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Chapter 1 

Introduetion 

1.1 3-D computer vision 

Thre~dimensional (3-D) computer vision is achallenging problem, and a field 
of intense research during the last 30 years. Raralick and Shapiro [33] specified 
computer vision as follows: 

Computer vision, image understanding, or scene analysis is that 
combination of image processing, pattem recognition, and artificial 
intelligence technologies which focusses on the computer analysis of 
one or more images, taken with a single/multiband sensor, ortaken 
in a time sequence. The analysis recognises, locates the position and 
orientation, and provides sufficiently detailed symbolic description 
or recognition of those imaged objects deemed to be of interest in 
the thre~dimensional environment. 

The essential problem of the perception of 3-D scenes using 2-D images is the 
loss of one dimension by imaging process, and the resulting many-to-one map
ping between the scene and the image. The subject of computer vision is the 
investigation of clues leading to the recovery of the missing information, as 
well as the development of the appropriate models, techniques, and data repre
sentations. Despite the progress in research and a huge increase of computers 
performance, the problem of the computer vision of generic scenes has not yet 
been solved. On the other hand, a number of efficient computer vision systems 
exists for a specific class of scenes, or a field of applications, such as 3-D MO
SAIC (Herman 1986 [34]), SCERPO (Lowe 1987, [55]), and BONSAI (Flynn 
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and Jain, 1991, [17]). These systems are applîcable for man-made scenes, like 
urban areas, indoor and robotic scenes etc. ACRONYM (Brooks 1981, [8]) is an 
example of a system capable of understanding generic scenes. The performance 
of ACRONYM decreases considerably in the presence of noise and artifacts, 
which can not be avoided in .real images. 

By comparison, the generic 3-D vision problem is routinely solved by human 
beings and animals. This is proved also by the fact, that humans are able to 
interpret 3-D scenes correctly from 2-D photographs of the scenes. Anyhow, 
the ability to recognise some scenes depends on the cultural context of humans 
subjected to the interpretation task. Even human beings require training and 
experience to interpret 2-D images correctly. · 

A typical set-up for 3-D computer vision is depicted in figure 1.1. The scene 

Lighting 

Camera 

Acquired 
image Computer 

Vision 
System 

Figure 1.1: A computer vision set-up. 

3-0 scene 
description 

is a part of the real world observed by a camera. The image is a projection 
of the 3-D scene onto a two-dimensional (2-D) image plane, e.g. onto a surface 
of an imaging sensor inside a camera. The information contained in the image 
is processed by a computer vision system and yields a 3-D description of the 
sensed scene. A more precise definition of notions encountered in the computer 
vision set-up is given in section 1.3. 

A number of clues can be employed to reeover the missing third dimension. The 
most salient ones are summarized below: 

Model-based tecbniques. When information about the dimensions of an ob
ject in the scene is available, the position of the object ( the location and 
orientation with respect to a camera) can be derived by matching the 
3-D object model to the 2-D image. This is possible even if some of the 
dimensions are not known and the model is parametrical (55, 56, 28, 30]. 
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The prerequisite for the application of the object model is that the object 
recognition bas already been solved. 

Stereo vision. Two (or more) images of the scene are acquired from different 
view points. In the images, pairs of points can be found that are the 
projectionsof the samepoint in the 3-D scene. This is called a correspon
dence problem. Once this problem has been solved it is not difficult to 
compute the depth of the projected scene points by triangulation. The 
most critica! part of stereo vision is the correspondence problem. 

Shape from shading. Variations of the image brightness can be related to 
variations of the orientation of the viewed surface, while constant surface 
properties and homogeneaus lighting are usually assumed. Intuitively, 
the brighter element of the investigated surface is tilted more toward the 
light souree than the darker one. Under certain conditions the shape of 
the surface can be reeavered from a single image of the surface, which is 
known as shape from shading [36, 39, 37). 

Structure from motion. The essential idea is similar to that of stereo vision. 
With a moving camera a number of images of the scene from different view
points can be acquired and processed [2, 35, 62). The spatial-temporal 
context in the image sequence can be employed for the solution of the 
correspondence problem. In addition, other quantities computed from 
the image series, for instanee the optical flow [65, 40], can be employed. 

Other clues. Geometrical constraints ean be employed to compute the 3-D 
coordinates of scene points [73, 20]. These constraints are often combined 
with model-based teehniques. The shape of objectscan be reeavered from 
the texture of the surfaces by shape from texture [3]. The shades cast by 
objects can be employed to loeate objects and determine their heights in 
aerial photographs. By photometric stereo, the shape of observed objects 
can be determined by similar techniques as used by shape from shading 
from multiple images obtained under varying lighting conditions from the 
same viewpoint. An illumination by a light pattern, structured light, can 
be used to obtain the depth of viewed points by triangulation. The geo
metrical interpretation of lines of a linedrawing can be found by artificial 
intelligence techniques, like Waltz filtering [75]. 

1.2 Motivation for the new approach 

As stated earlier, computer vision is an ill-posed problem due to the loss of 
depth information during the imaging process, resulting in many-to-one map
ping between the 3-D scene and the 2-D image. On the other hand, a huge 
amount of 'redundant' information is present in the acquired images, although, 
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only a fraction of this information is utilised for an inference by most computer 
vision algorithms. In model-based vision and feature-based stereo vision, only 
salient features, like detected edges and segmented regions that have been ex
tracted from the image, are matebed with the model features. One good reason 
why only these features are employed is that they are invariant to changes of 
the lighting conditions, the object surface quality, and other factors. Another 
reason is that data reduètion is achieved by the extraction of features from an 
image, and consequently impraves tractability of the problem by a computer. 

To better exploit the data contained in the acquired camera image, and to use 
the information carried by each picture element of the digital image, we must 
have a model of how the value of the picture element is assigned. Shape from 
shading and photometric stereo use such a model, a refiectance map, which 
under a given illumination specifies the relation between the orientation of a 
surface, and the projected image brightness. However, the reftectance map is 
only valid, and shape from shading or photometric stereo only lead to correct 
results, under the following conditions: 

• The reconstructed surface is uniformly lit, which in practice means that 
the light souree is far from the surface. The surface can not be recon
structed at places in a shadow (possibly cast by the surface itself). 

• A parallel projection onto the image plane is assumed. Central projection 
may be approximated by parallel projection, when the surface is suffi
ciently far from the camera, when compared with the distance between 
optica! centre and the image plane. 

• Often, a diffuse reftection (Lambertian reftection) of light on the recon
structed surface is assumed (see section 2.2.3). This excludes the recon
struction of glossy surfaces. 

Under these conditions, the brightness of the surface projected onto the image 
plane is proportional to the term 

(1.1) 

where Io is the "intensity" of the light source, and ()i is the angle between the 
surface normal and the incident direction of the light (see figure 1.2). The 
conditions given above are rarely simultaneously satisfied in real scenes. Actu
ally, the surface is not only illuminated bya light souree (or light sources), but 
also indirectly by the other surfaces in the environment. This is called mutual 
illumination. Experiments showing the effects of mutual illumination, and their 
consequences for computer vision algorithms have been reported by Forsyth and 
Zisserman [18, 19]. 
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Light ""-I I lo 
souree -IC(:: 

' ' 91 ' n ' 

C2eplane 
Figure 1.2: Fora Lambertian surface and a single distant light source, an image 

brightness is proportional to Io cos ei. 

Within the computer grapbics community, in an effort to achieve photorealistic 
synthetic imagery, physically valid and computationally traetabie models of the 
surface reflection, scene illumination and image formation processes have been 
developed. Given an appropriate scene description, a description of scene light
ing, and a description of camera position, orientation and intrinsic properties, a 
synthetic image of the scene can be computed. We will call the algorithm used 
for the computation of the synthetic image a model of the imaging process, or 
an imaging model. The formula (1.1) for computation of an image brightness 
can be regarcled as the imaging model that provides a coarse approximation to 
an actual imaging process. It takes into account only a single interaction of the 
projected surface with the light source. In general, an imaging model of a higher 
complexity, i.e. a model that takes into account more interactions, provides a 
better approximation to the actual imaging process. Thus accuracy is paid for 
by computation time. 

In this thesis we investigate how to apply the concept of an imaging model to 
improve the performance of present computer vision algorithms, and make steps 
toward a new constructive computer vision algorithm. 

1.2.1 Verification of scene descriptions 

Consider a situation, when an image of the 3-D scene is acquired by a camera 
( or more cameras), and a computer vision system, using some of the clues men
tioned earlier, infers a description of the scene ( see figure 1.1). Th is is a scenario 
of many computer vision applications in robotics and production automation, 
navigation and exploration of dangerous and/or remote environments, design 
automation, monitoring, and elsewhere. Due to the ill-posedness of the vision 
problem, limitations of partienlar techniques, influence of random disturbances 
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and other factors, the resulting scene description is prone to errors. Still, the 
computer vision system has the ability to predicta (possibly erroneous) descrip
tion of the scene observed by a camera. It .is a predictive system. 

A computational model of the imaging process, while being too complex to 
be employed for the inference, can be used for the verification of the scene 
description obtained by the predictive computer vision system. In this thesis 
we will discuss aspects of the 3-D scene description verification using the model 
of the imaging process-the imaging model. The essential idea is elucidated in 
figure 1.3: 

Scene 

lmaging 
system 

(camera) Acquired 
image Computer 

vision system 

Synthetic r---- ········· --

ifT1~~ lmaging 1 

+ model Ir-.,.,.__-~ 

Differencet···································--, 
• image . · 
·-- --- - Evaluat1on :-------+---;=-

····································--

Verification system 

Figure 1.3: Diagram of the verification process. 

Scene 
description 

Decision 

The scene description which has been generated by a computer vision system 
is used as an input of the imaging model, and a synthetic image of the scene is 
generated. This synthetic image is compared with the actually acquired camera 
image (or images), and the difference between the images is evaluated. Based 
on the difference a decision is made about the correctness of the scene descrip
tion. In figure 1.4 examples of images are shown, an actual, a synthetic and 
a difference image, which can be obtained by such a system. The differences 
between the acquired camera image and the synthetic image have different rea
sans: incorrect scene description, small inaccuracies, inaccuracy of the imaging 
model, noise, etc. The decision about the correctness of the scene description 
created by the computer vision system is going to be based on the difference 
image. Moreover, the location of in consistendes between the images becomes 
visible. 
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(a) 

(b) 

(c) 

Figure 1.4: (a) An actual image acquired by a camera, (b) a synthetic image 
generated from a scene description using an imaging model, (c) 
the difference between images (a) and (b). In the difference image 
white colour represents no difference in intensities. The differences 
resulting in dark regions in the image (c) are caused by an incorrect 
scene description (a missing object, as wellas small inaccuracies), 
and by an inaccuracy of the imaging model. 
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The suggested verification scheme needs some refinement for the following rea
sous: 

• The scene description obtained from the computer vision system might 
possibly miss a part of information necessary for the modelling of the 
imaging process and the generation of the synthetic image. Particularly, 
the reflectance properties of object surfaces are often not available. Also 
the lighting conditions might be partly unknown, since they depend on 
the position of the sun and weather conditions. In an indoor environment 
this might be due to changes of a part of the illumination coming via 
windows, depending on the outside conditions. 

• The scene description usually does not contain the description of all details 
in the scene. 

• The imaging model is not perfect. It is only an approximation of the 
actual scene illumination and imaging processes. 

• The camera image is influenced by random disturbances (noise). 

Scene 

lmaging 
system 

(camera) Acquired 
image 

Difference 
image 

Computer 
vision system 

lmaging 
model 

Parameter 
estimation 

Verification system 

Scene 
description 

Description 
of camera, 

lighting, 
andthe 

known part 
of the scene. 

Decision 

Figure 1.5: Refined diagram of the verification process. 

The verification procedure must include a mechanism for the restoration of 
unknown surface reflectance properties and of the unknown part of the iliumi
nation from the available images. This is done in the proposed diagram by the 
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block entitled "Parameter estimation". The difference between actual and syn
thetically generated image is tested by statistica! techniques, to reveal whether 
the difference is a consequence of random influences, or whether it is due to an 
incorrect description of the scene. This is done by the block "Statistica! test". 

A considerable part of the thesis is concerned with the development of the 
proposed verification scheme and an assessment of its performance. An imple
mentation of the scene description verification using the imaging model should 
result in an improved reliability of the complete system (the combination of the 
predictive computer vision system with scene description verification). 

1.2.2 An iterative computer vision algorithm 

Same currently existing techniques can be adopted to exploit an accurate model 
of the imaging process. Particulary, the result of the verification procedure and 
the irtformation obtained during the verification can he used hy some algorithms 
for the impravement of the existing scene description. The application of the 
verification procedure followed, in the case of detected scene description errors, 
hy the use of such a technique, results in an iterative impravement of the avail
able scene description. The iterative impravement of the scene description is 
also discussed in the thesis. 

1.3 Definitions of terminology 

Scene is a part of the real world observed hy a camera. 

Scene description is an abstract description of the scene, consisting of appro
priate descriptions of ohjects contained in the scene. A scene description 
can he generated hy a computer vision system. Alternatively, it might he 
obtained by conversion from a CAD system, from a database, or created 
manually. 

Image is a recorded projection of the 3-D scene onto a 2-D image plane. Usu
ally it is obtained by a central projection via the optica! centre of the 
system (see figure 1.6). Sometimes, parallel projection along the optica! 
axis of the system is considered. Then we will explicitly refer to parallel 
projection. An image can be described hy a function I of two coordinates 
u and v defined on a rectangular region of the image plane, I( u, v). The 
value I is either a scalar (e.g. an image brightness of a grey scale image), 
or a vector for multiband images (e.g. colour images). 
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(x,y,z) Image plane 

Optica! axis ---*;:::=--
Optical centre--. --. 

Picture element 

Figure 1.6: Central projection of the 3-D scene onto the image plane. 

Picture element, PEL. The image can be partitioned by a rectangular grid 
into small rectangular elements of the same size. These elements are called 
picture elements, or PELs. 

Digital image is a discretized and quantized version of the image I( u, v). It 
may be thought as a two-dimensional array (matrix) Ii,j, where each value 
Ii,j is obtained from a continuons image I (u, v) by sampling in the cent re 
of the respective PEL, or by an integration over the PEL. We will often 
refer to a digital image as just an image, where the difference is obvious 
from the context, or is not significant for a problem under discussion. 

Computer vision system is a system by which the analysis of one or more 
images acquired with an imaging sensor (a camera) creates a scene de
scription. 

Imaging model is the model of processes of light propagation, interaction of 
light with surfaces, image formation and other processes that determine 
an image projected onto an image plane, given the scene and lighting 
description. 

Synthetic image is an image generated using an imaging model. 

1.4 Outline of the thesis 

In chapter 2, the computational model of the imaging process is developed. The 
model originates from geometrical opties and from computer grapbics research, 
and consists of three components: a local interaction of light with surfaces 
(section 2.2), an image formation model (section 2.3), and a global illumina
tion computation (sections 2.4-2.7). A summary of an imaging model using 



stochastic ray tracing, as implemented and used in the experiments reported in 
the thesis, is given in Appendix A. 

Chapter 3 is devoted to the estimation of missing scene description parameters, 
from the acquired images and the geometrical description of the scene. The 
unknown parameters include the parameters of the reflectance model of surfaces 
of objects in the scene and also the intensity of the light sources. 

The verification of the consistency between the acquired camera images and the 
hypothetic scene description is discussed in chapter 4. The verification is based 
on the results of decision theory. 

The methods of improving an incorrect scene description are discussed in chap
ter 5. The correction of the scene depends on the kind of discrepancy detected. 
The use of shape from shading and photometric stereo are discnssed in more 
detail. 

Finally, concluding remarks are given in chapter 6. The original contributions of 
the thesis are concentrated in chapters 3, 4, and 5. The use of an illumination 
model taking into account global light interactions is novel, and enables the 
computer vision algorithms to exploit the information contained in the image 
brightness. 



INTRODUCTION 



Chapter 2 

Computational model of 
the imaging process 

An image of a scene projected onto a camera image plane is the result of an 
interaction of light with objectsin the scene and with the camera. Light emitted 
by light sourees is reflected, refracted and scattered by objects in the scene and 
a part of the light passing through the lens and falling onto the image plane 
creates an image. This image is converted by animaging sensor into an electric 
signal and processed further by the computer vision system. 

In this chapter a computational model of the imaging process based on geo
metrical opties is developed. The topic is treated in a bottorn-up way. First, 
in section 2.1 the basic notions and principles are described. In section 2.2 the 
local interactions of light with object surfaces are treated, in section 2.3 the 
model of the image formation on an image plane is given, and in sections 2.4 
through 2.7 methods for the computation of global illumination are discussed. 
Finally, we propose a computational model of the imaging process. The model 
is applicable for verification purposes. 

2.1 Basic principles and notions 

Light is an electromagnetic phenomenon. In physical opties the processes re
lated to the propagation of light are analyzed using the electromagnetic wave 
theory. In situations where the wave length of light is very small when compared 
with the dimensions of illuminated objects, the electromagnetic character of the 
light can he ignored and geometrical opties is applicable. The basic observation 

13 
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of geometrical opties is that in a homogeneaus transparent medium light prop
agates along straight lines: rays. Another observation is that light rays having 
different directions and intersecting each other have no influence on each other, 
i.e. they do not interfere. When light ray is incident on a boundary of two 
media, one ray is reflected from the boundary, while another ray penetrates 
through the boundary and is refracted (figure 2.1). The augles of incident, 

