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Resumen

La ecuación de radiosidad tiene por objetivo el cálculo de la interacción de la luz
con los elementos de la escena. Ésta se puede expresar como un sistema lineal,
cuya resolución ha derivado en el desarrollo de diversos métodos gráficos para sa-
tisfacer propósitos espećıficos. Por ejemplo, en problemas inversos de iluminación
para geometŕıas estáticas, se debe resolver la ecuación de radiosidad miles de veces.
Además, este cálculo debe considerar muchos (infinitos) rebotes de luz, si se quieren
obtener resultados precisos de iluminación global. Entre los métodos desarrollados,
se destacan aquellos que generan aproximaciones u otras representaciones de la ma-
triz de radiosidad, debido a que su almacenamiento requiere grandes cantidades de
memoria. Algunos ejemplos de estas técnicas son la radiosidad jerárquica, el refi-
namiento progresivo y la radiosidad basada en wavelets. Si bien estos métodos son
eficientes en cuanto a memoria, pueden ser lentos cuando se requiere el cálculo de
muchos rebotes de luz, debido a su naturaleza iterativa. Recientemente se han de-
sarrollado métodos eficientes para la resolución directa de la ecuación de radiosidad,
basados en el pre-cómputo de la inversa de la matriz de radiosidad. En estos casos,
el desaf́ıo consiste en reducir los requerimientos de memoria y tiempo de ejecución
para el cálculo de la matriz y de su inversa.

El principal objetivo de la tesis consiste en explotar propiedades espećıficas de
ciertos problemas de iluminación para reducir los requerimientos de memoria de
la ecuación de radiosidad. En este contexto, se analizan dos casos diferentes. El
primero consiste en hallar la radiosidad para escenas con alta coherencia espacial,
tal como ocurre en algunos modelos arquitectónicos. El segundo involucra escenas
con un elevado factor de oclusión entre parches.

Para el caso de alta coherencia espacial, se presenta un nuevo método de fac-
torización de matrices que es computacionalmente eficiente, y que genera aproxima-
ciones cuyo error es configurable. Está basado en el uso de múltiples descomposi-
ciones en valores singulares (SVD) junto a una curva de recubrimiento espacial, lo
que permite explotar la coherencia espacial. Esta técnica acelera la factorización
de matrices que entran en memoria, y permite trabajar con matrices que no entran
en memoria, recorriéndolas una única vez. En el análisis experimental, el método
presentado es aplicado a escenas de hasta 163 mil parches. Luego de una étapa de
precómputo, se logra resolver la ecuación de radiosidad en tiempos interactivos, para
geometŕıas estáticas e infinitos rebotes.

Para el problema de alta oclusión, se utilizan modelos de ciudades. En este caso,
se aprovecha la baja densidad de la matriz de radiosidad, y se propone una técnica
para el cálculo aproximado de su inversa. En este cálculo, los elementos cercanos
a cero son eliminados. La técnica es aplicada a la simulación de la luz natural en
ambientes urbanos compuestos por hasta 140 mil parches.

Palabras clave: radiosidad, iluminación global en tiempo real, factorización
de matrices, matrices dispersas, intercambio de radiación en ciudades, luz natural.





Abstract

The radiosity equation can be expressed as a linear system, where light interactions
between patches of the scene are considered. Its resolution has been one of the main
subjects in computer graphics, which has lead to the development of methods fo-
cused on different goals. For instance, in inverse lighting problems, it is convenient
to solve the radiosity equation thousands of times for static geometries. Also, this
calculation needs to consider many (or infinite) light bounces to achieve accurate
global illumination results. Several methods have been developed to solve the linear
system by finding approximations or other representations of the radiosity matrix,
because the full storage of this matrix is memory demanding. Some examples are
hierarchical radiosity, progressive refinement approaches, or wavelet radiosity. Even
though these methods are memory efficient, they may become slow for many light
bounces, due to their iterative nature. Recently, efficient methods have been devel-
oped for the direct resolution of the radiosity equation. In this case, the challenge
is to reduce the memory requirements of the radiosity matrix, and its inverse.

The main objective of this thesis is exploiting the properties of specific problems
to reduce the memory requirements of the radiosity problem. Hereby, two types
of problems are analyzed. The first problem is to solve radiosity for scenes with a
high spatial coherence, such as it happens to some architectural models. The second
involves scenes with a high occlusion factor between patches.

For the high spatial coherence case, a novel and efficient error-bounded factor-
ization method is presented. It is based on the use of multiple singular value decom-
positions along with a space filling curve, which allows to exploit spatial coherence.
This technique accelerates the factorization of in-core matrices, and allows to work
with out-of-core matrices passing only one time over them. In the experimental
analysis, the presented method is applied to scenes up to 163K patches. After a
precomputation stage, it is used to solve the radiosity equation for fixed geometries
and infinite bounces, at interactive times.

For the high occlusion problem, city models are used. In this case, the sparsity of
the radiosity matrix is exploited. An approach for radiative exchange computation
is proposed, where the inverse of the radiosity matrix is approximated. In this
calculation, near-zero elements are removed, leading to a highly sparse result. This
technique is applied to simulate daylight in urban environments composed by up to
140k patches

Keywords: radiosity, real-time global illumination, matrix factorization, sparse
matrices, urban radiation exchange, daylighting.
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Chapter 1

Introduction

Computers have helped simulating many physical phenomena since their beginning.
In fact, most of the advances on computer systems have been driven by the goal
of modeling and approximating different types of nature’s events [Freed and Ishida,
1995]. In this matter, computer graphics techniques have focused on simulating
the human vision and light interaction with objects, which behave according to
their physical properties [Foley et al., 1994]. Global illumination (GI) methods
try to consider the light indirectly reflected and transmitted by components of the
scene, with the objective of generating photo-realistic images, or physically-realistic
data results [Ritschel et al., 2012]. Moreover, the computational efficiency of GI
algorithms is an important subject of study, since the models to handle are often
large, and light-object interaction is costly to simulate.

Historically [Ritschel et al., 2012], there have been two main approaches to solve
the GI problem: ray-based techniques and radiosity methods. Both are designed to
solve the indirect illumination by modeling light interaction in the scene, but they
are well-suited for different types of problems. For example, ray tracing engines
can simulate glossy reflections efficiently, while radiosity methods are designed for
diffuse surfaces. Computing diffuse reflections using ray tracing is computation-
ally expensive, as well as calculating glossy illumination using radiosity becomes
inefficient.

In recent years, several techniques have been developed based on both ap-
proaches, even mixing them to accomplish more general solutions [Bouatouch and
Bouville, 2013]. Nevertheless, it is still a good strategy to analyze every specific
problem before choosing the technique to be used, in order to obtain realistic results
in short execution times. In addition, developing new GI algorithms, or implement-
ing existing schemes with a specific problem in mind, can be a good option if the
problem shows properties that can be exploited. In this thesis, we study two variants
for the classic formulation of the radiosity algorithm that take advantage of specific
features of the problems to solve.

The radiosity method [Goral et al., 1984] is a GI technique for scenes with lam-
bertian surfaces. It has been applied in many areas such as computer animation,
architectural design and heat transfer. The term “radiosity” stands for the emitted
and reflected energy leaving a surface. Its mathematical formulation leads to an
integral equation that can be solved through the use of a finite element methodol-
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1.1 Challenges and objectives 4

ogy. The discretization of the linear problem brings new obstacles to the strategy,
since the error of the representation must be minimized. Usually, several thousand
polygons (n “patches”) are needed to represent the geometry of a scene precisely. In
the classic formulation, the linear system is represented by a n×n matrix called the
radiosity matrix. This leads to a computational complexity of O(n3) and memory
requirement of O(n2), which becomes an important restriction for medium-to-large
problems. Therefore, other methods have been proposed to approximate radiosity
solutions using less memory and operations [Cohen et al., 1986, 1988, Hanrahan
et al., 1991].

1.1 Challenges and objectives

Despite the previous fact, the computation of the classical radiosity linear system
has advantages for some types of problems. For example, in problems where the
geometry of the scene is static and only the emission changes, the illumination
can be computed quiet efficiently after a pre-computation stage. In this case, the
challenge is to reduce the memory requirements of the radiosity matrix by finding an
alternative representation. This challenge becomes the main objective of this thesis:
exploiting the properties of specific problems to reduce the memory requirements of
the radiosity matrix.

After the radiosity matrix is approximated, the illumination of the scene is cal-
culated by solving the linear system of equations. Among other techniques, this can
be achieved using iterative methods (such as Jacobi or Gauss-Seidel [Cohen et al.,
1993]), or by inverting the matrix. In the iterative approach, each iteration repre-
sents a new bounce of light in the scene, which allows to control the precision of
the final solution. More iterations lead to more realistic approximations, but require
larger execution times. On the other hand, the inverse of the radiosity matrix allows
to find solutions with infinite bounces with just one matrix-vector product. Invert-
ing this matrix can be another challenging pre-computation operation, but it may
be worth if the problem allows to do it efficiently. This brings the second objective:
finding reduced representations of the radiosity matrix that allow to approximate
its inverse efficiently.

1.2 Specific problems to solve

Given the previous motivations, two different problems are analyzed and solved
in this thesis. In both cases, the radiosity matrix is represented in a compressed
manner, and its inverse is approximated to compute real-time radiosity solutions
for static scenes and dynamic emissions. The first problem is to solve radiosity
for scenes with a high spatial coherence, such as architectural models. The second
involves scenes with a high occlusion factor between patches. In particular, urban
environments are studied and daylight simulation is performed.

Scenes with a high spatial coherence. In this kind of scenes, matrices
involved in radiosity calculations have a low numerical rank [Baranoski et al., 1997],
because close patches have a high probability of being affected similarly by the rest of



1.3 Thesis structure 5

the scene. This fact enables the application of factorization techniques to compute
low rank approximations that can be stored in main memory. For this purpose,
a hierarchical factorization (HF) technique for radiosity calculations is proposed.
This technique implements a divide-and-conquer strategy based on the calculation
of multiple singular value decomposition (SVD factorization [Golub and Van Loan,
1996]). In addition, the sorting of rows/columns of the matrix by similarity is
exploited to speed-up the technique. For this purpose, we use the Z-order curve
[Morton, 1966] over the patches of the scene, because each patch is associated to a
row/column in the matrix. This method is intended to accelerate the factorization
of in-core and out-of-core matrices, requiring just one pass. Using this method,
the inverse of the radiosity matrix can be efficiently approximated, reducing the
memory and time resources needed to compute radiosity with infinite bounces. In
the experimental analysis, the method is applied to scenes up to 163K patches.

Scenes with a high occlusion factor between patches. Two patches com-
pletely occluded do not exchange energy directly. If this property is satisfied for
most pair of patches on a scene, then the radiosity matrix is a sparse matrix. Since
this property is present in City models [Wimmer and Bittner, 2015], an approach for
radiative exchange computation that can approximate the inverse of the radiosity
matrix is proposed. The problem is formulated as a Neumann series [Golub and
Van Loan, 1996] and the inverse is approximated by eliminating unimportant terms.
The application of this technique on different kinds of urban models shows that an
accurate approximation of the inverse of the radiosity matrix can be computed. This
allows to calculate radiosity for models composed of 140k patches efficiently.

1.3 Thesis structure

The rest of the thesis is organized as follows. Chapter 2 introduces the state of the
art and related works. First, the global illumination problem is defined, and the
radiosity method is presented thoroughly. The most used techniques for radiosity
calculations are described here, along with some aspects about the low-rank prop-
erties of the radiosity matrix, and the use of sparse matrices. Then, the matrix
factorization problem and some decomposition strategies are shown. Finally, the
field of radiative methods for urban environments is presented. Chapter 3 defines a
technique for reducing and inverting the radiosity matrix in scenes with a high spa-
tial coherence. A factorization algorithm is described, and several studies, such as
error bound and computational complexity, are developed. Next, the experimental
analysis is reported, including studies on the performance of the algorithm and a
comparison with other factorization techniques. In this section, radiosity results are
computed using the proposed method. Chapter 4 proposes a technique for radiosity
calculations in scenes where there is a high occlusion factor between patches. In
particular, urban models are used because they satisfy this condition. A daylight
simulation method is used to define a realistic illumination problem for the experi-
mental analysis section. The sparsity results for the radiosity matrix and its inverse,
associated to several cities are shown, and skylighting is computed to test the algo-
rithm. Finally, Chapter 5 is dedicated to the conclusions and main lines of future
work.
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1.4 Table of symbols

symbol definition

HF Hierarchical Factorization method

n number of patches

k, r matrix rank

σmax largest singular value (σmax=σ1)

σi ith singular value (σ1 ≥ σ2 ≥ ... ≥ σi ≥ ... ≥ 0)

ε expected error

εp expected error of parent node

εch expected error of child node

µ, σ mean and standard deviation

u, v left and right singular vectors

vmax right singular vector associated to σmax

B radiosity vector

B̃ approximation to the radiosity vector

E emission vector

I n×n identity matrix

Ik k×k identity matrix

R diagonal matrix with reflectivity indexes

F form factors matrix

RF matrix result of the product R·F
(I−RF) radiosity matrix

M (I−RF)−1

M̃ approximation of M

Uk, Vk n×k matrices, UkV
T
k ≈ RF

Qk UkDk

Dk diagonal matrix with σ1. . .σk

(A1|A2) matrix partition in two column blocks

Table 1.1: Symbol notation and meaning.
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1.5 Table of quantities

quantity meaning unit

radiant flux
Radiant energy emitted, reflected,

transmitted or received, per unit time.
W

radiosity
Radiant flux emitted, reflected and

transmitted by a surface per unit area.
Wm−2

irradiance Radiant flux received by a surface per unit area. Wm−2

radiant intensity
Radiant flux emitted, reflected, transmitted

or received, per unit solid angle.
Wsr−1

radiance
Radiant flux emitted, reflected, transmitted or received

by a surface, per unit solid angle per unit projected area.
Wm−2sr−1

luminance
Luminous power per unit solid angle per unit

projected source area.
cdm−2

illuminance Luminous power incident on a surface. cd srm−2

Table 1.2: Quantities used in the thesis, along with the correspondent units [Vollmer
and Möllmann, 2010]. W is watts, and m is meters. sr is steradian, which is the
unit of solid angle (square radian), and cd is candela.





