PlanAhead tool is one example of an enabling design en-

vironment for partial and dynamic recon�guration of Xilinxs' FPGAs. In addition, the Xilinx

Application Note (Xilinx, 2004) provides details on two ways for designing partial runtime re-

con�guration : di�erence-based and module-based. The latter approach uses the above-mentioned

modular design �ow and generates partial bitstream for di�erent modules.

Let's F being an m-blocks partitioned FPGA which can therefore hosts m modules at a time.

Given n the number of physically pre-placed modules per block. If it is assumed that all the

modules are recon�gurable 26, then the FPGA can implement n ·m di�erent designs or parts of

26 This is rarely the case as in real design and with current design tools (e.g. Xilinx ISE) there is always

47

2. Dynamically Recon�gurable Architectures Coupling FPGA & Processor

designs as shown in �gure 2.14.

Hardware virtualization and hardware multitasking

When the dynamically loaded and unloaded modules belong to the same application, this process

is referred to as hardware virtualization otherwise hardware multitasking. Hardware virtualization

stands in that, thanks to dynamic recon�gurability, the total amount of logic on an FPGA virtually

appears bigger than it really is. Indeed if the modules of an application are properly scheduled, an

FPGA of size W ·H can �t the application even if the sum of the areas of the modules composing

the application is bigger than the size of the FPGA as expressed in equation 2.1.

V irtualization => Appl(total_size) =
m∑
i=1

wi · hi > FPGAsize = W ·H (2.1)

where W and H (resp. wi and hi) are respectively the width and the height of the FPGA (resp.

of module i), W · H the total size of the FPGA (resp. wi · hi the size of module i) and m the

number of modules composing the application Appl.

As stated in the previous chapter, Software De�ned Radio is an example of a promising appli-

cation �eld for recon�gurable architecture. The �exibility and the high performance required by

the radio may be achieved by modules swapping as described earlier. Hence with proliferation

of standards, the radio can dynamically switch from one standard to another by swapping corre-

sponding functional units in and out of a limited and cost e�ective silicon die, where the cost of

an integrated circuit is related exponentially to die size.

2.5.9 Coupling with the Host Processor

Recon�gurable hardware devices are used in several ways as hardware acceleration units to boost

the performance of a computing system.

Shown below are di�erent scenarios of coupling the recon�gurable hardware fabric to the host

processor. These coupling scenarios also de�ne communication cost. Indeed, communication is of

high cost in embedded systems as it has a great impact on the global performance of a system.

Coupling scenarios tend to complicate the design process, as the designer faces a new programming

model for targeting a new computing resources model. One of the main issues is to identify which

coupling approach is likely to yield particular performance bene�ts in an application domain,

at least one �xed parts of the design which is not recon�gurable and which hosts a hard-core or a softcore

processor that manages the recon�guration process for example.

48

2. Dynamically Recon�gurable Architectures Coupling FPGA & Processor

and to know whether or not using recon�gurable hardware is the most pro�table. A signi�cant

challenge is to �nd a suitable architecture for the communication media which interfaces di�erent

parts of the system (FPGA, programmable processors, etc...). Here below are three ways of using

recon�gurable logic in a SoC:

1. Recon�gurable Hardware used as a peripheral co-processor (�gure 2.15)

In this design approach, any process intensive code (encryption/decryption, pattern recog-

nition, etc.) within a given application, migrates to the recon�gurable hardware device

(e.g. FPGA). The recon�gurable fabric accelerates the computations via devices such as

an FPGA board, or a multi-FPGA board. Consequently, a programmable GPP or DSP

is relieved of some complex processing tasks (mostly data�ow oriented tasks) to increase

the overall system throughput. In this case, the programmable processor and the recon�-

gurable logic could be connected to the same bus (or some kind of I/O bus) and therefore

communicate through the bus protocol. Communicating through a bus leads to a higher

communication cost, and consequently worths only if the speed improvement brought by

the recon�gurable logic exceeds the overhead of transferring data through the communica-

tion media. This is achieved either by implementing applications which do not need regular

transfer of huge amount of data between the programmable processor and the co-processor,

or by implementing a whole computationally intensive algorithm on the co-processor. Pe-

ripheral single-function co-processors have been implemented using dedicated ASIC blocks

which provide faster, power-e�cient and area-e�cient implementation compared to the cor-

responding FPGA implementation. However, improvement in FPGA technology �lls these

gaps by providing �exibility (static or dynamic recon�gurability) and by improving upgrad-

ability and Time-To-Market.

2. System-on-a-Programmable Chip (SOPC - �gure 2.16, left)

In this approach, the whole system is designed on a single recon�gurable hardware device

(e.g. FPGA) embedding some hardwired and optimized IP cores such as softcore and

hardcore processors, Input/Output devices, memories, and DSP blocks within its structure.

Low communication cost could be achieved especially when using con�gurable processors

where parts of functional units are made of recon�gurable logic, and enable con�gurable

instruction set. Thanks to advances in FPGA technology, the main FPGAs manufacturers

(Xilinx, Altera, etc...) have made such recon�gurable systems design possible by releasing

products such as Virtex-II Pro, Virtex 4, Virtex 5, Stratix-II, Stratix-5, etc, along with

49

2. Dynamically Recon�gurable Architectures Coupling FPGA & Processor

softcore processors (NIOS II, microblaze, etc...).

Figure 2.15: FPGA as co-processor

Figure 2.16: FPGA based SOPC (left) and embedded FPGA (eFPGA)

3. Embedded FPGA (�gure 2.16, right)

An FPGA fabric is embedded in a complex heterogeneous chip containing other elements

such as GPP and/or DSP processors, memories, I/O and communication modules along

with hardwired IP cores. Such FPGA coprocessor can be used as hardware extension for

custom instructions. The recon�gurable fabric behaves like an extended datapath of the

processor. Once again, the main advantage of integrating the recon�gurable fabric and the

processor on the same silicon die is to reduce the communication cost as stated earlier. This

50

2. Dynamically Recon�gurable Architectures Types of Recon�guration

category could also be classi�ed as Recon�gurable System-On-a-Chip (RSoC) which is a

heterogeneous SoC containing a recon�gurable fabric.

2.5.10 Types of Recon�guration

There are mainly two types of recon�guration : static and dynamic.

Static (or compile-time) recon�guration

Static recon�guration is the most common way for implementing an application on recon�gurable

logic using a classical design �ow (HDL description or schematic capture, synthesis, place and

route, download the bitstream in the FPGA) and conventional CAD27 tools. Each application

consists of one con�guration. Once implemented, the application is supposed to run to completion

without being interrupted. Static recon�guration is mainly used when high performance, cost

advantage (e.g. NRE costs) and upgradability are the main goals, and when there is no need to

switch from one con�guration to another in a relatively short amount of time (e.g. less than an

hour).

Dynamic (or runtime) recon�guration

Dynamic recon�guration is the ability to recon�gure totally or partially the recon�gurable hard-

ware while it is running. Hence, dynamic recon�guration implies dynamic re-allocation of hardware

blocks at run-time. It enables the concept of hardware virtualization where the physical hardware

is smaller than the sum of the resources required to implement the whole application. Hardware

virtualization is performed by time-sharing the same recon�gurable hardware (partially or totally)

to di�erent functions of the application which do not need to be run concurrently. This is known

as temporal partitioning, and is still very challenging because of the lack of CAD tool support.

In addition, swapping from one con�guration to another brings additional challenges similar to

context switching problem in traditional operating systems. In real-time constrained applications,

recon�guration time is the main bottleneck. It should be short enough to enable runtime hardware

task switching. Despite the above-mentioned problems on implementing dynamically and partially

recon�gurable systems, recon�gurable computing is referred to as the most suitable platform for

DSP applications (e.g. jui Chou et al., 1993; Petersen, 1995; DeHon, 2000; Tessier and Burleson,

2001), and far justi�es global research on OS for recon�gurable systems.

27 Computer Aided Design

51

2. Dynamically Recon�gurable Architectures Types of Recon�guration

Single-context recon�guration

In single-context recon�guration, the recon�gurable hardware device has only one con�guration

downloaded on the device each time. In this case, any change on recon�gurable hardware func-

tionality requires the complete recon�guration of the entire chip, and therefore leads to high

recon�guration overhead. This feature makes this recon�guration scheme more suitable for static

recon�guration where recon�guration overhead is not a big concern.

Multi-context recon�guration

In multi-context recon�guration, many con�gurations are downloaded on the devices and are

stored as planes of con�guration information. Only one plane of con�guration is active at each

time, and the architecture could quickly switch from one con�guration to another, just by ac-

tivating one of the con�guration planes. Obviously, switching from one con�guration plane to

another reduces con�guration overhead as recon�guration is not done sequentially, as during the

download. Here, con�guration switching is a matter of nanoseconds, where single-context needs

milliseconds or more. Multi-context could be viewed as a kind of con�gurations prefetch approach

which drastically reduces con�guration overhead, but which requires more silicon area to build as

many on-chip con�guration planes as there are contexts.

Partial recon�guration

Some recon�gurable hardware devices enable partial recon�guration. Indeed, sometime, either

only a part of a con�guration requires some change or the incoming con�guration is not big

enough to �ll the complete chip. By providing the ability for targetting a speci�c region of

the chip while keeping other regions una�ected, partially recon�gurable hardware improves area

e�ciency and con�guration overhead. The amount of recon�guration data is smaller when it

targets only a portion of the chip. One interesting feature of partially recon�gurable hardware

is the smaller recon�gurable unit granularity. For example, in Xilinx FPGA Virtex II Pro, the

smallest recon�gurable unit is a full column of the recon�gurable array. With its Virtex28 family

, Xilinx has been leading partially recon�gurable FPGAs market for years. However, Altera has

entered this market in 2010 with its �rst 28nm FPGA chip, the Stratix V FPGA. The latter

includes partial recon�guration along with 28 Gbps transceivers and embedded hard IP blocks.

28 Virtex II Pro, Virtex-4, Virtex-5, Virtex-6, Virtex-7, and other families (Artix-7 and Kintex-7).

52

2. Dynamically Recon�gurable Architectures Con�guration Hierarchy

In this thesis, the proposed scheduling strategies assume that the recon�gurable hardware device

enables partial and runtime recon�guration.

2.5.11 Con�guration Hierarchy

An hierarchical model of recon�guration is meaningful for heterogeneous architectures of recon�-

gurable devices presented above. This hierarchical approach aims to exploit the possibility of

instantiating softcore IP blocks (e.g. processors) or hosting hardwired blocks (processors, mem-

ory, multipliers) on FPGAs. Indeed, an FPGA instantiating a softcore processor is capable of

running both hardware tasks and software tasks. Hence, a task may be implemented on its hard-

ware form (synthesized, placed and routed digital circuit) on the FPGA, or run on its software

form (executable) on the processor instantiated on the FPGA.

Figure 2.17: Con�guration hierarchy model.

As stated throughout this thesis, recon�guration overheads are among the main bottlenecks

in real-time multitasking on recon�gurable hardware devices. However recon�guration overheads

could be reduced by using coarse-grained recon�gurable array operators (presented in section

2.6 below) as the basis of recon�gurable computing machines. Such operators or blocks, pre-

built or pre-instantiated into the recon�gurable fabric could be more easily programmed at run-

time with a minimal amount of con�guration data. Recon�guration overheads are thus reduced.

This is especially true when pre-instantiated IP blocks are softcore processors. Con�guration

hierarchy denotes here the fact that the recon�gurable hardware device functionality could be

changed at di�erent hierarchy levels. Figure 2.17 maps an example where there are three levels

53

2. Dynamically Recon�gurable Architectures Con�guration Hierarchy

of recon�guration : at bitstream level by recon�guring the FPGA, at an intermediate level by

instantiating another processor core, or at software level by changing the program executed by

the instantiated softcore.

Related work

Through the hierarchical con�guration concept, a few works (Schaumont and Verbauwhede, 2003;

Nollet et al., 2006) have demonstrated the usefulness of this feature wish could improve �exibility

and performance of heterogeneous platforms that include recon�gurable tiles. In addition, hierar-

chical con�guration provides the possibility of running some hardware tasks in their software form

at the cost of QoS29, instead of rejecting them or keeping them in an increasing waiting queue.

Furthermore, some applications use less hardware resources when implemented as a sequential

machine on an instantiated softcore processor, while still meeting the necessary or a reasonable

performance requirements.

Schaumont and Verbauwhede (2003) illustrate the con�guration hierarchy in an FPGA through

many �gures. Figure 2.17 depicts a summary of these �gures on a single graph. The Thumbpod

system presented in Schaumont and Verbauwhede (2003) is a perfect application example which

points out the assets of con�guration hierarchy concept. It consists of an embedded Java virtual

machine executed by a Leon2 softcore processor instantiated on a Virtex-II FPGA. The Leon2

soft IP core acts as program code (bitstream) for the Virtex-II FPGA and as hardware (micro-

processor) for the user program (Java code). Con�guration hierarchy provides more design and

programming solutions ranging from harder (hardware design process) to easier one (software

design process). Schaumont and Verbauwhede (2003) demonstrated that a hierarchical approach

of con�guration could reduce the recon�guration time. Indeed, by increasing the con�guration

hierarchy the amount of con�guration data to be processed is reduced. For example, recon�guring

a system designed according to �gure 2.17 30 at the highest level (by changing the user program

executed by the Java virtual machine) is faster and easier than recon�guring the FPGA fabric to

implement a new softcore or a new design, since this operation does not need a new bitstream to

be sent on the device.

More widely, by instantiating free available soft IP cores on FPGAs, designers take advantage

of an easier and faster software design process (instead of hardware design process), leverage

communication possibilities (e.g. buses) provided by microprocessors. This is also pointed out by

29 Quality of Service
30 �gure 2.17 is deduced from the ThumbPod system, Schaumont and Verbauwhede (2003).

54

2. Dynamically Recon�gurable Architectures Coarse-grain Reconf. Arrays

Nollet et al. (2006) through a literature review on exploiting hierarchical con�guration to improve

run-time task assignment on a Multi-Processor System-on-a-Chip (MPSoC). Unlike the above

cited work on con�guration hierarchy, most of similar work use con�guration hierarchy at design

time. Hence, when implementing an application, functionalities are mapped at design time in

building blocks pre-placed within the recon�gurable logic. The purpose of using such compiler

techniques to map functionalities is to design in a more e�cient way by separating complex issues

in a faster way by using a software design process, and in a more resource e�cient way.

2.6 Coarse-grained Recon�gurable Arrays

2.6.1 Raison D'être

While presenting FPGAs above, some drawbacks of �ne grain recon�gurable hardware devices

have been pointed out and are listed below:

i). Area utilization, power consumption and speed; programmability at bit level implies using

exclusively con�gurable logic to implement logic functions, which leads to a lesser area

e�ciency, a lower operation frequency and a higher power consumption.

ii). Con�guration overhead ; the �ner the con�guration granularity, the more con�guration data

to process, and the longer the (re)con�guration time.

iii). Development ease ; it is more di�cult to target such devices with high level languages.

The aforementioned drawbacks can be reduced or overcome by using coarse-grained recon�gurable

arrays operators as the basis of recon�gurable computing machines. In DSP applications, oper-

ations are performed on word-size data. Therefore, there is a need of word-size operators and

datapaths. Implementing such functionalities using �ne grain con�gurable resources requires to

built them at bit-level. This leads to a tremendous use of logic blocks and programmable inter-

connections along with con�guration data needed for the con�guration. Con�guration data are

consequently bigger.

2.6.2 Presentation

A coarse grain recon�gurable architecture consists of hardwired word-size operators achieving

nearly ASIC level features (high throughput, low power consumption, better area utilization, etc.)

along with special purpose interconnections providing enough �exibility for targetting a given

55

2. Dynamically Recon�gurable Architectures Platform-Based Design

class of applications. This approach is justi�ed by the fact that for a given class of application

or program to run, about 90% of the computation e�ort in terms of execution time or power

consumption is due to about 10% of the code describing the application. Hence, great perfor-

mance are achieved by designing high performance operators to cope with these repetitive and

computationally-intensive parts of the application. Moreover, these parts are made of common

functions (e.g. DSP) which are coarse enough to be identi�ed even at high abstraction level,

making coarse grain hardware more easy to target with hardware description languages than their

�ne grain counterparts.

Furthermore, the good performance of ASSPs is currently inspiring FPGA vendors. Indeed,

FPGAs architectures are increasingly integrating more hardwired functionality (e.g. high speed

transceivers, DSP blocks, etc.) in order to accommodate speci�c markets. This market-focused

approach is seen as a move toward the ASSP path in terms of the targeted applications and

the integration of cost-optimized peripherals that meet the needs of those targeted applications.

These embedded coarse grain customized modules optimize one or many criteria and the FPGAs

are classi�ed in sub-families accordingly.

Summarizing, coarse grain recon�gurable hardware partly sacri�ces its �exibility to provide a

better performance for a given class of application while overcoming the drawbacks of �ne grain

recon�gurable architecture listed above. These drawbacks explain attention paid on coarser grain

dynamically recon�gurable hardware to leverage the runtime dynamic recon�guration feature and

improve performance. Raw (Taylor et al., 2002), PipeRench (Goldstein et al., 2000), RaPiD

(Ebeling et al., 1996), ADRES (Mei et al., 2003), PACT�XPP (Baumgarte et al., 2003) and

Montium (Heysters et al., 2003) are a few examples of these architectures. They are classi�ed

as application domain-speci�c coarse grain recon�gurable systems. Today, commercial FPGAs

manufacturers are following the trend by proposing di�erent application domain-speci�c FPGAs

at each new family release.

2.7 Platform-Based Design

2.7.1 Introduction

Choosing the right platform to implement an embedded application is getting more complicated.

Indeed, as stated before, advances in technology bring new considerations. On one hand, those

advances are the enabling technology for System-on-a-Chip (SoC) design approach. Hence, im-

56

2. Dynamically Recon�gurable Architectures Platform-Based Design

plementation platforms cited above could be all integrated on a single silicon die and, thereby,

the design architectural space is getting enlarged. On the other hand, novel architectures are

proposed. They combine features of those implementation platforms in order to overcome their

drawbacks, or to achieve a given trade-o�.

2.7.2 De�nition

Platform-Based design is a SoC design methodology, instead of being an implementation plat-

form. According to the VSIA31 working group, a Platform is �An integrated and managed set

of common features, upon which a set of products or product family can be built. A platform

is a virtual component (VC)�. Hence, the VSIA working group de�nes Platform-based Design as

�An integrated oriented design approach emphasizing systematic reuse, for developing complex

products based upon platforms and compatible hardware and software virtual components (VCs),

intended to reduce development risks, costs and time to market�. For Martin (2003) �Platform-

Based design is an organized method to reduce the time required and risk involved in designing

and verifying a complex SoC, by heavy reuse of combinations of hardware and software IP. Rather

than looking at IP reuse in a block by block manner, platform-based design aggregates a group

of components into a reusable platform architecture�. Vincentelli and Martin (2001) state that a

platform is built to provide to designer libraries of hardware and software components, software

drivers, hardware and software design environment, and references designs that are easily used

as basis to rapidly develop many products within a reduced application space. In the light of

those de�nitions, Platform-Based design approach is essentially an IP-reuse based design of SoC.

It is leveraging the development of IP-reuse methodology. IP-reuse methodology aims to ease

the design of complex ASICs by partitioning the design into smaller IP blocks with well-de�ned

functionalities. That way, a validated block can be re-used in many designs instead of building

the whole system from scratch. Design Reuse is the generalization of IP-reuse principle, and the

main pillar of the Platform-Based design methodology. Here below are a few examples of existing

31 Virtual Socket Interface Alliance; the VSI Alliance, founded in 1996, was an open, international

organization comprised of representatives from all segments of the SoC industry. Its mission was to

dramatically enhance the productivity of the SoC design community by providing leading edge commercial

and technical solutions and insight into the development, integration, and reuse of IP.

Following 12 successful years of developing IP and electronics standards, in 2008 the VSI Alliance dissolved

operations and transferred ongoing work of the VSI Alliance to other industry organizations.

Source : http://www.vsia.org

57

2. Dynamically Recon�gurable Architectures The OveRSoC methodology

Platforms:

• Philips Nexperia (for digital TV applications);

• TI OMAP (from Texas Instruments, for mobile terminals applications);

• Nomadik (for mobile terminals application domain);

• ARM PrimeXsys (for processor-centric applications);

• Altera's SOPC (e.g. Excalibur ARM or NIOS recon�gurable platform);

• Xilinx Virtex Platform FPGA (e.g. Virtex II Pro, Virtex 4 and 5 recon�gurable platforms).

With these application oriented platforms, the design space is easier to explore. The designers

directly derive their end product(s) from an existing platform(s); they use the complete hard

IPs and software packaged (soft IPs, drivers, etc. . .) solutions provided by the platform and

modify application software according to their needs. They have to customize hardware and

software components and/or developed new ones to achieve the given purpose. They work at the

application level by developing software and using available IP from existing libraries.

2.7.3 OS for Recon�gurable Platforms

The use of Platform-based Design approach in the so-called Recon�gurable SoC design rises the

challenge of designing a real-time operating system (RTOS) for the platform. At a technology

independent level and no matter which PEs32 are targetted, a RTOS provides services such as

scheduling di�erent tasks on di�erent targets under certain constraints, managing memory and

communication media, providing special services for the recon�gurable hardware part of the plat-

form if exists, etc. As pictured in �gure 2.18, the set of services provided by the RTOS allows

the designer to abstract the underlying platform details while implementing an application. The

application to be implemented is divided into tasks to be scheduled on the PEs on the platform.

The OveRSoC methodology for DSE

There are two main approaches in designing the RTOS for RSoC. In the �rst approach, the RTOS

is derived from an existing RTOS which is tailored with additional services that manage the

recon�gurable part of the platform. The second approach is to design the RTOS from scratch,

by introducing RTOS services exploration at system level. This thesis relies on the approach

32 Processing Elements

58

2. Dynamically Recon�gurable Architectures The OveRSoC methodology

presented in Miramond et al. (2009a), which corresponds to the second approach. Doing so, the

RTOS is viewed as a �exible component which features will be explored and tuned as same as

the application and the platform architecture. Furthermore, in the OveRSoC design methodology

(depicted in �gures 2.18 and 2.19 and presented in Miramond et al., 2009a), each PE likely to be

on the platform is modeled as a RTOS which is connected to the rest of the system. Hence, the

methodology (�gure 2.19) automatically explores tasks distributions on a scalable multi-RTOS

architecture with respect to application requirements and system constraints in order to assess

and re�ne di�erent services which allow the RTOS(s) to e�ciently manage PEs of the platform.

In this thesis, such a methodology is denoted as OS-centric or OS-based, as it relies on a third

element, the OS, unlike other design methodologies. These latter rely only on the application and

the architecture.

Figure 2.18: A view of the OveRSoC methodology with emphasis on DRA (dynamically

recon�gurable architecture) management.

59

2. Dynamically Recon�gurable Architectures The OveRSoC methodology

Figure 2.19: OS services exploration in OveRSoC design methodology (Miramond et al., 2009a)

which maps the system level part of the generic design �ow of SoC (see �gure 1.4).

The concept of scalable multi-RTOS architecture is more detailed in �gure 2.19 through the

design �ow of the OveRSoC methodology (Miramond et al., 2009a) and DOGME (Miramond

et al., 2009b), its dedicated graphical user environment.

60

2. Dynamically Recon�gurable Architectures Conclusion of the Chapter 2

This thesis focused on the management of the dynamically recon�gurable hardware part of

the platform and its corresponding DPRHW-OS33, as shown in �gure 2.18. Numerous services

such as tasks creation, tasks scheduling, tasks placement, tasks migration, tasks preemption and

quality of service assessment could be involved here. A task preemption arises when a task Ti

running on a processor PEi is stopped in order to assign PEi to another task Tj of higher priority.

Ti is then resumed later. A task migration arises when the task Ti preempted on processor PEi

is resumed later on a di�erent processor PEj .

As stated at the end of Chapter 1, the thesis deals with scheduling and placement services in

DPRHW, as they are among OS services that need a di�erent approach compared to conventional

OS services for programmable processors. The two objectives remain as follows:

1. Proposing new on-line real-time scheduling and placement strategies on DPRHW (denoted

as DRA34 in �gure 2.19), and that suit to on-line real-time context. The latter aim is

achieved by �nding a reasonable trade-o� between scheduling and placement algorithms

complexity and their performance in terms of chip utilization ratio, tasks rejection ratio,

and runtime overhead.

2. Designing a set of scheduling and placement algorithms for DPRHW which could be used

in the OveRSoC design methodology. Figure 2.19 shows the complete design �ow of the

methodology. Simulation is done at system level in order to re�ne the scalable architecture

along with distributed OS, with respect to system and application constraints. In order to

allow the methodology to perform a more accurate partitioning of the application, this work

also aims at providing scheduling and placement algorithms for the DPRHW (denoted as

DRA in �gure 2.19) part of the architecture, along with the associated DPRHW models

and metrics (utilization ratio, tasks rejection ratio, algorithms runtime overhead, partition-

ing and defragmentation strategies, etc.). These algorithms are of various complexity and

runtime overhead, and help on �nding the best trade-o� depending on the parameter(s) to

optimize. In addition, as the simulation environment for the OveRSoC methodology (Mira-

mond et al., 2009b) is SystemC-based, the C++ language is used to design and implement

the models and the algorithms in order to insure a full compatibility.

33 Dynamically and Partially Recon�gurable Hardware - Operating System
34 Dynamically Recon�gurable Architecture

61

2. Dynamically Recon�gurable Architectures Conclusion of the Chapter 2

2.8 Conclusion of the Chapter

This chapter presented the most common DSP implementation technologies and their derivatives.

The chapter discussed strengths and weaknesses of each technology. Table 2.8 proposed by Adam

(2002) shows a quick comparison. Thanks to experiences earned over the years in designing

operating systems and compilers, GPP and MCU are the best in terms of time-to-market and

�exibility. However, they are not suited neither to high-performance DSP applications with hard

real-time constraints (�gure 2.20) nor to power aware systems.

Figure 2.20: Flexibility vs Performance of implementation platforms.

Perfor- Flexi- Power TTM Price Develop-

mance bility ment ease

GPP/MCU fair exc. fair exc. exc. good

DSP exc. exc. exc. exc. good exc.

FPGA exc. good poor good poor exc.

ASSP/ASIP good poor exc. fair good fair

ASIC exc. poor good poor exc. fair

exc. : excellent

Table 2.1: Comparative table of implementation platforms for DSP applications (Adam, 2002)

62

2. Dynamically Recon�gurable Architectures Conclusion of the Chapter 2

Programmable DSP processors are enhanced for DSP operations and low power consumption.

Today, they are still the best solution for many DSP applications. However, the gap between them

and GPP is narrowing, and programmable processors are reaching a plateau in their performance

increase. High-performance and power-e�ciency is the realm of ASICs. But the lack of �exibility,

in addition to high Non-Recurring-Engineering (NRE) cost has limited the use of this technology

to high-volume products. FPGA technology combines programmability and high-performance.

Using FPGA-based recon�gurable computing systems or coarse-grained recon�gurable systems

to achieve future embedded systems requirements is a promising solution. A modern trend is

to manufacture application-oriented families of recon�gurable hardware devices. The increasing

success of con�gurable processors also con�rms this trend. But as it appears in table 2.8, the

research has to improve the two main lacks of con�gurable processors : the Time-to-market and

the development ease.

Since architectures are becoming more heterogeneous, spreading DSP applications within a

system across an ever increasing architectural design space has complicated the design process.

This chapter brie�y introduced a new trend in embedded SoC design, the Platform-based Design

approach, on which relies the OveRSoC methodology. The chapter has discussed how introducing

scheduling and placement algorithms for DPRHW in a Platform-based Design methodology like

OveRSoC, contributes to e�ciently scour the design space in search for a good solution (e.g. a

more accurate system partitioning and RTOS services re�nement).

The next chapter will give a background on real-time scheduling and then will emphasize the

online real-time scheduling for recon�gurable hardware devices through a wide literature review.

63

Chapter 3

Background and Related Work

3.1 Introduction

This chapter gives a background and presents related work on real-time scheduling. The discus-

sion starts by reviewing the scheduling problem in general, and, subsequently, emphasizes the

online scheduling of real-time hardware tasks on recon�gurable platforms. In the latter schedul-

ing, an underlying placement problem for the recon�gurable hardware arises. The scheduling

and placement problems are di�cult to study separately, as they always interfere. Di�erent

paradigms of real-time scheduling are also presented, especially in online context. The review

constantly emphasizes the similarities and di�erences between programmable processors schedul-

ing and recon�gurable hardware scheduling. Hence, whenever possible, the review relies on the

knowledge previously experienced in uniprocessor and multiprocessor scheduling. The reason for

this being that scheduling hardware tasks on recon�gurable hardware devices shows some similar-

ities with multiprocessor scheduling as many tasks can run concurrently. However, recon�gurable

hardware scheduling is more complex to study because of the everchanging number and size of

tasks that could concurrently �t on the recon�gurable fabric. Since the research domain is very

wide, the second half of literature review is restricted to topics in various layers that are relevant

to the online real-time scheduling for dynamically and partially recon�gurable hardware devices.

64

3. Background and Related Work Real-Time Systems

Figure 3.1: Model of a Real-Time system

3.2 Real-Time Systems

A real-time system is a system that is subject to a real-time constraint. Its primary performance is

to perform critical operations within a set of user-de�ned critical time constraints (Locke, 1986).

As pictured in �gure 3.1, a real-time system is primarily reactive as it continuously reacts to

stimuli coming from its external environment. In reaction to these external events, the results

provided by a real-time system are only valid if they are delivered within a predetermined time

frame. Hence, the correctness of a real-time system depends on two conditions (Stankovic, 1988):

1. its logical correctness; the system must compute correct outputs based on its inputs.

2. its temporal accuracy ; output results must be delivered at the right time (a speci�ed dead-

line). Failure to do so results in invalid results. In other words, a result arrived after its

deadline is necessarily false or useless, and can lead to serious consequences in some cases.

Real-time computer systems are becoming ubiquitous in many applications such as control

process system in factories, in aeronautics through on-board �ight systems for aircraft and satel-

lites, in IT1 systems through multimedia communication, games development and virtual reality

and even increasingly in �nance through HPC2 for real-time market data processing.

1 information technology
2 high performance computing

65

3. Background and Related Work Real-Time Systems

3.2.1 Hard vs Soft Real-Time

In a real-time system, time scale is application-dependent and can range from a few milliseconds

(e.g. airbag system, automatic pilot system, etc.) to several hours (e.g. weather forecast). This

means that real-time is not only a matter of average speed of the system, and that all timing

constraints have to be met otherwise the system will fail. Depending on whether a system fails

to meet its time constraint is vital or not, one can distinguish hard real-time and soft real-time

systems:

Hard Real-Time does not tolerate any excess of time constraints, as such over�ow can lead

to critical situations with catastrophic consequences. For example, if an airplane autopilot system,

a nuclear power station monitor, an airbag system or a medical systems such as heart pacemakers

reacts beyond its strict time limits, it can seriously endanger the safety of human lives . In order

to avoid such dangerous situations, the designer of a hard real-time system should be able to

prove that the time limits will never be exceeded whatever the situation (even in the worst case

situation, regardless of system load). Hence, designing a hard real-time system which interacts

with its environment assumes that all possible behaviours of the system are predictable and time-

bounded. A single task that misses its deadline constitutes failure of the whole system. Hard

real-time systems are submitted to acceptability tests (e.g. threshold test, feasibility analysis,

admission control, etc.) for their validation.

Soft Real-Time is less restrictive; it tolerates deadline overruns at the cost of the quality,

as far as they remain within certain limits beyond which the system becomes useless. Obviously,

unlike hard real-time, missing the deadline a�ects the QoS (e.g. telephone, video conferencing,

network games, etc.) without leading to catastrophic consequences. Sometime, the system allows

some exceptional time limits excesses to be compensated during the next execution (e.g. video

frames). What is important in most of the cases is the average number of deadline overruns that

needs to be below a given threshold in order to insure a given QoS in a given situation. Most

of the time, a statistical study of the system behaviour is enough to design a trustworthy soft

real-time system.

3.2.2 Requirements for Real-Time Computer Systems

As time constraints are essential, designing a real-time system assumes that each element of

the system itself is real-time constrained. Hence, services response time and algorithms runtime

66

3. Background and Related Work Real-Time Scheduling

overheads are necessary time-bounded. It also assumes that the time �ows in the system and can

be measured. A real-time system consists on one hand of resource consumers (tasks, application)

and on the other hand of resources providers (processors, memories, etc.). As detailed in �gure

2.18 page 59 and summarized in �gure 3.1, di�erent parts of a real-time (recon�gurable) system

may be seen as layers, with a central part denoted as OS or RTOS sandwiched between the

application layer and the resources layer. The OS which hosts the scheduler acts as an interface

between the application and the Processing Elements.

3.3 Real-Time Scheduling

3.3.1 Introduction

The scheduling problems are present in many systems ranging from factory systems through

process control, to embedded systems. It appears in any domain where there is a need to organize

the allocation of �nite resources to a given application which consists of a sequence of tasks. It is

then necessary to coordinate the use of the resources in order to run the application to completion

and as e�ciently as possible. This e�ciency means optimizing one or many criteria. Such criteria

could be to minimize the schedule length (or makespan, de�ned in section3.3.4), to maximize the

resources utilization ratio, to maximize the number of accepted tasks (e.g. tasks which meet their

deadline), etc.

In general, a scheduling problem is described by a triplet {α, β, γ} where α represents the

machine or processor environment, β the application to process on the machine along with its time

constraints, and γ the objective function to be optimized. Put it simple, the application consists

of n tasks that have to be processed on m processors while optimizing the objective function γ.

Many scheduling problems have been shown to be NP-complete optimization problems, and many

scheduling heuristics of lesser complexity have been proposed.

3.3.2 Real-Time Tasks

A task is a set of instructions to be executed on a processor. It provides a given service to the

application. In order to perform an e�cient scheduling without violating any time constraints,

the scheduler has to know timing characteristics of the tasks. These characteristics are of di�erent

importance depending on the scheduling policy used. In general, a timing parameter is given as

a positive integer, multiple of the smallest indivisible time unit (denoted as tick in time-aware

67

3. Background and Related Work Real-Time Scheduling

systems). The most common parameters of a real-time tasks Ti are (see �gure 3.2, page 70):

• ai : arrival time (sometimes denoted as release time or request time ri) is the time when

task Ti is created and is ready to be run on the processor.

• ei : execution time (or computation time or processing time) is the duration needed by a

task to run to completion on a given processor. Therefore, execution time is processor-

dependent. In most of hard real-time scheduling problems, execution time ei is assumed

to be equal to the WCET3 on the considered processor. The WCET of a task Ti is the

maximum time that the task will require to run to completion on the considered processor.

• Pi : period for a periodic task.

• deadline is the time at which the task must have been completed. There are 2 types of

deadline :

� the relative deadline Di if the deadline is relative to the release time of the task

instance.

� the absolute deadline di = ai +Di.

• li : laxity (or slack time) of a task Ti is the di�erence between its relative deadline and its

execution time and is de�ned as

li = Di − ei (3.1)

Once released at time ai, a task Ti cannot wait more than its laxity li before starting,

otherwise it will not meet its deadline.

• pi : priority if priorities are used. Scheduling algorithms based on the priority of the tasks

are denoted as priority-driven or priority-based.

• si : start time corresponds to the date which task Ti will start its execution on the processor.

si is assigned by the scheduler.

• fi : �nishing time or completion time ci corresponds to the date which task Ti will end.

Obviously it depends on its starting time.

• rti : response time is the di�erence between the arrival time and the �nishing time, and is

given by

rti = fi − ai
3 Worst Case Execution Time

68

3. Background and Related Work Real-Time Scheduling

• uTi : the utilization ratio of task Ti is the ratio of its execution time ei to its period or its

minimal inter-arrival time Pi and is given by equation 3.2

uTi =
ei
Pi

(3.2)

uTi re�ects the chunk of time occupied by task Ti when executed on a single processor.

A job is an instance of a task. Hence the jth instance of task Ti is denoted either as Ti,j or as

Ji,j . In this thesis, a job Ti,j or Ji,j may sometime be referred to as task Ti or Ji if there are any

possible ambiguities.

Periodic Real-Time Tasks

A task Ti is denoted as periodic if instances Ti,j of the tasks are released periodically and with

a �xed periodicity Pi as shown in �gure 3.2. In real-time computing systems, an application is

sometime made of computation tasks that have to be performed periodically. Therefore, the model

of periodic task proposed by Liu and Layland (1973) based on a WCET is widely used (e.g. in

Danne, 2006). If the �rst release date of a periodic task is unknown (resp. to be known), the task

is denoted as non concrete (resp. concrete). In addition, periodic tasks that are concrete are said

synchronous if their �rst release date is identical (e.g. Ti and Tj in �gure 3.2), otherwise they are

asynchronous. Systems with non concrete tasks (i.e with some unknown �rst release time) show

an event-driven behaviour while concrete tasks systems are time-driven. If equation 3.3 (where

Pi is the period of task Ti) is veri�ed, the real-time system is said harmonic.

∀i, j ∈ N, Pi > Pj => ∃n ∈ N : Pi = n · Pj (3.3)

If Di = Pi (resp. Di < Pi), then Ti is said to have implicit deadline (resp. constrained deadline).

A system exclusively made of tasks with implicit deadlines (resp. with constrained deadlines)

is denoted as an implicit-deadline system (resp. constrained-deadline system). In an arbitrary-

deadline system some tasks could have their deadline greater than their period (Di > Pi). In

periodic tasks systems, implicit-deadline system model is the most widely used (e.g. Danne, 2006).

Let Γn be a set of n tasks [T1, T2, ..., Tn] and [P1, P2, ..., Pn] the corresponding periods. The

hyper-period Hp of the periodic tasks set is the least common multiplier of the periods of the tasks

set, as de�ned in the following equation 3.4.

∃Hp : ∀Ti ∈ Γn, i ∈ N, Hp mod (Pi=1..n) = 0 => min (Hp) is the hyper-period. (3.4)

The pattern of jobs activation is repeated identically in time intervals equal to the hyper-period.

69

3. Background and Related Work Real-Time Scheduling

Figure 3.2: Di�erent periodic real-time task according to their release time

As a feasible schedule found and validated for the �rst hyper-period is used inde�nitely, a system

consisted only of periodic tasks is therefore much more easy to schedule.

Aperiodic and Sporadic Real-Time Tasks

A practical real-time system hardly consists of periodic tasks exclusively. Indeed, in a real life

scenario some non-periodic tasks could appear at any time in addition to periodic tasks. External

events such as sensor activation or target detection are such tasks that pop up and have to be

urgently handled by the system. A task is aperiodic when instances of the task are released

randomly in time (�gure 3.3, down). However, as shown in �gure 3.3 (top), a task is denoted as

sporadic if there is a minimum inter-release time Pi between instances of the tasks.

As summarized in �gure 3.4, a periodic task is a special case for a sporadic task where inter-

arrival time remains constant, and a sporadic task itself is a special case for an aperiodic task.

70

3. Background and Related Work Real-Time Scheduling

Figure 3.3: Aperiodic task and sporadic task.

Figure 3.4: Periodic, sporadic and aperiodic tasks

3.3.3 Di�erent Scheduling Problems

As previously said, a scheduling problem generally consists of processing a sequence of n jobs

J1..n on m machine M1..m with respect to a given objective function to optimize. Consequently, a

scheduling problem is expressed according to the jobs, the processor(s) and the objective function.

Uniprocessor vs Multiprocessor Scheduling

The distinction between uniprocessor and multiprocessor scheduling, depends on whether there

is one or many processors available to process the jobs in the system. In both cases, each processor

can process only one job at a time, and each job can only be processed by one processor at a

time. Uniprocessor scheduling is the simplest scheduling approach and has been widely studied.

Scheduling is much more di�cult in a multiprocessor system. The number of processors are

71

3. Background and Related Work Real-Time Scheduling

sometimes denoted as m. Processors may or may not be identical.

Soft vs hard Real-Time Scheduling

Hard and soft real-time systems has been previously presented in section 3.2.1 page 66 above.

Depending on which kind of real-time system is considered, there's hard real-time scheduling and

soft real-time scheduling.

Static vs Dynamic Scheduling

In a static scheduling, tasks parameters (e.g. priority) are assigned beforehand and remain

unchanged during the system life time. In contrast, dynamic scheduling assumes that scheduling

relies on tasks parameters that vary at runtime. For example in priority-driven scheduling, the

scheduling is denoted as static if a priority assigned to a task on release, cannot be changed

throughout its life (e.g. RM4 scheduling algorithm). However, if a dynamic scheduler is used,

then the priority assignment of the task can be changed at runtime (e.g. priority inversion, EDF5

algorithm, etc.).

When applied to recon�gurable hardware scheduling and placement, Ahmadinia et al. (2004)

de�ned a static scheduling and placement as being when the same scheduling and placement rules

apply to every single arriving task and the entire recon�guration area is available for the placement

of any task. Their algorithm is dynamic in the sense that their scheduling and placement heuristics

are adjusted at runtime depending on some parameters of arriving tasks. In addition their FPGA

is divided in clusters, and a task could be placed in a given cluster depending on its completion

time.

Fixed vs Dynamic Priority Scheduling

A �xed priority scheduling algorithms can be either at tasks level or at jobs level. In the �rst

case, the priority of each task is assigned at design time and remains unchanged (e.g. Rate

Monotonic). In the second case, at di�erent jobs of the same task could be assigned di�erent

priorities. However each job's priority remains unchanged during its execution. Example, EDF

scheduling algorithm.

Unlike �xed priority algorithms, the priority of any job could be changed at any time in dynamic

priority algorithms. Example, LLF - least laxity �rst scheduling algorithm.

4 rate monotonic
5 earliest deadline �rst

72

3. Background and Related Work Real-Time Scheduling

Preemptive vs Nonpreemptive Scheduling

Preemption arises when a task is interrupted before its completion (and resumed later) in order

to assign its processor to another task of higher priority. Preemption only happens when every

processor is busy. The preempted task is resumed later. In a nonpreemptive tasks system, once a

task starts its execution it runs to completion.

Nowadays, preemption is a mechanism widely used in operating systems. However, preemption

makes scheduling much more di�cult as the scheduler has more operations to perform. Indeed,

resuming a task that has been suspended earlier needs a context switching. The latter consists

of tasks context saving and restoring necessary to insure continuity in scheduling. Preemptive

algorithms can only be applied on tasks that are preemptable6. In addition, a task migration is

necessary if the task is to be resumed on a di�erent processor. Task preemptions, context switches,

task migrations, and the scheduling itself are system overheads as they take time in addition to

the application tasks execution time. Furthermore, these system operations are very challenging

and time consuming on heterogeneous platforms7.

In general, a cost is associated to each of these system operations while coping with preemptive

scheduling. However, most of the studies assume that preemption cost could be neglected as far

as tasks execution times are far higher than context switching runtime overheads. Obviously,

preemptive scheduling is much more di�cult, compared to nonpreemptive scheduling, and even

worst in heterogeneous multiprocessor system especially when a suspended task is resumed on a

di�erent kind of processor.

Throughout this thesis, it is assumed that system overheads are included in tasks execution time,

which is the WCET.

Precedence Constraints

In general, a system could be represented as a functional block diagram. The functional blocks

are identi�ed and characterized tasks. They are sometime dependent as some consume (con-

sumers, successors) outputs computed by others (producers, predecessors), imposing a network

6 some tasks are preemptable at any time, others at precise times, and others simply too di�cult to

preempt properly, because the context saving and restoring is di�cult to insure.
7 e.g. hardware and software tasks running on heterogeneous processors including programmable, ded-

icated and recon�gurable. Hardware tasks preemption is a very challenging research concern in recon�-

gurable computing. So are software-to-software and hardware-to-software tasks migrations on heteroge-

neous processors.

73

3. Background and Related Work Real-Time Scheduling

of interdependencies. Precedence constraints require that one or more jobs have to be completed

before another job is allowed to begin its processing. Precedence constraints clearly appear in

data�ow graph (DFG) modeling commonly used in signal processing.

Given two jobs Ji and Jj , if a Ji has to be completed before Jj starts, then Jj is the successor

of Ji while Ji the predecessor of Jj . Constraints are referred to as chains if each job has at most

one predecessor and at most one successor. If each job has at most one successor, the constraints

are referred to as an in-tree or join type. They are fork type or an outtree if each job has at most

one predecessor.

This thesis mostly considers independent tasks. However, it also considers the jobs arrive over

time online tasks model (described later in section 3.4.2) that may implicitly model some

precedence.

3.3.4 Objective Functions

To measure the quality of scheduling, di�erent indicators are at disposal. Depending on the aim,

these indicators appear as objective functions. Hence, the scheduling problems usually consist of

optimizing (by minimizing or maximizing) a given objective function. Objective functions could

be either the sum of these factors or their average values over all the jobs. The most common of

them are :

(i). Makespan or length of the schedule; the makespan Cmax or mk is the �nishing time

of the last job completed in the system. The objective function is generally a function of

the completion times of each job, consequently the makespan which is to be minimized. A

minimum makespan leads to a high processor utilization ratio, which is desirable for optimal

use of resources. The makespan could be also de�ned as the length of the schedule or the

maximum completion (or �nishing) time, not to be mistaken for the sum of the completion

times of all jobs de�ned as
∑n
i=1 ci for a set of n completed jobs.

(ii). Response time or total �ow time; it re�ects the time that �ows from the release of the

job in the system to its completion time.

(iii). Waiting time; is the time that �ows from the release of a job in the system to its starting

time.

(iv). Lateness and Tardiness; let's Ji being a job with an absolute deadline di and completed

on time ci; its lateness Li and its tardiness δi are de�ned respectively in equation 3.5 and

74

3. Background and Related Work Real-Time Scheduling

equation 3.6 as follows:

Li = ci − di (3.5)

δi = max { Li, 0}; with δi ≥ 0 (3.6)

where Li is positive when Ji completes late and negative when Ji completes before its

deadline. In the latter case, Ji can be associated with some value vi which is obtained only

if the task is completed prior to its deadline. Therefore, the higher the values, the smaller

the makespan, and the better the scheduling.

However, the lateness (hence tardiness) is very meaningful in soft real-time systems where

the system could still insure a given QoS even when some tasks miss their deadline. One

example is when a deadline violation of a job Ji can be tolerated as long as it does not a�ect

or delay the release of the next job Ji+1 of the same task.

The QoS can be expressed by appointing a tardiness bound to every task in the system.

That is, each job Ji of task Ti must be completed at most δi time units after its deadline in

the worst case. The tardiness could be also the same for all the tasks in the system. Viewed

as an objective function, the tardiness of a job could be expressed with respect to a given

algorithm.

In preemptive tasks systems, minimizing the number of times a job is preempted could be among

objective functions.

3.3.5 O�ine Scheduling

Depending on whether scheduling decisions are taken o�ine or online, scheduling problems can

be distinguished into two categories: o�ine and online.

A scheduling is denoted as o�ine if the �ow of the program is known beforehand. This assumes

that parameters (e.g. release time, execution time, deadline, size, etc.) of all the tasks are known

in advance, allowing the scheduling to plan resources allocation at design time. Most scheduling

problems are NP-complete. High performance scheduling algorithms and heuristics are used to

optimize objective functions (e.g. makespan, resources utilization, waiting time, response time,

etc.). However, one could a�ord to run such computationally intensive algorithms as analysis and

computations are done o�ine 8.

One example of an o�ine scheduling arises when an application is made of a set of well known

8 e.g. on a host PC or a high performance computer

75

3. Background and Related Work Online Real-Time Scheduling

periodic tasks. The scheduling simply consists of �nding a feasible schedule over the hyper-period.

Consequently, at each time interval equal to the hyper-period, the same feasible schedule is applied

over the hyper-period. A feasible schedule is statically stored in a scheduling table that indicates,

on each clock cycle which job is to be run.

O�ine scheduling is not in the scope of this thesis. However, it can be used to provide an

optimal solution for competitive analysis of its online counterpart. An interesting survey on

o�ine scheduling could be found in Graham et al. (1979).