incident 
ray 

reflected 
ray 

n1 boundary 
~~~--~~~~-

n2 

refracted 
ray 

Figure 2.1: Refiection and refraction of light on a boundary of two media. 

reflected and refracted rays a, a' and a" satisfy 

a=a', 
• • 11 

n1 sma = n2 s1na , 

(2.1) 

(2.2) 

where n 1 and n2 are the refraction indices of the two media. The relative 
amounts of reflected and refracted light are determined by the Fresnel coe:fficient 1 

F, 

fora-::/:- O,a"-::/:- 0, (2.3) 

and 

F = (n2
- n 1) 

2 

for a= a" = 0. (2.4) 
nz +n1 

While F is the fraction of incident light that is reflected, 1 - F is the fraction 
of incident light that is refracted. 

Two photometric quantities are introduced to measure the amount of light in
cident on a surface and radiated by the surface. 

Irradiance refers to the amount of light falling on a surface. It is the power 
of radiant energy incident on a surface per unit area and is measured in 
[W·m-2]. 

1 The Fresnel coefficient depends on the light polarization. The one given above is for 
non-polarized light. 
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Radiance refers to the amount of light leaving a surface in a certain direction. 
It is the power of radiated or reflected energy per unit solid angle in 
the specified direction, per unit foreshortened2 surface area. Radiance is 
measured in [W·m-2 -sr-1]. 

The necessity for the introduetion of radiance sterns from the fact, that a surface 
can radiate into a whole hemisphere of possible directions with different amounts 
of energy in different directions. 

2.2 Interaction of light with a rough surface 

2.2.1 Light reflection geometry and the bidirectional re
flectance distribution function 

Consider an elementary surface patch, and a light reileetion geometry depicted 
in figure 2.2. Let n be a normal vector of the surface patch, lbe a unit length 

Reflected light 

Lr 

I 

I 

Surface normal 

I ___ _.: __ 

' 

Incident light 

' \ 

\ 

Surface patch 

Figure 2.2: Definition of angles and directions. 

vector in the direction toward a light source, and v be a unit length vector in the 
direction toward a viewer. Let us define vector h as a unit length vector that 
bisects the angle between veetors land v, i.e. h is given by h = (v+i)/IV+n. We 

2 Foreshortened surface area is the area of the surface projected in the specified direction, 
thus it is a product of the original surface area, and the eosine of the angle between the surface 
normal and the specified direction. 
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will refer to the directions pointed to by the veetors ~ v and h, as the directions 
~ vand h respectively. The direction of incident light lis specified by two angles, 
zenith fh and azimuth c/>;. Similarly, the direction of refl.ected light v is specified 
by the angles zenith Or and azimuth cf>r. The angle {3 between the normal n and 
the direction h is called the off-specular angle, since for the direction h identical 
with iï, i.e. for {3 = 0, the configuration is the geometry of a speenlar refl.ection 
on an ideal surface, as in figure 2.1. 

On a rough surface, one part of the incident light is absorbed by the surface, and 
another part is scattered into the whole hemisphere of directions above the sur
face. A unified way of specification of the reflectance, in terms of the refl.ection 
geometry; was introduced by Nicodemus [63]. The bidirectional refiectance Pbd 
of the surface is defined as the relationship between the irradiance dE; arriving 
from the direction 0;, c/>;, and the radiance dLr reflected in the direction On c!>r 

(2.5) 

Bidirectional refl.ectance is a function of four angles, Pbd ( 0;, {j.>;; Or, cf>r), or of the 
two directions, and is called the bidirectional refiectance distribution function 
(BRDF). It depends on physical, texture and finish properties of the surface. 
F\Jrthermore, it is a function of the wave length and polarization of incident 
light. However, we disregard the dependenee on the wavelengthand the polar
ization for the sake of simplicity. 

2.2.2 The total surface radiance 

The contribution of the light coming from the direction B;, c/>; to the radiance of 
light reflected in the direction Br, cf>r is 

dLr(Br.'I/Jr) = Pbd(O;,'I/J;;Bn'I/Jr) dE;(Bilcf>;) 

Pbd(B;, '1/J;; Br, '1/Jr) L;(O., c/>;) cosB; dw;, (2.6) 

where L;(Bh c/>;) is the radiance of another surface found in the direction B;, c/>; 
from the reflecting surface, dw; is an infinitely small solid angle of the hemisphere 
about direction 0;, c/>;, and the term cos B; accounts for the foreshortening of 
the refl.ecting surface as seen from direction B;, c/>;. Hence, the tótal radiance 
Lr emanating from the surface in the direction ()" cf>r can be computed as the 
integral of dLr over the entire hemisphere !1 of incident direction 0;, c/>;, plus the 
radiance Le emitted by the reflecting surface itself 

Lr(Bn4>r) = Le(Bn4>r) + J Pbd(Bi,c/>;;Bnc/>r)L;(8i,c/>i)cosB;dwi. (2.7) 
n 
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Obviously, only for light sourees is the term Le(-) not equal to zero. 

The knowledge of the BRDFs of surfaces is essential for the computation of 
the global scene illumination. The BRDF function values can he obtained by 
exhaustive measurements over the whole range of augles of incidence and re
flection. For several reasous the use of the BRDF is impractical. The starage 
of the BRDF requires a great amount of memory, depending on a chosen dis
cretization. A vailable measurements seldom cover the entire domain of the 
BRDF. Numerous reflectance models, approximations of the BRDF, have been 
developed to avoid the use of BRDF in computations. 

2.2.3 Lambertian reflectance model 

Anideal diffuse surface, or a Lambertian surface [49], reflects light unifórmly in 
all directions in the sense, that the Lambertian surface appears equally bright 
from all viewing directions3 . The mechanism that produces Lambertian re
flection is internal scattering. Light rays penetrate the surface and encounter 
microscopie inhomogeneities inside the medium. They are repeatedly reflected 
and refracted inside the medium, and a part of them leaves the medium in an 
arbitrary direction, which results in a uniform radiance óf the surface. The 
BRDF of the Lambertian surface is constant, Pb cl ( B;, tj>;; B., tPr) = kdif· 

Often, the Lambettian surface is characterized by a surface albedo K,, defîned 
as the fraction of energy incident on the surface that is reflected. The relation 
between kdif and K, can he obtained from an energy balance. Assuming the 
irradiance of the surface (illuminated from an arbitrary direction) is E;, the 
surface radiance is Lr kd;cE;. An integration of reflected radiance over the 
entire hemisphere should lead to the value K,E;, 

271" 7r /2 

K,E; ~ J kd;cE;cosBrdwr kd;cE; J J cos(JrsinfJrdBrdtPr = kd;cE;7r. (2.8) 

n o o 

From (2.8) it follows that the bidirectional reflectance of the Lambertian surface 
is kdif = K,/7r. 

2.2.4 Torrance-Sparrow reflectance model 

A more realistic reflectance model has been introduced by Torrance and Spar
row [72]. The Torrance-Sparrow reflectance model has many times been used 

3 This does not imply, that equal amounts of radiant energy a.re reflected into all directions. 
The amount of energy reflected by the Lambertian surface is proportiona.l to the eosine of the 
angle between the reflected ray direction and the surface normal cos Or, so that the ra.diance 
is constant for all directions. 
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in computer graphics [6], [11], and recently also in computer vision [59] due to 
its acceptable complexity and a high degree of match with the measured data. 

It is assumed that the surface consists of small, randomly disposed, mirror-like 
facets, as it is illustrated in figure 2.3. The distribution of surface normal 

Figure 2.3: Surface consisting of planar micro facets. ii is the normal of the 
macroscopie surface, and m is the normal of a micro facet. 

orientations of the micro facets is assumed to be known. 

Reilected light is composed of two components: a diffuse component produced 
by internat scattering of light under the surface, and a specular component 
caused by a specular reileetion from the mirror-like facets. The contribution to 
the reilected radiance dLr given by (2.6) can be written as the sum 

(2.9) 

where dLr,d(B.,c/Jr) and dLr,s(B.,cfJr) are respectively the diffuse and specular 
components of the surface radiance. 

The diffuse component can be described by a Lambertian reilectance model, 
he nee 

(2.10) 

The specular component of the radiance is reilected directly by the micro facets 
according to laws of geometrical opties, and depends on more factors. As the 
angles of the incident and the reilected ray must obey equation (2.1), only the 
micro facets with the orientation of surface normals identical to h (see figure 2.2) 
reileet light from the direction f into the direction iJ. The orientation of micro 
facets obeys a probability distribution, which can be characterized by a density 
function D, w hich is for an anisotropic surface a function of a single variabie j3. 
Torrance and Sparrow have assumed a Gaussian distribution: 

{ 
log2 } -~ 

D(j]) = C exp - /3~ j32 = C 2 13
h, (2.11) 
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where parameter fJh is the value of the angle {3, for which the density of facets 
D({J) drops to 1/2 of the maximal value, and Cis a constant factor normalizing 
the density function so that it is a probability density function. The reflected 
radiance dLr,s ( ()., c/Jr) is proportional to the value of D({J) for the angle {3 deter
mined by the reflection geometry. 

Another factor affecting the intensity of specularly reflected light is the Fresnel 
coefficient F, given by (2.3) and (2.4), which is a function of refraction indices 
of the reflecting media, and the reflection geometry. 

Furthermore, the reflected radiance is affected by the effects called shadowing 
and masking. Shadowing and masking are illustrated in figure 2.4. Shadowing 

Figure 2.4: Shadowing and masking of surface micro facets. 

takes place when the incident ray is almost parallel with the rough surface. Then 
a considerable part of the microfacetsis in the shadow of other ones, reducing 
the reflectance which would he obtained by taking into account all micro facets 
with the normal orientation h. In a similar way, masking takes place when the 
reflected ray is almost parallel with the surface. Then, a considerable part of 
micro facets is not seen by an observer, as they are occluded by other facets. 
The reflectance is corrected for shadowing and masking effects by multiplication 
with a geometrical attenuation factor G, defined as 

G =min { 1, 2cos{JcosBr, 2cos{JcosBi} 
COS/ COS/ 

(2.12) 

where the angles fJ,/,()i and Br were defined in figure 2.2. For the derivation 
of the geometrical attenuation factor we refer to [72], or [6]. The factor has a 
value between zero and one, the value one is attained when neither shadowing, 
nor masking, takes place. 

The complete Torrance-Sparrow reflectance model is given by 

(2.13) 
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or, the BRDF of the surface is approximated by 

2-f3 2 /f3~ F(n) G 
Pbd = kdif + kspec (} (} , 

COS ïCOS r 
(2.14) 

where kdif is the coe:fficient of diffuse reilection, kspec is the coefficient of specular 
reilection, f3h is the tilt angle of micro facets, for which their density drops to 1/2 
of the maximal value, n is the index of refraction, F( n) is the Fresnel coefficient 
given by (2.3), G is the geometrical masking/shadowing factor given by (2.12), 
and Bi, Br and f3 were defined in figure 2.2. 

In practice, the values of trigonometrie functions in (2.12)-(2.14) are computed 
asvectorinproducts: cos(}i = fi.~ cos(}r = fi·v, cosf3 = fi·h and COS')'= V·h = 

f. h. This computation is faster then the evaluation of trigonometrie functions. 
The Torrance-Sparrow model is specified by four parameters kdif, kspec, f3h and 
n. Once these parameters are specified, the bidirectional reilectance depends 
only on the reileetion geometry. 

2.2.5 Other refl.ectance models 

Some authors use a simplified Torrance-Sparrow reilectance model, where the 
Fresnel factor is approximated by a constant, which is then absorbed in the 
parameter kspec [59]. 

A number of reilectance models resulting in naturally looking synthetic images, 
but having nothing or little in common with the underlying light reileetion 
mechanisms, has been developed in computer graphics. These so-called black
box models are fast and simple and they were rarely confronted with measured 
data. According to Phong [64], the reilected radiance is computed by 

(2.15) 

where nsp is the so called specular power and the rest of the symbols is defined 
as in the Torrance-Sparrow model. The specular power nsp determines the 
width of the BRDF specular lobe. The higher n5p, the narrower the lobe is, and 
the reileetion looks more like the specular one. We avoid the use of black-box 
models for illumination computation because of their insufficient accuracy. 

Reilectance models based on physical opties use the electromagnetic wave the
ory and reilectance is obtained by solving Maxwell's equations using the bound
ary conditions imposed by the reilecting surface. A detailed treatment of the 
physical opties reilectance roodels can be found in Beckmann and Spizzochino 
[4]. Physical opties models are more complex, and therefore also less popular 
in visualization and computer vision. A recent comparison of the Torrance
Sparrow and Backmann-Spizzochino reilectance models can be found in [59]. 
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There seems to he no significant difference between these two roodels for visible 
light and usual surfaces, except in the case of almast specular surfaces with a 
very fine roughness. These are better described by a Backmann-Spizzochino 
model. 

2.3 Irradiance of the image plane 

Consicier a lens with diameterdat a distance f (the focal distance4 ) from the 
image plane (see figure 2.5). Furthermore, consider an object surface patch 
dO ·having a radiance L in the direction towards the lens. The patch dO is 
projected onto a picture element of area dA on the image plane. Let <p he the 
angle between the optica! axis of the lens, and the ray projecting the patch dO 
onto the image plane via the optica! centre of the lens. The foreshortened area 

Object surface 

Image plane 

Figure 2.5: Surface patch projected onto an image plane. 

dOt• of the patch dO when viewed from the lens is 

dOjs 
r COS<p 

( )

2 

dA -
1
- cos<p, 

and the solid angle dw subtended by the lens when viewed from patch dO is 

1rd2 1 
dw 4 COS<p r 2 . 

In both expressions above r denotes the distance from the lens to the patch dO, 
which cancels when computing the radiant power collected by the lens. The 
irradiance E of the picture element dA is the radiance L radiated by patch dO 
and collected by the lens with the diameter d, divided by the picture element 
area dA, 

E _ L dOfs dw _ L ~ (5!.) 2 
4 

- dA - 4 f cos <p. (2.16) 

4 The image plane is pla.ced at such dista.nce f from the optica! centre, that the projected 
image is in focus. For distant objects this distance is almost equal to the focal distance. 
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From equation (2.16) it follows that the image plane irradiation, and hence the 
imaging sensor output, is proportional to the radiance Lof the surface projected 
onto the image plane. Notice, that neither the orientation of the object surface 
patch dO, nor the distance r of the object surface from the lens, does affect 
the image irradiance. Therefore, the surface radiance is subjectively perceived 
as a 'brightness' of the surface, and it is meaningful to compute this quantity 
for scene objects. The consequence of the factor cos4 r.p is that equally bright 
objects appear darker, when they are projected outside the image plane centre. 
The acquired image can be corrected for this effect. 

2.4 Computation of the global illumination 

Let S be the union of all surfaces in the scene which contribute to the scene 
illumination. We will define a new quantity, the two-point transport intensity 
I ( x1 , x2 ), as the power of radiant energy passing from an infinitely small surface 
patch around point x2 E S to an infinitely small surface patch around point 
x 1 E S, per unit area of patch around x2 per unit area of pat eh around x1. The 
units of I are [W·m - 4]. By global illumination of the scene we mean a mapping 
I : S x S--+ R, which assigns toeach pair of scene points (x1 , x2 ) a value of the 
two-point transport intensity I(x1, x2) from point x2 to point x1. 

The domain ofintegration in equation (2.7) can be changed from the hemisphere 
f! above the surface patch, to the set S containing all surface patches in the 
scene. Furthermore, the integral in equation (2. 7) can be rewritten in terms of 
two-point transport intensities between scene points 

(2.17) 

where g(x1,x2) is a geometrie factor, E(x1,x2) is the two-point transport in
tensity emitted from x2 to x1, p( x 1, x2, x3) is related to the intensity of light 
scattered from the point x3 to the point x1 by the surface pat eh around x2, 
and dx 3 denotes an elementary surface pat eh around point x3 . The value of the 
geometrie factor g( x1, x2) depends on the distance r 12 of the points x1 and x2, 
and the mutual visibility of these two points. The value of g(x1 ,x2 ) is 1/rf2 

in the case when point x1 is visible from point x2 , i.e. there is no acelusion 
between x1 and x2 , and is zero in the case of an occlusion. 

The equation (2.17) was introduced by Kajiya [45], and is called the rendering 
equation. It simply states, that the transport intensity of light I(x1 , x2 ) from 
the point x2 to the point x1 is the sum of light emitted by the elementary surface 
pat eh around point x2 toward the point x1 , and the integral of the intensity of 
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light reflected by the patch around x2from point X3 to point x1, integrated over 
all points x 3 E S in the scene. 

The relations between the introduced quantities I, g and p, and the quantities 
defined in sections 2.1 and 2.2 can be easily derived. Consider two surface 
patches dx1 and dx2 around two points x1 and x2 respectively, as it is shown 
in figure 2.6. The solid angle subtended by dx1 when viewed from point x2 

dX2 

Figure 2. 6: Radiant energy transport between two surface patches. 

is dx1 cos(h/rr2 , and the area of patch dx2 projected into direction toward x1 

is dx2 cos 02. From definitions of radiance and two-point transport intensity it 
follows that 

cos () 1 cos 02 
I(x1,x2)dxtdx2=L 2 . dx1dx2, 

rl2 

hence the relation between radiance L and the transport intensity I is given by 

1 
I(xt,xz) = L 2 cos81 cosOz. 

T12 
(2.18) 

Similarly, p(x11 x2, x3 ) is related to bidirectional reflectance Pbd of the surface 
at point x2 (see figure 2.7). From (2.17) it can beseen that in the case of not 
occluded points x1 and x2, i.e. g(x1,x2) = 1/rî2 :j:. 0, p(x1,x2,x3) is given by 

dl(xt,X2) 
p( X1> X2, X3) = --:---,..:.."..::..:_..:;;;..:.....,-.,..--

g(xt,X2)J(x2,X3)dx3 

After substitution for J(x1, x2) and I(x2, x3) from (2.18), with the observation 
that the solid angle subtended by patch dx3 when viewed from point x2 is 
dw = (cos 03 dx3)jr~3 , and with the use of definition (2.5), we obtain the relation 
between p and the bidirectional reflectance Pbd 

(2.19) 

In the case that x1 and x2 are occluded and g( x 1 , x2) = 0, the value of 
p(x1,x2,x3) has no influence on J(x1,x2) in (2.17), thus it mayalso bede
fined by (2.19). 
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r23 

dX2 

Figure 2. 7: Scattering of radiant energy from point x3 to point x1 by patch dx2. 

2.4.1 Solution of the rendering equation 

The global illumination I : S x S f-+ R must obey the rendering equation (2.17). 
This follows the lines of geometrical opties, as the rays intersecting each other in 
space are regarcled to be independent while interactions occur only at surfaces. 
Equation (2.17) suggests the salution for I by recurrent substitution for I(x1, x2) 
(cf. Courant and Hilbert [12], pages 112-163), 

I(x1,x2) = g(x1,x2)~:(xl,x2) + 

+ g(x1,x2) fsp(xl,X2,X3)g(x2,X3)E(X2,X3)dx3 + 

+ g(x1, x2) Is p(x1, x2, x3) g(x2, x3) [Is p(x2, X3, x4) I(x3, x4) dx4] dx3 

= (2.20) 

If we denote the integral operator in (2.17) by M, the rendering equation can 
be rewritten as 

I=gE+gMI, 

and the solution by recurrent substitutions is 

I= gt: + gMgE + gMgMgE + (gM) 3gt: + · · ·. 

(2.21) 

(2.22) 

The series in (2.22) is known as a Neumann's series. It converges under the 
condition that the speetral norm of the operator gM is less than one. It turns 
out that this condition is met in our case and the series converges, which is also 
justified by a fact, that we are dealing with a model a physical phenomenon with 
an obvious solution, the global scene illumination. The physical interpretation 
of (2.22) is that the radiant energy transfer from point x 2 to point x1 is the 
sum of the direct term gE, the once scattered term gMg~:, the twice scattered 
term gMgMgE, etc. 
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A finite dimensional operator M can he obtained by partitioning the. scene S 
int0 a number of small patches siC s, i 1, • • • 1 n, SUCh that s = si, and 
Si n S1 = 0 for i f j. We make the approximation that for all pairs of patches 
(Si, Sj ), i, j = 1, ... , n, and for all pairs of points selected from these patches 
(xi,Xj), Xi E si and Xj E sj, the two-point transportintensity I(xi,Xj) is 
constant, and can he denoted as lij: 

for all Xi E si,Xj E sj. (2.23) 

Similarly, for all pairs of points (x., Xj), Xi E si and Xj E Sj, the emitted two
point transport intensity ~:(xi,x1 ) is approximated by a constant EiJ> and for all 
triples of points (xi, Xj, Xk), Xi E si, Xj E Sj and Xk E sk, the scattered light 
intensity p(xi,Xj>Xk) is approximated by a constant Pijk· 

We can select n points in the scene xi E Si, i 1, ... , n, so that from each 
patch one point is selected. The integral in the renderingequation (2.17) then 
turnsintoa summation over the patches si, i 1, ... 'n. 

n 

I(xi,Xj) = g(xi,Xj)E(Xi,Xj) + g(xi,Xj) L:p(xi,Xj,Xk)I(xj,Xk)ISkl, (2.24) 
k=l 

wherè I Ski denotes an area of the patch Sk. By using matrix algebra, the same 
might be written as 

l=GE+GMI, (2.25) 

where I and E are column veetors of the size n 2 and G, M are matrices of the 
size n2 x n2 , where nis a number of surface patches in the scene. From (2.25) 
we may write 

(1- GM)I =GE, 

where 1 is an identity matrix. Then we can write: 

1 = (ll GM)-1GE 

=GE+ GMGt: + GMGMGE + (GM) 3 Gt: + · · ·. 

(2.26) 

(2.27) 

(2.28) 

The Neumann series on the right hand side of (2.28) converges under the con
dition that the speetral norm of the matrix G M is less then 1. The matrix 
GM represents the attenuation of light intensity due to an interaction with a 
surface, since a part of the radiant energy is absorbed. 

Remark: It must he stressed, that (2.24)-(2.28) are only approximations of 
the infinite dimensional case, with the accuracy depending on the partitioning 
of the set S into patches Si. The equations (2.24)-(2.28) are satisfied only ap
proximately, due tothefact that the transport intensity I(xi, Xj) is not exactly 
equal toa constant lij for all xi E Si and Xj E Si· Also, p(xi,Xj,Xk) is not 
constant for all Xi E S,, Xj E Sj and Xk E Sk. 0 
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The fini te dimensional case is useful for the understanding of the problem. Due 
to the presence of an infinitely large number of interactions between the surface 
patches in an actual scene, the global illumination computation is a complex 
problem. Any computational framework can take into account only a finite 
number of them. 

There are essentially two different ways to compute the illumination. The first 
one is to evaluate some terms of the Neumann series on the right hand side 
of (2.22) or (2.28), as it is done by ray tracing techniques. The secoud possi
bility is to solve the linear system of equations (2.26) with respect to vector I. 
