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ABSTRACT

In recent years, renewable green energy has increased the demand associated with the devel-

opment of high efficiency electrical permanent magnet synchronous machinery. The electrical 

motors consume more than half of all electrical energy in the state according to the U.S. Depart-

ment of Energy. Therefore, designing a high-efficiency energy conversion device and its 

control system becomes critical. Permanent magnet synchronous motor (PMSM) and 

Permanent mag-net synchronous generator (PMSG) can be such energy conversion device. 

This dissertation is concerned with the high-efficiency permanent magnet synchronous 

machinery, and their control system design.

The dissertation first talk about the design method of high- efficiency electrical machinery. The

advantage of the design method is that it can increase the high load capacity at no cost of increasing

the total machine size. A much smaller torque angle δ than that in the traditional design at relating

load is selected, which is between about 2 degrees and about 10 degrees. The most import part

of the design is to determine the air-gap and permanent magnet size. According to the design

method relating to the much smaller torque angle, which will result in the larger air-gap size and

larger magnet thickness. The larger air-gap size contributes to reducing the windage loss and noise

level. The increase magnet thickness helps to avoid demagnetization. Both them contribute to

high efficiency and high overload capability. Based on the design method, all the parameters will

be related to the torque angle, working point of a permanent magnet, and the permanent magnet

embrace, which is easier for the designer to make a new design.

The control methods of the permanent magnet machinery are introduced. There is two class of

brush-less PM motor control: AC and DC. The design requirements are totally different, and this

is related to the back-EMF waveform and the rotor-position sensing. For DC control, the back
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EMF is trapezoidal and hall-sensor board is used to detect the switching positions, substantial field

weakening is not required. For AC control, the back EMF is sinusoidal, and an encoder or resolver

is used to get rotor position. In order to avoid to use encoder or resolver, sensor-less control such

as sliding mode observer algorithm can be used.

A permanent magnet brushless DC motor for electric impact wrench and a Surface 

permanent magnet synchronous generator (SPMSG) have been designed with good 

performance and high-efficiency base on the design method. Using brush-less DC motor (BLDC) 

instead of brushed DC motor for electric impact wrench has been a world worldwide trend 

because of its high reliability, good control performance, small size, and environmental 

protection. Maxwell 2D model is built to optimize the design and the control board is designed 

using Altium Designer. Bother the motor and control board have been fabricated and tested to 

verify the design.

A 2kw high-efficiency alternator system and its control board system are also designed, analyzed 

and fabricated applying to the truck auxiliary power unit (APU). The alternator system has two 

stages. The first stage is that the alternator three-phase outputs are connected to the three-phase 

active rectifier to get 48V DC. An advanced Sliding model control (SMO) is used to get an alter-

nator position. The buck is used for the second stage to get 14V DC output. The whole system 

efficiency is much higher than the traditional system using induction motor.
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CHAPTER 1: INTRODUCTION

Permanent magnet (PM) motor and generator [17] [51] [5] [28] [83] [33] have been widely used in

industry by demand for increased functionality, precision, increased energy efficiency and better

utilization of primary energy sources. The development of ferrite magnets, Samarium-Cobalt mag-

nets (in the late 1960s) and Neodymium-Iron-Boron magnets [59] are the most important driver of

application of brushless PM machines. Soft iron materials [4] have also made significant contribu-

tion in the development of brush-less PM machines. Thin gauges, improved chemical composition,

heat-treatment and improved core-plate insulation are used to reduce loose in electrical lamination

steels. High-strength non-magnetic materials such as inconel and carbon-fiber make big contri-

bution in the design of high-speed brush-less PM machines [99] [65] [3], where they are used in

retaining sleeves that extend the range of operation to much higher speed. Due to the develop-

ments of power electric, the PM machines control systems [79] [22] [9] become more efficiency,

reliability and cheaper, which permit a wider range of affordable application. These technical

development made the PM machines become a trend in industry.

Brushless PM machines generally fall into two classification : AC and DC. Both AC and DC

PM machines can be design as Interior permanent magnet (IPM) machine or Surface permanent

magnet (SPM) machine. There are different requirements when designing them, and this is related

to the back-Electromotive Force (EMF) waveform and rotor-position sensing. For DC PM machine

[68] [71] [45] [69] [54], the back EMF is trapezoidal and low-resolution shaft-position sensor

is used to synchronize the switching of the drive transistors with the rotor position, substantial

field weakening is not required. For AC PM machine [73] [72] [27] [105] [7], the back EMF is

sinusoidal, and encoder or resolver [92] [13] [1] is used to get rotor position. The following are

the characteristics of DC PM machine operation:
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• concentrated windings and full pitched;

• trapezoidal back EMF;

• hall sensor board is used to detect the correct switching position;

• higher power density;

• tolerating some torque ripple and no extra field weak required;

• suitable for power drives;

The following are the characteristic of AC PM machine operation:

• distributed and fractional-slot winding;

• sinusoidal back EMF;

• smooth operation and extended field weaken;

• shaft encoder or resolver to get the position;

• suitable for servo derives, electric vehicles drives requiring extra field-weaken capabilities at

high speed.

SPM and IPM are two basic topologies for the rotor. For SPM, the direct- and quadrature-axes

inductance are the same, there is essentially no reluctance torque generated by SPM machines,

although flux-weaking mode is possible if appropriately designed. For IPM machines, they have

q-axis saliency that comes from the shape of steel lamination, which called reluctance torque.

The total torque is the combination of reluctance torque and magnet torque. The air-gap of IPM

is usually designed smaller then that of a SPM, which tends to increase the flux per pole, the

2



reluctance torque and the inductance.If an extended field-weakening rang is required, then the

IPM should be used.

Permanent magnet synchronous machines have no brushes, no slip-rings, and no mechanical com-

mutator, and they use permanent magnets to replace the rotor winding which leads to higher effi-

ciency compared to other machines. Permanetn magnet synchronous motor (PMSM) can maintain

a high efficiency when its output power varies from 50-120% of the rated power. The following

are the advantages of PMSM :

• high efficiency and power density;

• small output torque;

• reliable at high speed;

• advanced control topology;

• lighter weight and good heat performance.

Researchers try to develop new methods to increase the efficiency of PMSM, reduce the harmonic

and torque ripple, making the machines have better and better performance.

For Electric tool application, brush-less DC motor (BLDC) is a most suitable choice. The motors

should be tolerate some torque ripple and do not require extra field weakening at higher speed. The

hall sensor board is used to get the correct current switching position. For example BLDC designed

for the electric impact wrench requires high reliability, good control performance, small size, less

bolting time, low cost and easy mass industrial production. An interior permanent magnet syn-

chronous motor with concentrated winding has large torque to volume ration and high efficiency,

so It is suitable for battery-powered impact wrench [84] [91] [10].
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High-efficiency alternator system is commonly equipped with the heavy-duty truck. The three-

phase outputs from the alternator are processed through a three-phase rectifier [107] [95] [47] to

get the DC bus voltage. DC bus output will be used to charge the auxiliary power unit and battery

whenever the truck is operating. There are two stages outputs in our alternator system: 48V DC

and 14V DC. The 48V DC is directly got from the three-phase active rectifier, and 14V DC is

obtained through a buck converter. The battery is charged by 48V DC, and some 14V devices

are powered by 14V DC. High current is required if we want to charge the battery quickly, which

require good heat dissipation performance of the converter board. The PCB structure using PCB

board, aluminum board, and copper bars is designed to satisfy the requirement. The Sliding model

control (SMO) method is used to get the alternator shaft position. The disadvantage of SMO can

be avoided because the alternator doesn’t need to start by itself, otherwise, at the low speed, we

need to use the open loop. The alternator is controlled by FOC [100] [96] [97] [26], and the DC

output is connected to the buck converter. In order to get a fast pulse-by-pulse response and good

over-current protection, the peak current control [30] [11] [12] [20] is applied to control buck

converter.

Dissertation Organization

Chapter two will introduce the key design method of permanent magnet machinery. The motor

dynamic modeling and control method will be presented in Chapter Three. Base on Chapter Two

and Chapter Three, Chapter Four will present the Brush-less dc motors design and control system

applying to the electric impact wrench. Chapter Five will focus on the high-efficiency alternator

design and the control system, which is equipped to the heavy-duty trucks. In Chapter Six, the

contribution of this dissertation and research conclusion will be highlighted.
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CHAPTER 2: ADVANCED DESIGN METHODS OF BRUSH-LESS

PERMANENT MAGNET MACHINES 1

Introduction

Permanetn magnet synchronous motor (PMSM) is a new type of motor and has many advantages

in comparing with the traditional machines with electromagnetic excitation. It has small inertia

moment, large power density, high efficiency, and high reliability, therefore is very suitable for

the high-performance application [75] [60]. Due to no excitation winding, PMSM significantly

reduces the volume, weight, winding losses and electric heating and it saves energy. PMSM is

gradually replacing dc motor and induction motor [110] [101] [102].

This chapter is concerned with key design methodology, which has to do with the configuration, the

size of the stator, rotor, permanent magnet, winding, shaft, housing, etc. Some popular materials

and their characteristics for machine design applications are also presented. Winding configuration

and how to determine the coil pith and winding sequence will be discussed. The different types of

magnetization [35] [36] of the Permanent magnet (PM) and performances will be presented. At

last, the power losses of PMSM will be introduced.

Key Design Procedure of PMSM

When starting to design the PMSM, it is the several important decisions must be made at the early

stage. The following list covers most aspects of most cases:

1The content in this chapter was partly published at ICEM, 2016 XXII International Conference [38], IECON
2017 [41] and journal Energies [40].
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• decide the configuration of the PM machines and Its control;

• select numbers of phases, poles, and slots;

• estimate the volume of the machine;

• choose materials;

• design slot;

• design permanent magnet;

• design rotor, shaft, and housing;

• winding configuration.

Firstly, the slots, poles number, control topology and the materials will be decided; then the initial

size of all parts of the machine will be obtained using our PMSM design method based on the

rotating speed, power lever, maximum tolerance and cooling type.

Finite element analysis (FEA) will be used to confirm the initial design and analyze electromag-

netic variation and distribution, which can provide a detailed analysis of the performance of the

design. The obtained result waveforms will be compared with some standard waveforms. The

torque and flux density of the machine will also be analyzed. Maxwell 2D FEA will be repeated

until optimize parameters are obtained. Comprehensive consideration will be taken when we do

optimum design. Also, thermal analysis and mechanical analysis need to be done to make sure the

mechanical satisfies the requirements.
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Figure 2.1: 3D structure of the PMSM

Figure 2.1 shows a surface-mounted permanent magnet motor structure including a stator with

winding, a rotor with magnets and a shaft.

Drive Configuration

There are two types of brush-less PM motor control: the square-wave drive and the sine-wave drive,

which is related to the back-EMF waveform and the rotor position sensing, and their characteristics

are summarized here.
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Square-wave Drive

The motor should have a trapezoid EMF waveform, and this tends toward the use of concentrated

windings. Hall-sensor board is used to detect the switching positions; substantial field weakening

is not required. Chopping regulates the current. Phase advance can be used to increase speed but

at the expense of torque ripple and power factor. The following are the characteristics of DC PM

machine operation:

• concentrated windings and full pitched;

• trapezoidal back Electromotive Force (EMF);

• hall sensor board is used to detect the correct switching position;

• higher power density;

• tolerating some torque ripple and no extra field weakening required;

• suitable for power drives.

Sine-wave Drive

Ideally, the current and EMF of this kind of PM machines are both sinusoidal. Continuous position

feedback using encoder or resolver is assumed, although sensor-less control is also available. It

can be designed with distributed or concentrated winding with integral or fractional slots/pole. The

following are the advantages of PMSM :

• high efficiency and power density;

• small output torque;
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• reliable at high speed;

• advanced control topology;

• lighter weight and good heat performance.

