691 research outputs found

    Scene verification using an imaging model in 3-D computer vision

    Get PDF

    Interactive raytraced caustics

    Get PDF
    technical reportIn computer graphics, bright patterns of light focused onto matte surfaces are called ?caustics?. We present a method for rendering dynamic scenes with moving caustics at interactive rates. This technique requires some simplifying assumptions about caustic behavior allowing us to consider it a local spatial property which we sample in a pre-processing stage. Storing the caustic locally limits caustic rendering to a simple lookup. We examine a number of ways to represent this data, allowing us to trade between accuracy, storage, run time, and precomputation time

    Efficient representations of large radiosity matrices

    Get PDF
    The radiosity equation can be expressed as a linear system, where light interactions between patches of the scene are considered. Its resolution has been one of the main subjects in computer graphics, which has lead to the development of methods focused on different goals. For instance, in inverse lighting problems, it is convenient to solve the radiosity equation thousands of times for static geometries. Also, this calculation needs to consider many (or infinite) light bounces to achieve accurate global illumination results. Several methods have been developed to solve the linear system by finding approximations or other representations of the radiosity matrix, because the full storage of this matrix is memory demanding. Some examples are hierarchical radiosity, progressive refinement approaches, or wavelet radiosity. Even though these methods are memory efficient, they may become slow for many light bounces, due to their iterative nature. Recently, efficient methods have been developed for the direct resolution of the radiosity equation. In this case, the challenge is to reduce the memory requirements of the radiosity matrix, and its inverse. The main objective of this thesis is exploiting the properties of specific problems to reduce the memory requirements of the radiosity problem. Hereby, two types of problems are analyzed. The first problem is to solve radiosity for scenes with a high spatial coherence, such as it happens to some architectural models. The second involves scenes with a high occlusion factor between patches. For the high spatial coherence case, a novel and efficient error-bounded factorization method is presented. It is based on the use of multiple singular value decompositions along with a space filling curve, which allows to exploit spatial coherence. This technique accelerates the factorization of in-core matrices, and allows to work with out-of-core matrices passing only one time over them. In the experimental analysis, the presented method is applied to scenes up to 163K patches. After a precomputation stage, it is used to solve the radiosity equation for fixed geometries and infinite bounces, at interactive times. For the high occlusion problem, city models are used. In this case, the sparsity of the radiosity matrix is exploited. An approach for radiative exchange computation is proposed, where the inverse of the radiosity matrix is approximated. In this calculation, near-zero elements are removed, leading to a highly sparse result. This technique is applied to simulate daylight in urban environments composed by up to 140k patches.La ecuación de radiosidad tiene por objetivo el cálculo de la interacción de la luz con los elementos de la escena. Esta se puede expresar como un sistema lineal, cuya resolución ha derivado en el desarrollo de diversos métodos gráficos para satisfacer propósitos específicos. Por ejemplo, en problemas inversos de iluminación para geometrías estáticas, se debe resolver la ecuación de radiosidad miles de veces. Además, este cálculo debe considerar muchos (infinitos) rebotes de luz, si se quieren obtener resultados precisos de iluminación global. Entre los métodos desarrollados, se destacan aquellos que generan aproximaciones u otras representaciones de la matriz de radiosidad, debido a que su almacenamiento requiere grandes cantidades de memoria. Algunos ejemplos de estas técnicas son la radiosidad jerárquica, el refinamiento progresivo y la radiosidad basada en wavelets. Si bien estos métodos son eficientes en cuanto a memoria, pueden ser lentos cuando se requiere el cálculo de muchos rebotes de luz, debido a su naturaleza iterativa. Recientemente se han desarrollado métodos eficientes para la resolución directa de la ecuación de radiosidad, basados en el pre-cómputo de la inversa de la matriz de radiosidad. En estos casos, el desafío consiste en reducir los requerimientos de memoria y tiempo de ejecución para el cálculo de la matriz y de su inversa. El principal objetivo de la tesis consiste en explotar propiedades específicas de ciertos problemas de iluminación para reducir los requerimientos de memoria de la ecuación de radiosidad. En este contexto, se analizan dos casos diferentes. El primero consiste en hallar la radiosidad para escenas con alta coherencia espacial, tal como ocurre en algunos modelos arquitectónicos. El segundo involucra escenas con un elevado factor de oclusión entre parches. Para el caso de alta coherencia espacial, se presenta un nuevo método de factorización de matrices que es computacionalmente eficiente y que genera aproximaciones cuyo error es configurable. Está basado en el uso de múltiples descomposiciones en valores singulares (SVD) junto a una curva de recubrimiento espacial, lo que permite explotar la coherencia espacial. Esta técnica acelera la factorización de matrices que entran en memoria, y permite trabajar con matrices que no entran en memoria, recorriéndolas una única vez. En el análisis experimental, el método presentado es aplicado a escenas de hasta 163 mil parches. Luego de una etapa de precómputo, se logra resolver la ecuación de radiosidad en tiempos interactivos, para geométricas estáticas e infinitos rebotes. Para el problema de alta oclusión, se utilizan modelos de ciudades. En este caso, se aprovecha la baja densidad de la matriz de radiosidad, y se propone una técnica para el cálculo aproximado de su inversa. En este cálculo, los elementos cercanos a cero son eliminados. La técnica es aplicada a la simulación de la luz natural en ambientes urbanos compuestos por hasta 140 mil parches