Basically this idea is exploited by the radiosity technique for the computation 
of illumination of diffuse environments. 

2.5 Ray-tracing 

Ray tracing has been proposed by Whitted [79] as a technique for a realistic 
rendering of synthetic images of three-dimensional scenes. 

The irradiance of a particular picture element (PEL) at the image plane is 
computed by tracing interactions in the scene significantly contributing to the 
illumination of the PEL. The interactions are evaluated starting from the image 
plane. From the PEL a primary ray is shot via the optica} centre of the lens 
to the scene (see figure 2.8). The first intersected object face is the one 
that is projected onto the PEL and determines its irradiance. The radiance of a 
surface patch S at the point of intersection in the direction towards the PEL (i.e. 
against the primary ray) is given by equation (2.7), and depends on the BRDF 
of the patch S and the radiance incident on this patch. Significant incidence 
directions are pursued by shooting rays .into these directions. Secondary rays 
are shot in the direction to all point light sourees illuminating the scenè. If 
there is no acelusion between point S and the light source, then the irradiance 
of S caused by the light souree and the resulting contribution reflected radiance 
are evaluated. 

Next to this, the so called recursive rays are shot in the directions of reflected 
and refracted rays (see also figure 2.1, the refracted ray is shot only into a 
transparent medium). Each recursive ray is treated as if it were a primary ray, 
so when it intersects some other object face, the radiance of this intersection 
is evaluated by shooting other secondary rays to the light sources, and other 
recursive rays, until a certain recursion level limit is reached. All these rays 
recursively contribute to the irradiance of the PEL where the first primary ray 
was shot from. 

The ray tracing as proposed by Whitted in [79] is an approximation of the 
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Figure 2.8: Ray-tracing technique. 

I~ Géo + GMoGf:o + GM1GMoGEo + · · ·+ (GM!)kGMoGf:o, 
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(2.29) 

where Mo is the approximation of the operator M by a sum over the light 
sources, M 1 is the approximation of the operator M by à sum over intersected 
patches in the reflected and refracted directions, Gis the geometrie factor which 
takes care of the proper casting of shadows, Eo is the intensity of light emitted 
by the point light sources, and k is the limit for the recursion level. 

Obviously, only two-point transport intensities with incidence points at the 
image plane have to be computed. Therefore, only certain paths of rows and 
columns of matrices MO, Ml and G have to be evaluated. This makes ray
tracing view dependent, and the entire computation has to be repeated when 
the view point is changed. 

The major drawback is that no directions other than reflected and refracted ones 
are taken into account when evaluating interactions. This makes ray tracing less 
suitable for a scene with diffuse surfaces where interreflections between object 
faces are significant. 
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2.6 Radiosity 

Radiosity is a technique introduced by Goral, Torrance, Greenberg and Bat
taile [22] that solves the energy balance equations for the surfaces of the scene. 
Object surfaces in the scene are divided into sufficiently small but still macro
scopie patches, so that the radiance in each single patch can be approxirnated 
by a constant value. A diffuse reflection of all surfaces is assurned with uniform 
radiance in all reflected directions. This allows to rednee the nurnber of energy 
balance equations frorn n2 ton, when cornpared with (2.26)5 . 

Consider two surface patches as Sj, S~c as shown in figure 2.9. The radiosity of a 

Figure 2.9: Radiosity. 

surface is the total energy leaving the surface per second. We obtain an identity 
between radiosities by integrating equation (2. 7) (p. 16) over the hernisphere of 
reflecting directions over the patch Sj: 

Lj J J cosBr dwrdSJ = J J (Lej + J PbdLi cos Bi dwi) cosBr dwr dSj. 
s1 n s1 n n 

Frorn that we obtain 

1rSJLj =7rSjLej+Pbd J J J LicosBicosBrdwidwrdSj·. 
sj n n 

(2.30) 

(2.31) 

The inner integral over n in the right hand side can be replaced by a surn of 
integrals of all surfaces Sk, k = 1, ... , n in the scene. Angle dwi for k-th path is 

5 Such rednetion can be achieved only when the BRDF can be written as a product of two 
factors, one depending only on the incident direction, and another depending only on the 
reftected direction. This is possible for the Lambertian reftectance model, however impossible 
for the Torra,nce-Sparrow reftectance modeL 
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written as cosekj dSk/rJk, where Tjk is a distance. After changing the. order of 
summations and integration, we obtain 

(2.32) 

The surface patch radiances Lj are the salution of the linear system 

n 

Li Lei+ Pi I: LkKki for j = 1, ... ,n, (2.33) 
k=l 

where Kkj are the so called form factors given by 

K . _ _!_ J J cosejk cosekj dS dS· 
k3- s 2 k J• 

j rjk 
s1 sk 

(2.34) 

Once the system (2.33) is solved, it is not difficult to obtain different views of 
the scene: radiosity is a view-independent technique. A serious drawback of 
the radiosity is that it handles only diffuse environments. Immel, Cohen and 
Greenberg [44] applied the radiosity technique for non-diffuse environments by 
directlysolving equation (2.26). However, the computations are traetabie only 
for the most simple scenes with a low resolution. 

Hybrid techniques combining ray tracing and radiosity have been proposed to 
remave their shortcomings ([10], [7 4] ). Better results are obtained at the expense 
of a higher computational burden. 

2. 7 Stochastic ray tracing 

Both radiosity and ray tracing are examples of an approximation to the salution 
of the rendering equation (2.21). They neglect various optica! phenomena to 
yield an traetabie solution. An alternative to these approximations is to evaluate 
the salution given by the right hand side of (2.22) directly by a methad of 
statistica! experiment, by a Monte Carlo technique. This so called stochastic ray 
tracing, or distributed ray tracing, receives much attention [10, 45, 66, 7, 77], as 
it seems to be superior to conventional ray tracing, radiosity, and their hybrids. 
It puts no restrictions on the scene reflectances and on the lighting, all ways of 
energy transport are taken into account, and attention is paid to an apprapriate 
spending of camputational effart. 
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2. 7.1 Monte Carlo technique 

For an introduetion to the Monte Carlo technique we refer to [24]. The Monte 
Carlo technique is generally defined as representing the salution of a problem 
as a parameter of a hypothetical population, and using a random sequence 
of numbers to construct a sample of the population, from which statistica! 
estimates of the parameter can be obtained. 

The Riemann integral 

I= 1b g(x)f(x)dx (2.35) 

can be interpreted as the expected value of a random variabie g(X), where X is a 
random variabie with the probability density function (p.d.f.) f(x). Therefore, 
f(x) must have the obvious properties of the p.d.f., i.e. f(x) ~ 0 for x ER, and 

i: f(x)dx = 1. 

If k independent samples x1, ..• , Xk of variabie X are taken, the arithmetic 
mean 

1 k 

Îk =- Lg(xi) 
k i=l 

(2.36) 

is an estimate of the expected value of g(X), and thus of the integral I. The 
varianee of this estimate is [24] 

(2.37) 

and if var Î1 < oo, then the sequence {Îk}k=l converges in quadratic mean, in 
probability, and with probability one, to I, as k ....,. oo. In this way integral 
I can be evaluated to a desired precision by collecting a suflident number of 
samples of g(X). 

In a similar way, sums of finite or infinite series can be computed. The metbod 
is useful when g(x) is not known analytically, and g(xi) is aresult of a complex 
computation or of an experiment, and standard analytical or numerical tech
niques can not be used. The convergence of the estimate Îk can be improved 
by varianee reduction techniques. We will mention stratified sampling. 

2.7.1.1 Stratified sampling 

Stratified sampling, or systematic sampling [24] is a metbod of sampling in which 
the interval [a, b] is partitioned into m disjoint subintervals sj, j = 1, ... 'm, 
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such that [a, b] = Uf=1 Si, and Si n Sj = 0 for i :f:. j. The integral I is the sum 
of integrals over the subintervals, 

I=~ Is, g(x)f(x)dx =~Ij, 
and each subintegral is estimated by the Monte Carlo technique separately. 
Under the original density function f(x), the probability that the sample is 
coming from the subinterval Sj is 

Pj = f f(x) dx. 
ls1 

Particularly, subdivision can be done so that these probabilities are the same 
for all subintervals, Pj = 1/m, j = 1, ... , m, and only one sample is taken from 
each subinterval. Consequently, from each subinterval Sj a sample Xj is drawn 
using the probability density function fj(x): 

{ 

mf(x) for x E Sj, 
fJ(x) = 

0 for x f/. s" 
and the value g(xi)/m is used as the estimate of Ij. Hence, the estimate of I is 

• 1 m . 

Irn = L g(Xj ). 
m j=l 

The varianee of this estimate is [24] 

vax Î_ t, [ ~' l/(x )2mf(x) dx - IJ] ~ ~ l g(x)' f(x) dx 
rn 

LIJ, 
j:::l 

which is always less then or equal to the varianee (2.37) for the same number 
of samples, k = m, because from the Schwarz inequality we have 

tiJ~ ]2. 
j=l m 

From that it follows, that it is always more efficient to use a finer partition of 
the interval [a, b] and to take one sample from each subinterval, than to increase 
the number of samples in the intervals. 

2.7.2 Application to the rendering equation 

Stochastic ray tracing essentially consists of a multi-stage Monte Carlo integra
tion. The integral 

1= fsp(xl,x2,x3)g(x2,x3) [~:(x2,x3)+l(x2,x3)] dx3, (2.38) 
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which repeatedly occurs in the Neumann's series in (2.22), can he split into 
three separate integrals ft ,!2 and Ia, hy using the identity 

where Pdif is a direction independent part of the BRDF, and PspecO is a direction 
dependent part of the BRDF (cf. (2.19),(2.14)). Then 

where 

It = lp(xt,X2,x3)g(x2,x3)E(x2,xa)dx3 (2.39) 

I2 =cos (ft cos82 Pdif l g(x2, x3) I(x2, xa) dxa (2.40) 

I3 = cos81 cos82 Is Pspec(Bn c/Jr, Bi, c/Ji) g(xz,x3) I(x2,x3) dx3. (2.41) 

ft represents the part of the two-point transport intensity I(xt, x2), that is 
a reflection of light coming from the light sourees directly, h is the part of 
light coming from other surfaces ( an indirect illumination) reflected hy a diffuse 
reflection mechanism, and Ia is the part of light coming from other surfaces 
reflected hy a mechanism of specular reflection. Integrals I1, Iz and Ia are 
estimated hy the Monte Carlo technique. 

2.7.2~1 Sampling light sourees 

Small light sourees can he considered as point light sources. Assume that N 
point light sources, each with a radiant flux <Pi, are placed at positions Zi, i = 
1, ... ,N, in the scene. Also assume, that area light sourees (extended light 
sources) occupy the surface area AL, that is 

AL= {x ES IE(-, x) =f=. 0}. 

Integral 11 can he rewritten as 

(2.42) 

The contrihution of the point light sourees can he exactly evaluated, while the 
area sourees are sampled using stratification. The area light sourees might he 
partly ocduded hy other ohjects in the scene, and evaluation of the integral on 
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the right hand side of (2.42) amounts to the random sampling of points x3 on the 
surface area AL using stratification, with. the probability density proportional 
to 

p(Xl,X2,X3)t(X2,X3) 
lx2 xal2 (2.43) 

Often, (2.43) is approximated by a constant. For the sampled points, the visibil
ity factor g(x2, x3)lx2- x3l2 is evaluated. For adaptive techniques of sampling 
of light sourees we refer to [48]. 

2. 7.2.2 Sampling the illuminating hemisphere 

The domain of integration of integrals 12 and 13 can be changed into an illumi
nating hemisphere n above the surface patch X2· Hence 

h = cos (Jt cos (}2 Pclif l L; ((}i> </>; ) cos (}; dw (2.44) 

(2.45) 

Integrals 12 and 13 can be estimated using stratified sampling [77], (7]. By sam
pling the illumination hemisphere we mean a random generation of a direction 
into the hemisphere n, shooting a ray in that direction and evaluation of the 
surface radiance L(8io </>;) at the point of intersection with another object. In 
both 12 and !3 the sampled function L;(B;, </>i) corresponds to f(x) in (2.35), and 
the terms cos B; , and Pspec( ·, 0;, </>;) cos B; respectively,correspond aft er normal
izat ion to a density function f(x). For subdivision of the integration domain 
and normalization of the density function we refer to [7], [77]. 

Ward, Rubinstein and Clear [77] claim that the amounts of indirect illumination 
computed by (2.44) do not change rapidly, and they can be reused for neigh
bouring points and for different views (thanks to the directional independence) 
by the algorithm they propose. 

2. 7.2.3 Termination of rays 

At each surface patch sampled by the ray during Monte Carlo integration, new 
rays are shot in directions to the light sourees and to other surfaces surrounding 
the patch. In this way a tree of rays is created. The rays are terminated 
at the light sources, or if the ray does not hit any other surface and leaves 
the system. The illumination computation algorithm must provide a way of 
early termination of the rays, to prevent tracing rays bringing only a negligible 
contribution to the total illumination. 
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This can be done either by terminating rays after a fixed number of bonnces to 
surfaces, or by setting a threshold for the contribution of the ray to the total 
illumination of the picture element [23]. The ray is terminated if its contribution 
is below this threshold. In this way the remairring terms of the evaluated series 
are neglected, and the illumination is underestimated, since the neglected terms 
are always positive. This bias can he made as small as possible at the expense 
of increased computational effort. 

Arvo and Kirk [1.] proposed a technique, that removes the bia..<> by slightly rising 
the variance, known as Russian roulette. Suppose the weight of the ray contri
bution is w. According to this technique, if w is smaller than some threshold 
Wt, then with the probability P the ray is terminated, or alternatively with the 
probability 1 - P it is continued with the increased weight w / (1 - P). It is easy 
to show, that the expected weight of the ray is not changed 

E[w] P · 0 + {1 

where E denotes a random variabie expectation operator. 

2.8 The choice of the imaging model 

After: consiclering several aspects of the imaging models which are listed below, 
we have selected stochastic ray tracing as an appropriate imaging model: 

• Stochastic ray tracing is a view dependent technique. Only the iliumi
nation of that part of the scene which contributes significantly to the 
irradiation of the image plane is explored. This is achieved by tracing the 
rays starting from the camera optica! centre. Only a selected image area, 
or a single PEL cah be computed within an amount of time proportional 
· to the number of PELs. The user has a control over the tradeof between 
the accuracy and complexity of the model by changing the numbers of ran
domly generated rays used to sample the illumination hemisphere. Plain 
ray tracing can then be obtained as a special case of stochastic ray tracing. 
However, when the view point (a camera position) is changed; the global 
illumination computation must be repeated from scratch. 

• Stochastic ray tracing can he combined with an arbitrary surface re
flectance model. The ray tracer and the surface reflection model are to 
a great extent independent from each other, which simplifies the analysis 
and the implementation of the imaging model. 

• In stochastic ray tracing the computed image irradiance is an explicit func
tion of the reflectance model parameters, and a linear function of the light 
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sourees intensities. An influence of the parameters can he easily investi
gated, (computation of partial derivative with respect to the parameters). 
This simplifies the parameter estimation. 

• The application of radiosity, an alternative to the stochastic ray tracing, is 
limitation Lambertian surfaces. This is possibly the major drawback when 
compared with stochastic ray tracing. Radiosity is also less suitable for 
th estimation of the parameters. The complexity of hybrid models com
bining ray tracing and radiosity is high, making application, parameter 
estimation, etc. difficult. 

Some aspectsof stochastic ray tracing are demonstrated in figure 2.10. In fig
ure 2.10a is an actual image of the scene acquired by a camera. In figures 2.10b, 
2.10c and 2.10b, are images of the samescene obtained respectively ba a (plain) 
ray tracing, stochastic ray tracing, and once more stochastic ray tracing with 
an increased number of sampling rays. The quality of image in figures 2.10d is 
better than that of ligure 2.10c. It can be seen, that the plain ray tracing fails 
to model the left si de of the vertical plate of T -shaped steel profile correctly. 
It underestimates the illumination of this vertical plate as it does not take into 
account an indirect illumination from other objects in the environment (e.g. 
from a wall which is located left to the scene and is not seen in the figure). 

The summary of the imaging model using stochast ie ray tracing with the Torrance
Sparrow surface refiectance model is given in Appendix A. 
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(a) (b) 

(c) (d) 

Figure 2.10: (a) An image of a steel construction. {b) A synthetic ~mage 
obtained by ray tracing. (c), ( d) Synthetic images obtained by 
stochastic ray tracing using different numbers of rays to sample 
the illuminating hemisphere. In ( c) 2 rays, and in ( d) 8 rays we re 
used. Notice the left side of the vertical plate. This plate is in
directly illuminated by the walt left to the scene (not contained in 
the image), and also by other objects in the scene. Ray tracing un
derestimates the illumination of the vertical plate, whi.le stochastic 
ray tracing does not. The noise which can be observed in images 
obtained by stochastic ray tracing diminishes with the increasing 
number of sampling rays. 



Chapter 3 

Parameter estimation 

In the previous chapter, the model of the imaging process has been developed. 
This model allows us to compute the irradiance of the image plane and so to 
construct an image, if scene, lighting and camera properties are completely 
specified. Next to the scene and lighting topology, the reflectance parameters of 
the scene surfaces, as wellas the radiance of the light sourees are essential when 
using the imaging model. In this chapter, an es tirnation of these parameters 
from the image plane irradiance of the available camera images is investigated. 

3.1 Estimation of the surface reflectance in com
puter vision 

The bidirectional reflectance distribution function (BRDF), which characterizes 
the reflectance properties of a surface, is a function of two directions ( the direc
tions of incident and reflected light), and so a function offour angles ( the zenith 
and azimuth angles of the directions). In case of isotropie surfaces, the BRDF 
is a function of three angels, two zenith angles and the difference between the 
azimuth angles. The BRDF can be measured by a goniorefiectometer (see fig
ure 3.1), where all angles, the argumentsof BRDF, can be adjusted separately. 
The arrangement shown in figure 3.1 has been designed by Murray-Coleman 
and Smith [57]. The zenith angle óf incident light can be set by rnaving the 
light souree along the souree driver hoop, the zenith angle of reflected light 
with the use of the detector hoop, and both azimuth angles can be adjusted 
by rotating the sample and the detector hoop. The system can be controlled 
by a computer. The measurement over the entire domain of the BRDF by the 
gonioreflectometer takes hours and is neither practical, nor necessary for our 
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Figure 3.1: Gonioreflectometer. 

computer vision application. However, the measurement results may serve as 
a reierenee for testing computer vision algorithms. Other arrangements can be 
found in the literature as well [76]. 

In computer vision, a surface refiectance model is required when the relation 
between the 3-D scene and the image plane irradiance is exploited. Then the 
problem of estimating the BRDF has to be solved. By using a refiectance 
model, the problem of the BRDF estimation is reduced to the estimation of 
the reflectance model parameters. The surface reflectance, and the closely re
lated refiectance map is exploited by the shape from shading and photometric 
stereo techniques. The concept of reflectance maps gives a good insight into the 
problem of reflectance parameter estimation in photometric stereo. Consider 
the imaging geometry in figure 3.2. In contrast to the camera model from 
section 2.3, a parallel projection is assumed. Parallel projection is a good ap
proximation of central projection for a large distance between the optica! centre 
and the image plane, and as a consequence we may assume that the viewing 
direction v is constant over the entire scene as projected on the image plane. 
We will also assume, that alllight sourees are far enough, so that the incident 
directions f are constant for the entire scene. In the camera centred coordinate 
system as shown in :figure 3.2, i.e. with z-axis parallel to the projecting rays, 
the surface projected onto the image plane can be represented by a function 
f(x, y ). For a given uniform isotropie material, and a given distribution of dis
tant light sources, the brightness of a surface element and the irradiance of the 
corresponding image plane point depend on the orientation of the surface nor
mal n only, and is described by a function called the reflectance map. For the 
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Figure 3.2: The imaging geometry for shape from shading. 

image plane irradiance E(x,y) at the position(x,y) we obtain the equation 

E(x, y) = R(n(x, y)), (3.1) 

that constrains the orientation of the surface normal n at point (x, y, f (x, y)). 
It is not difficult to obtain the reflectance map R from the BRDF of the surface. 
Alternatively it can be determined experimentally from an image of an object 
with a suitable and known shape. Compared to the BRDF, the reflectance map 
captures the entire imaging situation including the lighting. That simplifies 
further reasoning and calculations. 

The aim of the shape from shading technique introduced by Horn [36] is to 
compute the shape of the continuous, smooth surface z = f(x, y) from a single 
image acquired under known conditions (the reflectance map is known). As the 
surface orientation n has two degrees of freedom, and (3.1) provides only one 
constraint, it is not possible to compute n locally at each point, and global con
straints must be used. Horn determines the change of the surface gradient ( the 
second derivative of the function f), and uses the fact, that fora smooth surface 
its integral over any closed path is zero. A precise mathematica! treatment and 
other global constraints can be found in [80]. 

In photometric stereo, more images of the surface obtained under different dis
tributions of lights are processed. For all images, the position of the camera 
with respect to the object remains unchanged, and a specHic point on the image 
plane corresponds to the same surface patch in all images. For instance, two 
images provide two independent equations at each image point: 

E1(x,y) = Rt(fi(x,y)), (3.2) 
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Here, subscripts identify the image, and the corresponding reflectance map. 
With two equations at each image point we are able to solve for the surface 