3.4 Online Scheduling

3.4.1 Introduction

Online scheduling is used when the �ow of the program is either totally or partially unknown

beforehand. In other words, parameters of tasks to be scheduled are partially or totally unknown

prior to their release time. Hence, tasks are scheduled as they arrive, without a priori knowledge

of future tasks. The scheduler relies on incomplete information to assign jobs to resources. Such

a scenario is even much more realistic, compared to the o�ine scenario. Indeed, even if o�ine

scheduling algorithms provide optimal solutions, they are less suitable for most real-time systems.

Generally, as such systems are mainly reactive, there is a lack of information on future tasks (e.g.

their release time) and sometimes even on tasks not yet completed (e.g. their execution time).

This lack of information is the main di�erence between o�ine scheduling and online scheduling.

It explains why unlike online scheduling, o�ine scheduling leads to an optimal scheduling. In

general, online scheduling is priority-driven scheduling. The highest priority job is chosen by the

scheduler among the ready jobs in order to be executed on the available resource. The scheduler

is invoked each time a job is released, or a running job is stopped, or �nished, or even at regular

time interval for quantum-based scheduling.

3.4.2 Di�erent Online Paradigms

As stated above, online scheduling relies on incomplete information about input instances to take

scheduling decisions. Depending on the type of information lacking and on the way how new

information becomes known, di�erent online paradigms are possible. Some are widely presented

in Sgall (1998) and here below are a few that drew the attention to the scope of this work :

76

3. Background and Related Work Online Real-Time Scheduling

(i). Scheduling jobs one by one;

also denoted as jobs arrive over list, there is no job release time in this online paradigm. Jobs

appears as an ordered list and are presented to the decision maker (scheduling algorithm)

as is, one by one. However, as soon as a job is presented, all its characteristics are known,

including its running time. Therefore, the job could be assigned to a time slot with an

immediate or a delayed start. When dealing with the currently presented job in the list,

the assignment of the previous job cannot be changed anymore, leading to a situation

where previously scheduled jobs cannot be rescheduled. To summarize, jobs are absolutely

scheduled as ordered in the list, but are not necessarily executed in that order. The online

feature is the fact that parameters of future tasks are unknown before they are presented.

LS9 algorithm is based on this paradigm.

(ii). Clairvoyant Scheduling;

unlike the previous paradigm, release time is meaningful in clairvoyant scheduling algo-

rithms. The algorithm only becomes aware of a job when it arrives. Hence, it knows the

running time of a job (along with its other parameters, e.g. its size in the case of hardware

tasks) as soon as it arrives. Clairvoyant scheduling is also denoted as jobs arrive over time

online paradigm, as jobs become available to the algorithm over time as soon as they are

released.

(iii). Non-Clairvoyant Scheduling;

in non-clairvoyant scheduling, the online algorithm only becomes aware of a job when it

arrives. In addition, unlike clairvoyant scheduling, the processing time of a running job

remains unknown until the job �nishes. Indeed, the algorithm only becomes aware of the

end of the job at its completion. Consequently, non-clairvoyant scheduling is sometimes

described as blind scheduling. This paradigm is also referred to as unknown processing

times as the latter is its main online feature. Jobs are released over time according to their

arrival time or their precedence constraint. However, if there are other characteristics of

the task (e.g. size of a hardware task), they are known when the job arrives. Sometimes in

this paradigm, it is assumed that at every moment the number of pending jobs is known.

Non-clairvoyant scheduling has been widely studied (e.g. Rajeev Motwani and Torng, 1994;

Edmonds, 2000). Its online features rely on the lack of knowledge on future tasks (e.g arrival

time and running time).

9 list scheduling algorithm, paragraph 3.5.5 on page 82

77

3. Background and Related Work Online Real-Time Scheduling

(iv). Interval Scheduling;

this paradigm assumes that each job has to be executed in a precisely given time interval,

otherwise it will be rejected. Consequently, the number of accepted tasks is much more

meaningful here than the makespan or the total completion time.

This thesis mainly considers the clairvoyant scheduling as the online paradigm. Hardware jobs

become available over time according to their release time. Other parameters of each job such as

execution time, deadline, size (width and height) etc. are available as soon as the job arrives.

3.4.3 Performance Analysis

Optimal solutions are not expected in online problems because of lack of priori knowledge of the

problems. However, it is important to measure the performance of a scheduling with respect to

a given objective function. To achieve this, one way is to perform an average-case analysis by

considering average performance of the scheduling algorithm or heuristic over all its possible inputs.

The latter analysis may even be performed on classes of inputs in order to classify the algorithm

behaviour with respect to the range of tasks parameters. Indeed, even in online scheduling, the

range value of some tasks parameters could be partially or totally known beforehand (e.g. number

of jobs, range of execution times, range of sizes, minimum inter-tasks arrival time, etc.). In

addition, as the algorithm or the heuristic learns about jobs piece by piece over time, another

way to improve its behaviour is to make some probabilistic assumptions on future jobs, based on

current and past jobs. However, an average-case analysis cannot trap worst case scenario where

the algorithm performs very poorly.

Competitive Analysis

A failure in an online system is avoidable by measuring the minimum guarantee that an online

scheduler could provide, even in its worst case behaviour. This is achievable by using competitive

analysis, �rst introduced by Sleator and Tarjan (1985). Based on a worst-case analysis, competitive

analysis of an algorithm consists of comparing the worst solution10 provided by the algorithm with

the optimal solution. For example in an online scenario, the worst solution of the online algorithm

Ãon will be compared with the optimal solution Ãopt obtained in the corresponding o�ine case.

Consequently, competitive analysis is a more intuitive way of assessing the performance of an

online algorithm.

10 with respect to a given objective function

78

3. Background and Related Work Online Real-Time Scheduling

Competitive Ratio

The performance of an online algorithm is measured by its competitive ratio. As scheduling aims

at optimizing a given objective function, the latter could be a cost to minimize (e.g. makespan)

or a bene�t to maximize (e.g. utilization ratio, number of accepted tasks, etc.). Let γ(Ãon , Γn)

be the objective function resulting from the online algorithm Ãon applied on Γn, a set of n tasks

T1, T2,..., Tn. Let n be an input jobs sequence J1, J2,..., Jn of tasks set Γn. Algorithm Ãon is

said c − competitive if for any input instance n , the objective function γ produced by Ãon on

Γn) is at least c times better than that obtained with the optimal algorithm Ãopt, as shown in

equation 3.7.

∀n , c =


sup γ(Ãon,n)

γ(Ãopt,n)
if γ is a cost to minimize

sup
γ(Ãopt,n)

γ(Ãon,n)
if γ is a bene�t to maximize

(3.7)

As competitive ratio is based on a worst case analysis, c is chosen as the supremum of ratio in

equation 3.7 over all possible inputs instances n. In such a case, c is also denoted as the upper

bound of the competitive ratio of the algorithm Ãon.

Equation 3.7 also shows that c is at least equal to 1 (c ≥ 1). The closer c to 1, the better the

online algorithm Ãon.

The competitive ratio c of a given algorithm Ãon expresses the fact that there is no any other

algorithm capable of performing over c times better than Ãon, even if considered the o�ine case

where the entire problem instance is known in advance. Let's notice that the latter case enables

optimal solutions. Therefore the competitive ratio clearly re�ects the advantage of knowing the

entire problem beforehand.

The upper bound re�ects the worst competitive ratio that could achieve the algorithm on any

input instance. Hence, to obtain a more accurate upper bound, it could be necessary to carefully

build some input instances in order to make the online algorithm performs the worst possible.

One way of improving the algorithm design is then to reduce its upper bound.

In contrast, the lower bound (of the competitive ratio) of an online algorithm indicates that

for an online problem, the competitive ratio of that algorithm cannot be less than its lower bound.

In other words, the lower bound of an algorithm re�ects the best performance achievable by the

algorithm on an online problem.

79

3. Background and Related Work Uniprocessor RT Scheduling

3.4.4 Schedulability Analysis

Feasible Schedule: The basic challenge of scheduling is to assign a starting time and a

processor to any single task or instance of task in the system. For example in a microprocessor

based system, the scheduler decides in which order and at which date the single-task processor will

be assigned to di�erent tasks of the application. This aim is not always achievable as processing

resources are �nite and probably cannot run all the tasks in the system to completion while meeting

their deadline, no matter which scheduling policy is used. Hence, a schedule is denoted as feasible

on a given computing resources (e.g. one or many processors) if it allows all the tasks of the

application to be successfully scheduled on the resources without violating their time constraints

(e.g. deadlines). A set of tasks is schedulable on a real-time system if there is a feasible schedule. In

the latter case, the system is underloaded, otherwise overloaded. The schedulability of the system

highly depends on :

(i). the constraints of the application (tasks).

(ii). the available resources (number, size and type of PEs, etc...).

(iii). the scheduling policy used. It consists of algorithms and heuristics.

3.5 RT Scheduling for Uniprocessor Systems

Scheduling theory has been intensively studied over the years and uniprocessor scheduling takes

the lion's share in the rich literature review. Liu and Layland (1973) provide a foundation reference

on the subject. Many optimal uniprocessor scheduling algorithms have been proposed along with

their schedulability analysis. Here below are some scheduling algorithms. The end of this section

discusses how microprocessor scheduling could be applied to recon�gurable hardware scheduling.

3.5.1 Rate Monotonic (RM)

RM scheduling was �rst introduced by Liu and Layland (1973). It is a preemptive and �xed

priority scheduling for periodic and independent tasks systems. Priorities are assigned to tasks

in a way that the shorter the task period, the higher the priority. Liu and Layland (1973) have

proven RM optimal among all �xed priority scheduling when applied on the above-mentioned

preemptive, periodic and independent tasks system. They also provided a su�cient but not

necessary scheduling test of RM algorithm on a set n tasks as de�ned in expression 3.8 below,

80

3. Background and Related Work Uniprocessor RT Scheduling

where ci is the processing time of task Ti, Pi its period and
∑n
i=1

ci

Pi
the processor utilization

ratio.
n∑
i=1

ci
Pi
≤ n · (2 1

n − 1) (3.8)

However, RM is not optimal for non-preemptive scheduling.

The RM scheduling is not used in this thesis as periodic tasks systems are not used.

3.5.2 Deadline Monotonic (DM)

DM is a scheduling algorithm that gives the highest priority to the task with the least relative

deadline Di. In general, DM is optimal for systems that consist of preemptive synchronous inde-

pendent tasks whose relative deadline is less to their period (Di ≤ Pi). DM could be used with

periodic, aperiodic and sporadic tasks systems.

A su�cient schedulability test for DM scheduling of n tasks Γn = [T1, T2, ..., Tn] using DM algo-

rithm is expressed as :

∀i : 1 ≤ i ≤ n : ci +
i−1∑
j=1

Di

Pi
· cj ≤ Di (3.9)

3.5.3 Earliest Deadline First (EDF)

Also �rst introduced by Liu and Layland (1973), EDF could be applied to various tasks models

(preemptive, non-preemptive, periodic, non-periodic, etc.). EDF scheduling is a dynamic assign-

ment scheme where the highest priority is assigned to the task with the closest absolute deadline.

Priorities are reassessed and updated at runtime if necessary (e.g. on each task arrival). EDF

has been proven to be optimal for all kind of tasks models, including preemptive scheduling of

periodic and independent tasks sets on a microprocessor. The necessary and su�cient scheduling

condition is given by :
n∑
i=1

ci
Pi
≤ 1 (3.10)

with Pi = Di, where Pi (resp. Di) is the period (resp. the relative deadline) of task Ti.∑n
i=1

ci

Pi
is the time utilization factor of the processor and re�ects the fraction of time the processor

is really running a task. Obviously, this fraction may not exceed 100%.

Later, EDF has also been shown to be optimal in the case of non-periodic tasks. EDF scheduling

outperforms RM and produces less preemption compared to RM.

81

3. Background and Related Work Uniprocessor Model for Recon�g. HW

3.5.4 Least Laxity First (LLF)

LLF is a priority based scheduling where the task with the smallest laxity is scheduled �rst.

This algorithm is quite close to EDF algorithm, with a similar necessary and su�cient scheduling

condition
∑n
i=1

ci

Pi
≤ 1 for a set of n preemptive tasks, and for Pi = Di. However, in LLF

algorithm, many tasks are likely to have the same laxity (which means same priority), leading to

a situation where many preemptions are performed in a short time frame, which is not desirable.

The latter situation is less problematical in a multiprocessor system.

3.5.5 List Scheduling (LS)

Ronald L. Graham was the �rst to prove competitiveness on an online scheduling algorithm in

1966, through the so-called list scheduling algorithm. LS11 is the most commonly used online

scheduling approach thanks to its simplicity. Indeed, it relies on the scheduling jobs one by one

online paradigm described on page 76. In the LS algorithm, tasks to be processed are listed in

order. When a resource is available, the �rst task listed is elected, computed and removed from

the list. A task is available if heading the list, and free of precedence constraints if any. As there

is no prior knowledge of task in the list, LS is a suitable and simple model for online problems.

3.5.6 Uniprocessor Scheduling Model for Recon�gurable Hardware

In this scheduling model the entire recon�gurable hardware device is viewed as a single processor.

Therefore the device is assigned to only one task (or set of tasks taken as a whole and active at

nearly the same time) at a time. One example is shown in �gure 3.5 where tasks T1, T2, T3 and

T4 are sequentially executed on the recon�gurable hardware, on a time-sharing basis. In order to

achieve this, the tasks or jobs (τ1, τ2, ..., τ10) are time-partitioned into four tasks T1, T2, T3 and

T4. The recon�gurable hardware device is not space partitioned in this model.

Hardware tasks scheduling on a time sharing model of the recon�gurable hardware device is

the simplest, thanks to its similarities with the well-studied scheduling on uniprocessor systems.

Hence, the scheduling problem is reduced to a uniprocessor scheduling. The same above-mentioned

scheduling algorithms (EDF, LLF, RM, etc.) along with their results could be directly applied.

However the intrinsic parallelism provided by hardware implementation is not exploited here.

Moreover, this approach leads to a high internal fragmentation (presented later in section 3.9.1,

page 124) and a low recon�gurable hardware device utilization ratio as the whole device is assigned

11 list scheduling

82

3. Background and Related Work Uniprocessor Model for Recon�g. HW

to a single task at a time, no matter how small the size of the task compared to the size of the

recon�gurable array.

Compound tasks

A compound task is a task composed of many tasks or subtasks. In order to exploit the parallelism

provided by recon�gurable hardware and improve the recon�gurable devive area utilization ratio,

one solution is to concurrently run many tasks instead of one at a time as previously described.

This could be achieved by forming subsets of tasks that could be treated as one global task, as

long as they share some timing and/or geometric similarities.

Let Γn be a set of n jobs τ1, τ2, ..., τn to be scheduled on the DRHW. As depicted in �gure 3.5

and 3.7 there are two ways of forming subsets of jobs that could be executed concurrently on the

partially recon�gurable hardware device.

1. Time sharing (space overlapping) compound tasks

As pictured in �gure 3.5, one way of overcoming the aforementioned drawbacks is to partition

Γn into m subsets of compound tasks T1, T2, ..., Tm in such a way that :

(i). m ≤ n

(ii). ∀τi ∈ Tj ,

• ai ∈ [ta − ε, ta] => all arrival times ai in the subset Tj are within a given

interval; ta = max(ai) is the arrival time that is assigned to the tasks subset

Tj .

• td = min(di) => the smallest deadline di in the tasks subset Tj is assigned as

the deadline of Tj , which is td.

where ai (resp. di) is the arrival time (resp. deadline) of job τi, and ta (resp. td)

the arrival time (resp. deadline) of the tasks subset Tj .

(iii). ∀i ∈ [1, n],∀j ∈ [1,m],

(a). wj · hj ≤ W · H => the recon�gurable hardware must be able to �t the

compound task Tj .

(b). if τi ∩ Tj 6= 0 then wi · hi ≤ wj · hj => compound tasks Tj are bigger.

where wi · hi (resp. wj · hj) is the size of task τi (resp. task Tj) and W ·H the total

size of the recon�gurable hardware.

83

3. Background and Related Work Uniprocessor Model for Recon�g. HW

(iv). τ1 ∪ τ2 ∪ ... ∪ τn = T1 ∪ T2 ∪ ... ∪ Tm

(v). τ1 ∩ τ2 ∩ ... ∩ τn = T1 ∩ T2 ∩ ... ∩ Tm = 0

Figure 3.5: Uniprocessor model for recon�gurable hardware devices with time sharing

compound tasks.

Figure 3.6: Compound tasks timing characteristics

Condition (1i) expresses the fact that each subset Tj is a compound task that contains one

or many tasks τi, making therefore Tj bigger (as also expressed by condition (1(iii)b)). This

is seen in �gure 3.5 where each task Tj contains 2 or 3 jobs τi and therefore improves the

utilization ratio of the recon�gurable array. Furthermore, the number of recon�guration is

bounded by m.

Conditions in (1ii) express the fact that timing similarities of jobs τi are the main factors

that govern tasks grouping. Hence all the jobs τi of a given compounded task Tj must

be active at nearly the same time in order to be managed as a single task Tj . This is

also illustrated in �gure 3.6 where εi is the time interval within which all the subtasks of

compound task Ti arrive. Conditions (1iv) and (1v) emphasize that compound tasks T1,

T2,...,Tm di�er each other. As T1, T2,...,Tm do not overlap in time, they can be sequentially

executed on the recon�gurable array on a time sharing basis, as illustrated in �gure 3.5.

These timing constraints could lead to situations where the recon�gurable array is poorly

occupied. The recon�gurable array is fully recon�gured between two tasks execution.

84

3. Background and Related Work Uniprocessor Model for Recon�g. HW

However, on one hand partitioning a set of n tasks in m distinctive subsets of tasks as

described above is not easy to perform. On the other hand, if most of the subtasks τi of

task Tj are mostly idle during the running time of Tj (as they are probably not strictly all

active at the same time), the real utilization ratio of the recon�gurable array will remain

poor.

One main advantage provided by this time sharing uniprocessor model is that the frag-

mentation problem is eschewed. Each compound task Tj is designed as a whole and its

bitstream �le is used to fully recon�gure the device on demand. Each compound task Tj

can contain as many jobs τi as possible as long as the total amount of resources does not

exceed the amount of resources available on the recon�gurable hardware device, so a high

device utilization ratio is achievable. As this design approach is free of rectangular partition

constraints that govern the module-based design methodology described in Chapter 2 section

2.5.8, there is no internal fragmentation. Figure 3.5 shows that a job τi could be of any

shape without preventing the placement of other jobs τk that overlap with its surrounding

rectangle (see section 3.9.1, page 124 on internal and intra-task fragmentations).

Partial recon�guration is of no use in this model. Full recon�guration results in higher

recon�guration time overheads and complex tasks switching. However the number of full

recon�guration (which is m as shown in �gure 3.5, and bounded by n in the worst case, if

preemption is not allowed) is lower compared to the following uniprocessor model.

2. Space sharing (time overlapping) compound tasks

Figure 3.7 depicts another variant of uniprocessor model. Once again, Let Γn be a set of n

jobs τ1, τ2, ..., τn. Γn is partitioned into m subsets of compound tasks T ′1, T
′
2, ..., T

′
m in such

a way that :

(i). m ≥ n if at most one job is released at a time.

(ii). T ′1 ∩ T ′2 ∩ ... ∩ T ′m 6= 0

(iii). ∀i ∈ [1, n],∀j ∈ [1,m],

(a). wj · hj ≤ W · H => the recon�gurable hardware must be able to �t the

compound task T ′j .

(b). if τi ∩ T ′j 6= 0 then wi · hi ≤ wj · hj => compound tasks T ′j are bigger.

where wi · hi (resp. wj · hj) is the size of task τi (resp. task T ′j) and W ·H the total

size of the recon�gurable hardware.

85

3. Background and Related Work Uniprocessor Model for Recon�g. HW

Figure 3.7: Uniprocessor model for recon�gurable hardware devices with space sharing

compound tasks

As each compound task Tj contains one or many jobs τi, Tj is therefore bigger (as also

expressed by condition (2(iii)b)) and improves the device area utilization ratio.

Condition (2i) expresses the fact that there are at least as many compound tasks (T1,

T2,...,Tm) as jobs (τ1, τ2,..., τn). The main reason is that two or more compound tasks

can share some common jobs τi. This is also shown by condition (2ii) which means that

compound tasks are very likely to be partly similar. For example in �gure 3.7, each of

the four compound tasks T ′1, T
′
2, T

′
3 and T ′4 contains job τ1, making them slightly similar.

However, they are considered as 4 distinctive tasks that need a complete recon�guration of

the device at every task switching. The idea is to treat any change on the list of currently

running tasks as task switching. Hence, as τ2 is replaced by τ3 and then τ3 by τ4, these

replacements correspond to tasks switching from T ′1 to T
′
2 and then from T ′2 to T

′
3 as pictured.

One advantage in fully recon�guring the device at every task switching is that some tasks

can be relocated in order to make bigger contiguous free space, hence improving the device

utilization ratio.

The main drawback of this model is that the device is often and fully recon�gured, which

is time consuming. As shown in �gure 3.7 the similarities between T ′1 and T ′2 are not taken

into account during the recon�guration. Indeed the device is fully recon�gured everytime

a new job τi is removed and/or added on the device (4 full recon�gurations for 5 jobs,

compared to 4 full recon�gurations for 10 jobs in �gure 3.5). For example, for n jobs

τ1, τ2, ..., τn, if we assume that at most one job arrives at a time, then the device needs

to be fully recon�gured at least n times throughout the execution of n jobs (or the m

compound tasks). In any case, each task ending and each task beginning (and even each

86

3. Background and Related Work Multiprocessor RT Scheduling

task preemption, if allowed) is likely to induce the full recon�guration of the device. Thus,

the number of recon�gurations drastically increases with the number of tasks and each new

task corresponds to a recon�guration or bitstream �le to be downloaded on the device.

As shown in Chapter 2 section 2.5.8 while describing the FPGA modular design �ow, each

compound task T ′j is designed and synthesized o�-line and stored as a bitstream �le that fully

recon�gures the recon�gurable array at the appropriate time. Thus, all possible scenarios

of tasks that are likely to run concurrently on the device are prepared beforehand. As the

number of recon�gurations is huge (at least equal tom, withm ≥ n), the resulting bitstream

�les storage memory is tremendous.

However, if the recon�gurable device enables runtime partial recon�guration, the amount

of con�guration data and therefore the recon�guration time overhead could be reduced.

Depending on the similarities between two tasks T ′j and T
′
j+1 to be sequentially executed on

the device, the partial bitstream can be orders of magnitude smaller than the full bitstream

and can be quickly loaded. In fact for a set of n tasks τi=1..n, one only needs to generate and

store beforehand n partial bitstreams, one per task. In such a case, the switch from task

T ′j to task T ′j+1 is performed by recon�guring only the part of the recon�gurable hardware

device that needs to be changed. If applied on the example in �gure 3.7, throughout the

execution of T ′1, T
′
2, T

′
3 and then T ′4, only the area of the device where the new task τi

is to be hosted is recon�gured on-the-�y while the remaining part occupied by τ1 is not

recon�gured and remains unchanged.

Partial recon�guration capability fully exploits tasks redundancies that could appear in some

compound tasks. Either a module-based or di�erence-based design methodology presented

earlier in Chapter 2 section 2.5.8 can be used here to implement partial recon�guration.

However the module-based methodology induces more fragmentation as tasks are rectangu-

lar shape constrained.

3.6 RT Scheduling for Multiprocessor Systems

The problem of scheduling tasks on many processors cannot be seen as a simple extension of the

uniprocessor scheduling. Before focusing on recon�gurable hardware devices scheduling in the next

section, the current section gives a short taxonomy of multiprocessor systems scheduling along with

most signi�cant results. The reason is that in a certain way recon�gurable hardware scheduling

shares some similarities with multiprocessor scheduling. These similarities will be pointed up as

87

3. Background and Related Work Multiprocessor Platforms

they appear.

An increasing number of real-time applications require many processors to achieve their per-

formance goals. In uniprocessor systems, the performance is improved by increasing the speed and

unfortunately the power consumption. However, a multiprocessor system achieves a better perfor-

mance and is of a lower cost compared to its fastest uniprocessor counterpart. Consequently, on

one hand advances in technology are enabling Multiprocessor Systems-On-a-Chip (MPSoC), and

on the other hand in embedded systems many processors could be distributed in di�erent parts

of the system, each dedicated to a speci�c task. As stated in the �rst chapter, examples could be

found in modern car control systems which are usually divided into �fty-plus processor-controlled

subsystems (e.g. ABS-Anti-lock Braking System, airbags systems, fuel injection system, etc.).

3.6.1 Multiprocessor Scheduling Problem

In a multiprocessor system there are m ≥ 2 processors available in the system for computations.

These processors are denoted as M1,M2,,Mm. In a multiprocessor scheduling problem, a list

of n jobs J with nonnegative processing times have to be scheduled on m processors with the aim

of completing all the jobs without violating their time constraints and while minimizing a given

objective function (e.g. makespan). Additional constraints are :

• the type of tasks (periodic, aperiodic or sporadic)

• the preemption (allowed or not)

• task migration

• the precedence constraints (independent tasks or not)

• task parallelism; if allowed, di�erent jobs of a task can be executed concurrently on di�erent

processors.

• processor Mi capability of executing a single tasks at a time (e.g. sequential processors) or

more (e.g. recon�gurable hardware devices).

By default, this thesis assumes that tasks are aperiodic, non-preemptive and independent.

3.6.2 Multiprocessor Platforms

Unlike uniprocessor systems it is possible to execute many jobs of the application concurrently.

There are mainly two types of multiprocessor platforms:

88

3. Background and Related Work Partitioned vs Nonpartitioned Scheduling

1. Homogeneous Processor System: Processors in the platform are identical in terms of

speed. In such a system, any task could be executed on any processor with an execution

time which is therefore processor-independent as speed of processors are strictly similar.

Identical processors approach is the simplest multiprocessor model but would lead to a huge

internal fragmentation (as discussed later below in section 3.9.1) if applied to hardware tasks

scheduling on partially recon�gurable hardware devices.

2. Heterogeneous Processor System : Processors in the platform are of di�erent types and

speeds. Tasks processing time is therefore processor-dependent. On one hand if any task

could be run on any processor with di�erent execution times the platform is called uniform

processors platform. Hence, each processorMi is characterized by its speed si. On the other

hand when some tasks can only be run by some processors, the heterogeneous platform is

denoted as independent processors platform. Consequently, each task is characterized by

the processors capable of running the task, along with the execution time required by each

processor.

As stated in the introduction of the thesis, embedded platforms are turning heterogeneous

MPSoC. As this thesis considers SoC with recon�gurable parts, heterogeneous processors

system can perfectly be such a platform in some special cases where the recon�gurable fabric

contains a �xed number ofm slots or clusters. The tasks could be therefore as heterogeneous

as the platform and consist of software and/or hardware versions.

3.6.3 Partitioned vs Nonpartitioned Scheduling Strategies

Traditionally, there are two classes of scheduling algorithms for multiprocessor platforms: parti-

tioned scheduling and global scheduling. Partitioned scheduling assigns each task to a particular

processor. The task is scheduled on the local processor using a uniprocessor strategy. Task mi-

gration is not allowed. Global or nonpartitioned scheduling shares all tasks across all processors.

At every moment the m highest-priority tasks ready for execution are scheduled on m processors.

Thanks to task migration, global scheduling is likely to achieve higher schedulability than par-

titioned scheduling. However, task migration and preemption increases runtime overhead. This

section presents the partitioned scheduling and the non-partitioned scheduling. Throughout this

section, it is assumed that Γn is a set of n tasks to schedule on m processors M1,M2, ...,Mm.

1. Partitioned or Local Scheduling

Let Γn be a set of n jobs τ1, τ2, ..., τn. Γn is partitioned into m subsets of tasks T1, T2, ..., Tm

89

3. Background and Related Work Multiprocessor Model for Recon�g. HW

in such a way that :

(i). ∀Tj , j ∈ [1,m], Tj constains at least one task τi.

(ii). T1 ∩ T2 ∩ ... ∩ Tm = 0

(iii). Γn = τ1 ∪ τ2 ∪ ... ∪ τn = T1 ∪ T2 ∪ ... ∪ Tm

Each subset Tj is scheduled on the same processor Mj using a monoprocessor scheduling

approach. Task migration is not allowed. Hence, all instances of a task is scheduled on the

same processor by monoprocessor scheduling algorithms such as EDF, LLF or RM.

Indeed, as monoprocessor scheduling has been widely studied in terms of schedulability

analysis, the same results are easily transposed to each tasks subset Tj and its associated

processorMj . Moreover, a monoprocessor approach avoids task migration and the resulting

context switching which is very challenging and time consuming in multiprocessor systems.

2. Non-partitioned or Global Scheduling

Unlike the local approach presented above, any task or any job in the set Γn could be

executed on any processor. Furthermore a task could be preempted on one processor and

resumed later on another processor (which is task migration, if preemption is allowed). The

strategy is global as there is any partitioning done beforehand, and at every decision time,

all the m processors of the platform are assigned to the m higher priority tasks.

3.6.4 Multiprocessor Scheduling Model for Recon�gurable Hardware

The previous section has presented the partitioning strategies both from multiprocessor platform

and task system perspectives. This section will discuss how these strategies could be adapted to

hardware tasks scheduling on recon�gurable hardware devices.

Partitioned Scheduling

Partitioned scheduling could be transposed to dynamically recon�gurable hardware device. In-

deed, this could be done by partitioning the recon�gurable fabric in m equal slots as pictured in

�gure 3.8 (a), and by partitioning the tasks system Γn accordingly. If we assume that any slot

can �t any hardware task (e.g. if the thinnest slot can �t the widest task, or if the width of slots

is equal to the width of tasks), then a monoprocessor assignment scheme could be applied to each

slot. The set of n tasks Γn is partitioned into m subsets following the three conditions (1i), (1ii)

and (1iii) as described above, m being the number of slots. Each slot is therefore assigned to a

90

3. Background and Related Work Multiprocessor Model for Recon�g. HW

subset of tasks as shown in 3.8 (a) where arriving tasks are divided in three subsets.

In such an equal-slot partitioned strategy, the number of slots m corresponds to the number of

processors, and the whole recon�gurable array is seen as the aforementioned homogeneous multi-

processor system. With the assumption that each slot is big enough to �t any task of its subset,

monoprocessor scheduling algorithms along with theories could be directly and successfully applied

to executed each subset on its corresponding slot.

This assignment scheme could be extended to the case where the above-mentioned assumption

is not veri�ed. Indeed, as illustrated in �gure 3.8 (b) the recon�gurable array could be unequally

partitioned with a �xed number of slots m. If m is �xed, the model is much closer to the

heterogeneous multiprocessor system presented earlier. In addition if some tasks don't �t the

slots, then the recon�gurable array may be viewed as an independent processors platform. Each

task is therefore characterized by the processors (or slots) that are capable of processing it. Tasks

are assigned to di�erent slots according to their size and eventually a given scheduling strategy.

Roman et al. (2006) is an example where the area of the recon�gurable array is divided into

four unequal partitions, each holding one task at a time. A queue of tasks Qi is associated

to each partition Pi. The size of each partition is adjusted during run-time according to the

pro�le of the tasks set being processed. Depending on its size, each arriving task is added to the

queue of the partition that �ts best. Each tasks queue Qi is then scheduled on its corresponding

partition Pi. Another example is shown in Ahmadinia et al. (2004) where the recon�gurable array

is 1D-partitioned and each task is associated to a partition according to its �nishing time. A

monoprocessor assignment strategy along with theories could be then separately applied to each

slot and its corresponding tasks queue.

To summarize, if applied to scheduling for multitasking or hardware virtualization on recon�-

gurable hardware devices, the partitioned scheduling strategy is similar to an m monoprocessors

scheduling, where each processor or slot is locally managed by a monoprocessor scheduling scheme.

Hence, hardware tasks scheduling strategies could be directly derived from partitioned scheduling

theory for heterogeneous multiprocessor systems.

Global Scheduling

As global or non-partitioned scheduling is meant to use a global assignment scheme, the tasks are

not partitioned, and any task could be executed on any processor of the multiprocessor platform.

Hence, a global scheduling could be used even if the recon�gurable array is managed in a slot-

91

3. Background and Related Work Multiprocessor Model for Recon�g. HW

Figure 3.8: Equal sizes and unequal sizes partitioning of a DPRHW (dynamically and partially

recon�gurable hardware device)

based approach. Once again the basic assumption being on one hand the �xed number of slots,

and on the other hand the ability for the smallest slot to accommodate the biggest task. Such a

situation would correspond to the well studied global scheduling of software tasks on m identical

processors. Unfortunately, hardware tasks scheduling on partially recon�gurable hardware devices

is more challenging.

In the model in �gure 3.8 (b), the slots are not equally partitioned. Furthermore the number

of slots could be dynamically changed over time. For example in Ahmadinia et al. (2004) which

used a 1D partitioning, the number and the width of the slots are dynamically modi�ed according

to the characteristics of the incoming tasks.

In Lu et al. (2008) the recon�gurable array is �rst pre-partitioned in slots of various heights.

Afterwards, they are merged vertically and/or horizontally on demand in order to �t wider or

taller tasks (e.g. in �gure 3.8 (b), slot 3 and slot 4 can merge to �t a wider task).

Figure 3.8 (c) depicts another model where there are any prede�ned partitions. As tasks are

placed and removed, the array is split and merged accordingly. The number and size of partitions

(if considered as) are continuously variable, depending on the number and the shape of the placed

tasks. Hence, unlike the above-mentioned array partitioning strategies, neither the number (m)

nor the size of processors are known beforehand.

92

3. Background and Related Work On-line RT Scheduling for Recon�g. HW

It is much more di�cult to clearly map any multiprocessor scheduling approach on these above-

mentioned models. However if considered as an heterogeneous multiprocessor systems with a

variable number (m) and size of processors, a non-partitioned or global scheduling strategy is more

likely to be used. Indeed, the latter strategy re�ects a more realistic behaviour of a recon�gurable

array which is not pre-partitioned in slots. As it will be seen later, the main drawback is that the

underlying area management is very di�cult to handle.

To summarize, hardware tasks scheduling on a dynamically and partially recon�gurable

hardware is akin to scheduling on a multiprocessor system, but with a continuously variable num-

ber and speed (size) of processors over time. Therefore, it is more complicated by consideration

of this dynamicity. In addition, the resulting area management is highly complex because numer-

ous splitting and merging operations. However, a partitioned approach is more likely to �t in a

multiprocessor scheduling strategy and leads to a more simple area management. This results in

a higher recon�gurable hardware device area fragmentation and a lower utilization ratio.

3.7 Online Real-Time Scheduling on Recon�gurable Hard-

ware Devices

Introduction

As previously stated, scheduling policies can be classi�ed as static or dynamic. In static scheduling

tasks parameters are assigned beforehand and remain unchanged during the tasks life time, unlike

dynamic scheduling where the scheduling relies on tasks parameters that change over time. O�ine

scheduling is also di�erentiate from online scheduling. The latter introduces a certain dynamicity

in the system, making it di�cult to �nd optimal scheduling solutions.

Online here means that the �ow of the program is unknown in advance and hence task char-

acteristics (arrival time, shape, size, execution time, deadline, etc...) are unknown before its

arrival. This corresponds to the clairvoyant paradigm presented earlier. Hence, the scheduler has

to dynamically reassess at runtime the task(s) to be placed (e.g. O. Diessel and Schmidt, 2000;

Ahmadinia et al., 2004).

In this thesis, online real-time scheduling algorithms are classi�es in two main families, depen-

ding on whether the scheduling algorithm exploits or not the fact that online real-time tasks are

clairvoyant. Indeed, as the execution time of each task is known at its release, the scheduler

93

3. Background and Related Work On-line RT Scheduling without-looking-ahead

could rely on currently running tasks to determine current and future states of the recon�gurable

array, in order to properly place or plan each new task. This family of scheduling is denoted as

looking-ahead scheduling, in opposition to without-looking-ahead scheduling.

3.7.1 Online Scheduling Without-Looking-Ahead and Related Work

While scheduling without-looking-ahead, ready tasks are scheduled only on areas that are currently

available on the recon�gurable device. If there is not enough free area to accomodate the task at

current time and if it can still meet its deadline, the task is managed according to the scheduling

policy (e.g. simply rejected or kept in a waiting list in order to be placed later if worthy). This

approach is the most used in online and o�ine scheduling of hardware tasks on recon�gurable

hardware devices (e.g. Bazargan et al., 2000; Ahmadinia et al., 2004; Danne and Platzner, 2005).

Without-looking-ahead scheduling approach is detailed in �gure 3.9 where T1, T2, T3 and T4

are to be scheduled on the FPGA. ai, ei, li, si and fi are respectively the arrival time, execution

time, laxity, starting time and �nishing time of task Ti. Tasks T1 and T2 are placed at time

t = 1 as soon as they arrive. At time t = 2, tasks T3 and T4 arrive and cannot �t immediately

on the recon�gurable hardware. In the without-looking-ahead approach, the scheduler (through

the placer or area manager) checks areas that are available only at current time t = 2 without

prospecting the future state of the recon�gurable hardware. Hence, tasks T3 and T4 are kept in a

ready list as long as they can still meet their deadline, for further attempts. At time t = 6 when

T2 is completed, it could be replaced by T3 or T4 depending on the scheduling policy. If T3 is the

next task elected and if the system is submitted to hard real-time constraint, T3 will be placed

at time tp3 = 6 while T4 will be rejected at time trej4 = 7, because T4 won't be able to meet its

deadline anymore.

One of the main drawback of without-looking-ahead approach in hard real-time scheduling is to

keep the tasks that will never be placed anyway in a ready or waiting list and reject them too late

at time trej , expressed by equation 3.11

trej = ai + li ⇒ Rdi = trej − ai = li (3.11)

where trej is the rejection time of the rejected task Ti, ai its arrival time, li its laxity, and Rdi

its rejection delay (the waiting time for a rejected task, detailed in Chapter 4, equation 4.23 page

162). Such a late rejection is not desirable as it prevents the operating system from considering

94

3. Background and Related Work On-line RT Scheduling without-looking-ahead

Figure 3.9: Looking-ahead vs without-looking-ahead scheduling approaches

tasks implementation on other resource than the recon�gurable hardware12. In addition, keeping

the tasks lengthens the ready tasks list and, the longer the ready tasks list, the more di�cult it is

to scan and/or sort it, especially in an online real-time scenario.

Related Work

Bazargan et al. (2000) presented online and o�ine scheduling of hardware tasks on recon�gurable

hardware devices through a bin packing approach. For online scheduling, their studies are mainly

focused on 2D placement strategies along with area partitioning and management. The simulation

results are provided with respect to di�erent classes of tasks, where a class refers to the sizes (width,

height) of tasks. However, there is no time-based scheduling strategy (e.g. EDF) and runtime

overhead of online algorithms are not measured. As these studies mainly coped with placement,

they are presented in depth later below.

Danne (2006) dealt with the problem of scheduling real-time and periodic tasks on partially

recon�gurable hardware devices. He formalized the real-time scheduling problem. In its model,

the recon�gurable hardware device is seen as a homogeneous multiprocessor platform that consists

12 alternative resources could be hardcore and/or sotfcore CPUs. Sometime, the remaining recon�-

gurable resource may not be enough to accommodate a given hardware task, but may �t an instantiated

softcore processor that can run the task.

95

3. Background and Related Work On-line RT Scheduling without-looking-ahead

ofm identical processors, each processor being capable of running any task. Consequently, m tasks

instances can concurrently run on the device as long as the sum of their area does not exceed the

area of the device (expressed by equation 3.12 for the 1D model).

Danne (2006) proposed three preemptive scheduling algorithms: global EDF (Earliest Deadline

First), partitioned EDF and server based. These algorithms are adaptation of well-known software

tasks scheduling algorithms for multiprocessor platforms.

Danne (2006) presented two variants of global EDF scheduling for recon�gurable hardware devices,

denoted respectively as EDF-First-k-Fit and EDF-Next-Fit :

• At each scheduling time, EDF-First-k-Fit selects the k �rst jobs (in the sorted list of active

jobs) that can �t on the array. The k �rst jobs are selected in such a way that the kth job

Jk may be placed on the array only if all the jobs J1 to Jk−1 preceding Jk in the list can

also �t on the array. This leads to a situation where a remaining free area may be kept idle

while there are some active jobs Jk+i that can �t on it.

• EDF-Next-Fit scheduling overcomes this limitation of EDF-First-k-Fit, as the algorithm

scans the list of active jobs and places as many jobs as possible on the array, as far as they

�t in the array. Therefore EDF-Next-Fit outperforms EDF-First-k-Fit as in the latter, a

free area that can �t an active job may remain unused.

However, Danne (2006) relied on the 1D model of recon�gurable hardware devices. This model

requires rectangular-shaped tasks and assumes that each hardware task spans the entire device

width instead, tasks' heights being proportional to tasks' areas. The model is simpler to manage

compared to 2D model. It eases task relocation and therefore reduces external fragmentation.

But it induces internal fragmentation that leads to a lower device utilization ratio.

Using a 1D model makes the condition for simultaneously running n jobs Ji=1...n on the recon�-

gurable array simple as follows:
n∑
i=1

wi ≤W (3.12)

where wi andW are respectively the width of task Ji and the width of the recon�gurable hardware

device. Therefore, the schedulability analysis is simpler and can rely on schedulability analysis

for multiprocessor scheduling. For example, Danne and Platzner (2006b) relied on schedulability

analysis for EDF algorithm upon multiprocessor to provide an e�cient though pessimistic schedu-

lability analysis for global EDF scheduling. This scheduling test is of linear complexity O(n), n

being the number of tasks. The test guarantees at design time that no deadline will be missed.

Hence, any tasks set which passes the test will be feasibly scheduled by EDF algorithm. However,

96

3. Background and Related Work On-line RT Scheduling without-looking-ahead

as the test gives a su�cient but not necessary condition, a tasks set that fails may be feasibly

scheduled.

At that period, the other advantage of using 1D placement was technological limitations of FP-

GAs. FPGAs were providing only a column-wise partial and runtime recon�guration. Hence, the

only way of performing a 2D placement was to totally recon�gure all the columns (and therefore

the tasks in these columns) that were interfering with the task to place. Such a process were likely

to a�ect many tasks at each task placement, making recon�guration overheads higher.

However, as discussed later in section 3.9.1 page 124, any advantage of 1D placement (including

its lower algorithm complexity) comes at the cost of an internal fragmentation that lowers the

recon�gurable array utilization ratio and increases tasks rejection. Fortunately, using a 2D placer

is getting more meaningful as nowadays, many FPGAs are enabling 2D partial recon�guration.

Partitioned EDF scheduling is presented in Danne and Platzner (2006a) where an extended

model of ILP (Integer Linear Programming) for bin-packing problem is developed in order to

compute the optimal partitioned schedule for a given set of tasks. The recon�gurable array is

horizontally partitioned instead (in opposition to vertical partitions as mapped in �gure 3.8-(a)

page 92), following the 1D area model. At any time, at most one hardware task is allocated to a

slot. Consequently, the width of the task spans the entire width of the slot, leading to a low device

utilization ratio. Each task is modeled using many variants. Therefore, ILP selects a variant for

each task and a partitioning that minimize the overall required device area. That is, the smallest

area that allows to feasibly schedule a tasks set is found. Albeit the optimal partitioning for

medium-sized tasks sets can be computed in reasonable time, ILP-based partitioning scheduling

is not suitable for online scheduling.

Server-based approach is detailed in Danne et al. (2006) through MSDL scheduling technique.

In MSDL technique, tasks are grouped and executed on the recon�gurable array according to the

time sharing monoprocessor scheduling model presented earlier and mapped in �gure 3.5 page 84

and �gure 3.7 page 86. The recon�gurable device is fully recon�gured and a server corresponds to

what was earlier denoted as a compound task. As stated while discussing about that model, one

of the challenge here is to minimize the number of device con�gurations, which corresponds to the

number of required bitstream �les. This number of con�gurations is bounded by the number of

tasks. This scheduling technique o�ers an o�ine schedulability test. Hence, di�erent combination

of tasks that have to be run concurrently are computed beforehand and synthesized in order to

be loaded at the appropriated time, following a given scheduling policy (e.g. global EDF).

97

3. Background and Related Work On-line looking-ahead RT Scheduling

Ahmadinia et al. (2004) presented a cluster based dynamic scheduling in which the FPGA

is partitioned into slots of dynamic size. Tasks which will complete at nearly the same time are

placed in the same slot in order to free up contiguous spaces at the same time and create large

empty rectangles for later placement. Even if this scheduling strategy takes into account the future

state of the recon�gurable array by assigning slots to tasks according to their completion time, it

remains a without-looking-ahead approach as at each time, the tasks are scheduled only on the

currently available areas.

Conclusion on online scheduling without-looking-ahead

To summarize, the section discussed di�erent work on online scheduling without-looking-ahead

of real-time tasks on recon�gurable hardware devices. Bazargan et al. (2000) �rst presented

both optimal and nonoptimal approaches in area management for online and o�ine placement.

Danne (2006) formalized real-time scheduling of periodic and preemptive tasks, and provided few

algorithms along with e�cient schedulability analysis that derived from multiprocessor scheduling.

Ahmadinia et al. (2004) proposed a cluster-based scheduling approach that tends to free contiguous

areas at nearly the same time in order to accommodate next tasks. These di�erent approaches

showed the tightness that exists between scheduling and placement problems. The coming section

introduces looking-ahead scheduling and emphasizes the aforementioned tightness.

3.7.2 Online Looking-Ahead Scheduling and Related Work

Presentation

In looking-ahead scheduling, if there is not enough place at current time to place a given task, the

scheduling algorithm goes further by looking into the future, mimicking the end of certain running

tasks to see if the space thus freed can �t the task (e.g. Steiger et al., 2004; Chen and Hsiung, 2005;

Marconi et al., 2008). By doing so, the scheduler either accepts or rejects the task immediately

and, therefore, allows the Operating System to �nd alternative implementation solutions in case

of rejection.

In an online real-time context, this immediate rejection of any task Ti that cannot �t in the array

is the main advantage of a looking-ahead approach. The rejection time trej of a task Ti scheduled

with a looking-ahead scheduling is expressed in equation 3.13 where ai is the release time of Ti

and εi the scheduling runtime overhead or time required by the scheduling algorithm to schedule

Ti. Rdi is the corresponding rejection delay (or the waiting time for a rejected task, as detailed

98

3. Background and Related Work On-line looking-ahead RT Scheduling

later in equation 4.23 page 162).

trej = ai + εi ⇒ Rdi = trej − ai = εi (3.13)

Equation 3.13 implies that the rejection delay is equal to the looking-ahead scheduling algorithm

runtime overhead, which must be far lesser than a scheduler tick or time unit (εi � Ttick).

Looking-ahead algorithms certainly improve the online real-time scheduling quality by taking rapid

scheduling decisions. However when a 2D placement is used as in Steiger et al. (2004), too many

areas splitting and merging operations are performed at runtime, which is prejudicial in online

real-time scenarios.

Related Work

Steiger et al. (2004) proposed two looking-ahead scheduling algorithms denoted as Horizon and

Stu�ng. Both algorithms are online and clairvoyant. They schedule tasks to arbitrary areas that

are either currently free or that will be free at a given time (or time interval) in the future. A task

that is assigned a future free areas is put on a reservation list while the currently running tasks

are recorded on an execution list.

As pictured in �gure 3.10, the algorithms di�er from each other in the way they manage the areas.

At any scheduling time, before assigning any area to tasks, the area manager makes sure that

the area is not con�icting with any other area currently occupied or already booked for another

task. This veri�cation is made using the two above-mentioned lists, in addition to a third list that

records the state of the recon�gurable hardware device. In horizon scheduling, once an area is

assigned to a task, no matter when the tasks starts its execution, the area is marked as occupied

from current time until the end of the task. Hence, as shown in �gure 3.10(a), areas are marked as

either �totally free�, or �occupied from the current time until a given point in time�. This leads to

situations pictured on the left of �gure 3.11 where some reserved areas are available within a time

interval but cannot be used. The shaded parts in �gure 3.11(a) are such lost areas. As depicted

by the latter �gure, task T7 that arrives at time 3 is planned to start at time 18 when task T6 will

end. Indeed, T6 has been planned earlier at time 2 to be started at time 15. Hence, from time 2

when T6 has been planned, the whole space that will be occupied by T6 cannot be assigned to any

other newly arrived task within the interval that spans from the reservation of task T6 (at time 2)

until its end at time 18.