Numbers of Slots and Poles

The combinations of poles number and slots number of a PM motor [14] [93] have a profound

effect not only on the winding layout but also on the space-harmonics of the resulting ampere-

conductor distribution and the peak value of cogging torque waveform, thus choosing poles and

slots number are very critical for motor design.

The least common multiplier (LCM) between the slot number and the pole number and the greatest

common divider (GCD) between the slot and pole number are two factors, which can be used to

find the combination of the number of poles and slots. The value of the LCM traduces the value

of the first harmonic of the cogging torque, so the higher the LCM value is, the lower the cogging

torque. The GCD value illustrates the balanced radial forces applied to the rotor, the smaller the

GCD value is, the lesser the cogging torque will be.

Machine Volume

The stator size is the foundation of the design. We can get the general size of the motor from

D2L

Tm
= $0Tm =

Pr
ω

(2.1)

Where D is stator bore diameter, L is stator core length, Tm is related mechanical torque, which is

determined by the required output power Pr and the rotor rotational speed ω. $0 is a coefficient.
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The value of $0 depends on the cooling method. Typically, for air cool , the value of $0 is around

5-7 in3/(ft · lb) for 10hp output power or less; for water or other liquid cool methods, the value of

$0 is around 2-5 in3/(ft · lb) for 10 hp output power or less. The better the cooling method, the

smaller the motor size. Otherwise, The larger size is required for adequate heat dissipation. The

proper size fo the machine can be determined using Eqn. 2.1 based on the design specifications

and thermal requirement. For initial design, assuming the diameter-to-axial-length ratio to be close

to unity. The diameter of some high-pole-number machinery is much larger than the length, and

it will make the machinery move from a long cylindrical shape to disk shape, which means high-

pole-number machines’ diameter tend to be much higher compared with the axial length. The

machinery will be more compact and high-efficiency if high-energy magnets such as Nd-Fe-B and

SmCo are used. It is a crude size approximation for radial-flux machines over a wide power range.

The flux per pole determines the stator yoke thickness; therefore, the thickness decreases as the

pole number increase.

Magnetic Materials

Introduction

There are two types of materials: soft and hard material. Soft materials are easy to magnetize and

demagnetize so that they can transfer or store magnetic energy in circuits with AC waveforms.

Therefore, Softer materials are widely used as stator and rotor materials. Hard materials are mate-

rials which retain their magnetism and are difficult to demagnetize and thus are used as permanent

magnets in applications such as PMSM and Permanent magnet synchronous generator (PMSG).

The following are the major parameters of magnetic materials :

• relative permeability µrc;
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• saturation magnetic flux density Bs;

• Curie temperature Tc and operating temperature Tw;

• resistivity ρc;

• eddy-current and hysteresis losses per unit volume Pv;

• bandwidth BW .

PM motor’s stator and rotor are made of soft magnetic materials. The relative permeability µr

of soft magnetic materials is from 1 to 105. If the motor working temperature is below 100 ◦C,

steels will be chosen in the design. The saturated magnetic flux density of steels is 1.7 Tesla (T).

The performance of steels will be reduced when temperature increase, so if machines require high

working temperature, Hiperco50 (an iron-vanadium soft magnetic alloy) can be used as the soft

magnetic material. The saturation magnetic flux density of Hiperco50 is 2.3T, and it has high DC

maximum permeability, low DC coercive force, and low AC core loss.

Neodymium iron boron (NdFeB) and Samarium-cobalt (SmCo) are most popular permanent mag-

net materials. NdFeB is the strongest rare-earth material, but the Curie and operating temperature

of NdFeB are slow, for example, the curl and operating temperature of NdFeB-28 are 310 ◦C and

150 ◦C respectively. The performance of it will weaken when the temperature increase. NdFeB

will demagnetize when cure temperature reached. SmCo has much higher curl and operating tem-

perature. The price of SmCo is high compared with NdFeB. If a PM motor needs to work under

wide temperature, SmCo will be used in the design.
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Hysteresis

The magnetization curve [58] [80] [15] [56] is called the hysteresis. It describes the relationship

between the magnetic flux density B and the magnetic field density H . A ferromagnetic material

remains magnetized after the external field is removed. It is only practically reversible in the

process of repeated magnetization and demagnetization. We can see from Fig. 2.2, the B − H

curve is a multi-valued function, is nonlinear and exhibits saturation. The shape and size of the

B − H curve depend on the properties of the ferromagnetic materials and the magnitude of the

applied field H . For hard material, it is difficult to move the magnetic wall, so the hysteresis loop

is wide. For soft material, it is easy to move the magnetic wall, so the hysteresis loop is narrow.

The B − H loop area is equal to the hysteresis energy loss per volume for one cycle. When the

magnitude of the amplitude of the AC component of magnetic flux density is increased, so is the

area of the the B −H loop. It will increase hysteresis energy loss. The B −H loop will become

wider when the frequency increase due to eddy currents.
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Figure 2.2: Hysteresis loop

Stator Slot and Winding Designing

Before we design the stator slot size, we define slot pitch τs as:

τs =
πD

Ns

(2.2)

where Ns represents the number of the stator slots. Typically, we use the experienced equations to

determine the stator slots size. Schematic structural view of the stator slot is shown in Figure 2.3.
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Figure 2.3: 2D structure of the PMSM stator



0.4τs ≤ ts ≤ 0.6τs

3ts ≤ ds ≤ 7ts

bs0 ≈ (0.1− 0.5)bs

ds0 ≈ (0.1− 0.5)bs

ds1 ≈ (0.1− 0.5)bs

(2.3)

where bs = τs − ts.

The fellowing equation is used to determine the rated phase voltage:

VΦ,rated =
√

2πfeN̂aΦg,pk ≈ 4.44feN̂aΦg,pk, (2.4)
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where fe is electrical frequency, Φg,pk =
2Bg,pkDli

P
is the peak flux of air-gap, N̂a = kwNa/kls is

the effective number of series turns per phase, kw is winding factor, and number of series turns

per phase Na = PqNc/C. If the number of parallel turns of armature winding C = 1, then

Na = PqNc. We add assumed coefficient kls to compensate for the leakage flux. Finally, the

number of turns per coil can be expressed as

Nc =
klsVφ,ratedC

2
√

2πfeqkwBg,pkDli
. (2.5)

The phase current can be determined regarding current density and slot parameters as

Ip,rated =
ϕsπDrs
2NcNs

Js (2.6)

where Js is the current density, Ns is the number of slots, rs is the ratio of slot width and slot

pitch, and ϕs is the slot pitch. We can use the current density equation to choose reasonable slot

dimensions. It also provides some restriction of motor design, which is determined by cooling

condition and thermal conductivity. The input power is related to phase voltage and phase current

of the motor, which can be calculated as

Pin = 3Vφ,ratedIp,rated cos θ. (2.7)

Stator Core Design

The flattened view of a motor is shown in Fig. 2.4.
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Figure 2.4: Flux density curve and flux of one pole pair

It can be seen that the total flux through the yoke is equal to the flux in the air-gap vier a half pole

pitch from the Fig 2.4. Therefore, the flux in the core can be calculated by integrating the air-gap

flux.

Φcore = Φgap,perhalfpolepitch

= le

∫ π/Np

0

Bg(θa)risdθa

=
D

2
le

2

P

∫ π/Np

0

Bg,pk cos(θae)dθae

≈ D

Np

leBgpk

(2.8)

where le is the stator effective length, Np is number of poles. Then the core flux density can be

calculated:
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Bcore,pk =
Φcore

dykili
=
DBg,pkleff
Pdykili

(2.9)

where dy is yoke thickness. Assuming the flux density across one stator tooth is constant because

the slot pitch is much smaller than pole pitch. The flux through one stator tooth is gained by

integrating the air-gap flux over the whole slot pitch. Its value is approximately equal to the peak

flux density.

Φtooth = leff

∫ r

0

Bg(θaeridθae) ≈ Bg,pkτsleff (2.10)

where τs is slot pitch. The relationship between back iron and tooth flux density can be got after

some derivation
Bcore,pk

Btooth

=
Dts
Pdyτs

(2.11)

Assuming ts ≈ 0.5τs, Bcore ≈ 0.8Btooth, the yoke thickness can be expressed as :

dy =
D

1.6Np

(2.12)

This equation has physical meaning, it means if we pick up the larger number of poles in the design,

yoke thickness will be smaller, we don’t need that much yoke thickness to finish the design.

Design of Air-gap and Permanent Magnet

For a multi-pole surface mount rotor as shown in Fig. 2.5.
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Figure 2.5: Rotor with multi-pole surface-mounted magnets

According to the magnetic circuit analysis:

2Hg + 2Hmdm = 0, (2.13)

where Hg is the air gap magnetic field, g is the air gap size, Hm is the PM magnetic field and dm is

the magnetic thickness. We use magnetic flux density B to replace magnetic filed H , than the Eqn.

2.13 becomes gBg +µ0Hmdm = 0, the relationship between the magnet thickness and air-gap size

can be obtained:
dm
g

= − Bm

µ0Hm

Am
Ag

. (2.14)

When designing the magnet and air-gap, a working point for permanent magnetics should be se-

lected. Firstly, we are going to get maximum energy point. B can be got from Fig. 2.5 easily:
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B =
Br

Hc

(H +Hc), (2.15)

letting B multiply H , BH equation can be obtained as:

BH =
Br

Hc

(H +Hc)H. (2.16)

In order to get maximum energy point, we get BH derivative:

∂(BH)

∂H
= 0, (2.17)

after some derivation, the (BH)max can be got, which is located in Bm = Br
2

, Hm = −Hc
2

. It is in

the middle of device line. It can be seen that there are two lines in Fig. 2.5 : device line and load

line. Device line equation can be easily got:

Bm = (
Br

Hc

)(Hm +Hc) = µ0µr +HB, (2.18)

Pc is called pemeance coefficient, which is equal to:

Pc =
dm
g

Ag
Am

=
Ag/g

Am/dm
≈ Rm

Rg

≈ ρg
ρm

. (2.19)

From magnetic circuit:

Fm + Fg = 0, (2.20)

where Fm = Hmdm, and Fg = Hgg, put them to Eqn. 2.20, than we can get Hg = −dm
g
Hm,

finally, we get:

Bg = µ0Hg = −µ0
dm
Hm

, (2.21)

from Φ = BgAg = BmAm, we get Bm = Bg
Ag
Am

, replace Bg using Eqn. 2.21, the load line
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equation can be obtained:

Bm = −µ0
dm
g

Ag
Am

Hm = −Pc(µ0Hm). (2.22)

We define Bm = αmBr, Hm = −(1 − αm)Hc, where αm is called working point of permanent

magnetics,We can get the maximum energy by choosing αm = 0.5. However, in order to avoid

demagnetization and knee effect, we always choose working point higher than 0.5. Now we are

going to determine the air-gap magnetic field from PM rotor based on the parallel magnetization

magnet.

Figure 2.6: The parallel magnetization waveform

Fig. 2.6 shows the parallel magnetization waveform, after doing Fourier expansion, we can get:

Brh =
2

2π

[ ∫ ρPM/2

−ρPM/2
Bm cos(hθae)dθae +

∫ π+ρPM/2

π−ρPM/2
(−Bm) cos(hθae)dθae

]
=

4

π

sin(hρPM
2

)

h
Bm

(2.23)

where ρPM is the electrical angle of permanent magnet, can be calculated by ρPM = emπ, where

em represents the embrace of the permanent magnet. Its value varies from 0.5 to 1. It affects

the air-gap magnetic field, peak flux density of the teeth and yoke,cogging torque,etc, kph is pitch

factor for the hth harmonic, kph = sin
(
hρPM

2

)
. The peak air gap magnetic field Br,pk can be
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approximately calculated by:

Br,pk ≈
4

π
sin
(ρPM

2

)
Bm. (2.24)

Typically, power angle θ is approximate 0 at full-load for the design of PMSM. The torque angle

δ for PMSM is usually designed to be in the range of 15-30 degree. The phase diagram and

relationship between torque angle and the output power are shown in Fig. 2.7.