orientation locally. In general, equations (3.2) are nonlinear and might lead to 
more solutions at each point. The ambiguities can be resolved by using three or 
more images (than a least squares solution must be computed, since the system 
is overdetermined), or by employing global constraints. 

With a suflident number of images acquired under different lighting conditions, 
the redundancy can be used to estimate the surface reflection proporties, and 
the photometric stereo metbod can deal with nonuniform surfaces. In this case 
the reflectance map will vary across the surface. Equation (3.1) can be modified 
by adding one or more parameters of the reflectance map that are functions of 
the image coordinates, and in this way model the surface nonuniformity. Hence, 
for each image point we obtain equations 

j = 1, ... , k, (3.3) 

where 8 is a vector of parameters and k is the number of acquired images. 
Silver [68] stuclied the problem of simultaneons estimation of surface shape and 
the reflectance properties for reflectance maps in a form R(il,lh) = 81R'(il), 
and R(il, fh, 82) =BI[ 82 R'(ilH- (1 02)R"(il) ]. The later model suits well fora 
number of surfaces, where R' represents the Lambertian part of a reflection, and 
R 11 the speenlar part. For a more general reflectance model, the problem has 
been treated by Tagare and deFigueiredo [71]. They observed that the problem 
is of an ill posed nature and they gave an indication for its regularization. 

When the shape of an object is known, surface reflectance propertiescan bede
termined from a single image ( unlike the photometric stereo method). Ikeuchi 
and Sato [43] proposed a technique for the reflectance estimation from an in
tensity image and a range image. From the range image the surface normals 
are determined at each point, and the unknown reflectance model parameters 
are estimated such that for all image points (x, y) 

E(x,y) ~ R(it(x,y),O). (3.4) 

The strict equality can not usually be achieved due to random perturbations 
öf the observed images, and a least-squares fitting is employed. In [43] the 
Torrance-Sparrow reflectance model and a simple imaging geometry as shown 
in figure 3.2 have been used. The technique has been refined by Kay and 
Caelli [46]. This technique is the one most related to the technique we propose 
in the remaining part of this chapter. However, the parameterized reflectance 
map R(il(x,y),O) is in our case replaced by the parameterized imaging model 
developed in the previous chapter. 
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3.2 Estimation of the scene parameters 

We will discuss the problem of the estimation of surface reflectance parameters 
of objects in the scene and of the radiances of light sourees illuminating the 
scene, when the topology of the scene and its illumination are known, and 
a camera image {camera images) of the scene is (are) available. We make 

· assumptions that 

• surfaces of objects in the scene are homogeneous, so that a single re
flectance must be estimated for each object, and 

• extended light sourees (area light sources, i.e. not point light sourees) emit 
an uniform diffuse light over the whole surface, so that a single parameter, 
the light souree radiance, is to be estimated for each extended light source. 

Using the model of the image formation process developed in chapter 2, an 
estimate of the image plane irradiance can be computed. This estimate is a 
function of tbe parameters to be estimated, and due to the cbaracter of the 
model, it can be considered to be a random variable. Tbe parameters can be 
estimated by tbe maximum likelihood metbod known from statistics. 

Let a random vector Y depend on an unknown parameter vector 0. Let fy(yiO) 
be tbe conditionat probability density function of Y given tbe parameter vec
tor 0, also called a likelihood function. Based on an actual observation y, tbe 
realization of tbe random vector Y, we want to obtain an estimate of 0. A max
imum likelibood estimate is defined as tbe value of(} for wbicb fy(yiO) attains 
a maximum. Tbus êML is a maximum likelibood estimate if it satisfies 

for all() E 8, (3.5) 

where e is tbe feasible set of fJ, tbe parameter space. Statistica! properties of 
the estimate êML can be investigated, thus providing an accuracy analysis of 
the estimate. For the sake of conciseness we will drop the index ML in êML in 
the sequel. 

The conditional probability density function for the problem of the scene pa
rameter estimation might be a complicated function. However it can sufficiently 
well be approximated by a density of the normal distribution. The mean and 
varianee of the distribution can be estimated using the imaging model. The 
likelibood function has the form 

(3.6) 

where y is the vector of observed image irradiances, h(fJ) are the irradiance val
nes computed by the model, Q is the covariance matrix of the imaging model 
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error h(O) Y, and n is the length of vector y. The maximum likelibood esti
mate of parameter vector (} is then obtained by maximization of the likelibood 
function, 

ê = argmax fy(yl9). 
8E9 

Since a logarithm is an increasing function, (3.7) is equivalent to 

or to the minimization 

ê arg max {log fy(yiO)}, 
8E9 

ê = argmin {[h(9) yJtQ-1 [h(9) y]}. 
IIE9 

(3.7) 

(3.8) 

(3.9) 

This is the non-linear weighted least-squares estimation. The feasible set e is 
determined by physical limits for parameter values, and is given by linear in
equality constraints. For instance, a coefficient of diffuse reflection is constrained 
by the inequalities 

1 
0 5 kdif 5 -. 

1!' 
(3.10) 

In each inequality only one parameter is involved, and this particular case is 
called a problem with simple bounds. 

Solving (3.9) is a well-defined problem which always has a solution. Numeri
cal techniques have to be used to find this solution, since h(9) is a nonlinear 
function of the unknown parameters. Due to the large size of the vector y 
which is equivalent to the number of picture elements of the processed image, 
techniques that efficiently utilize the resources (computing time and memory) 
are used. Despite the clear formulation, the salution of problem (3.9) might be 
ill-conditioned, or it might have an infinite number of solutions. This depends 
on e.g., the scene, available image(s), a priori knowledge etc. The possibilities 
for detecting ill-conditionedness are discussed later. 

3.2.1 Numerical salution of the minimization problem 

For the essential principles, and a good reference of numerical optimization 
techniques we refer to [21]. We will concentrate only on aspects specific for 
the problem at hand. The technique chosen for the salution is known as the 
Gauss-Newton method. The Gauss-Newton metbod uses the second derivative 
of the objective function, and exhibits an asymptotically fast, in fact quadratic, 
convergence to the solution. 

The problem is to find the parameter vector {) E 8 that minimizes an objective 
function 

(3.11) 
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The covariance matrix Q is positive definite, and therefore there always exists 
a real matrix S such that S' S = Q-1 . The matrix S can often be directly 
computed from the model, instead of the matrix Q. Hence, the minimization 
problem is 

or equivalently 

argmin { [h(B)- y]t S' S [h(B)- yl}, 
eee 

ê argmin liS h(B)- S Ylb, eee 

(3.12) 

(3.13) 

where ll·ll2 denotes an Euclidean vector norm. Suppose that befare the (n + 1)-th 
iteration step, the parameter vector estimate en is available (the initial estimate 
is denoted by ()0 ). In the vicinity of point On the nonlinear function h(O) can be 
approximated by the first two elements of the Taylor series: 

(3.14) 

where '\7 eh( 0) is the Jacobian, the matrix of derivatives, i.e. (V eh( On) )ij = 
élh;(O) I . 

aei O=IJ,. 

When this approximation is substituted into (3.13), we obtain an equation for 
the updated parameter vector estimate, 

(3.15) 

hence, the parameter vector update l:.Bn+l = ()n+l - On is the salution of the 
overdetermined1 linear system 

(3.16) 

in the least-squares sense. Taking into account a large length of the veetors y 
and h(O) (the number of their components is equal to the number of processed 
image pixels), system (3.16) can be effectively solved by QR-decomposition us
ing Givens rotations. Thereby, only the coefficients of a relatively small system 

(3.17) 

with R an upper triangular matrix, are kept in the memory. Rows of the vector 
equation (3.16) are sequentially processed, and the system (3.17) is updated. 
The description of the technique at an expository level can be found in [13]. 

In addition to the parameter update computation, the validity of the constraints 
must be examined. When the value On+l =On+ l:.Bn+b computed from (3.15) 
is outside of the feasible set e, the largest a< 1 is found, such that 

(3.18) 
1 The system is overdetermined under the assumption, that the number of observations is 

greater than the number of parameters. In our case, the number of observations is equal to 
the number of picture elements of the image used for the estimation, and it is mostly large 
enough to overdetermine the system. 
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and the value ahove hecomes the new updated parameter vector value. In this 
way at least one eaustraint becomes active, i.e. a strict equality in the constraint 
is satisfied. This is taken into account when the next update is computed. In 
each new update, the parameters either stay inside the suhspace determined 
hy all active constraints (i.e. the computed updated is projected onto this sub
space), or some of the active constraints hecome inactive. A constraint becomes 
inactive, if the component of the update conesponding to the constraint is in 
the direction inside the feasible set E>. Then the strict equality in the constraint 
does not hold anymore, however, the eaustraint still holds. Care must be paid to 
the correct handling of constraints, however this does not present any extensive 
computational effort as all constraints are simple bounds. 

3.2.2 Accuracy analysis 

Tbe scene parameter estimates 0 are computed from the observation vector 
y using a maximum likelibood estimator (3.7) through (3.9) The observation 
vector y is a realization of a random vector, and so is the estimate 0. We 
will analyze the statistkal properties of this estimate. Besides. the effect of 
ohservation noise, the inaccuracy of the ohtained result canalso he caused by 
the numerical procedure used to solve the prohlem (3.9). This is due to the 
limited accuracy of the numhers represented by the computer and the limited 
accuracy of computations. We refer to [21] for the discussion of tbe inaccuracy 
of the numerical salution to (3.9). lt turns out that the inaccuracy of the 
numerical procedure is orders of magnitude smaller than the error caused by 
observation noise, and we will neglect it in the sequel. 

Assume for a while, tbat tbe computed estimate 0 is an interior point of the fea
sihle set E>, and none of the parameters reaches its hounds. F(y, 0) denotes the 
function that is optimized in (3.7), (3.8), or (3.9}. Without loss of generality, 
any of (3.7), (3.8), and (3.9) can he investigated, since they all yield the same 
result. F(y,()) (the likelibood fy(y,()), or its logaritbm, etc.) can he approxi
mated in the vicinity of the point (Yobs,O) hy its Taylor series expansion. If it 
is not otherwise explicitly stated, partial derivatives2 of function F are taken 
at the point (Yobs, 0), therefore we will use only an abhreviated notation, i.e. 

2We will use the convention that the partial derivative of a scalar function F(y) 
F. ( ) · aF _ [aF fJF] d h · d . 1· d . f Yl. ... , Yn ts a row vector ."-- - ;;--, ... , ;;-- , an t e m1xe part ~a envate o a 

uy '-'!11 '-'111 · 
scalar function F(Yl, ... Yn, Ot, ... , Bm) is a matrix defined as 

tPF l ae1a11" 

ae~.~%11 ,. 
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= --":a*"'-'--'-1 .· The Taylor series expansion of function Fis: 
8=9 

~ fJF 1 
F(y, ()) = F(Yobs, (}) + fJy (y- Yobs) + 2(() B)' fJ2 F (() 

f)()2 ê) + 

1 82 F 82 F 
+ 2(y- Yobs)

1 
fJy2 (y- Yobs) + (y- Yobs)

1 
fJyfJ(}(() B) + 

+ 03, (3.19) 

where the term 03 consists of the third and higher-order powers (and mixed 
powers) of (y- Yobs) and (B- ê). In the expansion (3.19) the prime denotes the 
vector transpose. Notice, that in the expansion the term ~: (B ê) is missing. 
That is because for B = ê function F(Yobs, B) attains its extreme with respect 
to B, and the partial derivative ~: vanishes. 

Let us denote the actual value of the parameter vector by B*, and consider a 
noiseless observation y0 , which is obtained for an unbiased model as y0 = h(B*). 
Obviously, for (} = 8* function F(y0 , B) attains its extreme, which gives us the 
necessary condition 

fJF(y0, B) I = O. 
f)f) 8=9· 

(3.20) 

By substituting the expansion (3.19) into the condition (3.20), we obtain the 
relation between the observed vector Yobs and the estimate ê: 

0. (3.21) 

Term 0 2 consistsof the second and higher orderpowersof (y- Yobs) and (fJ -B). 
- ~ In the vicinity of the point (Yobs, fJ) we neglect the term 02, hence if ~ is 

invertible, we have 

- [fJ2 F] -1 fJ2 F 
8 :::::: B* - 082 f)fJfJy (Yobs Yo). 

Fora function F(y,fJ) = ![h(fJ)- y]tQ- 1 [h(B)- y] we have 

fJ2 F = -J'Q-1 
f)()2 , 

and 
fJ2 F G J'Q-1 J 
f)(}f)y = + , 

(3.22) 

(3.23) 

(3.24) 

where J is a Jacobian of the function h( ()) at B ê, defined as Jij = 8~(XJ) I 
9
=

8
. 

The matrix G is defined as 
n '"'k I ' G = L.t H rk (h(fJ)- Yobs}, (3.25) 

k=l 
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where kH is the Hessian matrix of the k-th component of the function h(B) at 
2 • 

point () ê, i.e. kHij = a&o:~~:), and the row vector r~ is the k-th row of the 

matrix Q-1 . Fora small residual h(O)- Yobs, Gis mostly much smaller than 
J'Q- 1 J, and eau be neglected in (3.24). Then, the relation between Yobs and ê 
has a particularly simple form 

(3.26) 

which is a linear transformation of the random variabie Y. The mean E(ê) and 
the covariance cov(O) of the estimate ê are 

E(O) 

cov(ê) 

()* , 

We recapitulate the three assumptions we have made: 

• {j is an interior point of the feasible set E>, 

• observation noise Yobs - Yo is small, and 

• residual h(O) - Yobs is also small. 

(3.27) 

(3.28) 

Under these assumptions and in the case of normally distributed y, the distri
bution of {j is also approximately normal, and it is completely specified by the 
mean and covariance given above. 

The situation changes only slightly when some of the constraints are active and 
the computed parameter estimate lies on the boundary of the set E>. Basically, 
those components of the vector ê that reach the bounds are fixed, and the anal
ysis of the remaining components of the vector has to be performed. Let fJ free 
and Bjree he veetors containing the free (without active constraint) components 

of the veetors ê and ()* respectively. Similarly, let Jfree be the Jacobian of the 
function h(B) with respect tothefree componentsof () at point() ê, defined 
as Jij &~~;~:?j . Then, by following the same line of reasoning as before, we 
obtain that 

(3.29) 

Values offixed components êfixed of the vector ÊJ, i.e. the values of components 
with actlve constraints, are given by their respective bounds. 

From the results (3.26) and (3.29) the following can be concluded. As in the 
relations there is an inverse of the matrix J'Q- 1 J (or JfreeQ- 1 Jfree), when 
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this matrix looses rank the error of the result ê is unbounded. Matrix Q is a 
covariance matrix, that is usually a weli-behaving positive definite matrix. For 
uncorrelated observation noise it is a diagonal matrix. Therefore, the problems 
of an unbounded error may he caused only by the deficiency of the column rank 
of the jacobian J (or Jfree)· 

3.2.3 Coping with ill-conditionedness 

Despite the clear formulation of the parameter estimation as an optimization 
problem, the salution of this problem might he ill-conditioned, and there might 
he an infinite number of solutions. Whether the problem is ill-conditioned or 
not depends on scene, distribution of light sources, available images, choice of 
parameters to he estimated, a priori knowledge, etc. Essentially, if the effect 
of the variations of the parameterscan he observed in the image(s), a different 
effect for different parameters, then the parameters can he estimated and the 
problem is well-conditioned. We will eaU these parameters excited parameters, 
and we will call the configuration of the scene, light sourees and cameras where 
all parameters are excited the persistently exciting configuration. When one or 
more parameters are not excited, i.e. they have no, or only a small ( camparabie 
with an effect of noise) effect on the acquired images, or two or more parameters 
have the same effect, then the parameter estimation problem is ill-conditioned. 
This leadstoa rank deficient (or an ill-conditioned) Jacobian J from the previ
ous section, and consequently to an unbounded, or unreasonably large solution. 
This problem can be solved by elimination of the not-excited parameters, as 
proposed in the sequel. 

An example of an ill-conditioned problem is the estimation of the surface re
flectance parameters of the Torrance-Sparrow reflectance model (section 2.2.4) 
under certain circumstances. The Torrance-Sparrow reflectance model is spec
ified by four parameters, kd;r, kspec, {3h and n. The latter three parameters 
kspec' i3h and n specify the speenlar part of the reflection, and consequently 
these parameters have substantial effect only at and in the vicinity of places 
with highlights caused by a speenlar reflection. In the case that there are no 
speenlar highlights caused by the reflection of light sourees on the surface, the 
problem becomes ill-conditioned. In this case it is reasanabie to apply the Lam
bertian reflectance model with a single parameter kdif· Similarly, the effect of 
the Fresnel term in the Torrance-Sparrow reflectance model, and thereby the ef
fect of the refraction index n, aften can not be observed. The Fresnel coefficient 
varies with the angle of incidence of the light. Since the refraction index and 
the Fresnel coefficient have significant effect only at, or in the vicinity of places 
with specular highlights, there is often not enough data for their estimation. 
Then, the Fresnel coefficient can be considered to be a constant and can be 
absorbed in.the parameter kspec, i.e. a simplified Torrance-Sparrow reflectance 
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model can be used. 

The not-excited parameters are detected basedon their value. On all parameters 
which can potentially be eliminated bounds are applied specifiying a sufficiently 
large interval for the actual values of the parameters. When some of these 
bounds are reached, i.e. the bound becomes an active bound, it is concluded 
that the parameter that reached the bound is not excited, and it is eliminated 
from the model. 

3.3 Experimental results 

The estimation of the missing parameters is demonstrated in the following ex
ample: 

From an image shown in tigure 3.3a, the parameters of the Torrance-Sparrow 
reflectance model of the fioor, and of the T-shaped steel profile placed on the 
fioor, have been estîmated. The scene was îlluminated by TL-tubes placed on 
the ceiling. The refiection of TL-tubes can be seen on the fioor. The scene 
description induding the positions of the TL-tubes was available. The intensity 
of the TL-tubes was estimated in advance using a white diffuse surface as a 
reference (a white paper, kdif = 0.318). The valnes of parameters of a sim
plified Torrance-Sparrow refiectance model (a model with a constant Fresnel 
factor absorbed in the parameter kspec) have been computed. For the T-shaped 
profile only the coefficient of diffuse refiection has been computed, and the rest 
of the parameters has been eliminated due to a fact that there were no data 
(no speenlar highlights) available for the estimation of these parameters. The 
computed parameter values are listed below: 

fioor 
kdif 0.081 0.166 

kspec 0.818 
!3h = 5.3° 

A synthetic image generated with the computed parameter values, and the 
difference image between the original image and this synthetic image are shown 
in figures 3.3b and 3.3c. 

Other examples of the estimation of the missing scene parameters, the original 
and the resulting synthetic images, are given in section 4.3, where the parameter 
estimation is routinely applied as a part of the scene description verification 
algorithm. 
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(a) (b) 

(c) 

Figure 3.3: An example of the parameter estimation: (a) acquired camera im
age of the scene, (b) synthetic image computed using the estimated 
values, (c) difference between images (a) and (b). White colour in 
the difference image represents no difference in intensities between 
the images (a) and (b) . 
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Chapter 4 

Verification of scene 
descriptions 

Verification of the 3-D scene description can be regarcled as a decision problem, 
where a decision has to be made about the truth of some given 3-D scene 
description. The decision is to be based on the available camera images, and 
on data computed by the imaging model. What we seekis a decision procedure, 
or a decision rule, a prescription for the selection of a decision from the set of 
possible decisions hased on the availahle data. Because of an influence of noise, 
and the stochastic nature of the imaging model, the acquired images as well as 
the output of the imaging model are considered to he random (realizations of 
random variahles). As a consequence, notest can hy itself provide an evidence 
of truth or falsehood of the hypothesis, and there always remains a possihility 
of making an incorrect decision. Our aim then might he to look for a decision 
procedure which, in a long run experience, will not he too often wrong, without 
hoping to know whether each partienlar hypothesis is true or false. The aim is 
to find and use the optimal decision procedure with respect to some statistica! 
optimality criterion. Sametimes the aim is to find an optimal decision procedure 
having some given structure, which is easy to compute, or to realize in hardware. 
This topic is stuclied hy statistica[ decision theory [14]. 

In this chapter two formulations of the decision problem are discussed, Neyman
Pearson and Bayesian. For the verification of scene descriptions we have adapted 
the decision procedure which has an attractive physical implementation, a two
dimensional (2-D) North filter foliowed by a thresholding operation. Originally, 
North filter is used for the detection of a known continnes signal in a one
dimensional gaussian process, and the adapted version can detect the known 
pattem in the 2-D gaussian signal. The prohlem of the selection of the decision 

51 
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procedure is thus reduced into a problem of the choice of the filter coefficients, 
and the choice of a threshold level. 

Related to this chapter is Appendix B, where the theory of Karhunen-Loeve 
expansion is given, and Appendix C, where the derivation of filter coefficients 
for the test with a composite alternative is given. 

4.1 Elements of a decision problem 

Parameter, parameter space, events. Suppose that the unknown reality 
about which it must be decided can be represented by a number of variables, a 
vector, which is traditionally called a parameter. N.B., an analogy between the 
parameter estimation and decision theory can not be denied. The parameter 
value not kiwwn to us is a point in a parameter space. The way in which the 
parameter represents the reality might be complicated (e.g. in the case of a 
description of a scene), however this doesnotalter the conceptsof the decision 
theory. Thereby, we may think of some facts as of points from the parameter 
space, or subsets of this space. 

Formally, let w be a parameter which belongs to a parameter space f!. Any 