Chapter 2

State of the Art

This chapter introduces an overview of the most important areas and works related
to this thesis, which includes defining the Global Illumination problem, the radiosity
method, studying some techniques for matrix factorization, and urban radiative
methods.

2.1 Global Illumination

In computer graphics, an illumination model calculates the color of a point in space
by studying its light emission and the incoming light after reflection from and/or
transmission through other surfaces in the scene [Foley et al., 1994]. When the model
takes only direct lighting into account, it is called a local illumination model. On the
other hand, global illumination (GI) is the light indirectly reflected and transmitted
by other components on the scene.

In general, light arriving at a point A from some other point B is considered as
“direct” if it is generated in B. If the arriving light was reflected or transmitted
before arriving at A, then it is considered as “indirect” illumination [Ritschel et al.,
2012].

Light in real-world environments is composed of both direct and indirect sources.
This creates visual phenomena such as color bleeding, reflections, crepuscular rays,
and caustics [Ritschel et al., 2012], whose computational modeling is a challenging
problem. It is often useful to develop simplified models, customized algorithms and
data structures that help in the simulation of global illumination.

It is important to classify global illumination algorithms into view-dependent
and view-independent. The former discretize the view window into points where the
illumination is computed, usually by an independent (and hence parallel-friendly)
calculation. Examples of view-dependent GI algorithms are Ray Tracing [Kuchkuda,
1988] and Instant Radiosity [Keller, 1997]. On the other hand, view-independent GI
techniques discretize the scene and process it in such way that the illumination can
be computed at any point, without considering the viewing direction. Examples of
this are Radiosity [Cohen et al., 1986] and Photon Tracing [Jensen, 2001]. View-
dependent algorithms are well suited for specular surfaces, while view-independent
are specifically built for working with diffuse materials.

9
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According to Glassner [1994], the most general equation that relates the global
interaction between light and matter is the “full radiance equation”, which takes
into account phenomena such as photon transport in scattering media, polarization,
phosphorescence and fluorescence.

Kajiya [1986] proposed a simple approach to model the GI problem, called the
“rendering equation” (Eq. 2.1). This equation is time invariant, where the media
has a homogeneous refractive index, and light wavelength or polarization properties
have no influence.

I(x, x′) = g(x, x′)

[
ε(x, x′) +

∫
S
ρ(x, x′, x′′)I(x′, x′′)dx′′

]
(2.1)

I(x, x′) represents the radiance (measured in W m−2 sr−1, see Table 1.2) going from
x′ to x (Figure 2.1). The geometric term g(x, x′) is equal to 0 when x and x′ are
occluded from each other, and 1/r2 otherwise, being r the distance between them.
ε(x, x′) and ρ(x, x′, x′′) are related to the intensity of light, emitted from x′ to x,
and scattered from x′′ to x by a patch of surface at x′, respectively.

x’’

x’

x

I(x’,x’’)I(x,x’)
ε(x,x’)

r

Figure 2.1: Some elements of the rendering equation.

The illumination problem involves a wide range of physical phenomena: direct
and indirect lighting, ambient occlusion, natural illumination, single and multiple
bounces, caustics, diffuse and glossy bounces, and scattering. Simulating all these
effects using one single global illumination algorithm becomes a difficult task, where
time rates are always a restriction. Therefore, several methods were proposed to
solve the rendering equation, each one addressing different problems and phenomena.
Despite this fact, there are some concepts which are usually solved by the most
common GI algorithms, such as multiple light bounces, multiple light sources, and
different materials. These variables affect directly on the execution times.

Ritschel et al. [2012] establishes that the classical methods to compute global
illumination are: Finite elements (e.g., radiosity) [Goral et al., 1984], Monte Carlo
ray tracing [Kajiya, 1986], photon mapping [Jensen, 1996], instant radiosity [Keller,
1997], many-light-based global illumination [Hašan et al., 2007, Walter et al., 2005],
point-based global illumination [Christensen, 2008, Ritschel et al., 2009], discrete
ordinate methods [Chandrasekar, 1950], and precomputed radiance transfer [Sloan
et al., 2002]. Before getting a deeper insight into the radiosity algorithm, some
state-of-the-art GI algorithms are briefly described next.

Ray tracing is one of the most used techniques for GI. It has been utilized
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since the beginnings of computer graphics [Appel, 1968]. It offers a solution for
computing visibility in a scene, applying very simple geometry concepts to simplify
the rendering equation. The main idea of this algorithm consists on tracing rays
(which are represented as lines in the 3D space) in order to follow light or view-
directions, which combined with some local illumination techniques (such as the
Phong reflection model) allow to simulate a wide range of light phenomena. For
example, the Whitted ray tracing algorithm [Whitted, 1979] is a view-dependent
technique that consists on tracing rays from the camera point through the pixels
of the view plane. Each ray is intersected with the scene, in order to compute its
corresponding color. First, shadow rays are traced from the intersected point to
the light sources, in order to determine if the area is in shadow. Then, the local
illumination (ambient+diffuse+specular) is computed, and other rays are recursively
casted symmetrically to simulate reflections. The final color is composed of the local
illumination and the reflections. Alternatively, refracted rays can be added to the
algorithm in a very simple manner, following Snell law to calculate the direction
changes in rays. The principal components of the algorithm are shown in Fig. 2.2.

Object

Refracted ray

Reflected ray

Camera point

View plane

Light source

N

Primary 
ray

Shadow 
ray

Figure 2.2: Ray tracing components.

The previous scheme is very simple, but it is not able to compute other phenom-
ena such as indirect illumination coming from diffuse surfaces, glossy reflections or
caustics. For this purpose, Monte Carlo methods were combined with ray tracing
to stochastically consider every possible light path. This technique, called Monte
Carlo Ray Tracing [Jensen et al., 2003], is based on casting random rays from the
intersected points to accumulate the radiance contribution.

Another ray-based method that has been subject of development in recent years
is photon mapping, introduced by Jensen [1996]. It is a two pass GI method based on
the concept of photon, which are packets of energy emitted from light sources to the
scene. These photons are treated as infinitesimal points that travel in straight lines.
In this way, the technique starts by casting rays in different directions from the light
sources, simulating reflections and other light phenomena, and storing the hit points
in a map structure, called photon map. Then, at each visible point, the illumination
is computed by operating with the stored photons that are near. The photon map
is used to accelerate these operations. This first pass is view-independent, while the
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second is view-dependent.

On a different path than previous algorithms, instant radiosity [Keller, 1997] is a
very efficient GI technique to generate photo-realistic image synthesis. In spite of its
name, this method is neither based on radiosity nor a finite element methodology.
It takes this name because it is able to simulate the radiosity algorithm using fewer
resources. The technique works in two main steps. First, a small number of photons
are traced from the light sources into the scene. The hit points are called Virtual
Point Lights (VPL), and are used to generate a first diffuse radiance approxima-
tion using a Quasi-random walk (similar to Monte Carlo). Secondly, the scene is
rendered several times using a hardware accelerated z-buffer technique with shadow
maps, each one with a different VPL as the unique light source. The output image
is generated by the accumulation of rendering results. The superposition of the pri-
mary shadows (generated by the shadow maps) simulates the effect of light bounces
on lambertian surfaces, in such way that the result looks similar to radiosity results.

2.2 The Radiosity Method

The radiosity method [Goral et al., 1984] is a technique which allows to compute
global illumination on scenes with Lambertian surfaces. It has been applied in many
areas of design and computer animation [Dutre et al., 2006]. The term “radiosity”
stands for energy of light leaving a surface per unit area (W/m2), composed of
emitted and reflected light. A lambertian surface is an ideally diffuse surface, whose
apparent brightness is the same regardless of the observer’s angle of view (Figure
2.3). This property is also known as isotropic luminance, where the light intensity
follows Lambert’s cosine law.

n

Mirror reflection (specular) Glossy reflection (spread) Lambertian reflection (diffuse)

Figure 2.3: Different kinds of reflections.

Lambertian surfaces simplify the ρ term in the rendering equation (Eq. 2.1),
which is transformed into the “radiosity equation” (Eq. 2.2).

B(x) = E(x) + ρ(x)

∫
S
B(x′)G(x, x′)dA′ (2.2)
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B(x) and E(x) are the radiosity and emission values at point x, ρ(x) is the reflectivity
factor of the material in x, and G(x, x′) is a geometric factor that depends on the
normal vectors at x′ and x, and on the correspondent distance between the points
[Cohen et al., 1993].

The continuous radiosity equation can be discretized through the use of a finite
element methodology. The scene is discretized into a set of patches, leading to
express the problem using the following set of linear equations:

Bi = Ei +Ri

∑
j=1...n

BjF(i, j) , ∀i ∈ {1 . . . n}

This set of linear equations is expressed algebraically in Equation 2.3 (known as the
Discrete Radiosity Equation).

(I−RF)B = E, (2.3)

where I is the identity matrix, R is a diagonal matrix containing the reflectivity
index of each patch, B is the radiosity vector to be found (W/m2), and E is the
emission vector. F(i, j) is a number between 0 and 1 expressing the form factor
between patch i and j. This value indicates the fraction of the light power emitted
by i going to j. Therefore, the form factor matrix is a n×n matrix, where n is the
number of patches in the scene.

2.2.1 The form factors between patches of a scene

F(i, j) is called form or view factor, and it is calculated using the formula in Eq. 2.4,
being Ai and Aj two sufaces. G(xAi , xAj ) incorporates the geometric and visibility
relationship between the two regions as it affects radiant energy transport [Cohen
and Wallace, 2012].

F(i, j) =
1

Ai

∫
Ai

∫
Aj

G(xAi , xAj )dxAjdxAi (2.4)

The concept of form factor was formulated in the field of thermodynamics (heat
transfer). Its calculation was initially performed analytically, even before the use of
computers. For convex surfaces, energy leaving a surface will not hit it again later,
because radiation travels in straight lines. Therefore, F(i, i) = 0. This property
is not satisfied for concave surfaces, which leads to F(i, i) > 0. In this thesis, we
assume every surface to be convex.

Computing form factors is relatively complex due to the presence of a double
integral (Eq. 2.4), and because the visibility between each patch needs to be cal-
culated. This determines the obstruction between points in the scene, which is
fundamental to predict their energy exchange. Also, given n patches, the amount of
form factors to process is n2, leading to computational and memory restrictions.

The form factors compose the F matrix. Depending on the scene, this can be
dense or sparse. A scene where each patch sees few others, generates sparse F. On
the other hand, when each patch sees a big portion of the scene, a dense F matrix
is generated.
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The geometric argument used to compute form factors is called Nusselt analog,
represented at Fig. 2.4. This expresses the relation between a differential area and a
surface, without considering visibility. The Nusselt analog proposes the geometrical
factor to be the same as projecting the area of element j onto the surface of a unit
hemisphere centered at element i, and then projecting the result onto a unit circle
in the plane of element i. The form factor is equal to the fraction of the unit circle
covered by this projection [Cohen and Greenberg, 1985]. This construction leads to
the following property: the sum of the elements of each row of F is less or equal than
1. Also, it is shown how different shaped surfaces can have the same form factor
with the differential area.

Normal

1

(a) Nusselt analog. (b) Areas with the same form factor.

Figure 2.4: The form factor from the differential area to an element, calculated using
a projection onto the hemishpere and another onto the disk.

Computing F

The most expensive part of calculating form factors is determining visibility between
two given patches in a scene, which, if implemented naively, has a complexity of O(n)
for each pair. Teller and Hanrahan [1993] present several algorithms for the visibility
problem. The other necessary operation is to compute Eq. 2.4, which depends highly
on obstruction: an element on the scene “sees” only part of other element. This fact
makes the calculation even more complex.

According to Cohen et al. [1993], the numerical solutions to the form factor
problem are categorized in two approaches: differential-area to area solutions, or
straight area-to-area methods. In the former, the area of the source element that
receives energy from the scene is considered infinitesimal, while in the latter depends
on the shape and size of it. Most of the related works focus on the differential-
area approach, since it is simpler to implement and provides a general solution,
independent of the polygonal shape of the patches.

One of the most utilized area-to-area approaches is based on Monte Carlo inte-
gration. Given two patches i and j, k pair of points [xi, xj ] are randomly selected,
where xi belongs to patch i and xj to patch j. For each pair, the form factor is cal-
culated using Eq. 2.4, where the visibility part of the geometrical term is evaluated
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by tracing k rays. Each ray is traced between the pair [xi, xj ] , and the intersection
with the scene is computed. This method becomes more accurate as k grows, but
this also means a performance decay. Other techniques are based on hierarchical
subdivisions or contour integrals [Goral et al., 1984].

On the differential-area to area side, several methods have been proposed. Sim-
pler techniques use area sampling strategies, where several rays are casted from the
source point into a recipient polygon and the resulting intersections are used to solve
Eq. 2.4. The casted rays can be uniformly distributed into the element [Wallace
et al., 1989], or can follow a random Monte Carlo distribution [Wang, 1992].

Following the Nusselt analog, the most used techniques are based on sampling the
hemisphere around the source point. This sampling can be implemented in several
ways. For example, casting rays in every direction and retrieving the intersections.
Another approach is to project the scene surfaces into planes instead of a hemisphere,
which ensures the same form factor value (as seen in Fig. 2.4b), but is simpler to
compute using specialized rasterization hardware.