Figure 2.7: The phase diagram and relationship between torque angle and the output power for
SPMSM

Normally, Rs is very small, we can neglect, then the phase A inducted back EMF EA ≈= Vφ +

jXsIA. When selecting power factor is approximately to one. The peak value of the net magnetic
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filed Bg,pk and peak winding magnetic field Ba,pk are defined:

Bg,pk = Br,pk cos δBa.pk = Br,pk sin δ. (2.25)

The output power Pout = 3VφIφ cos θ, after some derivation based on Fig. 2.7, we can get the

output power equation related to the torque angle as shown below,

Pout ≈
3VφIφ sin θ

Xs

, (2.26)

where Xs is inductance phase winding. It is obviously shown that If we choose a smaller torque

angle for the machinery at the related power in the design, the machinery will haver more power

handling capability and pull out torque. Our design method will based on the much smaller torque

angle compared with the traditional value, which will increase the magnets thickness and air-gap

size. The larger air-gap size contributes to reducing the windage loss and noise level. The increase

magnet thickness helps to avoid demagnetization.

If air-gap is small, the peak winding magnetic field can be calculated from:

Ba,peak =
4

π

µ0

ĝtotal

N̂a

Np

1.5
√

2Ip,rated. (2.27)

We can get the initial total effective air-gap size based on Eqn. 2.27

ĝtotal =
4

π

µ0

ga,peak

N̂a

Np

1.5
√

2Ip,rated, (2.28)

where ĝtotal also can be calculated as:

ĝtotal = kcg
′
total (2.29)

22



where kc is called cater’s coefficient and can be determined by:

kc =
τs

τs − 2bs0
π

[
arctan bs0

2g′total
− g′total

bs0
ln
(
1 + ( bs0

2g′total

2
)
)] ≈ τs

τs − b2s0
5g′total+bs0

(2.30)

where g′total = g + dm/µrm. We know dm
g
≈ Pc and Pc = αm

1−αmµrm, after some derivation, we

get: 
g = (1− αm)g′toatl

dm = αmg
′
toatlµrm.

(2.31)

If the designed air gap is large, which will needed to calculated the MMF from the permanent

magnet and MMF generated from the air gap. The total MMF from the two parts can be added up

and expressed by :

Ftotal =
rgBr,pk

µ0

[ 1

µrm
ln(

ra + dm
ra

) + ln(
r′is

ra + dm
)
]
, (2.32)

where r′is = ra+dm+geff , rg is the radius of the actual air gap, ra represents the inner radius of the

rotor. According Eqn. 2.32, geff can be calculated, then the actual air gap and magnet thickness

can be obtained.

Rotor Size

Total rotor diameter including magnet is:

Dr = D − 2g. (2.33)
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Rotor inner diameter can be determined by:

Di = Dr − 2dm. (2.34)

Double layer lap Winding Scheme

There are numerous winding schemes in a PM motor such as single-layer concerting lap winding,

single-layer distributing winding, two-layer concerting lap winding, two-layer distributing wind-

ing, etc. The two-layer winding scheme is widely used in different kinds of PM machinery.The

number of the conductors per coil Nc is determined by using:

Nc =
1.1Vφ,rated

2
√

2πfeqkwBg,pkDL
(2.35)

Where Vφ,rated represents the rated phase voltage, fe is the electrical frequency, q is the number of

the winding groups per pole, kw describes the winding factor including pitch factor, distribution

factor and winding skew factor. Similarly, the effective turns per phase is determined by:

Neff =
NpqNcKw

1.1
(2.36)

Where Np is the number of poles. Next, we will introduce a method step by step to show how to

determine two-layer winding coil pitch and connection.

Step 1. Find the nominal coil span( Sc) in slots

• If Slot numbers (Ns) / Pole numbers(Np) is an integer Sc = S
Np
− 1

• If Ns/Np is not an integer Sc = max
(
fix(Ns

Np
), 1
)

.
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Step 2. Calculate the relative electric angle of in slots of all coils

The relative electrical angle(expressed in the range of −180 ◦ to 180 ◦ of the kth slot is :

θslot(k) = mod
[
(k − 1)γ + 180 ◦, 360 ◦

]
− 180 ◦.

The relative electrical angle of in slot of the kth coil is also:

θcoil(k) = mod
[
(k − 1)γ + 180 ◦, 360 ◦

]
− 180 ◦.

Step 3. Readjust in slot angles if their magnitude are greater than 90 ◦. It means that if the magni-

tude of coil angles are great than 90 ◦, we need to reverse the coil direction; thereby changing the

angle by 180 ◦.

Step 4. Picking up
(
Ns/phase number(m)

)
coils for Phase A. For the angles calculated in the last

step, we pick up those (S/m) close to 0 ◦ as phase A coils.

Step 5. Calculate the slot offsets to other wind phases. From mod[Soffγ, 360 ◦] and γ = Np
2

360 ◦

S
,

we can get:

Soff = 2 Ns
mP

(1 +mn) = 2q(1 +mn)

where n is a integer value that makes Soff also an integer. Phase B will star from slot
(
mod(Soff , S)+

1
)
.

Step 6. Check to find out whether the winding is valid. The winding is valid if all slots contain two

coil sides each. If it is not valid, go back to Step 4 and pick up coil for Phase A.

Power losses

Power losses [109][44][2][29] [108] are the key point to know the motor performance because they

determine the machine’s efficiency and temperature-rise. There are three types of losses: Copper

loss, Core loss, and Mechanical loss. Mechanical loss contains windage and friction loss typically
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is very small and can be ignored compared to the other two types of losses. The copper losses are

generally the largest component of power loss in brush-less PM motors. They can be calculated

by:

Pcopper = mI2
p,ratedRs (2.37)

where m is the number of phases; I2
p,rated is the RMS phase current and Rs is the phase resistance

and can be determined by Rs = ρcopper
l
s
, ρcopper represents the resistivity of the copper and can

be calculated as ρ = ρ20[1 + α(T − 20)] ohm-m, where ρ20 = 1.724 × 10−8 ohm-m is the

resistivity at 20 ◦C α = 0.0393/◦C; and α is the the temperature coefficient of resistivity.The

winding temperature affects the resistivity of the windings. Normally, the winding temperature

increase 50 ◦C, the resistivity of the windings rise by 20%, the winding temperature increases

135 ◦C, the resistivity of the windings rise by 53%, the I2
p,ratedRs losses increase the same if the

current remains the same. A useful formula can be derived from the resistivity of the copper

equation to scale the resistance from one temperature to another:

Rs2 =
234.5 + T2

234.5 + T1

×Rs1 (2.38)

The effect of eddy-current in the stator conductors must be taken in to account when the machines

run in high speed or machines operating with an inverter having a high switch frequency. The

density of the current flowing in a conductor tends to a thin skin on its surface, which make the

individual strands of wire small compared to the skin-depth.In general, the proximity effects occur

in neighbution conductors cause a time-varying magnetic field and induces a circulating current

inside the windings, usually with the same slot. Litz wire is helpful in spurring effect proximately.

Core losses are generally the second largest component of power loss in the brush-less PM motor,

which can be subcategories as the hysteresis and eddy current losses. The hysteresis loss in the

energy used to align and rotate magnetic domains. The loss per BH cycle is proportional to the
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enclosed loop area, suggesting that the mean power loss due to hysteresis is proportional to the

frequency f . We can use C.P.Steinmetz formula to determine the hysteresis loss:

Ph = KhfB
n
pk[W/kg] (2.39)

where Kh is the coefficient of the hysteresis loss.

Induced current causes the eddy-current loss by an alternating magnetic field induces a voltage.

This voltage generates circulating currents in a conducting core, called eddy currents. Whenever

there is a change in a magnetic field, an eddy current is induced. The higher the resistivity of the

soft materials of the stator and rotor, the lower the eddy-current loss. The eddy-current loss can be

determined using the classical formula:

Pe = KeB
2
pkf

2[W/kg] (2.40)

whereKe is the coefficient of eddy-current loss and can be calculated from an idealized theory as:

Ke =
π2t2lamσ

6ρm
(2.41)

where tlam is the lamination thickness, σ is the conductivity, and ρm is the mass density. From Eqn.

2.40 and Eqn. 2.41, we can know that the eddy-current loss can be reduced in two ways: using a

high-resistivity material and using laminations. Using a high-resistivity material will increase the

skin depth, which will make the distribution of magnetic flux density more uniform. Dividing the

core into a large number of thin slices that ate electrically insulated from each other by an oxide

film. These thin insulted sheets, called lamination. The thinner lamination steels, the lower value

of Ke; for example, if tlam is reduced from 0.5mm to 0.35mm, Ke decrease by half. The total core
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loss we can calculated by:

Pc = KhfB
n
pk + Cef

2B2
pk (2.42)

Summary

This section talks about the design method of high-efficiency electrical machinery. The advantage

of the design method is that it can increase the high load capacity at no cost of increasing the

total machine size. A much smaller torque angle than that in the traditional design at relating

load is selected, which is between about 2 degrees and about 10 degrees. The most import part

of the design is to determine the air-gap and permanent magnet size. According to the design

method relating to the much smaller torque angle, which will result in the larger air-gap size and

larger magnet thickness. The larger air-gap size contributes to reducing the windage loss and noise

level. The increase magnet thickness helps to avoid demagnetization. Both them contribute to

high efficiency and high overload capability. Based on the design method, all the parameters will

be related to the torque angle, working point of a permanent magnet, and the permanent magnet

embrace, which is easier for the designer to make a new design.
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CHAPTER 3: PERMANENT MAGNET MACHINERY CONTROL

Introduction

Typically, there are two types of the diver for the PMSM: square-wave drive and sin-wave drive.

In the square-wave system, the back EMF is a flat-topped waveform, and the ampere-conductor

distribution of the stator ideally remains constant and fixed in space for a predetermined commu-

tation interval while the magnet rotates past it. Hall sensor board is used to detect the correct

current switching position. The transistors turn on or off based on the commutation stable In the

sine-wave system, the back EMF is sinusoidal, and the ampere-conductor distribution of the stator

rotates ate the synchronous speed fixed by the frequency and the number of poles. The torque is

produced by the interaction between the stator and rotor magnetic field. The angle between the

rotor magnetic field and stator magnetic field should be controlled well to get the maximum torque

performance. For PMSM, we need to control the magnetic field generated from the stator winding.

It is complicated to control motor on a three-phase reference frame directly, so we need to transfer

the three-phase abc quantities into dq quantities. The critical point of this transfer is the rotor posi-

tion that is a significant factor of the all PMSM control system. People usually use the encoder or

resolver to get the rotor position information. We also can use sensor-less control based on Sliding

model control (SMO) to estimate rotor position.

dq Theory of Permanent Magnet Synchronous Machines

To simply the PMSM equation and control the motor, people always to use dq0 frame to model

and analyze PMSM. It divides the PMSM armature quantities into two rotating components, one

aligned with the field-winding axis (the direct-axis component), and one in quadrature with the
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field-winding axis(the quadrature-axis component), which is called park’s transformation.

Figure 3.1: d− q axis on synchronous machine

Letting S represent a stator quantity to be transfered and θme = Np
2
θm. This conversion comes

through theK matrix.