subset A of the parameterspace f!, belonging to an appropriate set of subsets 
of f!, is called an event. A set of disjoint events constitutes a set of hypotheses of 
a decision problem. A hypothesis comprising a single element of the parameter 
space n is called a simpte hypothesis, while the hypothesis comprising a proper 
subset of the parameterspace is called a composite hypothesis. 

Sample, Sample space. Before choosing a decision about the truth of the 
events, we have the opportunity to observe an outcome (a sample) of a random 
variable, or a random vector X, takinga value from a sample space X. Ran
dom variabie X is related to the parameter w to the effect that a probability 
distri bution of X is given for each w E f!. In case of a continuous X, a family 
of density functions Uw( x), wE f!} specifies the relation. The density function 
f w (x) is also called a likelihood. · 

Decision space, decision procedure. A decision space V is the set of all 
possible decisions d E V. In the most simple case, set V contains only two 
elements, e.g. V = { d1 , d2}, where the interpretation of the decisions might be 
dt ='accept the hypothesis H1 ' and d2='accept the hypothesis H 2 '. 

A decision procedure, or a decision rule 8, is a mapping 8 : X ~---' V from the 
samplespace to the decision space, that assigns toeach possible outcome x E X 
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the decision 8(x) EV. Fora finite decision set V= {d1, d2, ... dn}, the decision 
procedure is a partitioning of the sample space X into subsets X;, i = 1, ... n, 
each conesponding to a partienlar decision d; E V, so that x E X; implies 
8(x) = d;. 

4.1.1 Neyman-Pearson problem formulation 

Neyman and Pearson [60, 61] stuclied the problem of deciding between two 
hypotheses, a hypothesis H0 , usually called a null hypothesis, and an alternative 
hypothesis H1 . The decision space of the problem consists of two decisions 
V = { d0 , di} with interpretations d0 = 'accept the null hypothesis, reject the 
alternative', and d1 = 'reject the null hypothesis, accept the alternative'. The 
decision rule is given by partitioning of the sample space X into two disjoint 
subsets (X0 , XI), where X1 = X\ X 0 = X0 (X0 denotes the complement of 
X0 ). The subset X1 is sametimes called a critical set, sirree for x E X1 the null 
hypothesis is rejected. 

Consicier first the test of the simple hypothesis Ho = {wo} against the simple 
alternative H1 = {wi}. Makinga decision d1 , when Ho is actually true is called 
a type I error, and the probability of this event is denoted by a. Making a 
decision d0 , when H 1 is actually true is called a type II error, and the probability 
of this event is denoted by (3. Obviously 

( 4.1) 

where fw 0 (x) and fw 1 (x) are probability densities of X under hypotheses Ho 
and H 1 respectively. The subscript 8 indicate that a and /3 are characteristics 
of the decision rule 8. The problem is to find X0 and X1 such that a and f3 
are as small as possible. However, in general, making a smaller will increase 
(3, and the other way around. Neyman and Pearson proposed to confine the 
attention to a class of size-a decision rules, with the type I error probability 
less then or equal to a, and find among them the one with the smallest type II 
error probability. Formally, the decision rule 8* is optimal in Neyman-Pearson 
sense, or it is the most powerjul size-a decision rule, if it satisfies 

!36• = inf /36 (4.2) 

subject to 

The way of searching for the most powerful decision ruleis given by the following 
theorem: 
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Lemma 1 (Neyman-Pearson [61]) Let fw 0 (x) and fw 1 (x) be the densities of 
the random variable X under the hypotheses Ho : w = w 0 and H 1 : w = w1 

respectively. Let ( Xo, XI) be the partition of the sample space X, specifying a 
decision rule 8 of size-o:. IJ there exists a À E R such that 

for àll x E Xo, 

and 

for all x E X1, 

then the decision rule 8 is the most powerjul decision rule of size-o: in Neyman
Pearson sense. 

The problem gets more complicated when either H 1 , or both Ho and H 1 are 
composite hypotheses, and the parameter w belongs to an infinite subset under 
hypothesis H 1 or Ho. Consicier for instanee a test of the simple hypothesis 
Ho : w = wo against the one-sided composite alternative H 1 : w > w0 . Instead 
of a single type II error probability /3, the decision procedure is characterized 
by the so called power function of the test, /35: (w0 ; oo) ~---> [0; 1], giving a type 
II error probability for different values of parameter w. The power function will 
he defined in the sequel. 

The Neyman-Pearson point of view for the most general case of the composite 
hypothesis Ho : w E Ao, and the composite alternative H1 : w E A1 , is 
summarized in the following definitions: 

Definition 1 (size-o: decision procedure) The decision procedure 8, given by 
the partition of the sample space (X0 , XI), is a size-o: decision procedure if 

sup P(x E X1 I w = w') = o: 
w'EAo 

Definition 2 (power function) The power function P5 of the decision procedure 
8 is the function Pö : A 0 U A1 ~---> [0; 1] given by 

P5(w') = P(x E X1l w = w') 

Definition 3 Let 8 and 8' are two size-o: decision procedures. The decision 
procedure 8 is said to be better than the decision procedure 8', if P5 ( w) :::; P~ ( w) 
for all w E A 1 , and P8 ( w) < PH w) for at least one w E A 1 . The decision 
procedure 8' is said to be not better than the decision procedure 8, if P8 ( w) < 
P~(w) for all wE A1. 
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Definition 4 ( uniformly most powerful decision procedure) The decision pro
cedure 6 is said to be the uniformly most powerful decision procedure, if each 
other size-a decision procedure is not better than 6 in the sense of definition 3. 

Sametimes the uniformly most powerful decision procedure might not exist. 
Then one should use at least an admissible decision procedure defined as follows: 

Definition 5 (admissible decision procedure) The decision procedure 6 is called 
an admissible procedure if there does not exist any better procedure in the sense 
of definition 3. 

Some additional ordering principles might be used to choose a decision proce
dure from the admissible decision procedures. However, this lies outside of the 
scope of the thesis. 

4.1.2 Bayesian decision procedure 

F:rom the Bayesian point of view, the unknown parameter w can be regarcled 
as an outcome of the random variabie W with some known a priori probability 
distribution. Even in cases when the parameter is nat the result ö{ a chance 
mechanism, it might be considered to be obtained so, since it is unknown to 
us. For the sake of simplicity, we identify here the parameter value w with the 
hypothesis itself. This implies no loss of generality, since the appropriate trans
formation of the random variabie W can always be done. We will also confine 
the discussion to problems where both the parameter space n and the decision 
space D are fini te, with k (k 2:: 2) and m ( m 2:: 2) elements respectively1 . Hence, 
fl =ega ega= ega= ega= {wt, ... ,wk} and D = {d1, ... ,dm}. 

Once the outcome of X, which is related to the actual value w, has been ob
served, the probability distribution of W is updated. According to the Bayes 
rule 

11'(w) = f(xjw)11'o(w) 
E f(xiwi)11'o(wi) 

for all wE fl, (4.3) 

w;E!l 

where 11'o(w) is the a priori probability of an event w, and 11'(w) is the updated 
a posteriori probability of this event. 

The updated distribution is the basis for the decision making. 

1 A special case when k = m, and the decision d; can be interpreted as 'accept hypothesis 
w w;, is known as classification. Each hypothesis is then called a class. 
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Suppose that the consequences of decision making are expressed by a loss junc
tion L : n x D ~----+ R, with the value L( w, d) being a loss incurred by makinga de
cision d when event w occurred. Alternatively a utility function U : n x D ~----+ R, 
with the values U( w, d) being utilities (rewards), might be used. The choice of a 
loss (utility) function is often subjective, and is evident only in some situations, 
like in the case of monetary losses or rewards. From now on we will assume 
that the loss function is given. 

For the parameter with a probability distribution given by a mass function 
1r : n ~----+ R+, the risk R of making a decision d is defined as au expected loss 
incurred by making this decision 

R(1r, d) = L L(wi, d)1r(wi). (4.4) 
WiE!1 

The aim is to find a decision procedure 8 : X ~----+ D, which specifies for each 
value x EX a decision 8(x) ED. 

The Bayesian decision procedure 8* : X ~----+ V is a procedure which selects the 
decision d*, that miniruizes the expected loss (the risk), hence 

R(1r,d*) = inf R(1r,d). 
dED 

(4.5) 

The decision d* is called the Bayesian decision and the risk R( 1r, d*) is called the 
Bayesian risk. There might be more than one Bayesian decision (and therefore 
also more Bayesian decision procedures), if they all attain the infimum in (4.5). 

In the case of fini te spaces n and D, it is straightforward to find the Bayesian 
decision d* by exhaustive evaluation of risks for all decisions, or by the technique 
given in [14], page 132. The main concern remains to compute the probability 
distri bution 1r. 

4.1.3 Discussion of the problem formulation 

First it will be shown, that both the Neyman-Pearson and the Bayesian forc 
mulations may lead to the same decision procedures. Suppose that under the 
hypothesis Ho the probability density of the sample X is f 0 (x), and under the 
alternative H1 the density is ft(x). The decision space is V= {d0 ,dt} with 
do ='Ho is true' and d1 ='H1 is true'. 

From Lemma 1 it follows that the most powerful decision procedure in Neyman
Pearson sense has the form 

{ 
dl 

8(x) = 
do 

. f l.!.i=l T 1 fo(x) > ' 
otherwise. 

(4.6) 
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Either decision d0 , or d1 can be made in the case j~~:~ = T, without affecting 
the performance. To obtain a size-a decision procedure, the threshold T must 
be adjusted so that the type I error probability computed by (4.1) is a. 

To find a Bayesian decision procedure, assume that the casts of inèorrect deci~ 
sions are L(H0 , dl) l0 , L(Hb do) = l1, and there are no casts associated with 
the correct decisions. The risk incurred by making decisions do and d1 is 

R(1r, do)= h1r(H1), 

where from (4.3) we have 

R(1r,d!) lo7r(Ho), 

fo(x )7ro(Ho) +!I (x )7ro(H1)' 
i 0, 1, 

By camparing R(1r,d0 ) and R(1r,di), the Bayesian decision procedure is 

8(x) { 
dl if j~f: l > >"---''+""'* 

do otherwise. 

. (4.7) 

(4.8) 

(4.9) 

Obviously, it is not difficult to find an a, lo and lt, such that the most powerfut 
decision procedure and the Bayes decision procedure are identical. 

The main difference between the Bayesian and Neyman-Pearson approach is 
that with the Bayesian approach the parameter is treated as a random variabie 
and its a priori probability distribution is applied, while with the Neyrnan
Pearson approach the parameter is considered to have some fixed unknown 
value. Notice; that the Bayesian decision procedure ( 4.3) depends on the a pri
ori probabilities 7ro(·). lt is generally accepted, that in well described, .or well 
identified situations, the Bayesian approach leads to better overall performance 
due to the fact, that it uses in a well-defined way more knowledge about the pa
rameter. On the other hand, the Neyman-Pearson formulation leads to simpler 
solutions, when in the ultimate case ol').ly one threshold value has to be deter
mined to achieve the required performance, without the necessity to possess a 
priori probabilities, costs, etc. 

It may be concluded, that the choice of the performance criterion ( a-size for 
Neyman-Pearson formulation, cost function for Bayes procedures), and also the 
proper knowledge of the underlying statistica! quantities (likelihood functions, a 
priori probabilities) have a major impact on the decision procedure performance. 
This is not so for the choice of the problem formulation itself. 

It can also be seen, that the likelibood ratio j~t=l plays an important role in this 
decision problem. The logarithm of the likelihood ratio ( called the loglikelihood 
ratio), or another monotonic function of the likelibood ratio can be used by the 
decision procedure instead of the likelibood ratio, and only the threshold value 
has to be adjusted appropriately. 
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4.2 

VERIFICATION OF SCENE DESCRIPTIONS 

The decision proeed ure for scene verifica
tion 

The parameter space of the scene description verification prohlem can he 
identified with the set of all possihle scene descriptions. Let Ç he the set of all 
possihle scene descriptions, and let G0 E Ç be the candidate scene description, 
which has to be verified based on acquired camera images using an imaging 
model. The verification of a scene description might be seen as the statistica! 
test of the hypotheses Ho: {Go}, Go E Ç against the alternative H1 : Ç \{Go}. 

The .decision space of the verification problem consists of two elements, V = 
{do,dl}, with the decisions do ='accept the candidate scene description', and 
d1 ='reject the candidate scene description'. 

The sample space of the scene description verification can be identified with 
the set of possible images. Consicier a digital image with PELs placed in 
a rectangular grid. The set of indices of all PELs on the image plane is 
I= {(i,j); i= 1, ... ,ncoli j = 1, ... ,nrow}, with ncol derroting the number 
of columns, and nrow derroting the number of rows of PELs in the image. Let 
Q be the set of signal values of each PEL. For the grey scale images with the 
resolution k-bits per PEL, set Q is the subset of the set of natural numbers, 
Q = {0, 1, ... , 2k -1}, and the values of the PELs are treated as image plane 
irradiances. Although it seems to be more natural to treat images as two
dimensional arrays (matrices), for the sake of notational convenience we will 
represent the images by vectors. Thereby, the sample vector x is a column vec
tor of the size ncolnrow, with its components being the image irradiance values 
of PELs ordered insome specific way, e.g. by image rows. The samplespace of 
the scene description verification problem is the set X = Qncoin,ow. 

To be able to select a decision from the set V, we must be in a possession of a 
family of likelihood functions {fa(x), G E Ç}. Likelihood function fa(x) fora 
given scene description G can be obtained with the use of the imaging model. 
U se of the imaging model is a computationally intensive process, and apparently 
it is not feasible to apply this model for all G E Ç. Instead, the hypothesis and 
the alternative must be formulated directly on the set of all possible images, 
the sample space X, using only a likelihood function for the candidate scene 
description f Go (x). In this way the imaging model has to be addressed only 
once. Such formulation is only an approximation of an actual problem, how(wer 
it is feasible to obtain the solution. 

Another observation is that even for a modest image size the dirneusion of the 
sample vector is rather high, as it grows with a product of the vertical and 
horizontal image dimensions. The decision procedure is a partitioning of the 
sample space into two partitions, conesponding to the two decisions d0 and 
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d1 . The high dimension of the sample space necessitates in a search for a 
decision procedure which is eflicient in computations, or which can he realized 
in hardware. 

In the suhsequent sections, a decision procedure which is both mathematically 
rigid and convenient for the implementation, is proposed. It is a discrete two
dimensional extension of the North filter, which is used for detection of a known 
signa!. 

4.2.1 The North filter 

A well stuclied problem of hypothesis testing and detection theory, which oc
curs e.g. in all radar systems and many other signal processing systems, is the 
detection of a known, finite energy continuons signa! corrupted with additive 
Gaussian noise. The two hypotheses concerning the received signal v(t) are: 

Ho: v(t) = n(t) 
H1 : v(t) = s(t) + n(t) 

(noise only), 
(a known signal plus noise). 

(4.10) 

where n(t) is a zero-mean Gaussian noise, and s(t) is a signal that would be 
received in an ideal, noiseless case. lt is assumed, that the autocorrelation 
function of the noise n(t) is known. The solution of this problem, a most 
powerful decision procedure in Neyman-Pearson sense, has a feasible physical 
realization displayed in figure 4.1. It consists of a North filter, also called a 

n(t) 

North filter Threshold 

Ho 

Figure 4.1: Detection of a known signal in a Gaussian noise. 

matched filter, foliowed by a threshold. The North filter is a linear filter with 
the transfer function S*(f)fN(f), where S*(f) is the complex conjugate of 
the Fourier transfarm of the signal s(t) to he detected, and N(f) is the power 
speetral density2 of the noise n(t). The derivation of the filter and the proof of 
its optimality can he found e.g. in [5]. 

An analog problem in image processing is the detection of the known pattern 
in the zero-mean Gaussian noise on the two-dimensional image plane. The two 

2Power speetral density is the Fourier transform of the autocorrelation function. 
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hypotheses concerning this problem are 

Ho : Z = N (noise only) 
H1 : Z = p + N (a known pattem plus noise) 

(4.11) 

where Z is the random vector representing the acquired image, p is a constant 
vector specifying the given pattern, and N is a Gaussian random vector with 
zero mean and a given eovariance. The veetors Z, p and N are column veetors 
of the size ncolnrow· For this problem, a decision procedure depicted in figure 4.2 
can be applied: the image is filtered by a finite impulse response (FIR) filter 

Image 

Filter coefficients 
f 

Convolution 

Fittered 
image >I ~ H1 

Threshold 
~:::;::- Ho 

t 
Level 

Figure 4.2: Veteetion of a known pattem in the noise on the image plane. 

with coefficients f, and the result is thresholded. When the threshold level is 
exceeded, Ho is rejected and H1 is accepted, otherwise Ho is accepted and H1 
is rejected. The questions of the choice of the filter coefficients f, and of the 
optimality of such a statistkal test are pursued in the next section. 

Suppose a hypothetic scene description Go (the null hypothesis Ho) leads to 
the distribution of the image data X = Xo "' N(x0 , Q), where Xo and Q are 
the mean and the cnvarianee matrix of a Gaussian distribution. The decision 
procedure of the figure 4.2 can be applied for the verification against the simple 
alternative Hl :x= xl rv N(xt,Q), by using the substitution z =x Xo 

and p = x1 x 0 . Pattemp to be detected is the differenee between the means 
Xo and x1 . 

The decision procedure ean be applied for the verification against a eomposite 
alternative. The issue of the filter selection and the properties of the decision 
procedure in such case are pursued in section 4.2.3. 

4.2.2 Optimality of the decision procedure 

When developing decision procedures on a samplespace X of a high dimension, 
it is useful to investigate the expansions of a random vector X in terms of a set 
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of orthonormal vectors. Hence, for the m-dimensional3 random vector X we 
may write 

m 

x= LVk'l/Jk (4.12) 
k=l 

where Vk, k = 1, ... , m, are scalar coefficients obtained by 

(4.13) 

and 1/Jk, k = 1, ... , m, are column veetors forming an orthonormal base, so that 

{ 
1 for k = l, 

1/J~'l/Jl = 
0 for k =f:. l. 

(4.14) 

In the above expressions primes denote the transpose. Coefficients of the ex
pansion Vk. k = 1, ... , m are random variables. We seek an orthonormal base 
1/Jk, k = 1, ... , m, that yields un-correlated expansion coefficients: 

for k = l, 
for k =f:. l. 

(4.15) 

Furthermore, if X has a jointly Gaussian distribution, the coefficients Vk are 
independent Gaussian random variables. Consequently, it is easier to find ap
propriate decision procedures based on vk, k = 1, ... 'm, than the procedure 
basedon x EX. 

The expansion having the required properties is known as the Karhunen-Loeve 
expansion. lts theory is summarized in Appendix B. The orthogonal basis of 
the Karhunen-Loeve expansion is formed by the eigenveetors of the covariance 
matrix of X, and the associated eigenvalnes are the correlation coefficients Àk 

in (4.15). 

Using the properties of the Karhunen-Loeve expansion, we can prove the fol
lowing theorem concerning the optimality of a decision procedure: 

Theorem 1 Consider the decision procedure for the detection of a known pat
tern p corrupted by an additive zero-mean Gaussian vector with covariance ma
trix Q, proposed in figure 4. 2. Ij the filter coefficients f solve the equation 

p=QJ, 

then the decision procedure is the most powerjul decision procedure in Neyman
Pearson sense. 

3 In the case of a decision procedure for the detection of a known pattern, m = ncoJ1~row· 
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We can prove the theorem following the lines of reasoning of the proof for the 
one-dimensional continues-time case [5, pg. 123]. 

Proof: An observed image x is the outcome of the random vector N under 
the hypothesis H 0 , and the outcome of the random vector p + N under the 
hypothesis H1, where N "' N(O, Q). To find a likelibood ratio, the observed 
image can be expanded into a Karhunen-Loeve expansion. The orthonormal 
base veetors of the Karhunen-Loeve expansion are the eigenveetors of the matrix 
Q, and the coefficients of the expansion under both hypotheses Ho and H1 are 
independent Gaussian random variables (see Appendix B). Let '1/Jk, k = 1, ... , m 
be the eigenveetors of matrix Q, and let Àk be the conesponding eigenvalues. 
Furthermore, let the expansion coefficients of the observed image x be 

k = 1, ... ,m, 

and the expansion coefficients of the pattem p be 

k 1, ... ,m. 

From the theory of the Karht:men-Loeve expansion, of the coefficients uk are 
the realizations of random variables Uk with the distribution N{O, Àk) under 
H0 , and N(pk. Àk) under H 1 . Hence, the logarithm of the likelibood ratio of 
the test is 

= f UkPk _ ~ f: 
k=l Àk 2 k=l 

According to Neyman-Pearson lemma, the most powerfut test has the form: 
Decide in favour of H1 if 

m m 2 
" UkPk - ~ " Pk > T 
L..,; À 2L..,;À - , 
k=l k k=l k 

and otherwise decide in favour of Ho. The secoud term on the left hand side 
is a fixed constant and can be included into the threshold. Hence the decision 
rule for the decision in favour of H1 is 

(4.16) 

where T2 is the redefined threshold T, 

(4.17) 
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Let 
k= l, ... ,m. 

From theorem 6 in appendix B it follows, that Wk are coefficients of the Karhunen
Loeve expansion of f, such that 

p= Qf. 

From theorem 3 in appendix B it follows that the entity compared with the 
threshold in inequality (4.16) is equal to the result of the image convolution 
with the filter pattern f, 

m 

I: UkWk f'x (x* f)(O). (4.18) 
k=l 

This concludes the proof. 0 

We will evaluate the probabilities of the type I and type II errors of the proposed 
decision procedure, as functions of the threshold value. The response of the filter 

(4.19) 

is a random variabie with distribution N(O, b) under the hypothesis Ho , and 
N(b, b) under the hypothesis H 11 where b is defined as 

(4.20) 

Type I error probability, that is the probability that the filter response exceeds 
the threshold value given Ho is true, or the probability of false alarm is 

(4.21) 

and the type II error probability, that is the probability that the filter response 
does not exceed the threshold value given H 1 is true, or the probability of miss 
is 

jJ = P {~Uk~: < T2 1 H1 } = ~ (T~ b) . (4.22) 

In (4.21) and (4.22) ~ denotes the cumulative distribution function of N(O, 1). 
For the size-a: test, the threshold must be set to the value 

(4.23) 
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Substituting this threshold into ( 4.22), we obtain 