Cohen and Greenberg [1985] propose the hemi-cube algorithm to compute the
form factors of any element in a scene. This method uses the Z-buffer algorithm as a
simple solution to the visibility problem, which is the most commonly used strategy
for rendering [Catmull, 1974]. This adds the information of the distance between
the center of projection and the projected polygon to each rendered pixel. If more
than one element of the scene is to be drawn at the same region, only the nearest is
rendered and the depth is updated for that pixel. The memory array used to store
this information is called the depth buffer.

The hemi-cube algorithm computes the form factors between patch i and the
rest of the elements of the scene (this is i-th row of F). This is accomplished by
rendering five projections of every patch onto the five surfaces of a half cube, using
the Z-buffer technique (see Fig. 2.5). At the end of the process, each pixel of the
hemi-cube contains the information of visible patches. In particular, the color of
each pixel denotes the corresponding rendered patch. The final form factor Fij is
equal to the proportion of pixels covered by polygon j in the hemi-cube centered at
patch i.

This algorithm has become very successful and it is widely used in radiosity
engines. It is usually implemented using graphics hardware, which runs the Z-buffer
technique natively.

The main problem of the hemi-cube is the aliasing that can be generated when
working with pixels. For example, if an element whose size is smaller than a pixel
needs to be rendered, it will not be taken into account. This element could be
emitting great amounts of light, making it important to the illumination calculation.
For this purpose, it is fundamental to use an image resolution that corresponds to
the problem. Another problem is the need to generate five independent projections,
which leads to computational restrictions.

In this way, another approach is the single-plane form factor algorithm devel-
oped by Sillion and Puech [1989]. It projects elements onto a single plane above the
differential area using an adaptive hidden surface algorithm. As shown in Fig. 2.6,
this technique can adaptively subdivide the view-plane for large or small elements,
and thus avoid some of the sampling problems of the hemi-cube. The main disad-
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Figure 2.5: The hemi-cube algorithm.

vantage of this method is that it misses elements near the horizon. However, it is
not strange that these elements contribute very little to the overall radiosity, due to
the cosine dependence of the form factor.

Figure 2.6: The single-plane algorithm.

2.2.2 Solving the Discrete Radiosity Equation

There are several strategies used to solve the radiosity linear system. As any lin-
ear system resolution methodology, they can be classified into direct and iterative
methods.
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In radiosity problems, direct methods focus on finding the inverse of the radiosity
matrix: M = (I−RF)−1, which represents a global transport operator relating the
emitted light with the final radiosity of the scene, B = ME. Originally, these were
believed to be prohibitively expensive, except when applied to small problems, or
when the system of equations is sparse. Recently, factorization strategies have been
applied to the computation of the inverse, which have led to good results for scenes
with big spatial coherence (meaning low numerical rank factorizations) [Fernández,
2009, Fernández and Besuievsky, 2012]. Refer to Sec. 2.2.4 for more information.
Although these methods are still slower than the iterative methods for dynamic
geometries (which implies the re-computation of F), there are some problems where
only the emission varies and, then, computing the inverse of the radiosity matrix
is a good strategy. After a pre-computation step, thousands of emissions can be
evaluated relatively simply, because only a matrix-vector operation is required per
emission. On the other hand, M can also be approximated using iterative methods
such as Neumann series (Sec. 2.2.5).

Another approach is to compute B by solving the linear system of equations
iteratively, using methods such as Jacobi or Gauss-Seidel ([Cohen and Wallace,
2012]). Eq. 2.5 presents the radiosity iterative resolution. Each iteration adds
the radiosity of a new light bounce to the global radiosity result. This iteration is
repeated until ‖B(i+1) −B(i)‖ is less than a given threshold.

B(i+1) = RFB(i) + E , where B(0) = E (2.5)

The convergence of the iterative methods is ensured because the radiosity matrix
(I−RF) is diagonally dominant [Cohen and Wallace, 2012]. This property is satisfied
if the absolute value of the sum of the terms in each row (excepting the diagonal
term) is less than or equal to the absolute value of the diagonal term [Golub and
Van Loan, 2012]. In the radiosity matrix, the values in the diagonal are all ones,
because Fii = 0. Since the sum of each row in F is less than or equal to one, and a
realistic scheme implies each reflectivity index to be less than one, the sum of each
row of RF is less than one. Thus, the matrix is diagonally dominant.

Other iterative techniques include the stochastic relaxation methods, which are
basically a combination of traditional iterative methods and Monte Carlo. This
strategy avoids the computation of form factors by casting rays from each surface,
in order to retrieve the radiosity values of visible elements. For this, Malley’s method
is used [Malley, 1988]. More information about stochastic relaxation techniques for
radiosity can be found at Cohen et al. [1993].

2.2.3 Alternative methods for the radiosity problem

Methods requiring the calculation of the F matrix can be computationally pro-
hibitive for large problems. In particular, computing the form factors matrix is a
heavy memory process. Stochastic relaxation methods are an example of radiosity
resolution without computing F. In this section, other methods that avoid this issue
are presented.

Progressive refinement [Cohen et al., 1988] is one of the classic formulations,
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where a selection of form factors is computed to shoot energy from significant sur-
faces. The elements are selected by its area and partial radiosity result. At each
step, the radiosity of every element is updated, calculating how much energy arrives
from the selected surface. This is repeated until the radiosity does not vary more
than a given threshold (same stopping criteria than previous methods). This tech-
nique is very useful when partial results are needed, because it makes most of the
progress at the beginning steps.

Another important contribution is the hierarchical radiosity (HR) method [Han-
rahan et al., 1991], which subdivides each surface into a hierarchy of patches (as
shown in Fig. 2.7) and links different sample points to patches at different levels in
the hierarchy. This strategy substitutes the radiosity matrix by a hierarchical tree
structure, avoiding the computation of parts of F. HR then allows the surfaces to
interact at a level in the hierarchy where all the interactions have an error less than
some bound.

A 

C 

B 

Figure 2.7: Subdivision of patches in HR. Patch A is affected by patch B and C.

HR constructs hierarchies by subdividing surfaces, but does not exploit a hier-
archical grouping on existing surfaces. On this behalf, hierarchical radiosity with
clustering [Garland et al., 2001, Smits et al., 1994] proposes a clustering algorithm
that allows estimating energy transfers between collections of objects. This avoids
the initial cost of linking patches on traditional HR.

The arrival of the GPU architecture helped to accelerate previous techniques
and led to new hardware-specific approaches. Dong et al. [2007] propose an HR-
based method for dynamic scenes. To speed-up the technique, they make several
simplifying assumptions that reduce the radiosity equation. One of them is related
to visibility, where partial occlusion is not taken into account. They group elements
into “bins”, facilitating the creation of new links. Besides the pre-computation cost,
where a geometric hierarchy is built and then reused at run-time, this algorithm is
faster but less accurate than other methods. In other related works, Dachsbacher
et al. [2007] also used links for antiradiance calculations, avoiding the visibility
computation. Meyer et al. [2009] introduced the updating of the link structure
at runtime. It is important to highlight that these techniques are well suited for
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low-complexity scenes with moderate transformations.

2.2.4 Factorization of the RF matrix

Despite the obstacles and solutions described in previous sections, there are certain
problems in which computing the inverse of the radiosity matrix is necessary. This
matrix, M = (I−RF)−1, provides important information about the global radiosity
of the scene. Element M(i, j) contains the contribution of energy emitted by j to
the final radiosity value in i. The product between a row M(i, :) and the emission
vector E results in the final radiosity value for patch i.

For instance, when the geometry is fixed and only the emission varies, M is
constant. Thus, computing an approximation of this matrix leads to the possibility
of calculating several radiosity results per second with infinite light bounces. Even
taking pre-computational costs into account, this strategy is completely valid. In
this section, we study the possibility of inverting the radiosity matrix by obtaining
a low-rank factorization of RF.

There is a clear relation between the spatial coherence of a scene and the low
numerical rank of the matrix RF. References about low-rank properties of radiosity
and radiance matrices can be found in Baranoski et al. [1997], Ashdown [2001],
Hasan et al. [2007], and Fernández [2009]. This property allows to approximate RF
by the product of two matrices UkV

T
k , both with dimension n×k (n�k), without

losing relevant information.

The memory required to store Uk and VT
k is O(nk), while for RF it is O(n2).

When n�k, the memory savings can be significant, even allowing to store them in
system memory for large scenes.

If RF is replaced by its approximation UkV
T
k in Eq. 2.3, Eq. 2.6 is obtained,

where the radiosity B is now transformed into its approximation B̃.(
I−UkV

T
k

)
B̃ = E (2.6)

Using the Sherman-Morrison-Woodbury formula [Golub and Van Loan, 2012], the
matrix

(
I−UkV

T
k

)
is inverted:

B̃ = E + Uk

((
Ik −VT

k Uk

)−1 (
VT

kE
))

(2.7)

(
Ik −VT

k Uk

)−1
is a k × k matrix, while Uk and Vk are k × n. The product of

a k × n matrix times a n× k matrix is O(nk2), which is what happens at
(
VT

k Uk

)
.

Hence, O(nk2) operations and O(nk) memory are required to find B̃ using Eq. 2.7.

Eq. 2.7 can be transformed as follows:

B̃ = E −Yk

(
VT

kE
)

(2.8)

where Yk = −Uk

(
Ik −VT

k Uk

)−1
Yk is a n×k matrix. When the geometry and the reflectivity of the scene are static
(F and R are static), Uk, Vk, and Yk are computed only once in a pre-computation
stage. After Yk is found, the calculation of B̃ is performed by two matrix × vector
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multiplications and one vector addition. Both
(
VT

kE
)
, and its result times Yk, are

O(nk), and the addition is O(n). Then, the computation of the radiosity solution
has complexity O(nk). This result is useful when the radiosity equation needs to be
solved many times, and E is the only element modified in Eq. 2.6.

One example of a factorization technique applied to radiosity problems is the
Low Rank Radiosity (LRR) method [Fernández and Besuievsky, 2012]. This method
allows to factorize the RF matrix into one full matrix and one sparse matrix. This
technique is relatively fast and can be computed by passing just one time over the
whole matrix. The main problem of this technique is that two different scene meshes
are needed, with two different granularity levels (coarse and fine meshes). The
number of patches of these meshes define the dimensions k and n of the factorization
matrices. For many scenes, it is not possible to define a coarse mesh with a small
enough number of patches, useful for radiosity purposes. This can lead to large Yk

and Vk matrices.

Relation between the error in the factorization of RF and the radiosity
error

Following Fernández [2009], when RF is substituted by RF+∆RF, the relative
error of the radiosity B (Eq. 2.3) is upper bounded:

‖B̃ −B‖
‖B‖

≤ ‖∆RF‖
1− ‖RF‖

Taking into consideration that ‖∆RF‖≤ε, where ε is the expected error of the
factorization, and using the 2-norm, another bound can be formulated:

‖B̃ −B‖2
‖B‖2

≤ ε

1− σmax
(2.9)

where 0 < σmax ≤ 1 is the largest singular value of RF. This bound is larger than
ε. Experimental results show that in common situations the relative error of the
radiosity results can be orders of magnitude smaller than ε.

2.2.5 Inverting the radiosity matrix via Neumann Series

Given an Operator T, its Neumann series [Stewart, 1998] is a series of the form

∞∑
k=0

Tk

The expression Tk is a mathematical notation that means applying the operator
T, k consecutive times. Suppose that T is an operator such that Tk converges to
zero, and I is the identity operator. If the Neumann series converges, then (I−T)
is invertible and its inverse is the series:

(I−T)−1 =
∞∑
k=0

Tk = I + T + T2 + T3 + ...
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This property can be used to calculate radiosity [Cohen and Wallace, 2012], by
computing an approximate to the inverse of (I−RF) through l iterations:

M̃ = (I−RF)−1 ≈ I + RF + (RF)2 + ...+ (RF)l

In this series, (RF)i contains the information of the ith bounce of light between the
surfaces in the scene. The main computational cost of this approach is the multipli-
cation of matrices. Thus, if RF is sufficiently big, the method can be prohibitively
expensive.

Kontkanen et al. [2006] use a variant of this method to compute a global trans-
port operator for radiance calculations. This operator expresses the relationship
between the converged and incoming incident lighting. In this process, the matrices
are compressed using the following strategy: at each step, all the coefficients below a
certain threshold are removed. This results in sparse matrices, which allow to reduce
the memory requirements, and to speed up the calculations. The computation is
stopped when all the coefficients in (RF)i are smaller than the threshold.

2.2.6 Using sparse matrices

A sparse matrix is any matrix with enough zeros that it pays to take advantage of
them [Wilkinson, 1971]. Generally, using sparse representations allows to save time
or memory (usually both) by exploiting the number of zeros. Furthermore, these
kind of matrices are applied in problems where the use of full matrices is not possible
due to memory restrictions.

The computer graphics area is closely related to geometry, which at the same
time is linked to linear algebra. This relation forces the use of matrices for many
graphics computation. In this way, sparse matrix techniques have been applied to
computer graphics problems since the first non-full matrix techniques came out (for
example [Chace, 1984, Light and Gossard, 1983]). Also, sparse representations have
been used in the field of computer vision [Wright et al., 2010] and image processing
[Cichocki and Amari, 2002]. Due to the intrinsic computational parallelism related to
computer graphics and sparse matrices, the latter have taken advantage of graphics
hardware [Bolz et al., 2003, Choi et al., 2010, Krüger and Westermann, 2003], which
is one of the most important relations between both fields.

Beyond these facts, the use of sparse matrices in radiosity calculations is still
a subject of study. Gortler et al. [1993] present the Wavelet Radiosity method,
which is based on wavelet theory. Expressing the kernel operating in a radiosity
function in a wavelet basis leads to a sparse approximation of it. On the other side,
other works [Borel et al., 1991, Chelle and Andrieu, 1998, Goel et al., 1991] solve
the radiosity problem using iterative methods (like Gauss-Seidel) taking advantage
of the sparsity of the form factors matrix. This property is present in the tested
scenes (plant canopies, see Fig. 2.8a), where there is a high occlusion level between
distant polygons. On the other hand, as stated in the previous section, Kontkanen
et al. [2006] also use a sparse representation of the form factors matrix, associated
to the maze scene presented in Fig. 2.8b. This property is exploited to invert the
radiosity matrix through the use of an iterative process.
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(a) Plant canopy scene [Chelle and Andrieu,
1998]

(b) Maze scene [Kontkanen et al., 2006]

Figure 2.8: Two scenes that derive into sparse form factors matrices.