Sdqo =KSabc, (3.1)
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and its inverse format is

Sabc =K−1Sdqo. (3.2)

TheK andK−1 matrix in the MIT’s notation can be expressed as:

K =
2

3


cos(θme) cos(θme − 2π/3) cos(θme − 2π/3)

− sin(θme) − sin(θme − 2π/3) − sin(θme − 2π/3)

1/2 1/2 1/2

 (3.3)

K−1 =
2

3


cos(θme) − sin(θme) 1

cos(θme − 2π/3) − sin(θme − 2π/3) 1

cos(θme + 2π/3) − sin(θme + 2π/3) 1

 (3.4)

In the Purdue’s notation system, θr = θme + π
2

is used to replace θme. The K and K−1 matrix in

the Purdue’s’s notation can be expressed as:

K =
2

3


sin(θr) cos(θme − 2π/3) sin(θme + 2π/3)

cos(θr) cos(θme − 2π/3) cos(θr + 2π/3)

1/2 1/2 1/2

 (3.5)

K−1 =
2

3


sin(θr) cos(θr) 1

sin(θr − 2π/3) cos(θr − 2π/3) 1

sin(θr + 2π/3) cos(θr + 2π/3) 1

 (3.6)

In our system, all the derivations will be based on MIT’s notation system. Here dq means direct and
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quadrature. Direct axis is aligned with the rotor’s pole. Quadrature axis refers to the axis whose

electrical angle is orthogonal to the electric angle of direct axis. A third component S0 is called the

zero-sequence component, which is also included. Under balanced-three-phase conditions, there

is no zero-sequence component.

Transformation of the stator winding voltage equations can be presented by:

Vabc = Rsiabc +
d

dt
λabc, (3.7)

after some derivation, we can get:

Vdq0 = Rsidq0 +
d

dt
λdq0 +K

( d
dt
K−1

)
λdq0, (3.8)

whereRs =


Rs 0 0

0 Rs 0

0 0 Rs

. In order to get the Vdq0, we derive the derivation ofK−1,

d

dt
K−1 = −ωme


sin(θme) cos(θme) 0

sin(θme − 2π/3) cos(θme − 2π/3) 0

sin(θme + 2π/3) cos(θme + 2π/3) 0

 , (3.9)

then, we can get:

K(
dK−1

dt
) =


0 −ωme 0

ωme 0 0

0 0 0

 . (3.10)
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Finally, the Vdq0 can be obtained :


Vd

Vq

V0

 =


Rsid + d

dt
λd − λqωme

Rsiq + d
dt
λq − λdωme

Rsi0 + d
dt
λ0

 . (3.11)

For salient pole rotor, the inductance can be approximately expressed as:

Labc =


Laa Lab Lac

Lba Lbb Lbc

Lca Lcb Lcc

 . (3.12)

The self-inductance can be expressed as:


Laa = Lls + L1 + L2 cos(2θme)

Lbb = Lls + L1 + L2 cos 2(θme − 2π
3

)

Lcc = Lls + L1 + L2 cos 2(θme + 2π
3

)

, (3.13)

where Lls is the winding leakage inductance, L1 is the inductance corresponding to the constant

component of the air-gap permeance and L2 is the magnitude of the inductance which corresponds

to the component of air-gap permeance which varies with rotor angle. The mutual-inductance can

be expressed as: 
Lab = Lab = −1

2
L1 + L2 cos(2θme − 2π

3
)

Lbc = LCB = −1
2
L1 + L2 cos(2θme)

LaC = Lca = −1
2
L1 + L2 cos(2θme + 2π

3
)

. (3.14)
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Therefor, we can get the following inductance matrix in dq0 frame:

Ldq0 = KLabcK
−1


Ld 0 0 0

0 Lq 0 0

0 0 L0 0

 , (3.15)

where Ld = Lls +Lmd, Lq = Lls +Lmq, L0 = Lls, and Lmd = 3
2
(LA +LB), Lmq = 3

2
(LA −LB).

The flux-linkage of PMSM in the abc frame is:

λabc = Labciabc + λPMabc, (3.16)

where λPMabc is the permanent magnet flux-linkage in the abc frame, the matrix is equal to:

λPMabc = λPM


cos(θme)

cos(θme − 2π
3

)

cos(θme − 2π
3

)

 . (3.17)

The flux-linkage of PMSM in the abc frame can be transformed into dq0 frame as:

λdq0 = Ldq0idq0 + λPMdq0, (3.18)

where λPMdq0 =KλPMabc =


λPM

0

0

, λd = Ldid + λPM , λq = Lqiq, and λ0 = Llsi0.
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For the linear model dλPMdq0

dt
= V and λPMabc = λPM , we can get:

didq0
dt

= L−1
dq0V . (3.19)

Finally, the dynamical equation in terms of current can be obtained as:

d

dt


id

iq

i0

 =


1
Ld

(vd −Rsid + ωmeLqiq)

1
Lq

(vq −Rsiq + ωmeLdid − ωmeλPM)

1
L0

(v0 −Rsi0)

 (3.20)

If the winding is Y connected, i0 is equal to zero, only need to consider id and iq.

Electrical instantaneous input power on stator can also be expressed through dq0 theory,

Pin =
3

2
Rs(i

2
d + i2q + 2i20) +

3

2
(id
dλd
dt

+ iq
dλq
dt

+ 2i0
dλ0

dt
) +

3

2

P

2
ωm(λdiq − λqiq), (3.21)

where 3
2
Rs(i

2
d + i2q + 2i20) is copper loss, 3

2
(id

dλd
dt

+ iq
dλq
dt

+ 2i0
dλ0
dt

) is magnetic power in windings,

and 3
2
P
2
ωm(λdiq − λqiq) is mechanical power. We use Pmecg to express the mechanical power, so

the electromagnetic torque on rotor can be expressed by:

Te =
Pmecg
ωm

=
3

2

P

2
(λdiq − λqid), (3.22)

putting λd and λq into electromagnetic torque equation, then we can get

Te =
Pmecg
ωm

=
3

2

Np

2
(λPM iq + (Ld − Lq)iqid) = KT iq, (3.23)

35



where KT = 3Np
2

(λPM iq + (Ld − Lq)id) is called torque constant. For round rotor machine

(Ld = Lq), the torque constant KT = 3Np
λPM iq

.

After the dq frame analysis, we can describe the motor’s non-linear behavior based on the dynamic

equation. Four dynamic equations are used to built the PMSM or PMSM modeling.

did
dt

=
1

Ld
(vd −Rsid + ωmeLqiq) (3.24)

diq
dt

=
1

Lq
(vq −Rsiq + ωmeLdid − ωmeλPM) (3.25)

dωm
dt

=
1

J
(Te − TL − cωm) (3.26)

dθm
dt

= ωm (3.27)

where vd is input voltage on d axis, vq is input voltage on qaxis, TL is load torque, J is initial

moment of rotor, and c is coefficient of firection.

The fellowing Fig shows the motor modeling built by MATLAB based on the dynamical equation.
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Figure 3.2: Motor modeling
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Space Vector Pulse Width Modulation

Space Vector Pulse Width Modulation (SVPWM) is popular for controlling motor drivers or three-

phase rectifier because it offers good utilization of the DC-link voltage, low current ripple, and

reduced switching losses compared to conventional PWM modulation.

Figure 3.3: Three phase switching states

As we can see from Fig. 3.3, there are 8 possible switching states, for witch two of them are

zero switching states and six of them are active switching states.They can be represented by active

vector (V1 − V6) and zero vector (V0). Active vectors are stationary and not rotating, zero vectors

are placed in the axis origin.
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Figure 3.4: Space voltage vectors in different sectors

Assuming the reference voltage space vector
−−→
Vref falls between two adjacent base vectors in sector

I as shown in the below picture.
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Figure 3.5: Approximation of an arbitrary voltage space vector using base voltage

According volt-second balancing, we can get the fellowing equation.


−−→
VrefTs =

−→
V1Ta +

−→
V2Tb +

−→
V0T0

Ts = Ta + Tb + Tc

, (3.28)

where Ta,Tb and T0 are dwell times for
−→
V1,
−→
V2 and

−→
V0, Ts is sampling period, space vector

−−→
Vref =

Vrefe
jθ,
−→
V1 = 2

3
Vd,
−→
V2 = Vde

j π
3 and

−→
V0 = 0, then we can get the real part and imag part of the

reference vector, 
−−→
VrefTs =

−→
V1Ta +

−→
V2Tb +

−→
V0T0

Ts = Ta + Tb + Tc

. (3.29)
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After some derivation we can get three time durations


Ta =

√
3TsVref
Vd

sin(π
3
− θ)

Tb =
√

3TsVref
Vd

sin(θ)

T0 = Ts − Ta − Tb

, (3.30)

where 0 ≤ θ ≤ π/3. These equations mean that an arbitrary space vector within the triangle

defined by the two adjacent base vectors, between which the expected vector is located, can be

represented by the sum of these two vectors. This is realized by timely activating the two vectors

combined with zero vectors sequentially. If the switching process is fast enough, meaning the

period Ts is short, the approximation can precisely represent the reference vector.

Figure 3.6: Duty time for each sector
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As we can see from Fig. 3.6, there are seven switching states for each sector within one cycle. It

always starts and ends with a zero vector. This also means that there is no additional switching state

needed when changing the sector. The uneven numbers travel counterclockwise in each sector, and

the even segments go clockwise.

Shaft Position

The shaft position is very important for field orientation control. Optical encoder and resolver are

normally used to get the rotor position. They are stalled on the shaft and expensive, which will

require the designer to make the driver board bigger and limit the PMSM application. Based on

these disadvantage, the sensor-less control technique based on the SMO is necessary to replace the

resolver and encoder. The SMO control is a strategy of variable structure control. The stability of

the system entirely depends on the sliding surface. In order to make suer the system error can be

controlled and stable, the gain factor should be choose big enough. Normally, a discontinuous sign

function is used as a switching function, which caused the chattering issue. In order to reduce the

chattering problem, sigmoid function is selected as a switching function to build the SMO model.

The PMSM model in the Alpha-beta reference frame can be expressed as:


Ls(

diα
dt

) = −Rsiα − eα + uα

Ls(
diβ
dt

) = −Rsiβ − eβ + uβ

, (3.31)

where iα, iβ , uα, uβ are the phase currents, phase voltages, and back EMF in the Alpha-beta frame,

respectively, Rs is the stator phase resistance and Ls is the stator phase inductance.

The electromotive force in Alpha-beta frame is related to the flux linkage, electrical velocity and
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electrical rotor position, which can be calculated as:


eα = −ψfωr sin θm

eβ = −ψfωr cos θm

, (3.32)

where ψf is the flux linkage of the PMSM, ωr is the electrical angular velocity of the shaft, and θm

is the electrical rotor rotating angle. The back EMF equations contain the rotor position informa-

tion, that means if we can know the PMSM back EMF, the rotor position can be obtained.

Design of SMO

The sigmoid function SMO model in Alpha-beta frame is built as:


d̂iα
dt

= Hîα + uα − kF (̂iα − iα)

d̂iβ
dt

= Hîβ + uβ − kF (̂iβ − iβ)

, (3.33)

where H = − R̂s
Ls

, [̂iαîβ]T is the desired Alpha-beta frame current value and [iαiβ] is the measured

current value in the Alpha-beta frame. The sigmoid switching function is represented as:

F (x) =

[
s

a+ |s|

]
. (3.34)
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Stability Analysis

The sliding surface of the sigmoid SMO model is chosen as:

S(X) =

[
sα sβ

]T
=

[
îα − iα îβ − iβ

]T
. (3.35)

The estimation errors should become zero when estimation errors of the SMO mode reach the

sliding surface. The Lyapunov function is selected to verify the stability of the sigmoid function

SMO model.