(4.24) 

which is a monotonically decreasing function of b. As a consequence, the dis
criminatory power of the test procedure increases with the increasing value of 
b, which is actually the response of the North filtertoa noise-free pattem p. 

Let us re-derive the North filter from another point of view. Let f = (/I, ... , fm)' 
be the vector of the filter coefficients. Under the null hypothesis Ho : X ,..., 
N(O, Q), the output of the filter of figure 4.2 is a random variabie 0 with the 
distri bution 

Ho: 0 '""N(O, f'Qf). (4.25) 

When a random vector X,..., N(p, Q) (the hypothesis Hr) is applied totheinput 
of the filter, the distribution of the output is 

Ht : 0,..., N(f'p, f'Qf). (4.26) 

To achieve a good discrimination against the null hypothesis, the ratio of the 
mean and the standard deviation f'pf.JPQJ (or its square, as it follows below) 
should be maximized. The filter coefficients are the salution of the maximization 
problem 

f {
f'pp'f} ar max --- . 

g/E'Rtn PQJ (4.27) 

In the domain of Karhunen-Loeve coefficients an equivalent problem can be 
formulated. Let IJi = ( 7/;1 , ... , 7/Jm) be the m x m matrix with columns that are 
the normalized eigenveetors of Q, and let A be an m by m diagonal matrix with 
the respective eigenveetors Àk, k = 1, ... , m on the diagonal. Let v, w and V 
be the expansion coefficients of p, f and X, respectively. We may write that 
v = IJ.i' p, w = IJ.i' f and V = IJ.i' X. The random vector V has the distri bution 

V,..., N(IJ.i'p, IJ.i'Qw) = N(v, A), 

and consequently, the distribution of the filter output 0 is 

0,...., N(w'v, w' Aw). 

Similarly to ( 4.27), the goal is to find filter expansion coefficients 

{
w'vv'w} w=ar ax . ~'R"' w'Aw 

(4.28) 

The problem ( 4.28) is easier to solve than ( 4.27) due to a fact that A is a 
diagonal matrix. After making substitutions 

( 
Vt Vk ) 

t = v'Xî' ... ' ..;>:;;: 

(4.29) 

(4.30) 
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we arrive to a problem 

{ 
s't t's} s = argmax -,- , 

sER"' SS 
( 4.31) 

which has the solution s = t/ltl. This maximizes the dot product t's in the 
numerator, under the constraint s' s = 1. After back substitution, this solution 
yields the North filter. 

4.2.3 Choice of the filter for a composite alternative 

As opposed to the assumptions made in the previous section, the scene verifica
tion is a problem with a composite alternative. In this section we propose the 
application of the decision procedure of figure 4.2 for the decision problem with 
a composite alternative: 

X"' N(O,Q) 
X"' N(p, Q); pEP. 

(4.32) 

where P is a set of veetors representing possible difference patterns resulting 
from hypothetic and actual scene descriptions. We propose a method for the 
selection of filter coefficients for the case of a countable set P. 

The performance of the decision procedure of figure 4.2 can he characterized 
by the probability of the type I error a (the size of the decision procedure), 
and by the power function (3(p). We search fora filter J, that yields favourable 
detection properties, i.e. a small (3(p), for all elements from the set P. It is 
not possible anymore to find a Neyman-Pearson decision procedure with the 
structure of figure 4.2, since for each different pattern a different optima! filter 
is required. Additional selection criteria must he used. We may seek a filter f, 
which under the fixed value a minimizes the probability (3 for the worst case 
from the set P, i.e. minimizes the supremum of the power function (3(p). The 
size of the decision procedure a depends only on the hypothesis H 0 , and can he 
adjusted by the proper setting of the threshold level. The required filter does 
not depend on the threshold level, therefore the decision procedure having the 
required properties can he obtained by first the filter selection, and then the 
threshold adjustment. This is worked out in the sequel. 

The above stated criterion is formally expressed by: 

f = argmin {max(J(p)}. 
!ER"' pEP 

(4.33) 

Following the same line of reasoning as in the case with a simple alternative 
explained in the last part of the previous section, the required filter can he 
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obtained as the salution of the problem 

{ . {f'pp'f}} f = argmax mm f'Qf . JE7V" pEP 
(4.34) 

In the domain of the Karhunen-Loeve expansion coefficients the equivalent prob
lem is 

{ { s'tt's}} s = ar max min , 
gsER"' tET S1 S 

(4.35) 

where set T is defined as 

T = {tE nm I~ 1/Jk~ tk EP}. (4.36) 

Loosely speaking, the set T is obtained by the Karhunen-Loeve transformation 
of the elements of the set P and their substitution according to ( 4.30). Under 
the constraint s' s = 1, problem ( 4.35) is equivalent to the problem 

s = argmax {min {t's}} . 
sER"' tET 

(4.37) 

The geometrical interpretation of this problem and its salution are given in Ap
pendix C. Once this problem is solved, expansion coefficients w = ( w1 , ... , Wm )' 

of the required filter are obtained from the found vector s by a backsubstitution 
via the inverse of ( 4.29). Then the required filter coefficients f satisfying the 
criterion (4.33) are obtained by the inverse Karhunen-Loeve transformation of 
the vector w. 

Notice, that in the case of a diagonal covariance matrix Q, the Karhunen-Loeve 
transfarm is an identity, and we obtain A = Q. In this case the filter design 
problem can be directly solved in the spatial domain. 

We complete the analysis by computing the error probabilities for the threshold 
level T2. Notice, that under the constraint s' s = 1 also w' Aw = f'Qf = 1, and 
the filter output 0 will always have a normal distribution with the standard 
deviation one. The mean value depends on pand is f'p = w'v = s't. The type 
I error probability, or the probability of false alarm is 

(4.38) 

and the power function, i.e. the type II error probability, or the probability of 
miss as a function of p is 

(4.39) 

where <I> denotes the cumulative distribution function of .N(O, 1). 
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To obtain the size-a test, the threshold must be set to the value 

(4.40) 

The power function for this threshold is 

(4.41) 

4.2.4 Actual performance of the decision procedure 

In this section we will revise the error probabilities a: and /3 computed in sec
tions 4.2.1 and 4.2.3, and the validity of theorem 1 for the decision procedure 
in figure 4.2. 

In the development of the theory an impHeit assumption has been made that the 
position of the pattem to be detected on the image plane is known. For instance, 
the likelibood ratio is computed in ( 4.18) as the convolution of the image and 
the filter pattem at the given location on the image plane. By application of 
the convolution filter and thresholding the resulting image, the decision process 
has actually been performed many times for each PEL. The thresholded image 
can be seen as the result of a grid of separate decision makers, each making a 
local decision about the presence of the pattem at the particular place. To each 
of these decision makers appart applies the theory and the error probabilities 
derived in preceding sections. 

What one actually needs is to make a joint decision about the presence of the 
known pattern p E P anywhere in the image. This can be done by a slightly 
modified decision procedure: the final decision will be in favour of hypothesis H 1 

(the pattem is present), when at least one of the PELs decides in favour of H1 , 

otherwise the final decision will be in favour of H 0 . In other words, if anywhere 
in the filtered image the intensity exceeds the threshold level, hypothesis H 1 is 
accepted. However, we possess no theorem concerning the (Neyman-Pearson) 
optimality of this modified decision procedure. Still, we may use the Norton 
filter, or the filter developed in the previous section, to obtain very satisfactory 
results. 

It is not difficult to assess the error probabilities of the modified decision proce
dure for the case of a diagonal covariance matrix Q. In this case the decisions 
are independent under the hypothesis H 0 , and since the type I error occurs if 
any PEL makes a type I error, the probability of the type I error of the modified 
procedure am is 

(4.42) 

where nis the total number of decision makers (PELs). The effect of the number 
of PELs on the distribution of the maximum of filter outputs over the entire 
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Figure 4.3: The probability density function of a random variabie max{Xi; i 
1, ... , n }, where Xi "'N(O, 1), and E(Xi, X i) = 0 for i :f= j. Plotted 
for n = 1, 10, 100, 1000 and 10000 (from left to right). For n 1 
the probability density function is the density function of normal 
distribution N(O, 1). 

image is depicted in figure 4.3. Obviously, this leads to a larger type I error 
probability O!m > a, ar one must set the threshold T2 higher to attain the 
required test size. This deteriorates the type II error probability f3m· 

It is still very likely, that the maximum of the filtered image under the hypothesis 
H 1 which is decisive for the final decision, will occur at a place where the pattem 
is localized. The total number of decision makers actually does not play a role 
and the type II error probability of the modified procedure f3m is approximately 
the same as the type II error probability of the single decision maker, 

(4A3) 

We will omit the analysis of the case when Q is not diagonal. 

4.2.5 The choice of a filter and a threshold 

The design of the decision procedure for the scene description verification con
sists of two steps: the selection of a filter ( the computation of the filter coeffi
cients), and the choice of the threshold value. 

The vector of coefficients of the North filter f is the salution of the equation 

p Qf, (4.44) 
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where pis the pattern ( the difference of the two images x0 and xl) to he detected, 
and Q is a covariance matrix of the images. The computation of filter coeffi.cients 
is in general a time consuming process due to a large length of the veetors p 
and J, and a large size of the square matrix Q. The size is equal to the number 
of image PELs. For the composite alternative, the filter can he designed in the 
space of Karhunen-Loeve expansion coefficients of the difference patterns from 
the set P. 

A diagorral covariance matrix Q, that means independent components of the 
sample vector X, may he assumed. In this case the filter coefficients can he 
computed by the scalar divisions 

Pi . 
-Q··'z 

" 
l, ... ,m, (4.45) 

and if furthermore all diagorral elements of the matrix Q are equal, the filter 
coefficients are proportional to the pattern to he detected. In the case of a 
composite alternative and a diagorral matrix Q, the filter design can he clone 
directly in the spatial domain. 

Another question to he answered is which difference patterns should he used to 
design the filter. The appropriate patterns depend on the domain of application 
and the likely mistakes of the computer vision system and from that resulting 
scene descriptions mistakes. The filter coefficients can he obtained successively 
from the data accumulated during the usage of. the system. At the beginning 
an appropriate difference pattern able to detect most of the significant in consis
tendes in the scene description must he applied. We have used for this purpose 
the filter with a circular shape (see figure 4.4) with a diameter adjusted to 
the size of objectsin the scene. The (typical) difference images obtained from 

.. 

Figure 4.4: Filter shape for the verification procedure. 



70 VERIFICATION OF SCENE DESCRIPTIONS 

the experirnental run can he used to design the filter by the technique for the 
cornposite alternative. 

Once the filter has been designed, the threshold level must be set appropriately 
to achieve the required test parameters, narnely the probability of the type I 
error a. The level can he deterrnined based on the records of the maximurn 
values of the filter output for a nurnber of experiments performed with a correct 
scene description. This kind of learning is called a supervised learning. From the 
records, the parameters of the distribution are determined, and the threshold 
level is set so that the required a-size of the test is achieved. 

Since the filter coefficients and the threshold level are decisive for the perfor
rnanèe of the verification systern, great care must be paid to their adjustment 
for the partietdar application. 

4.3 Experimental results 

The application of the scene description verification procedure is dernonstrated 
in two examples. 

Example 4.1 

In the first example an artificial scene consisting of paper boxes placed on a table 
is verified. The correct description and two different incorrect descriptions of 
the scene have been processed. Intermediate and final results of the verification 
are shown in figures 4.5 and 4.6. 

For each scene description, the surface reflectance parameters of the boxes and 
of the table have been estimated. Then the difference between the synthetic 
image obtained by stochastic ray tracing, and an original camera image has 
been cornputed. The difference image has been filtered by a convolution by a 
filter with the coefficients shown in the figure 4.4. The maximum of the filtered 
image has been deterrnined, and when this maximum was beyond the threshold 
level, the discrepancy between the camera image and the scene description has 
been signalled. This is shown by a cross in the filtered image at the locatiön 
where the maximum has been detected which exceeded the threshold. 

The camera image of the scene is shown in figure 4.5a. In figures 4.5b, 4.5c 
and 4.5d the synthetic, difference and filtered images, respectively, are shown 
for the correct scene description. 

In figures 4.6a, 4.6b and 4.6c the synthetic, difference and filtered images, re
spectively, are shown for the incorrect correct scene description. The small box 
present in the left hand side of the acquired image of the scene is not present 
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in the scene description. The maximum intensity of the filtered image is at the 
location of the inconsistency between the scene and the description. 

In figures 4.6d, 4.6e and 4.6f the synthetic, difference and filtered images, re
spectively, are shown for the incorrect scene description. The small box placed 
on a larger box is missing in the scene description. The inconsistency has been 
detected at the location where the box cast a shadow. 

Exarnple 4.2 

In this second example the scene containing an industrial object, a steel plate 
construction, is verified. The correct description, and one incorrect descriptions 
where a narrow top plate of the T-shaped profile is missed, have been processed. 
Intermediate and final results of the verification are shown in figures 4. 7 and 
4.8. 
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Figure 4.5: An example of the scene description verification in the case of a 
correct scene description. (a) The acquired camera image, (b) the 
synthetic image (c) the difference image, and (d) the filtered image. 
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Figure 4.6: Examples of the scene description verification in the case of incor
rect scene descriptions. (a), {b) The synthetic images, (c), {d) the 
respective difference images, and ( e) , (!) the respective filtered im
ages. The location of the detected inconsistency is marked with a 
cross. 
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Figure 4. 7: Example of the scene description verification in the case of a correct 
scene description. (a) The acquired camera image, (b) the synthetic 
image (c) the difference image, and (d} the filtered image. 
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(a) 

(b) 

(c) 

Figure 4.8: Example of the scene description verification in the case of an incor
rect scene description. (a) The synthetic image, (b) the difference 
image, and ( c) the filtered image. The location of the detected in
consistency is marked with a cross. 
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Chapter 5 

Iterative improverneut of 
the scene description 

In the previous sections, the model of the imaging process has been described. 
Based on this model, techniques for the estimation of unknown parameters and 
for the scene verification have been proposed. To apply these techniques an 
initia! (hypothetic) scene description has to he available. The obtained result 
is either the confirmation of the hypothetic scene description, or the detection 
of a discrepancy between the description and the acquired images. In the latter 
case, the discrepancy is localized on the image plane in the acquired image. In 
this chapter we will discuss ways of correction or impravement of the initia! 
scene description, that remave or diminish the discrepancy. Repetition of the 
processes of scene verification and scene correction/improvement should aftera 
number of iterations lead to an improved description or even to the correct 
scene description, provided that the actual scene satisfies requirements and 
assumptions made in the previous sections. 

In section 5.1 the classification of discrepancies between the scene description 
and the acquired images is discussed. Depending on the kind of discrepancy, 
scene description corrections are proposed. Known computer vision techniques 
like photometric stereo and shape from shading can he utilized. The issues 
concerning the interconnection ( interchange of information) between the applied 
technique and our specific setup arè discussed in sections 5.4.2 and 5.4.1. The 
application of the techniques is demonstrated with examples. 

77 



78 ITERATIVE IMPROYEMENT OF THE SCENE DESCRIPTION 

5.1 Classification of the scene description dis
crepancy 

Let us assume that the result of the verification procedure is correct, and that 
the eventual discrepancy between the hypothetic scene description and the ac
quired images is always caused by the difference between the actual scene and 
the scene description. That means that neither a type I, nor a type II error has 
occurred, This difference can be roughly classified into the following classes: 

1. Missing object - an object actually present in the scene is missing in 
the scene description. 

2. False object - the scene description contains an extra (false) object, 
which is actually not part of the scene. 

3. Misplaced object- an object present in both the actuàl scene and the 
scene description is misplaced, i.e. its position, orientation or dimensions 
are not specified correctly. 

4. Misclassified object · at the approximately same location there is a 
different kind of object in the actual scene and the description. The object 
has been misclassified. 

5. Combination - there are more differences between the scene and the 
scene description. These can he treated as a combination of several single 
differences of the kind as given in 1 to 4. 

Notice, that the distinction between classes 3, 4 and 5 is not strict. A "Mis
placed object" can equally well beseen as a combination of "False object" and 
"Missing object". Ultimately, all differences can he reduced to the combination 
of "Missing objects" and "False objects". 

Reuristic rules are developed for the classification into the above mentioned 
classes from the location of the discrepancies on the image plane. First, it must 
be determined, which part of the hypothetic scene description is projected onto 
the imageplaneon places, where the discrepancy bas been detected. The rules 
can he summarized as follows: 

• If there is no hypothetic object projected onto the image plane of the syn
thetic image at the location where the discrepancy occurs, it is condurled 
that there is a "Missing object", an object present in the scene, but not 
in the description. 
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• If the discrepancy accupies the place in the image plane where an object 
contained in the scene description is projected, it is concluded that this 
object is a "False object". 

Based on this classification, a scene description correction is performed. 

5.2 Correction of the scene description 

In the case that a "False object" has been detected in the scene description, 
this object is merely excluded from the description, and the verification phase 
is repeated. 

In the case that a "Missing object" has been detected in the scene, some predic
tive computer vision algorithm must he invoked to create a corrected descrip
tion of the part of the scene, where the discrepancy has been detected. The 
algorithm can employ information about the location of the discrepancy. The 
knowledge of light conditions at this location may imprave the performance of 
the predictive algorithm. 

5.3 Feature-based techniques 

Feature-based techniques use features extracted from the image to infer an 
interpretation of the image. The appropriate features are e.g. edges, contours 
and corners of objects. The knowledge of the scene illumination constrains the 
appearance of the 3-D features projected onto the image. This might he used to 
imprave the performance of the conventional feature-based techniques. Camps, 
Shapiro and Raralick [9] have proposed such an object recognitionjlocalization 
system, called PREMlO (PREdiction in Matching Images to Objects). To make 
predictions, they build a model called Vision Model, consisting of a topological 
model of objects, a surface physical model of objects, a model of light souree 
and a sensor (a camera), and a model of detectors descrihing the performance of 
the feature detectors (i.e. early vision algorithms for the extraction offeatures) 
available to the system. The analysis of feature based techniques for the scene 
description correction in the case of known illumination falls beyond the scope 
of the thesis. 
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5.4 Techniques employing image shading 

Another class of techniques to be considered are techniques that employ vari
ations of image irradiance, or shading, exhibited in the region of an image, for 
the recovery of the shape of a part of a surface. We will discuss the use of shape 
from skading (SFS) and photometric stereo. The variations of image irradiance 
are interpreted by the variations of the orientation of the surface normal, while 
the reflectance properties of the surface are usually assumed to be constant over 
the investigated part of the surface. Shape from shading is a technique where 
the surface shape is recovered from a single image of the surface. In photomet
ric stereo, more images of the surface, taken from the same position but under 
different lighting conditions, are processed. Each additional image presents an 
additional constraint for the surface orientation at each point. That is why 
photometric stereo is conceptually much simpler then shape from shading. 

We have refèrred to SFS and photometric stereo already in section 3.1, where 
the problem of the reflectance parameters estimation was discussed. SFS and 
photometric stereo utilize the concept ofthe reflectance map, (section 3.1). The 
reflectance map specifies the relation between surface orientation and the image 
irradiance, and it is a property of the surface (it depends on the surface BRDF), 
and of the contiguration of lighting. The knowledge of the reflectance map is 
a pre-requisite for the use of SFS, or photometric stereo. The refl.ectance map 
can either be obtained experimentally, or it can be computed from the surface 
BRDF and the distribution of light sourees [41]. For a Lambertian surface, the 
refl.ectance map can be computed from the distribution of light sourees up to 
a proportional factor. The fact, that refl.ectance maps can be computed by the 
scene illumination model already implemented in the system makes photometric 
stereo and SFS particularly attractive for the scene description correction. 

Fora surface z = f(x,y), illumination by distant light sources, and parallel 
projection (see figure 3.2), image plane irradiance provides at every surface point 
a single constraint for the reconstructed surface orientation: see equation (3.1), 