2.3 Spatial coherence

Coherence denotes similarity between entities. It is based on the principle of locality
[Groller and Purgathofer, 1993], where “nearby” items have similar characteristics
or attributes. Coherence properties have been exploited in the field of computer
graphics [Badt, 1988, Crocker, 1984, Sutherland et al., 1974]. There are several types
of data coherence, such as spatial, temporal or object coherence. These concepts
have been studied since the beginnings of computer graphics, and are mainly inspired
in the coherence notion used in physics [Beran and Parrent, 1974].

Spatial coherence denotes spatial homogeneity, and it is a direct consequence of
a constant or slow variation in the relation between the disposition of objects or data
[Groller and Purgathofer, 1993]. A model is normally composed of a list of objects
or data. An object or data is said to be coherent if its own properties, such as shape,
color, or disposition in the scene, vary smoothly in space. The coherence of a scene
depends on the coherence and disposition of its components. These facts determine
if the graphical or physical information derived from the scene will contain smooth
or abrupt changes, and the redundancy of nearby data. Spatial coherence is then a
degree that describes spatial homogeneities of the scene, which may be exploited to
avoid the reiteration of calculations that are very similar for nearby sections.

For example, if we are processing or calculating data for a scene composed of
a house, we can expect all the calculations related to a flat roof to be similar, as
well as within the walls or the floor. On the other hand, parts of the house such as
hips, ridges, rakes or wall edges, should be considered closely, forcing an independent
focus. Luckily, these parts are usually smaller than the first, which may allow most
of the calculations to be reusable, because of its coherence.

Global Illumination techniques take advantage of many types of coherence. For
example, view-dependent GI methods use object and ray coherence to accelerate
the calculations [Gonzalez and Gisbert, 1998]. View-independent methods, such
as Radiosity, use the spatial coherence resulting from discretizing the scene into
elements [Cohen et al., 1993].
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Space-filling curves

One of the techniques used to exploit spatial coherence in GI algorithms is to sort
the involved elements by spatial proximity. In this way, the use of space-filling curves
can be an efficient solution. A space-filling curve is a function which maps multidi-
mensional data to one dimension while preserving locality of the data points. They
define an indexing scheme that assigns spatially local elements to local indexes. The

(a) Peano curve

(b) Hilbert curve

(c) Z-order curve.

Figure 2.9: Three space-filling curves examples.

curves can be interpreted as fractals, because they are self-similar at different view
levels. This property allows to exploit the coherence at lower and higher resolution
levels, which in a 3D space is related to smaller and larger areas respectively [Pharr
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and Fernando, 2005]. Some examples are the Peano, Hilbert [Voorhies, 1991], and
Z-order [Morton, 1966] curves (see Fig. 2.9). In this figure, the 2D examples are
shown. Nevertheless, this three curves can be extended to any N-Dimensional space.

Peano was the first to develop a space filling curve in 1890 [Peano, 1890]. His
original idea was to obtain a continuous function to traverse the space in a specific
order. This resulted in a simple (but effective) curve, named after its inventor.
Later works, performed by David Hilbert in 1891 [Hilbert, 1891], extended these
ideas to a develop curve that maintains a better locality, which is more suitable for
coherence purposes. This resulted in the Hilbert Curve. Many years later, in 1966,
Morton introduced a new function that can be implemented with very simple bitwise
operations (see next section). This curve, named the Z-order curve, is less complex
than the rest, but still effective for coherence purposes. Both the Hilbert and the
Z-order curves have been widely used in the computer graphics field [Hughes et al.,
2014].

The Z-order curve

The Z-order curve, named after its “Z” shape, can be implemented with a few
bitwise operations per index computation (see Fig. 2.10). Each dimension of the
space is divided into 2N intervals. Therefore, each interval can be tagged with N
bits, generating 22N quadrants in a 2D space. In this case, a quadrant is identified
by 2N bits, computed by interleaving the bits of its dimensions. These identifiers
follow the Z-order curve, and are assigned to the geometrical elements that belong
to each quadrant. In this way, the elements are sorted by Z-order.

00

01

10

11

00 01 10 11

0000 0001 0100 0101

0010 0011 0110 0111

1000 1001 1100 1101

1010 1011 1110 1111

Figure 2.10: Implementation of the Z-order curve by bit interleaving.

Fig. 2.11 shows an example of sorting triangles in a 2D space by nearness using
this strategy. The technique can be used in any N-Dimensional space, though in
this thesis its 3D variant is used.
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1      2      3      4      5      6      7      8

Figure 2.11: Sorting 2D triangles using the z-order curve.

2.4 Matrix factorization

Matrix factorization [Golub and Van Loan, 2012] is applied in several subjects related
to mathematics and computer sciences. It can be useful when low numerical rank
matrices are present in the problem. Nevertheless, it is not always simple to compute
the factorization due to memory and execution time reasons. Hence, it is important
to continue developing techniques to exploit the different characteristics offered by
every specific problem. Moreover, it is a good contribution to find solutions that can
be later applied to a wide range of problems where similar possibilities are present.

A low-rank factorization can be generalized as the decomposition of a matrix
into two matrices Um×k and Vm×k, such that

‖A−UVT ‖≤ ε

In this equation, ε represents the difference between the original matrix and the
factorization measured using the norm ‖ ‖. For a given ε, it is usually necessary to
find the minimum k such that the previous equation is fulfilled. On the other hand,
it is necessary to compute the factorization in lower execution times, memory and
precision orders, when compared to traditional techniques like the singular value
decomposition (SVD).

2.4.1 SVD decomposition

The singular value decomposition (SVD) of a matrix Am×n is a factorization of
the form A=UDVT where Um×m and Vn×n are unitary matrices, and Dm×n is
a diagonal matrix with non-negative values. The values in D are known as the
singular values of A (represented as σi, where σi=D(i, i)). The columns of U and
V are its left and right singular vectors respectively.

The singular values in D are high-to-low ordered (σ1 ≥ σ2 ≥ . . . ≥ 0). Following
Eckart-Young Theorem [Eckart and Young, 1936], if we only consider the r largest
singular values of D, then Ar=UrDrV

T
r (rank(Ar)≤r) minimizes ‖A− Â‖2 for all

Â with rank(Â)≤r. Here, the matrices Ur and Vr are the left and right singular
vectors associated to the r singular values selected, and Dr is a diagonal matrix
containing these values. Also, it is worth mentioning that, given the matrix A,
‖A−Ar‖2=σr+1.



2.4 Matrix factorization 26

In Chapter 3, the SVD decomposition is used with this notation: [Q,V]=SVD(A),
where Q=UD. In particular, the truncated SVD [Golub and Van Loan, 2012] is
applied:

[Qr,Vr] = TSVD(A, ε) (2.10)

where ε is a given “error”, r is the index of the smallest singular value σr that
satisfies σr ≥ ε, and Qr and Vr are the first r columns, from left to right, of the
SVD resulting matrices.

2.4.2 Other factorizations

Many low-rank matrices approximation studies have been developed using factor-
izations. Not all of them use the singular value decomposition as the factorization
technique. This section summarizes some previous works on low-rank matrices ap-
proximation techniques using several factorization strategies and some existent SVD
applications on the topic.

Finding a low rank approximation of a matrix is a fundamental subject in ap-
plied mathematics, scientific computing and numerical analysis. If the Frobenius
or 2-norm is used in the error calculation, the truncated singular value decompo-
sition (TSVD) method can be used. However, in cases where the matrix is large,
this technique may become too expensive. Therefore, some less expensive alterna-
tives have been implemented. These solutions can be classified into deterministic
and non-deterministic algorithms. For example, the former could use the Lanczos
bidiagonalization process [Millhauser et al., 1989, Simon and Zha, 2000]), while the
latter a Monte-Carlo based algorithm [Drineas et al., 2006, Frieze et al., 2004]. Also,
the algorithms may or may not support out-of-core matrices.

Non-deterministic methods include several approaches. Libery et al. [2007]
describe randomized algorithms for the construction of low-rank approximations
using a selection of the columns of the original matrix. Besides, an algorithm to
transform the low-rank matrix into the SVD decomposition is presented. On a
similar path, the works by Drineas [2004, 2003] also presents a column/row sampling
strategy. A subset of columns from the original matrix A is sampled, selecting each
column with a probability proportional to its squared 2-norm. Then, the optimal
k-dimensional subspace for the sample is determined, and A is projected onto this
subspace to get a rank k matrix D.

Drineas [2006] presents algorithms based on Monte-Carlo, which are faster than
the SVD. Given an m×n matrix A, a description of a low-rank approximation D∗ to
A is computed. Those algorithms have bounds for the error matrix (A−D∗) using
the Frobenius and spectral norm and can be computed by passing two or three times
over the entire matrix stored in external memory. This gives the advantage of not
having to store the whole original matrix in RAM. The algorithms take time linear
in max(m,n) or independent of m and n.

One factorization technique used to get low-rank approximations is the QR de-
composition [Golub and Van Loan, 2012], and in particular the rank revealing QR
decomposition (RRQR) [Bischof and Quintana-Ort́ı, 1998, Gu and Eisenstat, 1996].
Halko et al. [2011] describe a set of randomized algorithms, for instance the Ran-
domized Subspace Iteration (RSI). Given a matrix A, these algorithms first use
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random sampling to construct a low-dimensional subspace that approximate the
column space of A. Then, the matrix is restricted to this subspace and a decompo-
sition like QR or SVD is applied to the reduced matrix. In an experimental stage,
these algorithms have shown to be simple but highly efficient. However, the need
to pass over the whole matrix several times makes them inefficient for matrices that
do not fit into fast memory.

As an example on deterministic low-rank approximations using matrix decom-
position, Harbrecht [2012] presents an algorithm based on the pivoted Cholesky
decomposition for dense, positive semi-definite matrices, where the resulting trun-
cation error is controlled in terms of the trace norm. In this work, the properties
of the matrix derive to choose the largest diagonal entry as pivot element, which
allows to compute only the main diagonal and the entries of the selected columns of
A. Libery [2013] also describes a deterministic strategy for matrix sketching (called
Frequent-Directions) in a context of streaming algorithms, where the matrix A is
processed by a server one row at a time using successive SV Ds. It is proven that it
is possible to use the algorithm to produce low rank approximations.

Other works using SVD variants include the “Quantized Iterative Cosine tree”
algorithm developed by Holmes et al. [2009], which specifies a way to leverage cosine
trees in the construction of an approximate SVD while providing a probabilistic er-
ror guarantee. They use a Monte Carlo technique to estimate the squared error of a
matrix projection onto a subspace. This algorithm works well with middle sized ma-
trices, but does not scale for bigger matrices. Finally, Aizenbud and Averbuch [2016]
describe the Sub-Gaussian-based Randomized SVD Decomposition (SGRSVD). This
method uses sub-gaussian random matrices as sparse projections and the QR de-
composition to find an orthonormal basis. The pseudoinverse algorithm is applied
to compute an approximation to the SVD.

2.4.3 Description of two factorization strategies used

This section presents two different techniques that are used in Chapter 3. Two
stochastic methods are studied: one described by Halko [2011] and one presented
by Aizenbud and Averbuch [2016].

Halko [2011] presents several methods to solve what he calls the fixed-rank prob-
lem:

Given an m× n matrix A, a target rank k, and an oversampling parameter p, this
procedure computes an m× (k + p) matrix Q whose columns are orthonormal and
whose column space approximates the column space of A. Thus:

‖A−QQ∗A‖ ≈ min
rank(X)≤k

‖A−X‖ (2.11)

Then, using the matrix Q, it is easy to obtain other standard factorizations, like
the SVD or the Eigenvalue Decomposition. In this way, two matrices Um×k = Q
and VT

m×k = Q∗A can be computed, such that A ≈ UVT .

The reason why an oversampling parameter is used is because the new factoriza-
tion needs to have a very similar error compared to the optimum factorization with
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rank k. Besides, using k or k + p in the fixed-rank problem consumes almost the
same computational time when p is small enough. Nevertheless, this is not the best
strategy when the problem is sensible to an increment on the size of the factorization
matrices. For example, if the result is going to be used to perform hundreds of thou-
sands matrix-vector or matrix-matrix multiplications, the oversampling parameter
can be prohibitive.

Given a matrix Am×n and an integer l, Halko presents five variants to solve
the problem of finding Q satisfying Eq. 2.11. These techniques are based on the
“proto-algorithm”, which is presented in Algorithm 1.

Algorithm 1 Proto-algorithm

1: Draw an n× l Gaussian random matrix Ω.

2: Form the m× l matrix Y = AΩ, which is a random sample of the column space of A.

3: Construct an m× l matrix Q whose columns form an orthonormal basis for the column space

of Y , e.g., using the QR factorization Y = QR.

In this thesis, the randomized subspace iteration is analyzed and used for com-
parison purposes, which is one of the five algorithms presented by Halko.

Randomized subspace iteration (RSI)

The Randomized subspace iteration algorithm is presented as a modification
to the previous scheme for matrices whose singular values decay slowly. It offers an
iterative solution to find a basis that approximates most of the action of the input
matrix to factorize. The scheme of this algorithm is presented in Algorithm 2, where
q is an integer parameter indicating the number of iterations (typically with values
no bigger than 5).

Algorithm 2 Randomized subspace iteration

1: Draw an n× l Gaussian random matrix Ω.

2: Form the Y0 = AΩ and compute its QR factorization Y0 = Q0R0.