In order to draw a parallel between hotel management and horizon scheduling, let's assume that

a room is booked for a client who is arriving in one week time and who is planning to stay one

99

3. Background and Related Work On-line looking-ahead RT Scheduling

Figure 3.10: Managing areas availability or occupancy in looking-ahead scheduling (e.g. horizon

and stu�ng algorithms, Steiger et al., 2004)

Figure 3.11: An example of 1D Horizon and Stu�nd scheduling algorithms (Steiger et al., 2004)

100

3. Background and Related Work On-line looking-ahead RT Scheduling

week in the hotel. In horizon scheduling, the room is no longer available from the booking time

until the end of the stay which is in two weeks. This scheduling approach prevents the room from

being rented during the week preceding the client arrival. Therefore, the occupation ratio of the

hotel is lower, where this ratio corresponds to the recon�gurable hardware utilization ratio in our

present case.

The aforementioned lack of horizon scheduling is overcome by stu�ng scheduling. Indeed, as

illustrated in �gure 3.10(b), areas on the recon�gurable hardware are marked either as �totally

free� or as �occupied in a precise time interval�. Figure 3.10(c) shows the same information, but

from availability point of view. This is similar to rooms management in hotels where rooms are

marked according to their availability. Hence many clients (resp. tasks) may share the same

room (resp. area) as long as it is on a time-sharing basis. In �gure 3.11 the same sequence

of tasks is scheduled using horizon and stu�ng algorithms. Task T7 starts earlier with stu�ng

algorithm. Consequently, as shown by Steiger et al. (2004) both for 1D and 2D placement, for

the same placement strategy, stu�ng scheduling algorithm reduces the makespan and the tasks

rejection ratio while increasing the device utilization ratio compared to horizon scheduling. These

improvements come at the cost of higher scheduling algorithm runtime overhead.

Chen and Hsiung (2005) proposed the Classi�ed Stu�ng (CS) algorithm as an improvement

of the 1D version of the original stu�ng scheduling (Steiger et al., 2004). In Classi�ed Stu�ng,

hardware tasks are classi�ed in two types and the placement location of each class of tasks is

di�erent. This di�ers from the original stu�ng (OS) algorithm where when an available area is

found, the task is placed on its leftmost in the case of 1D placement (on its bottom left corner

in the case of a 2D placement). Classi�ed Stu�ng can place a task either on the leftmost or the

rightmost of the available area depending on the task Space Utilization Rate (SUR), given by :

SURi = wi

ei

where SURi is the space utilization rate of the task to place Ti, wi and ei respectively its width

and its execution time. Tasks with a SUR > 1 are placed starting from the leftmost available

area while tasks with SUR ≤ 1 are placed from the rightmost available columns. As shown

through simulations performed with a large number of tasks sets with various SUR (4, 1 and

0.25), Chen and Hsiung (2005)'s 1D stu�ng approach reduces the fragmentation (from ∼ −5.5%

to ∼ −23.3%) and the makespan (from ∼ −4% to ∼ −21%) for the same tasks rejection ratio

and almost the same algorithm runtime overhead, compared to original stu�ng. Obviously, best

101

3. Background and Related Work On-line looking-ahead RT Scheduling

results are obtained with tasks set with low SUR. Indeed, as Chen and Hsiung (2005) uses a 1D

placement, the smaller the width of the task, the lower the resulting internal fragmentation.

Cui and Deng (2007) proposed a One-Level Look-Ahead scheduling strategy. Indeed as frag-

mentation is one of the main problem to overcome, their work coped with �nding a fragmentation-

based scheduling policy, as presented later below in section 3.9, page 122. Their ultimate proposi-

tion is a looking-ahead approach in tasks placement, which aims at reducing the area fragmentation

of the recon�gurable hardware device by delaying the placement of a task to the next event, in-

creasing the solution search space. Consequently, the placement of an arriving task could be

delayed even if there is enough place on the device to place the tasks at its release time. The basic

idea behind this strategy is that this delay is sometimes more bene�tial in terms of area fragmenta-

tion. In their so-called one-level looking-ahead, a task released at time ta could be delayed at most

until time ta + δ if the task can still meet its deadline, and if the resulting overall fragmentation

of the device is lower compared to an immediate placement at time ta. One-level here means that

within the time interval [ta ; ta+ tl] where tl is the laxity of the task, the algorithm checks the �rst

time instant ta + δ when one (or more) currently running task �nishes its execution and therefore

frees more spaces. The fragmentation resulting from a placement at time ta is then compared to

the one produced by a placement at time ta + δ, the starting time that is more bene�tial in terms

of fragmentation is choosen accordingly.

Cui and Deng (2007) was actually an improvement of a similar scheduling approach that has

previously been proposed by Tabero et al. (2006). Both approaches were fragmentation-based as

they both tried to minimize the fragmentation. However they di�ered on the way they managed

their free areas. Tabero et al. (2006) used a Vertex List to keep the track of the free areas in

the FPGA while Cui and Deng (2007) used a MER-based approach. Albeit fragmentation-based

scheduling approaches, neither Tabero et al. (2006) nor Cui and Deng (2007) are not fully a

looking-ahead approach as the algorithm only looks a single (and closest) time instant in the

future, instead of looking at all the events in time interval [ta ; ta + tl] which are likely to free

more space on the recon�gurable device. However, it outperforms Handa and Vemuri (2004a) and

Tabero et al. (2006) in terms of tasks rejection ratio and device utilization ratio.

Marconi et al. (2008) proposed the Intelligent Stu�ng (IS) algorithm as an improvement

of the original stu�ng (Steiger et al., 2004) and the classi�ed stu�ng (Chen and Hsiung, 2005).

Therefore, IS is a 1D looking-ahead stu�ng algorithm which provided better results compared to

102

3. Background and Related Work On-line looking-ahead RT Scheduling

the previously mentioned 1D stu�ng algorithms. As in the classi�ed stu�ng, IS algorithm di�ers

from the original 1D stu�ng in the criteria used to place a task either on the leftmost or on the

rightmost of the available area. While tasks positions are SUR-based in CS algorithm (Chen and

Hsiung, 2005), Marconi et al. (2008)'s approach introduces the so-called alignment status of a free

space. Hence, each free space (FS) is assigned a boolean parameter (alignment status). The latter

indicates the side (leftmost or rightmost) of the free area where to place the next task that will

be accomodated to the area.

Figure 3.12: Intelligent Stu�ng (IS) scheduling algorithm using 1D placement (Marconi et al.,

2008)

Everytime a task is placed in a free area, the alignment status of the remaining free area is

toggled. One example is mapped in �gure 3.12-(a-1) where the whole area of an empty FPGA

is represented by a single area denoted as FS1, spanning from column CL1 and CR1 and with

an alignment status set to leftmost. That is, the �rst arriving tasks T1 is placed at the leftmost

position of FS1 as pictured in �gure 3.12-(a-2). This action reduces the size of FS1, toggles the

alignment status of FS1 from leftmost to rightmost, and creates a new free space FS2 which spans

from columns CL2 and CR2. As for any newly created area, the alignment status of FS2 is set to

leftmost. If a new task T2 arrives, the free space FS1 will accomodate the task at its rightmost

edge, according to its current alignment status. Consequently as illustrated in �gure 3.12-(a-3),

103

3. Background and Related Work On-line looking-ahead RT Scheduling

the size of FS1 is reduced, its alignment status toggled to leftmost, FS2 is resized accordingly and

a new free area FS3 created with a leftmost alignment status.

Figures 3.12-(b-1) and (b-2) show two scenarios of 3 tasks (T1, T2 and T3, not dotted) scheduled

using IS scheduling algorithm. In �gure 3.12-(b-1) the dotted tasks T2 and T3 show how the original

stu�ng (OS) would have scheduled tasks T2 and T3. The makespan resulting from OS scheduling

is greater compared to IS scheduling (MOS > MIS). A similar result (MOS = MCS > MIS) arises

from the second scenario mapped in �gure 3.12-(b-2) where the dotted version of tasks mimics a

classi�ed stu�ng scheduling. IS provides smaller makespan as it allows future tasks to be placed

earlier, thanks to the area management based on the alignment status. The latter is easier to

compute than the SUR used by CS algorithm. Consequently, IS reduces the average waiting time

(up to 12.8%) and decreases the total wasted area (up to 53%) for slightly the same algorithm

runtime overhead, compared to CS scheduling.

Conclusion on online looking-ahead scheduling

To summarize, this section discussed di�erent works on online looking-ahead scheduling of real-

time tasks on recon�gurable hardware devices. Steiger et al. (2004) �rst presented two main

approaches denoted respectively as horizon and stu�ng, and that used 1D and 2D placement

strategies. For obvious reasons recalled earlier, stu�ng algorithm outperforms horizon algorithm

with respect to the same placement strategy. In addition, as it produces less fragmentation, 2D

placement provides better results compared to 1D in terms of recon�gurable hardware utilization

ratio and tasks rejection ratio.

Chen and Hsiung (2005) and Marconi et al. (2008) have respectively proposed CS and IS algo-

rithms as improvements of the 1D version of stu�ng algorithm. Their algorithms provide a better

quality placement and a shorter makespan for slightly the same runtime overhead. However, the

results remain far from being optimal as the quality placement of a scheduling strategy is highly

tied to the quality of the underlying placement algorithm (which is 1D here) along with its area

management strategy.

Looking-ahead scheduling requires to regularly mimic future tasks placement and withdrawal in

order to assess future states of the recon�gurable array. This leads to numerous area splitting and

merging operations that can be highly complex depending on the placement algorithm. Conse-

quently, unlike Steiger et al. (2004) other related works in looking-ahead scheduling in an online

real-time context tend to use a simple 1D placer. The resulting runtime overhead and overall

complexity are then a�ordable in this context, but come at the cost of recon�gurable hardware

104

3. Background and Related Work Placement issues

device utilization ratio.

3.8 Tasks Placement and Related Work

3.8.1 Online Placement Issues

Placement aims at e�ciently allocating recon�gurable area to di�erent modules (tasks) of an

application to implement. The problem of placing modules on the recon�gurable device is simpler

if the device is big enough to concurrently �t all the modules of the application. In this case,

a placed module is permanently on the device and the placement problem consists of �nding a

position (if one exists) to each task in a way that all the tasks �t on the recon�gurable array.

However, if the chip is not big enough, there is a need to perform a hardware virtualization (or

multitasking) where modules could be dynamically swapped in and out the chip according to

their idle or operating time. This process of assigning both a position and a starting time to each

task makes the placement problem more challenging by turning it into a scheduling problem as

previously described.

To achieve a good placement, one needs to have a model for each component involved as

detailed in Chapter 4. In most studies, the recon�gurable fabric (e.g. FPGA) is seen as an array

of resources with a given size (area) and hardware tasks as rectangular modules to be placed on

the array. Basically the modules and the recon�gurable area are rectangular-shaped. Hence, the

problem of placing modules on an FPGA is similar to the well-known 1D and 2D bin-packing

problems as presented in Co�man et al. (1997). 1D and 2D bin-packing correspond respectively

to 1D and 2D placement; a 3rd dimension is commonly added for time �ow, in order to bring out

the scheduling problem.

In hardware tasks scheduling for recon�gurable platforms, the placement problem appears

as a scheduling sub-problem. Hence, a Scheduler assigns the management of the recon�gurable

array to a Placer, sometimes denoted as resource manager. The placer reacts upon scheduler

requests. In general, the placement problem is usually divided in two main parts (detailed below

and depicted in �gure 4.12, page 157, Chapter 4):

(i.) area manager

most of the time, the area manager is a free space manager as it manages the free space

still available on the recon�gurable fabric. Hence, it maintains a data structure that stores

information about the state of the recon�gurable fabric (free spaces, occupied spaces). Con-

105

3. Background and Related Work Placement issues

sequently, the manager is invoked to update the state of the chip at every change (task

placement or withdrawal). Most work on placement di�er from each other depending on

the data structure that stores the state of recon�gurable area, and on the strategy used to

manage it. The data structure and its update deeply impacts on the complexity of placement

algorithms and heuristics.

(ii.) area �nder

the area �nder checks and assigns a rectangular area on the recon�gurable array that could

accommodate a task, on request of the scheduler. It uses a given rule (e.g. bin-packing

rules) to �t the task to one of the free spaces maintained by the free space manager. In

addition, it uses di�erent �tting strategies (see section 3.8.4, page 113) to decide which area

among the possible candidates will be assigned to the task to be placed.

The area �nder and the free space manager are tied as the strategy of �nding and choosing

one area among others depends on the data structure that keeps a record of the available ar-

eas. Consequently, related work on placement will be presented �rst, through di�erent free areas

management strategies, sometimes referred to as areas partitioning strategies. Afterwards, another

comparative study of placement strategies will be done, from recon�gurable area fragmentation

perspective.

The special case of o�ine placement

If the �ow of the program is predictable at design time, and all the parameters (timing informa-

tion, size, etc.) of di�erent tasks or modules to be inserted are known beforehand, the placement

of di�erent modules on the recon�gurable hardware could be planned at compilation time. Hence,

the recon�gurable resources are statically and deterministically assigned to di�erent modules at

the compilation time. In o�ine scheduling and placement, high performance algorithms and

heuristics can be developed to optimally manage the recon�gurable fabric area. So, even if these

very e�cient algorithms compute slowly, they remain a�ordable as computations are done o�ine

(e.g. on a host PC before the system starts running). Today, compilation times of FPGA-based

designs are dominated by placement and routing. FPGAs are becoming denser. The designs

to implement are more complex, requiring tremendous amount of interconnections to be routed.

EDA tools require great amounts of CPU time (even hours) to achieve a high quality placement

and routing. Di�erent high-quality P&R13 heuristics have been developed over the years to solve

13 Place and Route

106

3. Background and Related Work Free areas management

placement and routing in FPGAs. Further, EDA tools enable incremental placement and modular

placement for modules based designs. In a modular placement, a rectangular portion of the FPGA

is assigned to each module. The module is placed and routed within this portion. This feature

can be exploited in online placement. However, these optimal P&R heuristics used in EDA tools

are too greedy to be used in an online scenario. They are suited to o�ine placement (e.g. running

on a desktop PC) and are not in the scope of this thesis.

3.8.2 Free Area Partitioning

As stated earlier, the area manager keeps and updates a data structure representing the current

state of the recon�gurable area in terms of empty spaces or inserted modules. It also divides

the empty space in empty rectangles. As detailed below, there are many ways of splitting and

managing an area that accomodate a smaller task.

Nonoverlapping vs overlapping area partition

The area manager keeps the track of available free areas as a list of rectangles. These rectangles

result from di�erent partitions that are performed after tasks placement. Depending on the par-

tition strategy applied on the remaining empty space, there are two types of generated rectangles

as pictured in �gure 3.13:

(i)- Nonoverlapping rectangles that result from a nonoverlapping partition, as depicted in �gure

3.13-(a) and 3.13-(b).

(ii)- Overlapping rectangles that result from an overlapping partition, as depicted in �gure 3.13-

(c).

As seen in �gure 3.13-(a) and 3.13-(b), when a task T1 is placed in a rectangle, the remaining free

area is split up into several (two here) nonoverlapping rectangles, R11 and R12. The split could

be either vertical or horizontal.

In nonoverlapping partition, the number of rectangles to manage grows linearly with respect to

the number of placed tasks. Hence the time complexity of placing or removing a task is in general

O(n) where n is the number of tasks currently placed. The reason is that only the accommodating

rectangle is involved in the placement/withdrawal process.

Figure 3.13-(c) depicts another option where the resulting rectangles are overlapping. Indeed,

as detailed in �gure 3.14, generating overlapping rectangles improves the placement quality. The

example given shows that task T2 would have been rejected if rectangles R11 and R12 resulting

107

3. Background and Related Work Free areas management

from the placement of task T1 were not overlapping. More precisely, T2 would have been rejected

in the event of a vertical split. T2 is placed in rectangle R11. R11 is then split up into two

rectangles R21 and R22. This simple example shows that overlapping partitioning decreases the

number of rejected tasks by providing more solutions for �ttings.

However, overlapping partitioning induces numerous resizing processes. For example, as task T2

overlaps with rectangle R12, the latter has to be resized. Consequently, the number of rectangles

involved in a task placement/withdrawal is one order of magnitude greater if compared to the case

of nonoverlapping partitioning. In addition, when using overlapping partitioning the resulting

rectangular space partition is quadratic with respect to n, the number of tasks currently placed

on the chip. Consequently, the time complexity of inserting/removing a task is O(n2).

Figure 3.13: Nonoverlapping vs overlapping partition; vertical vs horizontal split for overlapping

partition

MER (Maximum Empty Rectangles)

A maximum empty rectangle is an empty rectangle that cannot be completely covered by

any other empty rectangle. Figure 3.14-(c) shows one way of managing the remaining free area

by splitting it up using the overlapping partition approach. Furthermore, another overlapping

approach is mapped in �gure 3.14-(d) where all possible maximum empty rectangles that could

be built in the remaining free area are identi�ed. R12, R21 and R22 are these so-called MERs

(Maximum Empty Rectangles).

The di�erence between �gure 3.14-(c) and �gure 3.14-(d) is on the size of R22. R22 is bigger

in the latter �gure thanks to a MER-based partition. Therefore, a MER-based partition provides

more candidates for placing a new task. The placement is optimal since the list of MERs will

contain a placement solution for any task, if one exists. However, inserting/removing a task has

108

3. Background and Related Work Free areas management

Figure 3.14: Placing a task in an overlapping rectangle

Figure 3.15: Maximum empty rectangles

time complexity O(n2), n being the number of currently placed tasks.

Another example of tasks placement in MERs is pictured in �gure 3.15. It shows how the number

of rectangles involved in each task placement or withdrawal grows drastically compared to the

nonoverlapping case. Identically, the number of rectangles grows quadratically with respect to the

number of placed tasks. In �gure 3.15-(d) there are 5 rectangles for two currently placed tasks,

T1 and T2.

109

3. Background and Related Work Free areas management

3.8.3 Data Structure to store the State of the Recon�gurable Array

The most challenging part of placement problem is probably to build a data structure that repre-

sents the state of the recon�gurable array, e.g. in terms of available resources and their location.

While trying to place a task, the algorithm checks existing free areas in the data structure. In

addition, at each task placement or withdrawal on the recon�gurable array, the data structure is

updated in order to re�ect the new state of the array. The placement algorithm complexity and

performance highly depends on the data structure. A good data structure should keep a complete

record of existing areas, should be easy to scan for �nding free areas, and should be easy to update.

These objectives are con�icting. Indeed, the quantity of information required to represent the free

rectangles grows with the accuracy of the representation. For example, recording all the MERs

will require far more information than recording nonoverlapping rectangles. Hence, a reasonable

trade-o� has to be found while choosing the area management strategy.

No matter which data structure is used to represent the free of rectangles, remember that the

number of rectangles involved in a task placement or withdrawal depends on the partitioning

strategy used, as mentioned earlier. The updating process is consequently closely related. Depen-

ding on the way the data structure keeps the state of available areas and the resulting update

process, one distinguishes 3 main data structures of various algorithmic complexity : list of over-

lapping/nonoverlapping rectangles, list of MERs and Vertex-List.

List of overlapping and nonoverlapping rectangles

In this approach, the recon�gurable array is represented by a list of overlapping or nonoverlapping

rectangles. Each rectangle is represented by its coordinates and its size.

A binary search tree as adjacency graph :

Bazargan et al. (2000) mentioned a binary search tree used as an area adjacency graph that

stores the state of the recon�gurable array. Figure 3.16 depicts an example of this tree. In this

example, the tree stores nonoverlapping rectangles. When a task is placed in a rectangular area

that is bigger than the task, the area is partitioned up into two or three parts according to vertical,

horizontal or overlapping split. In the tree, each node represents an area and could generate up

to two children nodes when a task is placed on it. R1 represents the whole recon�gurable array

and is the root of the tree. Its size is 10 X 6 where 10 is its width. Task T1 is �rst placed on the

bottom left of R1. R1 is then split up into 3 parts denoted as T1, R2 and R3. R2 and R3 are

110

3. Background and Related Work Free areas management

inserted in the tree as children rectangles of R1 while the part denoted as T1 host the task T1.

Then T2 arrives and is placed in rectangle R2. As T2 spans the entire width of R2, only one child

rectangle R4 is generated and inserted in the tree. The main observation at this stage is that each

internal node of the tree corresponds to an area hosting a task, while leaves of the tree represent

the current free areas on the chip. At this point in time after placing tasks T1 and T2, available

areas are R3 and R4. Then arrives T3 which is placed on R3. R3 is vertically split, R5 and R6 are

generated. At this point, free areas are R4, R5 and R6 and running tasks are T1, T2 and T3. T4

arrives and is placed on R4 which generates R7. The tree is updated accordingly. At this point,

the tree is in the state pictured in �gure 3.16, without the area RX which is the second child area

of R2.

R1:10x6
T1:3x3

R2: 7x6
T2: 7x5

R3: 3x3
T3: 2x2

R6: 1x2

R5: 1x3

R4 : 7x1
T4: 5x1

R7: 2x1

Rx: 7x5

R: Width x Height
T: Width x Height

 T1
3 x 3

 Area up
 R3
 3x3 Area down

 R2
 7x6

 T1
3 x 3

 R3
3 x 3

R4: 7x1

 T2
 7x5

 T1
3 x 3

R4: 7x1

 T2
 7x5

 T3
2 x 2

 R
 5

 R6

 T1
3 x 3

T4: 5x1

 T2
 7x5

 T3
2 x 2

 R
 5

 R6 R7

 (a’) (b’)

 (c’) (d’)

 (a)

 (b)

 (c)

 (d)

10

6
Area up

Area
down

Figure 3.16: A binary tree used as a data structure that records the state of the FPGA

Storing the states of the recon�gurable array in such a binary tree structure makes merge

and split operations more intuitive. Indeed, initial area of a node could be retrieved when all its

children areas are free. For example, when task T3, placed on node R3 completes, the original size

of R3 is retrieved on the chip by moving back the tree to a former state. This is done by simply

deleting children area nodes R5 and R6. However, a situation can arise when the task hosted in

the node �nishes while there is one or many tasks still running in the subtree. In this situation,

an area node RX is generated as pictured in �gure 3.16, where the size of RX is equal the size

of the �nished task. Indeed, if T2 �nishes before T4, R2 cannot be retrieved immediately. RX is

generated as an extra child node, in order to make it available for further placement.

111

3. Background and Related Work Free areas management

The complexity of �nding an internal node (that host a task) is bounded by O(n) in the case of

a binary tree, and by O(log(n)) in the case of a binary search tree, n being the number of tasks

currently on the array; in addition if the binary search tree is balanced the complexity drops to

O(log2(n)). A binary search tree can be properly built based on the coordinates of the generated

areas. For example, in the depicted case of �gure 3.16, a vertical split is used. Hence, two children

rectangles (e.g. area down R2 and area up R3) generated from the same father rectangle (R1)

will di�er from each other by their X-coordinate. As shown on node (a) and (a'), rectangle R3

along with its descendants will always be at the left of the X-coordinate of rectangle R2. The X-

coordinate may be a building criteria of the binary search tree. However in the case of overlapping

rectangles, the criteria di�erentiating the area up from the area down while building the tree will

be much more di�cult.

A tree structure is usually used with an additional list that contains the available free areas

(leaves of the tree). The reason is that checking such a shorter list to �nd a feasible placement is

much more easier than scanning the tree.

To summarize, the complexity of managing a simple list is interwoven with the complexity

of the partitioning strategy. A simple list provides a low complexity, but leads to a higher frag-

mentation especially in the case nonoverlapping partitioning. A tree structure eases the merging

process and therefore limits the fragmentation.

List of MERs

Building a list of MERs at each task placement and withdrawal leads to high quality placement.

The free area is partitioned in MERs as pictured in �gure 3.15. By principle, �nding all MERs

assumes that the whole recon�gurable array is scanned. Hence, the worst case performance for

�nding all the MERs is O(w·h), w and h being respectively the number of columns and the number

of lines of the recon�gurable array. However, many techniques have been proposed to identify and

build all MERs. Most of them rely on the fact that each time a task is placed, the recon�gurable

array is a�ected locally. Hence, only the MERs that overlap with the MER accomodating the

task are updated.

Handa and Vemuri (2004c) described the Staircase algorithm as technique that �nds MERs in

a structure. The main advantage of the Staircase algorithm is that it scans an average of 15% of

the whole array in order to update the list of MERs. Therefore, Staircase algorithm is of lower time

complexity. This lower time complexity is obtained by keeping concurrently a table that contains

112

3. Background and Related Work Free areas management

free and occupied cells in the array, and an encoding table that contains some coe�cients. These

data are used to build stairs of avalaible areas from which MERs are deduced.

Cui and Deng (2007) also proposed the ScanLine Algorithm (SLA), an algorithm that e�-

ciently �nds MERs in a recon�gurable array. It used the same principle as Staircase by con-

currently maintaining a table that contained occupied and free cells in the array, and a table of

coe�cients. However the way of calculating the MERs were completely di�erent. While looking

for a MER, each column was checked in order to �nd its key element if one existed. If found, then

its MKE (Maximal Key Element) was found and the MER deduced. The main advantage of SLA

algorithm was its shorter updating process, at each task placement or withdrawal.

SLA and Staircase algorithms were quite similar as they only needed a partial scan of the array

while refreshing the MERs. Therefore they had lower time complexity. The simulation results

showed that Staircase achieved a speedup of 2.5 times in comparison with SLA, as discussed in

section 4.2, Chapter 4.

Vertex-List

To the best of our knowledge, Tabero et al. (2004) �rst used a Vertex-list to manage free areas on

a recon�gurable array. As stated previously, Tabero et al. (2006) implemented a one-level looking-

ahead scheduling algorithm which used Vertex-list to record the state of the chip. Tabero's works

emphasized the fact that Vertex-list based placement approach allowed the algorithm to take into

account and therefore minimize chip fragmentation. More details are given below in section 3.9

which presents a few fragmentation-based scheduling algorithms, including Tabero's Vertex-list.

It is shown that Vertex-list approach is slow because it is basically MERs-based.

3.8.4 Fitting Strategies

Packing rectangular-shaped hardware tasks on a recon�gurable chip is similar to the 2D bin-

packing problem, which is an extension of the classical 1D bin-packing.

1D Placement

One-dimensional bin-packing consists of placing rectangular modules in rows. One example

applied to hardware tasks placement on a recon�gurable array is mapped in �gure 3.17. Table 3.1

shows parameters of 6 real-time tasks T1...T6 to be placed. As they arrive, the tasks are placed

as shown in �gure 3.17. A 1D placement assumes that each task spans the entire height of the

113

3. Background and Related Work Free areas management

device, whatever the real height of the task may be. Consequently, task T6 is rejected despite the

fact that there are enough contiguous space that can accomodate it.

Tasks parameters T1 T2 T3 T4 T5 T6

ai : arrival time 1 1 3 3 8 10

ei : execution time 14 17 18 16 14 12

di : deadline 20 20 23 23 23 23

wi : width of the task 2 1 1 2 1 1

hi : height of the task 4 2 5 2 2 2

Table 3.1: Tasks to schedule on an FPGA of size 7 X 6

Figure 3.17: Scheduling tasks on a 7 X 6 recon�gurable array using a 1D placement model

1D bin-packing algorithms are used to perform 1D placement. In 1D placement, modules

are placed and routed in a vertical manner as depicted in �gure 3.17(a). Hence, modules cannot

interfere on the X-axis. The placement problem is simpli�ed to the allocation of one interval on

the X-axis to each incoming module. Heuristics implementing 1D placement are more simple and

hence more suited to online placement. Until recently, because of technological restrictions, FPGAs

were hardly supporting 2D placement. Indeed, the devices were only recon�gurable column-wise.

Hence, even if 1D and 2D heuristics were developed and simulated, mosts of prototyping works

were limited to a 1D scenario. Fortunately, these restrictions are progressively overcome and

random parts of FPGAs are independently recon�gurable.

Best Fit (BF) and First Fit (FF) are two well-known �tting strategies for bin-packing algo-

114

3. Background and Related Work Free areas management

rithms (Co�man et al., 1997). The FF algorithm tends to be faster by putting the arriving module

in the lowest indexed bin that may accommodate the module. The BF algorithm minimizes the

wasted space by choosing the bin that has the smallest room to accommodate the arriving mo-

dule. Both algorithms require O(n) time for each insertion operation in the worst case, n being

the number of bins.

2D Placement

In the 2D bin-packing problem, the rectangular module to be inserted can be placed anywhere

on the recon�gurable area (�gure 3.18). 2D bin-packing heuristics are used with some restrictions

to perform 2D placement of rectangular modules on a recon�gurable chip. As depicted in �gures

3.18 and 3.19, the modules to be inserted cannot be rotated and therefore must be positioned with

a �xed orientation.

Figure 3.18: 2D placement model of tasks on a 7 X 6 recon�gurable array

3D Placement for scheduling

When considering scheduling, a third dimension has to be added for the time (�gure 3.19).

Hence the 3D placement is similar to packing rectangles into a container W ·H ·D where W is the

weight, H is the height and D is the depth. In the case of a 3D placement, the depth is replaced

by a time axis t. Hence, contrary to container loading, the rectangular modules can only be placed

in limited places because some places are lost to time.

115

3. Background and Related Work Free areas management

Figure 3.19: 3D view of the 2D placement model illustrated in �gure 3.18

3.8.5 Related Work

Bazargan et al. (2000) have presented a fast online placement method for dynamically recon�-

gurable systems, as well as 3D placement algorithms for statically recon�gurable architectures.

The recon�gurable fabric is homogeneous and consists of a 2D array of recon�gurable functional

units (RFUs). This work provided a valuable framework for research on online and o�ine schedul-

ing and placement of tasks on a recon�gurable computing system. Their placement algorithms

are divided in the classical two main parts: an empty space manager for partitioning and a search

engine and bin-packing rule for tasks insertion/deletion.

(i). The �rst part (partitioning manager) uses both overlapping and nonoverlapping approaches

and a binary tree as described and depicted earlier in �gure 3.16 page 111. The Bazargan

et al. (2000)'s overlapping approach is MER-based and is proposed through the KAMER

algorithm. KAMER stands for Keeping All Maximum Empty Rectangles. This �rst method

(KAMERs) takes quadratic space in terms of number of modules on the recon�gurable ar-

ray. It has to manage O(n2) empty rectangles for n placed tasks on the array. Indeed,

inserting a new task splits empty rectangles into smaller ones while removing a task merges

empty rectangles to form bigger ones. This increases the time needed to insert an arriving

module on the chip. However, it provides a high quality placement (while combined with a

bin-packing algorithm like Best Fit) in spite of the fact that it is slower. Consequently, the

KAMERs approach is much more suitable for o�ine problems.

In the nonoverlapping approach, Bazargan et al. (2000) proposed the Keeping Nonoverlap-

116

3. Background and Related Work Free areas management

ping Empty Rectangles method. This method induces O(n) complexity algorithms as the

number of empty rectangles to manage is linear in terms of the number of placed tasks.

Therefore this approach which comes in a variety of forms is not optimal but faster. For

example, by giving up slightly on the placement quality, a variant of this approach, com-

bined with the Best Fit (BF) �tting strategy, has a speedup of 16 times compared to the

KAMERs (Bazargan et al., 2000). Keeping Nonoverlapping Empty Rectangles approach

is consequently more suitable for online problem, even if it increases fragmentation of the

chip. The interesting part of this work is the one devoted to online placement. Although,

thanks to its highest placement quality, the KAMERs method is used as the baseline for

comparison against other placement algorithms, in terms of the quality of placement that

is lost to the bene�t of the amount of speedup that is gained.

Many nonoverlapping partitioning variants are assessed by Bazargan et al. (2000) in ad-

dition to static vertical and horizontal partition pictured in �gure 3.13. Shorter Segment

(SSEG), Longer Segment (LSEG), Square Empty (LSQR), these are examples of partition-

ing strategies that dynamically partition vertically or horizontally depending on the size

and the shape of the resulting free rectangles. None of them signi�cantly outperforms the

other. However, SSEG-BF (SSEG partition strategy coupled with a Best Fit �tting strat-

egy) shows some improvement over other nonoverlapping variants and therefore provides a

good trade-o� for online placement, when compared to KAMER algorithms.

(ii). The second part (search engine) of Bazargan et al. (2000)'s algorithms uses bin-packing

�tting strategies as described above (Best Fit, Bottom Left, First Fit, etc.) to select an

empty space among those that can accommodate the module whose insertion is requested.

Ahmadinia et al. (2004) proposed a new 1D online dynamic task scheduling algorithm using

1D FPGA partitioning in order to provide a better result than the KAMER and the Keeping

Nonoverlapping Empty Rectangles methods presented by Bazargan et al. (2000). Their FPGA

area model is homogeneous indeed and is divided into slots (or clusters). The arriving tasks are

placed inside one of the slot depending on their completion time. The main idea behind this so-

called cluster based algorithm is to avoid fragmentation occurring in the Keeping Nonoverlapping

Empty Rectangles method, by freeing contiguous region (removing contiguous tasks) on the FPGA

at nearly the same time. Indeed, if the tasks placed in the same slot (or neighborhood) have nearly

the same end of execution time, the tasks will be removed at nearly the same time, and a large

empty space will be created at a precise location. Hence, even larger arriving tasks could be easily

117

3. Background and Related Work Free areas management

Figure 3.20: Algorithms execution time comparison between KAMER algorithm (Bazargan

et al., 2000) and 1D Cluster-based algorithm (Ahmadinia et al., 2004)

placed in the newly created empty space. In addition, a new free space manager is proposed

which requires linear memory (O(n)), and which runs faster since it doesn't need to divide or

merge empty rectangles. In their example, the FPGA is divided into 3 slots.

The results of experiments compared with the KAMER algorithm in terms of how fast they

execute on one hand, and of how many tasks get rejected on the other hand. Figure 3.20 shows the

comparison result obtained by simulating 1000 tasks with width and height uniformly distributed

in three intervals corresponding to the three slots. Their algorithm has an improvement of 15 to

20% compared with the execution time of the KAMER algorithm (Bazargan et al., 2000) while

both algorithms have nearly the same percentage of rejected tasks (15.5% for KAMER vs 16.2%

for cluster-based algorithm).

Walder et al. (2003) improved the Barzagan's nonoverlapping partitioner proposed in Bazargan

et al. (2000). These improvements aimed at limiting the chip fragmentation and therefore decreas-

ing tasks rejection. They are discussed later in this chapter in section 3.9.3, from a fragmentation

perspective.

In addition, Walder et al. (2003) proposed a hash matrix as a data structure that represents the

state of the recon�gurable array (�gure 3.21-(b)). As depicted in �gure 3.21-(c), (d) and (e),

the matrix stores nonoverlapping rectangles that are available for placement. Each free rectangle

118

3. Background and Related Work Free areas management

is referenced by a key. A hash function maps a key to the entry of the matrix that holds the

information on the free rectangles referenced by the key (see �gure 3.21-(b)). Each entry (a, b) in

the table consists of a list of free rectangles (of width ≥ a and height ≥ b) and a pointer to the

elected rectangle in the list. Hence, the entry stores information about any rectangle capable of

accomodating any task T[W,H] of size W x H . A rectangle is elected among others according to a

�tting strategy (e.g. best �t, �rst �t, etc...).

With this structure, a feasible placement is found for an arriving task in a constant time. Hence,

the area �nder algorithm performs in time complexity O(1). The latter features make the matrix

particularly suitable for online placement.

However, the main drawback of a hash matrix is its size which is equal to the size of the recon�-

gurable array. Therefore, updating the matrix after each task placement or deletion is a time

consuming operation. For example, in �gure 3.21-(c), the recon�gurable array is empty and is

assumed to be a free rectangle R1. When a task of size 3X5 is placed (see �gure 3.21-(d)), R1 is

deleted from the matrix and R2 and R3 are inserted. Therefore, the entries have to be updated in

order to take into account newly inserted or deleted rectangle(s). After inserting or deleting a task

Ti of width wi and height hi, the matrix update process could scan and update up to wi · hi cells.

Despite this long update process, the main advantage of using a hash matrix is that as soon as an

area has been found in O(1) time for a task, the latter could be placed and started immediately,

and the hash matrix updated later. This feature makes Walder et al. (2003)'s placement method

valuable for online real-time systems that require short waiting time.

Using a hash matrix that stores nonoverlapping rectangles a�ects the scheduling/placement

algorithm runtime overheads, but can not a�ect the chip utilization ratio and the tasks rejection

ratio. Indeed, searching for the area that can accommodate a given task either in a list or in

hash matrix provide the same result in terms of the selected area. However, the time complexity

depends on the data structure.

Roman et al. (2006) also proposed a partition-based management of the empty space. The

FPGA model is a homogeneous FPGA, made of a 2D grid of identical basic cells as depicted in

Chapter 2, �gure 2.6, page 34. The FPGA area is divided into four partitions with di�erent sizes

where the tasks will be executed. The size of the partitions is adjusted during run-time according

to the pro�le of the tasks set being processed, in order to adapt it to the variations of tasks pro�le.

Each task Ti is modelled by a rectangle and is expressed by a tuple: Ti = wi, hi, tarri, texi, tmaxi

where wi is the task width, hi is the height, tarri, the clock cycle at which it arrives, texi the

119

3. Background and Related Work Free areas management

Figure 3.21: The hash matrix approach (a), the hash table (b) rectangle insertion/deletion in the

hash matrix (c), (d) and (e) (Walder et al., 2003)

execution time of the task and tmaxi the time needed by the tasks to run to completion. With

such a �xed and reduced number of partitions, managing the data structures representing and

organizing the FPGA space is far simpler. This leads to a fast algorithm (of constant complexity

O(1)) particularly suitable for runtime scheduling and allocation of incoming hardware tasks on

runtime recon�gurable FPGAs. External fragmentation is also avoided. Their algorithm is O(1)

complex and may compete in performance with other common algorithms like First Fit (FF)

with exhaustive search, of O(n4) for the 2D allocation problem (where n is the dimension of

square FPGA). Experiments carried out have shown that this is particularly true for task sets

with heterogeneous size. Hence, the strength of this work is to have proved that a simple O(1)

algorithm is a feasible solution for heterogeneous size tasks scheduling / allocation problem in

multitasking on FPGAs. But this approach is not suited to homogeneous size tasks set and its

FPGA area model doesn't take into account the ever increasing heterogeneity of new FPGAs.

Considering the heterogeneity of the recon�gurable array

Homogeneous and heterogeneous recon�gurable arrays have been pictured respectively in �gures

2.6, page 34 and 2.11, page 43. Many researchers (e.g. Koester et al., 2005, 2006) attempted to

improve placement algorithms by taking into account this hardware heterogeneity in order to

optimize the resource utilization. Consequently, depending on the logic it uses, a given module

(hardware task) will have a few feasible placement positions on the recon�gurable area. For

120

3. Background and Related Work Free areas management

Figure 3.22: Placing tasks m1 and m2 on an heterogeneous recon�gurable architecture (Koester

et al., 2005)

example, a module using only con�gurable cells (CLBs) would have a large amount of feasible

positions while a module using a great amount of memory would have feasible positions restricted

to the positions of the memory blocks.

Koester et al. (2005) proposed a heterogeneous model of recon�gurable hardware. In the

model, the recon�gurable area consists of two types of components or cells as shown in �gure

3.22 : Con�gurable cells (e.g. CLBs) which can implement any logic function, and embedded

static cells (e.g. multipliers, embedded memories, processors, etc...) which are dedicated high

performance IP blocks merged into the FPGA.

In their model pictured in �gure 3.22, each task (e.g. tasks m1 and m2) is assigned a set

of feasible positions on the recon�gurable architecture before run-time. The feasible positions of

a hardware task that use static cells (e.g. m1) depend on the location of the static cells on the

recon�gurable architecture. A hardware task that only uses con�gurable cells (e.g. m2) can only be

placed in positions where static cells are located. According to the two rules, taskm1 has 4 feasible

positions; same for task m2. On one hand, each cell of the recon�gurable fabric has a utilization

probability caused by the feasible position of all hardware tasks. This utilization probability is

determined before run-time (at design time) since all hardware tasks and the recon�gurable fabric

models are known beforehand. On the other hand, for each feasible position of a requested task

m, the mean utilization probability of the corresponding cells give a position weight wpos that

is used to decide which feasible position to select for the hardware task placement. Depending

on whether the position weights wpos are generated before run-time or dynamically updated at

run-time according to the current allocated tasks, two placement algorithms were respectively

proposed : The Static Utilization Probability Fit (SUP Fit) and the Runtime Utilization Probability

Fit (RUP Fit). In the light of metrics such as the average device utilization, the hardware task

121

3. Background and Related Work Fragmentation

rejections and the average priority of the rejected tasks, simulation results of SUP Fit and RUP

Fit algorithms for 1D and 2D placement have shown some improvements on the standard Best

Fit (BF) placement algorithm, presented in Co�man et al. (1997).

Table 3.2 from Koester et al. (2005) summarizes the simulation results of the 1D-placement

approach compared with the standard Best Fit (BF) placement algorithm. The SUP Fit algorithm

has a low run-time complexity and generates less rejected tasks than the Best Fit algorithm. The

RUP Fit algorithm produces the highest device utilization (less fragmentation) and less relative

tasks rejection. But it has a high run-time complexity since the position weights have to be

updated after each task removal or insertion. Because of technological restrictions of FPGAs at

that time, Koester et al. (2005) prototyped an 1D placement approach in their work.

Metrics vs Algo Best Fit Sup Fit Rup Fit Homogeneous Best Fit

Av. device utilization (%) 49.21 47.94 50.46 56.28

Tasks rejection (%) 74 66 68 33

Relative tasks rejection (r) (%) 24.43 23.94 22.92 14.88

Av. priority rejected tasks 1.68 1.68 1.73 1.88

Table 3.2: Comparison of the simulation results with the 1D-placement approach (Koester et al.,

2005)

3.9 Fragmentation and Related Work

Partial and runtime recon�guration allows a single FPGA chip to concurrently executed many

tasks in a space sharing basis. These tasks of arbitrary sizes are dynamically swapped in and

out the chip over time, leading to an increasingly fragmented FPGA as shown in �gure 3.25 page

126. Fragmentation arises when the available resources are spread over the FPGA, and consist

of noncontiguous small areas. This could prevent tasks from being placed even if there is enough

available resources to accommodate them. Indeed, a task could only �t in contiguous resources

that cover an area at least as bigger as the task area.

In an o�ine placement on partially recon�gurable FPGAs, as the sequence of tasks to be

executed are known in advance, greedy algorithms or heuristics could be found to determine

122

3. Background and Related Work Fragmentation

the optimal �tting strategy that minimizes the fragmentation. For example, highest complexity

strategies (e.g. a MER based defragmentation combined with a cells scan based defragmentation

strategy as illustrated in �gure 3.23) could be a�orded.

In an online context, since the sequence of modules to be loaded on the recon�gurable area

is not known beforehand, insertion and deletion of modules leads to the fragmentation of the

available space. In order to avoid task rejection because of this fragmentation, there is a need

of low complexity algorithms or heuristics that defragment the FPGA at runtime. Depending on

the way fragmentation is measured and on the way free areas are managed, there are di�erent

way of coping with the chip fragmentation problem, leading to di�erent results and complexity as

detailed below and mapped in �gure 3.23:

(i). The nonoverlapping rectangles approach

As previously stated, available areas are kept as nonoverlapping rectangles. While placing

a task, the placer chooses among all the rectangles which could �t the task, the rectangle

which minimizes the fragmentation (e.g. Best Fit or more complicated heuristics). Hence,

as for placement heuristics, fragmentation heuristics are of lower complexity thanks to the

limited number of rectangles, but are less e�cient.

Figure 3.23: Defragmentation strategies: complexity grows with performance

123

3. Background and Related Work Fragmentation

(ii). The MER (Maximum Empty Rectangle) approach

Managing nonoverlapping rectangles leads to more fragmentation, as any single of such

rectangles is included in a MER, if it is not a MER itself. As already stated, the advantage

of managing MER (Maximum Empty Rectangles) is that placement algorithms or heuristics

always �nd a placement solution if one exists. This means that any single candidate area

is identi�ed, the best candidate which optimizes a given criteria (e.g. minimizes the �nal

fragmentation in the present case) could also be identi�ed, leading to a better placement

quality. A way of reducing the chip fragmentation is to deal with MERs while placing a task.

Hence, one could choose the MER which minimizes the fragmentation. This generally means

choosing among the MERs which could �t the task, the one which contributes the most

to the �nal fragmentation of the chip. Consequently, optimal defragmentation heuristics

are MER-based. However, the runtime overhead is very high because of greedy scanning

processes preformed while updating the list of MERs at each task placement or withdrawal.

(iii). The Cell level approach

The two approaches (MER and nonoverlapping) presented above directly derive from the

way free areas are managed. The trend of the resulting complexity of fragmentation heuris-

tics are quite similar to the complexity of placement heuristics in the two cases. However,

the �nal complexity of determining the fragmentation also depends on whether the contri-

bution of each free area to the �nal fragmentation results in the contribution of each cell in

the area or not. If the fragmentation is determined at cell level, there is a need to scan the

complete cells in the area. A cell by cell scanning process remain the only way to obtain op-

timal results in terms of minimum fragmentation, but lead to greedy computing operations

with high runtime overheads. A fragmentation metric combining the MER approach with

a cell level fragmentation is de�nitely optimal (e.g. Cui and Deng, 2007), but the greediest

solution in terms of complexity and runtime overheads.

There are two types of fragmentation, internal and external.

3.9.1 Internal and Intra-task Fragmentations

In 1D placement, an internal fragmentation occurs when a task does not utilize the full height

of the recon�gurable device area (see pictures on the left of �gures 3.24 and 3.25). This internal

fragmentation leads to a lower FPGA utilization ratio in 1D placement compared to 2D. One way

of minimizing internal fragmentation is to maximize the height of hardware tasks during its design.

124

3. Background and Related Work Fragmentation

By doing so, some resources could be gained (saved) as shown in the right of �gure 3.24. Indeed,

tasks T1 and T ′1 are similar with respect to total area and functionality but are of di�erent shape.

T ′1 occupies the full height of the device for a smaller width, and therefore produces less internal

fragmentation than T1. Such an improvement is obtained by using appropriate shape constraints

in place and route tools at design time.

In addition, because of the fact that modules are rectangular-shaped, there are intra-task

fragmentations. Indeed, an intra-task fragmentation is a loss of resources that arises when the

hardware task is assumed to be rectangular. As pictured in �gure 3.24, in the rectangle bounding

all the resources needed by task T1 or T2, there are some resources that remain unused and that are

consequently lost. However, as rectangular tasks are much more easy to manipulate by placement

algorithms, this assumption is made by almost all studies on hardware task scheduling.

3.9.2 External Fragmentation

In �gure 3.25 (b), there are currently 4 modules spread on the recon�gurable array, but almost

the half of the array is still free. However, because of its shape, the incoming module T5 cannot

be inserted even though its size is smaller than the total remaining free space. This fragmentation

of the free space is known as external fragmentation. It increases the tasks rejection ratio and

decreases the chip utilization ratio because of the waste of resources.

3.9.3 Related Work

The main challenge of placement heuristics is to manage the free space and schedule arriving tasks

so that the fragmentation is avoided. This is quite di�cult to achieve in an online scenario.

