962 research outputs found

    Advances in Rotating Electric Machines

    Get PDF
    It is difficult to imagine a modern society without rotating electric machines. Their use has been increasing not only in the traditional fields of application but also in more contemporary fields, including renewable energy conversion systems, electric aircraft, aerospace, electric vehicles, unmanned propulsion systems, robotics, etc. This has contributed to advances in the materials, design methodologies, modeling tools, and manufacturing processes of current electric machines, which are characterized by high compactness, low weight, high power density, high torque density, and high reliability. On the other hand, the growing use of electric machines and drives in more critical applications has pushed forward the research in the area of condition monitoring and fault tolerance, leading to the development of more reliable diagnostic techniques and more fault-tolerant machines. This book presents and disseminates the most recent advances related to the theory, design, modeling, application, control, and condition monitoring of all types of rotating electric machines

    Predictive current control in electrical drives: an illustrated review with case examples using a five-phase induction motor drive with distributed windings

    Get PDF
    The industrial application of electric machines in variable-speed drives has grown in the last decades thanks to the development of microprocessors and power converters. Although three-phase machines constitute the most common case, the interest of the research community has been recently focused on machines with more than three phases, known as multiphase machines. The principal reason lies in the exploitation of their advantages like reliability, better current distribution among phases or lower current harmonic production in the power converter than conventional three-phase ones, to name a few. Nevertheless, multiphase drives applications require the development of complex controllers to regulate the torque (or speed) and flux of the machine. In this regard, predictive current controllers have recently appeared as a viable alternative due to an easy formulation and a high flexibility to incorporate different control objectives. It is found however that these controllers face some peculiarities and limitations in their use that require attention. This work attempts to tackle the predictive current control technique as a viable alternative for the regulation of multiphase drives, paying special attention to the development of the control technique and the discussion of the benefits and limitations. Case examples with experimental results in a symmetrical five-phase induction machine with distributed windings in motoring mode of operation are used to this end

    Mathematical Approaches to Modeling, Optimally Designing, and Controlling Electric Machine

    Get PDF
    Optimal performance of the electric machine/drive system is mandatory to improve the energy consumption and reliability. To achieve this goal, mathematical models of the electric machine/drive system are necessary. Hence, this motivated the editors to instigate the Special Issue “Mathematical Approaches to Modeling, Optimally Designing, and Controlling Electric Machine”, aiming to collect novel publications that push the state-of-the art towards optimal performance for the electric machine/drive system. Seventeen papers have been published in this Special Issue. The published papers focus on several aspects of the electric machine/drive system with respect to the mathematical modelling. Novel optimization methods, control approaches, and comparative analysis for electric drive system based on various electric machines were discussed in the published papers

    Design and Control of Electrical Motor Drives

    Get PDF
    Dear Colleagues, I am very happy to have this Special Issue of the journal Energies on the topic of Design and Control of Electrical Motor Drives published. Electrical motor drives are widely used in the industry, automation, transportation, and home appliances. Indeed, rolling mills, machine tools, high-speed trains, subway systems, elevators, electric vehicles, air conditioners, all depend on electrical motor drives.However, the production of effective and practical motors and drives requires flexibility in the regulation of current, torque, flux, acceleration, position, and speed. Without proper modeling, drive, and control, these motor drive systems cannot function effectively.To address these issues, we need to focus on the design, modeling, drive, and control of different types of motors, such as induction motors, permanent magnet synchronous motors, brushless DC motors, DC motors, synchronous reluctance motors, switched reluctance motors, flux-switching motors, linear motors, and step motors.Therefore, relevant research topics in this field of study include modeling electrical motor drives, both in transient and in steady-state, and designing control methods based on novel control strategies (e.g., PI controllers, fuzzy logic controllers, neural network controllers, predictive controllers, adaptive controllers, nonlinear controllers, etc.), with particular attention to transient responses, load disturbances, fault tolerance, and multi-motor drive techniques. This Special Issue include original contributions regarding recent developments and ideas in motor design, motor drive, and motor control. The topics include motor design, field-oriented control, torque control, reliability improvement, advanced controllers for motor drive systems, DSP-based sensorless motor drive systems, high-performance motor drive systems, high-efficiency motor drive systems, and practical applications of motor drive systems. I want to sincerely thank authors, reviewers, and staff members for their time and efforts. Prof. Dr. Tian-Hua Liu Guest Edito