3: for j=1,2,...,q

4: Form Ỹj = AQj−1 and compute its QR factorization Q̃j and R̃j

5: Form Yj = A∗Q̃j and compute its QR factorization Qj and Rj

6: end

7: Q = Qq

The iterations allow to find a more precise approximation than in the proto-
algorithm, but not without an increment in the computational cost. Therefore,
depending on the problem, q can affect both the quality of the solution and the
execution times. Taking a closer look into the algorithm, it can be seen that the
iterations are equal to performing Y = (AA∗)qAΩ. The matrix (AA∗)qA has the
same singular vectors as A, but its singular values decay more quickly. This is
because (AA∗)qA = UDq+1V, being U, D, and V the results of applying SVD to
A (σq+1

1 ≥ σq+1
2 ≥ ... ≥ σq+1

n ≥ 0). This technique aims to reduce the weight in Y of
the singular vectors associated with small singular values, because they interfere in
the calculations. The dominant singular vectors take more relative weight by using
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the powers of the matrix to be analyzed. Calculating Y with the previous operation
is vulnerable to round-off errors, which is why an iterative scheme is used.

Note that this algorithm, as every of the other five proposed by Halko, does
not need to have the whole input matrix in memory. This is because the only
operations performed over A are multiplications, which can be executed reading A
only one time. Nevertheless, the need to perform more than one multiplication can
be prohibitive in some problems. The number of passes over the matrix depends on
the number of iterations.

Sub-Gaussian-based Randomized SVD Decomposition

Aizenbud and Averbuch [2016] present a method that outputs an approximated
truncated SVD decomposition, using sub-Gaussian random matrices. These matri-
ces are used because they have strong tail decay properties. Many non-asymptotic
results on a sub-Gaussian matrix distribution have recently appeared [Rudelson,
2014, Vershynin, 2010]. The authors select a subclass of these matrices called
Sparse-Gaussian, to reduce the computational complexity of the algorithm. Sparse-
Gaussian matrices are sparse matrices, where each entry is independently distributed
with a certain probability to be zero or Gaussian otherwise. They call the algorithm
Sub-Gaussian-based Randomized SVD Decomposition (SGRSVD).

Algorithm 3 Sub-Gaussian-based Randomized SVD

1: Create a k1 × n sub-Gaussian random matrix Ω1.

2: Create a l2 × k1 Gaussian random matrix Ω′1.

3: Compute B = AΩ∗1Ω
′∗
1 .

4: Compute the QR decomposition B = QR.

5: Create a k2 ×m sub-Gaussian random matrix Ω2.

6: Compute C = Ω2Q, D = Ω2A and E = C†.

7: Compute the SVD of E ∗D = U1Σ1V
∗
1 , truncated at l.

8: Output U = QU1Σ1 and V = V1.

Given a matrix Am×n, the desire rank l and l2,k1, k2 the number of columns to
use, Algorithm 3 describes the method. The scheme of the algorithm is presented
with a modification on the output variables, in order to preserve the previous U and
V notation (instead of the SVD notation U, Σ and V). The symbol † represents
the pseudo-inverse operation.

Lines 1-4 follow a similar procedure than Algorithm 1, but using two Gaussian
random matrices instead of one. The advantage of this approach is that both ma-
trices are smaller than the previous Ω, and that Ω1 is sparse. This allows to reduce
the number of operations.

Lines 5-8 are dedicated to obtain an approximate SVD. A new sub-Gaussian
random matrix Ω2 is computed. Theorem 3.5 in [Aizenbud and Averbuch, 2016]
establishes that C = Ω2Q is invertible from the left. Thus, (Ω2Q)†Ω2Q = Ik1×k1 ,
and therefore:

‖QQ∗A−A‖= ‖Q(Ω2Q)†(Ω2Q)Q∗A−A‖ (2.12)
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Now, take U = QU1Σ1 and V = V1, the outputs of the algorithm. Then,
‖UV∗ −A‖= ‖QU1Σ1V

∗
1 −A‖≈ ‖QED−A‖= ‖Q(Ω2Q)†Ω2A−A‖. Using the

Eq. 2.12, Aizenbud and Averbuch use their Theorem 4.5 [Aizenbud and Averbuch,
2016] to prove that ‖Q(Ω2Q)†Ω2A−A‖≤ K‖QQ∗A−A‖, where K is a constant
between 1 and 2. Note that ‖QQ∗A−A‖ was already bounded by Halko (take, for
example, Q output from Algorithm 1).

This algorithm preserves the same memory properties than the algorithm by
Halko, since the only operations to compute over the input matrix A are multi-
plications. However, as there are no power iterations, the method only requires
two passes over the input matrix. As can be seen, the algorithm executes a QR
decomposition, a SVD decomposition and a pseudo-inverse operation.

2.5 Urban environments and radiative methods

Factorization techniques are well-suited for reducing the computation associated
with dense low-rank matrices, typically present when computing radiosity in archi-
tectural scenarios like house models or small buildings. On bigger environments,
like cities, the associated matrices may neither be full nor low-rank. In Chapter
4, a technique is proposed for computing radiosity in urban environments, taking
advantage of the sparsity of the related form factors matrices.

Simulating radiation for urban environments is a challenging task. The process
is composed of several steps, among which three stand out: 1) modeling cities, 2)
estimating daylight, and 3) using efficient methods for radiative calculation at large
scale. These steps are very related with the computer graphics field, where the
radiosity method takes a big importance in step 3. This section introduces the field,
and describes related works for these three steps.

2.5.1 Modeling urban scenarios

Modeling cities and urban environments requires the application of techniques re-
lated to computer graphics, computer vision, and visualization. These kind of sce-
narios are composed of buildings, parcels, streets and other structures that are po-
sitioned over a certain orography. The goal in geometrically modeling a city is to
generate models quickly, based on a set of specifications or taken from some input
data (like aerial and terrestrial pictures) [Parish and Müller, 2001]. Fig. 2.12 shows
an example of a city model, composed of several thousand buildings.

There are several research works that tackle the problem of city modeling. Aliaga
[2012] divides the approaches into three groups:

1. Reconstruction: The main purpose of these methods is to automatically re-
construct the geometry of existing urban environments. The input data is
usually aerial and ground-level images, and other sensor related information.
Musialski et al. [2013] provide a summary of reconstruction techniques.

2. Interactive modeling : Using human input and guidance, these methods intend
to create models manually. They are closely related to the computer aided
design (CAD) field. Yin et al. [2009] summarize interactive modeling methods.
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Figure 2.12: Example city model composed of approximately 26000 buildings, taken
from [Parish and Müller, 2001].

3. Procedural modeling : There is a big redundancy degree in city models, which
can be exploited in urban geometrical modeling. These methods allow to
produce models using the global and local repetition of structures, which is
interesting due to computational reasons. A small number of settings can pro-
duce a very detailed model of an existing or created city. From large scale
designs like urban plants [Alexander et al., 1977, Prusinkiewicz and Linden-
mayer, 2012], to middle sized schemes such as buildings [Parish and Müller,
2001, Wonka et al., 2003], they provide an easy way of modeling cities. Streets
and parcels are other aspects addressed by procedural modeling [Galin et al.,
2010, Lipp et al., 2011].

2.5.2 Daylight simulation

The second step is to define a daylight scheme that approximates the sunlight inci-
dence in the city throughout a given time frame. This includes calculating the sun
position, and the sky view from the goal city point.

The calculation of the sun position can be solved by adopting a geocentric point
of view and using celestial mechanics. The sun relative orbit around the earth can
be described using some well-known parameters such as eccentricity, inclination,
mean anomaly, etc [Danby, 1992]. This calculation helps to determine the earth’s
revolution, which, along with the earth’s rotation, derives into the sun position in
the sky. A detailed description of this is presented by Pierre and Benoit Beckers
[2012].

Another variable that affects the daylight is climate, which depends on the geo-
graphical position. To represent this in the model, an hourly test reference weather
data [EERE, 2016] can be used, which contains direct normal and diffuse horizontal
irradiation data for each hour of the year.

The sky section observed from a point in the city can be accurately computed
through stereographic spherical projections [Beckers et al., 2011], as shown in Fig.
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2.13. Another approach is to use a form factors calculation algorithm (see Sec.
2.2.1), where the hemisphere representing the sky is divided into tiles. Then, the
meteorological data is mapped onto this discretization using specialized software
(such as gendaymtx, a Radiance package [Ward, 1994] extension), where the emit-
tance of each tile represents the light contribution of its correspondent section of the
dome. There are several ways to mesh the sky, among which the works by Tregenza
(see Fig. 2.14) and Mardaljevic [1999] stand out.

Figure 2.13: Example of a stereographic projection of sky and building, taken
from [Beckers and Rodŕıguez, 2009]. The yellow circle in the middle represents
the position of the sun at the simulated moment, while the black lines show its
trajectory.

Figure 2.14: Sky dome discretized into 145 tiles (Tregenza [1987]).

After the daylighting model has been selected, a simulation software is executed
to compute the effect of the sky light in the global illumination. There are many
daylight simulation programs that allow to analyze this, each one with its own ad-
vantages and disadvantages, and each one capable of modeling different kind of
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problems. For example, Radiance [Ward, 1994] based methods use a backward ray-
tracer + radiosity engine, which are suitable for computing the illumination at a
small number of sensors [Reinhart, 2011]. On the other hand, Autodesk Ecotect
[Marsh, 2003] uses a Split Flux Method which is only able to model diffuse sky
conditions by splitting the light influence into three components: a sky component
(SC), an externally reflected component (ERC) and an internally reflected compo-
nent (IRC). The choice between these two options or any other alternative (such as
Velux [Labayrade et al., 2009], Dialux [Mangkuto, 2016], or Heliodon [Beckers and
Masset, 2008]), depends directly on the specifications of the problem to solve.

2.5.3 Computing radiation

Before describing radiative methods, it is important to state the difference between
shortwave and longwave radiation, main components of the thermal radiation (see
Fig. 2.15). Shortwave radiation is radiant energy with wavelengths between 0.1µm
and 5.0µm [Felsen and Marcuvitz, 1994]. The sun emits this type of radiation, which
is absorbed by the earth and re-emitted as longwave radiation in the form of infrared
rays (non-visible spectra). Radiative methods for urban environments take care of
both types of waves, either separately or together.
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Figure 2.15: Part of the electromagnetic spectrum, highlighting shortwave and long-
wave radiation.

Radiative methods for urban environments

The two main methodologies for solving urban shortwave radiant exchange problems
are ray tracing and radiosity. The former is widely used in rendering, and the latter
was originally developed for heat transfer exchange computation. The radiosity
method is usually more suitable for radiant methods, because physically-realistic
data is needed, instead of photo-realistic images like in the rendering field. One of
the advantages of using this method is that it can obtain results in the whole scene
space, which makes it attractive for urban environment analysis. The radiosity
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method is limited to diffuse reflections, and can be inefficient when working with
big models.

As an alternative, a previous work for reducing the urban radiosity formulation
is the simplified radiosity algorithm (SRA) [Robinson and Stone, 2005]. The basis
of the simplification is grouping, for each sky direction, the main obstructions that
obscured each surface. Then, for a scene composed of n patches and getting p sky
tiles, the system matrix can be reduced to a n×p, that can both be inverted or used
to solve the system iteratively. This method is embedded in the CitySim package
[Robinson et al., 2009], a multi-purpose system for urban models simulation.

Once the shortwave radiative interactions are computed, aerospace domain tech-
niques can be used to compute coupled heating inside the city. These methods
are based in a finite element formulation [Zienkiewicz et al., 1977] of the radiation-
conduction problem. An implementation of this technique is presented by Van Eeke-
len [2012].

A more accurate and integral resolution than radiosity for radiative exchange
requires the application of more sophisticated methods. For this, the need to solve
the heat conduction equation for solids becomes unavoidable. The discretization of
this equation can be performed through many options. The most used one is the
nodal method [Meyer, 1999], specially designed for thermal balance and heat flux.
The defined isothermal nodes are arranged in a network that simulates an electri-
cal circuit to compute radiation. This method outputs an overall distribution of
temperature through the simulated model. Other alternatives are the finite element
methods [Zienkiewicz et al., 1977], that were originally designed for mechanical and
civil engineering. These are more accurate but derive into much heavier computa-
tions, especially for bigger models.



Chapter 3

A Hierarchical Factorization
Method for Radiosity
Calculations on Scenes with
High Spatial Coherence 1

3.1 Introduction

Radiosity is a method for global illumination (GI) calculation on scenes with Lam-
bertian surfaces. This method has been subject of study in several areas such as
computer animation, architectural design and heat transfer [Dutre et al., 2006]. To
implement this technique, iterative methods have been studied and used [Cohen
et al., 1988, Hanrahan et al., 1991], failing to compute solutions at real-time with
many bounces. Other GI methods were proposed and developed, such as instant
radiosity [Keller, 1997], precomputed radiance transfer [Sloan et al., 2002], or GPU-
based global illumination [Wang et al., 2009]. These techniques allow modeling many
light effects, taking advantage of the new hardware architectures. Nevertheless, they
also fail to provide real-time solutions when simulating many bounces of light. Re-
cently, new techniques have been developed to solve the real-time infinite bounce
radiosity problem, for a static geometry and dynamic emission [Fernández, 2009,
Fernández and Besuievsky, 2012].

Usually, due to spatial coherence, the form factors matrix [Cohen and Greenberg,
1985] (F, see Table 1.1) has a low numerical rank. This fact enables the application
of factorization techniques to compute low rank approximations of F that can be
stored in main memory. Matrix factorization [Golub and Van Loan, 2012] is applied
in several subjects related to mathematics and computer sciences. It is useful when
matrices with low numerical rank are present in the problem. Nevertheless, it is
not always simple to compute the factorization due to memory and execution time
reasons. Hence, it is important to continue developing techniques to exploit the
different characteristics offered by every specific problem.