p. 39. Since the normal of the surface z f(x, y) can be written as 

1 
ii(x, y) = ---r=:;<==~= ( -p, -q, 1)', (5.1) 

where 
8f(x,y) p = _;__;___;;...:... a x 

and 
of( x, y) 

q = 8y ' (5.2) 

the surface is the solution of the first order partial differential equation 

E(x,y) R(ii(x,y)) = 0. (5.3) 

Often the reflectance map is written directly in termsof the partial derivatives 
p,q 

E(x,y) R(p(x,y),q(x,y)) = 0, (5.4) 
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and the pair (p, q) is called a surface gradient. 

SFS solution by a characteristic strip expansion. The solution of (5.4) 
can be found using a characteristic strip expansion as Horn has shown in [36], 
Consicier a four-dimensional space of points (x, y, p, q) and a parametrie curve in 
this space (x(t), y(t),p(t),q(t)) fortE [to, tt]. Ifthefourtuple (x(to), y(to),p(to), q(to)) 
satisfies equation (5.4), and the condition 

d 
dt [E(x(t),y(t))- R(p(t),q(t))] = 0 

is metfort E [t0 , tt], then obviously also the other points on the curve solve (5.4). 
Equivalently, we have 

oE dx + oE dy _ aR dp _ aR dq _ 
0 

ax dt ay dt op dt aq dt - ' 
(5.5) 

where arguments of all functions have been omitted for conciseness. This con
dition is met by the choice: 

dx aR dy aR 
dt op ' dt = aq ' 

dp oE dq oE 
(5.6) = ' dt a x dt ay 

An appropriate starting point for the expansion of solutions (characteristic 
strips) according to (5.6) is a point on the surface where the orientation is 
known, for instanee the brightest point of the smooth surface, where the sur
face normal points to the souree of illumination. The drawback of the method 
is that the solution is prone to accumulation of errors in the presence of noise. 

SFS solution by minimization of an objective function. Due to the 
presence of observation noise, variations of the surface albedo, etc., the partial 
differential equation (5.3) will not holdeven for the true surface shape. Instead 
of attempting to findan exact solution of (5.3), the surface orientations ii(x,y) 
(or p(x,y) and q(x,y)) can be found by miniruizing some objective function 
using variational techniques [38, 51, 37, 69]. In the next step surface elevation 
is computed from the orientations. Also techniques that solve directly for the 
surface elevation f(x,y) have been developed [50, 52, 53]. 

An appropriate objective function is for instanee the functional 

Cirr = J J [E(x,y)- R(p,q)]2 dydx, 
A 

(5.7) 
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which leads under certain assumptions about irradiance observation error to 
a maximum likelibood reconstruction of the surface. The set A is the area 
of interest, the subset of the image plane where the reconstructed surface is 
projected. 

It has been shown by many authors, that minim.ization of the objective function 
Cirr is not a well-posed problem. It is not sufficiently constrained, and conse
quently, it does not have a unique solution. There are two ways of constraining 
the problem further: 

• A regularization of the problem by adding a regularization term to the 
objective function. A commonly used regularization term is a surface 
smoothness term invalving second partial derivatives of the surface eleva
tion: 

Creg= j j[fxx(x,y)2 +2fxy(x,y)2 +/yy(x,y)2
] dydx. (5.8) 

A 

This term does not vanish for the actual surface shape, except for planar 
surfaces. The result obtained by minimization of a weighted sum Ctot 

w Cîrr+(1-w) Creg, forsome 0 < w < 1, is biased. The surface is flatterred 
(see also the discussion in [38J). The inclusion of the regularization term 
in the objective function regularizes the problem and allows to find a 
solution. However it should be avoided if other means to constrain the 
problem are available. 

• The boundary conditions on the surface shape known to us can he applied 
to constrain the solution. Such a constraint is the orientation of a smooth 
surface at the brightest place where the surface normal points to the light 
souree (see figure 5.1). At the places where speenlar highlights on the sur
face appear, the surface normal is known (it bisects the angle between the 
viewer and the souree into two equal angles). At the occluding boundary 
of a smooth surface, the tangent plane is parallel to the optical axis, so 
the surface normal is perpendicular to the optica} axis and the projection 
of the occluding boundary on the image plane. 

Other methods for the SFS problem solution Recently the salution of 
the SFS problem by means of the technique of dynamic programming [16, 67, 54] 
has been proposed. 

5.4.1 Shape from shading with nonuniform illumination 

For the sake of simplicity, most SFS techniques assume parallel projection and 
distant light sources. However, the SFS problem can he solved also for the 
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Figure 5.1: Constraints on the surface orientation. 
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case of perspective projection [36, 53]. For SFS with perspective projection and 
the direct computation of the surface elevation, the assumption of a uniform 
illumination by distant light sourees can be relaxed. The reflectance map can 
be evaluated at an arbitrary point in space if we do have the scene illumination 
model. This is novel in the SFS algorithm described in this section. The 
algorithm can be used for the recovery of a surface at a specHic location in the 
scene. The surface elevation is computed directly in a camera centred coordinate 
system by the minimization of an objective function. 

5.4.1.1 Reconstructed surface representation 

Let the camera centred coordinate system be defined in the following way: the 
origin 0 of the system coincides with the optica] centre of the camera C, the 
z-axis is parallel to the optica! axis of the camera, and x- and y-axes are parallel 
to the u- and v-axes of the two-dimensional image plane coordinate system (see 
figure 5.2). The distance of the image plane from the origin 0 will be denoted 
as f. 

The surface to be reconstructed can be represented by a .number of discrete 
points on the surface, that are projected onto a grid of points on the image 
plane. The grid of points on the image plane coincides with the corners of 
rectangular picture elements (PELs), so that the centre of each PEL will be 
in the middle between four grid points. Since a point in 3-D with coordinates 
(x,y,z)', which is projected onto the image plane at location (u,v), can he 
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Figure 5.2: Representation of the surface in the camem centred coordinate sys
tem. 

specified hy a single parameter t, 

(x,y,z)' = (tu, tv, tf)' =t(u,v,f)', (5.9) 

the surface points are specified by a number of parameters equal to the numher 
of grid points, each parameter corresponding to one node of the grid. If (i,j) 
are the indices of some partienlar PEL, then the grid point at the lower left 
corner of this PEL can he denoted hy indices (i, j), lower right hy (i + 1, j), 
upper left hy indices (i,j + 1) and upper right by (i+ l,j + 1) (see figure 5.3). 
Let (ui, Vj) he the image plane coordinates of the node (i,j), let (x i,]• Yi,j, Zi,j) 

Au 

Nodes 

Vj ~ 

Ui 

Ïi+1,j+1 

L---r-- Picture Element (i,j) 

Av 

tl+1,j 

Ui+1 

u 
> 

Figure 5.3: Location of nodes and picture elements. 

he the coordinates of the surface point projected on (Ui, Vj ), let ti,j he the 
parameter assigned tothenode (i,j), and let Ei,j he the irradiance of the PEL 

x 
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(i,j). Let .ó.u and .ó.v he the spacing between PELs, i.e . .ó.u = Ui+l -Ui and 
.Ó.V = Vj+l - Vj. 

The surface in between the grid points will he approximated by a bilinear in
teq)olation ofthe parameter t, so that for (u,v) E [ui,ui+I] x [vj,Vj+I] 

1 
t(u,v)= .ó.u.ó.v [(ui+I-u)(vj+l v)ti,j+(u-ui)(vi+l v)ti+I,j+ 

(5.10) 

Then it is not difficult to show, that the gradient (Pi,j,Qi,j) of the interpolated 
surface at the point which is projected onto the centre of the PEL (i,j) with 
coordinates Uc =(ui+ Ui+I)/2 and Vc = (vj + Vj+l)/2 is given by 

ftu,c 

where 
1 

te = t( Uc, Vc) = 
4 

( ti,j + ti+l,j + tid+l + ti+l,j+l) 

t - ' - ' ,J • ,] t,:J t,J at(u v) I t+l + t+l '+1 t· . - t· .+1 

u,c - OU (uc,vc) - 2.ó.u 

t - , - t,J t ,) t,J ' ,J ot(u v) I t· .+1 + t·+l .+1- t· - t+l . 
v,c - QV (uc,Vc) - 2.Ó.V 

5.4.1.2 Objective function 

(5.11) 

(5.12) 

(5.13) 

(5.14) 

(5.15) 

(5.16) 

As has already been mentioned, SFS exploits for the reconstruction only the 
irradiance of the area of interest A. Let A accordingly he the index set contain
ing indices of all PELs that are entirely inside the area of interest A, and let B 
he the index set of all nocles in the area of interest A. 

For the discrete surface representation from the previous section, one term of a 
objective function will he 

Cirr 6.u6.v L [Ei,j - R(Pi,j, Qi,j )f. (5.17) 
(i,j)EA 

In the limiting case of a PEL size approaching zero, this term of the objective 
function is equivalent to (5.7). 

Next to this, the following constraints on the surface shape are applied: 
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• It is assumed that straight boundaries of the area of interest on the image 
plane correspond to edges of planar faces of an object (see figure 5.4). 
The surface gradient of the PELs neighbouring such a boundary have all 

Figure 5.4: Constraints on the shape of a planar face bounded object. 

the same gradient. This is captured by the following term of the objective 
function 

Cedg = L (Pi,j - Pfce)2 + (qi,j - qfce)2 (5.18) 
(i,j)Et: 

where e is the index set of indices of PELs that share the boundary 8A 
of the set A and form a straight digital line (a straight line approximated 
by the discrete PELs). Application of the term Cedg for each straight 
boundary edge of the area of interest constrains the orientation of involved 
surface patches, and introduces two new variables Pree and qrce for each 
edge. 

• The next eaustraint is the smoothness of the planar faces. It is assumed, 
that the regions where the image iriadiance variation is negligible (possi
bly caused by observation noise only) are the projectionsof planar faces. 
There, a smoothness term resembling the term (5.8) is applied: 

Csmt = L [CPi+t,j Pï,j)
2 + (qi+t,i- qi,j)2

] 

{( i,j);IEi+l.j- E;,; I<T} 

+ L [(Pi,Hl- Pi,j)2 + (qi,j+l- qi,j)2] ,(5.19) 
{( i,j);IEi,j+l-Ei,j I<T} 

where T is the maximum value of the difference of irradiances of neigh
bouring PELs for the inclusion of the PELs into the smoothness term. 
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The total objective function has the form 

ne 

Ctot = Cirr +alL Cedg, + a2Csmt, 
k=l 
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(5.20) 

where ne is the number of boundary edges used as constraints, Cim Csmt and 
Cedg,k are the objective function terms, and a1 and a2 are appropriate co
efficients. After the substitution for p and q into all terins involved in Ctot 
from (5.11) and (5.12), the objective function is the function of parameters 
ti,j, V(i,j) EB, specifying the surface. 

5.4.1.3 Objective function minimization 

For the minimization of the objective function the Gauss-Newton numerical op
timization technique described in section 3.2.1 can be applied. In camparisou 
with the problem of the scene reflectance and illumination parameters esti
mation from chapter 3, the number of arguments of the objective function is 
considerably larger, what makes the problem harder. 

The objective function (5.20) can he rewritten in the form 

nc 

Ctot = !lc(t)ll~, = L c1(t)2, (5.21) 
l=i 

where t = ( h, ... , tnn )' is a vector of parameters of all nocles from the set B ( the 
nocles specifying the surface shape), c(t) (cl (t), ... , cnJ' is a vector function 
of parameters t, and nc is the total number of constraints coming from all terms 
of the objective function. 

Following the same line of reasoning as insection 3.2.1, the problem of finding 
the vector i that minimizes the objective function, 

i = arg min Ctot, 
tEnn,. 

leads to the following iterative scheme: 

1. Choose an appropriate initial value to, the initial estimate of t. 

(5.22) 

2. For the k-th iteration, k = 1, 2, ... , compute an update !:ltk by solving 
the system of linear equations 

\7(c(tk-l )) is the matrix of partial derivatives, the Jacobian of the function 
c(). 
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3. Make an update of the vector t 

tk = tk-1 + tltk. 

4. Check the condition for quitting the iteration loop. If this condition is nat 
met, repeat from step 2, and if the condition is met, quit the iterations 
with the result 

The form of the componentsof c(t) depends on the kind of the constraint. The 
PEL irradiance delivers the component 

Cj(t) = Ei,j- R(Pi,j,qi,j), 

each boundary edge pixel delivers two components 

Cl(t) = Pi,j- Pree, 

Cl+ I {t) = qi,j - qcce, 

and finally, from the smoothness condition there are the pairs of componentsof 
the form 

or 

Cj(t) = Pi+l,j- Pi,j, 

Cl+I(t) = qi+l,j- qi,j, 

Cj(t) = Pi,j+l - Pi,j, 

Cl+I(t) = qi,j+l- qi,j· 

5.4.1.4 Evaluation of the reflectance map 

The reflectance map relates surface orientations to values of the image irradiance 
(or a surface radiance, which is proportional to the irradiance) under specified 
lighting conditions. Under the assumption of parallel projection and illumina
tion by distant light sources, the same map is valid for the entire surface. With 
perspective projection and a non-homogeneaus illumination a different map ap
plies at different places of the scene. Fortunately, the SFS algorithm needs only 
samples from the map depending on the current estimate of the surface during 
the iterations. Furthermore, the partial derivatives with respect to the values 
of p and q at the same point are required. 

The value of the reflectance map for a particular surface orientation can be ob
tained by placing (in a scene model) a sample surface patch at the required po
sition with the required orientation, and evaluating the image irradiance caused 
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by this surface patch. Computationally this is equivalent to the evaluation 
of a single PEL of the synthetic image. The position of the surface element 
projected onto the centre of the partienlar PEL is obtained from the values 
ti,j,ti,j+l, ti+l,j and ti+l,J+l using formulas (5.13) and (5.9), while the surface 
normal is obtained using (5.11) through (5.16) and (5.1). 

The reflection map depends on the BRDF of the surface. The BRDFis in gen
eral unknown, and a Lambertian reflection is usually assumed. Since the Lam
bertian reflection model is specified by a single parameter kdif, the refiectance 
map can be obtained up to the one remairring unknown constant of proportion
ality, the coefficient kdif· The coefficient can be estimated from at least one 
surface element with a known surface normal orientation. Reuristics can be 
used to locate such a surface element. 

5.4.2 Photometric stereo 

In photometric stereo, more images of the surface to be recovered obtained from 
the same camera position under different lighting conditions are processed. It 
was the first time proposed by Woodham [80, 81], and since then successfully 
used by many authors [68, 42, 58, 47, 70]. Photometric stereo is a significantly 
simpler technique than SFS, because there are more constraints on the surface 
orientation. The number of available constraints is equivalent to the number 
of acquired images. Two images, providing two constraints (3.2), together with 
global constraints for resolving the ambiguities, are sufficient for the surface 
reconstruction. Another advantage is that if enough constraints are available, 
besides surface orientation, additional unknown parameters can be recovered, 
e.g. the reflectance coefficient kctif· 

The implementation of photometric stereo for the scene description correction 
is straightforward. The surface representation, reflectance map evaluation, and 
the technique for objective function minimization are shared with SFS. The 
objective function differs from the one for a SFS problem, and has the form 

n" 

Cps L Cirr,k, 
k=l 

(5.23) 

where nv is the number of camera views, and Cirr,k, k = 1, ... , n 11 are the 
objective function terms obtained from the respective images in the same way 
as in (5.17). 
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Chapter 6 

Conclusions and remarks 

In this thesis a metbod has been described for the verification of scene descrip
tions using an imaging model: a model of the scene illumination and image for
mation processes. The difference between the verification algorithm described 
in the thesis, and conventional computer vision algorithms is the accuracy of 
the applied imaging model, and the completeness of the representation of the 
scene, illumination, and the sensor (camera). Some techniques that are able 
to detect and to correct inconsistencies between the actual scene and the scene 
description are also given. 

To apply the verification method, the user must be in possession of the descrip
tion of the scene, which is generated by any computer vision algorithm. For the 
application of the verification method, the following assumptions must be valid: 

• the light reflectance of the surfaces in the scene can be described by a 
parametrie model (e.g. the Torrance-Sparrow reflectance model, the Lam
bertian model), 

• it is assumed that the scene consists of objects, with each object having 
constant reflectance properties over its faces, or surface parts, 

• the unknown part of the scene lighting can be specified by a small num
ber of parameters, sa that it can be obtained by parameter estimation 
techniques. 

There are several new results originating from this research: 

• Both the luminanee and reflectance parameters can be estimated from the 
acquired images using the imaging model. The ill-conditionedness of this 
approach is dealt with. 

91 
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• The difference between two images is evaluated by filtering the difference 
image using an adapted North filter, and used to make decisions about 
the candidate scene descriptions. A new method for the selection of the 
filter for the special case of a composite alternative has been proposed. 

• The reflectance maps for the shape from shading and photometric stereo 
techniques are evaluated using the imaging model. 

• The use of an accurate imaging model originating in computer graphics 
fora computer vision application is novel, and potentially brings a consid
erable improverneut of the performance of the computer vision algorithms. 
The field of applications of this technique is in robotics, and man-made en
vironments. Demand is also growing in virtual reality applications, where 
the aim is to create the descriptions of existing 3-D scenes automatically, 
without the need for human interaction. 

By using the imaging model, the system is able to exploit more information 
contained in the image than by using the conventional clues only. Experiments 
have shown that the system is feasible, and is able to make appropriate decisions 
about man-made scenes. The reliability of the complete system (a computer 
vision system and the scene description verification system) is improved when 
compared with the system without the verification. The time performance 
(the computation time) of the system is satisfactory for static scenes. The 
decisive power of the verification system depends on the kind of inconsistency 
between the scene and its description. The inconsistencies might be missed 
under certain circumstances, e.g. in poorly illuminated places, or when the 
reflectance of objects does not differ much from the background. Great care 
must be taken with the choice of the threshold level in the scene verification 
algorithm, affecting the probability of miss, and the probability of a false alarm. 

There are several ways to further improve the decisive power of the system with
out having to make a campromise between the above-mentioned probabilities. 

• In the thesis the processing of gray-scale intensity images is discussed. 
The system eau be extended in a straightforward way for the processing 
of multiband (colour) images. The dependenee of the surface reflectance 
on the wavelength, as well as the speetral distribution of light sourees 
must then be taken into account. We expect, that this will improve the 
decisive power of the verification system. 

• It is a well-known fact that lighting plays a crudal role in computer vision 
applications. The ability to control the scene lighting (to switch on and 
off the light sourees) is expected to increase the decisive power of the 
system. With the ability to process more images acquired under different 
illumination, the possibility of missing an inconsistency between the scene 
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and the description will decrease. Moreover, photometric stereo using the 
imaging model can he used for the correction of the inconsistent scene 
description. The questions about the placement of the light sourees and 
cameras in such a way that an optimal performance of the system (a 
predictive computer vision system plus the verification system) is achieved 
are also interesting. The imaging model might provide a good insight into 
this problem. 

• There would be an interest for fast verification techniques that use only a 
small number of appropriately chosen picture elements. Such techniques 
would allow cooperation with techniques using motion of the camera 
(structure from motion), or techniques for dynamic scenes. The verifica
tion would increase the reliability of such systems. Stochastic ray-tracing 
(because of the independent computation for partienlar picture elements), 
and the estimation and verification techniques developed in this thesis can 
be efficiently used for this purpose. 

• The system can be extended to handle a broader class of scenes, e.g. for 
the scenes with textured surfaces. Such extensions involve the issues of 
representation, parameterization, parameter estimation, and evaluation 
of the dUferenee between actual and synthesized images. An ultimate 
long-term goal might be a system for generic scenes. 
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Appendix A 

Imaging model summary 

This appendix contains information concerning the implementation of the imag
ing model which probably does nat belang to chapter 2. 

A.l Stochastic ray tracing 

The implementation of stochastic ray tracing is simply an evaluation of integral 
(2.38), page 31, at places where the traeed ray interacts with a surface. This is 
done in the following way: 

• The rays are traeed to all point light sources. In this way the first term 
on the right hand side of equation (2.42) is evaluated. The area light 
sourees are approximated by arrays of point light sources, therefore the 
second term is currently not evaluated. The diffuse as well as the speenlar 
reileetion of the light coming directly from light sourees are modelled in 
this way. 

• The term /2 (2.40) that rnadeis the diffuse reileetion caused by an indi
rect illumination is evaluated using stratified sampling of the illumination 
hemisphere. We use the distri bution of orientations of sampling rays pro
posed by Ward, Rubinstein and Clear [77]. We decrease the number of 
generated rays at each recursion level. The numbers of generated rays 
were in the most of experiments 8 rays at the first level ( the first interac
tion), and 2 rays at the second level. The generation of third level rays 
had no effect on the generated images. 
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• The term 13 (2.41) that roodels the specular part of reflection of an indirect 
illumination is neglected. 

When evaluating the integral, the reflectance model of the interacting surface 
is addressed. 

A.2 Surface reflectance model 

We have obtained the most satisfactory results with a simplified Torrance
Sparrow reflectance model. The Fresnel factor was approximated by a con
stant, which wasthen absorbed in the parameter kspec· This reflectance model 
is described by only three parameters: the coefficients kdif, kspec, and the angle 