Γ =
1

2
S(X)TS(X) +

1

2
(R̂s −Rs)

2, (3.36)

where 1
2
(R̂s − Rs)

2 is used to estimate the stator resistance which is a variable parameter. The

stability condition of the SMO is as fellow:

Γ̇ = S(X)T Ẋ + (R̂s −Rs)
˙̂
Rs ≤ 0. (3.37)

The sliding condition is obtained by subtracting Eqn. 3.31 from Eqn. 3.33 as

Γ̇ =

[
¯̇iα

¯̇iβ

](Ĥ −H) ˆ̇α +H( ˆ̇α− iα) + 1
Ls

[
eα − kH( ¯̇iα)

]
(Ĥ −H) ˆ̇β +H( ˆ̇β − iβ) + 1

Ls

[
eβ − kH( ¯̇iβ)

]


+R̄s
˙̂
Rs ≤ 0, (3.38)

where H = − R̂s
Ls

, Ĥ = − R̂s
Ls

, and R̄s = R̂s − Rs. To satisfy the condition Γ̇ ≤ 0, Eqn. 3.38 is

decomposed into two equations as follows:

[
¯̇iα

¯̇iβ

](Ĥ −H) ˆ̇α

(Ĥ −H) ˆ̇β

+ R̄s
˙̂
Rs = 0, (3.39)
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[
¯̇iα

¯̇iβ

] H( ˆ̇α− iα) + 1
Ls

[
eα − kH( ¯̇iα)

]
H ˆ̇β + A( ˆ̇β − iβ) + 1

Ls

[
eβ − kH( ¯̇iβ)

]
 = 0. (3.40)

The estimation of the stator resistance can be obtained from Eqn. 3.39

˙̂
Rs =

1

Ls
(īα · îα + īβ · îβ). (3.41)

Using this estimated value of stator resistance in the current control can improve the stability of the

system. In order to keep the SMO stable, the observer gains should satisfy the inequality condition

found in Eqn. 3.38. As a result

k > max(| eα || eβ |). (3.42)

Therefore, if k is selected is large enough, which can make suer the stability of this kind of sliding

motion. The back EMF can be obtained once the system reaches the sliding surface.

eα
eβ

 =

kF (îα − iα)

kF (îβ − iβ)

 . (3.43)

Position and Velocity Estimation of the Rotor

The equivalent back EMF still contains the high-frequency components. A first-order low-pass

filter can be used for filtering, but it will cause phase delay. In order to get the real-time angular

velocity information without using the low-pass filter and phase compensation part, we built an

observer to extract the back EMF signal. The changer rate of the shaft angular velocity is far lower

than that of stator current, then we can assume the shaft angular velocity ω̇r = 0. The back EMF
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model of PMSM can be express as:


deα
dt

= −ωreβ

deβ
dt

= ωreα

. (3.44)

A back EMF is constructed 

dêα
dt

= −ω̂rêβ − p(êα − eα)

dêβ
dt

= −ω̂rêα − p(êβ − eβ)

dêω
dt

= (êα − eα)êβ − (êβ − eβ)êα

(3.45)

where p is the gain of observe, whose value is greater than zero. By subtracting Eqn. 3.44 from

Eqn. 3.45 and doing further consolidation, the error equation of the observer is determined as



dẽα
dt

= −ω̃rêβ − ωrẽβ − pẽα

dẽβ
dt

= −ω̃rêα + ωrẽα − pẽβ

dẽω
dt

= ẽαêβ − ẽβ êα

. (3.46)

The Lyapunov function is defined to verify the stability of the observer.

Γ =
ẽα

2 + ẽβ
2 + ω̃r

2

2
. (3.47)

Differentiating the Eqn. 3.47

Γ̇ = ẽα ˙̃eα + ẽβ ˙̃eβ + ω̃α ˙̃ωα. (3.48)
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Substituting Eqn. 3.46 into the above equation yields

Γ̇ = −p(ẽα2 + ẽβ
2) ≤ 0. (3.49)

We can see from Eqn. 3.49 that the back EMF observer is asymptotically stable. The position

signal can be obtained through the observer without phase delay.

θ̃m = − arctan(
ẽα
ẽβ

) (3.50)

Sensor-less Field Oriented Control of PMSM

As we know, the rotor of PMSM has a constant flux magnitude because of permanent magnets and

the stator winding of PMSM create a rotating electromagnetic field when it is being energized. The

rotating magnetic field can be controlled by controlling the stator currents. In order to get better

dynamic performance, it is necessary to decouple the torque generation and the magnetization

functions in PMSM, which is called Field Oriented Control (FOC). Doing park transformation

based the shaft angle that is obtained using the advanced SMO, id and iq can be obtained. The id is

related to the flux component and iq is related to the torque component, so we only need to control

the dq current. In order to get the maximum torque, the referenced d axis current idref should be set

to 0 for surface permanent magnet motor. We should give a negative referenced d axis current idref

when flux weakening operation is required. The output of the speed regulator will be used as the

torque command iqref . We will use this control for our alternator control system. For the Wrench

BLDC motor, hall sensor board is used to help the motor start at the begin, then the sensor-less

FOC will be used to control the motor. The sensor-less field oriented control of PMSM is shown

below
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Figure 3.7: Overall block diagram of sensor-less field oriented control of PMSM

Summary

In this chapter, the dynamic modeling and control methods of the permanent magnet machinery

are introduced. The shaft position is key for the PMSM control based on FOC. In order to avoid

using resolver or shaft, a sigmoid function SMO is built to reduce chattering issue. This kind of

SMO is verified using Lyapunov function and it shows that the large factor k value can ensure the

system stable. We also built an observer to replace the low-pass filter to extract the back EMF

signal, which can avoid the phase delay. The observer also was verified by Lyapunov function.
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CHAPTER 4: PERMANENT MAGNET BRUSH-LESS DC MOTOR AND

MECHANICAL STRUCTURE DESIGN FOR THE ELECTRIC IMPACT

WRENCH SYSTEM 1

Introduction

Brushless dc motors are popular in a wide range of industrial applications, such as computer pe-

ripherals, servo control systems and electrical tools due to their robustness, simplicity, large torque

to volume ratio and high-efficiency[46] [41] [88] [25] [64] [6] [57] [55]. Interior permanent mag-

net brushless DC (IPMBLDC ) electric motor [53] [62] [98] [70] [81] [89] [87] [40] is an important

category of these motors, constructed with the permanent magnets inserted into the steel rotor core

and does not need to be glued such as in surface mounted permanent magnet motors. The leakage

path of interior magnet motors usually includes a saturable magnetic bridge and the web, which

will make the coefficient of flux leakage variable. In the previous chapter, we have described the

key points of how to design a PM motor. In this chapter, we apply the methodology to the design of

a IPMBLDC [24] [21] [78] [104] [52] [42] [76] for the electric impact wrench. The differences be-

tween designing a IPM motor and SPM motor is that we need to assume a flux leakage coefficient

in the initial design and built an advanced equivalent magnetic circuit of IPMBLDC to calculate

the modify the coefficient of flux.

Using an electric impact wrench instead of the traditional wrench has been a worldwide trend.

Car and other automatic machines purchases number are rapidly increasing every year indicating

that there will be a big market for an electric impact wrench. Brush-less DC motor design for

the electric impact wrench requires high reliability, good control performance, small size, losing

1This chapter has been published at journal Energies [40].
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bolting time, low cost and easy industrial mass production. The motor connects to planetary gear

reducer with a transmission ration to get high output torque. The speed of impact wrench will be

reduced and the bolting time is related to motor speed, main pressure spring as well as shock block.

High pull out torque is required to get high load capability and improve motor lifetime.

A permanent interior magnet synchronous motor (IPMSM) with concentrated windings is chosen

in the design. Because IPMSM usually has the large torque to volume ratio and high efficiency. The

motor of electric impact should be able to tolerate some torque ripple and does not require extra

field weakening at higher speed. Based on these requirements, we choose the dc control drive for

the brush-less DC motor (BLDC) design. Hall sensor board was designed and fabricated to detect

the correct current switching position at the low speed to help the motor start, then advanced SMO

is used to control the BLDC.

Figure 4.1: Simple block of BLDC control topology
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Figure 4.2: BLDC motor dc control configuration and hall sensor board at low speed

Assumed flux leakage coefficient and selected working point of a permanent magnet were used

in the initial design. An advanced equivalent magnetic circuit was developed to verify the total

flux leakage and the quiescent operating position based on initial design parameters. Key design

method points are considered and analyzed. Thermal analysis is given to simulate the temper-

ature rise of all parts of the motor. The new impact wrench mechanical structure is designed,

and its working principle analyzed. An electromagnetic field analysis based on MATLAB and

MAXWELL 2D FEM was used in the design to verify the equivalent magnetic circuit and opti-

mize the IPMBLDC parameters. Experimental results are obtained to confirm the configuration.

The electrical and mechanical models are combined and provides an analytical IPMBLDC design

method. We also show an innovative and reasonable mechanical dynamical calculation method for

the impact wrench system.
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Magnetic Bridge and Rib

The magnetic bridge (Fig. 4.3) affects the leakage coefficient of the interior permanent magnet

motor [76] as shown in Eqn. 4.1. Flux density around the magnetic bridge is very high, which

results in low permeability and high reluctance, thus magnetic flux leakage is small. If we would

like to obtain stronger magnetism isolating effect, the size of the magnetic bridge should be smaller,

but the mechanical strength will be reduced when the motor runs at high speed. Comprehensive

consideration should be taken when choosing the size of the magnetic bridge.

Φ0 =
αmBrAm

kls
(4.1)

where Φ0 is no-load main flux, kls is leakage coefficient, αm is working point of a permanent

magnet,Br is residual magnetization density andAm is cross-sectional area providing the magnetic

flux per pole.

Figure 4.3: Magnet and flux guide dimensions
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Pull Out Torque

Pull-out torque is the largest torque that a motor can operate under synchronism in case of mo-

mentary overload with. It can can be calculated by traditional power angle equation ignoring the

effects of the stator resistance of the torque.

T =
1/2mNp

ω2
s

[
ePMU

Ld
sin(δ) +

U2

2
(

1

Lq
− 1

Ld
) sin(2δ)

]
(4.2)

wherem is the number of phase, ωs is the angular frequency of the stator current, Ld and Lq are the

direct axis inductance and quadrature axis inductance, ePM is the permanent magnet flux linkage

induced back EMF and δ is the torque angle.

ePM =
ξ1Naωsφσ√

2
(4.3)

where ξ1 is the fundamental winding factor, Na is the number of series turns of each phase and φσ

is air gap magnetic flux.

φσ =
Hcdm

dm
µrµ0

+Rσ +RFe

(4.4)

where Hc is the magnet coercive field strength, dm is the magnetic thickness, µr is the magnet

relative permeability, µ0 is the vacuum permeability and RFe is the iron reluctance.

Lmd =
m

2

4

π
αµ0

1

2p

τp
geff + dm

`(ξ1N)2 (4.5)

where m is phase number, α is the arithmetic average of the flux density distribution in one pole

area, τp is the pole pith, geff is the effective air gap length (excluding the magnets), ` is the stack

electromagnetic length. We can know from Eqn. 4.2 that the first part of Eqn. 4.2 is the magnetic

torque, and the second part represents the reluctance torque due to saliency. The inductance in
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q-direction is higher than in d-direction because of inverse saliency. For surface-mounted PMSM,

direct axis inductance is equal to the quadrature axis inductance, so there is no saliency, which

means the torque will proportional to the load angle.

When the thickness of the magnets increases, also the back-EMF increase as we can see from Eqn.

4.3 and Eqn. 4.4, while the direct-axis inductance decrease as shown in Eqn. 4.5, which result in

increased torque production capability of the PMSM. The pull-out torque increases and the rated

torque is obtained at lower load anger.

Typically, we choose the power factor angle equal to 0 at the full-load for PMSM. If we want to

get a high pull-out angle in the design, we can select the torque angle as our reference to design the

motor, the smaller torque angle we choose, the more significant pull-out torque we will get when

the full-load torque is known.

Size of the Permanent Magnet

After we get the air-gap size, we can use Eqn. 4.6, Eqn. 4.7 based on to determine the size of

the permanent magnet. Assumed flux leakage coefficient and selected permanent magnet working

point are used in the equations.

hm =
KsKααm

(1− αm)kls
g (4.6)

bm =
2klsBg,pkτ1

παmBrKφ

(4.7)

where hm is magnet length, bm is magnet width, g is air gap length, Ks is motor saturation factor

with values ranging from 1.05 to 1.3, Kα is rotor structure factor whose value range is between 0.7

and 1.2,Bg,pk is peak value of air gap fundamental wave,Kφ is air gap flux waveform factor, which
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is related to the pole arc coefficient. The air gap flux waveform of an ideal BLDC is a square wave,

so the value of pole arc coefficient should be big enough with reference to [94]. For IPMBLDC,

we can calculate the pole arc coefficient approximately using

αp ≈
b

τp
(4.8)

where b is pole shoe arc length, and τp is pole pitch

Improved Magnet Circuit Model of BLDC

A commonly used half of BLDC configurations is shown in flowing picture.