1This chapter is based on the paper: Aguerre, J. P., & Fernández, E. (2016). A hierarchical
factorization method for efficient radiosity calculations. Computers & Graphics, 60, 46-54.

35
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In this chapter we present a hierarchical factorization (HF) technique for radios-
ity calculations. This technique implements a divide-and-conquer strategy based
on the calculation of multiple singular value decomposition (SVD). In addition, the
sorting of rows/columns of the matrix RF by similarity is exploited to speed-up
the technique. For this purpose, we use the Z-order curve [Morton, 1966] over the
patches of the scene, because each patch is associated to a row/column in the matrix.
This method is intended to accelerate the factorization of in-core and out-of-core RF
matrices, requiring just one pass.

3.2 Method overview

In this section, the HF method is proposed for the factorization of low-rank RF
matrices. Our algorithm processes groups of columns of the matrix and extracts their
principal components. Each group is generated dynamically, making the process
suitable for out-of-core matrices. This approach works better with matrices that
have a similarity coherence between near columns. Therefore, a method based on
the Z-order curve is used.

Using a divide-and-conquer strategy, the input matrix A is divided into two
blocks of columns A1 and A2 such that (A1|A2)=A. These submatrices are fac-
torized, combined and reduced using the SVD method. The technique is based on
a recursive scheme, where a binary tree structure is formed (Fig. 3.1). Each node
implies a SVD computation. The HF process results in two matrices Q and V,
where QVT≈A.

1. Partitioning 2. FactorizationA,ε

A1 A2

A1,εch A2,εch

Q1k’

V1k’
T

Q2k’’

V2k’’
T

Qk

Vk
T

Q

V 
T

εp

Figure 3.1: Binary tree structure of the recursion. The input matrix A is divided
in two matrices that are factorized separately. Then, the results are combined and
another factorization is performed. This results in the outputs Q and V, such that
‖A−QVT ‖2≤ ε.

The base case of the recursion consists in applying the truncated SVD to each
matrix on a leaf node to find a factorization at a given error εch. On the other hand,
the recursive case consists in two recursive calls, one per block of columns. Then,
the results of both child nodes are merged and another truncated SVD is executed
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at a given error εp. The values of εch and εp must be selected such that the error of
the final factorization is bounded by ε.

To explain the method, the recursive case needs to be defined. The approx-
imation of the two child nodes A1 and A2, which are Q1k′V1

T
k′ and Q1k′′V1

T
k′′

respectively, are joined and re-arranged in the following way:

A =
(

A1 A2

)
≈
(

Q1k′V1
T
k′ Q2k′′V2

T
k′′
)

(3.1)

=
(

Q1k′ Q2k′′
)︸ ︷︷ ︸

Qk

(
V1

T
k′ 0

0 V2
T
k′′

)
︸ ︷︷ ︸

VT
k

= QkV
T
k

where k = k′ + k′′

The columns of the matrix VT
k are trivially orthonormal, because it is composed

of two matrices with orthonormal columns. Also, the approximations to the matrices
A1 and A2 are calculated recursively, such that the Eqs. 3.2 are satisfied for a given
εch.

‖A1 −Q1k′V1
T
k′‖2≤ εch and ‖A2 −Q2k′′V2

T
k′′‖2≤ εch (3.2)

Having Qk, TSVD is applied for a given εp, mainly because there still can exist
some redundancy between the columns of Q1k′ and Q2k′′ , which can lead to reduce
the number of columns to take into account:

[Qr,Vr] = TSVD (Qk, εp) (3.3)

where Qk ≈ QrV
T
r

Qr is a n×r matrix and Vr is a k×r matrix, and by construction of TSVD it holds
that

‖Qk −QrV
T
r ‖2≤ εp (3.4)

After that, VT
r is divided into its first k′ columns and its last k′′ columns:

VT
r =

(
VT

r,1|VT
r,2

)
(3.5)

Using the Eqs. 3.1 and 3.3, the output Q and V of the recursive step (Fig. 3.1)
is defined:

Q = Qr ; VT = VT
r VT

k =
(
VT

r,1V1
T
k′ | VT

r,2V2
T
k′′
)

(3.6)

The algorithm applies the recursive case several times, which defines a tree struc-
ture. In the following sections the relation between the errors ε, εch and εp is an-
alyzed, to find Q and V that comply with ‖A−QVT ‖2≤ε for a given ε. Also,
the row/column sorting strategy is explained and a pseudocode for the algorithm is
presented.

3.2.1 Relation between norms

It is easy to prove that, for any matrix A=(A1|A2), ‖A1‖2+‖A2‖2 is an upper
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bound of ‖A‖2. On the one hand, the following statement is true, using the triangle
inequality of the norm:

‖(A1|A2) ‖2= ‖(A1| 0 ) + ( 0 |A2) ‖2≤ ‖(A1| 0 ) ‖2+‖( 0 |A2) ‖2 (3.7)

Here, (A1| 0 ) represents the matrix A with a right zero submatrix. Since the
column space of (A1| 0 ) is the same as A1, their left singular vectors are the same,
and the only singular values added are zeros. Because the 2-norm of a matrix is
its maximum singular value, it can be stated that ‖(A1| 0 ) ‖2= ‖A1‖2. The same
can be expressed for ( 0 |A2) and A2. Applying this result to Eq. 3.7, ‖A‖2 can be
bounded:

‖A‖2 ≤ ‖A1‖2 + ‖A2‖2 (3.8)

In spite of this result, next it is proven that
√
‖A1‖22+‖A2‖22 is also an upper

bound of ‖A‖2, which is a better bound because:

‖A1‖22+‖A2‖22 ≤
(
‖A1‖2+‖A2‖2

)2
Hence, as a first step on the error estimation, the following theorem is defined and
proved for 2-norm.

Theorem 3.1. Given any matrix A composed of two column block matri-
ces A1 and A2 such that A = (A1|A2), the following inequality is satisfied:
‖A‖2≤

√
‖A1‖22+‖A2‖22.

Proof. By definition of 2-norm:

‖A‖2= sup
{
‖Av‖2 such that ‖v‖2= 1

}
Now, vmax is an orthonormal vector that reaches the supremum (for 2-norm vmax

belongs to the subspace of right singular vectors associated to σmax), so

‖A‖2= ‖Avmax‖2= σmax

By construction, A also satisfies that:

‖Avmax‖2= ‖
(
A1|A2

)(
vTmax1

|vTmax2

)T ‖2
= ‖A1vmax1 + A2vmax2‖2, where vmax =

(
vTmax1

|vTmax2

)T
Then, using the triangle inequality, it can be stated that:

‖A‖2=‖A1vmax1 + A2vmax2‖2
≤‖A1‖2‖vmax1‖2+‖A2‖2‖vmax2‖2

Now, we introduce two useful results:

1. If ‖(v1T |v2T )‖22= 1, then ‖v1‖22+‖v2‖22= 1.
2. If a, b, x, y∈R & x2+y2=1, then ax+by≤

√
a2+b2.
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Therefore, applying them in the triangle inequality:

‖A‖2≤ ‖A1‖2‖vmax1‖2+‖A2‖2‖vmax2‖2≤
√
‖A1‖22+‖A2‖22

3.2.2 The error of HF and its relation with εch and εp

Given a matrix A and an error ε, the proposed method allows to find Q and V such
that ‖A−QVT ‖2≤ε. To obtain this result, it is necessary to estimate the values of
εch and εp. Based on Eqs. 3.1 and 3.3, the following equations are defined:

A = QkV
T
k + ∆A ; Qk = QrV

T
r + ∆Qk (3.9)

∆A can be divided into two blocks of columns (∆A1|∆A2) = ∆A, which satisfy
that:

∆A1 = A1 −Q1k′V1
T
k′ and ∆A2 = A2 −Q2k′′V2

T
k′′

By operating with Eqs. 3.6 and 3.9, it can be derived that:

A = QVT + ∆QkV
T
k + ∆A

Now, by substracting QVT from both sides and applying the triangle inequality, we
obtain:

‖A−QVT ‖2≤ ‖∆QkV
T
k ‖2+‖∆A‖2

Because Vk is orthonormal, ‖∆QkV
T
k ‖2=‖∆Qk‖2, and due to Theorem 3.1,

‖∆A‖2≤
√
‖∆A1‖22+‖∆A2‖22, therefore the above inequality can be transformed

into:

‖A−QVT ‖2≤ ‖∆Qk‖2+
√
‖∆A1‖22+‖∆A2‖22

Finally, substituting the norms by Eqs. 3.2 and 3.4 it can be established that:

‖A−QVT ‖2≤ εp +
√

2εch

Then, given an error ε, any pair εch and εp that satisfies Eq. 3.10 allows to find Q
and V such that ‖A−QVT ‖2≤ ε.

εp +
√

2εch ≤ ε (3.10)

There is not a unique set of εch and εp values that satisfies the inequality. In
order to find a useful scheme, it is necessary to study this problem in a deeper way.
For this, Eq. 3.11 presents a generalization of the problem, were α is a real number
between 0 and 1.

εp ≤αε
√

2εch ≤ (1− α)ε ⇒ εch ≤
(1− α)ε√

2

(3.11)
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Now, the problem to find the values to satisfy the inequality in Eq. 3.10 is reduced
to find α. This parameter affects almost every aspect of the algorithm, including
execution times, ranks and errors of the resulting factorizations. As the α grows,
εch gets smaller, which means smaller truncations on the base cases of the recursion
(the leaves on the binary tree structure). In the experimental analysis section, α is
analyzed, and a value is selected for the rest of the study.

3.2.3 Row/column sorting

In the radiosity problem, each row of the F matrix is computed based on the scene
view from the corresponding patch. When close patches have similar views, the F
matrix has many similar rows/columns. The sorting of rows/columns by similarity in
the matrix accelerates the factorization method, because the intermediate matrices
tend to have smaller ranks on each level of the recursion.

In this work, a 3-Dimensional Z-order curve [Morton, 1966] is used to sort the
patches of the scene following the Z scheme. The Z-order curve is chosen because it
is less complex than other space-filling curves, but it is still effective for coherence
purposes. Refer to Sec. 2.3 to find implementation details.

The patches of the scene are sorted before calculating the form factors. Then,
the F matrix is computed following this order, which leads to obtain a version of
the matrix that is sorted by the similarity of its rows/columns. In Section 3.3 it is
shown that this method allows to speed-up the factorization method.

3.2.4 HF pseudocode

In order to clarify some concepts and to provide implementation details, Algorithm 4
presents the pseudocode of the proposed method. Four functions are described: the
main routine, the one that performs the factorization (HF), an auxiliary function
(Combine), and the TSVD function.

In the main routine (lines 1-4), the input data are the geometric model (mdl),
the expected error (ε), the α value to use (see Eq. 3.11), and the number of levels
used in the recursion (lvl). The patches of the scene are sorted following the Z-order
curve, and HF is invoked.

The function HF (lines 5-16) implements Eqs. 3.1, 3.3, 3.5, and 3.6. Its inputs are
mdl, 2 column indexes (c1 and c2), ε, α, and lvl. This procedure finds a factorization
of the matrix formed by the columns c1..c2 of the form factors matrix. It follows
a divide-and-conquer strategy, dividing that matrix in two blocks of columns and
invoking recursive calls to factorize them (lines 8 - 9, see Eq. 3.1). After that,
the Combine function is called (line 9). This function assembles and reduces the
factorization of the splitted matrix (lines 17-22, see Eqs. 3.3, 3.5, and 3.6). In the
calls to HF and Combine functions, the values of ε satisfy Eq. 3.10.

In the base case (lines 13-14), the procedure GenFormFactors takes the ge-
ometric model as input and generates the form factors associated to the columns
c1..c2 of the RF matrix. After that, TSVD (lines 23-28) is called to factorize it. As
can be appreciated, the RF matrix is generated by parts, which allows to work with
matrices that are bigger than system memory.
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Algorithm 4 Hierarchical Factorization.

1: function main(mdl, ε, α, lvl)

2: [mdl, n]=Z-OrderSort(mdl)

3: [Q, V, k]=HF(mdl, 1, n, ε, α, lvl)

4: end function

5: function [Q, V, k]=HF(mdl, c1, c2, ε, α, lvl)

6: if lvl 6= 0 then . recursive case

7: εch = (1−α)ε√
2

. Eq. 3.11

8: [Q1k′ ,V1k′ ,k
′]=HF(mdl, c1,b c1+c2

2
c, εch, α, lvl−1)

9: [Q2k′ ,V2k′′ ,k
′′]=HF(mdl,b c1+c2

2
c+1,c2,εch, α, lvl−1)

10: εp = α ε . Eq. 3.11

11: [Q,V,k]=Combine(Q1k′ ,V1k′ ,Q2k′′ ,V2k′′ ,k
′,k′′,εp)

12: else . base case

13: RFc1..c2=genFormFactors(mdl, c1, c2)

14: [Q,V, k]= TSVD(RFc1..c2 , ε)

15: end if

16: end function

17: function [Qr,V, r]=Combine(Q1k′ ,V1k′ ,Q2k′′ ,V2k′′ ,k
′,k′′,ε)

18: [Qr,Vr, r]=TSVD((Q1k′ |Q2k′′), ε) . Eq. 3.3

19: Vr,1=Vr(1:k′, :) . Eq. 3.5

20: Vr,2=Vr(k
′+1:k′+k′′, :) . Eq. 3.5

21: V=(VT
r,1V1

T
k′ |VT

r,2V2
T
k′′) . Eq. 3.6

22: end function

23: function [Q,V, r]=TSVD(A,ε)

24: [U, D, V]=SVD(A)

25: r=max
i

(σi ≥ ε) . #columns of Q and V

26: Q=U(:,1:r)D(1:r,1:r)

27: V=V(:,1:r)

28: end function

3.2.5 Computational complexity

The theory of computational complexity is a fundamental subject in computer sci-
ence, and, in particular, in the algorithm design field. This process can provide a
clear picture on the performance of methods, and can help on the comparison of
techniques. At the same time, the main purpose of the presented algorithm is to
offer a different solution to the matrix factorization problem, that can perform bet-
ter than traditional and not-so-traditional methods. For all this reasons, it becomes
necessary to study the complexity of the technique.