As stated earlier, o�ine algorithms or heuristics are very e�cient but slow, while online

placement heuristics are faster with less e�ciency. In some systems with some recurring idle times

(e.g. in an automotive electronic system during the night when the car is parked), an o�ine

placement component can optimally relocate the modules on the FPGA, in order to defragment

the available free space during the idle time. Unused or non-critical modules could be interrupted

and relocated in order to free the maximum contiguous space. This o�ine defragmentation eases

the job for the online placement component while the system is in use. Hence, one can overcome

fragmentation problems in some speci�c application by combining online placement with an o�ine

defragmentation. Veen et al. (2005) present such a strategy. Their online placer has an o�ine

component called the defragmenter which performs an o�ine relocation of the currently placed

125

3. Background and Related Work Fragmentation

Figure 3.24: Intra-task and internal fragmentation

Figure 3.25: A fragmented FPGA: the free space available on the chip is su�cient to insert the

arriving task, but its shape doesn't allow it.

tasks with the objective to maximize the areas of contiguous free resources. This defragmentation

eases the online tasks placement process which is done at runtime. This approach is extremely

useful for FPGA in which partial recon�guration can only be performed columnwise (e.g. Xilinx

Virtex II Pro FPGAs). Indeed, in such an FPGA, while performing a 2D placement, recon�guring

(or placing) a module on the FPGA a�ects all the modules interfering columnwise. If defragmented

online, one has to recon�gure all the interfering modules, which is not desirable at runtime.

126

3. Background and Related Work Fragmentation

The KAMER algorithm used in Bazargan et al. (2000) and combined with various �tting

strategies was also aiming at minimizing the fragmentation by providing the optimal �tting solu-

tion. Hence, if there are more than one solution, one can choose the �tting strategy that optimizes

(minimizes) the fragmentation (e.g. best-�t). This optimality comes at the cost of algorithm com-

plexity as explained earlier in this chapter. Therefore, such a MER-based areas management is

di�cult to be combined with defragmentation strategies such as partial rearrangement approach

(O. Diessel and Schmidt, 2000) discussed below.

However as noticed earlier, the adjacency graph (or binary tree, Bazargan et al., 2000) avoids an

unlimited fragmentation by retrieving previous states of the array, as shown in �gure 3.26. Over-

lapping or nonoverlapping areas are inserted in or deleted from the binary tree at tasks placement

or deletion. Figure 3.26 depicts the case of nonoverlapping rectangles. It shows how the area of

recon�gurable array is fragmented during tasks placement and restored at tasks ending.

When an available area is selected for task placement, if the task is smaller than the area, the

remaining area is divided in two nonoverlapping rectangles, bounding the time complexity of in-

serting a task to O(n). As illustrated in �gure 3.26-(a) rectangle A0 is chosen to accommodate

the task T1. Two nonoverlapping children rectangles A1 and A2 are then generated, resulting

from a vertical split of the remaining area (�gure 3.26(b)). As tasks T1 and T2 are successively

placed (corresponding to states (a) → (b) → (c) of areas splitting process...), the tree is updated

accordingly (corresponding to states (a′) → (b′) → (c′) of the tree update process). Assuming

that tasks T1 and T2 successively �nished (which is not always true), the original area A0 is

rebuilt along the reverse process (states (c)→ (b)→ (a) of bigger areas recovering process, states

(c′) → (b′) → (a′) of the tree update process). At any time, the currently free rectangles are the

leaves of the tree. Storing successive states of the array and restoring them eases the process of

rebuilding areas which have been split during a task placement.

However, no matter which split is used (vertical, horizontal, overlapping, etc.), a situation may

arise where a task is rejected because the contiguous space which could �t it does not belong to the

same rectangle or sub-graph. Indeed, the tree intrinsically produces a fragmentation problem that

is lower for overlapping rectangles. The tree is non optimal as a task could be rejected because

of this fragmentation problem. The main advantage of the tree approach is its automatic bigger

areas restoration and its algorithmic complexity.

O. Diessel and Schmidt (2000) have proposed a quad-tree structure which store the informa-

tion of the available resources on the FPGA. Three methods are studied (local repacking, ordered

127

3. Background and Related Work Fragmentation

Figure 3.26: Bazargan's adjacency graph: bigger rectangles restoration process (Bazargan et al.,

2000)

compaction and genetic algorithm) for placing tasks on a partially and dynamically recon�gurable

FPGA by a so-called partial rearrangement process. Partial rearrangement aims at rearranging

some of the already executing tasks in order to �t an arriving task which normally couldn't �t

immediately. Partial rearrangement hence signi�cantly reduces queuing delays as tasks are placed

as soon as possible and are completed earlier, freeing the place for other incoming or waiting

tasks. The proposed three defragmentation methods are of di�erent but still high complexity.

The genetic algorithm approach is more e�cient in �nding �tting areas at the cost of complex

rearrangements, but is worthy only if the recon�guration delay (time needed to con�gure the

task) of the task is small compared to its execution time. Hence, there is more time for proces-

sing complex rearrangements without causing execution delays. The two other approaches (local

repacking, ordered compaction) are less complex, and then suit to tasks with shorter execution

time and longer recon�guration delays. The computation time of the three di�erent methods are

not included in their study, as they assumed that these computations might be executed in the

background during inter-tasks arrival period. In addition, these methods also assumed hardware

tasks preemption, which is not that obvious in an online real time context.

Contrary to O. Diessel and Schmidt (2000) who coped with preemptive tasks, Walder and

Platzner (2002) presented a transformation method (Footprint Transform, �gure 3.27) for non-

128

3. Background and Related Work Fragmentation

preemptive multitasking on FPGAs. What is new in their case is that their task model also

consider coarse granularity tasks of non rectangular shape. However, each task consist of a set

of rectangular tasks denoted as subtasks (e.g. �gure 3.27). Hierarchically, as shown in �gure

3.27, S1, S2 and S3 are rectangular subtasks constituting coarse grain task T . Relative positions

of subtasks can be modi�ed during allocation (footprint transforms), in order to �nd a suitable

shape to task T (shape 1, 2, 3, etc. in �gure 3.27) which �ts in the available free area. Footprint

transform is performed on a task if its placement fails at the �rst attempt. Footprint transform

consequently reduces queuing delays as tasks are placed as soon as possible.

Also presented are �rst-�t and best-�t placement techniques. Among a list of positions in the free

area that may accommodate the task to be placed, best-�t algorithm selects the best candidate

according to a given criteria. The selection criteria in the present case is the fragmentation of

the residual area. Indeed, this fragmentation is to be minimized. The residual area here is the

remaining free area on the array after placing the current task. Accordingly, Walder and Platzner

(2002) introduced a new fragmentation metric denoted as fragmentation grade and expressed by

equation 3.14.

F = 1−
√∑

i(ni · ai2)∑
i(ni · ai)

(3.14)

Figure 3.27: Footprint Transform (Walder and Platzner, 2002)

Best �t algorithm �rst determines as many fragmentation grade F (of the residual area) as

possible rectangles or positions where the task could be placed. It then assigns to the task the

129

3. Background and Related Work Fragmentation

position with the minimum F . As F is calculated for any single possible �tting position of the task

T on the free part of the FPGA array, the bigger T (and/or the smaller the available area on the

array), the less possible �tting positions. Equally, the lower F , the more the future task likely to

�t. However, determining fragmentation grade remains a computationally heavy iterative process

as for a given allocation, all the possible rectangles of the residual area are identi�ed and classi�ed

according to their size. The resulting histogram of free areas consists of i classes of ni rectangles

of size ai, and the deriving fragmentation grade for one allocation is given by the equation 3.14.

Their results are mitigated as footprint transform in combination with �rst-�t strategy sometimes

outperforms best-�t in terms of tasks set total execution time (scheduler makespan), sometimes

not. However these results are obtained with only 25% of the tasks set being footprint transformed.

Such results are interesting as they show how di�erent combinations could lead to di�erent algo-

rithm complexity vs scheduling quality trade-o�s. However, complexity and runtime overhead of

algorithms are not assessed in order to measure their suitability to online scheduling.

In a later work, Walder et al. (2003) proposed an improvement of the Bazargan's partitioner

presented above (Bazargan et al., 2000) in order to limit the fragmentation and improve placement

quality. They gave up the idea of dealing with non rectangular task and the novelty is to delay as

much as possible the split decision while placing a new task in a bigger rectangle. Walder et al.

(2003) relied on the same binary tree structure mentioned by Bazargan et al. (2000) and presented

above in section 3.8.3 to manage the areas. Hence, no matter which heuristic is used by Bazargan

et al. (2000) to decide how to split the hosting rectangle (vertical, horizontal, etc...), a situation

could arise where the next task could not �t in any of the resulting rectangles because of the

split previously done. In order to minimize such cases, one solution is to delay the split decision

until the arrival of the next task to be placed, and then to perform the right split accordingly. For

example, in their so-called on-the-�y partitioning (OTF), Walder et al. (2003) manage overlapping

rectangles in innovative ways. Hence, an overlapping rectangle is resized only if it overlaps with

the just placed task. Generated children rectangles are kept overlapping as much as necessary.

Two other variants of partitioning algorithms are assessed. Walder et al. (2003)'s partitioning

approaches outperform Bazargan et al. (2000)'s partitioner by up to 70% in terms of average

waiting time of tasks.

In order to limit the fragmentation of the recon�gurable array, Ahmadinia et al. (2004)

proposed an algorithm that uses two horizontal lines to manage free spaces on the array. Instead

of maintaining a list of empty rectangles, they managed two horizontal lines, one above and one

130

3. Background and Related Work Fragmentation

Figure 3.28: Using horizontal line to manage free space Ahmadinia et al. (2004)

under the already running tasks as depicted in �gure 3.28. As any signi�cant free area shouldn't

be between the two horizontal lines, newly arriving tasks could therefore be placed either on the

top of Horizontal_line_1 or at the bottom of Horizontal_line_2 and the corresponding line is

modi�ed accordingly. The overall idea behind this approach is to put beside each other tasks with

nearly the same �nishing time. Hence, contiguous spaces are free at nearly the same time, reducing

the fragmentation. The resulting empty space is then more likely to �t future and even larger

tasks. Furthermore the principle is extended to a clustered approach, where the recon�gurable

array is split in a number of 1D clusters, each cluster accommodating tasks with similarities in

terms of �nishing time.

What is interesting in this algorithm (which doesn't manage MERs) is its comparison to MER

approach. Indeed, as already stated, managing MER certainly lead to a better placement quality in

terms of tasks rejection ratio, but at the cost of high complexity and algorithm runtime overhead.

Results show that their algorithm takes slightly 18% less time to compute than the KAMER

algorithm in Bazargan et al. (2000) for almost the same tasks rejection ratio (resp. 16.2% and

15.5%).

In Handa and Vemuri (2004a) and Handa and Vemuri (2004b) are proposed MER based ap-

proaches for avoiding fragmentation while scheduling non-preemptive tasks. In Handa and Vemuri

(2004b), free areas are kept as list of MERs. In order to avoid areas fragmentation, scheduling

decisions are deferred as much as possible to accommodate dynamically changing task priorities.

Results show that delaying scheduling decisions leads to a reduced areas fragmentation (better

area utilization) only when tasks are not data-dependent upon each other (out of order processing,

unlike in order processing) and can be executed in any order. In Handa and Vemuri (2004a) frag-

131

3. Background and Related Work Fragmentation

mentation is calculated at cell level. In their approach, the total fragmentation contribution of

each cell in the MER TFCCC is obtained by summing its contribution in the horizontal dimension

(FCCCx on x axis) and in the vertical dimension (FCCCy on y axis) as shown in equation 3.15.

The total fragmentation of a MER TF is the average value of TFCCC for all the cells in the

MER, as given by equation 3.16

horizontal dimension : FCCCx =

 1− vx

Lx−1
if vx ≤ Lx

0 otherwise

vertical dimension : FCCCy =

 1− vy

Ly−1
if vy ≤ Ly

0 otherwise

∀cell C , TFCCC = FCCCx + FCCCy (3.15)

∀MERs of k cells , TF =
1
k
·
k∑
i=1

TFCCC(i) (3.16)

Lx (resp. Ly) represents twice the average width (resp. height) of the tasks currently placed

on the array, and vx (resp. vy) is the number of contiguous empty cells horizontally (vertically)

aligned with the involved cell. FCCCx and FCCCy express the fact that the more are empty cells

surrounding a cell in the MER and the smaller is the average size of the tasks currently placed,

the lesser is TFCCC .During a placement process, if there are many MERs which can �t the

task, the MER with the maximum TF is chosen. Hence the MER with the highest fragmentation

impact on the FPGA is preferably destroyed (by placing a task on it), preserving other MERs with

lesser contribution to the fragmentation. The idea is to consequently reduce the overall FPGA

fragmentation. Once the hosting MER is found, the task is placed in one of its four corners with

the highest TF for a rectangle of the size of the task.

At all levels, this algorithm is based on a scanning approach as on one hand it deals with MERs

(which is computationally greedy), and on the other hand all the cells of MERs are scanned and

a huge amount of time is spendind computing the right corner where to place the task.

Tabero et al. (2004) use a Vertex List structure to keep the track of the available free

area. They propose a fragmentation-based heuristics (among other criteria-based heuristics) that

prevents the proliferation of holes in the FPGA. Hence, before assigning one position among

possible candidates, the fragmentation produced by each candidate area is �rst evaluated. Hence,

the area that minimizes the fragmentation is chosen. This approach is nearly similar to the one

132

3. Background and Related Work Fragmentation

used by Walder and Platzner (2002), even if they use di�erent fragmentation metrics. Indeed,

Tabero et al. (2004) �rst calculate the fragmentation produced by each MER, which is obtained

by summing the contribution of each cell of the MER. Obviously, this slows down the placement

process.

Koester et al. (2006) adopted a defragmentation-by-modules-relocation approach to deal

with continuous fragmentation of the recon�gurable array over time. As hardware tasks could be

placed and removed at runtime14, an increasing fragmentation of the FPGA prevents next tasks

from being placed. Their solution is to relocate at runtime the currently placed tasks for being

able to place the requested task. Their runtime defragmentation algorithm aims at implementing

such an approach. Prototyped on a dynamically and partially recon�gurable Xilinx Virtex-II

FPGAs, their algorithm applied to the 1D placement shows some improvement of placement

quality. For example, the total execution time of tasks set is reduced to 87.1% in the best case,

compared to another scheduling algorithm without any runtime defragmentation. However, using

this deframentatio-by-relocation approach is worthy only if tasks recon�guration time is negligible

compared to tasks execution time. In addition, as noticed earlier, their approach takes into account

the heterogeneity of the FPGAs by identifying feasible positions for tasks, according to their types

of resources (logic cells or embedded memory).

Cui and Deng (2007) proposed an online task placement algorithm which aimed at minimiz-

ing fragmentation on partially recon�gurable FPGAs. They introduced a 2D area fragmentation

metric that takes into account the probability distribution of sizes (width and height) of future

tasks arrival. Hence, in their assumption, dedicated embedded applications are targetted and

consequently, task arrival patterns are predictable. Cui and Deng (2007) is also a MER based

approach which uses a Scan Line Algorithm (denoted as SLA and studied in a previous work in

Cui and Deng (2007)) to determine the set of MERs and maintain a fragmentation matrix (FM).

As in Handa and Vemuri (2004a), the contribution to the fragmentation is calculated at cell level

and then at MER level. However, apart from assuming that the probability distribution of sizes

of arriving tasks are known, what is also new is that they introduced a Time-Averaged Area Frag-

mentation (TAAF) metric. TAAF metric is used to evaluate the fragmentation of a MER over

present and future time. Hence, MERs contribution to fragmentation are not compared only at

present time, but averaged over a time interval [tpresent, tfuture]. Indeed, in order to compute

14 at restricted or feasible positions as presented in Koester et al. (2005)

133

3. Background and Related Work Conclusion of the Chapter 3

the TAAF, one has to mimic future events (end of some tasks and beginning of planned task,

modi�cation on MERs along with cell fragmentations) which is computationally intense. As for

almost all similar works coping with the fragmentation problem, there is no algorithm running

time measurement. In Cui and Deng (2007), the running time of algorithms that update the

list of MERs is measured on a Solaris workstation. Combining a MERs-based area management

with a cell-based defragmentation strategy and a one-level looking-ahead-based scheduling ap-

proach leads to a time-consuming placement not suitable for an online context on an embedded

processor.

3.10 Conclusion of the Chapter

This chapter reviewed the background literature relating to the research. The chapter discussed

the real-time scheduling problem for uniprocessor and multiprocessor systems. From there, the

chapter drew similarities between this well known scheduling problem and the problem of schedul-

ing real-time hardware tasks on dynamically and partially recon�gurable hardware devices. The

main advantage of this approach was to see how the models used in microprocessor scheduling

could be transposed in recon�gurable hardware device scheduling. Afterwards, the chapter pre-

sented di�erent works on hardware tasks scheduling through the two mains scheduling strategies

denoted as looking-ahead and without-looking-ahead respectively. The review also discussed the

underlying placement problem which is speci�c to recon�gurable hardware devices scheduling.

The fragmentation problem was presented separately from the placement problem in order to

point out its importance in tasks placement. This separation led sometimes to some redundancy

as the same related work could be presented from a scheduling/placement perspective and from a

fragmentation perspective.

A summary and a classi�cation of related work on scheduling and placement for recon�gurable

hardware devices is presented in table 7.1, page 246, Appendix A.

The next chapter will present the methodology along with the models and the metrics proposed

in this thesis in order to cope with the problem of scheduling online real-time hardware tasks on

dynamically and partially recon�gurable hardware devices.

In this thesis, most of the scheduling algorithms proposed in Chapter 5 and simulated in Chapter

6 use placement strategies that rely on the hash matrix (Walder et al., 2003) and the tree

(Bazargan et al., 2000) discussed earlier in this chapter (respectively on pages 118 and 110). If

134

3. Background and Related Work Conclusion of the Chapter 3

not so, it is clearly indicated. This does not a�ect the comparative study of scheduling algorithms,

as two algorithms can be compared only if they all rely on the same placement strategy.

135

Chapter 4

Proposed Methodology, Models and

Metrics

4.1 Introduction

This thesis relies on a formalism well-known in real-time scheduling modeling. According to this

formalism, discrete time is measurable, and centric as it characterizes each element in the system.

In the previous chapter, the formalism was customized whenever possible to take into account the

speci�city of systems that include dynamically recon�gurable parts. Some models and metrics

for microprocessor scheduling have been already introduced in the previous chapter. However,

the latter mainly discussed real-time scheduling problems in general, and exhaustively presented

related work on scheduling and placement targetting recon�gurable hardware devices.

A part of this chapter deals with models and metrics that are meaningful for hardware tasks

scheduling on recon�gurable hardware devices. Application and hardware tasks models are pre-

sented, followed by a resources model, then a scheduler model along with the underlying placer

model. As stated previously, the thesis mainly considers the problem of scheduling a set of aperi-

odic real-time tasks on a recon�gurable array. The proposed models and the corresponding metrics

are derived from multiprocessor platforms models described in the previous chapter.

Hereinafter is the proposed methodology that results from the understanding of the literature re-

view done in the previous chapter, the primary objective of this thesis being: �the online scheduling

of real-time hardware tasks on partially and dynamically recon�gurable hardware devices�.

136

4. Methodology, Models & Metrics Methodology

4.2 Methodology

4.2.1 Introduction

The problem of scheduling on-line real-time tasks for multitasking or hardware virtualization on a

recon�gurable hardware device is coupled with a placement problem. Real-time scheduling aims

to de�ne how to schedule elementary tasks of an application on a limited computing resource in

order to complete the application within a given time frame. The placement aims to use area

management algorithms and heuristics in order to e�ciently allocate the recon�gurable array to

tasks. Therefore, scheduling and placement are quite closely linked.

The proposed methodology �rst took into account the targetted architectures which are embed-

ded recon�gurable systems submitted to many constraints, including online real-time issues. As

a whole, online scheduling and placement heuristics should be light enough to run on an embed-

ded processor and to take fast placement decisions as tasks arrive. Consequently, fast schedul-

ing/placement heuristics may be preferred to those that provide high quality placement at the

cost of high runtime overhead. Di�erent scheduling and placement approaches were discussed in

the previous chapter and summarized in tables 7.1 and 7.2, pages 246 and 247.

The following methodology will aim to provide a quick guidance that leads to acceptable trade-o�s

between runtime overhead and placement quality, and which are likely to enable online scheduling

of real-time hardware tasks on a runtime and partially recon�gurable device.

4.2.2 Proposed Methodology

As scheduling tasks on a recon�gurable platform brings an additional placement problem, the

methodology consists of assessing the runtime overhead of placement algorithms in order to see

which are suitable for online real-time scheduling. Indeed in all previously cited work (Chapter

3) on recon�gurable hardware scheduling and placement, algorithm simulations are performed

on desktop computers. Desktop computers are usually clocked at more than 1GHz, are power

hungry, and host sophisticated cache organizations (e.g. 1MB L2 cache) and memory management

units. Furthermore, unlike embedded processors, they concurrently run numerous services and

applications, most devoted to ergonomics and human machine interaction. These factors make

runtime overheads very di�cult to measure accurately (e.g. at cycle level). The obtained results

may not re�ect what would have been the real runtime overhead on an embedded processor running

these scheduling and placement algorithms. In general embedded processors are rarely clocked at

137

4. Methodology, Models & Metrics Methodology

frequencies higher than 250 MHz.

Figure 4.1: A simple architecture of a recon�gurable SoC

The �rst step in the methodology was to implement MERs-based placement algorithms on an

embedded platform in order to see the real runtime overhead of such placement algorithms. This

step relied on a simple model of an embedded recon�gurable system-on-chip, depicted in �gure 4.1.

This simple model consists of a CPU-based processor and a recon�gurable fabric. The CPU-based

processor runs scheduling and placement algorithms that manage the recon�gurable part of the

chip. Therefore, scheduling and placement algorithms were mapped as software programs written

in C language. As illustrated in �gure 4.1, the placer maintains a data structure that re�ects

the state of the recon�gurable matrix. When the placer �nds a place to �t a task Ti, a loader

(also run by the CPU and not explicitly represented here) loads the corresponding bitstream from

the memory and partially con�gures the recon�gurable matrix, through a con�guration interface.

However, con�guration time overhead is technology dependent as shown later in �gure 4.6. Here,

the focus was on assessing the runtime overheads of scheduling and placement strategies.

The next step was to perform timing measurements on the embedded CPU-based processor when

running placement algorithms. The aim of the experiments was to:

1. see what the timing limitations are for systems that could be online real-time scheduled by

an embedded processor running a MERs-based placer, and

2. identify which combinations of scheduling and placement algorithms are likely to be used

in an online real-time context.

138

4. Methodology, Models & Metrics Methodology

The next section presents these experiments, and the obtained results, along with subsequent

conclusions.

4.2.3 Running two MERs-based Algorithms on an Embedded Processor

One important factor is to know the time taken by the scheduler to place or remove a task on the

FPGA structure. In a MERs-based algorithm, what is time consuming is the process of scanning

the array in order to �nd all the MERs that are within it. The update is done at each placement

or removal.

1. A basic Scheduler/Placer

A basic scheduler that manages two lists of tasks has been implemented : a running tasks

list and a waiting tasks list. The scheduler is invoked by two events : either when a task

has just arrived (�gure 4.2-a) or when a task has just completed (�gure 4.3-c).

• In the event of task(s) release ; as shown in �gure 4.2-a, when a task arrives, the

scheduler calls the placer (�gure 4.2-b) that checks whether there is an MER to ac-

commodate the task. If there is one, it is assigned to the task. The placement is

successful. The placer updates the list of MERs (�gure 4.2-b) and the task is added to

the running tasks list (�gure 4.2-a). However, if there is no MER that accommodate

the task and if the task can still meet its deadline, the task is added to the waiting

tasks list for further attempts. Otherwise the task is rejected.

• In the event of task(s) termination ; as depicted in �gure 4.3-c, when a task ends, the

scheduler calls the placer (�gure 4.3-d) that removes the task from the array and that

updates the list of MERs. Afterwards, the scheduler (�gure 4.3-c) tries to place as

many tasks as possible from the waiting list, and updates the list of MERs accordingly

after each successful placement.

This scheduling algorithm is quite simple but su�cient to assess the e�ciency of MERs-

based free areas management. The scheduler maintains two lists of tasks: the running list

and the waiting list. The tasks in the waiting list are sorted according to their arrival

time. If an area is freed, the algorithm attempts to place the tasks in the waiting list,

beginning from the heading task. Hence, a free area is assigned to a task in the list only if

the area cannot �t any of its preceding tasks (that normally arrived earlier). The scheduling

algorithm is detailed in the next chapter where it is denoted as basic scheduling. Following

139

4. Methodology, Models & Metrics Methodology

the same principle, other priority policies can be applied (e.g. EDF, LLF, etc.).

2. Two MERs-based algorithms

The SLA - Scan Line Algorithm (Cui and Deng, 2007) and Staircase algorithm (Handa

and Vemuri, 2004c) have been implemented. SLA and Staircase algorithms are improved

versions of Bazargan et al. (2000)'s MERs-based algorithms. They are slightly similar in

algorithmic complexity. The process of placing or removing a task on the array induces

a time consuming operation: the update of the list MERs as highlighted respectively in

�gures 4.2-b and 4.3-d. The average time taken by the two algorithms to perform the

update operation were measured. Staircase scans an average of 15% of the recon�gurable

array in order to update the list of MERs on the chip after a task placement or removal.

Therefore, it runs faster than SLA, as con�rmed in the �nal results shown in �gure 4.4.

3. Design environment and tools

In order to carry out accurate timing measurements on an embedded platform, the two

algorithms were implemented in C language, and then cross-compiled to target an embedded

processor, the Xilinx MicroBlaze soft core. The soft core along with a timer (for timing

measurement purposes) were instantiated on a Xilinx Spartan 3E FPGA hosted by the

Spartan 3E Starter board.

Both hardware and software parts of the design were designed using the Xilinx EDK devel-

opment design environment. 1M bytes of external memory storing the program, data and

stack, was attached to the embedded processor. The heap and the stack were sized to 12k

bytes each. These sizes were chosen according to the size of the recon�gurable array and

the number of tasks to be placed.

4. Simulation parameters and results

Parameters of generated tasks are detailed in table 4.1-(a). These parameters are uniformly

distributed in the interval [min,max]. Table 4.1-(b) shows the results of the tasks rejection

ratio and the number of calls to MERs update function. The array is scanned and the list

of MERs updated every time a task is added to or removed from the array. For measuring

tasks rejection ratio and the number of calls to function that updates the list MERs, the

simulations were conducted using a set of 2000 tasks. They were run on a desktop computer

clocked at 1.8 Ghz. Therefore, these results are platform independent and are easier to

implement and run on a desktop PC.

The tasks rejection ratio is almost identical for best �t and �rst �t �tting strategies. In fact

140

4. Methodology, Models & Metrics Methodology

Figure 4.2: Scheduling one task on the recon�gurable array using a MERs-based

placement algorithm.

Figure 4.3: Scheduling the end of a task using a MERs-based scheduling algorithm.

141

4. Methodology, Models & Metrics Methodology

Tasks parameters min max

Arrival time 1 2000

Width 1 19

Height 1 19

Execution time 5 35

Deadline 2 8

(a) Tasks parameters for simulation

SLA/Staircase First Fit Best Fit

Rj(%) 13 12

NMERs 3470 3502

Rj : Tasks rejection ratio (%)

NMERs : Number of calls to MERs

update function

FPGA : width = 50 ; height = 40

(b) Partial simulation results

Table 4.1: Simulation paremeters for tasks and the recon�gurable array (FPGA)

in most cases best �t rejects only 1 to 2% fewer tasks than �rst �t. However, the global

runtime overhead is greater for the best �t algorithm because the greater the number of

tasks that are placed then removed, the greater the number of calls to function that updates

the MERs. This improvement of up to 2% on the tasks rejection ratio has been con�rmed

through identical experiments conducted with di�erent sets of 2000 tasks.

Conversely, measuring the runtime overhead is more sensitive and platform dependent. The

embedded FPGA platform presented above were used in order to get accurate results. The

MicroBlaze soft core embedded processor was clocking at 50 MHz. The application scenario

consisted of a set of 80 tasks with parameters similar to those in table 4.1-(a). Figure 4.4

details the obtained results. As MERs-based algorithms use a scan approach, the time

taken to update the MERs is proportional to the size of the array. The size of the FPGA

is assumed to be 50 X 40, which is relatively small compared to the ever increasing size of

current FPGAs. According to the results, Staircase algorithm outperforms SLA in terms of

runtime overhead as it runs more than twice as fast. It takes an average of 6ms to update

the list of MERs and can take an average of 15ms in the worst cases. While looking in

depth at the scheduling process described in �gure 4.2, It can be observed that updating

the MERs (performed by the placer and highlighted in �gures 4.2-(b) and 4.3-(d)) is only

a part of the process, albeit the most time consuming. The time taken to recon�gure the

recon�gurable array is not shown here and cannot be neglected.

142

4. Methodology, Models & Metrics Methodology

Figure 4.4: Time for �nding a MER (Maximum Empty Rectangle)

4.2.4 Lessons Learnt from Preliminary Results and Conclusion

The above preliminary results clearly show one thing. MERs-based algorithms can not be used

in real-time systems that have to respond in a timeframe below a given threshold. For example,

let's assume a hard real-time where the tick of the scheduler is 20ms, it would not be practically

possible to respect the real-time constraint. As shown on the left of �gure 4.4, the average time

for updating the list of the MERs is 6ms for Staircase algorithm and 15ms for SLA algorithm.

However if considering the worst case (�gure 4.4-right), the update time is 15ms for Staircase and

37ms for SLA algorithm.

Figure 4.5 depicts a timing detail of a scheduling that uses Staircase algorithm for area mana-

gement. It shows that each task placement is preceded by a MER detection that takes at least

15ms in order to update the list of MERs, in addition to the con�guration time that does not

explicitly appear here. Indeed, if considering the trend of con�guration time of the FPGA over

the last decade (shown in �gure 4.6) as well as other scheduler runtime overheads, then the time

needed to schedule one hardware task could easily reach hundred plus milliseconds. For example,

Xilinx Virtex-6 FPGA may be fully recon�gurable in about 50ms at the fastest possible con-

�guration speed. Let's recall that the recon�guration time of a hardware task on the array is

proportional to the size of the task.

However, con�guration overhead may rapidly become too long for some real-time systems e.g.

where scheduling intervals are ≤ 100ms.

Furthermore the sizes of the recon�gurable device (50X40) along with tasks (19X19 maximum)

used in the simulations and reported in table 4.1 are relatively small. Hence, resulting timing

143

4. Methodology, Models & Metrics Methodology

Figure 4.5: Scheduling timing and overheads (staircase)

Figure 4.6: Evolution (over one decade) of the con�guration time of a full FPGA when

considering the fastest possible con�guration speed (Koch and Torresen, 2010).

measurements of �gure 4.4 above are quite optimistic in the sense that the scanning process for

updating the list of MERs depends on the sizes of the recon�gurable array and tasks.

Consequently it is better to focus on non-optimal but faster placement algorithms. MERs-based

algorithms will be essentially used to assess how bad behave non-optimal algorithms when com-

pared to the optimal solution. Di�erent trade-o�s between scheduling/placement algorithms and

placement quality were made, in order to reach reasonable algorithms complexities and runtime

144

4. Methodology, Models & Metrics Methodology

overheads that enable online real-time scheduling. Therefore three main options were identi�ed:

(i). Non-optimal placement strategies

As much as possible, it is preferable to use non-optimal placement algorithms which are

not based on maximum empty rectangles (MERs). Detecting the latter requires a scan of

the array that may be of complexity O(w · h) in the worst case, where w and h are the

width and the height of the recon�gurable array. However, the placement quality can also

be improved by using overlapping rectangles (overlapping rectangles are not necessary the

MERs), and which are of quadratic complexity with respect to the number of placed tasks.

(ii). Looking-ahead scheduling for online clairvoyant paradigm

As much as possible, looking-ahead scheduling algorithms (presented in section 3.7.2, Chap-

ter 3) must be used in order to derive bene�t from the online clairvoyant paradigm. Indeed,

the online clairvoyant paradigm allows a looking-ahead scheduling algorithm to prospect

future states of the processing resources, and therefore improves the scheduling by taking

rapid scheduling decisions. However looking-ahead scheduling algorithms are more compli-

cated as prospecting future states of the recon�gurable array implies mimicking many tasks

starting and/or tasks completion on the array. Tasks starting and ending induce placement

operations that should better not be of high complexity or runtime overhead. Therefore,

MERs-based areas management is not advised.

(iii). Multi-shape tasks

Another way of improving the scheduling/placement quality without increasing the algo-

rithm complexity and runtime overhead is to generated several variants per task. Such

approach is also discussed in Danne and Platzner (2006a) for o�ine scheduling. Mahr et al.

(2011) also considered more than one variants per task while studying online scheduling on a

recon�gurable array. Their online module selection evaluates various scheduling approaches

that mainly rely on the size of the modules. However, they do not correlate the modules

selection with the underlying placement strategy. Conversely, this thesis evaluates the im-

pact of the number of variants per task along with their aspect ratio, with respect to the

underlying placement strategy. In this thesis, this approach is denoted as multi-shape-based

placement. It increases the probability of �tting more tasks on the recon�gurable array,

which can be very valuable in a real-time online context. Variants of the same task di�er

from each other by their size and shape and the corresponding execution time. Multi-shape-

based placement therefore requires an extra e�ort at design time to generate and store many

145

4. Methodology, Models & Metrics Models

variants (bitstream) per task, but fortunately eases the runtime placement process.

For online real-time scheduling, (i) and (ii) above suggest to combine scheduling and placement

is such a way that both are not of high complexity and runtime overhead. For example, if the

placer relies on a MERs-based algorithm, then the scheduler must be of low complexity, which is

without-looking-ahead assignment policy (section 3.7.1, Chapter 3).

However, when using looking-ahead scheduling, a simple placer is advised (e.g. using nonoverlap-

ping rectangles managed by a binary or ternary tree). As multi-shape-based placement does not

really increase placement algorithm complexity, it could be combined with looking-ahead schedul-

ing to achieve a better scheduling.

Few priority-driven scheduling algorithms are proposed, where tasks parameters that calculate

the priority are either geometric (width, height, size, shape ratio) or temporal (deadline, laxity,

etc.), or a combination of both. Furthermore, priority-driven scheduling strategies are combined

with looking-ahead and without-looking-ahead scheduling approaches.

4.3 Models

An overview of scheduling problems targetting uniprocessor and multiprocessor systems has been

presented in Chapter 3. The chapter gave some basic processor and tasks models that suit to

these problems. It then drew some similarities with recon�gurable hardware systems scheduling.

This section focuses on the problem of scheduling an application on a partially and dynamically

recon�gurable array. The application consists of a set of independent aperiodic real-time hardware

tasks that have to meet their deadline. The section presents the models which re�ect as much as

possible an application, the processing resources, the scheduler and the placer.

4.3.1 Real-Time Tasks and Applications Modeling

In this thesis, an application is a sequence of tasks. Each task Ti ful�ls a speci�c and identi�able

function in the application. A task corresponds to a sequence of operations to be run on the

computing resources. The same task could be run several times. A job J is a running instance

of a task. Ji,j denotes the jth instance of task Ti. Sometimes, it will be simply referred to as

task. From a modular perspective, an application is made of one or several modules, and each

module itself consists of one or several tasks. Hence, a task is the smallest identi�able block of

an application which ful�ls a clear speci�c function. This task could be a home-made IP or a

146

4. Methodology, Models & Metrics Models

manufacturer's IP provided as a pre-synthesized and technologically independent netlist. It may

also be an HDL (e.g. VHDL or Verilog) description of an electronic functionality.

Figure 4.7: A hardware task model: 2D view (b) and 3D view (a)

Basic Hardware Tasks Model

In this thesis, a hardware task Ti is an electronic functionality to implement in a recon�gurable

device. Hence, it is a bitstream ready to be downloaded in the recon�gurable hardware device.

A bitstream is generated after synthesis, placement and routing of a digital circuit. It contains

information about the position of the circuit (placement) on the chip.

Hereinafter are some basic assumptions widely accepted in related work, and that make the study

simpler.

• Structural and temporal characteristics

A hardware task Ti shares with a software task similar temporal characteristics that are:

� the arrival or release time ai,

� the computation time ci or execution time ei ,

� the �nishing or completion time fi,

� the absolute (resp. relative) deadline di (resp. Di),

� the period (resp. minimum inter-release time) Pi for a periodic task (resp. for a

sporadic task), etc. In aperiodic tasks model, as each task only arrives once, making

147

4. Methodology, Models & Metrics Models

the de�nition of a period is meaningless. However it is assumed that aperiodic tasks

share the same period Pi = tD where tD is equal to the biggest absolute deadline in

the system as expressed in equation 4.4, page 151.

In addition, a hardware task has functional and structural characteristics. Functional char-

acteristics re�ect the behaviour or the functionality of the task. In the present model,

functional characteristics of a task are not taken into account for its placement. Struc-

tural characteristics provide geometric information on the task (e.g. area size, shape, etc.).

Hence, this information is the most valuable for �nding a place that may �t the task while

timing characteristics provide information for scheduling.

In general, as shown in �gure 4.7-(b), a hardware task Ti is a rectangular module to be

implemented on the recon�gurable device.

Hence, the most common geometric characteristics are: the width wi and the height hi.

A rectangular shape simpli�es task placement, but at the cost of intra-task fragmentation

as shown in �gure 3.24, page 126 and discussed in section 3.9.1. Indeed, each task is

represented by the rectangle that encompasses all the resources actually used by the task on

the recon�gurable array (�gure 3.24). Therefore what is denoted as intra-task fragmentation

is the resulting lost of resources within the encompassing rectangle.

By mixing geometric and temporal characteristics, hardware tasks may be seen as 3D cubic

boxes as mapped in �gures 4.7-(a) and 4.9.

• States of a hardware task

As pictured in �gure 4.5 (page 144), a task Ti is active within the interval that spans from

it release time ai to its �nishing time fi. Within this time interval, a task may be ready-

to-run, running or waiting. Figure 4.8 depicts di�erent states of a task. Once tasks are

created, they are in the idle state. They are then released depending on the task model

(periodic, aperiodic, sporadic). Once released a task becomes active and available (ready)

for scheduling. A task in the ready state is ready to run and just waits for the scheduler

to give it access to the computing resources. This means either other tasks with higher (or

equal) priority are running in the recon�gurable array, or there is not enough contiguous

free area to accommodate the ready task. Tasks in the running states are those that are

currently running on the recon�gurable array. A running task may move to the waiting

state if it waits for an event or resources before continuing its execution. Events may be

temporal (delay) or external (interaction with environment). A task which is in waiting

148

4. Methodology, Models & Metrics Models

Figure 4.8: Di�erent states of a hardware task

state can move to the ready state after the expected event occurs, or can move to the idle

state if the event is out of time (e.g. if the waiting task cannot still meet its deadline).

In this thesis, the waiting state along with states transitions in a dotted line are not taken

into account. Which means that there is no preemption and there is no tasks moving to the

waiting state.

• Aspect ratio, standing vs laying task

The aspect ratio of a task Ti is given by equation 4.1 and shown in �gure 4.7-(b). Hence

the task is square-shaped for a ratio equals to 1.

ari =
hi
wi

(4.1)

On �gure 4.7-(b) is also depicted a standing and a laying task. A task Ti is denoted as

standing task if ari > 1 (resp. laying task if ari < 1). Synthesis of a hardware task provides

some �exibility in choosing the desired aspect ratio.

• Multi-shape same size task

As previously stated in section 4.2.4 above, there may be many variants of the same task.

On �gure 4.7-(b) both standing and laying tasks may be similar with respect to everything

(functionality and timing) but their shape (width and height). This is more detailed later

in section 5.5, Chapter 5 while presenting multi-shape-based scheduling algorithms.

149

4. Methodology, Models & Metrics Models

• Relocatability, rotatability

A hardware task is a synthesized and pre-routed electronic circuit, which is assumed to

be relocatable wherever on the chip, as far as there is enough contiguous free resources to

accommodate it. This full relocatability assumes that the recon�gurable hardware device

is homogeneous. However if there is some heterogeneity on the device area, the task may

be relocatable only on limited parts of the chip where the resources are similar to resources

used by the task. Such a case is depicted later in �gure 4.10, page 154.

However, hardware tasks are not rotatable, meaning that an area accommodates a task only

if there is no need to rotate the task. For example, albeit the laying task and the standing

task of �gure 4.7-(b) are similar in terms of area size, an area which width and height are

similar to the width and the height of the laying task cannot �t the standing task.

• Online clairvoyant paradigm, preemption and precedence constraints

Unlike o�ine models which are deterministic models, this thesis copes with more realistic

application patterns or scenarios where it is not always possible to know the complete

application �ow beforehand. To re�ect this situation, unknown information are expressed

by randomly generating tasks parameters (arrival time, processing time, width, height, etc.)

with known probability distribution. Hence, arrival time of each task is arbitrary and is

unknown beforehand. As long as a task is not released, its parameters are kept unknown

to the scheduler. This behaviour corresponds to the online clairvoyant paradigm.

• Preemption and precedence constraints

This thesis considers the case of independent and non preemptable real-time tasks that are

subjected to deadline constraints. Therefore, execution time and deadline of real-time tasks

are required.

• Software vs hardware versions of tasks

It is assumed that for any hardware task there exists a software version. Hence, a task that

cannot be run in hardware can be run in software with the corresponding execution time. In

general, hardware tasks run faster, making hardware implementation suitable for computing

acceleration. Nevertheless, this work does not deal with the scheduling of software versions

of tasks.

150

4. Methodology, Models & Metrics Models

Online Application Model

In many applications, tasks arrive aperiodically. For example, nowadays, embedded systems are

becoming more interactive. Tasks may arrive because an event occurred or a sensor reading is

available. The system may then accurately estimate on the �y the resources and the time required

to process newly acquired input information. Such an application model where the information

on tasks are known as they arrive corresponds to the online clairvoyant paradigm. In addition,

if the tasks in the application are submitted to deadline, then it is denoted as online real-time

application.

This thesis mainly consider online real-time applications featuring an online clairvoyant

paradigm (more detailed in Chapter 3, section 3.4.2).

There are various kind of online applications, including semi-online ones. Indeed, in most

cases, there are some partial information available that could help improving the scheduling. For

example some information may be available on tasks (e.g. their maximum and/or minimum size,

their maximum and/or minimum execution time, the total number of tasks, etc.) or on the

application (e.g the total number of resources needed by the application, etc.).

An application Apk or Γk is a set of k tasks Γk = [T1, T2,...Tk]. Γk may be viewed either as

a random task graph (without precedence constraints) or as a data �ow graph with precedence

constraints as mapped in �gure 4.9. It is assumed that the tasks arrive as they are ordered in Γk.

This is expressed in equation 4.2 below where ai is the arrival time of task Ti.

∀Ti , Tj ∈ Γk , i < j ⇒ 0 < ai ≤ aj (4.2)

Implicitely the release time of the application is denoted as ta and corresponds to the release time

of the �rst task or job in the application Γk. Let Ti be the �rst task released in Γk,

ta = ai ⇒ ∀Tj ∈ Γk, Tj 6= Ti , ai ≤ aj (4.3)

Identically, the absolute deadline of the application Γk is denoted as td and corresponds to the

latest absolute deadline of tasks in the application. Let Ti be the latest deadline di of a task in

Γk,

td = di ⇒ ∀Tj ∈ Γk, Tj 6= Ti , di ≥ dj (4.4)

tD = td − ai is the relative deadline of the application. Therefore Γk may be expressed either as

Γk = [T1, T2,...Tk, td] or as Γk = [T1, T2,...Tk, tD].

151

4. Methodology, Models & Metrics Models

Figure 4.9: An application as a set of boxes (taskgraph).

4.3.2 Recon�gurable Devices Area Models

Area models of recon�gurable hardware devices drastically impact on the complexity of proposed

tasks placement solutions. Therefore these models cannot be studied separately. Depending on

how the diversity of recon�gurable resources are taken into account while placing a task, one

distinguish mainly homogeneous and heterogeneous area models. Furthermore, the hierarchical

model discussed in Chapter 2 section 2.5.11 is derived from the latter model. However, depending

on whether the recon�gurable technology enables columnwise partial recon�guration or random

partial recon�guration, one distinguish 1D placement and 2D placement.

Homogeneous model vs heterogeneous model

In Chapter 2 section 2.5.2 is given a clear de�nition of homogeneous and heterogeneous recon�-

gurable hardware devices along with some commercial examples. This section will propose a

simple model of theses architectures. It was previously said that a DPRHW may be viewed as a

2-Dimensional array of Combinational Logic Blocks (CLBs) surrounded by vertical and horizontal

programmable routing channels. In the basic model proposed here, the routing channels will not

be explicitly mentioned , as they do not have any in�uence on the proposed placement model.

Indeed, the latter model assumes that a task can �t in a rectangular area on the array as far as

there is enough contiguous free space to include the task.

A simpli�ed model of an homogeneous recon�gurable hardware device is mapped in �gure

152

4. Methodology, Models & Metrics Models

4.10-(a). Even if DPRHW like FPGAs are becoming more heterogeneous today, this simple model

is still widely used to outline scheduling and placement problems. In general, Programmable

Logic Blocks are organized in W columns and H rows where W and H are respectively the width

and the height of the recon�gurable device. As it is assumed that the recon�gurable hardware

device enables partial recon�guration, Afpga = W · H expresses the number of independently

recon�gurable units (CLBs) on the recon�gurable array. Afpga also re�ects the size or the area of

the array.

As shown in �gure 4.10-(a) and (b), an X − Y coordinate axis is used to physically localize each

CLB or any other resource on the recon�gurable array.

A simpli�ed model of an heterogeneous recon�gurable hardware device is mapped in �gure

4.10-(b). Unlike �gure 4.10-(a) there are some pre-built or pre-instantiated dedicated blocks

that are already at some �xed positions on the chip. As discussed in Chapter 2, heterogeneous

recon�gurable array is the current dominating trend in FPGA architecture. However, the above

presented homogeneous model could be easily extended to represent an heterogeneous array. In-

deed, as it is always assumed that a hardware task to be implemented is relocatable wherever on

the homogeneous recon�gurable array as far as there is a rectangular portion that accommodate

it, the following two assumptions can be made:

(i) an heterogeneous array is an homogeneous array that has already accommodated some static

and position-constrained tasks. For example, the heterogeneous array on 4.10-(b) embeds

some hardwired blocks (softcore/hardcore processor, BRAM memory, DSP blocks) that are

considered as permanent and position-constrained tasks (T1, T2 and T3, top left of the array).

Only the remaining areas are still available for placing other tasks.

(ii) an heterogeneous array is an array where each task has one or few possible placement posi-

tions on the array depending on the matching between the kind of resources needed by the

task and the position of such resources on the array. The case is shown in �gure 4.10-(b)

where dedicated resources are in the bottom right of the array. The BRAM and the DSP

blocks may be assigned to speci�c tasks that mainly need these resources to be e�ciently

implemented.

Chapter 3 section 3.8.5 presented related work (e.g. Koester et al., 2005, 2006) that improve

the placement quality by taking into account the hardware heterogeneity in order to optimize the

resources utilization. In their model, each task has a few possible placement positions on the array,

and the heterogeneity of the array consists of two kind of resources: con�gurable logic blocks and

153

4. Methodology, Models & Metrics Models

Figure 4.10: Simple models of homogeneous and heterogeneous recon�gurable array

memory blocks.

In this thesis, time overhead due to con�guration of a hardware task on the recon�gurable

hardware device is assumed to be negligible. Example of full recon�guration of FPGAs are

pictured in �gure 4.6.

154

4. Methodology, Models & Metrics Models

4.3.3 Scheduler Model

As this thesis considers the online clairvoyant paradigm, the scheduling algorithm is not allowed

to use information about the future. Consequently, at time t, the scheduler is not aware of any

information (ai, ei, di, wi, hi, etc.) on any task arriving at time ai ≥ t.

As depicted in �gure 4.11, once a task Ti = (ai, ei, di, wi, hi) of the application Γk is released

in the system, the scheduler takes it into account and schedules it in conjunction with the placer.

Therefore, using a given assignment policy, the scheduler decides which tasks have to be run on

the recon�gurable array. The scheduler acts as a tasks manager and might manage certain lists

of tasks. It requests the placer to �nd a position (xi, yi) free at current time or in the future

depending on whether the scheduling policy is looking-ahead-based or not. Tasks that cannot

meet their deadline are rejected. A position (xi, yi) and a starting time si is then assigned to each

arriving task Ti ∈ Γk if possible, in such a way that task Ti does not overlap concurrently spatially

and temporally with any other task in the system. The placer acts as a resources manager by

keeping the state of the recon�gurable area, by optimizing its use thanks to management heuristics,

and by providing the scheduler with best available areas.