    Multiphase induction motor drives - a technology status review

    Get PDF
    The area of multiphase variable-speed motor drives in general and multiphase induction motor drives in particular has experienced a substantial growth since the beginning of this century. Research has been conducted worldwide and numerous interesting developments have been reported in the literature. An attempt is made to provide a detailed overview of the current state-of-the-art in this area. The elaborated aspects include advantages of multiphase induction machines, modelling of multiphase induction machines, basic vector control and direct torque control schemes and PWM control of multiphase voltage source inverters. The authors also provide a detailed survey of the control strategies for five-phase and asymmetrical six-phase induction motor drives, as well as an overview of the approaches to the design of fault tolerant strategies for post-fault drive operation, and a discussion of multiphase multi-motor drives with single inverter supply. Experimental results, collected from various multiphase induction motor drive laboratory rigs, are also included to facilitate the understanding of the drive operatio

    PrĂ€diktive Regelung und Finite-Set-Beobachter fĂŒr Windgeneratoren mit variabler Drehgeschwindigkeit

    Get PDF
    This dissertation presents several model predictive control (MPC) techniques and finite-position-set observers (FPSOs) for permanent-magnet synchronous generators and doubly-fed induction generators in variable-speed wind turbines. The proposed FPSOs are novel ones and based on the concept of finite-control-set MPC. Then, the problems of the MPC techniques like sensitivity to variations of the model parameters and others are investigated and solved in this work.Die vorliegende Dissertation stellt mehrere unterschiedliche Verfahren der modellprĂ€diktiven Regelung (MPC) und so genannte Finite-Position-Set-Beobachter (FPSO) sowohl fĂŒr Synchrongeneratoren mit Permanentmagneterregung als auch fĂŒr doppelt gespeiste Asynchrongeneratoren in Windkraftanlagen mit variabler Drehzahl vor und untersucht diese. FĂŒr die Beobachter (FPSO) wird ein neuartiger Ansatz vorgestellt, der auf dem Konzept der Finite-Control-Set-MPC basiert. Außerdem werden typische Eigenschaften der MPC wie beispielsweise die AnfĂ€lligkeit gegenĂŒber Parameterschwankungen untersucht und kompensiert

    Current commutation and control of brushless direct current drives using back electromotive force samples