As we stated before, the algorithm can be cataloged as deterministic. Never-
theless, its performance depends on the properties of the matrix to factorize. A
good scenario would be a matrix whose singular values decay rapidly. Also, another
valuable property is the existence of a low numerical rank in its sub-matrices com-
posed of contiguous columns. Following this train of thought, the complexity of the
algorithm depends on these factors.
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Before beginning the complexity study, we define the following notation for sim-
plicity reasons: ρ is the compression rate resulted from applying a truncated SVD
(with rank k) to the matrix Am×n (ρ = k/n). Also, ρi is the average compression
rate on level i of the recursion.

The main component on the computational cost of the algorithm is the execu-
tion of multiple SVD decompositions, where the cost of computing SVD(Am×n) is
O(mnmin{m,n}). In this way, the cost of computing SVD in the leaves depends
only on the size of the initial division of the matrix, while the rest depends on the
results of those decompositions. Therefore, we divide the complexity study in two:
the SVD on the leaves and the rest.

Given an amount of levels l, the number of sub-matrices in the leaves (this is
level number l) is 2l, and the size of each sub-matrix is m × (n/2l). The number
of flops required to compute each SVD is approximately m (n/2l)2. Then, the total
number Tl of flops required by this level is:

Tl ∼ (m (
n

2l
)2)2l =

mn2

2l
(3.12)

Following a bottom-up procedure, the time complexity of computing level l−1 is
studied next, where ρl is the average compression rate on level l. The amount of SVD
to compute is 2l−1, and the matrices to process are averagely sized m×(n/2l)(2ρl) =
m× (n/2l−1)ρl. The total number Tl−1 of flops required by this level is:

Tl−1 ∼ m
( nρl

2l−1

)2
2l−1 =

mn2 ρ2l
2l−1

(3.13)

With an analogous calculation, the matrices to process on level l−2 are averagely
sized m × (n/2l)(2ρl2ρl−1) = m × (n/2l−2)ρlρl−1 The number of flops required by
level l− 2 is approximately mn2 ρ2l ρ

2
l−1/2

l−2. This procedure can be generalized for
every level:

Tl−i ∼ mn2
1

2l−i

l∏
j=l−i+1

ρ2j ∀i ∈ 1 .. l (3.14)

Now, the computational times for computing levels 0 to (l − 1) is calculated by
the following sum:

l∑
i=1

T(l−i) ∼ mn2
l∑

i=1

( 1

2l−i

l∏
j=l−i+1

ρ2j

)
(3.15)

Finally, the computational complexity of the algorithm is calculated summing
up the computational times in Eq. 3.12 and 3.15:

THF = Tl +
l∑

i=1

T(l−i) ∼
mn2

2l
+mn2

l∑
i=1

( 1

2l−i

l∏
j=l−i+1

ρ2j

)
(3.16)

This is the most general equation for the complexity order, which is still O(mn2).
If we suppose ρ = ρ1 = .. = ρl, then Eq. 3.16 is simplified:
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THF ∼
mn2

2l
+mn2

l∑
i=1

( ρ2i
2l−i

)
(3.17)

The summation involved in this equation can be expressed as:

l∑
i=1

( ρ2i
2l−i

)
=

21−lρ2 − 2ρ2+2l

1− 2ρ2
(3.18)

Combining Eq. 3.17 and 3.18, an approximation of the total execution time of
HF is:

T̃HF ∼
mn2

2l
+mn2

21−lρ2 − 2ρ2+2l

1− 2ρ2
(3.19)

T̃HF from Eq. 3.19 is much lower than mn2 when 0 < ρ < 1 and l is a natural
number. It approximates THF if the supposition ρ ≈ ρ1 ≈ ... ≈ ρl is fairly satisfied.
However, this is not the case for many matrices, depending on the level of spatial
coherence of the corresponding scene. We can approximate ρ using the geometric
mean of ρ1..ρl: ρ̄ = l

√
ρ1 × ρ2 × ...× ρl. Sec. 3.3.2 shows an experimental study of

these concepts, where ρi and ρ̄ are analyzed for an example case.

3.3 Experimental analysis

In order to analyze our proposal, the algorithm was implemented using MATLAB
and the SVD function presented by Vijayan [2014]. Note that, for simplicity reasons,
the only parallelism used is the MATLAB native multi-threading, leaving other
possible optimizations for future works. All tests were performed on an Intel i7
processor along with 16GB of RAM memory. The form factors are computed using
the hemi-cube technique [Cohen and Greenberg, 1985], implemented with OpenGL
and CUDA, and executed on a Geforce GTX 780 with 4GB of RAM.

The hemi-cube algorithm uses five plane projections per patch. These projec-
tions are implemented using some basic OpenGL operations. Since the patches are
fixed through the computation of every patch’s form factors, the vertex buffer stor-
ing the corresponding vertexes is transferred only once to the GPU. This prevents
the memory allocation and transference for every hemi-cube, which allows a more
efficient use of the GPU.

After the five projections of patch i are obtained, a CUDA kernel performs the
rest of the algorithm in parallel, exploiting the capabilities of modern GPUs. Each
pixel of the projections is decoded by color to find the corresponding projected patch.
The pixels are first weighted by the cosine law depending on its position inside the
hemi-cube. Then, for j = 1..n, the number of pixels associated with patch j is
divided by the total number of pixels (which is also called hemi-cube resolution),
and this results in Fij . This procedure is repeated for all the patches, obtaining the
matrix F.

As each column can be computed independently, the matrices are generated dy-
namically on each leaf of the recursive tree, allowing to process matrices that cannot
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be allocated in system memory. As can be seen, this hemi-cube implementation fully
exploits the specialized graphics hardware to obtain an efficient approach.

3.3.1 Algorithm calibration

In this section, we study the impact on the algorithm of parameters such as the
number of levels in the recursion and ε. For this purpose, the radiosity matrix
corresponding to the Cornell Box scene is used (Fig. 3.2), with different number
of patches. The number of patches used are 2560, 10240, 40960, and 163840. The
execution times needed to generate all the column blocks of F are 3.76s, 13.8s, 61.0s,
and 369s respectively.

Figure 3.2: Cornell box subdivided into 640 triangles.

Choosing a configuration for the values of εp and εch

To study the effect of the parameter α (defined at Eq. 3.11) on the method, Table
3.1 presents the execution results using different α values on the factorization of an
example matrix (F matrix of the Cornell box scene subdivided into 2560 patches,
ε = 0.1). As can be seen, the obtained errors get closer to ε as the α grows, and
the execution times get larger. This shows that the algorithm is able to result in
approximations that are very close to the expected error, but this signifies a slight
growth in the execution times.

In Table 3.1, it can be appreciated that for most values of α, the real error
converges roughly to αε. The experiment leads to think that a different scheme can
be used, where Eq. 3.10 is not satisfied, and yet get a bounded error. This happens
because the spaces defined by the columns of Q1k′ and Q2k′′ are often similar when
there is a high spatial coherence in the scene. More work is needed to take advantage
of this aspect. Beyond this fact, in the rest of the experimental section, we use the
configuration described in Eq. 3.20, where ε is equally distributed in both terms of
Eq. 3.10 (α = 0.5):

εch =
ε

2
√

2
; εp =

ε

2
(3.20)
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α time (s) rank real ε

0.1 7.68 ×10−1 641 0.0214
0.2 5.68 ×10−1 585 0.0204
0.3 6.00 ×10−1 535 0.0301
0.4 6.19 ×10−1 462 0.0401
0.5 6.45 ×10−1 416 0.0500
0.6 7.04 ×10−1 392 0.0595
0.7 8.15 ×10−1 373 0.0696
0.8 1.01 ×100 357 0.0800
0.9 1.27 ×100 344 0.0892

Table 3.1: Results for ε = 0.1 and different α values.

Therefore, looking at the results at Table 3.1, it is expected that the real error
will be approximately ε/2.

Levels of the recursion

There is a relation between the recursion levels and the execution times, for a given
ε. Moreover, this relation also depends on the scene and its number of patches.
Fig. 3.3 presents the execution times of the algorithm for the Cornell Box scene
with different number of patches and different ε. In the case of 0 levels (where
just TSVD is applied), the results do not depend on ε. This happens because the
implementation of the TSVD technique does not take advantage of ε to speed up
the process. Also, the optimal number of levels depends on the expected error.

Z-order curve technique

Next, a test to show the usefulness of the Z-order curve technique (described in
Sec. 3.2.3) is presented. It is important to say that this technique is a linear process,
and that its execution times are very small when compared to the factorization time,
for every size. Table 3.2 shows the execution times, obtained errors and ranks for the
algorithm with and without the use of this technique. All the results were executed
using the optimal number of levels in the recursion. As can be seen, the use of
Z-order curve makes the factorization code more efficient, reaching a speedup up to
2× for large matrices.

On the other hand, the real ε displayed corresponds to the 2-norm of the differ-
ence between the original and factorized matrix; for size n = 163840, ε could not
be calculated due to memory reasons. As stated in Sec. 3.3.1, the error converges
roughly to ε/2, due to the configuration selected for εch and εp, described in Eq.
3.20.

Fig. 3.4 shows the execution times for the Cornell box scene with 10240 patches
and different recursion levels. The results are presented with and without the use of
the Z-order curve technique. Besides the fact that both strategies show its optimum
at 3 levels, better execution times are obtained when the row/column sort is applied.
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(a) Results for 2560 patches
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(b) Results for 10240 patches

Figure 3.3: Execution times for the Cornell Box scene with different number of
patches.

Size
No Z-order Z-order

Gain
time (s) real ε rank time (s) real ε rank

2560 1.31 ×100 0.0501 416 2.57 ×10−1 0.0500 416 5.10 ×
10240 8.24 ×100 0.0505 874 5.67 ×100 0.0498 877 1.45 ×
40960 2.60 ×102 0.0500 1786 1.41 ×102 0.0496 1791 1.84 ×

163840 4.65 ×104 - 3981 2.32 ×104 - 3990 2.00 ×

Table 3.2: Execution times and obtained error for desired ε = 0.1, with and without
the use of Z-order curve.

Matrix rank and memory consumption

Since one of the purposes of this work is to reduce the memory size of the input
matrix, it is important to study the relation between the initial dimensions and the
obtained ranks. This helps to show that the proposed algorithm can take advantage
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Figure 3.4: Execution times for the Cornell Box with 10240 patches.

of the low numerical rank of the matrices and, therefore, be utilized in radiosity
calculations. Fig. 3.5 presents the relation between the number of patches and the
obtained rank for a Cornell Box scene and different errors.
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Figure 3.5: Relation between #patches and rank for the Cornell Box.

On the other hand, it is important to study the memory consumption through-
out the execution of the algorithm. This determines the memory requirements to
perform the factorization, which are usually bigger than its final memory size. Table
3.3 shows the memory size of the resultant factorizations for the Cornell Box scene
with different number of patches and ε = 0.1, as well as the memory peak reached
during the process. The memory peak depends on the number of levels used in the
recursion. For each matrix, the results are reported using the number of levels that
produce shorter execution times.

The experiment shows that the memory reduction is significant when comparing
the size of the full matrix and the size of the factorization. For all the test cases,
the factorization is small enough to fit in the system memory of a regular PC. The
memory peaks are reached during the execution of the SVD routine, and are always
higher than the final size of the factorization. In spite of this, every test case was
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Full matrix Factorization Process
Size k Memory size Memory size Memory peak

2560 416 25.0 MB 8.12 MB 184 MB
10240 874 400 MB 68.3 MB 209 MB
40960 1786 6.25 GB 558 MB 820 MB

163840 3981 100 GB 4.86 GB 7.55 GB

Table 3.3: Memory consumption for the Cornell Box and ε = 0.1.

successfully executed without exceeding the memory limits (16 GB).

3.3.2 Analysis of the compression rates (ρ)

The value of ρ (see Eq. 3.19) depends on many factors, such as the numerical rank of
the matrix to factorize, the values of ε, and the number of levels. As an example, we
present the obtained values of ρ1..ρl and ρ̄, using the Cornell Box scene (n = 2560),
different number of levels (l), and different ε values. The results can be seen in Table
3.4.

ε ρ1 ρ2 ρ3 ρ4 ρ̄ THF (Eq.3.16) T̃HF (Eq.3.19)

l=1

1.0 ×10−1 0.21 - - - 0.21 9.13×109 9.13×109

1.0 ×10−2 0.35 - - - 0.35 1.04×1010 1.04×1010

1.0 ×10−3 0.59 - - - 0.59 1.42×1010 1.42×1010

1.0 ×10−4 0.93 - - - 0.93 2.29×1010 2.29×1010

l=2

1.0 ×10−1 0.87 0.29 - - 0.50 5.97×109 7.34×109

1.0 ×10−2 0.82 0.50 - - 0.64 9.11×109 1.04×1010

1.0 ×10−3 0.80 0.84 - - 0.82 1.77×1010 1.74×1010

1.0 ×10−4 0.85 0.98 - - 0.91 2.39×1010 2.26×1010

l=3

1.0 ×10−1 0.77 0.82 0.39 - 0.63 4.61×109 6.13×109

1.0 ×10−2 0.70 0.82 0.71 - 0.74 9.84×109 9.66×109

1.0 ×10−3 0.81 0.91 0.92 - 0.88 1.92×1010 1.82×1010

1.0 ×10−4 0.87 0.96 1.00 - 0.94 2.57×1010 2.39×1010

l=4

1.0 ×10−1 0.77 0.68 0.81 0.57 0.70 4.43×109 5.04×109

1.0 ×10−2 0.70 0.74 0.90 0.87 0.80 1.08×1010 9.12×109

1.0 ×10−3 0.80 0.90 0.97 0.96 0.91 2.00×1010 1.83×1010

1.0 ×10−4 0.89 0.96 0.97 1.00 0.96 2.59×1010 2.52×1010

Table 3.4: Compression rates for the Cornell Box scene, with different l and ε values
.