Figure 4.4: Half of BLDC configuration

The route of main flux loop goes through the magnet, rotor yoke, air gap, stator tooth, and stator

yoke. Taking the flux linkage of the magnet to magnet and magnet end flux linkage into consider-

ation, the improved equivalent magnetic circuits of BLDC, which is composed of a half-pole pair

for which the symmetry is considered, as shown in Fig. 4.5 (a).
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Where Rsy, Rst, Rg, Rrya, Rryb, Rσ, Rmo, Rml, Rmm are the reluctances of stator yoke, stator

tooth, air-gap, rotor yoke above the magnet, rotor yoke below the magnet, assembly gap between

magnets and laminations, the magnet, the magnet end flux leakage, magnet to magnet flux leakage,

respectively.

Figure 4.5: The improved equivalent magnetic circuits of BLDC

Fig. 4.5 (a) can be simplified as shown in Fig. 4.5 (b). Rz is the total reluctances of air-gap, stator

tooth, rotor tooth, stator yoke, rotor yoke above and below the magnet, which can be calculated as

Rz = Rsy/4 +Rst +Rg +Rrya +Rryb. (4.9)
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The magnet end flux leakage reluctances can be expressed as

Rσ =
dσ
µ0Aσ

, (4.10)

where dσ is the distance between the magnet and the duct, Aσ is the cross-sectional area of the

air-gap between the magnet and the duct. The magnet reluctances is equal to

Rmo =
hm

µ0µrAm
(4.11)

where hm is the length of the permanent magnet, Am is the cross-sectional area of magnet. R0 is

sum of magnet end flux leakage reluctances and magnet reluctance. Thus,

R0 = Rσ +Rmo. (4.12)

To calculate the rationality of the point of the operation and the coefficient of the flux leakage, we

need to analyze the equivalent of the magnet circuit, estimate the main magnetic circuit as shown

in the Fig. 11, analyze the magnet end flux leakage φml and the magnet to magnet flux leakage

φml. We assume the bridges and webs are saturated, which can be replaced by a flux-source. We

also assume the magnet web flux density is 1.8 Tesla. Therefore, we can calculate the magnet

end flux leakage Φmi. The flux density of the magnet depth can be limited to 2 Tesla. Therefore,

we can calculate the magnet to magnet flux leakage φmm. Comparing the calculated total flux

leakage value to the value of the assumption, some structural parameters will be adjusted based on

errors using computer-aided tools. We do the same to the operating point αm. All these repeated

calculation will be done with the aid of Matlab.
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A flowchart of the procedure of the calculation can be obtained shown in Fig. 4.6. Some magnetic

circuit calculation equations are listed in Table. 4.1.

Figure 4.6: The flowchart of the procedure of the design calculation
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Table 4.1: Magnetic circuit calculation

No-load main flux Φ0 = αmBrAm
kls

Average air-gap flux density Bg = Φ0

αpτ1Le

Air-gap MMF Fg = 2Ba(dσ+kc)
µ0

Total MMF ΣF = Fg + Fst + Fsy + Fry
Main magnetic permeability λδ = Φδ

ΣF

Per-unit value of the
main magnetic permeability ξδ = 2ξδhm

µ0µrAm

Magnet to magnet flux leakage Φmm = Bw1w1Le/2
Magnet end flux leakage Φml = Bw2w2Le

Total flux leakage Φσ = Φmm + Φml

Flux leakage coefficient kls = Φδ
Φδ+Φσ

Magnet operating point αm = klsξδ
klsξδ+1

The Design and Calculation of Impact Wrench

Working Principle

An electric impact wrench includes a motor, planetary gear, main pressure spring and shock block.

The new mechanical structure makes the planetary gear retarding mechanism as the main transmis-

sion mechanism, which can guarantee small volume, lightweight, simple structure, high torque and

power, and simple control requirement of IPMBLDC. The motor output force is transmitted by the

planetary reducer to the mandrel, and then by the ball, driven by the main pressure spring to make

the shock block rotate. Shock block uses its two convex claws to impact shock rod. The impact

rod drives the bolt through the sleeve under the action of impact force. When the resistance torque

of the bolt exceeds the torque transmitted by the main spring to the impact head, the impact head

is retracted along the v-groove of the mandrel under the restriction of the ball, resulting in impact

shock block and shock rod convex shoulder tripping. The shock block will continue to rotate under

the motor driven at this time. The pawl crosses the shoulder and produces an additional angular
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velocity under the main pressure spring, which pushes the pawl against the shoulder and generates

an impact torque. The torque is then passed through the sleeve to the bolt or nut, which will make

the bolt or nut rotate by an angle. The cycle of shock will continue until the completion of the bolt

loading and unloading works. The mechanical structure is shown in Fig. 4.7.

Figure 4.7: Mechanical structure of impact wrench

Planetary Gear Ration Calculations and Design

Our planetary gear for electrical impact wrench is made of one sun gear, one ring, and three planet

gears. The sun gear works as the active part, three planet gears are the followers, and the ring is

fixed to the housing. The simple planetary gear mechanism is shown in Fig. 4.8.
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Figure 4.8: Simple planetary gear mechanism

According to the theory of machines and mechanisms, we know:

iH13 =
nH1
nH3

=
n1 − nH
n3 − nH

= −z3

z1

(4.13)

where n1,n2,n3 are the speed of sun gear, ring, and plant gear, respectively, z1 is tooth number of

sun gear and z3 is tooth number of ring.

Since the ring is fixed to the housing, its speed is 0, we can get the planetary gear transmit ratio.

ĩr = i1H =
n1

nH
= 1 +

z3

z1

. (4.14)

After we know the required planetary gear transmit ratio. We can select the tooth number for the

sun gear, ring, and plant gear based on Eqn. 4.14 for our design.
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The Main Compression Spring Design

The main parameters of pressure spring of impact wrench are shown in Table. 4.2. According to

dynamic principles, spring index Cs = dc
Dc

; spring constant k = GDc
8C3

sN2
, where G is shear modulus

of elasticity; the minimum load on spring is F1 = kS1; the maximum load on spring is F2 = kS2;

the average load on spring is Fa = (F1 + F2)/2; the resistance torque of the spring to the mandrel

MF = Faro tan β. For our electric impact wrench, we need to make sure the torque from the

motor to the mandrel is less than the resistance torque of the spring to the mandrel, this is the

special requirement for our design. We can follow the mechanical design handbooks to do the

compression spring design step by step so we are not going to introduce the procedures in detail.

The basic design process is shown in Fig. 4.9.

Figure 4.9: The basic spring design procedure

62



Table 4.2: Parameters of pressure spring

Material 60Si2MnA
Installed length 60mm

Minimum amount of elastic deformation S1 5mm
Maximum amount of elastic deformation S2 14mm

Impact stroke length h 9mm
Angle of spiral β 22 ◦C

Out diameter of a coil Dc 71mm
Inner diameter of a coil dc 60mm

Total number of winding N1 6
Number of active winding N2 3

Shock Block Dynamic Calculation and Design

The shock block shape is shown in Fig. 4.10 (a). Some experience equations are listed below.



l1 ≈ (1− 2.5)l2

l3 ≈ (0.3− 0.5)ls

d1 ≈ (1.2− 1.5)d2

Do ≈ (1.2− 1.5)d1

(4.15)

For convenient calculations, we simplify it to two steel tubes and two fan-shape claws as shown in

Fig. 4.10 (b). The shock block quality is

m =
pπl1(D2

o − d2
1)

4
+
pπl2(D2

o − d2
2)

4

+
αpπ(D2

o − d2
2)(ls − l1 − l2)

180× 4
. (4.16)
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Figure 4.10: Shock block shape

When it is rotating, the steel tube is like the hollow cylinder rotating around the rotation center.

The fan-shaped claw is equivalent to a symmetrical fan rotating around the rotation center. We can

obtain the moment of inertia of the shock block based on the theory of machines and mechanisms

J =
m1 +m2 +m3

8
D2
o +

m1

8
d2

1 +
m2

8
d2

2 +
m2

8
d2

3. (4.17)

The absolute angular velocity of the shock block before the impact consists of the average angular

velocity of the mandrel and the additional angular velocity of the shock block, that is ω0 = ωt+ωa.
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The average angular velocity of the mandrel ωt = 2πn/(60i). The output power of the IPMBLDC

is stored in the form of a compressing spring. The stored energy by the compression spring releases

into two parts. One part is converted to the kinetic energy of the downward moment of the shock

block, and the other part is converted to the kinetic energy of the shock block rotation. According

to energy conservation law, we have

Fah =
Jω2

a

2
+
m(Jr tan β)2

2
(4.18)

after some derivations, we can obtain the additional angular velocity of the shock block

ωa =

√
2Fmh

J +m(r tan β)2
. (4.19)

We performed the design based on the desired value ωa. After we pick up coefficients for each

parts of length and diameters according to Eqn. 4.15, we put Eqn. 4.16 and Eqn. 4.17 to Eqn.

4.19. Matlab will be numerically calculate the relationship between Do and ls. Normally we pick

up Do values according to our IPMBLDC housing diameter; than we can use the relationship be-

tween Do and ls to get the value of ls. Finally, we can obtain values of the all parameters.

Impacting shock rod, sleeve, and bolts, in essence, is an elastic collision process of shock block

around the rotating center. During the elastic collision, the energy will be transferred. The effi-

ciency of energy transmission is

η =
∆E1

E1

, (4.20)

where ∆E1 is the energy difference before and after impact, E1 is energy before impact. Assuming

the collision is elastic, the recovery coefficient is 1. According to collision theory, we can obtain

η =
4JJ ′

J + J ′

2

=
4a

1 + a

2

(4.21)
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where J ′ is the converted inertia of the impact system, a = J/J ′. In the process of disassembly of

bolts, J ′ changes all the time. Therefore a is also variable. Assuming the change range from a1 to

a2, then we can get the average theory impact efficiency. In our design, the range of a is from 0 to

18.

η̂ =

∫ a2
a1

4a
(a+1)2

da

a2 − a1

(4.22)

Finally. we get

η̂ = 4[
1

a2 − a1

ln
a2 + 1

a1 + 1
− 1

(a1 + 1)(a2 + 1)
]. (4.23)

If the required tightening torque is T ′, we can obtain the time of tighten a bolt tb = T ′/Eη̂.

Performance Analysis

Optimization and Simulation

To verify the magnetic circuit model and the design parameters, the 2-D Finite element analysis

has been used.

Table 4.3: Calculated results and FEA results

initial design parameters calculated results FEA
kls αm w1 w2 Bδ kls αm Bδ kls

1.15 0.85 1 0.5 0.598 1.1522 0.861 0.585 1.149
1.15 0.85 1.1 0.5 0.595 1.1539 0.863 0.581 1.1523
1.15 0.85 1.2 0.5 0.591 1.1542 0.865 0.576 1.1531

Table. 4.3 shows the primary design results, calculated results and the FEA results for changing
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the magnetic bridge width. We assume the flux density of the bridge is limited to 1.8 Tesla and the

flux density of the rib is limited to 2 Tesla. From the table, we can see that the 2-D finite element

analysis verifies our calculation and design parameters.

For our IPMBLDC, we evaluate and optimize the motor using ANSYS Maxwell. The dimensions

of the IPMBLDC are obtained as shown in Table. 4.4.

