506 research outputs found

    In praise of tedious anatomy

    Get PDF
    Functional neuroimaging is fundamentally a tool for mapping function to structure, and its success consequently requires neuroanatomical precision and accuracy. Here we review the various means by which functional activation can be localized to neuroanatomy and suggest that the gold standard should be localization to the individualā€™s or groupā€™s own anatomy through the use of neuroanatomical knowledge and atlases of neuroanatomy. While automated means of localization may be useful, they cannot provide the necessary accuracy, given variability between individuals. We also suggest that the field of functional neuroimaging needs to converge on a common set of methods for reporting functional localization including a common ā€œstandardā€ space and criteria for what constitutes sufficient evidence to report activation in terms of Brodmannā€™s areas

    The development and application of structural priors for diffuse optical imaging in infants from newborn to two years of age

    Get PDF
    This thesis describes the development and application of age-appropriate structural priors to improve the localisation accuracy of diffuse optical tomography (DOT) approaches in infants aged from birth to two years of age. Knowledge of the target cranial anatomy, known as a structural prior, is required to produce three-dimensional images localising concentration changes to the cortex. A structural prior would ideally be subject-specific, i.e. derived from structural magnetic resonance imaging (MRI) data from each specific subject. Requiring a structural scan from every infant participant, however, is not feasible and undermines many of the benefits of DOT. A review was conducted to catalogue available infant structural MRI data, and selected data was then used to produce structural priors for infants aged 1- to 24-months. Conventional analyses using functional near-infrared spectroscopy (fNIRS) implicitly assume that head size and array position are constant across infants. Using DOT, the validity of assuming these parameters constant in a longitudinal infant cohort was investigated. The results show that this assumption is reasonable at the group-level in infants aged 5- to 12-months but becomes less valid for smaller group sizes. A DOT approach was determined to illicit more subtle effects of activation, particularly for smaller group sizes and expected responses. Using state-of-the-art MRI data from the Developing Human Connectome Project, a database of structural priors of the neonatal head was produced for infants aged pre-term to term-equivalent age. A leave-one-out approach was used to determine how best to find a match between a given infant and a model from the database, and how best to spatially register the model to minimise the anatomical and localisation errors relative to subject-specific anatomy. Model selection based on the 10/20 scalp positions was determined to be the best method (of those based on external features of the head) to minimise these errors

    Mapping human cortical areas in vivo based on myelin content as revealed by t1- and t2-weighted MRI

    Get PDF
    Non-invasively mapping the layout of cortical areas in humans is a continuing challenge for neuroscience. We present a new method of mapping cortical areas based on myelin content as revealed by T1-weighted (T1w) and T2-weighted (T2w) MRI. The method is generalizable across different 3T scanners and pulse sequences. We use the ratio of T1w/T2w image intensities to eliminate the MR-related image intensity bias and enhance the contrast to noise ratio for myelin. Data from each subject was mapped to the cortical surface and aligned across individuals using surface-based registration. The spatial gradient of the group average myelin map provides an observer-independent measure of sharp transitions in myelin content across the surfaceā€”i.e. putative cortical areal borders. We found excellent agreement between the gradients of the myelin maps and the gradients of published probabilistic cytoarchitectonically defined cortical areas that were registered to the same surface-based atlas. For other cortical regions, we used published anatomical and functional information to make putative identifications of dozens of cortical areas or candidate areas. In general, primary and early unimodal association cortices are heavily myelinated and higher, multi-modal, association cortices are more lightly myelinated, but there are notable exceptions in the literature that are confirmed by our results. The overall pattern in the myelin maps also has important correlations with the developmental onset of subcortical white matter myelination, evolutionary cortical areal expansion in humans compared to macaques, postnatal cortical expansion in humans, and maps of neuronal density in non-human primates

    Cortical Folding Patterns and Predicting Cytoarchitecture

    Get PDF
    The human cerebral cortex is made up of a mosaic of structural areas, frequently referred to as Brodmann areas (BAs). Despite the widespread use of cortical folding patterns to perform ad hoc estimations of the locations of the BAs, little is understood regarding 1) how variable the position of a given BA is with respect to the folds, 2) whether the location of some BAs is more variable than others, and 3) whether the variability is related to the level of a BA in a putative cortical hierarchy. We use whole-brain histology of 10 postmortem human brains and surface-based analysis to test how well the folds predict the locations of the BAs. We show that higher order cortical areas exhibit more variability than primary and secondary areas and that the folds are much better predictors of the BAs than had been previously thought. These results further highlight the significance of cortical folding patterns and suggest a common mechanism for the development of the folds and the cytoarchitectonic fields.National Center for Research Resources (U.S.) (P41-RR14075)National Center for Research Resources (U.S.) (R01-RR16594-01A1)National Center for Research Resources (U.S.) (NCRR BIRN Morphometric Project BIRN002, U24 RR021382)National Institute of Biomedical Imaging and Bioengineering (U.S.) (R01 EB001550)National Institute of Biomedical Imaging and Bioengineering (U.S.) (R01 EB006758)National Institute of Neurological Disorders and Stroke (U.S.) (R01 NS052585-01)Mental Illness and Neuroscience Discovery (MIND) InstituteNational Institutes of Health (U.S.) (NIH Roadmap for Medical Research (grant U54 EB005149))Hermann von Helmholtz-Gemeinschaft Deutscher ForschungszentrenDeutsche Forschungsgemeinschaft (DFG)National Institutes of Health. National Institute for Biomedical Imaging and BioengineeringNational Institute of Neurological Disorders and Stroke (U.S.)National Institute of Mental Health (U.S.