    Get PDF
    Brushless DC machines (BLDC) are widely used in home, automotive, aerospace and military applications. The reason of this interest in different industries in this type of machine is due to their significant advantages. Brushless DC machines have a high power density, simple construction and higher efficiency compared to conventional AC and DC machines and lower cost comparing to permanent magnet AC synchronous machines. The phase currents of a BLDC machine have to commutate properly which is realised by using power semiconductors. For a proper commutation the rotor position is often obtained by an auxiliary instrument, mostly an arrangement of three Hall-effect sensors with 120 spatial displacement. In modern and cost-effective BLDC drives the focus is on replacing the noise sensitive and less reliable mechanical sensors by numerical algorithms, often referred to as sensorless or self-sensing methods. The advantage of these methods is the use of current or voltage measurements which are usually available as these are required for the control of the drive or the protection of the semiconductor switches. Avoiding the mechanical position sensor yields remarkable savings in production, installation and maintenance costs. It also implies a higher power to volume ratio and improves the reliability of the drive system. Different self-sensing techniques have been developed for BLDC machines. Two algorithms are proposed in this thesis for self-sensing commutation of BLDC machines using the back-EMF samples of the BLDC machine. Simulations and experimental tests as well as mathematical analysis verify the improved performance of the proposed techniques compared to the conventional back-EMF based self-sensing commutation techniques. For a robust BLDC drive control algorithm with a wide variety of applications, load torque is as a disturbance within the control-loop. Coupling the load to the motor shaft may cause variations of the inertia and viscous friction coefficient besides the load variation. Even for a drive with known load torque characteristics there are always some unmodelled components that can affect the performance of the drive system. In self-sensing controlled drives, these disturbances are more critical due to the limitations of the self-sensing algorithms compared to drives equipped with position sensors. To compensate or reject torque disturbances, control algorithms need the information of those disturbances. Direct measurement of the load torque on the machine shaft would require another expensive and sensitive mechanical sensor to the drive system as well as introducing all of the sensor related problems to the drive. An estimation algorithm can be a good alternative. The estimated load torque information is introduced to the self-sensing BLDC drive control loop to increase the disturbance rejection properties of the speed controller. This technique is verified by running different experimental tests within different operation conditions. The electromagnetic torque in an electrical machine is determined by the stator current. When considering the dynamical behaviour, the response time of this torque on a stator voltage variation depends on the electric time constant, while the time response of the mechanical system depends on the mechanical time constant. In most cases, the time delays in the electric subsystem are negligible compared to the response time of the mechanical subsystem. For such a system a cascaded PI speed and current control loop is sufficient to have a high performance control. However, for a low inertia machine when the electrical and mechanical time constants are close to each other the cascaded control strategies fail to provide a high performance in the dynamic behavior. When two cascade controllers are used changes in the speed set-point should be applied slowly in order to avoid stability problems. To solve this, a model based predictive control algorithm is proposed in this thesis which is able to control the speed of a low inertia brushless DC machine with a high bandwidth and good disturbance rejection properties. The performance of the proposed algorithm is evaluated by simulation and verified by experimental results as well. Additionally, the improvement on the disturbance rejection properties of the proposed algorithm during the load torque variations is studied. In chapters 1 and 2 the basic operation principles of the BLDC machine drives will be introduced. A short introduction is also given about the state of the art in control of BLDC drives and self-sensing control techniques. In chapter 3, a model for BLDC machines is derived, which allows to test control algorithms and estimators using simulations. A further use of the model is in Model Based Predictive Control (MBPC) of BLDC machines where a discretised model of the BLDC machine is implemented on a computation platform such as Field Programmable Gate Arrays (FPGA) in order to predict the future states of the machine. Chapter 4 covers the theory behind the proposed self-sensing commutation methods where new methodologies to estimate the rotor speed and position from back-EMF measurements are explained. The results of the simulation and experimental tests verifies the performance of the proposed position and speed estimators. It will also be proved that using the proposed techniques improve the detection accuracy of the commutation instants. In chapter 5, the focus is on the estimation of load torque, in order to use it to improve the dynamic performance of the self-sensing BLDC machine drives. The load torque information is used within the control loop to improve the disturbance rejection properties of the speed control for the disturbances resulting from the applied load torque of the machine. Some of the machine parameters are used within speed and load torque estimators such as back-EMF constant Ke and rotor inertia J. The accuracy with which machine parameters are known is limited. Some of the machine parameters can change during operation. Therefore, the influence of parameter errors on the position, speed and load torque is examined in chapter 5. In Chapter 6 the fundamentals of Model based Predictive Control for a BLDC drive is explained, which are then applied to a BLDC drive to control the rotor speed. As the MPC algorithm is computationally demanding, some enhancements on the FPGA program is also introduced in order to reduce the required resources within the FPGA implementation. To keep the current bounded and a high speed response a specific cost function is designed to meet the requirements. later on, the proposed MPC method is combined with the proposed self-sensing algorithm and the advantages of the combined algorithms is also investigated. The effects of the MPC parameters on the speed and current control performance is also examined by simulations and experiments. Finally, in chapter 7 the main results of the research is summarized . In addition, the original contributions that is give by this work in the area of self-sensing control is highlighted. It is also shown how the presented work could be continued and expanded