Equations 4.5 and 4.6 express the conditions for scheduling tasks on the recon�gurable array.

These conditions allows many tasks to run either on a space-sharing basis or on a time-sharing

basis. The placer is responsible for verifying the space-sharing conditions, which is (xi+wi) ≤ (xj)

for the 1D placement. The �rst equation 4.5 is for the 1D placement while the second 4.6 is for

the 2D placement.

With 1D placement: ∀Tj ∈ Γk, Tj 6= Ti ,

 [(xi + wi) ≤ (xj)] ∨ [xi ≥ (xj + wj)]∨

[(si + ei) ≤ (sj)] ∨ [si ≥ (sj + ej)]
(4.5)

With 2D placement: ∀Tj ∈ Γk, Tj 6= Ti ,


[(xi + wi) ≤ (xj)] ∨ [xi ≥ (xj + wj)]∨

[(yi + hi) ≤ (yj)] ∨ [yi ≥ (yj + hj)]∨

[(si + ei) ≤ (sj)] ∨ [si ≥ (sj + ej)]

(4.6)

where ai, ei, di, wi, hi are respectively the arrival time, execution time, deadline, width and height

of task Ti.

As discussed earlier in Chapter 2, section 2.7.3 and illustrated in �gure 2.18 and �gure 2.19,

this thesis considers a scalable and distributed multi-RTOS architecture with respect to application

requirements and system constraints. Hence, as it focuses on the management of the recon�gurable

part of the system, the scheduler is devoted to that part, beside other schedulers managing other

155

4. Methodology, Models & Metrics Models

Figure 4.11: The global simulation model

PEs, under the supervision of a global OS. Hence, the scheduler responds (successfully or not) to

the requests of the global scheduler. This assumes that tasks in the system may have numerous

alternative implementations (software, hardware, etc.) with various costs, performances and QoS.

In this thesis, the scheduler implements a non pre-emptive scheduling policy that does not enable

tasks migration.

4.3.4 Placer Model

As stated above, the placer responds to placement requests sent by the scheduler. As depicted

in �gure 4.11 the placer and the scheduler interact constantly. The former acts as the resources

manager for the latter.

The placer model is more detailed in �gure 4.12. On one hand as shown in the left branch of

the �gure, the placer partitions and manages the recon�gurable array through a data structure

which keeps the state of the array. For this, it uses various splitting, merging and defragmentation

156

4. Methodology, Models & Metrics Models

Figure 4.12: The placer model and its di�erent functional parts.

strategies. On the other hand as depicted by the right branch of �gure 4.12, the placer allocates

and deallocates areas to tasks and updates the data structure accordingly. To do this, the placer

searches for available areas. It then uses di�erent �tting strategies (1D, 2D, BF, FF, etc.) that

have been presented in Chapter 3 section 3.8.4. Figures 3.17 page 114 and 3.18 page 115 depict

examples of �tting strategies.

The data structure may be a simple list of areas (nonoverlapping or overlapping), a binary tree

(e.g. Bazargan et al., 2000) or a hash matrix (e.g. Walder et al., 2003).

The quest for a quality placement especially in an online real-time context may be to:

(i). �nd the best data structure that stores information of free spaces available on the recon�-

gurable array and that:

• eases the search for places to �t new tasks.

• eases the update of the structure after adding or deleting a task.

(ii). �nd meaningful metrics that assess the placement quality and the fragmentation of the

157

4. Methodology, Models & Metrics Metrics

recon�gurable array and that are easy to calculate. In addition, if possible, the placer may

take into account future tasks parameters distribution (if known, e.g. width, height, etc.)

in order to improve tasks placement.

Achieving such a quest is rarely possible and requires a trade-o� between the two points mentioned

above. For example, the hash matrix proposed by Walder et al. (2003) stores free areas and allows

the placer to quickly index them with a constant time complexity. But such an easy search comes

at the cost of heavy matrix update process at each task placement and removal.

4.4 Metrics

The metrics rate the performance of scheduling and placement of an application which consists of

k tasks. They are almost similar to scheduling metrics in a microprocessor, with some speci�city

due to the underlaying placement.

4.4.1 Recon�gurable Hardware Resources Metrics

The total amount of resources available on a recon�gurable array corresponds to its area

Afpga = W ·H

where W and H are respectively the width and the height of the recon�gurable array.

The total amount of resources provided by the device within a given time interval that spans from

time t1 to time t2 is given by equation 4.7.

Afpga(δt) = W ·H · δt (4.7)

where δt = t2 − t1

4.4.2 Tasks Metrics

This thesis mainly consider the problem of scheduling a set of aperiodic real-time tasks on the

recon�gurable array. Hardware tasks metrics are derived from periodic tasks metrics. They are

de�ned as follows:

i). Time utilization factor (U (t)
Ti)

The time utilization factor of a periodic task Ti is the ratio between the task execution time

158

4. Methodology, Models & Metrics Metrics

and its period as show in equation 4.8. It re�ects the fraction of time spent by the task on

the recon�gurable array within the period of the task.

U (t)
Ti =

ei
Pi

(4.8)

where ei and Pi are respectively the computation time and the period of Ti.

In the case of an aperiodic task, the time utilization factor of Ti is de�ned as

U (t)
Ti =

ei
Di

(4.9)

where Di is the relative deadline of Ti. Therefore, resi = Ai · U (t)
Ti. However the time

utilization factor metrics does not inform on the amount of resources really needed by the

task.

ii). Absolute computational load (ResTi)

The absolute computational load of a hardware task Ti as the total amount of resources

required to complete an instance of the task. It is given by equation 4.10 where wi , hi, ei

and Ai denote respectively the width, the height, the execution time and the area requirement

of Ti.

ResTi = wi · hi · ei = Ai · ei (4.10)

iii). Relative computational load (resTi)

The relative computational load of a task Ti is its computational load relative to its relative

deadline Di for an aperiodic task (period or minimal inter-release time Pi for a periodic task

and a sporadic task respectively). It re�ects the fraction of time within the active state of

the task that has been really spent by the task on the recon�gurable array, and the area

requirement of the task.

The relative computational load resi corresponds to the system utilization (U (s)
Ti) of a

task Ti in monoprocessor scheduling that is given by:

U (s)
Ti = resTi = U (t)

Ti ·Ai =

 ResT i

Di
= ei

Di
· wi · hi for aperiodic tasks

ResT i

Pi
= ei

Pi
· wi · hi for periodic and sporadic tasks

4.4.3 Application Metrics

Let Apk or Γk = [T1, T2, ...Tk, td] be an application or a set of k tasks that must be run to

completion before its absolute deadline td. Let's de�ne:

159

4. Methodology, Models & Metrics Metrics

i). Time utilization factor U (t)
Γ

The Time utilization factor of the complete set of aperiodic tasks Γk is expressed as follows

:

U (t)
Γ =

k∑
i=1

ei
Di

(4.11)

Obviously, the equation becomes U (t)
Γ =

∑k
i=1

ei

Pi
if tasks are periodic.

ii). System utilization U (t)
Γ

The system utilization of the complete set of k aperiodic tasks Γk takes into account the

amount of resources used by the set as expressed in equation 4.12.

U (s)
Γ =

k∑
i=1

1
Di
· wi · hi · ei =

k∑
i=1

U (t)
Ti ·Ai (4.12)

iii). Current time utilization factor

Let Γ(t) be a partial set of Γk that have already been released at current time t and that

respects the following condition.

Γ(t) = {Ti ∈ Γk : ai ≤ t < di} where di = ai +Di (4.13)

The current time utilization factor of the set at current time t is then

U (t)
Γ(t) =

t∑
i=1

U (t)
Ti =

t∑
i=1

ei
Di

(4.14)

The current time utilization factor only characterizes the tasks set but does not give any

indication on the load of the system and the number of processing resources. Therefore,

a multiprocessor system de�nes a system utilization factor U (s)
Γ(t) at a given time t that

respects condition 4.13 as follows :

U (s)
Γ(t) =

U (t)
Γ(t)

m
(4.15)

where m is the number of microprocessors. This de�nition may be transposed in the case of

an m slots partitioned recon�gurable array where any slot may �t any task as discussed in

3.6.4 and depicted in �gure 3.8, page 92.

iv). Absolute application (computational) load ResΓ

ResΓ expresses the total amount of resources required to complete Γk and is given by the

following equation 4.16

ResΓ =
k∑
i=1

wi · hi · ei =
k∑
i=1

Ai · ei =
k∑
i=1

Resi (4.16)

160

4. Methodology, Models & Metrics Metrics

where wi , hi, ei, Ai and Resi denote respectively the width, the height, the execution time,

the area requirement and the total amount of resources of task Ti.

v). Relative application (computational) load (resΓ)

Also referred to as relative amount of resources required to complete an Γk on a given

recon�gurable array of size Afpga = W ·H, is given by the following equation 4.17

resΓ =
1

W ·H · tD
·
k∑
i=1

wi · hi · ei =
1

Afpga · tD
·ResΓ (4.17)

where ResΓ =
∑k
i=1ResTi is the above-mentioned absolute application load of application

Γk, and tD the relative deadline of application Γk.

4.4.4 Scheduling Metrics

These metrics are related to the application and the processing resources. These metrics are

available after a scheduling and re�ect its quality. Some of them have been described on section

3.3.4 as example of objective functions that are very common in scheduling problems.

i). Utilization ratio of the recon�gurable array (Ufpga(%))

The average utilization ratio of a recon�gurable array (FPGA) of size Afpga = W · H on

which an application Γk = [T1, T2, ...Tk, tD] has been scheduled is given by the following

equation 4.18:

Ufpga(%) =
∑k
i=1 wi · hi · ei
W ·H ·mak

=
∑k
i=1ResTi

W ·H ·mak
(4.18)

where mk is the makespan.

ii). Tasks rejection ratio RjΓk(%)

RjΓk(%) is the ratio of instances of tasks Ti ∈ Γk that have failed to be placed on the

recon�gurable array.

RjΓk(%) =
nj
k
· 100% (4.19)

where nj ≤ k is the number of jobs rejected among the k jobs in the application Γk.

iii). Makespan mk

The makespan spans from the release time of the �rst task (of the application) to the time

the last task ends. It is also denoted as the length of the scheduling and corresponds to

the real duration of the application. The makespan is one of the most commun objective

function. The smaller the makespan, the better the scheduling.

161

4. Methodology, Models & Metrics Metrics

iv). Flow time ft , average �ow time ftav and total �ow time fttot

Also known as the response time and expressed in equation 4.20, the �ow time of a job Ji

is de�ned as the di�erence between its completion time fi and its arrival time ai.

fti = fi − ai (4.20)

The total �ow time fttot (resp. the average �ow time ftav) is given by equation 4.21

fttot =
k∑
i=1

fti and ftav =
fttot
k

(4.21)

where fttot is the sum of the �ow times of the k jobs in job sequence Γk, and ftav the latter

sum averaged by k.

v). Waiting time wti

It spans from the task Ti release time ai to its starting time si assigned by the scheduling

algorithm.

wti = si − ai (4.22)

The average waiting time of a sequence of na jobs, where na is the number of jobs accepted

among the k jobs in Γk, is given by the total waiting time averaged over na as follows :

wtav = 1
na
·
∑na

i=1 wti

vi). Rejection delay Rdi

This metrics represents the time that �ows from the release of a task Ti to its rejection.

This metrics is meaningful in online real-time scheduling where one may consider more than

one implementation alternatives. Hence, rejecting a recon�gurable hardware task too late

may prevent the system from running it on a di�erent computing resource (e.g. sequential

processor). The latter situation may be prejudicial. This metric is proposed as a quality

metric that emphasizes scheduling strategies that minimize the rejection delay. The rejection

delay is expressed by as follows for a rejected task Ti :

Rdi = trej − ai (4.23)

where trej is the rejection time of task Ti as given in equation 3.11, page 94, and ai its release

time.

vii). Di�erential quality metric URqm

this metric is proposed as a new quality metrics that emphasizes a good behaviour of the

162

4. Methodology, Models & Metrics Metrics

scheduling/placement algorithm both in terms of chip utilization ratio and tasks rejection

ratio. The metrics is especially meaningful in recon�gurable hardware scheduling. It is

meant to ease the comparison between two algorithms that do not signi�cantly di�er either

in chip utilization ratio or in tasks rejection ratio. The reason is that no matter which

area management strategy is used, the recon�gurable array is submitted to a fragmentation

problem that bounds its average utilization ratio.

URqm is expressed in the following equation :

URqm = 2α · [Ufpga − (
1
α
− 1) ·RjΓk

] , α ∈]0; 1] (4.24)

where Ufpga is the utilization ratio, RjΓk
the tasks rejection ratio and α a weighting coe�cient

that re�ects which of the two metrics is predominant. As the chip utilization ratio is to

maximize and the tasks rejection ratio to minimize, the higher the di�erence between these

two metrics the better the scheduling.

For the sake of simplicity, α = 0.5 in this thesis, meaning that the utilization ratio and the

tasks rejection ratio are given the same important. The metric URqm is meant to be positive

otherwise the scheduler behaves very poorly.

For example, for α = 0.5 the equation above becomes :

URqm = Ufpga −RjΓk

However even if Ufpga and RjΓk
highly depends on the computational load of the application

or set of tasks to schedule, α = 0.5 is not really a fair value because RjΓk
≡ 0% is more

likely to be achieved than Ufpga ≡ 100%, because of the recon�gurable array fragmentation.

α ∈] 1
2 ; 1] makes the utilization ratio predominant in the URqm. A negative value of URqm

indicates that the scheduler behave poorly, as it achieves a high tasks rejection ratio combined

with a low chip utilization ratio.

viii). Scheduling runtime overhead

The Cumulative algorithm execution time or cumulative scheduling algorithm runtime

overhead represents the total amount of time spent by the scheduling algorithm to schedule

and place all the tasks in an application or a tasks set. It is given by equation 4.25 below

Cumuloverhead =
1
m
·
m∑
i=1

n∑
j=1

RuntimeOverhead(i, j) (4.25)

where m is the number of tasks sets, n the number of invocation of the scheduler while

scheduling each tasks set, and RuntimeOverhead(i, j) the scheduling algorithm runtime

163

4. Methodology, Models & Metrics Simulation model

overhead on the ith tasks set during the jth call of the scheduler. As runtime overhead during

a single call of the scheduler is quite small, the cumulative value is more meaningful. The

value is averaged on the number of tasks sets in order to re�ects the portion of time devoted

to the scheduling algorithm along a task set. Let's recall that the placement algorithm may

be called one or many times at each scheduler invocation.

4.4.5 Feasible Schedule

A task sets Γk is feasibly scheduled on a recon�gurable array if the following condition is met

∀Ti ∈ Γk , fi ≤ ai +Di

An application cannot be successfully scheduled on an FPGA if its relative computation load

resΓk
exceeds 1. Hence, a necessary but not su�cient condition for scheduling an application

Γk = [T1, T2, ...Tk, tD] on the recon�gurable device Afpga is that the total amount of resources

needed by Γk (which is
∑k
i=1 wi · hi · ei) must not exceed the total amount of resources available

on Afpga during the relative deadline tD of Γk (which is Afpga(tD) = Afpga · tD). This is clearly

expressed by the following condition

resΓk
≤ 1 ⇒

∑k
i=1 wi · hi · ei ≤W ·H · tD

deduced from equation 4.17 above. Because of fragmentation, the relative application load of a

schedulable application is in general much more closer to 0.5 than 1.

Let Γk be a set of k aperiodically-arriving real-time tasks; tasks in Γk could be assumed

tD−periodic, tD being the absolute deadline of Γk. This assumption relies on the fact that within

the time interval that spans from 0 to tD, each task is supposedly released once.

4.5 Global Simulation Model and Compatibility with the

OVeRSoC Design Methodology

A functional representation of scheduling and placement simulation model is presented in �gure

4.11. This simulation model encompasses basic components of a basic recon�gurable system. The

simulation model may be used at two stages :

• at runtime, which means that the simulation model may be used to assess scheduling and

placement algorithms through the aforementioned metrics.

164

4. Methodology, Models & Metrics C++/SystemC based model

• at design time, the model may be introduced in a design methodology in order to re�ne

hardware/software partitioning. To achieve such a purpose, the global simulation model

is C++ based to insure full compatibility both with the OVeRSoC design methodology

discussed in Miramond et al. (2009a) and its enabling environment presented in Miramond

et al. (2009b).

4.5.1 An UML Overview of the Global Simulation Model

The global simulation model of hardware tasks scheduling on the recon�gurable part of an RSoC

has been depicted earlier in �gure 4.11, page 156. An UML representation of this simulation model

is proposed in �gure 4.13.

The basic system consists of the scheduler, the placer and the set of tasks. Hence, the basic system

instantiates each of these elements. The basic system �rst creates the application as a list of n

tasks. It then creates the scheduler and the placer. It acts as the simulation engine. It generates

the time basis for the whole system. Tasks are then released in the system through a FIFO list

denoted as arriving_tasks_�fo and according to their release time.

Tasks are hosted in the list at their release time ai and poped out before time ai + 1. As other

elements in the system learn piece by piece about tasks, this corresponds to the online clairvoyant

paradigm. The �nishing_tasks_�fo achieves the same functionality by hosting �nishing tasks

instead at their completion time fi. The tasks in the �nishing_tasks_�fo are poped out before

time fi + 1

The basic system invokes the scheduler everytime at least one task pops in the arriving_tasks_�fo

or the �nishing_tasks_�fo. As this thesis does not consider tasks preemption, these two events

are the only that trigger o� a rescheduling. Once the 3 main entities are built, the simulation is

run to completion. The basic system assesses various scheduling metrics either directly or through

the scheduler and the placer. The scheduler manages the tasks through as many lists of tasks

(tasks_queue) as necessary, depending on its policy. A hardware task (task_mod) may feature

many variants of di�erent size and the corresponding computation time.

The placer generates di�erent data structures needed to re�ect the state of the recon�gurable array.

Hence, it may instantiate an FPGA_matrix (as an array of cells), and a list of free rectangles.

Indeed, the scheduler measures the metrics that are related to tasks (e.g. tasks rejection ratio)

while the placer evaluates those related to the recon�gurable array (e.g. chip utilization ratio,

fragmentation, etc.).

165

4. Methodology, Models & Metrics C++/SystemC based model

Figure 4.13: An UML overview of the global simulation model of the DPRHW-OS for a

recon�gurable platform.

4.5.2 The Importance of Using a C++ Based Simulation Model

As stated in the two �rst chapters of the thesis, the primary objective of this work was to propose

scheduling and placement strategies that suited to online real-time scheduling of hardware tasks

on dynamically recon�gurable hardware devices. However this work is likely to feed any Recon�-

gurable SoC design methodology with information, models and metrics that were learned from

the primary objective. This second aspect of this work comes within the scope of the classical

design philosophy that aims to overcome as much design challenges as possible at compilation

time instead of running time.

An RSoC design methodology denoted as OveRSoC methodology has been brie�y introduced

166

4. Methodology, Models & Metrics Conclusion of the Chapter 4

in Chapter 2, section 2.7.3. The methodology was described as OS-centric or OS-based. This

methodology is depicted in �gure 2.19 page 60. The design �ow is described in detail in Mira-

mond et al. (2009a) and uses the DOGME tool (Miramond et al., 2009b), its dedicated front end

for designers. The methodology relies on a system level simulation that is performed prior to and

alongside the design steps and that is fed by the application and the system constraints.

The second aspect of this thesis was to insure a full compatibility with the OVeRSoC design

methodology along with tools. Thus, an object oriented approach that relied on the C++ pro-

gramming language was adopted in this thesis. Therefore, all the components of the UML dia-

gram in �gure 4.13 are C++ objects, fully compatible with SystemC language, OveRSoC being a

SystemC-based methodology.

The main advantage of using a SystemC-based approach is its ability to adapt to almost all ab-

straction levels (from system level to implementation level) while providing hardware/software

co-simulation and veri�cation. This allows the designer to rely on the same models to validate

di�erent parts of his system throughout the design process. In order to deal with scheduling and

placement issues, this work relied on the model pictured in �gure 2.18, page 59. In the model,

an application is to be mapped on a multiprocessor platform. The system consists of resources

consumers (tasks or applications) and processing elements (processors, memories, etc..), both

separated by an intermediate OS layer that acts as a resources manager. The OS layer hides the

details of the platforms to the application layer and assigns di�erent resources to di�erent tasks

of the application in such a way that the application runs to completion and achieves its goals.

Compatibility between any design methodology and C++ based UML model proposed in this

thesis may allow any designer to tune, through simulations, both its architecture and the RTOS

that suits to its management.

As illustrated by the UML diagram in �gure 4.13, various models of the recon�gurable array that

may be accurate at cell level were provided. These models do not express any communication, but

may easily express neighbourhood between cells and therefore rectangular-shaped modules. The

re�ned model on the array depends on the placement strategy used. The model may dynamically

map the DRA1 of �gure 2.19. The same goes for the basic system in �gure 4.13 that features the

scheduler, the placer and hardware tasks, and that may map the DPRHW-OS2 devoted to the

DRA part.

1 Dynamically Recon�gurable Architecture, also denoted as DPRHW in this thesis.
2 Dynamically and Partially Recon�gurable Hardware Device - Operating System

167

4. Methodology, Models & Metrics Conclusion of the Chapter 4

4.6 Conclusion of the Chapter

This chapter has started with the proposed methodology which results from the literature review

presented in Chapter 3. The methodology �rst consisted of doing some accurate measurements

on some existing scheduling and placement algorithms. In doing so, a framework for �nding the

algorithms suitable for scheduling online real-time hardware tasks on DPRHWs has been estab-

lished. The chapter also de�ned models of real-time applications that consist, in this thesis, of

a set of aperiodic real-time tasks. The Scheduler and the Placer models were also presented.

Afterwards, di�erent scheduling metrics have been de�ned, and some of them customized to make

them meaningful for DPRHW scheduling. The end of the chapter presented the global simulation

model and its UML representation. The compatibility of this global simulation model with C++

and SystemC based methodology for RSoC design was emphasized, the OveRSoC methodology

being taken as an example.

The next chapter will propose scheduling and placement algorithms that results from the above

proposed methodology, and that suit to online real-time scheduling of hardware tasks on dynam-

ically and partially recon�gurable hardware devices (DPRHWs).

168

Chapter 5

Proposed Algorithms for Online

Real-Time Scheduling & Placement

5.1 Introduction

This chapter presents and discusses di�erent scheduling and placement algorithms that rely on

related work discussed in Chapter 3 and on the models detailed in the previous chapter. Regarding

the scheduling algorithms, they are presented according to their two main families: the looking-

ahead scheduling and the without-looking-ahead scheduling.

In without-looking-ahead scheduling approach, the algorithms are essentially priority-driven,

where the priority of each task is based on its geometric and temporal parameters. Hence, in

addition to various temporal parameters based algorithms such as EDF, LLF etc., other priority-

driven algorithms that are either based only on geometric parameters of hardware tasks, or based

on their geometric and temporal parameters are proposed.

As online real-time applications are targeted, scheduling algorithms are combined with appro-

priate placement strategies in order to provide low runtime overheads. Hence, multi-shape schedul-

ing algorithms that improve tasks placement opportunities without signi�cantly in�uencing the

runtime overheads of the algorithms are also proposed. The idea behind the multi-shape approach

is to provide, at design time, more than one task parameter combination for each task in the

system. The multi-shape scheduling algorithms are also priority-driven, the main policy being to

give the highest priority to the normal version of the task.

In looking-ahead scheduling approach, as runtime overheads tend to be higher, the latter

169

5. Scheduling and Placement Algorithms Parameters-Based Scheduling

approach is combined with low complexity placement strategies as justi�ed in the previous chapter.

Examples of such placement strategies are : 1D placement, partitioned placement and multi-shape

tasks placement.

5.2 Tasks Parameters Based Global Scheduling

The tasks parameters-based scheduling algorithms are priority-driven scheduling algorithms. A

priority-driven scheduling assigns a priority to each job (or task) in the application. The priority

is based on the parameters of tasks. The scheduler keeps a list of ready tasks sorted by their

priorities. Therefore, the available processors resource is allocated to the highest priority tasks. In

priority-driven real-time scheduling for microprocessors, a task priority is usually based on timing

constraints. Hence, it is calculated using temporal parameters of the tasks (e.g. deadline for EDF,

laxity for LLF, etc.).

However, in the case of a hardware task that features both temporal and geometric parameters,

there are more opportunities for combining these parameters in order to derive more priority-driven

algorithms. Hence this section presents other priority-driven algorithms that are based either on

geometric parameters of tasks, or on a combination of geometric and temporal parameters. In

this thesis, these scheduling scheme are denoted as parameters-based scheduling.

The priority ℘i of each task Ti is calculated using its parameters. Di�erent tasks parameters-based

scheduling algorithms di�er from one another in the way of calculating ℘i. At each scheduling

time tsch, the algorithm requests the placer to place the task with the highest priority, the task

that heads the waiting (ready) queue. If the placer fails to place, it then tries to place the next

task in the list and so on, as far as the recon�gurable array is not full. Obviously, this may lead

to a situation where a task with a lower priority may be running on the recon�gurable array while

a higher priority task is waiting. By the way, the tasks that can no longer respect their deadline

constraints are removed from the waiting list. The scheduling algorithms is said work-conserving

as any area in the array may be kept idle if it could �t a ready task, no matter what its priority

is.

A generic pseudo code of parameters-based scheduling algorithm is shown in table 5.1 page 171.

There is any details of the placement strategies used. The scheduling algorithms may be combined

with placement strategies of various complexity in order to achieve a given overall complexity.

As tasks are released, they are inserted in a waiting or ready list (W) and sorted according to

170

5. Scheduling and Placement Algorithms Parameters-Based Scheduling

A pseudo code of the parameters-based algorithm

Initialization: tsch ← CurrentT ime; F ← FinishingTasks(R, tsch); F ⊂ R;

A← ArrivingTasks(tsch); Afree ← free areas; Area P ← 0; flag ← 0;

W ←WaitingTasks(tsch), the list is sorted according to the considered parameter ℘;

R← RunningTasks(tsch), the list is sorted in increasing �nishing time.

Schedule_Param_Based (W,R,Afree);

1. ∀Ti ∈ F , do % dealing with finishing tasks

2. F ← F − Ti % if there is any at time tsch

3. update (R,Afree)

4. flag ← 1

5. end ∀Ti ∈ F

6. if (�ag) % if any task has ended at time tsch

7. ∀Ti ∈ A % updating the waiting list W

8. W ←W ∪ Ti % W is kept sorted ℘−wise

9. end ∀Ti ∈ A

10. ∀Ti ∈W , Afree 6= 0 % attempt to place waiting tasks

11. if (P = place (Ti, Afree)) % if placement successful

12. R← R ∪ Ti % updating the running list R

13. W ←W − Ti % updating the waiting list W

14. end if

15. end ∀Ti ∈W

16. else % if placement fails

17. A← sort(A,℘)

18. ∀Ti ∈ A

19. if (P = place (Ti, Afree)) % attempt to place just arrived tasks

20. R← R ∪ Ti % if successful, updating R

21. else

22. W ←W ∪ Ti % otherwise, add in W if worthy

23. end ∀Ti ∈ A

24. end if (�ag)

Table 5.1: A pseudo code of the tasks parameters-based scheduling algorithm

171

5. Scheduling and Placement Algorithms Parameters-Based Scheduling

their priority ℘i in such a way that :

W = [T1, T2, T3, ..., Tn−1, Tn]⇒ ℘1 > ℘2 > ℘3 > ... > ℘n−1 > ℘n (5.1)

for the n tasks currently in the list. As this is a without-looking-ahead scheduling approach, a

task that fails to be placed is kept in the waiting queue W for further attempts, as long as it can

still meet its deadline. Hence, any rejection occurs at time trej as expressed earlier in equation

3.11 page 94. The rejected task is removed from the waiting list during its update (table 5.1, line

7). The tasks in the running list (R) are sorted according to their increasing �nishing time.

In a uniprocessor system, the microprocessor is assigned to the task with the highest priority

which is T1 in the example above. However, as scheduling hardware tasks on a recon�gurable

hardware devices is much more similar to multiprocessor scheduling, several tasks may concur-

rently run on the device. Hence, the recon�gurable array is allocated to the m tasks that it may

accommodate concurrently. A task of a lower priority may be running while another task of higher

priority is waiting because there is not enough contiguous free space to place it.

The scheduler is invoked each time tsch a new task is released or a running task completes. In

the latter case, the algorithm takes into account the area(s) just freed by the terminated task(s).

Consequently, it updates the running tasks list R and the list of free areas Afree accordingly (line

1 to 5).

The completion of one or several tasks (marked by a tasks completion �ag set to 1) frees new

areas on the array. Hence, if there are newly free areas, the newly released tasks are �rst inserted

in the waiting list (line 6 to 9) with respect to their priority. The scheduler then tries to place as

many tasks as possible from the waiting list (line 10 to 15).

However, if any task completion has occurred at scheduling time tsch (marked by a tasks completion

flag that remains to 0), there is no newly areas freed on the array. Therefore, as the array hasn't

changed and cannot �t any task from the waiting list, the scheduler attempts to place only the

newly arrived tasks (line 16 to 23). In case of failure, the tasks are inserted in the waiting list for

a further attempt (line 22).

As the only di�erence among priority-driven scheduling algorithms is the method for cal-

culating the tasks priorities, the following sections present some of these algorithms with the

corresponding formulas for the priority.

172

5. Scheduling and Placement Algorithms Parameters-Based Scheduling

5.2.1 Temporal parameters based scheduling (Basic, EDF, LLF, etc.)

1. Basic scheduling

In basic scheduling algorithm, the scheduler maintains two lists of tasks : the waiting list (W)

and the running list (R). In the latter, tasks are sorted according to increasing completion

times while the waiting list is sorted according to increasing arrival times, or decreasing

priority. The priority of each task Ti is given by

℘i = 1
ai

ai being the release time of Ti. Therefore, the n ready tasks currently in the waiting list W

are sorted on a �rst come �rst served basis. Equation 5.1 above becomes :

W = [T1, T2, T3, ..., Tn−1, Tn]⇒ a1 < a2 < a3 < < an−1 < an

where ai is the release time of task Ti. The equation suggests that as tasks are released, basic

scheduling algorithm tends to start them as soon as possible. Consequently, the waiting

time of tasks is minimized.

The pseudo code of basic scheduling algorithm is detailed in table 5.2 page 174. The tasks

lists W and R are maintained sorted as previously described. There are two events that

invoke the scheduler : task(s) termination and task(s) release.

When one or many task terminations arise at a given time tsch (without any task released),

one or many areas are consequently freed (line 1 to 5). Tasks in the waiting list are then

prioritized. The scheduler through the placer attempts to place them, beginning from the

task heading the list. The whole list is then scanned and all the tasks that may �t on the

array are placed, as far as the array is not full (line 6 to 13).

Everytime tsch one or many tasks are released, if there is any task �nishing at tsch, the

scheduler directly attempts to place the newly arrived task(s) on the array. In case of

failure, the task(s) is added at the rear of the waiting list.

When both events arise simultaneously (task release and task �nished), the newly released

task(s) is �rst inserted in the waiting list before any placement attempt.

The simulation results of this simple scheduling scheme is presented in chapter 6 section

6.3.1 and compared with other scheduling algorithms.

2. Earliest Deadline First (EDF)

As formerly de�ned in section 3.5.3 page 81, EDF scheduling assigns the highest priority to

173

5. Scheduling and Placement Algorithms Parameters-Based Scheduling

A pseudo code of the basic scheduling algorithm

Initialization: tsch ← CurrentT ime; F ← FinishingTasks(R, tsch); F ⊂ R;

A← ArrivingTasks(tsch); Afree ← free areas; Area P ← 0; flag ← 0;

W ←WaitingTasks(tsch), the list is sorted on a �rst come �rst served basis.

R← RunningTasks(tsch), the list is sorted in increasing �nishing time.

Schedule_Basic (W,R,Afree);

1. ∀Ti ∈ F , do % dealing with finishing tasks

2. F ← F − Ti
3. update (R,Afree)

4. flag ← 1

5. end ∀Ti ∈ F

6. if (�ag) % at least one task has ended at time tsch

7. ∀Ti ∈W , Afree 6= 0 % dealing with waiting tasks first

8. if (P = place (Ti, Afree)) % if placement successful

9. R← R ∪ Ti % R is updated and kept sorted

10. W ←W − Ti
11. end if

12. end ∀Ti ∈W

13. end if (�ag)

14. ∀Ti ∈ A , Afree 6= 0 % dealing with arriving tasks

15. if (P = place (Ti, Afree)

16. R← R ∪ Ti
17. else W ←W ∪ Ti % W is updated and kept sorted ℘-wise

18. end if

19. end ∀Ti ∈ A...

Table 5.2: A pseudo code of the basic scheduling algorithm

174

5. Scheduling and Placement Algorithms Parameters-Based Scheduling

the task with the closest absolute deadline. Therefore, the n tasks currently in the waiting

list W are sorted according to their absolute deadline. Equation 5.1 becomes :

W = [T1, T2, T3, ..., Tn−1, Tn]⇒ D1 < D2 < D3 < < Dn−1 < Dn

where T1 is the heading task and Di the absolute deadline of task Ti.

As discussed earlier in section 3.7.1, two variants of global EDF scheduling (denoted as

EDF-First-k-Fit and EDF-Next-Fit respectively) for recon�gurable hardware devices along

with their schedulability analysis were proposed by Danne (2006).

In this thesis, the global EDF scheduling is similar to the aforementioned EDF-Next-Fit but

applied to online aperiodic and nonpreemptive tasks, and using a 2D placement strategy.

The simulation results are shown and discussed in Chapter 6, section 6.3.1.

3. Least Laxity First (LLF)

LLF scheduling is quite similar to EDF scheduling. LLF scheduling assigns the highest

priority to the task with the smallest laxity. Therefore, the n tasks that are currently ready

are sorted in a waiting list W according to their laxity. Therefore, equation 5.1 becomes :

W = [T1, T2, T3, ..., Tn−1, Tn]⇒ l1 < l2 < l3 < < ln−1 < ln

where T1 is the heading task and li the laxity of task Ti.

LLF tends to prioritize the tasks that are closer to miss their deadline.

The simulation results of the LLF scheduling is shown and discussed in Chapter 6, section

6.3.1

5.2.2 Geometric parameters based scheduling (BSF, SSF, etc.)

1. Biggest Size First (BSF)

In BSF scheduling policy, the bigger the size of a task, the higher its priority. Priority of

each task Ti is given by :

℘i = wi · hi

175

5. Scheduling and Placement Algorithms Parameters-Based Scheduling

In the case of equal size tasks, the task with the higher aspect ratio is assigned a higher

priority. Hence, let Ti and Tj be two tasks:

wi · hi = wj · hj ⇒

 ℘i > ℘j if
hi

wi
≥ hj

wj
⇒ ℘i = ℘j + ε

℘i < ℘j if
hi

wi
<

hj

wj
⇒ ℘i = ℘j − ε

(5.2)

2. Smallest Size First (SSF)

In opposition to BSF, SSF gives priority to smaller size tasks. Priority of each task Ti is

then given by

℘i = 1
wi·hi

In the case of two tasks Ti and Tj with equal size the task with a higher aspect ratio is

assigned a higher priority, as expressed in equation 5.2 above.

Intuitively, BSF will provide a better recon�gurable array utilization ratio compared to SSF,

as it places bigger tasks �rst. Contrary to BSF, SSF increases the array fragmentation by placing

smaller tasks on available areas that may �t bigger tasks.

The simulation results of the BSF and SSF scheduling are shown and discussed in Chapter 6,

section 6.3.1.

5.2.3 Combining Geometric and Temporal parameters for scheduling

In this scheduling policy, the priority of each task is calculated using both geometric and temporal

parameters of the task. Classi�ed Stu�ng (Chen and Hsiung, 2005) is one example of such

scheduling algorithms. In Classi�ed Stu�ng (CS), a task is placed on either the leftmost or the

rightmost of the recon�gurable array depending on its space utilization rate. The latter being the

ratio between the width and the execution time of the task. CS is an improvement of normal 1D

stu�ng algorithms (Steiger et al., 2004). Both algorithms use a 1D placement, which means that

the height of the task is meaningless and is not taken into account in the priority assignment.

Section 3.7.2 in Chapter 3 provides more details of the CS algorithm and the 1D normal stu�ng

algorithm.

The coming section presents the computational load based scheduling algorithm. The algorithm

combines geometric and temporal parameters and uses a 2D placement.

Computational load based scheduling

The algorithm is based on the absolute computational load of the task. The priority of each

176

5. Scheduling and Placement Algorithms Slot-Based Scheduling

task is given by :

℘i = wi · hi · ei

which corresponding to the total amount of resources needed to complete the task. Tasks are

sorted according to decreasing computational loads in a ready tasks list W , as shown in the

following equation.

W = [T1, T2, T3, ..., Tn−1, Tn]⇒ w1 · h1 · e1 > w2 · h2 · e2 > > wn · hn · en

Hence, the algorithm schedules resources greedy tasks �rst. As in other priority-driven scheduling

policies presented above, when many tasks share the same priority, the task with the highest aspect

ratio is assigned the highest priority. This algorithm is likely to achieve a higher recon�gurable

array utilization ratio, as tasks that use more resources are placed �rst.

5.3 Slots-based Scheduling

Slots-based scheduling relies on the partitioned scheduling presented in section 3.6.4. The recon�-

gurable array is partitioned into slots as shown in Chapter 3, �gure 3.8. The number and the

size of each slot may be either predetermined or dynamically changed depending on the size of

arriving tasks. This resulted in many slots-based scheduling algorithms that are presented below.

5.3.1 n X 1D variable size slots scheduling

In n X 1D variable size slots scheduling, the recon�gurable array is 1D-partitioned, n being the

maximum number of partitions. The size of the partitions depends on the size of the arriving

tasks. Hence, the size of the �rst partition is �xed by the size of the �rst task. A simple 1D

placer is used in each slot. The placer keeps a list of partition that are sorted according to a given

criteria. For example, in load-balanced 1D variable slots scheduling, the slots are sorted according

to the increasing loads. Hence, any new job is scheduled on least loaded slot. This thesis refers to

this scheduling as 1D variable size slots scheduling.

Figure 5.1 depicts three variants of a 1D variable size slots scheduling. This scheduling ap-

proach relies on the simplicity of the 1D placement used in each slot. The resulting internal

fragmentation is drastically reduced compared to a traditional (non partitioned) 1D placement.

Let Γ6 be a set of six tasks to online schedule on the recon�gurable array using 1D variable

size slots scheduling, as mapped in �gure 5.1. Tasks in Γ5 are sorted according to their increasing

release times ai as expressed below, and are placed on the recon�gurable array as they are released.

177

5. Scheduling and Placement Algorithms Slot-Based Scheduling

Figure 5.1: 1D-like partitioned scheduling

Γ6 = [T1, T2, T3, T4, T5, T6]⇒ a1 < a2 < a3 < a4 < a5 < a6

The size of the recon�gurable array is Afpga = W ·H where W and H are respectively the width

and the height of the device. T1 is the �rst task released and is placed on the bottom left of the

recon�gurable array. A �rst slot denoted as W1 is created, which width is equal to the width of

T1. At this stage, there are two slots on the device, W1 and W2 = W −W1, not detailed on the

�gure. Therefore, di�erent �tting strategies may be used : First Fit, Next Fit and Best Fit.

1. First Fit (FF) strategy places the next task in the �rst available slot that can �t the task.

As shown on the left of �gure 5.1, when tasks T2 and then T3 are arrive, they are placed in

the �rst available slot, W1. T4 is released and cannot �t in W1. Therefore, a second slot

W2 is created, which width is equal to the width of T4. There are currently 3 slots on the

recon�gurable array, W1, W2 and W3 = W −W1 −W2. The next task T5 is released and

placed on the �rst slot that can �t it, which is slot W1. Task T6 arrives at last and is placed

in the �rst slot that can accommodate it, the slot W2. The 3
rd slot (hatched) is free.

2. Next Fit (NF) strategy places the current task on the next available area that may �t the

task, as mapped in the middle of �gure 5.1. Next Fit schedules tasks T1, T2 and then T3

similarly to FF described above. The three �rst tasks are placed in the �rst slot W1, as the

latter is wide enough to �t them. When T4 arrives, the scheduler checks the next available

area that can accommodate the task. As the �rst slot cannot accommodate it, a slot of the

same width as T4 is generated, T4 is placed. At this stage, there are 3 slots on the array

178

5. Scheduling and Placement Algorithms Slot-Based Scheduling

and �tting solutions for FF and NF are similar. Contrary to FF strategy, when T5 arrives,

NF assigns the second slot W2 to it, instead of the �rst slot. Indeed, NF checks the area

that is directly next to the previous area where the last task (T4 here) has been placed. T6

is released and placed in the next available area, which is in the 3rd slot.

3. Best Fit (BF) always selects the area that �t the best and that reduces internal frag-

mentation. The algorithm selects among all possible �tting areas, the area which size is

closer to the task size. This chosen area may be either in an existing slot, or in a newly

generated slot which width will be equal to the width of the task. An example of a BF

placement is pictured on the far right of �gure 5.1. T1 and T2 are placed similarly to FF

and NF placements described above. However, contrary to FF and NF, BF places T3 in a

newly generated slot W2 that �ts it the best and that minimizes the internal fragmentation.

Indeed, FF and NF placements depicted respectively on the far left and the centre of �gure

5.1 �t T3 and T5 in the �rst slot, inducing a lost of space.

After placing the six tasks using each of the 3 �tting strategies, there are two types of remaining

areas :

• the remaining free areas (hatched areas) that are available and can accommodate new tasks.

• the internally fragmented areas (white areas) that are wasted as long as the neighbouring

tasks that brought them out have not completed (e.g. the areas next to T3, T4 or T5 in FF

placement are lost as these tasks do not occupy the entire width of the slot accommodating

them).

Figure 5.1 shows that the BF �tting strategy produces more free areas and less internal frag-

mentation compared to FF and NF. The remaining available free area represents ∼ 17% for FF

strategy, ∼ 28% for NF strategy and ∼ 36% for BF strategy. The latter strategy increases the

recon�gurable device utilization ratio accordingly.

A pseudo code of the 1D variable slots scheduling algorithm is presented in table 5.3, page 180.

Lines 1 to 5 deal with tasks termination. If any has occurred, lines 6 to 14 update the slots and

attempt to place the waiting tasks if there is any. Finally, lines 15 to 21 deal with arriving tasks.

The placement (lines 8 and 16) are done using one or another of the �tting strategies above.

In the coming section, n X 1D variable size slots scheduling is combined with the looking-ahead

scheduling approach.

179

5. Scheduling and Placement Algorithms Slot-Based Scheduling

A pseudo code of the 1D variable slots scheduling algorithm

Initialization: tsch ← CurrentT ime; F ← FinishingTasks(R, tsch); F ⊂ R;

A← ArrivingTasks(tsch); Afree ← free areas; Area P ← 0; flag ← 0;

W ←WaitingTasks(tsch), the list is sorted on a �rst come �rst served basis.

R← RunningTasks(tsch), the list is sorted in increasing �nishing time.

Schedule_1D_Var_Slots_Based (W,R,Afree);

1. ∀ Ti ∈ F , do % dealing with finishing tasks

2. F ← F − Ti
3. update(Ti, Afree → sloti)

4. flag ← 1

5. end ∀ Ti ∈ F

6. if (�ag) % if at least one task has ended at time tsch

7. ∀ sloti ∈ Afree , do % merging empty slots if exist

8. if(sloti → empty) merge_slots_if_worthy()

9. end ∀ sloti ∈ Afree
7. ∀ Ti ∈W , Afree 6= 0 % dealing with waiting tasks first

8. if(P = place(Ti, Afree)) % if placement successful

9. R← R ∪ Ti % R is updated and kept sorted

10. W ←W − Ti
11. update(Ti, Afree → sloti) % updating the slot

12. end if

13. end ∀ Ti ∈W

14. end if(flag)

15. ∀ Ti ∈ A , Afree 6= 0 % dealing with arriving tasks

16. if(P = place(Ti, Afree)

17. R← R ∪ Ti
18. update(Ti, Afree → sloti)

19. else W ←W ∪ Ti % W is updated and kept sorted ℘-wise

20. end if

21. end ∀ Ti ∈ A...

Table 5.3: A pseudo code of the 1D variable slots scheduling algorithm

180

5. Scheduling and Placement Algorithms Slot-Based Scheduling

5.3.2 1D variable slots looking-ahead scheduling

Chapter 3 has presented the looking-ahead scheduling along with its advantages and drawbacks.

The main advantage was the ability for the scheduler to know as soon as a task arrives, whether

it may �t in the recon�gurable array at current time or later on. However, this rapid decision

came at the cost of numerous placement and area management operations required to mimic fu-

ture states of the recon�gurable array. This cost may be even higher if optimal area management

strategies (e.g. MERs-based) are used.

The methodology presented in Chapter 4 �rst made accurate measurements of runtime overheads

of MERS-based area management on a real embedded processor. Based on these measurements,

di�erent trade-o�s between the scheduling scheme and the underlying placement strategy were sug-

gested . Hereinafter is an algorithm that results from a combination of a looking ahead scheduling

algorithm and an 1D slots based placement strategy. Any other possible combination hasn't been

discussed.

1D variable size slots horizon (1D-VSSH)

1D variable size slots horizon (1D-VSSH) scheduling combines the advantages of a looking-ahead

scheduling (especially the horizon scheduling, Steiger et al., 2004) with the simplicity of a 1D

variable size slots scheduling/placement presented in the former section. The 1D horizon schedul-

ing (Steiger et al., 2004) is used in each slot. Following the same principle, a stu�ng scheduling

(Steiger et al., 2004) or an improved stu�ng (e.g. Chen and Hsiung, 2005) may also be used.

Figure 5.2 illustrates a case where a set of 6 tasks Γ6 = [T1, T2, T3, T4, T5, T6] are scheduled

on a 10X6 recon�gurable array using 1D variable size slots horizon scheduling. Parameters of the

tasks are detailed in table 5.3.2. Each task is submitted to a deadline constraint. The number

and the size of slots are adjusted at runtime depending on the size of released tasks.

Table 5.4: Tasks parameters

for 1D variable size slots

looking-ahead scheduling

tD = max(d) = 18

Tasks parameters T1 T2 T3 T4 T5 T6

a : arrival time 1 1 3 3 5 8

e : execution time 8 7 10 6 5 4

d : deadline 10 10 17 17 17 18

latest starting time 2 3 7 11 12 14

w : width of the task 3 5 6 3 2 7

h : height of the task 5 4 2 3 3 3

181

5. Scheduling and Placement Algorithms Slot-Based Scheduling

Figure 5.2: 1D improved horizon scheduling algorithm, also denoted as 1D variable size slots

horizon (1D-VSSH)

Horizon scheduling algorithm schedules a task either on the currently available areas, or

prospects future states of the array in order to see if there is any area that may accommodate the

task in a the future and run it to completion without missing its deadline.

At time t = 1, T1 and T2 are released and placed in the recon�gurable array (�gure 5.2(a)).

The width of the �rst slot W1 is �xed by the width of T1. T2 is placed in the second slot W2. W2

and W3 are �oating size slots, as they may be resized. However, the size of W1 is bounded as far

as W2 hosts at least one task.

At time t = 3, T3 and T4 are released (�gure 5.2(b)). W2 is resized in order to �t T3. At current

time, there is no place to �t task T4. However, T4 may start at time t = 11 latest without missing

its deadline. As task T1 will complete at t = 9, the area that will be freed may �t T4. T4 is

182

5. Scheduling and Placement Algorithms Slot-Based Scheduling

planned to start at time t = 10 at the position currently occupied by T1. Therefore, T1 and T4

overlap on the �gure.