    Intersubject Regularity in the Intrinsic Shape of Human V1

    Full text link
    Previous studies have reported considerable intersubject variability in the three-dimensional geometry of the human primary visual cortex (V1). Here we demonstrate that much of this variability is due to extrinsic geometric features of the cortical folds, and that the intrinsic shape of V1 is similar across individuals. V1 was imaged in ten ex vivo human hemispheres using high-resolution (200 Ī¼m) structural magnetic resonance imaging at high field strength (7 T). Manual tracings of the stria of Gennari were used to construct a surface representation, which was computationally flattened into the plane with minimal metric distortion. The instrinsic shape of V1 was determined from the boundary of the planar representation of the stria. An ellipse provided a simple parametric shape model that was a good approximation to the boundary of flattened V1. The aspect ration of the best-fitting ellipse was found to be consistent across subject, with a mean of 1.85 and standard deviation of 0.12. Optimal rigid alignment of size-normalized V1 produced greater overlap than that achieved by previous studies using different registration methods. A shape analysis of published macaque data indicated that the intrinsic shape of macaque V1 is also stereotyped, and similar to the human V1 shape. Previoud measurements of the functional boundary of V1 in human and macaque are in close agreement with these results

    A four-dimensional probabilistic atlas of the human brain

    Get PDF
    The authors describe the development of a four-dimensional atlas and reference system that includes both macroscopic and microscopic information on structure and function of the human brain in persons between the ages of 18 and 90 years. Given the presumed large but previously unquantified degree of structural and functional variance among normal persons in the human population, the basis for this atlas and reference system is probabilistic. Through the efforts of the International Consortium for Brain Mapping (ICBM), 7,000 subjects will be included in the initial phase of database and atlas development. For each subject, detailed demographic, clinical, behavioral, and imaging information is being collected. In addition, 5,800 subjects will contribute DNA for the purpose of determining genotype-phenotype-behavioral correlations. The process of developing the strategies, algorithms, data collection methods, validation approaches, database structures, and distribution of results is described in this report. Examples of applications of the approach are described for the normal brain in both adults and children as well as in patients with schizophrenia. This project should provide new insights into the relationship between microscopic and macroscopic structure and function in the human brain and should have important implications in basic neuroscience, clinical diagnostics, and cerebral disorders

    The Brains of Babies: A Surface Based Approach To Study Cortical Development in Term and Preterm Human Infants

    Get PDF
    Half a million infants are born before term gestation each year in the United States. Although advances in newborn medicine have increased survival rates of very preterm infants to almost 90%, surviving preterm infants are at increased risk for developing lasting neurologic impairments. In order to develop a plausible neuroprotective strategy it is imperative that we improve our understanding of normal cortical development and develop tools to evaluate injury. Using a surface based approach we have characterized normal cortical development in healthy term infants and analyzed abnormalities associated with preterm birth. Accurate cortical surface reconstructions for each hemisphere of 12 healthy term gestation infants and 12 low-risk preterm infants at term equivalent postmenstrual age were generated from structural magnetic resonance imaging data using a novel segmentation algorithm. Data from the 12 term infants were used to establish the first population average surface based atlas of human cerebral cortex at term gestation. Comparing this atlas to a previously established atlas of adult cortex revealed that cortical structure in term infants is similar to the adult in many respects, including the pattern of individual variability and the presence of statistically significant structural asymmetries in lateral temporal cortex, suggesting that that several features of cortical shape are minimally reliant on the postnatal environment. Surprisingly, the pattern of postnatal expansion in surface area is strikingly non-uniform; regions of lateral temporal, parietal, and frontal cortex expand nearly twice as much as other regions in insular and medial occipital cortex. Differential expansion may point to differential sensitivity of cortical circuits to normal or aberrant childhood experiences. The pattern of human postnatal expansion parallels the pattern of evolutionary cortical expansion revealed by comparison between the human and the macaque monkey. Finally, in comparing term and preterm infants, region-specific alterations in cortical folding in the preterm population were found. The most striking shape differences were present in the orbitofrontal and inferior occipital regions with reductions in folding in the insular, lateral temporal, lateral parietal, and lateral frontal cortex. Overall these findings improve our understanding of normal cortical development and help elucidate the potential pathways for cortical injury in preterm infants

    A model-based cortical parcellation scheme for high-resolution 7 Tesla MRI data

    No full text
    • ā€¦
    corecore