Table 4.4: IPMBLDC dimensions

Number of the slots/poles 6/4
Stator outer diameter/mm 48
Stator inner diameter/mm 24
Rotor inner diameter/mm 5

Air-gap length/mm 0.5
Magnet width/mm 2.5
Magnet length/mm 9.5

Rotor bridge depth/mm 0.5
Rotor magnet web/mm 1

When we design the motor. The motor must meet the following flux density constraints: (1) Stator

tooth flux density lower than 2T; (2) Stator yoke flux density lower that 1.5T; (3) Rotor yoke flux

density lower than 1.5T. Through the finite element simulation analysis, the flux distribution of the

final designed structure is shown in Fig. 4.11. From the Maxwell 2D simulation results, we can

see that the tooth average flux density is 1.62T , the yoke average flux density is 1.41T , and the

average air-gap flux density is 0.585T . The web flux density is around 1.76T , and rib flux density

is around 1.95T . The web flux density is close to the value we assumed. All the results satisfy the

requirements.
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Figure 4.11: Magnetic flux distribution within the proposed magnetic structure:hot magnetic spot

Cogging Torque and No Load Back-EMF

Cogging torque is the consequence of the interaction between the rotor-mounted permanent magnet

field and the stator teeth. It will produce a pulsating torque that does not contribute to the net

effective torque. The waveform of the cogging torque for the IPMBLDC at rated speed is shown

in Fig. 4.12. We know from Fig. 4.12 that the value of cogging torque is around 0.014Nm, which

is about 6.3% ratio of the rated load torque. In order to get high torque, we use concentrated

windings, so the value of cogging torque is reasonable for 6-slots, 4-pole motor. For the impact

wrench application, there are no critical requirements for cogging torque.
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Figure 4.12: Plots of cogging torque

The no-load back-EMF simulation analysis of the IPMBLDC is given in Fig. 4.13. The line to line

EMF has a 60◦ flat-top with delta connection.

Figure 4.13: The no load back-EMF of the BLDC
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Thermal Analysis and Cooling

In order to avoid demagnetization, the magnet’s temperature needs to be kept under control. To

preserve the life of the insulation and bearing, excessive heating of the surrounding and injury

caused by touch hot surface, the temperature rise of the winding and frame should be kept below

a level. In this paper, a fan is used for cooling and power MOSFETs are soldered on aluminum

board. We can see from the Fig 4.14 that the maximum temperature appearing in the rotor is around

62 ◦C after one hour, and the temperature remains stable. Actually, the motor of electric impact

wrench is not expected to be in continuous operation, and therefore that maximum temperature

will never be reached.

Figure 4.14: Thermal analysis resulting using MotorSolve
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Experiment

Figure 4.15: Prototype of IPMBLDC for electric impact wrench

The prototype is shown in Fig. 4.15. The induced back EMF of the IPMBLDC motor and hall

sensor position of the IPMBLDC control board at low speed are shown in Fig. 4.16. The ampere-

conductor distribution of the stator remains constant and fixed in space for a predetermined com-

mutation interval while the magnet rotates past it, producing a linear variation in phase flux-linkage

and from it a flat-topped EMF waveform.
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Figure 4.16: Oscilloscope trace of phase a inducted EMF and current waveform and signals form
hall sensor board at low speed

We can see the flux density of air gap and Fast Fourier transform analysis of flux density of air gap

at no load in Fig. 4.17 (a) and Fig. 4.17 (b) respectively. Even harmonics are canceled, only odd

harmonics exist, which indicates the harmonics of air gap flux density distribution is good.
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Figure 4.17: (a) The flux density of air gap (b) The FFT analysis of air gap

Fig. 4.18 (a) shows the testing and simulated results of IPMBLDC speed vs torque and current vs

torque. We use the fixed torque wrench to load the bolt, then use the impact wrench to unload the

bolt. As the torque increases, the motor speed decreases.The simulated speed of IPMBLDC at no

load is around 2780 rpm, and the tested speed is a litter lower; the simulated speed decreases to

around 1602 rpm, and the tested speed decreased to around 1375 rpm at maximum torque. The

simulated current increased to 19A, and the tested current increased to 21A at the maximum torque

as we can see from the Fig. 4.18 (b).
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Figure 4.18: (a) Speed Vs torque (b) Torque Vs current
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Fig. 4.19 shows the whole system of electrical wrench simulation efficiency is around 72% and

testing efficiency is around 67 % at full load. When we do the simulation, we neglect some me-

chanical transmit losses, that is why the testing efficiency is 5% lower than simulation efficiency.

The testing power loss includes the motor power losses, shock block system losses and some other

mechanical losses.

Figure 4.19: Efficiency Vs torque
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Summary

In this chapter, an analytical method to design the IPMBLDC motor and a new mechanical trans-

mission structure for electrical impact wrench step by step was introduced. The improved magnetic

circuit model has been established to calculate the coefficient of the flux leakage and working point

of a permanent magnet. Smaller torque is chosen to get the high pull-out torque. The design has

been optimized and verified using MAXWELL 2D analysis based on the finite element method and

MotorSlove packages. The motor has also been fabricated and can satisfy all the design require-

ments for electric impact wrench application. The new impact mechanical structure and working

principle, the planetary gear reduce transmission ratio formula, as well as a dynamic model of

main pressure spring and shock block in the impact process are also elaborated. The whole system

of the impact wrench was fabricated as well.
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CHAPTER 5: DESIGN AND ANALYSIS A HIGH EFFICIENCY

PERMANENT MAGNET ALTERNATOR AND CONTROL SYSTEM FOR

THE TRUCK AUXILIARY UNITS 1

Introduction

Auxiliary power units(APUs) are normally equipped with the heavy-duty truck as shown in Fig

5.1 to supply power to air conditioners, heaters, electronics appliances and so on.

Figure 5.1: Auxiliary power units equipped with the heavy-duty truck

In this chapter, a 2kw high-efficiency alternator [66] [74] [90] [86] [41] and its control board

system are designed, analyzed applying to the truck auxiliary power unit (APU) [106] [19] [48]

1The content in this chapter was partly published at IECON 2017 [41].
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[8]to charge the battery and supply the 12V DC Power units. High-efficiency alternator [67] [77]

is required for this application. The surface permanent magnet alternator [34] [31] is designed and

fabricated based on the previous chapter theory because the surface permanent magnet alternator

has less leakage and higher power density compared with interior permanent magnet alternator

[39] [38]. The working point of a permanent magnet [85] [16] [43] should be selected when doing

the design. The maximum power is reached when the working point of permanent is 0.5. In

order to avoid demagnetization of the magnet [23] [37] [32], the working point should be selected

higher than 0.5. A much smaller torque angle δ [82] [63] [111] than that in traditional design

at relating load is used, which is between about 2 degrees and about 10 degrees. The design

can utilize a smaller torque angle to get high overload capacity , which will increase the magnet

thickness and air-gap size. The larger air-gap helps to reduce the wind-age loss and noise level,

while the increased magnet thickness contributes to avoiding demagnetization. The relationship

among the torque angle δ, working point, and the permanent magnet embrace [18] [112] [49] will

be analyzed. The control system has two outputs : 48V DC and 14V DC. The alternator three

phase outputs are connected to the there phase active rectifier to get 48V DC. SMO is used to get

alternator position. Then, a buck converter with peak current control is applied to get 14V DC.

the peak current control has advantage of a fast pulse-by-pulse short circuit and over-current load

protection, which enhance the converter reliability. The control topology is shown below:
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Figure 5.2: Alternator control topology

Copper loss [103] [50] [61] is the most significant of all the losses in low and medium speed

electric machines. Reducing the copper loss is the key to build a highly efficient machine. To

build a high-efficiency machine, we choose lower current density copper wires that have large wire

cross-section, which reduce the copper loss and improve the efficiency. This also makes thermal

management easier and avoids to use active cooling methodologies (such as fan, liquid cooling or

spray cooling). Small torque angle is selected in design at the rated power and speed, which will

result in large air age size, increased thickness of permanent magnets and high pull out torque.

The machine will get high load capability, long lifetime, less mechanical noise and is not easy to

demagnetization.

Analysis of Mathematic Model

From magnet thickness and air-gap equation, we can know that air-gap magnetic flux density value

Brh is a key design factor. The working point of a permanent magnet, permanent magnet embrace

value affects the value of Brh. The torque angle δ determines the peak value of the net magnetic
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flux density and the peak winding magnetic flux density and it is also related to the pull-out torque

and over-load capacity. The smaller the torque angle, the higher the pull-out torque and over-load

capacity. The permanent magnet embrace is also related to the cogging torque and efficiency.

After selecting the values of the working point and torque angle, the permanent magnet embrace

will play a role in the design. Normally we selected the value of magnet embrace is around 0.8.

Fig. 5.3 and Fig. 5.4 show how the embrace affects the magnet thickness, air-gap values based on

chapter two design equation. The plots are based on a 2Kw, 6000rpm generator with 0.8 working

point and selected 10-degree torque angle. We can see that when the value of embrace increase the

magnet thickness and air-gap thickness values decrease because the increased embraced value will

increase the Ba,pk and Bg,pk values.

Figure 5.3: Embrace values Vs magnet thickness values
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Figure 5.4: Embrace values Vs air-gap values

Alternator Model

Table 5.1: Results of the alternator design

Parameters Unit Specification
Magnetic material - NdFeB-38
Cool method - air
Rated Power kW 2
Number of magnet poles - 4
Number of stator slots - 36
Stator outer diameter mm 157
Stator inner diameter mm 79
Airgap length mm 2
Magnet width mm 6
Magnet length mm 23

A alternator with 0.8 working point, 10-degree torque angle, and 0.75 embrace value was designed

and fabricated based on the design method. The magnet thickness value is selected to be 6mm,
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and air-gap length is chosen to be 2mm after the optimization. The air-gap thickness is slightly

less than the simulation value 2.15mm considering the fabrication process. After the analysis,

the dimensions of the alternator are obtained as shown in Table 5.1. The alternator windings

diagrammatic drawing is shown in Fig. 5.5.

Figure 5.5: Alternator windings connection

ANSYS Maxwell 2D is used to evaluate and optimize our design. Parameters such as slot size and

shape, magnet thickness, air-gap size and yoke thickness, and so on have been optimized using

the software. Fig 5.6 shows the distribution of magnetic flux density. It can be seen that the tooth

flux density is limited to 1.1T and the maximum flux density of the yoke is around 1.45T. Fig. 5.7

shows the calculated efficiency of the alternator versus RMS phase current. It can be seen that the

motor has a very high efficiency (around 97%) at the rated power.
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Figure 5.6: Flux density in the alternator

Figure 5.7: Efficiency Vs. RMS phase current
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Fig. 5.8 shows flux linkage is good sinusoidal shape, which indicates the magnetic does not saturate

with high excitation. Thus, the distortion of EMF should not appear across the zero point. Besides

the amplitude of A, B and C phases flux linkage are almost the same, which can be explained as

that the fringing effect is minimal. Fig. 5.9 shows the cogging torque versus time. It shows that

the cogging torque is low. The cogging torque peak value is around 0.015 N.

Figure 5.8: Phase flux Vs time
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Figure 5.9: Cogging torque Vs time

Thermal Analyze

The housing is designed and the thermal performance of each part of the generator are analyzed

as shown in Fig. 5.10. The peak temperature inside the generator is around 342K at the full load,

which is below 350K and therefore the active cooling methodologies are not needed.
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Figure 5.10: The simulation of alternator temperature of each parts

Simulation Control Topology of The Whole Alternator System

The MATLAB simulation model of the whole system control topology was built. It contains two

stages : three phase active rectifier and buck converter. The SMO is used to get the rotor position

for the fist stage and the filed oriented control is applied to the alternator control. The 48V is

transfered from the alternator three phase outputs using the three phase active rectifier. The buck

converter is designed as second stage to get 14V DC to charger the 14V unites. The whole control

topology is shown below.
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Figure 5.11: The simulation model of the whole alternator control system
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The Fig. 5.12 shows the estimated rotor position and the actual rotor position. It can be clearly

seen that the rotor position from SMO can match the actual rotor position.