At time t = 5, T5 arrives and cannot �t in any currently available area. The latest starting time for

it is t = 12 otherwise it will violate its time constraint. Consequently, slot W1 may accommodate

T5 in addition to T4 at time t = 10 after the completion of T1. T5 is planned as shown in �gure

5.2(c).

At time t = 8, T6. Following the same principle, T6 is planned to start at time t = 12 after T2

completes. However, slots W2 and W3 are resized in order to �t T6.

The relative application (computational) load of the tasks set Γ6 is given by

resΓ5 =
∑k

i=1
wi·hi·ei

W ·H·tD = 3·5·8+5·4·7+6·2·10+3·3·6+2·3·5+7·3·4
10·6·18 = 50.7%

It re�ects the amount of resources required by Γ6 relative to the total amount of resources available

on the recon�gurable array during tD time units, tD being the absolute deadline of Γ6.

The utilization ratio of the recon�gurable array resulting from the current scheduling policy (1D

variable slots horizon-looking-ahead) on Γ6 is given by :

Ufpga(%) =
∑6

i=1
wi·hi·ei

W ·H·mk = 3·5·8+5·4·7+6·2·10+3·3·6+2·3·5+7·3·4
10·6·16 = 57.1%

mk is the makespan or the schedule length. It corresponds to the latest �nishing time which is

equal to 16 in the above case. W and H are respectively the width and the height of the recon�-

gurable array.

Simulation results for 1D variable size slots horizon looking-ahead scheduling is shown and

explained in Chapter 6, section 6.5.2.

5.3.3 1D variable slots scheduling with minimum makespan

The makespan is one of the most used objective function. Indeed, most of the scheduling costs

are highly tight to the amount of time spent by a given user (or application) on the computing

resources. Consequently, the makespan must be reduced. However, as shown in Chapter 3 section

3.4.3, there is no optimal solution in online scheduling, and performance analysis is done through

average-case analysis or worst-case analysis (e.g. competitive analysis).

The �ow time of each job may a�ect the makespan. Hence, the reduction of the total �ow

time may be considered. As expressed in equation 4.20 page 162, the �ow time of a job is the

time spanning from its release to its completion.

183

5. Scheduling and Placement Algorithms Slot-Based Scheduling

Minimizing the total �ow time of a job sequence Γn is equivalent to minimizing the average �ow

time which has been also expressed in equation 4.21, page 162. In multiprocessor scheduling, one

way of minimizing the total �ow time is to give higher priority to jobs with longest execution

time. The reason is that the sooner the jobs with long processing time start, the sooner they

complete. This is even more important in online scheduling. Jobs with longer execution time

should not have to wait too long before starting, as they would likely increase the �ow time of the

task, and therefore the makespan. An example is shown on the left of �gure 5.3 where a late start

of task T21 drastically lengthens the makespan. From a multiprocessor scheduling perspective,

�gure 5.3 depicts the worst case and the optimal case of a list scheduling of n tasks on m identical

processors. The case is transposed in recon�gurable hardware scheduling domain.

Figure 5.3: List scheduling vs optimal scheduling of n tasks on m identical processors; ei is the

execution time of task Ti

Let Γn = [T1, T2, ..., Tn] be a list of n hardware tasks of width w1 = w2 = ... = wn−1 = wn = 1

and processing times e1 = e2 = ... = en−2 = en−1 and en = m. Let us assume that jobs in Γn

are presented one by one to the scheduling algorithm. As soon as a job ti is scheduled, the next

job ti+1 in the list is available for scheduling. This may correspond to jobs arrive over list or jobs

arrive over time online paradigm.

Let FPGAm be anm−columns recon�gurable hardware device wherem is the width of the device

and n = m · (m− 1). In order to schedule Γn on FPGAm, let us assume that either the scheduler

184

5. Scheduling and Placement Algorithms Placement Strategies

uses a 1D placer or the height of each hardware task in Γn spans the entire height of FPGAm.

Therefore, FPGAm can concurrently �t m jobs. The list scheduling algorithm schedules any new

job on least loaded processor (here the less loaded column). As depicted on the left of �gure

5.3, the �rst job t1 is placed in the �rst column c1 at time 0, the second job t2 on the second

column c2 and so on. The resulting makespan is mkon = 2m− 1. Indeed, as the scheduler learns

about tasks one by one, it cannot properly plan the arrival of tasks with longer execution time

like T21. Consequently, at the end, the �nal load of each column of the recon�gurable array is

very unbalanced, leading to a higher makespan and a lower average utilization ratio. This special

case of the left of �gure 5.3 has been chosen to be a worst case scenario.

The right of �gure 5.3 shows how optimal would have been an o�ine scheduling of the same tasks

set Γn on the same recon�gurable device FPGAm. Indeed, if we have a priori knowledge of the

tasks in Γn, they can be optimally dispatched in di�erent columns of the device, as shown by the

right of �gure 5.3. The resulting makespan is optimal and lowered to mkopt = m.

As stated in Chapter 3 and expressed by equation 5.3, an online scheduling algorithm (e.g. list

scheduling here) is said c−competitive if for any input instance Γn, the objective function (e.g. the

makespan mkon in �gure 5.3-left) produced by the algorithm on Γn is at least c times better than

that obtained with the optimal o�ine scheduling, as shown in �gure 5.3-right. This is expressed

by

mkon ≤ c ·mkopt (5.3)

c is known as the competitive ratio of the online scheduling algorithm, and is expressed as follows:

c =
mkon
mkopt

= 2− 1
m

(5.4)

In the special case of �gure 5.3 where wi = 1, if we assume that each hardware task in Γn spans

the entire height of the recon�gurable device, the utilization ratio in online scheduling and in

o�ine optimal scheduling are respectively

Uon(%) =
∑n

i=1
ei

m·mkon
and Uopt(%) =

∑n

i=1
ei

m·mkopt

where Uon(%) ≤ Uopt(%). Therefore, equation 5.3 becomes:

mkon ≤ (2− 1
m

) ·mkopt (5.5)

As emphasized in equation 5.5, equation 5.4 guarantees the fact that the makespan of the online

algorithm will never be beyond (2− 1
m)·mkopt. The latter equation is also known as the competitive

ratio of the Graham's online list scheduling problem (Graham et al., 1979) where a sequence of jobs

has to be scheduled on m identical parallel processors in a way that the makespan is minimized.

185

5. Scheduling and Placement Algorithms Placement Strategies

A pseudo code of the 1D variable slots with minimum makespan scheduling algorithm

Initialization: Afree ← free areas; Area P ← 0 ; flag ← 0 ; tsch ← CurrentT ime ;

F ← FinishingTasks(R, tsch); F ⊂ R; A← ArrivingTasks(tsch); R← RunningTasks(tsch);

W ←WaitingTasks(tsch), the list is sorted in decreasing processing time.

Afree = {C1, Clong} , C1 = 1st cluster, Clong = 2nd cluster for tasks with long processing time.

Temp← empty , temporal list of tasks to be placed, sorted in decreasing processing time;

elong ← α · emax , long processing time threshold, e.g. α = 0.5 ;

Schedule_1D_slots (W,R,Afree) ;

1. ∀ Ti ∈ F , do % dealing with finishing tasks

2. F ← F − Ti
3. update(R,Afree → Ci) % updating the corresponding cluster

4. flag ← 1

5. end ∀ Ti ∈ F

6. if (flag) % if at least one task has ended at time tsch

7. Temp←W ∪A % Temp contains W and A.

8. ∀ Ci ∈ Afree, Ci 6= Clong , do % merging empty slots if exist

9. if (Ci → empty) merge_clusters_if_worthy()

10. end ∀ Ci ∈ Afree
11. else Temp←W % Temp contains only W

12. end if(flag)

13. ∀ Ti ∈ Temp , Afree 6= 0 % dealing with waiting tasks

14. if (Ti → exec_time ≥ elong) P = place(Ti , Clong)

15. if (notP) P = place(Ti , Ci 6=long)

16. if (P) % if placement successful

17. R← R ∪ Ti % R is updated and kept sorted

18. Temp← Temp− Ti
19. update_clusters(R,Afree → Ci)

20. end if (P)

21. end ∀ Ti ∈ Temp

22. W ←W ∪ Temp % W is updated and kept sorted, Temp emptied

Table 5.5: A pseudo code of the 1D variable slots with minimum makespan algorithm

186

5. Scheduling and Placement Algorithms Ternary Tree Structure

5.4 Placement Strategies for 2D Looking-Ahead Scheduling

In Chapter 4, MERs-based optimal area management strategies have been used to re�ne the

methodology, and to refer to as a comparison reference. According to the same methodology, non

optimal area management and placement strategies, combined on one hand with looking-ahead

scheduling algorithms, and on the other hand with multi-shape tasks scheduling were adopted.

In most of designed scheduling algorithms, the placer manages the areas mainly through a binary

search tree as described in Bazargan et al. (2000) and detailed in Chapter 3, section 3.8.3. The

time complexity for �nding a given node in the tree is O(n) in the worst case, n being the number

of tasks running on the FPGA. The complexity drops to O(log2(n)) if the tree is balanced. By

default, a 2D placer is used, unless a 1D placer is clearly mentioned in the name of the scheduling

algorithm.

In some cases, the hash matrix presented by Walder et al. (2003) was used. The tree and the

hash matrix (if used) are updated at each task insertion or deletion. The matrix stores free areas

and allows the placer to �nd a feasible placement in constant time complexity O(1). However,

updating the matrix requires a potential scan of w · h entries, where w and h are respectively the

width and the height of the area inserted in or deleted from the matrix. Walder et al. (2003) show

that the number of real scans is one order of magnitude lower than that.

No matter if the matrix is used or not, a scheduling algorithm is comparable to another only

if both are using the same placement strategy. This ensures that any improvement will be to

scheduler's credit. In this chapter, there is no more details of the placement strategies, as they

were formerly described in Chapter 3 and detailed in the papers of the authors cited above.

In the coming section is proposed a ternary tree structure suitable for looking-ahead scheduling.

5.4.1 A Ternary Tree structure for Looking-Ahead Scheduling

This section presents a ternary search tree structure enabling looking-ahead scheduling of real-time

tasks on partially recon�gurable FPGAs. The structure suits to this scheduling approach, as it

provides a good overview of present and future states of the recon�gurable array.

As previously stated, looking-ahead scheduling schedules each task once at its arrival and imme-

diately rejects or accepts it. The accepted task may start instantaneously or later and still meet

its deadline. This rapid scheduling decision makes looking-ahead scheduling of vital interest for

online real-time systems. Indeed, an immediate task rejection gives to the OS the opportunity for

�nding alternative resources implementation other than the recon�gurable array.

187

5. Scheduling and Placement Algorithms Ternary Tree Structure

Through the literature review in Chapter 3 and the methodology in Chapter 4, it was also stated

that the recon�gurable array utilization ratio, the task rejection ratio and the scheduling algo-

rithm complexity highly depend on the underlying placement strategies used. Consequently, using

a looking-ahead scheduling is worthy in an online real-time context only when combined with low

complexity free area management strategies.

In this section, the looking-ahead scheduling is combined with a low complexity 2D placement

strategies in order to lower the overall scheduling/placement runtime overheads. This placement

strategy relies on the binary search described in Chapter 3 section 3.8.3. The tree has been in-

troduced by Bazargan et al. (2000) and improved by Walder et al. (2003). It stores the state of

the recon�gurable array along the scheduling process. In this thesis, a ternary tree suitable for

looking-ahead scheduling was derived from the binary tree.

Managing the tree : example of two horizon scheduling algorithms

The ternary tree structure is a variants of the binary tree. Storing the states of the array in the

latter structure makes merging and splitting operations more intuitive, as detailed earlier in �gure

3.26 page 128. The same principle is applied to the ternary tree. The time complexity for �nding

a node in the structure is bounded by O(n), n being the number of tasks currently placed in the

array.

Figure 5.4 pictures splitting and merging processes that result from the scheduling of a set

of tasks on the recon�gurable array. Let Γ6 = [T1, T2, T3, T4, T5, T6] be a set of online real-time

hardware tasks to schedule. Parameters of Γ6 are shown in table 5.4.1.

As shown in �gure 5.4 (i), (ii), and (iii), when a task is placed in an area, the area is divided in

three rectangles according to vertical, horizontal or overlapping split . In the binary tree presented

in Bazargan et al. (2000) and Walder et al. (2003), each node represents an area which can generate

up to two children nodes when a task is placed. A third node is generated only in some special

cases. In the ternary tree proposed in this thesis and depicted in �gure 5.4, a third area node of

the size of the task placed ((a) and (a′)) is systematically generated. Each node stores the size

and the time availability of an area. One example of a set of tasks to be scheduled is given in

table 5.4.1. The scheduling algorithm learns about tasks as they are released. According to �gure

5.4, the entire resources of the FPGA of size 10x6 is available at the beginning. Therefore,

• At time t = 1, tasks T1 and T2 are released in the system. They are immediately placed, as

there is enough place to �t them (see a and b). Children nodes are generated accordingly

188

5. Scheduling and Placement Algorithms Multi-shape Tasks Scheduling

Table 5.6: Example of tasks

parameters for

horizon-SFAF and

horizon-EAAF scheduling

algorithms

tD = max(d) = 18

Tasks parameters T1 T2 T3 T4 T5 T6

a : arrival time 1 1 3 3 5 8

e : execution time 8 7 10 6 5 4

d : deadline 10 10 17 17 17 18

latest starting time 2 3 7 11 12 14

w : width of the task 3 5 6 3 2 7

h : height of the task 5 4 2 3 3 3

(see a′ and b′). The information in the root node (b′) shows that the whole FPGA will be

available at time 18 while the child node 7x6 hosts the area 7x6 occupied during the time

interval [1, 8].

• At time t = 3, T3 arrives and cannot �t in any currently available area (nodes 3x1, 5x2

and 2x6 on (b′)). However, T3 can �t in node 7x6 and still meet its deadline. Thus, T3 is

planned to start at time t = 8.

• At time t = 5, T4 arrives. There are two scheduling options :

1. the horizon-EAAF

this �tting approach assigns the Earliest Available Area First to T4. The node that is

available sooner than any other node capable of accommodating task T4 is the node

6x4, available at time t = 8. This �tting strategy may correspond to �rst �t, from a

temporal point of view.

2. the horizon-SFAF

this approach assigns the Smallest Fitting Area First to T4. The smallest node among

all the node that can �t the task is the node 3x5, available at time t = 9). The node

corresponds to the area that �ts the best, similar to best �t �tting strategy.

Intuitively, horizon-SFAF should outperform horizon-EAAF in terms of recon�gurable chip

utilization ratio, as it relies on a best �t approach. For the sake of simplicity, these two variants

of horizon scheduling algorithms are sometimes denoted as SFAF and EAAF respectively.

The simulations results of the horizon-SFAF and the horizon-EAAF horizon scheduling using

the ternary tree scheduling are presented and discussed in Chapter 6, section 6.5.1. The two

variants are compared with two tasks parameters based scheduling algorithms (EDF scheduling

and the Basic scheduling).

189

5. Scheduling and Placement Algorithms Multi-shape Tasks Scheduling

At t=3, T3 arrives and can’t f i t in any of currently available areas.
T3 is planned to start at t=8 at node 7x6. The tree is updated (c-c’)
but areas 5x2 and 2x6 (b’) are lost during t ime interval [3,8] (horizon)

At t=5, T4 arrives and cannot f i t
anywhere before t ime 8.
T4 could start either at node 6x4 at t=8 (EAAF approach...),
or at node 3x5 at t=9 (SFAF); see above (c, c’) and then below...

(a) (b)

(c)

At t=1, T1 and T2 arrive and are placed (see a, a’, b and b’)...

 T1
 3x5
[1-9]

3x1(1)
1
x
6

(8)

6 X 4 [3 - 8]

 T3
6 x 2 [8 - 1 8]

3x1 (1)

 7x6 (1) T1
 3x5
[1-9]

 T1
 3x5
[1-9]

3x1 (1)

2x6
(1)

5x2 (1)

 T2
 5x4
[1-8]

1 0 x 6
(9)

T1: 3x5
[1-9]

7x6
(1)

l

s
x

(a’)

3x1
(1)

3x1
(1)

2x6
(1)T2: 5X4

[1-8]

l

s
x

x
s

5x2
(1)

(b’)
1 0 x 6
(1 8)

T1: 3x5
[1-9]

7x6
[1-8]

l

1 0 x 6
(1 8)

T1:3x5
[1-9]

3x1
(1)

7x6
(18)

T3: 6x2
[8-18]

l

sx

x

s

6X4
[3-8]

1x6
[3-8]

(c’)

1 0 x 6
(1 8)

T1:3x5
[1-15]

3x1
(1)

1x6
(8)

7x6
(18)

T3: 6x2
[1 - 1 8]

l

s

x

x s

6x4
(14)

T4: 3x3
[9 , 1 5]

x

3x2
[1-9]

l

T4’ :3x3
[8 , 1 4]

x

3x1
[1-8]

3x4
[1-8]

(d ’)

(i) horizontal split

 Task
x area

l: laying area

s: standing
 area

(i i) vertical split

l : laying

s: standing
 area

(i i i) overlaping split

 laying

standing

EAAF :

SFAF :

 Task
x area

 Task
x area

over laping region

1 0 x 6 1 0 x 6

 3x2
[1-9]

3x1(1)

1
x
6

(8)T3 : 6x2
[8 - 1 8]

T 4 : 3 x 3

[9 - 1 5]

6 X 4 [1 - 8]

(d) SFAF fitting of T4

3x1(1)

1
x
6

(8)T3 : 6x2
 [8 -18]

3 x 1 [1 - 8]

T 4 ’ : 3 x 3

[8 - 1 4]

 3X4
[1 - 8] T1

 3x5
[1-9]

(d) EAAF fitting of T4

l

l

s

l

or

Figure 5.4: Ternary tree structure : splitting and updating processes
190

5. Scheduling and Placement Algorithms Multi-shape Tasks Scheduling

5.5 Multi-shape based Tasks Scheduling

Multi-shape based scheduling is a scheduling algorithm that assumes that each hardware task may

have more than one versions that di�er from each other by their shape, size and/or processing

time. Such tasks is denoted as multi-shape tasks, and the corresponding scheduling/placement

algorithms as multi-shape based.

When designing a hardware task, there are mainly two stages at which the designer can in�uence

its shape and its size :

1. Prior to the synthesis phase

by using various arithmetic implementation techniques. The techniques range from bit-serial

to fully parallel and therefore provide a range of options and compromises between the size of

each task and its temporal characteristics. Distributed Arithmetic is a well-known example

of such a technique. A task may have several execution times (or throughput) depending

on whether it has been implemented serial, semi-parallel or fully parallel. Variants of the

same task di�er from each other by their size and the corresponding execution time. One

example is depicted in �gure 5.5 where task T3 is a multi-shape task with a normal variant

and some smaller variants (smaller_standing and smaller_laying) with a longer execution

time.

2. After the synthesis phase

where Place & Route tools may be used to constrain a designed module in a rectangular

region. This relies on the module-based design for partial recon�guration described earlier

in Chapter 2 section 2.5.8. Such a region-constrained Place & Route may slightly change

temporal characteristics of the module or task (e.g. the highest operation frequency deduced

from the longest path in the module layout). However, it is assumed in this thesis that exe-

cution time of a task remains slightly the same for slightly the same amount of con�gurable

resources. Figure 5.5 depicts an example where task T3 is a multi-shape task with a normal

variant and some variants denoted as same_standing and same_laying that use the same

amount of con�gurable resources for the same execution time, but are of di�erent width

and height.

Therefore, designing multi-shape tasks comes at the cost of an extra e�ort at design time. In

addition, memory requirements for storing modules bitstreams increase linearly with the number

of variants per task. As additional versions of hardware tasks tend to be smaller versions that

191

5. Scheduling and Placement Algorithms Raison d'Être for Multi-shape Tasks

Figure 5.5: Multi-shape tasks provides more �tting opportunities (e.g. T3 provides 5 variants).

minimize the total amount of con�gurable resources, memory requirement is bounded by O(n)

where n is the number of variants per task.

5.5.1 Raison d'être for multi-shape tasks

As stated in the previous chapter, a way of improving the scheduling/placement quality without

increasing the algorithm complexity and runtime overhead is to generated hardware tasks that

feature more than one rectangular shape. Multi-shape based scheduling is suitable for applications

with hardware tasks that have more than one implementation version on the recon�gurable device,

as depicted in �gure 5.5. The top of the �gure depicts an example of a multi-shape task with 5

versions. The bottom of the �gure depicts a placement scenario of such tasks. The normal version

of task T3 couldn't �t on the recon�gurable array in any of the three cases illustrated in the bottom

of �gure 5.5. Indeed, after placing any of the two versions of tasks T1 and T2, the remaining area is

not big enough to �t the normal version of T3. (a), (b) and (c) map three placement alternatives.

In the example, T3 provides versions that use less resources (smaller versions) in addition to version

that use the same amount of resources (same size versions).

192

5. Scheduling and Placement Algorithms Raison d'Être for Multi-shape Tasks

Let Ti = {Ti1, Ti2, ..., Tin} be an n-versions multi-shape hardware task where Tij is the j
th

version of task Ti . The ratio in equation 5.6 gives a simpli�ed relation between size and execution

time of the n di�erent versions of task Ti.

∀Tij , Tik ∈ Ti,
Aij
Aik

=
wij · hij
wik · hik

=
eik
eij

(5.6)

where Aij = wij · hij is the size of the jth version of task Ti (resp. eij is the execution time of the

jth version of task Ti). For example, task T3 in �gure 5.5 has a normal version and two half sized

versions (smaller laying and smaller standing) with an execution time that is twice longer.

Scheduling multi-shape hardware tasks does not really increase the algorithm complexity and

runtime overhead. The many the versions per hardware task, the higher the probability of �tting

tasks on the recon�gurable array. Thus, the task rejection ratio and the recon�gurable array

utilization ratio are improved. Consequently, the philosophy beyond multi-shape is to partially

shift the complexity of the runtime scheduling and placement from online time to o�ine or design

time. Therefore, the extra e�ort at design time consists of generating as many versions (bitstreams)

of each hardware task as possible.

There are at least two more reasons for using multi-shape tasks :

• From a power consumption perspective : providing various implementation versions of a

hardware task is meaningful in power-aware systems. Indeed, the power consumption of a

hardware task is quite in�uenced by its size, its operation frequency and the type of logic

resources that implement it. For example, a pure CLBs-based module may consume more

power than a module that mainly uses dedicated ASIC blocks (e.g DSP blocks, hard core

processor, etc.). A system can switch from a normal that state to a power-aware state just

by swapping tasks versions in and out the system depending on their power consumption.

For example, the system may provide a high QoS in its normal state at the cost of power

consumption, and may switch into a state that sacri�ces the QoS for the sake of energy

save.

• From a cryptography and encryption perspective : multi-shape hardware tasks may also be

recommended in digital systems that fear of being spied at the physical implementation

level by techniques like di�erential power analysis. By tracking the energy consumed by

a mathematically secured digital system, a di�erential power analysis may collect enough

information to break its encryption. However, the system may be more di�cult to track if

di�erent variants of each task are dynamically swapped in and out the recon�gurable array,

or relocated at runtime.

193

5. Scheduling and Placement Algorithms The multi-shape algorithm

Figure 5.6: Flow chart of the multi-shape algorithm that selects task version to be placed.

5.5.2 The multi-shape basic algorithm

The multi-shape algorithm schedules a list of ready tasks that is sorted according to their arrival

times. Hence, the algorithm di�ers from the basic scheduling algorithm presented earlier only by

the fact that each hardware task provides more than one rectangular shape. Tasks are kept into

the queue as long as they can still meet their deadline. At each time tsch, the scheduler is invoked

only in the event of task(s) termination (tf) and/or task(s) arrival (tr) and proceeds as followed:

• if (tsch = tf), the algorithm scans the queue from the head, attempting to place tasks as far

as possible, removing (rejecting) tasks which cannot still meet their deadline.

• if (tsch = tr), the algorithm attempts to place the arriving task(s). If the attempt fails, the

task(s) is inserted in the back of the ready tasks queue.

194

5. Scheduling and Placement Algorithms The multi-shape algorithm

The algorithm chooses a version of the elected task among its existing versions in the order of

priority mapped in �gure 5.6(b). The latter �gure shows that among two versions of di�erent

size, the algorithm prioritizes smaller size versions. Prioritizing smaller versions over other same

size versions tends to reduce as much as possible the total amount of con�gurable resources used

by each task. However, in the case of identical size versions, the algorithm prioritizes the version

with the highest aspect ratio. The �ow chart of �gure 5.6(a) details the algorithm. While �nding

a location P for a multi-shape task, the algorithm �rst checks whether the normal version may �t

on the recon�gurable array. In case of failure, it checks smaller versions if the corresponding task

processing time will not lead to a completion time that violates the deadline constraint. Other

versions that have the same size with the normal version are only checked if any smaller version

hasn't been successfully placed. If any version of the task cannot �t at the scheduling time tsch,

the task is added or kept in the waiting list for a further placement attempt, if is can still meet

its deadline.

Distributed Arithmetic as an enabling technique

Distributed Arithmetic (DA) is a computation algorithm that uses memory instead of multipliers

to perform sum of products where one of the operand remains constant. The algorithm is denoted

as multipliers-less (see section 7.9.1, Appendix 7.9. The equation 5.7 expresses the output of a FIR

Filter. It is a good example of sum of products, as processing one output sample Y (n) requires

the accumulation of N product terms.

Y (n) =
N−1∑
l=0

Hl ·Xl(n) =
N−1∑
l=0

Hl ·Xl (5.7)

H0, H1,..., HN−1 are N constant and time-invariant �lter coe�cients that are computed before-

hand. N is the �lter length. At each time n, the output response Y (n) is function of the N lasts

inputs samples X0, X1...XN−1 only. Therefore, n may be implicit as shown in the �nal equa-

tion. The output requires 2N − 1 arithmetic operations (N multiplications and N − 1 additions).

Di�erent techniques that range from pure serial implementation to fully parallel may be used for

FPGA implementation of the �lter. Such a convolution is very common is DSP functions, and is

suitable for DA implementation.

The Appendix E page 261 gives a detailed example of the �lter, designed as a multi-shape hard-

ware task using the DA algorithm. Di�erent trade-o�s between the con�gurable resources and the

�lter throughput are obtained. In the past, multipliers-less techniques were very useful as multi-

pliers were very con�gurable resource-consuming. Fortunately, nowadays, FPGAs are embedding

195

5. Scheduling and Placement Algorithms Conclusion of Chapter 5

numerous hardwired high performance DSP blocks.

The simulations results for multi-shape tasks scheduling are presented and discussed in

Chapter 6, section 6.4.

5.6 Conclusion of the Chapter

This chapter has discussed di�erent scheduling algorithms and some placement aspects of these

algorithms. The chapter mainly focused on scheduling through two approaches : the looking-ahead

scheduling and the without-looking-ahead scheduling approach. On one hand, a family of without-

looking-ahead algorithms denoted as tasks parameters based has been studied . These algorithms

was based on geometric and/or temporal parameters of the tasks. In addition, the multi-shape

scheduling algorithm was proposed. The algorithm assumes that each task may be provided with

more than one shape or size at its design time. On the other hand, looking-ahead scheduling

algorithms were combined with low complexity placement strategies (e.g. 1D partitioned) in order

to provide scheduling solutions that were likely to have low runtime overheads. Furthermore, a

ternary tree that eases the area management for looking-ahead horizon scheduling was proposed

and investigated.

This chapter relied on the methodology presented in Chapter 4. It also relied on some intu-

itive assumptions on improvements and performance that can be achieved by the above proposed

scheduling/placement strategies. The next chapter is devoted to simulations and experiments

results that will assess, validate or invalidate the studies above.

196

Chapter 6

Simulation Results of the Algorithms

Proposed to Solve Online Real-Time

Scheduling Issues

6.1 Introduction

This chapter presents and explains the simulation results of the experiments conducted in order

to assess and compare the online scheduling algorithms presented in the previous chapter. Figure

6.1 depicts the global simulation environment. The input instances will be built �rst. These

input (e.g. parameters of the tasks in the application) are generated by probability distributions.

Therefore, they will be submitted to di�erent scheduling algorithms and their placement strate-

gies. The output data will then be collected in the form of performance metrics that have been

presented earlier in Chapter 4. Afterwards, a quantitative analysis will be performed on these

output data (�gure 6.1), according to metrics. This analysis will be highlighted through mean-

ingful diagrams. The simulation results will be analyzed, classi�ed and discussed with respect to

the input instances.

In this thesis, the analysis mainly relies on an average-case analysis as described in chapter 3,

section 3.4.3. These analysis consider the average performance of the scheduling algorithms or

heuristics over all or a range of the input instances. However, worst-case analysis (e.g. compet-

itive analysis) remains the widely used methodology for guaranteeing the performance of online

197

6. Experiments Results Introduction

scheduling algorithms on uniprocessor or multiprocessor systems (see Chapter 3, section 3.4.3).

Thus, in this thesis, the competitive analysis was introduced and transposed in some cases of online

scheduling on recon�gurable hardware, but not more than that. Fortunately, since a competitive

analysis can only trap the worst case behavior of online algorithms, numerous experimental studies

(e.g. Albers and Schröder, 2002) have shown that, on real world jobs, these algorithms quite often

outperform the well known c = 2− 1
m Graham et al. (1979)'s competitive ratio for m−processors

scheduling. Therefore, the following average-case analysis are valid.

Figure 6.1: Summarizing the scheduling problem as de�ned in this thesis.

6.2 Building the Inputs and the Testing Environment

For experiments purpose, it is assumed that the inputs consist of sets of tasks and the recon�-

gurable array. A tasks parameters generator has been implemented. It allows a user to generate

the tasks parameters following two probability distributions : the uniform distribution and the

Gaussian distribution. However, in order use more realistic tasks parameters, a great range of

values was covered on one hand, and on the other hand, size and timing characteristics of real life

hardware IPs were used.

In the following sections, some common IPs for DSP applications are characterized, their size

estimated and the tasks sets generated accordingly.

6.2.1 Hardware Tasks Characterization

With the aim to remain close the the reality, especially in terms of size, a census of available IPs

in XILINX COREGEN1 IPs library was taken, in addition to some others fairly well documented

1Xilinx CORE Generator SystemTM accelerates design time by providing access to highly parametrized

Intellectual Properties (IP) for Xilinx FPGAs and is included in the ISE R© Design Suite. CORE Generator

provides a catalog of architecture speci�c, domain-speci�c (embedded, connectivity and DSP), and market

speci�c IP (Automotive, Consumer, Military/Aerospace, Communications, Broadcast etc.). These user-

customizable IP functions range in complexity from commonly used functions, such as memories and

198

6. Experiments Results Introduction

from the Internet. In order to �nd realistic range for tasks parameters, it would have been

necessary to develop a synthesis protocol which synthesize many versions of each IP for FPGA

implementation. Hence, versions of the same IP would di�er from each other by prioritizing one

option over another, or by combining optional characteristics of the IP, such as the accuracy, the

datapaths width, the security and encryption, the throughput, the use of synchronization signals

or not, etc.

These combinations and options would have produced a tremendous amount of possible synthesis

per IP. Therefore, a uniform distribution instead of a Gaussian one was used, as it best re�ects

the case. Each IP was synthesized twice, once in its lightest con�guration, and once in its fullest

con�guration. Hence, it was assumed that, statistically, the values of the tasks size were uniformly

distributed between these two limits.

Table 6.1 gives a framework of minimum and maximum sizes of IPs in terms of number of

slices required. The IPs are grouped according to their application domain. A more detailed table

of existing IPs and their size can be found in Appendix D, table 7.7, page 260.

IPs Size on Estimated size

Virtex2pro FPGA on Virtex5 FPGA

Communication IPs ∈ [1000; 3000] slices ≈∈ [350; 1500] slices

Floating Point operations IPs ∈ [100; 500] slices ≈∈ [45; 300] slices

CORDIC algorithm ∈ [100; 600] slices ≈∈ [50; 270] slices

FFT ≈ 2000 slices ≈ 950 slices

Video processing IPs ∈ [3000; 9000] slices

Table 6.1: Approximate sizes of most common IPs (hardware tasks).

6.2.2 Estimating the Size of Tasks

Table 6.1 reports on the number of slices used, but does not provide any information on the

number of slices per column (height) and per line (width). Therefore it is necessary to estimate

the width and the height of IPs or tasks, according to the rectangular-shaped task model adopted

FIFOs, to system-level building blocks, such as �lters and transforms. Using these IP blocks can save

days to months of design time. The highly optimized IP allows FPGA designers to focus e�orts on building

designs quicker while helping bring products to market faster.

199

6. Experiments Results Introduction

in this thesis.

Let Smax (resp. Smin) be the maximum (resp. minimum) number of slices required for a given

IP application or set of n tasks Γn. One can estimate height and width parameters by a mean m

and a standard deviation σ, so that in extreme cases (that correspond to maximum values of the

uniform law), one reaches the limits of the number of slices. This is expressed as follows :

(m+ σ)2 = Smax and (m− σ)2 = Smin (6.1)

The solution of these equations gives an estimation of parameters m and σ :

m =
√
Smax+

√
Smin

2 and σ =
√
Smax−

√
Smin

2
(6.2)

For the random generation of the size of hardware tasks, it is possible to do it either according

to a speci�c application domain or in a more generic way. In the �rst case, the targeted appli-

cation domain may allows the designers to evaluate Smin and Smax and therefore to estimate

the parameters m and σ. m and σ may even feed free tasksgraph generators like TGFF2. In the

second case, the parameters are simply randomly generated following the uniform distribution.

6.2.3 Final Inputs Values for Experiments

The size of the Xilinx's FPGA XCV1000 is used as reference size of the recon�gurable array. The

corresponding width and the height of the array are respectively W = 96 and H = 64. Thus,

there are 6140 CLBs available on the recon�gurable device. This size has been formerly used in

few research papers.

However, nowadays, FPGAs are getting denser and may integrate 10 times more CLBs than the

Xilinx's FPGA XCV1000. The sizes S of the generated tasks were also chosen accordingly in a

way that the device may accommodate about 4 tasks of the maximum size Smax at a time. In

most of the conducted experiments, the parameters of 100 sets of 50 aperiodic real-time tasks were

randomly generated following the uniformly distribution in the intervals listed below :

• Size S ∈ [50; 1500] CLBs.

• Aspect ratio ar = h
w = { 1

5 ,
1
4 ,

1
3 ,

1
2 , 1, 2, 3, 4, 5}.

• Processing time e ∈ [5; 100].

2 TGFF stands for Tasks Graph For Free. TGFF is an open source software created in 1998 by R.P.

Dick and D.L. Rhodes in order to facilitate tasks graph generation for scheduling problems analysis.

200

6. Experiments Results Parameters based scheduling

• Laxity class A ⇒ l ∈ [1; 10], class B ⇒ l ∈ [11; 50] and class C ⇒ l ∈ [51; 100].

• Relative application computational load given by equation 4.17 page 161 and that is usually

denoted in this chapter as application load Appload; Appload = 50% .

The above parameters are used by default for simulations, unless new values are

explicitly indicated.

6.2.4 The Running Environment

Apart from simulations that have been conducted on the microblaze embedded processors for

accurate timing measurements, scheduling algorithms were simulated on a laptop computer. The

latter hosts the Intel premium dual-core processor T2330, running at 1.6 GHz and featuring an

1MB L2 cache memory.

6.3 Tasks Parameters Based Scheduling

The simulation results of tasks parameters based scheduling are presented in this section.

Figures 6.2 and 6.3 depict the simulation results of the Basic, EDF, SSF and BSF scheduling

algorithms that use single-version tasks. The placer manages non overlapping vertically split areas

through a binary tree as described in Bazargan et al. (2000). Consequently, any improvement of

one algorithm over another will be thanks to the scheduling scheme. Experiment results are

expressed in terms of laxity classes.

6.3.1 Chip Utilization Ratio and Tasks Rejection Ratio

From the recon�gurable array utilization ratio and tasks rejection ratio perspective, simulation

results shown by �gure 6.2 are as follows :

• For tasks of laxity class A, the chip utilization is ∼ 30% no matter which scheduling algo-

rithm is used. The main reason is that once a task is released, its maximum waiting time

is equal its laxity. Consequently, for a laxity class l ∈ [1; 10], the scheduling algorithms

does not have enough time to schedule the tasks. As the underlying placement strategy is

similar, the resulting chip utilization ratios are nearly similar.

The tasks rejection ratio is also ∼ 22% independently to the scheduling algorithm. Finally,

BSF algorithm slightly outperforms the other algorithms in terms of utilization ratio while

SSF behaves worst than others.

201

6. Experiments Results Parameters based scheduling

• For tasks of laxity class B, the chip utilization rises to ∼ 33% while the tasks rejection ratio

drops to ∼ 12%. Indeed, thanks to a higher laxity, there is more time for �nding a �tting

solution to tasks. Once again, BSF produces the best utilization ratio, and SSF the worst

tasks rejection ratio.

• For tasks of laxity class C, the chip utilization ratio does not signi�cantly increase. BSF

outperforms with ∼ 34%. However, the tasks rejection ratio decreases to around ∼ 5%.

As shown in �gure 6.2 and commented above, any of the tasks parameters scheduling does not

signi�cantly outplay another. However, signi�cant improvements are gained in terms of laxity

instead, especially on tasks rejection ratio. One may conclude that these results are highly tied

to the underlying placement strategy used here, which is the above mentioned Bazargan et al.

(2000)'s binary tree based placer.

The diagram at the bottom of �gure 6.2 depicts the di�erential quality metric URqm as the

di�erence between the utilization ratio and the tasks rejection ratio. The metrics gives an overall

performance that takes into account both the utilization ratio and the tasks rejection ratio as

expressed earlier in equation 4.24, page 163. A high chip utilization ratio increases URqm while

a high tasks rejection ratio decreases it. Hence, the higher the di�erential quality metric URqm,

the better the scheduling. From the URqm perspective, BSF remains the best parameters based

scheduling while the BSF is the worst. Intuitively as bigger tasks are placed �rst, the utilization

ratio is therefore higher. URqm may allow the designer to choose among two algorithms that share

similarities either in terms of tasks rejection ratio, or in terms of chips utilization ratio.

6.3.2 Runtime Overhead

Figure 6.3 depicts the runtime overhead of di�erent of tasks parameters based scheduling algo-

rithms. The top left of the �gure shows the average time the scheduling function has taken to

run every it has been invoked. These time overheads are globally around 40 to 47us. It can

be noticed that, for example in laxity class A, the average time overhead slightly increases from

one algorithm to another. This increase comes from the increasing di�culty in keeping the list

of ready tasks sorted according to the considered criteria. Keeping the list of tasks according to

their release time is easier. Identically, keeping the tasks in the list according to their deadline

or their laxity is somewhat related to their release time. Conversely, sorting the released tasks

according to their size is completely time independent. Therefore BSF and SSF lead to a more

time consuming process.

202

6. Experiments Results Parameters based scheduling

Figure 6.2: Utilization ratio (top), rejection ratio (middle) and quality metrics (bottom) :

comparative results for EDF, LLF, SSF and BSF scheduling algorithms.

203

6. Experiments Results Parameters based scheduling

Figure 6.3: Scheduling runtime overhead, number of scheduling calls and cumulative scheduler

runtime overheads : comparative results on EDF, LLF, SSF and BSF scheduling algorithms.

The average number of invocations may also a�ect the global time spent in running the

scheduling algorithm. The top-right of the �gure illustrates the average number of calls to the

scheduler. Recall that the scheduler is invoked whenever a task completes or arrives. Figure

6.3-top-right shows that the higher the laxity, the higher the number of calls. The reason is that

a longer laxity gives more opportunity to the scheduler to place each task, and therefore increases

the number of calls. The average number of calls is around ∼ 64 to 71.

Surprisingly, as shown in the top-left of �gure 6.3, the average runtime overheads of scheduling

algorithms are higher for tasks of laxity B. Even when considering the cumulative runtime overhead

that takes the number of invocations into account, the trend is con�rmed. The diagram at the

bottom of �gure 6.3 depicts the case. The cumulative runtime overhead corresponds to the average

204

6. Experiments Results Multi-shape scheduling

time spent in the scheduling function every time it is invoked, times the number of calls to the

scheduler. Hence, the third diagram results in the multiplication of the two diagrams above. Put

it di�erently, the cumulative sum of the time spent in the scheduling algorithm throughout the

simulation is calculated, in order to obtain a bigger and therefore more expressive value.

As all the tasks are not accepted in the present case, the makespan is meaningless. Indeed,

an algorithm which rejects too many tasks is likely to have a shorted makespan. Therefore, the

makespan of two scheduling algorithms are comparable only if both have accepted exactly the

same tasks.

6.3.3 Conclusion on parameters based scheduling

Tasks parameters scheduling algorithms are simple to implement, do not have a high runtime

overhead, and are based on one parameter of the task. Experiment results show that these

algorithms are not far from each other in terms of scheduling and placement quality (e.g. runtime

overhead, recon�gurable array utilization ratio and task rejection ratio). As they use the same

placement strategy, the similarities in chip utilization ratio and tasks rejection ratio suggest that

a signi�cant improvement of scheduling may not come from a single parameter of the task. In

all likelihood, it may be interesting either to combine temporal and geometric characteristics in

order to build novel algorithms or to propose areas management approaches that does not increase

the overall algorithm complexity and runtime overhead, but improves array utilization and tasks

rejection ratio. Hereinafter are the experiments results for the multi-shape tasks based scheduling

algorithms.

6.4 Multi-shape Tasks Based Scheduling

This section presents the simulation results of the multi-shape based scheduling. The algorithm

has been previously studied in Chapter 5, section 5.5 and described in �gure 5.6, page 194.

6.4.1 Multi-shape Tasks

Relying on equation 5.6 page 193, one or several versions of each task were produced. It is assumed

that each task has at least one version, which is its normal version.

The normal version of a task is the version that results from a random generation of the tasks

parameters with a given probability distribution, as discussed earlier. A version is denoted as

205

6. Experiments Results Multi-shape scheduling

standing (Std) or laying (Lay) depending on its aspect ratio compared to the normal version, as

depicted in �gure 6.4. A version is denoted as smaller (Sml) or same (Sm) depending on its

size compared to the normal size version, as also depicted in �gure 6.4. Hence, while a same size

version uses the same amount of con�gurable resources as the normal size, the smaller size version

uses only half this amount.

A standing version will tend to increase its aspect ratio by doubling its height in comparison with

the normal version's height. However, this height cannot exceed the height of the recon�gurable

array. Therefore, the width of the standing version is adjusted accordingly in order to obtain a

size either identical (same) to the size of the normal version, or smaller. Conversely, a laying

version will tend to be twice wider than the normal version, as far as the width does not exceed

the the width of the recon�gurable array. The height of the laying version is adjusted accordingly

in order to generate either a same size task, or a smaller size task. As pictured in �gure 6.4, several

variants of multi-shape hardware tasks were generated. Various combinations of these variants

can provide variants of the multi-shape algorithm. Each combination is also characterized by the

number of versions per hardware task. Below are listed examples of possible combinations that

were used in this thesis :

1. Sm_Std(2) ; where (2) represents the number of versions or variants per task. In this

scenario illustrated in �gure 6.4, each hardware task has a normal version and an additional

version denoted as Sm_Std, which stands for same size standing version. The same standing

version is another version that uses the same amount of resources than the normal version,

but with a higher aspect ratio as described above. Figure 6.4 illustrates the Sm_Std(2).

2. Sm_Lay (2) ; this scenario is similar to the former. However, the second version has the

same size with the normal version, but with half the aspect ratio if possible. Here, Sm_Lay

(2) stands for same size laying version.

3. Sml_Std(2) ; a normal plus a smaller size standing version (here Sml stands for smaller

size). The latter version shares the same height with the normal version, but with half its

width. Here, Sml_Xxx (y) stands for smaller size

4. Sml_Std_Lay(3) ; a normal plus a smaller standing and a smaller laying versions.

5. Sm_Std_Lay(3) ; in this scenario depicted in �gure 6.4, each task has 3 variants : the same

standing and the same laying in addition to the normal variant.

6. Sm_Sml_Std_Lay(5) ; this case is shown in �gure 6.4 where each task has 5 variants : the

206

6. Experiments Results Multi-shape scheduling

Figure 6.4: Di�erent combinations of multi-shape tasks for variants of multi-shape scheduling

algorithm

same standing, the same laying, the smaller standing and the smaller laying in addition to

the normal variant.

7. Shu�e(1...5) ; this case re�ects a more realistic scenario. Indeed in real life applications,

it is quite di�cult to have more than one task variant for each task. Hence, in the present

case, it is assumed that the number of versions per task is ∈ [1; 5]. The number and the

type of versions are randomly generated for each task, following the uniform distribution.

Variants of the multi-shape scheduling algorithm above are compared to the Basic scheduling

algorithm denoted as Basic(1) and described in Chapter 5. The latter algorithm schedules only

the normal version of tasks. Both algorithms use the same aforementioned binary tree based

placement strategy. Furthermore, both algorithms rely on the basic scheduling algorithm where

the tasks in the ready list is sorted according to their release time. Therefore, comparing multi-

shape scheduling algorithms with basic scheduling brings out the improvements gained by the use

of multi-shape tasks. Simulations have been conducted on 100 sets of 50 tasks; Hence, the �nal

simulation result is an average of 100 simulation results.

207

6. Experiments Results Multi-shape scheduling

6.4.2 Chip Utilization Ratio and Tasks Rejection Ratio

Figure 6.5 shows the simulation results of the chip utilization ratio. The �gure compares variants

of multi-shape scheduling algorithms with the basic scheduling algorithm that uses only single-

version tasks. Utilization ratios are also classi�ed according di�erent classes of laxity. Hence, it

can be observed from the graph that :

For tasks of laxity Class A

The recon�gurable array utilization ratio is around ∼ 30% (see �gure 6.5) for the basic schedul-

ing algorithm and four multi-shape scheduling algorithms which are: the Sml_Std(2), the Sml_Lay(2),

the Sml_Std_Lay(3) and the Sm_Lay(2). The three �rst multi-shape algorithms use additional

smaller versions tasks, while the fourth (Sm_Lay(2)) uses an additional same size laying version.

The two main reasons for these similarities in the results are listed and analyzed as follows :

Figure 6.5: Multi-shape scheduling algorithms: simulation results of the utilization ratio,

comparison with the Basic scheduling.

(i) In algorithms where each task provides a normal version and additional smaller size versions,

the latter versions require a longer execution time on the recon�gurable array to complete.

Hence, tasks may rarely meet their deadline unless their laxities are very long. It is not

the case here where laxity ∈ [1, 10] for tasks of laxity class A. Sml_Std(i), Sml_Lay(i) and

Sml_Std_Lay(3) are such multi-shape algorithms, i being the total number of tasks versions.

(ii) In algorithms like Sm_Lay(i), Sml_Lay(i), etc. where each task provides a normal version

208

6. Experiments Results Multi-shape scheduling

and additional laying versions, the latter versions are likely to be rejected if the areas splitting

is done vertically. Indeed, vertically (resp. horizontally) split free areas are likely to produce

more standing than laying areas (resp. more laying than standing areas). Therefore, standing

(resp. laying) areas are more suitable for accommodating standing tasks which aspect ratio

ar > 1 (resp. laying tasks which ar < 1). This results clearly bring out the in�uence of the

underlying placement strategy on the overall quality of the scheduling algorithm.

This can also be observed in the results of the Sm_Std(2) and Sm_Std_Lay(3) that are

similar, making the use of a third task version in Sm_Std_Lay(3) useless, as it does not

bring any improvement.

Figure 6.6: Multi-shape scheduling algorithms: simulation results of the tasks rejection ratio,

comparison with the Basic scheduling.

Figure 6.6 depicts simulation results of the tasks rejection ratios. The tasks rejection ratios

are almost similar (∼ 21.5%) for the basic scheduling and the aforementioned four multi-shape

scheduling algorithms. The two reasons for these similarities in results are the same listed and

described above (tasks versions with longer execution time, or an unsuitable free areas splitting

strategy).

Conversely, multi-shape scheduling algorithms that use same size standing versions as addi-

tional tasks versions signi�cantly improve the chip utilization and the tasks rejection ratio for tasks

of laxity class A. Sm_Std(2), Sm_Std_Lay(3) and Sm_Sml_Std_Lay(5) are these algorithms.