    GPU-Based Global Illumination Using Lightcuts

    Get PDF
    Global Illumination aims to generate high quality images. But due to its highrequirements, it is usually quite slow. Research documented in this thesis wasintended to offer a hardware and software combined acceleration solution toglobal illumination. The GPU (using CUDA) was the hardware part of the wholemethod that applied parallelism to increase performance; the “Lightcuts”algorithm proposed by Walter (2005) at SIGGRAPH 2005 acted as the softwaremethod. As the results demonstrated in this thesis, this combined method offersa satisfactory performance boost effect for relatively complex scenes

    Efficient From-Point Visibility for Global Illumination in Virtual Scenes with Participating Media

    Get PDF
    Sichtbarkeitsbestimmung ist einer der fundamentalen Bausteine fotorealistischer Bildsynthese. Da die Berechnung der Sichtbarkeit allerdings äußerst kostspielig zu berechnen ist, wird nahezu die gesamte Berechnungszeit darauf verwendet. In dieser Arbeit stellen wir neue Methoden zur Speicherung, Berechnung und Approximation von Sichtbarkeit in Szenen mit streuenden Medien vor, die die Berechnung erheblich beschleunigen, dabei trotzdem qualitativ hochwertige und artefaktfreie Ergebnisse liefern

    A physiological Plant Growth Simulation Engine Based on Accurate Radiant Energy Transfer

    Get PDF
    We present a new model for plant growth simulation, taking into account the eco-physiological processes driving plant development with unprecedented fidelity. The growth model, based on a physiological analysis, essentially simulates the internal function of the plant, and has been validated against measured biological data with excellent results. We show how to account for the influence of light through photosynthesis, and thereby incorporate the effects of a given plant's immediate environment on its architecture, shape and size. Since biological matter is controlled by water transpiration and received radiant enery, the model requires efficient and accurate simulation of radiant energy exchanges. We describe a complete lighting simulation system tailored for the difficult case of plants, by adapting state-of-the-art techniques such as hierarchical instanciation for radiosity and general BRDF modeling. Our results show that (a) our lighting simulation system efficiently provides the required information at the desired level of accuracy, and (b) the plant growth model is extremely well calibrated against real plants and (c) the combined system can simulate many interesting growth situations with direct feedback from the environment on the plant's characteristics. Applications range from landscape simulation to agronomical and agricultural studies, and to the design of virtual plants responding to their environment

    Importance driven environment map sampling

    Get PDF
    In this paper we present an automatic and efficient method for supporting Image Based Lighting (IBL) for bidirectional methods which improves both the sampling of the environment, and the detection and sampling of important regions of the scene, such as windows and doors. These often have a small area proportional to that of the entire scene, so paths which pass through them are generated with a low probability. The method proposed in this paper improves this by taking into account view importance, and modifies the lighting distribution to use light transport information. This also automatically constructs a sampling distribution in locations which are relevant to the camera position, thereby improving sampling. Results are presented when our method is applied to bidirectional rendering techniques, in particular we show results for Bidirectional Path Tracing, Metropolis Light Transport and Progressive Photon Mapping. Efficiency results demonstrate speed up of orders of magnitude (depending on the rendering method used), when compared to other methods

    Parallel hierarchical global illumination

    Get PDF
    Solving the global illumination problem is equivalent to determining the intensity of every wavelength of light in all directions at every point in a given scene. The complexity of the problem has led researchers to use approximation methods for solving the problem on serial computers. Rather than using an approximation method, such as backward ray tracing or radiosity, we have chosen to solve the Rendering Equation by direct simulation of light transport from the light sources. This paper presents an algorithm that solves the Rendering Equation to any desired accuracy, and can be run in parallel on distributed memory or shared memory computer systems with excellent scaling properties. It appears superior in both speed and physical correctness to recent published methods involving bidirectional ray tracing or hybrid treatments of diffuse and specular surfaces. Like progressive radiosity methods, it dynamically refines the geometry decomposition where required, but does so without the excessive storage requirements for ray histories. The algorithm, called Photon, produces a scene which converges to the global illumination solution. This amounts to a huge task for a 1997-vintage serial computer, but using the power of a parallel supercomputer significantly reduces the time required to generate a solution. Currently, Photon can be run on most parallel environments from a shared memory multiprocessor to a parallel supercomputer, as well as on clusters of heterogeneous workstations

    Progressive refinement rendering of implicit surfaces

    Get PDF
    The visualisation of implicit surfaces can be an inefficient task when such surfaces are complex and highly detailed. Visualising a surface by first converting it to a polygon mesh may lead to an excessive polygon count. Visualising a surface by direct ray casting is often a slow procedure. In this paper we present a progressive refinement renderer for implicit surfaces that are Lipschitz continuous. The renderer first displays a low resolution estimate of what the final image is going to be and, as the computation progresses, increases the quality of this estimate at an interactive frame rate. This renderer provides a quick previewing facility that significantly reduces the design cycle of a new and complex implicit surface. The renderer is also capable of completing an image faster than a conventional implicit surface rendering algorithm based on ray casting
    corecore