    Design of High Efficiency Brushless Permanent Magnet Machines and Driver System

    Get PDF
    The dissertation is concerned with the design of high-efficiency permanent magnet synchronous machinery and the control system. The dissertation first talks about the basic concept of the permanent magnet synchronous motor (PMSM) design and the mathematics design model of the advanced design method. The advantage of the design method is that it can increase the high load capacity at no cost of increasing the total machine size. After that, the control method of the PMSM and Permanent magnet synchronous generator (PMSG) is introduced. The design, simulation, and test of a permanent magnet brushless DC (BLDC) motor for electric impact wrench and new mechanical structure are first presented based on the design method. Finite element analysis based on the Maxwell 2D is built to optimize the design and the control board is designed using Altium Designer. Both the motor and control board have been fabricated and tested to verify the design. The electrical and mechanical design are combined, and it provides an analytical IPMBLDC design method and an innovative and reasonable mechanical dynamical calculation method for the impact wrench system, which can be used in whole system design of other functional electric tools. A 2kw high-efficiency alternator system and its control board system are also designed, analyzed and fabricated applying to the truck auxiliary power unit (APU). The alternator system has two stages. The first stage is that the alternator three-phase outputs are connected to the three-phase active rectifier to get 48V DC. An advanced Sliding Mode Observer (SMO) is used to get an alternator position. The buck is used for the second stage to get 14V DC output. The whole system efficiency is much higher than the traditional system using induction motor

    Critical Aspects of Electric Motor Drive Controllers and Mitigation of Torque Ripple - Review

    Get PDF
    Electric vehicles (EVs) are playing a vital role in sustainable transportation. It is estimated that by 2030, Battery EVs will become mainstream for passenger car transportation. Even though EVs are gaining interest in sustainable transportation, the future of EV power transmission is facing vital concerns and open research challenges. Considering the case of torque ripple mitigation and improved reliability control techniques in motors, many motor drive control algorithms fail to provide efficient control. To efficiently address this issue, control techniques such as Field Orientation Control (FOC), Direct Torque Control (DTC), Model Predictive Control (MPC), Sliding Mode Control (SMC), and Intelligent Control (IC) techniques are used in the motor drive control algorithms. This literature survey exclusively compares the various advanced control techniques for conventionally used EV motors such as Permanent Magnet Synchronous Motor (PMSM), Brushless Direct Current Motor (BLDC), Switched Reluctance Motor (SRM), and Induction Motors (IM). Furthermore, this paper discusses the EV-motors history, types of EVmotors, EV-motor drives powertrain mathematical modelling, and design procedure of EV-motors. The hardware results have also been compared with different control techniques for BLDC and SRM hub motors. Future direction towards the design of EV by critical selection of motors and their control techniques to minimize the torque ripple and other research opportunities to enhance the performance of EVs are also presented.publishedVersio

    Sensorless Control with Switching Frequency Square Wave Voltage Injection for SPMSM with Low Rotor Magnetic Anisotropy

    Get PDF
    High-frequency signal injection sensorless algorithms are widely studied and used for rotor angle estimation in PMSM at low speed or standstill. One of the main drawbacks of such methods is the acoustic noise connected to the voltage injection. In order to minimize this problem, it is advisable to increase the frequency of the injected signal. Thus, many studies focus on square-wave injection at the switching frequency, which is the maximum theoretical frequency. Since these methods exploit the rotor magnetic anisotropy, it is relatively easy to use them in interior PMSMs, where the rotor anisotropy is high. On the contrary, it is hard to exploit them in surface PMSMs, which have an almost symmetric rotor, although a low rotor magnetic anisotropy is still present. In this paper, a sensorless algorithm with switching frequency squarewave injection is developed for surface PMSMs. To increase the signal-to-noise ratio, current oversampling is exploited. The benefits of such a technique are demonstrated with experimental results on a 2 Nm SPMSM
    • 

    corecore