Their simulation results do not di�er from each other, as shown in �gures 6.5 and 6.6. It can be

observed from the graph of �gure 6.5 that these 3 multi-shape algorithms raise the chip utiliza-

209

6. Experiments Results Multi-shape scheduling

tion ratio from ∼ 30% to ∼ 37% when compared to basic scheduling or any other multi-shape

algorithm that does not use a same size standing version as additional version of tasks. Figure

6.6 also shows a signi�cant reduction in tasks rejection ratios. The latter decrease from ∼ 21.5%

to ∼ 13.5%.

Regardless the number of tasks versions used, Sm_Std(2), Sm_Std_Lay(3) and Sm_Sml_Std_Lay(5)

scheduling algorithms provide slightly similar results in terms of chip utilization ratio and tasks re-

jection ratio. This similarity indicates that the improvements are exclusively brought by the use of

the same size standing version, in addition of the normal version. Therefore, smaller size versions

and same size laying versions that are provided to Sm_Std_Lay(3) and Sm_Sml_Std_Lay(5)

algorithms are useless here as they bear the two drawbacks listed and described above (a very

long processing time and/or an areas splitting strategy that is unsuitable).

For tasks of laxity Class B

Improvements are better, and follow the same trend as the results for the laxity class A above.

Hence, using a laying version (same or small) does not improve the results because of the above-

mentioned splitting strategy. Once again, best results are obtained while using a same size standing

version as additional version. This can be observed in �gure 6.5 and �gure 6.6 where Sm_Std(2)

algorithm increases the chip utilization ratio from∼ 33% to 40.6% and decreases the tasks rejection

ratio from ∼ 12% to 6% while compared with the basic scheduling algorithm. This corresponds to

an improvement of 50% and 23% for tasks rejection ratios and chip utilization ratio respectively.

In other words, the Sm_Std(2) algorithm that uses only two versions per task (normal plus same

standing), rejects 50% less tasks and looses 23% less recon�gurable resources, compared with basic

scheduling.

As the laxity class B is bigger here (laxity ∈ [11, 50]), tasks deadlines are longer accordingly.

Therefore, there is more opportunity for placing the smaller version of tasks, even if they require

longer processing times. Tasks with smaller but standing version slightly improve their rejection

ratio, thanks to their laxity and to their aspect ratio. For example, the Sml_Std(2) algorithm

records a decrease (∼ 20%) in tasks rejection ratio compared with basic scheduling, for a slightly

similar chip utilization ratio (∼ 32%).

The impact of the areas management strategy on multi-shape scheduling algorithms is even

more obvious here. For example, the basic scheduling algorithm that uses single-version tasks

outperforms the Sml_Lay(2) algorithm in terms of chip utilization ratio and tasks rejection ratio.

The reason is that, as the laxity class B is longer, the Sml_Lay(2) algorithm may �t the smaller

210

6. Experiments Results Multi-shape scheduling

version of some tasks on the recon�gurable array, instead of the normal version. But these smaller

versions require longer processing times. Therefore, on one hand, placing small size tasks lowers

the chip utilization ratio 3 and leads to a more fragmented chip. On the other hand, as smaller

version of tasks require more time to process on the recon�gurable array, they prevent the scheduler

from placing newly arriving or waiting tasks. Furthermore, as the free areas are vertically split in

the present case, they are mostly standing areas, and are less suitable for accommodating laying

tasks.

For tasks of laxity Class C

Apart from some special observations, the comments made above on the simulation results for

tasks sets of laxity class B are also valid for tasks sets of laxity class C. As depicted by �gure 6.5

and �gure 6.6, there are major improvements in chip utilization ratio for multi-shape scheduling

algorithms that are provided with same size standing and/or smaller size standing versions of

hardware tasks.

For example, compared to the basic scheduling algorithm, the Sm_Std(2) algorithm decreases

the tasks rejection ratio by 75% and increases the utilization ratio by 28% compared with the

basic scheduling algorithm. Hence, as Sm_Std(2) algorithm achieves a 1.33% tasks rejection

ratio, it accepts almost all the tasks. These improvements are gained only by using two versions

per task. One can observe that regardless of the number of versions per tasks, any other multi-

shape algorithm does not outperform Sm_Std(2) algorithm. As previously stated, improving the

scheduling through a multi-shaped tasks approach is not a matter of number of versions or shape

per task, but essentially a matter of size and aspect ratio of the additional version(s). Figure

6.7 illustrates, on a single page, an overview of the simulation results of the chip utilization ratio

and the tasks rejection ratio, along with the resulting di�erential quality metric URqm. The two

�rst graphs of �gure 6.7 replicate respectively the utilization ratio and the tasks rejection ratio

graphs of �gures 6.5 and 6.6 respectively, while the far bottom graph represents the di�erential

quality metric URqm. The latter metric is simple but allows us to have a global and concurrent

interpretation of both chip utilization ratio and tasks rejection ratio. The URqm con�rms that

Sm_Std(2) is the best multi-shape algorithm thanks to the size and the shape of the additional

version. As shown by the graph, it is not really worthy using more than 2 versions per task, if the

version takes the underlying placement strategy into account.

3 as shown by the simulation results in section 6.3, SSF (smallest size �rst) based scheduling algorithm

is outperformed by other tasks parameters based scheduling algorithms.

211

6. Experiments Results Multi-shape scheduling

Figure 6.7: Utilization ratio, tasks rejection ratio and di�erential quality metric URqm (with

α = 0.5) : comparative results for basic scheduling and multi-shape scheduling algorithms.

212

6. Experiments Results Multi-shape scheduling

The Shu�e(1...5) scheduling algorithm was described as bearing a more realistic case where

hardware tasks can have randomly 0 up to 4 additional versions per task. Zooming in on the

simulation results of the Shu�e(1...5) algorithm may therefore allow us to have a more realistic

prediction on improvements achievable by a multi-shape algorithm. The Shu�e(1...5) algorithm

re�ects a scenario where prior to design, all available versions of hardware tasks or IPs that are

required for the application are collected. Therefore, for each task, there may be only one or

several versions. According to the results graphs depicted in �gure 6.7, Shu�e(1...5) decreases

the tasks rejection ratio by ∼ 16% for tasks of laxity class A, ∼ 27% for the laxity class B, and

∼ 37% for the laxity class C compared to the basic scheduling. At the same time, the algorithm

improves the chip utilization ratio by ∼ 10% for the laxity classes A and B, and ∼ 7% for the laxity

class C. It is noticeable that increasing chip utilization ratio is more di�cult than improving the

tasks rejection ratio. Indeed, a high (∼ 100%) chip utilization ratio is rarely achievable because

of the intrinsic fragmentation problem.

6.4.3 Makespan and Runtime Overheads

Comparing algorithms through their makespan is meaningful only if they do not reject any task.

In the latter case, an algorithm will outperform another in terms of makespan only if it takes less

time to schedule the same set of tasks. Simulation results for tasks of class laxity C depicted in

�gure 6.7 and commented above shows a nearly similar case. Indeed, according to these results,

the tasks rejection ratio decreases to 5.33% for basic scheduling and to 1.33% for Sm_Std(2).

Such low tasks rejection ratios make a comparison of scheduling algorithms from the makespan

perspective meaningful. Indeed, an algorithm that rejects too many task is likely to have a shorter

makespan. The makespan is analyzed only on simulation results for tasks of laxity class C.

Figure 6.8 compares scheduling algorithms through their makespan. Once again, these results

show that multi-shape algorithms that use same size tasks versions achieve a better makespan

compared with basic scheduling. For example, Sm_Std(2) requires an average of 190 time units to

run a tasks set to completion while the basic scheduling requires 204 time units. Conversely, the

highest makespan is achieved by Sml_Std(2) and Sml_Std_Lay(3) algorithms that use smaller

size tasks versions. The latter versions lengthen the makespan because of their longer execution

times. It can also be observed that using additional laying tasks versions do not improve the

results, as their aspect ratios do not suit to vertically split free areas. Therefore, Sm_Std_Lay(3)

provides the same result as Sm_Std(2) and Sml_Std_Lay(3) the same as Sml_Std(2), regardless

213

6. Experiments Results Multi-shape scheduling

Figure 6.8: The average makespan : comparative results for multi-shape and Basic scheduling

algorithms.

of the number of versions per tasks.

Detailed simulation results related to the runtime overheads are presented in the three �gures

in page 215. The top of �gure 6.9 depicts the average runtime overheads of di�erent multi-shape

algorithms compared with the basic scheduling algorithm.

For tasks of laxity class A, the runtime overheads range from 37us to 47.5us, the basic

scheduling algorithm achieving the lowest one. Intuitively, the runtime overhead is longer for

multi-shape scheduling algorithms. Indeed, it takes more time to search for the version that can

�t on the recon�gurable array. Therefore, the more the versions per task, the longer the runtime

overhead.

However, as shown by the results for the laxity class A, the rule is not that simple. The runtime

overhead of each scheduler call also depends on the success or the failure of the current placement

attempt. Each successful placement results in operations that can be time consuming. In the

present case, the placer uses the hash matrix that have been presented in Walder et al. (2003) and

brie�y discussed in section 3.8.5, page 118. The matrix requires a long update at each task place-

ment or withdrawal on the recon�gurable array. Hence, the more successful the tasks placements,

the more matrix update processes are required, the latter processes being time greedy. Any data

structure that holds the state of the recon�gurable array (e.g. binary tree) needs to be updated at

each task placement or withdrawal. This impact of the update process on the runtime overhead

214

6. Experiments Results Multi-shape scheduling

Figure 6.9: Multi-shape scheduling algorithms : the simulation results of the scheduling runtime

overhead, with basic scheduling as reference scheduling.

can be seen in the results (top graph of �gure 6.9) of multi-shape algorithms that use at least a

same size standing version per task. It was noticed earlier that these algorithms (e.g. Sm_Std(2),

215

6. Experiments Results Multi-shape scheduling

Sm_Std_Lay(3) and Sm_Sml_Std_Lay(5)) reject less tasks in general, which means in other

words that they successfully place more tasks. Therefore for tasks of laxity class A, as the number

of updates grows, their runtime overheads are higher (see in the top graph of �gure 6.9).

However, even if Sml_Std_Lay(3) algorithm rejects more tasks compared with the above men-

tioned three algorithms, it also achieves a high runtime overhead (see top of �gure 6.9). The

reason for this is the time spent by the algorithm in trying to place the smaller size version of the

task to be placed. This reason is more highlighted by the results for tasks of laxity class B and

C. The two highest runtime overheads are due to multi-shape scheduling algorithms which extra

tasks versions are exclusively smaller size tasks versions. In the latter case, the algorithms always

determine whether the smaller size version of the task can be used without violating its deadline.

Let us remind that smaller size versions of tasks require longer execution times. This extra e�ort

in verifying deadline violation signi�cantly increases the runtime overheads of the Sml_Std(2) and

Sml_Std_Lay(3) scheduling algorithms as highlighted on the top graph of �gure 6.9, especially

for tasks of laxity class B and C.

At this point, based on analysis of results in the top graph of �gure 6.9, two main factors that

in�uence the runtime overheads of scheduling algorithms and con�rm the preliminary observations

made in Chapters 3 and 4 can be identi�ed:

(i). the search for an accommodating area for a task ; it can be observed in the above results

that the more the versions per tasks, the longer the runtime. This is especially the case

when the additional versions are smaller size versions. The latter require an extra e�ort

to determine whether they are not violating the deadline. It results in the highest runtime

overheads for Sml_Std(2) and Sml_Std_Lay(3) for tasks of laxity class B and C.

(ii). the update of the data structure after a task placement or removal; if time consuming, it

a�ects the algorithms that achieve best tasks rejection ratios. Sm_Std(2), Sm_Std_Lay(3)

and Sm_Sml_Std_Lay(5) are good examples, especially in laxity class A.

The graph in the middle of �gure 6.9 depicts the average number of calls to the scheduling function.

Intuitively, as the scheduler is invoked at each task arrival and task ending, the algorithms that

successfully placing more tasks induces more scheduler invocations. This intuition is con�rm by

the simulation results for tasks of laxity class A. Indeed, as shown in the graph, multi-shape

algorithms (Sm_Std(2), Sm_Std_Lay(3) and Sm_Sml_Std_Lay(5)) which provide better tasks

rejection ratios are those with higher number of scheduler invocations . The graph also shows that

the relationship between the tasks rejection ratio and the number of calls to the scheduler can be

216

6. Experiments Results Multi-shape scheduling

extended to the cases of tasks of laxity class B and tasks of laxity class C. In the latter cases, one

can observed :

• On one hand, regardless the scheduling algorithms, there is a general increase of the number

of calls to the scheduler due to the decrease of the tasks rejection ratios.

• On the other hand, contrary to laxity class A, multi-shape algorithms that use smaller size

tasks versions exclusively as additional versions also record a higher number of scheduler

calls. For example, in the case of the Sml_Std(2) and Sml_Std_Lay(3) algorithms, the

number of calls to the scheduler is among the highest for the laxity class B and especially

for the laxity class C. At �rst sight, these results seem to contradict the primary intuition,

as Sml_Std(2) and Sml_Std_Lay(3) algorithms reject more tasks than the three others

�rst mentioned. However they do not invalidate the intuition because the bigger the laxity,

the more the scheduler attempts to place the ready or waiting tasks. The number scheduler

invocations increases accordingly.

The graph in the bottom of �gure 6.9 gives a right idea of the runtime overhead of each

scheduling algorithm. It accumulates the total amount of time devoted to the scheduling algo-

rithm itself by the microprocessor running the algorithm. It results in a multiplication between

the two �rst graphs (the average runtime overhead and the average number of calls). Considering

the cumulative sum of the runtime overheads does not invert the trends of the runtime overheads

results commented above.

To summarize, the lower the tasks rejection ratio, the higher the cumulative runtime over-

heads. One can say that when compared with the basic scheduling algorithm, a multi-shape

algorithm like Sm_Std(2) decreases the tasks rejection ratio from ∼ 21.5% to ∼ 13.5% and raises

the recon�gurable array utilization ratio from ∼ 30% to ∼ 37% at the cost of higher runtime

overhead. The latter increases from ∼ 39us to ∼ 46us compared with the basic scheduling al-

gorithm. Especially for the laxity classes B and C, one can observe that the two multi-shape

algorithms which additional tasks versions are exclusively smaller versions (e.g. Sml_Std(2) and

Sml_Std_Lay(3)), achieve the highest cumulative runtime overheads. These runtime overheads

culminate at 62% and 60% respectively for the laxity class A. This observation is very important

to point out because these algorithms have been also proven earlier to behave poorly in terms of

chip utilization ratios and tasks rejection ratios.

Once again, one can see that the Sm_Std(2) scheduling algorithm provide the best trade-o� when

217

6. Experiments Results Looking-Ahead Scheduling

considering all the metrics assessed above, and the additional e�orts that are require to generate

two versions of identical sizes per hardware task at design time. Indeed, the algorithm assumes

that each task has two versions, the second version being from identical size with the normal

version, but with a rectangular shape that suits to the underlying areas partitioning strategy used

by the scheduler. Regarding the Shu�e(1...5); the algorithm assumes a more realistic scenario

where the number and the size of the versions are randomly generated. Shu�e(1...5) brings a

signi�cant improvement that demonstrates the usefulness of the multi-shape approach.

6.4.4 Conclusion on multi-shape scheduling

Multi-shape tasks approach shows through the above results that it can signi�cantly improve the

scheduling and placement quality. This improvement can be obtain from two versions per task,

as far as the size and the aspect ratio of the second version is choosing in order to match with

the areas management strategy used. Thus, simulation results have shown that the multi-shape

approach is not only about the number of versions per task, but above all a question of trade-o�

between the number of versions per task, the areas partitioning strategy, and the tasks laxity. For

example, generating smaller size extra version(s) for low laxity tasks is not recommended, as it

does not bring any improvement. However, same size standing versions tasks are recommended

when the free areas are vertically split. Indeed, vertically split areas �t standing tasks the best.

All the improvements brought by multi-shape scheduling algorithms are at the cost of acceptable

runtime overheads, as shown by the results. Therefore, it is worth using multi-shape scheduling

in an online real time context, even if additional e�orts are required at design time to generate

several versions per hardware task.

6.5 Horizon Looking-Ahead Scheduling Algorithms

Hereinafter are presented preliminary simulation results of the looking-ahead scheduling algorithms

that were presented in the previous chapter. EAAF and SFAF are the two �rst algorithms. They

use the ternary tree structure proposed in Chapter 5, section 5.4.1 as an enabling structure for

looking-ahead scheduling. Therefore the two algorithms use a 2D placement strategy. The third

algorithm is the 1D variable slots looking-ahead scheduling also described in the previous chapter,

section 5.3.2.

218

6. Experiments Results Looking-Ahead Scheduling

6.5.1 Horizon Looking-Ahead Scheduling using a Ternary Tree

A ternary tree that suits to the management of the recon�gurable array for looking-ahead schedul-

ing algorithms have been discussed in the previous chapter, section 5.4.1. Two variants of horizon-

looking-ahead scheduling denoted as horizon-EAAF and horizon-SFAF were detailed. These algo-

rithms are compared with two without-looking-ahead scheduling algorithms: the Basic scheduling

and the EDF scheduling. The latter are described in Chapter 5. Basic scheduling tries to place

the tasks in a �rst come �rst served basis. Thus, tasks in the ready list are sorted accordingly.

The simulations have been conducted with 20 sets of 50 aperiodic tasks with arbitrary arrival

time. A vertical split partitioning strategy has also been used as shown in �gure 5.4, page 190.

Other parameters were uniformly distributed within the intervals as follows :

• FPGA size : width = 96 and height = 64. Tasks of size ∈ [50, 1500] CLBs

• Tasks aspect ratio ∈ [1
5 , 5], laxity ∈ [11, 50] which corresponds to laxity class B. Execution

time ∈ [5, 100].

The results are grouped in table 6.2.

Algorithms Uav(%) Umax(%) Rjav(%) Rdav Scav mkav

Basic 30.6 62 27.2 34 64 28.2

EDF 31.6 60.8 23.8 31.8 66 33

horizon-EAAF 30.5 55.5 24.6 0 60 33

horizon-SFAF 32.2 52.5 23.5 0 63 33

Uav : FPGA utilization ratio Umax : Maximum FPGA utilization ratio = max(Uav)

Rjav : Tasks rejection ratio Rdav : Task rejection delay = trej − ai
trej : Task rejection time Scav : Number of scheduler calls

mkav : makespan

Table 6.2: Simulation results for looking-ahead scheduling using a ternary tree : comparison

with basic scheduling and EDF scheduling.

Chip average utilization ratio Uav and tasks rejection ratio Rjav

One can observe that the average utilization ratio Uav is around ∼ 30% no matter which schedul-

ing algorithm (looking-ahead and not-looking-ahead) is used. This result has already been found

219

6. Experiments Results Looking-Ahead Scheduling

Figure 6.10: Di�erential quality metrics for horizon-EAAF, horizon-SFAF, Basic and EDF

scheduling algorithms.

Figure 6.11: Rejection delay for horizon-EAAF, horizon-SFAF, Basic and EDF scheduling

algorithms.

earlier for not-looking-ahead scheduling while presenting the simulation results of the tasks pa-

rameters based scheduling algorithms. It can be concluded that the chip utilization ratio highly

depended on the placement strategy used. The multi-shape approach presented a way of improving

the Uav. The worth of horizon looking-ahead scheduling algorithms is not in terms of recon�gurable

array utilization ratio. Indeed, horizon (and even stu�ng) scheduling accepts or rejects each task

as soon as it is released. As a task cannot be rescheduled once accepted and planned, it can

prevent the scheduling algorithm for �nding a better scheduling for the future. Consequently,

a looking-ahead scheduling cannot signi�cantly outperform a not-looking-ahead scheduling that

use the same underlying placement strategy. The same similarities can be observed on average

220

6. Experiments Results Looking-Ahead Scheduling

tasks rejection ratios Rjav for the same reasons above. However, SFAF slightly outperforms other

algorithms in terms of placement quality (Uav and Rjav). This is emphasized by the di�erential

quality metric depicted in �gure 6.10.

Rejection delay Rdav

The real contribution of looking-ahead scheduling algorithms is on the rejection delay Rdav. As

show in the table, horizon-EAAF and horizon-SFAF algorithms immediately reject the tasks

(Rdav=0) which cannot �t in the recon�gurable array, while not-looking ahead scheduling (Basic

and EDF) rejects them with a delay that is equal to their laxity (after ≈ 30 time units). Re-

member that a real-time task that is rejected so late prevent the scheduler from �nding any other

resource that can execution the task. The graph in �gure 6.11 highlights the rejection delay.

Conclusion

The above results have shown which improvements are really brought by a looking-ahead schedul-

ing approach. As only the horizon looking-ahead scheduling algorithms were used here, these

results can be improved by a stu�ng approach. The stu�ng looking-ahead scheduling schedules

the tasks even on currently unused parts of reserved areas. For example, as indicated in �gure

5.4 (c') page 190, area nodes 5X2 and 2X6 can be used by other tasks in the time interval [3, 8]

without a�ecting the reservation made at node 7X6 for task T3 to be started at time t = 8. This

corresponds to the stu�ng algorithms.

The runtime overheads of horizon-EAAF and horizon-SFAF scheduling algorithms have not been

measured for these algorithms, contrary to others previously studied. As stated in Chapter 4,

looking-ahead scheduling are far more time consuming compared to without-looking-ahead schedul-

ing. However, on one hand the placement strategy used in the present case was simple as it relied

on the ternary tree proposed in this thesis, on the other hand, one can observe in table 6.2 that

the number of scheduler invocations is lower for looking-ahead scheduling algorithms.

6.5.2 1D Variable Slots Looking-Ahead Scheduling

This section presents the simulation results of a 1D variable size slots based looking-ahead schedul-

ing, the 1D-VSSH. Details on the 1D variable size slots horizon (1D-VSSH) scheduling algorithm

can be found in Chapter 5, section 5.3.2.

The simulation parameters are identical to those used for the algorithm discussed in the previous

221

6. Experiments Results Looking-Ahead Scheduling

section, in terms of size of the recon�gurable array, size of tasks, number of tasks sets, arrival

time, execution time, etc. However, the simulations were conducted only on tasks of laxity class

B, where the laxity l ∈ [11, 50].

In 1D variable size slots looking-ahead scheduling, the number of slots depends on the size of

arrival tasks. However, in the following simulations, the maximum number of slots were limited

to nmax = 6. In addition, as the width of a slot is determined by the width of the �rst tasks in

the slot, a width ratio wr = task_width
slot_width has been de�ned. Therefore, while placing the �rst task

in a slot that is empty and wider, an extra slot will be generated if and only if : slot_width ≥ FPGA_width
nmax

wr ≤ 1
4

(6.3)

The 1D variable size slots horizon scheduling (1D-VSSH) is compared to the 1D scheduling and the

2D horizon scheduling, in terms of tasks rejection ratio and recon�gurable array utilization ratio.

The results are enough to draw major conclusions on 1D variable size slots horizon scheduling.

As discussed in the previous chapter while presenting the algorithm, combining a low complexity

(e.g. 1D-like) placement strategy with a looking-ahead scheduling approach is bene�cial in terms

of runtime overheads, especially when it does not increase the tasks rejection ratio and/or decrease

the recon�gurable array utilization ratio.

Figure 6.12 depicts the simulation results of the tasks rejection ratio, the utilization ratio and

the di�erential quality metric.

One can �rst observe that using a pure 1D placement strategy gives the worst results experienced

so far with tasks of laxity class B. Hence, the 1D horizon scheduling rejects more than 50% of

tasks (51, 2% exactly), where the 2D horizon scheduling rejects 30%. The recon�gurable array

utilization ratio does not exceed 22% and the di�erential quality metric is far negative (∼ −30%).

The di�erential quality metric was formerly de�ned as another way of expressing in a single metric,

a placement metric that takes into account both the tasks rejection ratio and the recon�gurable

array utilization ratio. This negative di�erential quality metric shows that a simple 1D placement

strategy leads to a poor placement quality. All the tasks parameters based scheduling algorithms

presented earlier would lead to slightly similar results if they use a 1D placement strategy. Indeed,

when discussing the previous results, special attention was paid to the fact that when they use the

same placement algorithm, a looking-ahead scheduling approach would not signi�cantly perform

better than a tasks parameters based scheduling algorithm in terms of tasks rejection ratio and

array utilization ratio. However, a looking-ahead approach takes rapid scheduling decisions, a

feature especially suitable for online real-time scheduling.

222

6. Experiments Results Conclusion of the Chapter

Figure 6.12: Tasks rejection ratio, recon�gurable array utilization ratio and di�erential quality

metric for the proposed 1D variable slots horizon scheduling, compared to 1D and 2D horizon

scheduling from Steiger et al. (2004)

Interesting results are obtained when an 1D placement is combined with a slots-based area

management. For example, 2D horizon scheduling and 1D variable slots horizon (1D-VSSH)

scheduling achieve a slightly similar placement quality. They reject respectively 30% and 28.6%

of the tasks, and both occupy ∼ 30% of the recon�gurable array. Furthermore, 1D variable slots

horizon is a better scheduling algorithm as its di�erential quality metric is higher. Therefore,

this result points out how bene�cial the use of a slots-based placer in a looking ahead scheduling

strategy. The simulation on the runtime overheads was not performed for this algorithm.

6.6 Conclusion of the Chapter

This chapter has presented the results of numerous simulations that were conducted. It �rst

presented the simulation environment along with the parameters of the tasks sets. The output

data (metrics) resulting from simulations were then collected. They were analyzed and com-

223

6. Experiments Results Conclusion of the Chapter

pared according to di�erent scheduling algorithms. The results showed the great in�uence of the

underlying placement strategy on scheduling algorithms. Thus, whenever possible, two scheduling

algorithms were compared only if they were relying on the same placement strategy. Regardless of

the considered metric, the suitability of the multi-shape scheduling approach for online real-time

scheduling has been deeply established.

Regarding the looking-ahead scheduling approach; the results also showed that when the looking-

ahead scheduling relies on a 1D placement strategy combined with a 1D slots-based areas mana-

gement, it provided a slightly similar if not better performance in terms of tasks rejection ratio and

array utilization ratio, compared to a looking-ahead scheduling that uses a 2D area management.

In addition, the so-called 1D-variable-slots horizon looking ahead scheduling may have a far lower

runtime overhead.

Additional simulation results are presented as it is at the end of the thesis, in Appendix B (page

248), Appendix C (page 256) and Appendix D (page 260). In these simulations results, as many

scheduling algorithms as possible are displayed on a single graph, giving more opportunity to

compare their performance. Hence, such a graph can be a rich source of information on the be-

havior of scheduling and placement algorithms along with their in�uence on di�erent scheduling

and placement metrics that are meaningful in real-time multi-tasking on recon�gurable hardware

devices.

The next chapter concludes the thesis and discusses future work.

224

Chapter 7

Conclusion and Future Work

7.1 Discussions

Embedded electronic devices have become part of everyday life. From DVB1 to hand-held de-

vices, the technology is becoming ubiquitous and the requirements of embedded applications in

terms of computational power are skyrocketing. Moreover, these requirements are in addition

to stringent constraints such as cost, size, power consumption, high data rate, shorter life cycle,

etc. Nowadays, thanks to improvements in semiconductor technology, entire systems can be com-

pressed onto a sliver of silicon that is smaller than a penny. The so-called System-on-a-Chip has

become the solution as it combines the key features mentioned above. However, on one hand,

this advanced in semiconductor technology is very costly, resulting in increasingly high non re-

curring engineering (NRE) costs. This thesis has discussed how using dynamically recon�gurable

hardware devices can lower the NRE. On the other hand, SoC complexity constantly increases as

it integrates heterogeneous components (including recon�gurable parts) in order to provide the

required computational power. Thus, as SoC complexity increases, their design process needs to

undergo signi�cant transformation.

The original objective of the thesis was to address problem of scheduling online real-time

hardware tasks on the partially and dynamically recon�gurable part of the SoC, and subsequently

build a library of scheduling/placement algorithms for an RTOS-driven Recon�gurable-SoC de-

sign space exploration. Therefore, combining these two reasons made this thesis unique, as the

investigated issues intervene at two stages :

1 Digital Video Broadcasting

225

7. Conclusion & Outlook of the Thesis Key Contributions (1)

• After the design stage (at runtime); where scheduling and placement algorithms that

enable online real-time scheduling of hardware tasks on the recon�gurable part of a SoC were

investigated. These online real-time scheduling and placement algorithms were required to

provide a reasonable trade-o� between their time complexity and their performance in terms

of chip utilization ratio, tasks rejection ratio, etc.

• Prior to and during the design stage (o�ine); where scheduling and placement

algorithms dedicated to the recon�gurable part of a Recon�gurable SoC are required while

exploring the design space of the SoC. It corresponds to the part of this work which consisted

of implementing, assessing and classifying as many scheduling and placement algorithms

as possible, and subsequently integrating them in a library. For example in the design

methodology presented in Chapter 2 and depicted in �gure 2.19 (page 60), using such a

library of algorithms at system level can help to perform a more accurate partitioning of

the application, and thus to re�ne the architecture of the Recon�gurable SoC with respect

to system and application constraints.

7.2 Key Contributions

7.2.1 Algorithms for Online Real-time Scheduling/Placement on DPRHWs

Scheduling algorithms can be classi�ed in two families, namely, looking-ahead scheduling and

without-looking-ahead scheduling. The two scheduling families di�er on the way the availability

of the areas on the recon�gurable array is expressed, and on the way the algorithms check these

available areas and assign them to tasks. To put it simply, without-looking-ahead scheduling keeps

a task as far as it can still meet its deadline, and attempts to place it. Conversely, a looking-ahead

scheduling decides as a task arrives, if it is rejected or accepted. Therefore, the rejection delay

is equal to zero in the latter case. Depending on the family, the scheduling algorithm requires

di�erent quantity of placement operations.

1. Looking-ahead scheduling algorithm considers present and future states of the recon�-

gurable array to detect areas that are currently free, or those who will be free in the future.

Thus, the scheduler knows whether the task can �t on the array presently or later. For

example, an area occupied at the present time can be reserved to accommodate a task that

starts later.

The signi�cant advantage of looking-ahead approach over without-looking-ahead approach is

226

7. Conclusion & Outlook of the Thesis Key Contributions (1)

its ability to take very fast scheduling decisions. This last feature is very useful for schedul-

ing online real-time tasks. However, this speediness comes at the cost of numerous areas

management operations. The latter operations mimic future tasks ending and starting im-

pact on the recon�gurable array, in order to properly schedule arriving tasks. Consequently,

the placement algorithms must be of low complexity to make the looking-ahead scheduling

approach a�ordable in terms of runtime overhead. The contribution of the thesis on online

looking-ahead scheduling is as follows :

(i). The study in the Chapter 4 section 4.2.2 demonstrated through a cycle accurate

runtime overhead measurements that MERs-based placement strategies are very time

consuming and, therefore, are not suited to online real-time looking-ahead scheduling.

To the best of our knowledge, such cycle accurate timing measurements on MERs-

based algorithms have not been conducted before on an embedded processor.

(ii). The simulation results detailed and discussed in Chapter 6 section 6.5.1 has shown

that when they rely on the same placement strategy, looking-ahead scheduling and

without-looking-ahead scheduling algorithms provide slightly similar performance in

terms of tasks rejection ratio and recon�gurable chip utilization ratio. This �nding

suggests that looking-ahead scheduling is a worthy approach only in special cases

where rapid scheduling decisions are required (e.g. online real-time scheduling on

heterogeneous platforms that provide more than one implementation alternative).

Indeed, equation 3.13 (page 99) shows that with looking-ahead scheduling, a task that

cannot �t on the recon�gurable array is rejected immediately, allowing for alternative

implementation solutions.

(iii). A new metric denoted as di�erential quality metric URqm was introduced. This

metric better re�ects the di�erence between two scheduling algorithms which seem at

�rst glance identical in terms of utilization ratio and tasks rejection ratio.

(iv). A ternary tree structure were proposed and developed. The tree were inspired from

the binary tree structure presented in Bazargan et al. (2000) and improved in Walder

et al. (2003). The originality of the proposed ternary tree structure is its suitability

for keeping the information on present and future states of the recon�gurable array.

227

7. Conclusion & Outlook of the Thesis Key Contributions (1)

Thus, the tree eases a 2D horizon looking-ahead scheduling approach by providing a

good visibility for future states of the array.

Additionally, two variants of 2D horizon looking-ahead scheduling that use the tree

were proposed. They are denoted as horizon-SFAF scheduling and horizon-EAAF

scheduling algorithms. As shown by the simulation results in section 6.5.1 page

219, the horizon-EAAF scheduling algorithm performs better than the horizon-SFAF

scheduling and the EDF scheduling in terms of tasks rejection ratio and chip utiliza-

tion ratio. The di�erential quality metric con�rms this result.

(v). 1D variable size slots horizon (1D-VSSH) scheduling algorithm has been proposed

and studied. The algorithm combines the main advantage of the the looking-ahead

scheduling (which is its very short task rejection delay as expressed in equation 3.13,

page 99) and the simplicity of a 1D placement strategy. The simulation results dis-

cussed in detail in section 6.5.2 shows that, by dynamically partitioning the recon�-

gurable array in slots, and by applying a 1D placement in each slot, there is no loss in

terms of tasks rejection ratio and chip utilization ratio, compared to a 2D placement.

Furthermore, the 1D variable size slots horizon (1D-VSSH) is similar if not slightly

better in performance. This result is important since it suggests that in a looking-

ahead scheduling approach, one can avoid the use of a time consuming 2D placement

strategy without sacri�cing placement quality.

2. A without-looking-ahead scheduling algorithm places the tasks only on currently avail-

able areas. Thus, when a �tting place is found, the task is place immediately and starts its

execution. The contribution of the thesis on online without-looking-ahead scheduling is as

follows :

(i). Several tasks parameters based scheduling algorithms were developed. Their simu-

lation results have shown that the performance of a scheduling algorithm in terms

of tasks rejection ratio and recon�gurable array utilization ratio, highly depends on

the quality of the underlying placement strategy. This �nding was highlighted by a

comparison of simulation results of these scheduling algorithms when they used the

same placement strategy. According to these results discussed in the previous chapter

(section 6.3), these algorithms do not signi�cantly di�er from each other in terms of

utilization ratio and tasks rejection ratio. However, the BSF (biggest size �rst) al-

228

7. Conclusion & Outlook of the Thesis Hypothesis & Limitations

gorithm is slightly better, particularly in terms of di�erential quality metric, a more

sensitive metric.

(ii). The Multi-shape scheduling approach was one of the key proposal of this work, to

solve the issue of scheduling online real-time tasks on partially and dynamically

recon�gurable hardware devices. The ability of the proposed approach to signi�-

cantly improve the placement quality when only two versions per task are provided

and when the area partitioning strategy suits to the aspect ratio of the tasks has been

proven. The multi-shape scheduling algorithms provide far better results than any

other algorithms, without signi�cantly increase the runtime overheads.

7.2.2 Scheduling/Placement algorithms library for RTOS-driven design

space exploration

In addition to proposing new online real-time scheduling algorithms for recon�gurable hardware

devices, an important part of this thesis was devoted to the study, implementation and evaluation

of existing algorithms in related work. The list of scheduling algorithms and placement heuristics

that have been implemented within the framework of this work are shown in the appendix of this

thesis in table 7.3 (page 256), table 7.4 (page 257), table 7.5 (page 258) and table 7.6 (page 259).

The simulations results are also gathered in the Appendix B and presented as shown. Gathering

the results of so many scheduling algorithms on the same graphs allows the designer to point

out the advantages and drawbacks of each algorithm or class of algorithms, and to �nd suitable

trade-o�s between the metrics of the algorithms. The relevent metrics are the utilization ratio,

the tasks rejection ratio, the di�erential utilization metrics, the algorithms runtime overheads, the

makespan, etc. As discussed in Chapter 2, and shown in �gure 2.19, these algorithms can be used

to re�ne the dynamically recon�gurable part of the SoC, during the system level simulation. The

algorithms were designed purposely in C++ language in order to insure a full compatibility with

any C++/SystemC based SoC design methodology. The algorithms are based on various models

of hardware tasks, recon�gurable array, scheduler and placer that are reusable and re�nable.

229

7. Conclusion & Outlook of the Thesis Hypothesis & Limitations

7.3 Hypothesis and Limitations

The original hypothesis of the thesis can be summarized as follows :

• Hardware tasks are rectangularly shaped and relocatable, but cannot be rotated.

• The recon�gurable hardware device is partially and dynamically recon�gurable.

• A hardware task �ts in a rectangular space of the recon�gurable device as far as there is

enough contiguous free resources to accommodate the task.

• The online scheduling paradigm used in this thesis corresponds to the online clairvoyant

paradigm.

• The scheduling is said real-time because every task in the system is submitted to a deadline

constraint. A hardware task that cannot �t on the recon�gurable array and meet its deadline

is rejected. However, rejecting a task does not lead the failure of the application, because

it is assumed that there are other implementation alternatives for the task.

• Aperiodic tasks systems are used. They are likely to better re�ect a very dynamic system

where the release time of each job is totally unknown beforehand.

• Tasks parameters are statistically independent.

• It is assumed that there is a communication media that allows the tasks to communicate

independently to their location on the chip. The thesis does not deal with the inter-tasks

communication issues.

The aforementioned assumptions and limitations are widely accepted by the research community

in Recon�gurable Computing to study the problem of scheduling and placing hardware tasks on

DPRHWs. These assumptions rely on technological advances in devices such as FPGAs, and on

research topics that address other problems in the �eld (e.g. communication, tasks relocation,

tasks migration, etc.).

Though many optimal and non optimal scheduling and placement algorithms have been pro-

posed in related work, their suitability for online real-time scheduling was not established, es-

pecially in an embedded environment. The foundation of this thesis was a methodology which

�rst assessed the limitations of some areas management approaches in such an environment. Ac-

cordingly, few scheduling and placement methods have been proposed and discussed. In addition,

combination of scheduling and placement strategies have been suggested.

230

7. Conclusion & Outlook of the Thesis Future Work

The proposed solutions have been proven to improve the scheduling and placement quality

without signi�cantly modifying the algorithms complexity and runtime overheads. These results

prove the primary hypothesis that resulted from the methodology proposed in this thesis.

7.4 Future Work

Several scheduling algorithms have been studied in Chapter 5. Most of these algorithms have been

implemented and simulated, and the simulation results discussed. However, few have been either

partially implemented or partially simulated, and some others have not been implemented.

In this thesis, the n X 1D variable size slots scheduling relies on an areas management

strategy that has been used only with a horizon-looking-ahead scheduling algorithm. In Chapter

5, three variants of the algorithm, namely First Fit (FF), Next Fit (NF) and Best Fit (BF) have

been discussed. Only the BF variant has been combined with the horizon-looking-ahead scheduling

and simulated. Any experiment has been carried out with a without-looking-ahead scheduling.

An extension of this research could be to replace the horizon schedulings by stu�ng schedulings

in order to assess the improvements that are obtained.

Multi-shape scheduling algorithms have been proven to improve the scheduling and place-

ment quality. Looking-ahead scheduling algorithms have been proven to be suitable for online

real-time scheduling if they rely on a placer with acceptable complexity. We have separately as-

sessed the two scheduling approaches. Combining them will improve the scheduling quality. On

one hand, the multi-shape scheduling will increase the chip utilization ratio and decrease the tasks

rejection ratio, while the looking-ahead approach will allow the scheduler to take fast scheduling

decisions, which is very useful in an online real-time context.

In this thesis, the complexity of designing multi-shape hardware tasks has not been clearly

studied. However, the assumptions made above on hardware tasks are the same for multi-shape

hardware tasks (relocatability, etc.). The simulation results has shown that using two versions

per tasks is su�cient to signi�cantly improve the placement quality. Therefore, it can be roughly

assumed that the multi-shape scheduling approach requires about twice as much memory as the

single-version tasks scheduling approach, to store the bitstreams.

231

7. Conclusion & Outlook of the Thesis Future Work

The multi-shape scheduling algorithm have been proposed in Chapter 5 as a solution for

improving the scheduling and placement quality, in terms of tasks rejection ratio, chip utilization

ratio and scheduling algorithm runtime overheads. The same algorithm could be applied to power-

aware embedded systems. The power consumption of a hardware task consists of two main parts.

The part due to the power and the time required to con�gure the task on the recon�gurable

array, and the part due to the power dissipated by the hardware task when it runs to completion.

In both cases, the power depends on the size of the task, in addition to other parameters. As

the multi-shape tasks scheduling assumes that each hardware task can be instantiated in more

than one size and/or shape, a power-aware multi-shape scheduling approach will always choose

the instantiation that minimizes the power consumption of the chip.

A possible extension of this work may be to consider the preemption of hardware tasks.

The competitive analysis has been presented in Chapter 3 as the best tool for assessing

online scheduling algorithms. The analysis has been discussed for software tasks scheduling on

monoprocessor and multiprocessor systems, with the aim to transpose to hardware tasks scheduling

on recon�gurable devices. This transposition is far from being obvious, as scheduling hardware

tasks on a recon�gurable array is further complicated than multiprocessor scheduling. Thus, the

competitive analysis approach has been used only in the study of the 1D variable slots scheduling

with minimum makespan in Chapter 5, section 5.3.3. As stated at the beginning of Chapter 6,

for the sake of consistency, an average case analysis has been used instead, while carrying out the

experiments. Using competitive analysis in online scheduling of hardware tasks on dynamically

and partially recon�gurable hardware devices remains a niche.

Through lack of time, the implementation of a real life application on an embedded RSoC

following the OS-driven RSoC design methodology discussed in Chapter 2 and Chapter 4 has not

been done in this thesis. The so-called OveRSoC methodology has been proven suitable for explor-

ing the design space of an an MPSoC (Miramond et al., 2009a). A case study for implementing a

mobile robotic vision application on an MPSoC was presented in Verdier et al. (2008). However,

the latter case was targeting an MPSoC without a dynamically recon�gurable hardware part.

The next step in this work could be to include the dynamically recon�gurable hardware devices

models along with the placer model, the hardware tasks models and the scheduling/placement

strategies provided by this work into the methodology. Hence, as depicted in �gure 2.19 (page

232

7. Conclusion & Outlook of the Thesis Future Work

60), these models and algorithms will be taken into account by the architecture and RTOS services

exploration strategy while re�ning the �nal architecture for the case study.

233

Publication

Publications

This thesis will be summarized and submitted as a Journal Paper.

Refereed Conference Papers

1. G. Wassi, G. Lawday, M-E-A. Benkhelifa, F. Verdier, "Online Real-time Scheduling of

Multi-shape Hardware Tasks on Partially Recon�gurable FPGAs", In the proceedings of

22th National Symposium of Research Group on Signal and Images Processing, GRETSI

2009, 8-11 septembre 2009, Dijon, France.

Non-Refereed Workshop/Conference Papers

1. G. Wassi, M-E-A. Benkhelifa, F. Verdier, G. Lawday, "Tree Structure for Online Real-

time Scheduling on Partially Recon�gurable FPGAs", In the proceedings of 4th National

Symposium of Research Group on System-on-Chip & System-in-Package, GDR SoC/SiP

010, 2010, Paris, France.

2. Guy Wassi, Geo� Lawday, Amine Benkhelifa, Francois Verdier, "Online Scheduling and

Placement of Real-Time Hardware Tasks on FPGAs", In the proceedings of 3rd National

Symposium of Research Group on System-on-Chip & System-in-Package, GDR SoC/SiP

009, 2009, Orsay, France.

234

Bibliography

Leon Adam. Choosing the right architecture for real-time signal processing designs. White paper

spra879, Texas Instruments, Nov 2002.

A. Ahmadinia, C. Bobda, and J. Teich. A dynamic scheduling and placement algorithm for

recon�gurable hardware. Architecture of Computing Systems (ARCS), pages 125�139, 2004.

Elias Ahmed and Jonathan Rose. The e�ect of lut and cluster size on deep-submicron fpga perfor-

mance and density. In FPGA '00: Proceedings of the 2000 ACM/SIGDA eighth international

symposium on Field programmable gate arrays, pages 3�12, New York, NY, USA, 2000. ACM.

Susanne Albers and Bianca Schröder. An experimental study of online scheduling algorithms.

ACM Journal of Experimental Algorithmics, 7:154, 2002.

Altera. www.altera.com. URL http://www.altera.com.

Altera. Introducing innovations at 28 nm to move beyond moore's law. Tech-

nical report, Altera Corp., 2010a. URL http://www.altera.com/literature/wp/

wp-01125-stxv-28nm-innovation.pdf.

Altera. Altera unveils innovations for 28-nm fpgas. Technical report, Altera Corp.,

2010b. URL http://www.altera.com/corporate/newsroom/releases/2010/products-/

nr-innovating-at-28-nm.html.

P. M. Athanas and H. F. Silverman. Processor recon�guration through instruction set metamor-

phosis. IEEE Computer, 3(26):11�18, 1993.

235

http://www.altera.com
http://www.altera.com/literature/wp/wp-01125-stxv-28nm-innovation.pdf
http://www.altera.com/literature/wp/wp-01125-stxv-28nm-innovation.pdf
http://www.altera.com/corporate/news room/releases/2010/products-/nr-innovating-at-28-nm.html
http://www.altera.com/corporate/news room/releases/2010/products-/nr-innovating-at-28-nm.html

Bibliography

I. Bandara and C. Hudson. Detection and tracking of eye blink to identify driver fatigue and

napping. In HCI 2006: Engage!, The 20th BCS HCI Group conference in co-operation with

ACM. London, UK., 11-15 September 2006.

V. Baumgarte, G. Ehlers, F. May, A. Naeckel, M. Vorbach, and M. Weinhardt. PACT XPP�a

self-recon�gurable data processing architecture. Journal of Supercomputing, 26(2):167�184,

2003.

K. Bazargan, R. Kastner, and M. Sarrafzadeh. Fast template placement for recon�gurable comput-

ing systems. In IEEE Design and Test for Computers, volume 17, pages 68�83, Los Alamitos,

CA, USA, 2000. IEEE Computer Society Press.

John Blyler. Navigating the silicon jungle: FPGA or ASIC ? Chip Design Magazine, June release,

2005.

Ivo Bolsens. The future of FPGAs. Victorian Microelectronics Designers Network. Event, Mel-

bourne, pages 21�30, Jan 27 2005.

Celoxica. Handel-c language. Technical report, Celoxica, 2000. URL www.celoxica.com.

K. B. Chehida and M. Auguin. HW / SW Partitioning Approach For Recon�gurable System

Design. CASES 2002, 2002.

Yuan-Hsiu Chen and Pao-Ann Hsiung. Hardware task scheduling and placement in operating

systems for dynamically recon�gurable soc. In EUC, pages 489�498, 2005.

E. G. Co�man, M. R. Garey, and D. S. Johnson. Approximation algorithms for bin packing:

A survey. In PWS Publishing Company, editor, In D. Hochbaum, Approximation algorithms,

1997.

K. Compton, Z. Li, J. Cooley, S. Knol, and S. Hauck. Con�guration relocation and defragmenta-

tion for run-time recon�gurable computing. IEEE Trans. Very Large Scale Integration (VLSI)

Systems, 10(3):209�220, 2002.

Jin Cui and Qingxu Deng. An e�cient algorithm for online management of 2d area of partially

recon�gurable fpgas. In in Proc. Design, Automation and Test in Europe (DATE, pages 129�

134, 2007.

236

www.celoxica.com

Bibliography

K. Danne. Real-Time Multitasking in Embedded Systems Based on Recon�gurable Hardware. PhD

thesis, PhD thesis, University of Paderborn, Germany, September 2006.

K. Danne and M. Platzner. Partitioned Scheduling of Periodic Real-Time Tasks onto Recon�-

gurable Hardware. In International Parallel and Distributed Processing Symposium (IPDPS'06),

Recon�gurable Architecture Workshop (RAW'06), 2006a.

K. Danne and M. Platzner. A heuristic approach to schedule periodic real-time tasks on recon�-

gurable hardware. In International Conference on Field Programmable Logic and Applications,

pages 24�26, 2005.