f3h· 

A.3 Collaboration between imaging model and 
parameter estimation 

An imaging model and a parameter estimation procedures were implemented 
as a single program unit. The reason therefor was to maintain the efficiency 
of computations. The parameter estimation procedure addresses the imaging 
model repeatedly when computing successive iterations. 

Stochastic ray tracing functions in two stages: In the first stage rays used for the 
computation of an image irradiance are traced. This involves the generation of 
random ray directions and solution of the hidden surface problem when checking 
for the intersections with scene objects. The results are stored in operating 
memory, or a disk. The computation of the irradiance is deferred to the second 
stage. 

In the second stage the image irradiance, and if required also partial derivatives 
of the irradiance with respect to the parameters are computed using data struc
tures from the first stage. Only the second stage must be re-invoked when the 
parameters change. 

A.4 Scene and lighting description. 

One of the inputs of the imaging model is the description of the scene and 
the lighting. In the current implementation of the verification system, the de
scription is a text file with a specific format, which contains the specification 
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of objects in the scene, light sources, and the declaration of the radiometric 
parameters to be estimated. 

Scene objects. Each object of the scene is represented by its surface, con
sisting of a number of planar faces. Each face has a polygonal shape, and is 
represented by its vertices. Optical properties of the faces are specified by pa
rameters of the surface reflectance model. It is assumed that these parameters 
are constant over the whole face, i.e. a one set of parameters is assigned to 
the face. If it is appropriate, a single set of parameters describes the surface 
properties of the entire object, or more objects. The valnes of the reflectance 
parameters might be given, or they might be estimated by the estimation pro
cedure. The following is an example of the specification of the object CUBE. 

OBJECT{ CUBE, 
REFLEC(O, 0.21, 0.7, 12.3), 
POINT(O,O,O), POINT(500,0,0), POINT(500,500,0), 
POINT(0,500,0), POINT(0,0,500), POINT(500,0,500), 
POINT(500,500,500), POINT(0,500,500), 
FACE(1,2,6,5), FACE(4,8,7,3), FACE(2,3,7,6), 
FACE(1,5,8,4), FACE(5,6,7,8) } 

It contains the specification of the reflectance model parameters (REFLEC( ) ), 
the specification of coordinates of eight vertices{ POINT( ) ), and the specification 
of five faces {FACE( ) ). 

Curved surfacescan not be modelled using a chosen representation. They must 
be approximated by a number of planar facets. 

Light sourees In the current implementation only point light sourees can be 
represented. The point light souree is specified by its position, and its radiant 
flux. The following is an example of the point light souree specification: 

LIGHT{ INTENSITY(LT_INTS), POSITION(3010,-2080,3000) } 

Area light sourees can be approximated by a array of point light sourees with 
the radiant flux given by a single parameter. 

Radiometric parameters The surface reflection parameters and the light 
souree intensity can be estimated by the parameter estimation procedure. The 
parameters must be declared, and the information required by a parameter 
estimation procedure must be provided. This information includes an identifier, 
an initial value of the parameter, lower and upper bounds, and a toleranee for 
the estimated results. The following is an example of the parameter declaration: 

PARAMETER{LT_INTS, INITVAL•300, LOBOUND=O, HIBOUND=2000, TOLERANCE=0.5} 
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A.5 Camera specification 

The camera is represented by a pinhole camera model, extended by a lens 
distartion model proposed by Weng, Cohen and Herniou [78]. The camera model 
is specified by 16 parameters: 5 parameters specify intrinsic camera properties, 
5 parameters specify the camera and lens distortion, and 6 extrinsic parameters 
specify the camera position and orientation. The camera model parameters are 
obtained by a camera calibration procedure, and passed to the imaging model. 

A.6 Input conversion 

The scene description is generated automatically by the computer vision system. 
Next to this, an additional information about the known part of environment is 
mostly available in some form. A conversion program has been written which 
couverts the output of the computer vision system from its own specific format 
to the format accepted by the imaging model. At the same time the additional 
in formation is merged. This prevents a certain level of portability of the system. 



Appendix B 

Karhunen-Loeve Expansion 

The Karhunen-Loeve expansion, similarly to the Fourier expansion, is an ex
pansion of a fini te sequence of numbers (a vector) into a series of orthogonal 
sequences (vectors). The Karhunen-Loeve expansion is used for multivariate 
statistica! analysis. 

An m-dimensional random vector X = (X 1> ••• , X m )' can be expressed as the 
sum 

m 

X= LVk'I/Jk (B.l) 
k==l 

where column veetors 1/Jk, k = 1, ... , m form an orthonormal base: 

, { 1 for k = l, 
1/Jk'I/Jl = 

0 for k =f:. l. 
(B.2) 

The prime in the formula above denotes the transpose. The expansion coeffi
cients are calculated as the inproduct of the vector X with the base vectors, 

k= l, ... ,m. (B.3) 

We seek such an orthonormal base 1/Jk, k = 1, ... , m, that the expansion coeffi
cients are uncorrelated: 

{ 
>.k for k = l, 

E[Vklli] = 
0 for k =f:. l. 

(B.4) 

Such an expansion is called the Karhunen-Loeve expansion. The following the
orem tells us how to obtain such orthonormal base. 
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Theorem 2 Let Q be the covariance matrix of the random vector X, 

Q = cov(X) = E{[X E(X)][X- E(X)]'}. 

Let 1/Jk and >.k for k = 1, ... , m be the eigenveetors and eigenvalues of the 
covariance matrix Q. The expansion eoeffieients 

vk = 1/J~X 

are uneorrelated random variables of varianee >.k. IJ X is jointly gaussian, then 
Vk, k 1, ... , m are independent gaussian random variables. 

Proof: Normalized eigenveetors of the symmetrie positive definite matrix Q 
always form an orthonormal basis. Therefore 

Henee, the random variables Vk are uneorrelated, with varianee >.k. 

If X is jointly gaussian, coefficients Vk obtained as a linear combination of 
components of X are also gaussian, and consequently also independent. D 

We may treat the expansion coefficients as a vector V (V1, ... , V m )' and 
benefit from a more efficient notation. Furthemore, we may denote by \lf the 
m by m matrix eomposed of the column veetors 1/Jk, the eigenveetors of the 
eovarianee matrix Q, \lf = ( 1/J1 ... 1/Jm). We may write, equivalently to (B.1) and 
(B.3), that X \lfV, and V= w'X. 

In the next theorem, a formula which is analog to Parseval's formula for Fourier 
transform eoefficients is given. 

Theorem 3 Let u = ( u1, ... , Um)' and v = ( v1, ... , Vm )' be the Karhunen
Loeve expansion coefficients of two m-dimensional veetors x and y {two realiza- · 
tions of the random vector X}, respectively. Then 

Pro of: 

m m 

1n 

x'y = L UkVk = u'v 
k=l 

l:LukVtDkt 
k=ll=l 



0 

Another property useful for the derivation of the North filter is the following: 

Theorem 4 Let us denote ~~i) the i-th component of the vector '1/Jk· The 
Karhunen-Loeve orthonormal base veetors satisfy 

Proof: Columns of matrix llf are normalized eigenveetors of the symmetrie 
matrix Q. Consequently, the matrix I]J is orthorrormaL The proposition of the 
theorem follows from the faet, that an orthorrormal matrix llf has the property 

I]J llf' = llf'I]J = I, 

where I is an identity matrix. 0 

Theorem 5 The Karhunen-Loeve orthonormal base veetors satisfy 

where Bij is the covariance between the i-th and j-th component of vector X (the 
(i,j)-th element of matrix Q). 

Proof: Matrix I]J is composed of the eigenveetors ~k of the symetrie matrix Q. 
Let A be the diagorral matrix with the respective eigenvalnes >.k, k 1, ... , m 
on the diagonal. From the definition of eigenveetors and eigenvalnes 

QW =WA. 

After right multiplication by llf', we obtain 

Q = wAw' 

The proposition of the theorem is equivalent to the last formula written ele
mentwise. 0 

Theorem 6 Let >.k be the eigenvalue of the covariance matrix Q, and let Uk, Vk, k = 
1, ... , m be the K arhunen-Loeve expansion coefficients of x and y, respectively. 
Th en 

x=Qy 

ij and only ij 

for k = 1, ... ,m 
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Pro of: 

Therefore 

k=l 

KARHUNEN-LOEVE EXPANSION 

m 

k=l 

m 

=I: VkÀkWk 

k=l 

{B.5) 

the theorem follows from the uniqueness of the expansion. 0 



Appendix C 

Matched filter for a 
composite alternative 

Our goal is to design a decision procedure with the structure given in figure 4.2, 
page 60, for a decision problem with the composite alternative: 

Ho: X"" .N'(O,Q) 
H1: X "".N'(p,Q); pEP, 

(C.l) 

where set P is a countable set of veetors representing the patterns to be detected 
in a noisy image. We propose to use the filter that satisfies the criterion ( 4.33), 
page 65. As it is shown in section 4.2.3, this leads to the solution of the problem 

s = argmax {mint' s} senm tET 
(C.2) 

subject to the constraint s' s = 1. The set T is obtained from the set P by the 
Karhunen-Loeve transformation of the elements of the set P and their substi
tution according to ( 4.30). We will derive the solution of the problem for the 
case of a fini te set T = { h, ... , tn}, with linearly independent elements, that 
means I:~1 c..ti =/= 0 for all (c1, ... , en)=/= (0, ... , 0). This also implies n::; m. 

The problem has the following geometrical interpretation. The set T contains 
n points ti, i 1, ... , n in the m-dimensional space. Let a be a hyperplane 
passing through the origin 0 with the normal direction given by the unit length 
vector s. The dot products t~s is an oriented distance of the point ti from the 
hyperplane a (i.e. a positive distance for points in one half space, and negative 
in the other half space defined by the hyperplane a). The goal is thus to find 
such surface normal orientation s that the distance of the point ti E T which is 
the dosest to the plane a is maximized. 
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The following proposition restricts the solution set: 

Proposition 1 Let Ar be the linear subspace spanned by veetors ti, i = 1, ... , n 
contained in the set T. Then the solution of the problem (C.2}, the vector s, be
langs to a subspace Ar and all its coordinated with respect to the base t 1 , .•• , tn 
are non-negative. Hence, for the vector s we can write: 

n 

s = L:citi, 
i=l 

with Ci ;;::: 0 for i = 1, ... , n (C.3) 

lt can be shown that there exists a unique hyperplane 1r with the normal 
vector p = (p1 , ... ,pm)' from the subspace Ar, which contains all points 
ti, i 1, ... , n. For the normal vector we can write 

n 

p= L:aik (C.4) 
i=l 

The coordinates ai, i = 1, ... , n of the normal vector p with respect to the base 
t1, ... , tn are the solution of a system 

t~p = t~(a1h + · · · + antn) = 1, for i= 1, ... , n. (C.5) 

On the right hand side of equations (C.5) there might be an arbitrary constant, 
since the length of the normal vector p can be scaled. Let us denote T the 
m x n matrix with the columns ti, i = 1, ... , n. The above equations constitute 
a system T'Ta = ( 1, ... , 1 )', where a = ( a1, ... , an )' specifies the normal vector 
p. Matrix T, as wellas the matrix T'T, have full column rank, which confirms 
the uniqueness of the solution. 

The normal vectorpof the plane 1r aft er sealing to a unit length is a candidate for 
the solution s. The case when the vectorpis the solution of the problem (C.2) 
is shown on a two-dimensional example iri figure C.la. In this case the planes 
u and 1r are parallel. In some cases the normal vector p does not satisfy the 
requirements of the proposition 1, and consequently is nota solution. Such case 
is shown in figure C.lb. Then, the solution can be obtained by the following 
algorithm: 

Algorithm C.l 

1. The coordinates ( a1, ... , an) of the vector p with respect to the base 
t1, ... , tn are computed by solving the system C.5. 

2. The coordinates of the solution s with respect to the base t1, ... , tn are 
determined as 

ei max{ai,O}, for i = 1, ... , n, (C.6) 

so that they satisfy the requirements of the proposition 1. 
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1t 1t 

0 

a) b) 

Figure C.l: Hyperplane 1r containing the points t; E T and the salution vector 
s. 

3. The salution vector is computed and scaled to the unit length: 

(C.7) 

Proposition 2 The vector s computed by the algorithm C.l is a salution of a 
problem (C.2}. 

Once this problem is solved, expansion coefficients w = ( w1 , ... , Wm )' of the 
required filter are obtained from the found vector s by a back substitution via 
the inverse of ( 4.29), page 64. The coefficients f of the filter for the decision 
procedure are obtained by the inverse Karhunen-Loeve transformation of the 
vector w. 

When computing the detection filter coefficients, the Karhunen-Loeve trans
farm and inverse transfarm must be used in generaL In the case of a diagorral 
covariance matrix Q, the Karhunen-Loeve transfarm is an identity, and in this 
case the filter design problem can he directly solved in the spatial domain. 
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List of symbols 

:n 
\lef(B) 
A 
Ao,At 
AL 
A 
B 
Ctot 

CirnCsmt> 

Creg,Cedg 

Cps 
c(t) 

D(-) 
1) 

d 
d, di 
dO 
dw 

Ei 
E 

F(n) 
f 
f 
f(x) 
f(x,y) 
G 

g(x) 

identity matrix 
Jacobian of a function f(B) 
area of interest on the image plane in [m2] 

events, subsets of a parameter space of a decision problem 
surface of extended (area) light sourees in [m2] 

set of indices of picture elements inside an area of interest A 
set of indices of nocles inside an area of interest A 
objective function for shape from shading 

termsof an objective function for shape from shading 
objective function for photometric stereo 
vector function, components are constraints on the shape from 
shading salution 
distribution of micro-facetsof a rough surface 
decision space 
lens diameter in [m] 
decision, an element of D 
elementary surface patch in [m2 ] 

solid angle subtended by the lens in [sr] 
irradiance, incident irradiance in [W· m-2] 

operator of an expectation of a random variabie 
Presnel coefficient, Presnel term 
distance of the image plane from the optical centre in [m] 
column vector containing filter coefficients 
probability density function in the Monte Carlo metbod 
function specifying a surface shape in [m] 
geometrical attenuation (masking/shadowing) factor of the 
Torrance-Sparrow reflectance model 
set of possible scene descriptions 
geometrical factor, operator of application of a geometrical fac
tor in [m-2] 

sampled function in the Monte Carlo metbod 
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h 
J(x1,x2) 
I 
J 
Kij 

kdif 

kspec 

L, L., Le 
Lï 
L(w,d) 
f 
M 
N 
N(m,Q) 

LIST OF SYMBOLS 

null hypothesis (a hypothesis) of a decision problem 
alternative hypothesis (an alternative) of a decision problem 
image plane irradiance computed by the imaging model in 
[W·m-2] 

unit length vector bisecting the angle between veetors v and f 
two point transport intensity from x2 to x1 in [W· m-4] 
set of indices of all picture elements on the image plane 
Jacobian matrix 
form factor for the radiosity method 
coefficient of diffuse reileetion in [sr-1] 

coefficient of specular reileetion in [sr- 1] 

radiance, reilected radiance, emitted radiance in [W· m-2 . sr-1] 

incident radiance in [W· m-2 . sr-1] 

loss function of a decision problem 
unit length vector in the direction to the light souree 
finite dimensional operator corresponding to M 
noise, a random vector 
normal distribution with the mean m and the covariance Q 
refraction indices of media 

ii surface normal 
nsp specular power, a coefficient of the Phong reilectance model 
P(A) probability of an event A 
P set of patterns p forming a composite alternative hypothesis 
p pattem to be detected by the North filter, a column vector 
p, q gradient of a surface z = f(x, y), p = 8f j8x and q = 8f j8y 
Q covariance matrix of the random sample vector 
R(ii), R(p, q) reilectance map in [W· m-2] 

R( 1r, d) risk, an expected loss by making a decision d 
r distance from the optical centre to a projected surface in [m] 
Tjk distance between surface patches in the radiosity method in [m] 
S matrix square root of the inverse of the covariance matrix Q · 
S scene, a set of scene surfaces in [m2] 

si surface patches in the scene in [m2] 

T, T2 threshold value for a likelihood ratio test 
t vector of parameters ti,j specifying a surface projected onto an 

area of interest 
t . t,J 

w 
x 
x 

parameter specifying the distance of the surface projected onto 
the node (i, j) 
image plane coordinates in [m] 
expansion coefficients of the Karhunen~Loeve expansion 
unit length vector in a direction to a viewer 
parameter of a decision problem 
random variabie or a random vector 
sàmple space of a decision problem 



X1,X2,X3 

x,y,z 
y 

y 

zi 
a,ati 

/3,/36 
f3 
f3h 

Î 
6(x) 
.:(x1,x2) 
e 
f) 

êML,ê 
Bi 
Br 

"' A 
À 

Àk 

M 
1r(w) 
1ro(w) 
Pbd 

Pdif 

Pspec 

p(X1,X2,X3) 

Cf> i 
Cf>(.) 

w 

surface points, surface patches in the scene 
cartesian system coordinates 
random vector 
realization of the random vector Y, an observation 

· position of a point light souree 
probability of a type I error, probability of false alarm 
probability of a type II error, probability of miss 
off-specular angle, an angle between veetors n and h in [rad] 
off-specular angle for which the density of micro-facets drops 
to 1/2 of its maximal value in [rad] 
angle between veetors v and h, and between f and h in [rad] 
decision procedure, decision rule 
emitted two point transport intensity in [W · m - 2] 

parameter space, a feasible set of parameters 
vector of parameters 
maximum likelihood estimate of 0 
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azimuth angle of an incident direction in [rad] 
azimuth angle of a reflected direction in [rad] 
surface albedo 
diagonal matrix with correlation coefficients Àk on a diagonal 
thereshold of a likelihood ratio 
correlation coefficients of the Karhunen-Loeve expansion coeffici
ents vk 
integral operator in the rendering equation 
probability of an event w 
a priori probability of an event w 
bidirectional reflectance, BRDFin [sr-1] 

diffuse part of the bidirectional reflectance in [sr- 1 J 
specular part of the bidirectional reflectance in [sr..., 1] 

intensity of light scattered from X3 to X1 by x2 

radiant flux of a point light souree in [W] 
cummulative distribution function for the normal distribution 
N(O, 1) 
zenith angle of an incident direction in [rad] 
zenith angle of a reflected direction in [rad] 
angle between a projecting ray and the optical axis in [rad] 
orthonormal matrix with the orthonormal base veetors Wk as its 
columns 
veetors of the orthonormal base 
hemisphere above a surface element in (sr] 
parameter space of a decision problem 
solid angle in [sr] 



Samenvatting 

Er wordt een techniek voor het verifiëren van scène beschrijvingen gepresen
teerd die gebruik maakt van een afbeeldingsmodel. Dit model beschrijft de 
scènebelichting en het beeldvormingsproces. Er wordt verondersteld dat de 
geverifieerde scènebeschrijving is verkregen met een computer vision systeem. 
Het verificatiemethode bevat een schatting van de onbekende scèneparameters 
en een beslissingsmetbode gebaseerd op het oorspronkelijke beeld en het afbeel
dingsmodel. 

Het beeld van een scène dat geprojecteerd wordt op een beeldscherm is het re
sultaat van een wisselwerking van licht met de voorwerpen in de scène en een 
camera beeldvlak. Besproken worden oppervlakte-reflectiemodellen, een came
ramodel en een drietal technieken voor de berekening van de globale verlich
ting, 'ray tracing', 'radiosity' en stochastische ray tracing. Als onderwerp voor 
de verificatie van een scènebeschrijving wordt een afbeeldingsmodel genomen 
dat bestaat uit stochastische ray-tracing en het Torrance-Sparrow oppervlakte
reflectiemodeL 

Bij het gebruik van een afbeeldingsmodel is kennis van oppervlaktereflectiepa
rameters en parameters van de lichtbronnen onontbeerlijk. Deze parameters 
zijn ook de parameters van het afbeeldingsmodel. Voor de schatting van de 
onbekende parameters wordt een 'maximum-likelihood' techniek voorgesteld. 

Voor de verificatie van scènebeschrijvingen wordt een beslissing methode voor
gesteld die bestaat uit de aftrekking van het camera beeld van het synthetisch 
beeld (een beeld gemaakt met het afbeeldingsmodel), voorts een lineaire filtering 
van de aftrekking d.m.v. een North filter, en een drempeling van het gefiltreerde 
beeld. Het blijkt dat voor het bijzondere gevc~,l van een eenvoudige hypothese 
en een eenvoudig alternatief deze methode een optimale beslissingsmethode is 
in de Neyman-Pearson betekenis. De verificatie van de scènebeschrijving is een 
beslissingsprobleem met een eenvoudige hypothese en een samengesteld alter
natief. Voor het bepalen van geschikte filter coëfficiënten in de bovengenoemde 
beslissingswijze wordt een methode gegeven. 

Ten slotte worden er enkele methoden voor de verbetering van de scènebeschrij
ving gegeven, die gebruikt kunnen worden indien een discrepantie tussen de 
scènebeschrijving en de verworven beelden wordt geconstateerd. De technièken 
die bij het afbeeldingsproces worden gehanteerd worden besproken. 

De toepassing van de techniek wordt in een aantal beproefde experimenten 
onderbouwd. 
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1. The absence of performance characterization in many computer vision 
algorithms publisbed in the past suggests that there has been a sort of 
scientific deficiency in the computer vision society. The mere fact that 
a specific task can be done was important. Nowadays, this gap is be
ing filled as it becomes increasingly necessary to quickly design computer 
vision systems which work efficiently, and which meet specified require
ments. 
(Haralick, In D. Chetverikov and W. Kropatch, editors, Computer analy
sis of images and patterns, Lecture notes in computer science, Springer
Verlag, 1993, pp. 1-9) 

2. As an approximation to Maxwell's equation for electromagnetics, the 
equation 

does not attempt to model all optical phenomena. It is essentially a 
geometrical opties approximation. 
(Kajiya, Computer Graphics, vol. 20, No. 4, 1986, pp. 143-150, and this 
thesis, chapter 2) 

3. In stochastic ray tracing, the imaging model output is obtained as aresult 
of a chance mechanism. The aim of using this model is to obtain the least 
random results possible. 
(This thesis, chapter 2, chapter 4) 

4. It is unrealistic to expect that a computer vision system is able to interpret 
images which cannot be clearly interpreted by a trained human observer. 

5. Presentation of results and advertising oneself, in short 'public relations', 
is a necessary and highly-valued, but time-demanding activity. For those 
who can not maintain a delicate balance between research and PR, an ul
timate result might be a situation where the presentation and pubHeation 
take all available time and there is no more time to do the work to be 
presented. 



6. Every political system is the rule of an initiative-taking minority acting 
in favour of its own interests, over the majority of the people. Both 
these groups co-determine the politica! system: the ruling minority by 
implementing the system, and the majority by accepting it. 

7. In contrast to the USA and the farmer communist countries, the demo
cratie system and the market economy have brought a high living stan
dard and a high degree of social security simultaneously to West European 
countries. The question is whether both can be preserved at the current 
level in the future. 

8. It is difficult to learn the Dutch language. Therefore it is misleading to 
confuse the capability of coherent thought with the capability of coherent 
expression. 