Figure 5.12: The estimated rotor position and the actual rotor position

The correct rotor position information is the key of the control topology, then the 48V can be

obtained from field oriented control, which is shown below.
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Figure 5.13: Three phase active rectifier output

The peaking current control is applied to buck converter to get the 14V DC. The Fig. 5.14 shows

the simulation result from the MATLAB.
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Figure 5.14: The second stage output

The flux density of the air-gap and no-load air-gap flux density Four transform analysis are shown

in Fig. 5.15. It indicates that the even harmonics are canceled, only odd harmonics exist.
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Figure 5.15: (a) The flux density of air-gap and different order harmonic waveforms showing with
different color; (b) The fast Fourier transformation (FFT) analysis of air-gap.

Alternator and Control Board Prototype

The alternator prototypes are shown in Fig. 5.16. We use lamination technique to reduce the core

loss. The lamination factor is 0.92.
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Figure 5.16: The alternator stator and rotor prototype

In order to get perfect heat dissipation performance and increasing load capability and lifetime, we

soldered the MOSFETS on the aluminum board for high power and use the copper bars to connect

the PCB board and aluminum board.
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Figure 5.17: PCB layout of the alternator control board
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The fabricated alternator control board is shown in Fig. 5.18. The DSPF28335 is selected as CPU

and the DSPF28335 minimum board is connected to the PCB main board. The high frequency

and large current inductor also has been designed and fabricated for the buck converter using area

production method.

Figure 5.18: The fabricated alternator whole system control board

Alternator Whole System Testing

The whole system control process is shown in Fig. 5.19, the testing was did based on it.
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Figure 5.19: The whole system control process

A permanent magnet motor is used to drive the alternator. The alternator three phase outputs are

connected to the control board to get DC output. The resistors are connected in parallel as loads as

shown in Fig. 5.20.
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Figure 5.20: The alternator testing system

We can see the three phase currents in Fig. 5.21. The waveforms are not perfect sine wave due to

harmonics.

Figure 5.21: Alternator three phase current

Finally, the efficiency of the alternator under different loads has been tested as shown in Fig. 5.22,
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which indicates the design of alternator has high efficiency. The efficiency is around 95 % at the

rated load, which is 2% lower than the simulation values. Because when we do the simulation, we

ignore some factors effect.

Figure 5.22: Three phase RMS current Vs efficiency
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Summary

A truck alternator and its control system applying to APU system has been successfully design,

fabricated and tested. 36-slot, 4-pole topology with surface-mounted permanent magnets and a

double layer lap winding scheme is selected in our design. Motor structure consideration, key

points of design and design procedures are introduced in detail. The design has been optimized

and verified using MAXWELL 2D analysis based on the finite element method. We also created

the housing and did the thermal analysis for our alternator. The heat dissipation performance of

our alternator is pretty good, and no fan is required in our design. The sigmoid function SMO

sensor-less control method is applied to the control system. Ti DSP 28335 MCU is selected as

control CPU. The control PCB board is designed and fabricated. The Whole alternator system has

also been completely fabricated. The simulation and test results show the whole system performers

pretty well.
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CHAPTER 6: CONCLUSION

The dissertation focus on the high-efficiency electrical machinery design and control. The design

method was introduced step by step. The dynamic modeling of the permanent magnet motor

was built and analyzed. The advantage of the design method is that it can increase the high load

capacity at no cost of increasing the total machine size. A much smaller torque angle than that

in the traditional design at relating load is selected, which is between about 2 degrees and about

10 degrees. According to the design method relating to the much smaller torque angle, which

will increase air-gap size and larger magnet thickness. The windage loss and noise level will be

reduced because of larger air-gap size. The increased magnet thickness is contributed to avoid

demagnetization. The larger air-gap sized and increased magnet thickness contribute to increase

efficiency and overload capability. Based on the design method, all the parameters will be related

to the torque angle, working point of a permanent magnet, and the permanent magnet embrace,

which is easier for the designer to make a new design.

An interior permanent magnet brush-less DC electric motor (IPMBLDC) for a kind of electric

impact wrench used for loading and unloading car bolts is designed and fabricated based on the

design method. This kind of motor works on the discontinuous model. High pull-out torque and

small size is required. Based on the design method, that two requirements can be satisfied when

doing the BLDC design. Maxwell 2D FEM model is built to simulate and optimize the design.

Thermal analysis is given to simulate the temperature rise of all parts of the motor. The new

impact wrench mechanical structure is also designed. the It provides an analytical whole system

design method for the impact wrench system, which can be used for the other functional electric

tools whole system design.

An advanced Sliding Mode Observer (SMO) is designed for the alternator system, which can get
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the rotor position more accurate. The high-efficiency alternator is designed and fabricated based

on the design method. The alternator system is applied to the truck auxiliary power unit (APU),

which has two outputs (48V and 14V). All the Matlab simulation model, MAXWELL 2D model,

and PCB board are done. The whole system efficiency is much higher than the traditional system

using induction motor.
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List of Symbols

Am Cross section area of the magnets.

Ag Cross section area of the air-gap.

b Pole shoe arc length.

bm Magnet width.

Bcore,pk Core peak flux density.

Bg,peak Air-gap peak flux density.

Btooth Tooth flux density.

Br Remanent flux-density.

Ba,peak Peak winding magnetic density.

c Coefficient of firection.

Cs Spring index.

dy Yoke thickness.

dm The magnetic thickness.

D Stator bore inner diameter.

Dr Total rotor diameter including magnet.

Di Rotor inner diameter.

Dc, dc Out and inner diameter of a shock block coil.

em Embrace of the permanent magnet.

101



ePM The permanent magnet flux linkage induced back EMF.

eα, eβ Back EMF in the stationary frame.

ẽα, ẽα Back EMF error in α, β frame.

E Energy produced by shock block every minute.

∆E1 Energy difference before and after impact.

E1 Storing energy before impact.

fe Electrical frequency of phase voltage.

Fm Permanent magnet MMF.

Fg Air-gap MMF.

Ftotal The total MMF.

Fg, Fst MMF of air-gap and stator tooth.

Fsy, Fry MMF of stator yoke and rotor yoke.

F1, F2, F3 The minimum, maximum, and

average load on the spring.

g The actual air-gap size.

ĝtotal Initial total effective air-gap size.

g′total Effective air-gap size with magnet thickness.

G Shear modulus of elasticity.

hm Magnet length.

Hg The air-gap magnetic field.

102



Hm The PM magnetic field.

Hc Magnet Coercive field strength.

iα, iβ Phase current in the stationary frame.

îα îβ Estimated current in the stationary reference frame.

ĩr Planetary gear ratio.

Ip,rated Rated phase current.

Iabc Stator current in the abc frame.

Idq0 Stator current in the dq frame.

idref Referenced d axis current.

iqref Referenced q axis current.

J Initial moment of the rotor.

Js Current density.

J ′ Converted inertia of the impact system.

k Spring constant.

kw The winding factor.

kc Carter’s coefficient.

kls The leakage flux coefficient.

ki Insulation coefficient.

kph Pitch factor for the hth harmonic.

k spring constant.
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Ks Motor saturation factor.

Kα Rotor structure factor.

Kφ Air-gap flux waveform factor.

Kh Coefficient of the hysteresis loss.

le Stator effective length including fringing due to ducts.

L Stator core length (not including air ducts and fringing).

Laa, Lbb, Lcc Stator self-inductances.

Lab, Lbc, Lac Stator-to stator mutual inductances.

Llf Leakage inductance of field winding.

L1 Inductance corresponding to the constant component

of the air-gap permeance

L2 Inductance component corresponding to the component of air-gap permeance

which varies with rotor angle.

Ls The stator phase inductance.

Lim Impact stroke length.

m Shock block quality.

m1, m2 One of the two different steel tubes quality.

m3 Two fan-shape claws quality.

MF Resistance torque of the spring to the mandrel.

n1, n2, n3 Speed of sun gear, ring, and plant gear.
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N̂ The effective number of series turns per phase.

Ns The number of stator slots.

Nc The number of turns per coil.

Na The number of series turns per phase.

Np Number of poles.

N1, N2 Total numbers and active numbers of pressure spring winding.

Pr Required output power.

Pmecg Mechanical power.

Pc Permeance coefficient.

Pcopper Copper loss.

Ph Hysteresis loss.

Pe Eddy-current loss.

Pc The total core loss.

q The number of the winding groups per pole.

ra The inner radius of the rotor.

rs Ratio of slot width and slot pitch.

rg The radius of the actual air-gap.

ris The total length of inner radius, magnet thickness and effective air-gap size

without magnet thickness.

ro Ball to spindle center distance.
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Rs The stator phase resistance.

Rm Permanent magnet reluctance per pole.

Rg Air-gap reluctance per pole.

Rml Reluctances of the magnet end flux leakage.

Rmm Reluctances of the magnet to magnet flux leakage.

Rσ Magnet end flux leakage reluctance.

Rsy Reluctances of stator yoke.

Rst Reluctances of stator tooth.

Rg Reluctances of air-gap.

Rrya Reluctances of rotor yoke above the magnet.

Rryb Reluctances of rotor yoke below the magnet.

Rz Total reluctance of air-gap.

Rmo Magnet reluctances.

R0 Sum of magnet end flux leakage reluctances and magnet reluctance.

R̂s The stator estimated phase resistance in the stationary reference frame.

Soff Slot offsets to other winding phases.

Sc Nominal coil span in slots.

S A stator quantity to be transformed (current, voltage, or flux).

S1, S2 Minimum and maximum amount of elastic deformation.

tlam lamination thickness.
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tb Time of tighten a bolt.

Tm Related mechanical torque.

TL Load torque.

Ta, Tb, Tc Dwell time.

uα, uβ Phase voltage in the stationary frame.

VΦ Phase voltage.

VΦ,rated Rated phase voltage.

Vabc Stator winding voltage in the abc frame.

Vdq0 Stator winding voltage in the dq frame.

z1 Tooth numbers of sun gear.

z3 Tooth numbers of ring.

αp Pole arc coefficient.

αm Working point of permanent magnet.

Γ̇ The stability condition function.

δ Torque angle.

η Efficiency of energy transmission.

η̂ Average theory impact efficiency.

θ Power angle.

θa Phase A reference angle.
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θslot(k) The relative electrical angle(expressed in the range of −180 ◦ to 180 ◦

of the kth slot

θcoil(k) The relative electrical angle of in slot of the kth coil

θm Rotor electrical angle.

θme Poles/2 times the rotor electrical angle.

θ̃m Position signal obtained through observer without phase delay.

λabc The current flux-linkage in the abc frame.

λdq0 The current flux-linkage in the dq frame.

λPMabc The permanent magnet flux-linkage in the abc frame.

λdqabc The permanent magnet flux-linkage in the dq frame.

λδ Main magnetic permeability.

µ0 Permeability of air.

µr Relative permeability.

ρcopper The resistivity of the copper.

ρPM Magnet electrical angle.

ρm The mass density.

σ The conductivity.

τ1 Polar distance.

τp Pole pitch.

τs Slot pitch.
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Φcore Air-gap flux.

Φg,pk The peak flux of air-gap.

Φtooth One stator tooth flux.

Φσ Total flux leakage.

Φml Magnet end flux leakage.

Φmm Magnet to magnet flux leakage.

ξδ Per-unit value of the main magnetic permeability.

ψf Flux linkage of the Permanetn magnet synchronous motor (PMSM).

$0 Cooling coefficient.

ϕs Slot pitch.

ω The rotor rotational speed.

ωr Electrical angular velocity of the rotor.

ω0 Absolute angular velocity of the shock block.

ωt Average angular velocity of the mandrel.

ωa Additional angular velocity of the shock block.

ω̃r Error of motor angular velocity.
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