K. Danne and M. Platzner. An EDF schedulability test for periodic tasks on recon�gurable hard-

ware devices. In Proceedings of the 2006 ACM SIGPLAN/SIGBED conference on Language,

compilers, and tool support for embedded systems, pages 93�102. ACM New York, NY, USA,

2006b.

K. Danne, R. Muhlenbernd, and M. Platzner. Executing hardware tasks on dynamically recon�-

gurable devices under real-time conditions. In Field Programmable Logic and Applications,

2006. FPL'06. International Conference on, pages 1�6, 2006.

André DeHon. The density advantage of con�gurable computing. IEEE Computer Society, 33:

pages 41�49, 2000.

C. Ebeling, Cronquist DC., and Franklin P. Rapid recon�gurable pipelined datapath. Lec-

ture Notes in Computer Science 1142 - Field Programmable Logic: Smart Applications, New

Paradigms and Compilers, pages 126�135, 1996.

Je� Edmonds. Scheduling in the dark. Theoretical Computer Science, 235(1):109�141, 2000.

Fujitsu. White paper: Fujitsu develops new soc design methodology based on uml and c. Technical

report, 2002.

A. Gatherer, S. Sriram, F. Moerman, Sengupta C., and K. Brown. Cost E�ective Software Radio

for CDMA Systems. In: Walter H. W. Tuttlebee, Software De�ned Radio: Baseband Technolo-

gies for 3G Handsets and Basestations. ed John Wiley & Sons., England, 2004.

M. Gokhale and J. Stone. NAPA C: Compiling for a hybrid RISC/FPGA architecture. In 6th

IEEE Symposium on FPGAs for Custom Computing Machines (FCCM'98), 15-17 April 1998,

Napa Valley, CA, USA, pages 126�. IEEE Computer Society, 1998.

237

Bibliography

M. B. Gokhale and P. S. Graham. Recon�gurable Computing: Accelerating Computation with

Field-Programmable Gate Arrays. Springer, 1 edition, 2006.

Maya B. Gokhale, Janice M. Stone, Je� Arnold, and Mirek Kalinowski. Stream-oriented fpga

computing in the streams-c high level language. In Proceedings of the 2000 IEEE Symposium

on Field-Programmable Custom Computing Machines, pages 49�, Washington, DC, USA, 2000.

IEEE Computer Society. URL http://portal.acm.org/citation.cfm?id=795659.795916.

Seth Copen Goldstein, Herman Schmit, Mihai Budiu, Srihari Cadambi, Matt Moe, R. Reed Taylor,

and R. Reed. Piperench: A recon�gurable architecture and compiler. IEEE Computer, 33:70�77,

2000. URL http://www.cs.cmu.edu/~seth/papers/goldstein-ieee00.pdf.

R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G.Rinnooy Kan. Optimization and approxima-

tion in deterministic sequencing and scheduling: a survey. In E.L. Johnson P.L. Hammer and

B.H. Korte, editors, Discrete Optimization II,, volume 5 of Annals of Discrete Mathematics,

pages 287 � 326. Elsevier, 1979. URL http://www.sciencedirect.com/science/article/

B8G56-4SD21YG-M/2/4b302b1ea464cf17986f7e4642be86a1.

M. Handa and R. Vemuri. Area fragmentation in recon�gurable operating systems. In Interna-

tional Conference on Engineering of Recon�gurable Systems and Architectures (ERSA), pages

77�83, 2004a.

M. Handa and R. Vemuri. An integrated online scheduling and placement methodology. In Field

Programmable Logic and Applications (FPL'04). . International Conference on, pages 444�453,

2004b.

Manish Handa and Ranga Vemuri. An e�cient algorithm for �nding empty space for online fpga

placement. In Proceedings of the 41st annual Design Automation Conference, DAC '04, pages

960�965, New York, NY, USA, 2004c. ACM. URL http://doi.acm.org/10.1145/996566.

996820.

R. Hartenstein. Coarse grain recon�gurable architecture (embedded tutorial). In ASP-DAC '01:

Proceedings of the 2001 Asia and South Paci�c Design Automation Conference, pages 564�570,

New York, NY, USA, 2001a. ACM.

R. Hartenstein. A decade of recon�gurable computing: a visionary retrospective. In DATE

'01: Proceedings of the conference on Design, automation and test in Europe, pages 642�649,

Piscataway, NJ, USA, 2001b. IEEE Press.

238

http://portal.acm.org/citation.cfm?id=795659.795916
http://www.cs.cmu.edu/~seth/papers/goldstein-ieee00.pdf
http://www.sciencedirect.com/science/article/B8G56-4SD21YG-M/2/4b302b1ea464cf17986f7e4642be86a1
http://www.sciencedirect.com/science/article/B8G56-4SD21YG-M/2/4b302b1ea464cf17986f7e4642be86a1
http://doi.acm.org/10.1145/996566.996820
http://doi.acm.org/10.1145/996566.996820

Bibliography

Paul Heysters, Gerard Smit, and Egbert Molenkamp. A �exible and energy-e�cient coarse-grained

recon�gurable architecture for mobile systems. J. Supercomput., 26(3):283�308, 2003.

ImpulseC. Impulsec language. Technical report, Impulse Accelerated Technologies,

www.impulseaccelerated.com. URL http://www.impulseaccelerated.com.

P. A. Jackson J. L. Tripp and B. L. Hutchings. Sea cucumber: A synthesizing compiler for

fpgas. In Proceedings of the 12th International Conference on Field Programmable Logic and

Applications, 2002.

Ahmed A. Jerraya. Long term trends for embedded system design. In DSD '04: Proceedings of

the Digital System Design, EUROMICRO Systems, pages 20�26, Washington, DC, USA, 2004.

IEEE Computer Society.

Chi jui Chou, Satish Mohanakrishnan, and Joseph B. Evans. Fpga implementation of digital �lters.

In In Proceedings of the Fourth International Conference on Signal Processing Applications and

Technology, pages 80�88, 1993.

A. Kaplan, M. Sarrafzadeh, and R. Kastner. A survey of hardware/software system partitioning.

Technical report, 2003.

D. Koch and J. Torresen. Advances and trends in dynamic partial run-time recon�guration.

Department of Informatics, University of Oslo, Norway, 2010.

Markus Koester, Mario Porrmann, and Heiko Kalte. Task placement for heterogeneous recon�-

gurable architectures. In FPT, pages 43�50, 2005.

Markus Koester, Heiko Kalte, and Mario Porrmann. Relocation and defragmentation for hetero-

geneous recon�gurable systems. In ERSA, pages 70�76, 2006.

Ian Kuon and Jonathan Rose. Measuring the gap between fpgas and asics. In Proceedings of the

2006 ACM/SIGDA 14th international symposium on Field programmable gate arrays, FPGA

'06, pages 21�30, New York, NY, USA, 2006. ACM. ISBN 1-59593-292-5. doi: http://doi.acm.

org/10.1145/1117201.1117205. URL http://doi.acm.org/10.1145/1117201.1117205.

C. L. Liu and James W. Layland. Scheduling algorithms for multiprogramming in a hard-real-time

environment. J. ACM, 20:46�61, January 1973. URL http://doi.acm.org/10.1145/321738.

321743.

239

http://www.impulseaccelerated.com
http://doi.acm.org/10.1145/1117201.1117205
http://doi.acm.org/10.1145/321738.321743
http://doi.acm.org/10.1145/321738.321743

Bibliography

Carey Douglass Locke. Best-e�ort decision-making for real-time scheduling. PhD thesis, Pitts-

burgh, PA, USA, 1986. AAI8702895.

Y. Lu, T. Marconi, G. N. Gaydadjiev, K.L.M. Bertels, and R. J. Meeuws. A self-adaptive on-

line task placement algorithm for partially recon�gurable systems. In Proceedings of the 22nd

Annual International Parallel & Distributed Processing Symposium (IPDPS 2008) - RAW2008,

page 8, April 2008.

P. Mahr, S. Christgau, C. Haubelt, and C. Bobda. Integrated temporal planning, module selec-

tion and placement of tasks for dynamic networks-on-chip. In Proceedings of the 25th IEEE

International Parallel & Distributed Processing Symposium, 2011.

T. Marconi, Y. Lu, K.L.M. Bertels, and G. N. Gaydadjiev. Online hardware task scheduling

and placement algorithm on partially recon�gurable devices. In Proceedings of International

Workshop on Applied Reconf. Computing (ARC), pages 306�311, March 2008.

G. Martin. The History of the SoC revolution. In: G. MARTIN, H. CHANG, Winning the Soc

revolution. ed. Kluwer Academic Publishers., USA, 2003.

MathWorks. In www.mathworks.com; www.mathworks.com/products/slhdlcoder;,

www.mathworks.com.

Bingfeng Mei, Serge Vernalde, Diederik Verkest, Hugo De Man, and Rudy Lauwereins. ADRES:

An architecture with tightly coupled vliw processor and coarse-grained recon�gurable matrix.

pages 61�70. 2003.

Uwe Meyer-Bäse, Divya Sunkara, Encarnacion Castillo, and Antonio Garcia. Custom instruction

set nios-based ofdm processor for fpgas. volume 6248, page 62480O. SPIE, 2006.

J.-Y. Mignolet, V. Nollet, P. Coene, D. Verkest, S. Vernalde, and R. Lauwereins. Infrastructure for

design and management of relocatable tasks in a heterogeneous recon�gurable system-on-chip.

In Proceedings of Design, Automation and Test in Europe 2003 (DATE 03), IEEE Computer

Society, pages 986�991, March 2003.

B. Miramond, E. Huck, F. Verdier, Mohamed El Amine Benkhelifa, B. Granado, M. Aichouch, J.-

C. Prévotet, D. Chillet, S. Pillement, Th. Lefebvre, and Yaset Oliva. Oversoc : a framework for

the exploration of rtos for rsoc platforms. International Journal on Recon�gurable Computing,

2009(450607):1�18, dec 2009a. URL http://publi-etis.ensea.fr/2009/MHVBGAPCPLO09.

240

http://publi-etis.ensea.fr/2009/MHVBGAPCPLO09

Bibliography

B. Miramond, F. Verdier, and M. Aichouch. Dogme distributed operating system graphical mod-

eling environment, 2009b.

J. Noguera and R. M. Badia. Multitasking on recon�gurable architectures: Microarchitecture

support and dynamic scheduling. 3(2):385�406, 2004.

V. Nollet, P. Coene, D. Verkest, S. Vernalde, and R. Lauwereins. Designing an operating sys-

tem for a heterogeneous recon�gurable soc. In Recon�gurable Architectures Workshop (RAW),

Proceedings of the International Parallel and Distributed Processing Symposium, Paris, March

2003.

V. Nollet, P. Avasare, D. Verkest, and H. Corporaal. Exploiting hierarchical con�guration to

improve run-time mpsoc task assignment. In ERSA'06, pages 49�55, 2006.

M. Middendorf H. Schmeck O. Diessel, H. ElGindy and B. Schmidt. Dynamic scheduling of tasks

on partially recon�gurable fpgas. In In IEE Proc. on Computers and Digital Techniques, pages

181�188, 2000.

R. J. Petersen. An Assessment of the Suitability of Recon�gurable Systems for Digital Signal

Processing. PhD thesis, Master's Thesis, Brigham Young University, 1995.

Polis. A codesign environment. University of California Berkeley, Center for Electronic System

Design, http://embedded.eecs.berkeley.edu/Respep/Research.

Ptolemy. An environment for modelling, simulation, and design of concurrent real-time em-

bedded systems. University of California Berkeley, Center for Electronic System Design,

http://embedded.eecs.berkeley.edu/Respep/Research.

Jan M. Rabaey. Wireless beyond the third generation wireless beyond the third generation: facing

the energy challenge. In ISLPED '01: Proceedings of the 2001 international symposium on Low

power electronics and design, pages 1�3, New York, NY, USA, 2001. ACM.

Steven Phillips Rajeev Motwani and Eric Torng. Non-clairvoyant scheduling. In Theor. Comput.

Sci, 1994.

S. Roman, H. Mecha, Mozos D., and Septien J. Partition-based dynamic 2d hw multitasking

management. In Proceedings of the 9 EUROMICRO Conference on Digital System Design

(DSD'06), 2006.

241

Bibliography

Jonathan Rose, Abbas El Gamal, Senior Member, and Albert Sangiovanni-vincentelli. Architecture

of �eld-programmable gate arrays: The e�ect of logic block functionality on area e�ciency.

Proceedings of the IEEE, 25:1217�1225, 1990.

P. Schaumont and I. Verbauwhede. Thumbpod puts security under your thumb. In Xilinx Xcell

Journal, 2003.

E. Schüler and L. Tan. XPP � An Enabling Technology for SDR Handsets. In: Walter H. W.

Tuttlebee, Software De�ned Radio: Baseband Technologies for 3G Handsets and Basestations.

ed John Wiley & Sons., England, 2004.

Jirí Sgall. On-line scheduling - a survey. In Online Algorithms: The State of the Art, Lecture

Notes in Computer Science 1442, 1998.

Satwant Singh, Jonathan Rose, Paul Chow, and David Lewis. The e�ect of logic block architecture

on fpga performance. IEEE Journal of Solid-State Circuits, 27:281�287, 1992.

D. Sleator and R. E. Tarjan. Amortized e�ciency of list update and paging rules. In Communi-

cations of the ACM, page 28:202�208. ACM New York, NY, USA, 1985.

Lodewijk T. Smit, Gerard J.M. Smit, Johann L. Hurink, Hajo Broersma, Daniël Paulusma, and

Pascal T. Wolkotte. Run-time mapping of applications to a heterogeneous recon�gurable tiled

system on chip architecture. In IEEE International Conference on Field-Programmable Tech-

nology, FPT, pages 421�424. IEEE, 2004. URL http://doc.utwente.nl/48501/.

John A. Stankovic. Misconceptions about real-time computing. IEEE Computer, 21(10):10�19,

1988.

C. Steiger, H. Walder, and M. Platzner. Operating Systems for Recon�gurable Embedded Plat-

forms: Online Scheduling of Real-Time Tasks. IEEE TRANSACTIONS ON COMPUTERS,

53(11):1393�1407, 2004.

SystemC. Systemc language, www.systemc.org. Technical report, www.systemc.org.

SystemVerilog. Systemverilog, an uni�ed hardware description and veri�cation language (hdvl)

standard, http://www.systemverilog.org. Technical report, www.systemverilog.org.

242

http://doc.utwente.nl/48501/

Bibliography

J. Tabero, J. Septién, H. Mecha, and D. Mozos. A low fragmentation heuristic for task placement

in 2d rtr hw management. In Field Programmable Logic and Applications, 2004. FPL'04.

International Conference on, pages 241�250, 2004.

J. Tabero, J. Septién, H. Mecha, and D. Mozos. Task placement heuristic based on 3d-adjacency

and look-ahead in recon�gurable systems. In Asia and Paci�c Design Automation Conference

(ASP-DAC), pages 396�401, 2006.

Michael Taylor, Michael Bedford Taylor, Jason Kim, Jason Miller, David Wentzla�, Fae Ghodrat,

Ben Greenwald, Henry Ho�man, Paul Johnson, Jae wook Lee, Walter Lee, Albert Ma, Arvind

Saraf, Mark Seneski, Nathan Shnidman, Volker Strumpen, Matthew Frank, Saman Amaras-

inghe, and Anant Agarwal. The raw microprocessor: A computational fabric for software

circuits and general-purpose programs, 2002.

Tensilica. www.tensilica.com.

R. Tessier and W. Burleson. Recon�gurable computing for digital signal processing: A survey.

Journal of VLSI Signal Processing, 3(28):7�27, 2001.

Jan C. Van Der Veen, Sándor P. Fekete, Mateusz Majer, Ali Ahmadinia, Christophe Bobda, Frank

Hannig, and Jürgen Teich. Defragmenting the module layout of a partially recon�gurable device.

In Proceedings of the International Conference on Engineering of Recon�gurable Systems and

Algorithms (ERSA), Las Vegas, pages 92�101. CSREA Press, 2005.

F. Verdier, B. Miramond, M. Maillard, E. Huck, and Th. Lefebvre. Using high-level rtos models

for hw/sw embedded architecture exploration: Case study on mobile robotic vision. EURASIP

Journal on Embedded Systems, Special issue on Design and Architectures for Signal Image

Processing, 2008. URL http://publi-etis.ensea.fr/2008/VMMHL08.

A.S. Vincentelli and Grant Martin. Platform-based design and software design methodology for

embedded systems. IEEE Design and Test of Computers, 18:23�33, 2001.

H. Walder and M. Platzner. Non-preemptive Multitasking on FPGAs: Task Placement and

Footprint Transform. Proc. Int. Conf. on Engineering of Recon�gurable Systems and Algorithms

(ERSA'02), pages 24�30, 2002.

243

http://publi-etis.ensea.fr/2008/VMMHL08

Bibliography

H. Walder, C. Steiger, and M. Platzner. Fast online task placement on FPGAs: free space par-

titioning and 2D-hashing. Parallel and Distributed Processing Symposium, 2003. Proceedings.

International, page 8, 2003.

Xilinx. In www.xilinx.com, www.xilinx.com.

Xilinx. Two �ows for partial recon�guration: Module based or di�erence based. Technical report,

Xilinx Inc., 2004. URL www.xilinx.com.

Xilinx. Distributed Arithmetic FIR Filter V9.0. Xilinx Inc., San Jose California, April 2005. URL

http://www.xilinx.com/ipcenter/catalog/logicore/docs/da_fir.pdf.

Xilinx. In Company reports, Company reports.

244

www.xilinx.com
http://www.xilinx.com/ipcenter/catalog/logicore/docs/da_fir.pdf

Appendix

7.5 Appendix A : Table classifying related work on schedul-

ing and placement strategies

245

Appendix A. Related works on scheduling and placement strategies

A
r
e
a

M
o
d
e
ls

A
u
t
h
o
r
s

&
A
lg
o
-

r
it
h
m
s

S
t
r
e
n
g
t
h
s

D
r
a
w
b
a
c
k
s

C
o
m
m
e
n
t
s

B
a
za
rg
a
n
et

a
l.
(2
0
0
0
),

K
A
M
E
R
M
E
R
s-
b
a
se
d

O
p
ti
m
a
l

p
la
ce
m
en
t

(2
D
)

V
er
y

h
ig
h

co
m
p
le
x
it
y

O
(n

2
),
sl
ow

S
ta
ti
c,
o
�
in
e
p
la
ce
m
en
t.
U
se
d
a
s
a
co
m
p
a
ri
so
n
re
fe
r-

en
ce
.
W

it
h
o
u
t-
lo
o
k
in
g
-a
h
ea
d
sc
h
ed
u
li
n
g

H
o
m
o
-

B
a
za
rg
a
n
et

a
l.
(2
0
0
0
),

N
o
n
ov
er
la
p
p
in
g

F
a
st
er

th
a
n

K
A
M
E
R
,

co
m
p
le
x
it
y

O
(n

)

Q
u
a
li
ty

lo
st

(f
ra
g
m
en
-

ta
ti
o
n
,
ta
sk
s
re
je
ct
io
n
)

S
ta
ti
c,

o
n
li
n
e,

B
F
,
F
F
,
B
L
,
P
a
rt
ia
l
re
co
n
�
g
u
ra
ti
o
n

(h
ig
h
er

fr
a
g
m
en
ta
ti
o
n
a
n
d
ta
sk
s
re
je
ct
io
n
),

w
it
h
o
u
t-

lo
o
k
in
g
-a
h
ea
d
sc
h
ed
u
li
n
g

g
e
n
e
o
u
s

W
a
ld
er

et
a
l.

(2
0
0
3
),

O
T
F
&
E
O
T
F

H
a
sh

m
a
tr
ix
.

C
o
m
-

p
le
x
.

O
(1

)
fo
r
a
re
a

se
a
rc
h

V
er
y
lo
n
g
u
p
d
a
te

p
ro
-

ce
ss
:
u
p
to

O
(w

·h
),

w
id
th
/
h
ei
g
h
t
o
f
th
e
a
r-

ra
y

O
T
F

a
n
d

E
n
h
a
n
ce
d

O
T
F

p
a
rt
it
io
n
in
g
,
E
n
h
a
n
ce
d

B
a
za
rg
a
n

et
a
l.

(2
0
0
0
)'
s
p
a
rt
it
io
n
er
.

S
ta
ti
c,

o
n
-

li
n
e/
o
�
in
e
p
la
ce
m
en
t
(B
F
,
F
F
,
W
F
),
u
p
to
7
0
%
b
et
te
r

th
a
n
B
a
za
rg
a
n
et

a
l.
(2
0
0
0
)
(n
o
n
ov
er
la
p
p
in
g
).

A
r
e
a

A
h
m
a
d
in
ia

et
a
l.

(2
0
0
4
),
C
lu
st
er
s
b
a
se
d
.

C
o
m
p
le
x
.

O
(n
)
L
es
s

fr
a
g
m
en
ta
ti
o
n
.

1
D

p
la
ce
m
en
t.

N
o
t

re
a
ll
y

fr
a
g
m
en
ta
ti
o
n

b
a
se
d
.

E
n
h
a
n
ce
d
B
a
za
rg
a
n
et

a
l.
(2
0
0
0
)'
s
p
a
rt
it
io
n
er
.
R
u
n
-

ti
m
e
ov
er
h
ea
d
1
5
to

2
0
%

b
et
te
r
th
a
n
K
A
M
E
R
,
fo
r
a

sl
ig
h
tl
y
si
m
il
a
r
ta
sk
s
re
je
ct
io
n
ra
ti
o
.
D
y
n
a
m
ic
p
la
ce
-

m
en
t,
eq
u
a
l
si
ze

sl
o
ts
.
P
ro
to
ty
p
ed

ex
a
m
p
le
.

M
o
d
e
l

R
o
m
a
n
et

a
l.
(2
0
0
6
)

C
o
m
p
le
x
.
O
(1
).

O
u
t-

p
er
fo
rm

s
th
e
F
ir
st

F
it

a
lg
o
ri
th
m

L
es
s
e�

ci
en
t
fo
r
h
et
-

er
o
g
en
eo
u
s
(e
q
u
a
l
si
ze
)

ta
sk

se
ts

S
lo
ts

w
it
h
d
i�
er
en
t
si
ze
s,

ru
n
ti
m
e
si
ze

a
d
ju
st
m
en
t.

Q
u
eu
e
fo
r
sc
h
ed
u
li
n
g

T
a
b
le
7
.1
:
R
el
a
te
d
w
o
rk

o
n
sc
h
ed
u
li
n
g
a
n
d
p
la
ce
m
en
t
st
ra
te
g
ie
s
(h
o
m
o
g
en
eo
u
s
re
co
n
�
g
u
ra
b
le
a
rr
ay

m
o
d
el
)

246

Appendix A. Related works on scheduling and placement strategies

A
r
e
a

M
o
d
e
ls

A
u
t
h
o
r
s

&
A
lg
o
-

r
it
h
m
s

S
t
r
e
n
g
t
h
s

D
r
a
w
b
a
c
k
s

C
o
m
m
e
n
t
s

K
o
es
te
r
et

a
l.

(2
0
0
5
)

S
U
P
F
it
&

R
U
P
F
it
a
l-

g
o
ri
th
m
s

B
o
th

h
av
e
b
et
te
r
1
D
-

p
la
ce
m
en
t
th
a
n

B
es
t-

F
it
.

R
U
P
F
it

h
a
s

a
h
ig
h

R
u
n
-t
im
e
co
m
p
le
x
it
y.

S
U
P
F
it
re
je
ct
s
le
ss
ta
sk
s.
R
U
P
F
it
h
a
s
a
b
et
te
r
u
ti
li
za
-

ti
o
n
ra
ti
o
a
n
d
th
e
le
a
st
re
la
ti
v
e
ta
sk

re
je
ct
io
n
s.
P
ri
o
r-

it
y
fe
a
tu
re

o
n
ta
sk
s.

H
et
er
o
g
en
ei
ty

(s
ta
ti
c
v
s
co
n
�
g
-

u
ra
b
le
ce
ll
s)
.
B
es
tF
it
u
se
d
fo
r
b
en
ch
m
a
rk
in
g
.
P
ro
to
-

ty
p
ed

ex
a
m
p
le
.

H
e
t
e
r
o
-

S
te
ig
er

et
a
l.

(2
0
0
4
),

H
o
ri
zo
n
(1
D
),

S
tu
�
-

in
g
(1
D
a
n
d
2
D
)

T
a
sk
s
re
je
ct
io
n
ra
ti
o
≤

1
0
%

fo
r
th
e
2
D

st
u
�
-

in
g
,
m
o
d
el
s
si
m
il
a
r
to

o
u
rs

N
o

d
et
a
il
s

o
n

p
la
ce
-

m
en
t
st
ra
te
g
ie
s
u
se
d

O
n
li
n
e
sc
h
ed
u
li
n
g
&

p
la
ce
m
en
t
o
f
re
a
l-
ti
m
e
ta
sk
s.

T
a
sk
s
re
lo
ca
ta
b
il
it
y,

B
et
te
r
sc
h
ed
u
li
n
g
p
er
fo
rm

a
n
ce

w
it
h
st
a
n
d
in
g
ta
sk
s.
P
ro
to
ty
p
in
g
o
f
th
e
1
D
m
o
d
el
u
s-

in
g
a
X
il
in
x
F
P
G
A
a
n
d
th
e
m
ic
ro
b
la
ze

a
s
h
o
st
C
P
U
.

g
e
n
e
o
u
s

S
ch
a
u
m
o
n
t

a
n
d

V
er
-

b
a
u
w
h
ed
e
(2
0
0
3
)

fa
st
er

re
co
n
�
g
u
ra
-

ti
o
n
,

J
av
a

se
cu
ri
ty

a
rc
h
it
ec
tu
re

N
o

ru
n
ti
m
e
ta
sk
s
a
s-

si
g
n
m
en
t
fe
a
tu
re

T
h
e
T
h
u
m
b
P
o
d
a
rc
h
it
ec
tu
re
:
H
ie
ra
rc
h
ic
a
l
co
n
�
g
u
ra
-

ti
o
n
co
n
ce
p
t
u
se
d
fr
o
m

a
d
es
ig
n
ti
m
e
p
o
in
t
o
f
v
ie
w
.

R
u
n
-t
im
e
re
co
n
�
g
u
ra
ti
o
n
.

E
a
sy

d
es
ig
n
p
ro
ce
ss

a
n
d

p
ro
g
ra
m
m
in
g
,

A
r
e
a

N
o
ll
et

et
a
l.
(2
0
0
6
)

H
ie
ra
rc
h
ic
a
l
co
n
�
g
u
ra
-

ti
o
n

H
ie
ra
rc
h
ic
a
l
co
n
�
g
u
ra
ti
o
n

co
n
ce
p
t
in

a
n

M
P
S
o
C
,

P
ro
ce
ss
in
g
E
le
m
en
ts
a
ll
o
ca
ti
o
n
.

T
h
e
tw
o
w
o
rk
s
a
re

m
o
re

a
b
o
u
t
ta
sk
s
a
ss
i-

N
o
l

M
P
S
o
C

a
p
p
ro
a
ch
,

T
a
sk

a
ss
ig
n
m
en
t

sc
h
em

e

g
n
em

en
t
in

a
n
M
P
S
o
C

th
a
n
h
a
rd
w
a
re

ta
sk
s
p
la
ce
-

m
en
t.
C
o
n
�
g
u
ra
ti
o
n
h
ie
ra
rc
h
y
in
tr
o
d
u
ce
d
h
er
e
ca
n
b
e

a
p
p
li
ed

to
h
a
rd
w
a
re

ta
sk
s
p
la
ce
m
en
t
h
eu
ri
st
ic
s.
D
ea
ls

w
it
h
co
m
m
u
n
ic
a
ti
n
g
ta
sk
s
(N

et
w
o
rk
-o
n
-C
h
ip
).

M
o
d
e
l

S
m
it
et

a
l.
(2
0
0
4
)

R
u
n
-t
im
e
ta
sk
s
a
ss
ig
n
-

m
en
t.

T
a
sk
s
p
ri
o
ri
ty

fe
a
tu
re
.

H
et
er
o
g
en
eo
u
s

a
re
a

m
o
d
el

ta
k
en

in
to

a
cc
o
u
n
t.

S
ca
rc
it
y
o
f
th
e
re
so
u
rc
es
is
n
o
t
u
se
d
to

a
d
ju
st
th
e
R
u
n
-

ti
m
e
ta
sk
s
a
ss
ig
n
m
en
t
a
lg
o
ri
th
m
.

T
a
b
le
7
.2
:
R
el
a
te
d
w
o
rk

o
n
sc
h
ed
u
li
n
g
a
n
d
p
la
ce
m
en
t
st
ra
te
g
ie
s
(h
et
er
o
g
en
eo
u
s
re
co
n
�
g
u
ra
b
le
a
rr
ay

m
o
d
el
)

247

Appendix B. Tasks paramaters based and multi-shape tasks based scheduling

7.6 Appendix B : Additional Simulation Results

Here are presented global results of without-looking-ahead scheduling algorithms.

The results are aggregated in order to provide a global overview. The results for

scheduling algorithms that use tasks with a single version are put beside those for

the multi-shape scheduling algorithms in order to ease the comparison.

248

Appendix B. Tasks paramaters based and multi-shape tasks based scheduling

Figure 7.1: The tasks rejection ratio for paramaters based scheduling and multi-shape tasks

based scheduling.

249

Appendix B. Tasks paramaters based and multi-shape tasks based scheduling

Figure 7.2: The recon�gurable array utilization ratio for paramaters based scheduling and

multi-shape tasks based scheduling.

250

Appendix B. Tasks paramaters based and multi-shape tasks based scheduling

Figure 7.3: The runtime overheads of without-looking-ahead scheduling algorithms (paramaters

based scheduling and multi-shape tasks based scheduling)

251

Appendix B. Tasks paramaters based and multi-shape tasks based scheduling

Figure 7.4: The number of scheduler invocations for without-looking-ahead scheduling

algorithms (paramaters based scheduling and multi-shape tasks based scheduling)

252

Appendix B. Tasks paramaters based and multi-shape tasks based scheduling

Figure 7.5: The cumulative runtime overheads for without-looking-ahead scheduling algorithms

(paramaters based scheduling and multi-shape tasks based scheduling)

253

Appendix B. Tasks paramaters based and multi-shape tasks based scheduling

Figure 7.6: Tasks parameters based scheduling algorithms vs multi-shape algorithm : Simulation

on a large number of tasks (10 sets of 5000 tasks).

254

Appendix C. Tables of algorithms and data structures implemented

255

Appendix C. Tables of algorithms and data structures implemented

7.7 Appendix C : Tables of algorithms and data structures

implemented

Table 7.3: Scheduling algorithms implemented.

256

Appendix C. Tables of algorithms and data structures implemented

Table 7.4: List of placement algorithms implemented.

257

Appendix C. Tables of algorithms and data structures implemented

Table 7.5: List of placement structures implemented (1): The areas partitioning (existing works

are cited and those from us are highlighted).

258

Appendix C. Tables of algorithms and data structures implemented

Table 7.6: List of placement structures implemented (2): Finding �tting areas and merging free

areas (existing works are cited and those from us are highlighted).

259

Appendix D. Size of IPs from the Xilinx core generator

7.8 Appendix D : Size of IPs from the Xilinx core generator

Application Parameters Number of Projection

slices on Virtex2pro on Virtex5

Bus CAN bus 569 to 885 247 to 385

Flexray 3089 to 3500 1350 to 1520

MOST 2306 1000

Optic Fiber 5000 2173

PCI master/target 500 to 1000 217 to 434

target 500 217

USB 2 2000 869

ethernet 10/100 Mbits 1000 to 2000 434 to 869

Floating addition / 470 204

Calcu- substraction

lation multiplication 424 184

division 867 377

square root 524 228

Comparison 45 20

DSP COMPLEX MUL 32 bits 645 280

CORDIC

Arctan 582 253

cosine 16 bits 622 270

square root 16 bits 113 49

square root 32 bits 755 328

FIR32 136 59

multiply/accumulate 32 bits 215 93

FFT 1541 670

32 points - 16 bits

multipliers cablés 1550 673

32 points - 16 bits 2088 907

multipliers (LUTs)

linear wrt

number of points 400 to 2500 174 to 1086

Modulations cosine, 1 line 17 7

cosine, 4 lines 81 35

Table 7.7: Few IPs for Virtex2pro FPGAs from the XILINX Core Generator System1.

1 Xilinx Core Generator System provides a library of user-customizable IPs (or hardware tasks) for

Xilinx FPGAs.

260

Appendix E. Implementating of a Multi-shape Hardware Task : the FIR Filter

7.9 Appendix E : DA Implementation of a Multi-shape Hard-

ware Task : the FIR Filter

A FIR (Finite Impulse Response) �lter is commonly used in Digital Signal Processing applications

to implement low-pass, band-pass and high-pass �lters and other convolution functions. Tradi-

tionally, digital �ltering algorithms were most commonly implemented using DSP processors for

low rates applications (e.g. audio) and ASICs for higher rates. The data�ow representations of

direct structure of an N − order FIR �lter has been illustrated in �gure 2.4, chapter 2 page 30

and the corresponding equation is given by :

Y (n) =
N−1∑
l=0

Hl ·Xl(n) =
N−1∑
l=0

Hl ·Xl (7.1)

H0, H1,..., HN−1 are N constant and time-invariant �lter coe�cients that are computed before-

hand. N is the �lter length. At each time n, the output response Y (n) is function of the N lasts

inputs samples X0, X1...XN−1 only. Therefore, n may be implicit as shown in the �nal equation.

The output requires 2N − 1 arithmetic operations (N multiplications and N − 1 additions).

Di�erent techniques that range from pure serial implementation to fully parallel may be used for

FPGA implementation of the �lter.

A fully parallel implementation is meant to map all the functional blocks depicted in the

data�ow representation of �gure 2.4, page 30. As one output sample is delivered at every clock

cycle, this implementation provides a higher throughput but at the cost of more logic resources

consumption.

In a serial implementation, input samples are conveyed serially in the �lter and computed one

by one. The implementation is denoted as bit-serial. As the same hardware is re-used to compute

bits one by one, this approach saves hardware resources but requires many clock cycles to compute

one output sample (�gure 7.7).

Digit-serial architecture is another alternative that combine bit-serial and fully parallel imple-

mentations. In Digit-serial, a W − bit data word is processed in units of N − bit digit in P clock

cycles, where P = W/N . Digit-serial implementation approach is a good trade-o� between a lower

throughput bit-serial implementation and a higher hardware resources consumption bit-parallel

implementation. A range of trade-o� may be found between the throughput of the �lter and the

amount of con�gurable resources required.

261

Appendix E. Implementating of a Multi-shape Hardware Task : the FIR Filter

7.9.1 Distributed Arithmetic as an enabling technique

Distributed Arithmetic (DA) is a computation algorithm that uses memory instead of multipliers

to perform sum of products where one of the operand remains constant. Hence, DA suits to

implement sums of products similar to the FIR equation 7.1 above which may be any convolution

where processing one output sample requires the accumulation of N product terms.

If inputs samples and coe�cients are two's complement signed number where a binary number Xl

equation is given by :

Xl = −Xl,B−1 · 2B−1 +
B−2∑
b=0

Xl,b · 2b = −X(l,B−1) · 2B +
B−1∑
b=0

X(l,b) · 2b (7.2)

where Xl,B−1 is the sign bit of Xl, Xl,0 its less signi�cant bit, and Xl,b, b 6= B − 1 the bit at

position b of digit Xl.

If scaled by a factor S = 1
2B−1 , the resulting two's complement scaled number representation is as

followed :

Xl = −Xl,B−1 +
B−2∑
b=0

Xl,b · 2b−(B−1) (7.3)

The scaling operation maximizes the signal to noise ratio (SNR). Equation 7.3 can be rewritten

in a di�erent way as below by swapping b and −(b−B + 1) :

Xl = −Xl,B−1 +
B−1∑
b=1

X(l,B−1−b) · 2−b, with |Xl| ≤ 1 (7.4)

The scaled representation of equation 7.4 applied to the FIR �lter equation gives :

Y =
∑N−1
l=0 Hl ·Xl

=
∑N−1
l=0 Hl · [−X(l,B−1) +

∑B−1
b=1 X(l,B−1−b) · 2−b]

⇒ Y = −[
∑N−1
l=0 Hl ·X(l,B−1)] +

∑B−1
b=1 [

∑N−1
l=0 Hl ·X(l,B−1−b)] · 2−b

(7.5)

Equation 7.5 is commonly used to express the scaled output Y of a FIR �lter; |Y | ≤ 1 for scaled

inputs and coe�cients.

Developing Y in the above equation leads to equation 7.6 below, easier to memorize and to

manipulate. The latter equation 7.6 consists of N ·B products terms. These products terms may

be implemented without multipliers (the so-called multipliers-less implementation). Each product

term Hl ·X(l,b) is a binary AND operation between a single bit X(l,b) of the input sample Xl and

262

Appendix E. Implementating of a Multi-shape Hardware Task : the FIR Filter

its corresponding constant coe�cient Hl.

Y = −[
∑N−1
l=0 Hl ·X(l,B−1)] +

∑B−1
b=1 [

∑N−1
l=0 Hl ·X(l,B−1−b)] · 2−b

= −[
∑N−1
l=0 Hl ·X(l,B−1)]

+
∑B−1
b=1 [H0 ·X(0,B−1−b) +H1 ·X(1,B−1−b) + · · ·+H(N−1) ·X(N−1,B−1−b)] ·2−b

= −[H0 ·X(0,B−1) +H1 ·X(1,B−1) + · · ·+H(N−1) ·X(N−1,B−1)]

+[H0 ·X(0,B−2) +H1 ·X(1,B−2) + · · ·+H(N−1) ·X(N−1,B−2)] · 2−1

+[H0 ·X(0,B−3) +H1 ·X(1,B−3) + · · ·+H(N−1) ·X(N−1,B−3)] · 2−2

...
...

+[H0 ·X(0,1) +H1 ·X(1,1) + · · ·+ · · ·+H(N−1) ·X(N−1,1)] · 2−(B−2)

+[H0 ·X(0,0) +H1 ·X(1,0) + · · ·+ · · ·+H(N−1) ·X(N−1,0)] · 2−(B−1)

(7.6)

As coe�cients H0, H1...H(N−1) are known beforehand, all possible results of each partial product

may be also known beforehand as follows:

Hl ·X(l,b) =

 Hl if X(l,b) = 1

0 if X(l,b) = 0
The possible results may be pre-stored in a look-up table and addressed by di�erent bits of Xl.

Hence, the same bits X(0,i), X(1,i), ...X(N−1,i) of the N input samples X0, X1, ...X(N−1) are used

to address small LUTs where partial products terms are stored.

In addition, a power of two scale factor makes multiplication and division simpler using shift

registers. Indeed, multiplying (resp. dividing) multiplicands by a power of two' number (2i) is

equivalent to shifting right (resp. left) i times a binary point. Furthermore, as the numbers are

2's complement signed, adders may implement subtraction and addition. It is relatively easy to

remove this gain factor at the output of the �lter just by shifting back the binary decimal point.

7.9.2 Implementing Y using LUT-based DA

In �gure 7.7 is shown an N − order FIR �lter implementation using Look-Up-Table based serial

DA. Input samples are sent as a one-bit-serial stream (via �time skew bu�er�) in N shift registers.

At each clock cycle, the LUT is addressed by the ith bit of each of the N input samples. The

corresponding partial product stored in the LUT is applied to the scaling accumulator. The scaling

accumulator automatically sums partial products and scales the output Y . Let Tc be the time to

compute one output sample :

Tc = B · tsm

263

Appendix E. Implementating of a Multi-shape Hardware Task : the FIR Filter

where B is the bit width of input samples Xl, and tsm the time required by the scaling accumulator

to perform a scaled-summation .

Figure 7.7: Serial Distributed Arithmetic

Thanks to its simple architecture, serial DA may operate at high frequency and thus achieve

the same throughput with parallel implementation, but with a greater latency. However, one

drawback of this architecture is the rapid growth of the required memory with respect to the �lter

length. Indeed, a N−order �lter requires 2N words size memory storage capacity2 to store partial

products. For example, a 16 coe�cients �lter requires a 216 = 65.5x103 words LUT.

Figure 7.8: Serial-Parallel Distributive Arithmetic

2 only the half 1
2
· 2N = 2N−1 is required for a linear phase response FIR �lter

264

Appendix E. Implementating of a Multi-shape Hardware Task : the FIR Filter

Fortunately, as shown in �gure 7.8 one may use n LUTs of size 2
N
n instead of 2N words size

LUT to implement an N-order �lter. Indeed, as partial products could be computed in parallel,

many LUTs may be used in parallel. In the example of �gure 7.8, two LUTs of 24 words size

are used instead of a 28 words size to implement a 8 − order FIR �lter. This way, one saves

28 − 2 · 24 = 224 words size LUT at the cost of one more adder. All these implementation trade-

o�s lead to variant tasks size with variant execution time as illustrated earlier in �gure 5.5, page

192.

7.9.3 Throughput vs recon�gurable resources trade-o�

Table 7.9 depicts examples of trade-o� between recon�gurable resources utilization and through-

put in DA-based implementation of a FIR �lter. On one hand, the fully parallel implementation

provides the highest throughput at the cost of more resources utilization (3072 slices). One out-

put sample is delivered every clock cycle. On the other hand, various combinations of multi-bit

serial DA implementation require more than one clock cycle to compute and deliver each output

sample, but utilizes less resource. As multi-bit serial technique uses several serial units, it provides

a trade-o� between high resources utilization of fully parallel and low throughput of fully serial.

The table illustrates examples where the many the number of clocks cycle required compute one

output sample, the less the slices used.

The throughput of the

�lter, therefore its

processing time, depends

on the amount of

con�gurable resources used

(Xilinx, 2005)

Number of Clock Cycles Slice Filter Sample

per Output Sample Count Rate (MHz)

1 3072 150

2 1571 75

3 994 50

4 802 37.5

Figure 7.9: Example of resources utilization for di�erent DA implementation of a FIR �lter

265

	Introduction
	Precis of Embedded Systems and Research Rationale
	Raison D'être for using Reconfigurable Hardware Devices in Embedded SoCs
	Dynamic and Online Embedded Applications
	Technology Advances, Market and Costs Constraints

	Related Research Issues
	System-On-Chip Design Overview
	Reconfigurable System-On-Chip Design
	Operating System for Reconfigurable System-On-a-Chip

	Contribution of the Thesis
	Algorithms for Online Real-Time Scheduling & Placement
	Scheduling & Placement Algorithms for OS-driven Design Space Exploration

	Outline of the Thesis

	Dynamically Reconfigurable Architectures vs Implementation Alternatives
	Introduction
	The Switch from Analog to Digital Signal Processing
	The most common DSP Functions
	Software vs Hardware Platforms

	Software Implementation Platforms
	General Purpose Processors (GPPs)
	Programmable Digital Signal Processors (DSPs)

	Hardware Implementation Platforms
	ASIC Implementation
	Fine and Coarse Grain Reconfigurable Arrays Implementation

	ASIP/ASSP Implementation
	Fine-grained Reconfigurable Hardware Devices
	Introduction
	FPGA Architectures
	FPGA Technology
	FPGA Structures
	SRAM-based FPGA
	Heterogeneous FPGAs
	FPGA Design Flow
	FPGA Modular Design for Runtime Partial Reconfiguration
	Coupling with the Host Processor
	Types of Reconfiguration
	Configuration Hierarchy

	Coarse-grained Reconfigurable Arrays
	Raison D'être
	Presentation

	Platform-Based Design
	Introduction
	Definition
	OS for Reconfigurable Platforms

	Conclusion of the Chapter

	Background and Related Work
	Introduction
	Real-Time Systems
	Hard vs Soft Real-Time
	Requirements for Real-Time Computer Systems

	Real-Time Scheduling
	Introduction
	Real-Time Tasks
	Different Scheduling Problems
	Objective Functions
	Offline Scheduling

	Online Scheduling
	Introduction
	Different Online Paradigms
	Performance Analysis
	Schedulability Analysis

	RT Scheduling for Uniprocessor Systems
	Rate Monotonic (RM)
	Deadline Monotonic (DM)
	Earliest Deadline First (EDF)
	Least Laxity First (LLF)
	List Scheduling (LS)
	Uniprocessor Scheduling Model for Reconfigurable Hardware

	RT Scheduling for Multiprocessor Systems
	Multiprocessor Scheduling Problem
	Multiprocessor Platforms
	Partitioned vs Nonpartitioned Scheduling Strategies
	Multiprocessor Scheduling Model for Reconfigurable Hardware

	Online Real-Time Scheduling on Reconfigurable Hardware Devices
	Online Scheduling Without-Looking-Ahead and Related Work
	Online Looking-Ahead Scheduling and Related Work

	Tasks Placement and Related Work
	Online Placement Issues
	Free Area Partitioning
	Data Structure to store the State of the Reconfigurable Array
	Fitting Strategies
	Related Work

	Fragmentation and Related Work
	Internal and Intra-task Fragmentations
	External Fragmentation
	Related Work

	Conclusion of the Chapter

	Proposed Methodology, Models and Metrics
	Introduction
	Methodology
	Introduction
	Proposed Methodology
	Running two MERs-based Algorithms on an Embedded Processor
	Lessons Learnt from Preliminary Results and Conclusion

	Models
	Real-Time Tasks and Applications Modeling
	Reconfigurable Devices Area Models
	Scheduler Model
	Placer Model

	Metrics
	Reconfigurable Hardware Resources Metrics
	Tasks Metrics
	Application Metrics
	Scheduling Metrics
	Feasible Schedule

	Global Simulation Model and Compatibility with the OVeRSoC Design Methodology
	An UML Overview of the Global Simulation Model
	The Importance of Using a C++ Based Simulation Model

	Conclusion of the Chapter

	Proposed Algorithms for Online Real-Time Scheduling & Placement
	Introduction
	Tasks Parameters Based Global Scheduling
	Temporal parameters based scheduling (Basic, EDF, LLF, etc.)
	Geometric parameters based scheduling (BSF, SSF, etc.)
	Combining Geometric and Temporal parameters for scheduling

	Slots-based Scheduling
	n X 1D variable size slots scheduling
	1D variable slots looking-ahead scheduling
	1D variable slots scheduling with minimum makespan

	Placement Strategies for 2D Looking-Ahead Scheduling
	A Ternary Tree structure for Looking-Ahead Scheduling

	Multi-shape based Tasks Scheduling
	Raison d'être for multi-shape tasks
	The multi-shape basic algorithm

	Conclusion of the Chapter

	Simulation Results of the Algorithms Proposed to Solve Online Real-Time Scheduling Issues
	Introduction
	Building the Inputs and the Testing Environment
	Hardware Tasks Characterization
	Estimating the Size of Tasks
	Final Inputs Values for Experiments
	The Running Environment

	Tasks Parameters Based Scheduling
	Chip Utilization Ratio and Tasks Rejection Ratio
	Runtime Overhead
	Conclusion on parameters based scheduling

	Multi-shape Tasks Based Scheduling
	Multi-shape Tasks
	Chip Utilization Ratio and Tasks Rejection Ratio
	Makespan and Runtime Overheads
	Conclusion on multi-shape scheduling

	Horizon Looking-Ahead Scheduling Algorithms
	Horizon Looking-Ahead Scheduling using a Ternary Tree
	1D Variable Slots Looking-Ahead Scheduling

	Conclusion of the Chapter

	Conclusion and Future Work
	Discussions
	Key Contributions
	Algorithms for Online Real-time Scheduling/Placement on DPRHWs
	Scheduling/Placement algorithms library for RTOS-driven design space exploration

	Hypothesis and Limitations
	Future Work

	Appendix
	Appendix A : Table classifying related work on scheduling and placement strategies
	Appendix B : Additional Simulation Results
	Appendix C : Tables of algorithms and data structures implemented
	Appendix D : Size of IPs from the Xilinx core generator
	Appendix E : DA Implementation of a Multi-shape Hardware Task : the FIR Filter
	Distributed Arithmetic as an enabling technique
	Implementing Y using LUT-based DA
	Throughput vs reconfigurable resources trade-off