Note that ρ̄ decreases when ε decreases, which implies smaller factorization ma-
trices. In the case of ε=1.0×10−1, the decomposition in the leaves always produces
the bigger compression. This means that, for this scene, the spatial coherence is big-
ger for closer patches. Nevertheless, the compression rates at the rest of the levels
is still significant.

For ε=1.0×10−3 , 1.0×10−4, the number of levels that leads to the smallest
amount of operations seems to be l = 2, while for other values of ε it is l = 4.
On the other hand, the strategy of using the geometric mean (ρ̄) instead of each ρi
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seems to produce only a negligible error |THF − T̃HF | for this scene. This fact allows
to work with ρ̄, which simplifies the study.

3.3.3 Comparison with other algorithms

In order to compare the proposed algorithm with other existing methods, we studied
several factorization techniques that compute a low-rank approximation of a given
matrix. In this stage, two algorithms stood out both in execution time and precision
of the resultant factorization. The first method is the Randomized Subspace Itera-
tion, presented by Halko [2011]. It offers an iterative solution to find a basis that
approximates most of the action of the input matrix to factorize. Each iteration de-
rives into more precise solutions, but each one passes 2 times over the matrix, slowing
the total execution time. The second technique is the Sub-Gaussian-based Random-
ized SVD Decomposition (SGRSVD), presented by Aizenbud and Averbuch [2016],
which uses sub-Gaussian random matrices to compute an approximated truncated
SVD. This method requires only two passes over the input matrix.

It is important to highlight that both algorithms solve the fixed-rank problem
(see Sec. 2.4.3). On the other hand, HF solves the so called fixed-precision problem,
where the expected error is taken as input, instead of the expected rank. For the
radiosity problem, the latter scheme is more useful because it allows to bound the
error of the radiosity results (as shown in Eq. 2.9). Despite the fact that it is
still possible to obtain a desired radiosity error using the fixed-rank approach, this
would lead to greater execution times. For this, a larger k value should be used,
and then the resultant matrices should be truncated measuring the generated error.
The value of k should be estimated by the user, which can lead to several trials due
to underestimations, or greater execution times due to overestimations.

Therefore, to perform the comparison, we first execute the HF algorithm to
factorize the form factors matrix of the Cornell Box scene for different sizes. Then,
the output rank k is used as input to factorize the same matrices using the other
algorithms. Table 3.5 presents these results along with the regular SVD routine.
The speedups of HF over the other methods and the obtained errors are reported.

Size k
HF RSI SGRSVD SVD

time (s) real ε speedup real ε speedup real ε speedup real ε

2560 416 2.57 ×10−1 0.0500 1.11 × 0.0570 2.83 × 0.0513 11.3 × 0.0500
10240 877 5.67 ×100 0.0505 1.25 × 0.0586 1.60 × 0.0872 28.8 × 0.0504
40960 1791 1.41 ×102 0.0500 1.38 × 0.0600 7.66 × 0.0986 39.6 × 0.0500

163840 3990 2.32 ×104 - 1.45 × - 15.23 × - - -

Table 3.5: Results for factorizing the Cornell Box form factors matrix, using the
three algorithms to be compared. Speedup is equal to Talgorithm/THF .

Our technique works faster than the rest and its accuracy is very near the optimal
(SVD). Also, the SGRSVD method is the slowest for all test cases. The out-of-core
matrix used corresponds to the model with n=163840. For this model, HF works
faster than RSI and SGRSVD algorithms, which need more passes over the input
matrix than ours.
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3.3.4 Real-Time Radiosity results

It is important to analyze the results of the proposed algorithm when applied to
solve the radiosity (B) of a scene. To solve radiosity, we apply the factorization
results Q and V on Eq. 2.8, where Uk=Q and VT

k =VT .
Two more scenes were used. Fig. 3.6a presents the Patio scene composed of

21886 patches, while Fig. 3.6c shows the Sponza Atrium, composed of 79232 patches.
Computing the elements of the F matrices takes about 30 and 130 seconds respec-
tively.

(a) Patio. (b) Wireframe view.

(c) Sponza Atrium. (d) Upper corridor.

Figure 3.6: Two example scenes.

The obtained execution times and speed (in Frames per Second) for solving
radiosity are presented in Table 3.6. The execution times for computing F are not
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included. The pre-computation times for the calculation of Q and V by factorization,
and Yk, are much higher than the B calculation times, which for some cases are
shorter enough for a Real-Time execution (>20 fps). This result makes the method
suitable for problems where the radiosity values of a static geometry with dynamic
emission must be calculated many times, like in video games or inverse lighting
problems [Fernández and Besuievsky, 2012].

Scene k factorization (s) Yk (s) B (s) fps

Patio 3920 97 7.42 0.040 25.3
n = 21888 3114 71 4.70 0.031 32.6

2227 58 2.45 0.024 41.5
1617 49 1.29 0.016 62.1

Sponza 17857 19225 329.42 0.921 1.1
n = 79232 3483 2023 19.66 0.128 7.8

1751 1987 5.25 0.067 14.8
376 1524 0.33 0.015 66.7

Table 3.6: Execution times for computing radiosity of the Patio and Sponza atrium,
with different dimensions.

Table 3.7 shows the radiosity relative error results for different dimensions on the
Patio and Cornell Box scenes. The different factorizations were tested for radiosity
(using Eq. 2.8 to calculate B̃) with 500 random emission vectors E, where only one
patch is selected as emitter in each test. The exact radiosity B is calculated using
Eq. 2.3 and the inverse operation. The mean, standard deviation and maximum
values are reported. The minimum value is near 0 for every case. This shows that
for these scenes, the mean relative errors in the radiosity results are about 20 times
smaller than the value of ε defined for the approximation of RF.

Patio (n=21888) Cornell Box (n=2560)
‖B̃ −B‖/‖B‖ ‖B̃ −B‖/‖B‖

ε k µ σ Max k µ σ Max

0.05 3920 0.0025 0.0013 0.0073 560 0.0021 0.0017 0.0094
0.1 3114 0.0048 0.0030 0.0170 416 0.0045 0.0042 0.0213
0.2 2227 0.0096 0.0073 0.0395 328 0.0088 0.0075 0.0448
0.3 1617 0.0142 0.0124 0.0635 274 0.0133 0.0122 0.0839
0.5 932 0.0232 0.0224 0.1205 139 0.0255 0.0299 0.1713

Table 3.7: Relative error for radiosity calculations using different dimensions.

Fig. 3.7 shows radiosity results for the Sponza atrium scene. It is important to
highlight that the relative error is not reported for this scene because the size of the
matrix is too large (the exact radiosity B was not calculated). Three examples of
the same scene are shown, calculated with different ε values. The illumination looks
more real and the memory cost increases for smaller values of ε.



3.4 Overview and conclusions of the chapter 52

(a) ε=0.9 ; size = 79232×376 ≡ 227MB. (b) ε=0.5 ; size = 79232×1751 ≡
1.06GB.

(c) ε=0.2 ; size = 79232×3482 ≡
2.10GB.

Figure 3.7: Radiosity results for the Sponza Atrium.

3.4 Overview and conclusions of the chapter

This chapter proposed a hierarchical technique to factorize low numerical rank
matrices, applying multiple decompositions to sections of the matrix and, then,
joining and reducing the results. Moreover, the sorting of rows/columns of the
matrix by similarity can be used to accelerate the process. This one-pass algorithm
works faster than the other studied methods for medium-to-large sized problems,
and allows to work with matrices that do not fit into system memory.

The proposed method is used to solve the radiosity problem efficiently for static
scenes by factorizing the matrix RF. Furthermore, the Z-order curve is used to sort
the patches of the scene, which allows to exploit its spatial coherence. As a result,
it is possible to calculate in real-time the global radiosity (with infinite bounces) for
multiple scenes (2560, 21888, and 79232 patches) with negligible relative error.
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Regarding the hierarchical factorization method, several aspects were analyzed.
In the first place, the error of the technique was evaluated. For this, we bounded the
error of the result of one step of the recursion, using the 2-norm difference on the
results of the previous step (εch), and the error produced by the extra decomposition
applied to reduce the concatenation (εp). Applying this bound in every step of the
recursion allows to bound the final error of the resulting factorization. Finally, given
a goal error bound (ε), multiple configurations of εch and εp can be used, leading to
different final errors and execution times.

On the other hand, the computational complexity of the hierarchical factorization
was studied. This depends highly on the compression rates of each step of the
recursion (ρ1, ρ2, .., ρl), which is directly related to the spatial coherence of the scene.
Eq. 3.16 expresses the computational complexity of the algorithm in terms of the
compression rates. Also, if we suppose ρ1 = ρ2 = .. = ρl, the complexity becomes
simpler (see Eq. 3.19).

In the experimental analysis, the Cornell box scene was used to calibrate the
algorithm, evaluating the effect of changing the number of levels in the recursion,
and the use of the Z-order curve. We conclude that the sorting of rows/columns of
RF is a powerful strategy to reduce the execution times by exploiting the spatial
coherence of the scene.

The execution times and memory consumption of performing the factorization
were studied using different number of patches (n), and different expected errors.
As n grows, the final compression rate becomes smaller, but the execution times and
memory consumption grows. Also, a comparison between the algorithm and other
existing methods was performed. For the tested matrices, our technique works faster
and more accurately than the others.

Finally, to test radiosity results, two more scenes were used: the Patio and the
Sponza Atrium. HF was applied to factorize their RF matrices. As a result, it
was possible to calculate the global radiosity (with infinite bounces) for multiple
scenes (2560, 21888, and 79232 patches) with negligible relative error. After a pre-
computation stage, this was performed in real-time for the static geometries, and
without the use of any specialized hardware resource (like GPU) to compute the
matrix-vector and matrix-matrix multiplications.





Chapter 4

A Radiosity Method for Highly
Occluded Environments1

4.1 Introduction

In the radiosity problem, if two patches are completely occluded from each other,
they do not exchange energy directly. If this property is satisfied for most pair of
patches on a scene, then the form factors matrix is a sparse matrix. Inverting or
factorizing sparse matrices is not always possible, since the results are frequently full
matrices that may exceed the memory limits. In the case of radiosity calculations,
this sparsity can be exploited directly using iterative methods [Chelle and Andrieu,
1998], or the inverse can be approximated by another sparse matrix [Kontkanen
et al., 2006].

In this chapter, we analyze the case of City models, which are an example of a
highly occluded environment [Wimmer and Bittner, 2015]. Computational simula-
tion for radiative transfer on an urban scale, where thousands of buildings have to be
considered, is a challenge. The main problem is how to deal with the huge amount
of data required to represent such models. Despite the fact that the factorization of
the F matrix is usually not an option, the sparsity of the radiosity matrix can be ex-
ploited. An approach for radiative exchange computation that can approximate the
inverse of the radiosity matrix is proposed. The problem is formulated as a Neumann
series [Golub and Van Loan, 1996] and the inverse is approximated by eliminating
unimportant terms. This technique is applied to compute urban radiation exchange.

Urban physics simulation has become a major topic of interest, due to the in-
creasing need of energy assessment tools at large scale. The evaluation of annual
solar irradiance and the analysis of the spatial variation over building facades have
a relevant interest for urban planning and building design. Numerical simulation of
cities generates highly complex computational challenges. Many existing computer
models should be adapted to consider the physical and social phenomena that are
developed in urban environments.

1This chapter is based on the paper: Aguerre J. P., Fernández E., Besuievsky G. & Beckers B.
Computing urban radiation exchange: a sparse matrix solution, October 2016. First International
Conference on Urban Physics.
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Our study on different kinds of urban model configuration shows that, for models
composed of thousands of patches, we can provide an accurate approximation of the
inverse radiosity matrix that can also be stored in main memory. In this way, it can
be used to solve efficiently annual based radiative simulations. This is a promissory
result, concerning its potential use for radiative exchange and analysis.

4.2 Our Proposal

This section presents the main ideas of the chapter, and proposes an algorithm to
compute radiosity solutions exploiting the properties of the studied matrices. In
the first place, the sparsity of F in city environments is analyzed. Secondly, a
method to approximate the inverse of the radiosity matrix is proposed. After this,
an experimental analysis is performed to test the proposed ideas.

4.2.1 Why not factorizing?

As stated in the previous chapter, a good approach to accelerate the radiosity cal-
culations is to factorize the form factors matrix generated by the scene. When there
is a high spatial coherence, the factorization allows to drastically reduce the amount
of data, without losing much information about the model. This factorization is
used to approximate the inverse of the radiosity matrix, which is used to compute
radiosity solutions efficiently for a static geometry. Nevertheless, this is not always
the case for many scenes.

City environments composed of thousands of buildings disposed over a terrain,
do not have enough spatial coherence to exploit the previous properties. In these
scenes, the singular values of the corresponding F matrices usually decay slowly,
which prevents the use of factorization techniques to accelerate radiosity calculations.
Therefore, other strategies need to be studied in order to work with big city models.
To understand these concepts, Fig. 4.1 shows the singular values for two different
scenes: the Cornell box, which has a high spatial coherence, and an example city
model. As can be seen, the singular values decay rapidly in the high coherence case,
while for the city environment they decay more slowly. For example, to get an error
of 0.1, the city needs three times more singular values than the Cornell box.

4.2.2 Studying the Sparsity of a City’s Form Factors Matrix

The density factor (sparsity) of a matrix is the fraction of non-zero elements over the
total number of elements. In the form factor matrices, this factor depends on how
many patches are seen from each patch: if patch j sees few patches, then row j of F
has few elements different than zeros, and vice versa. Figure 4.2 shows two urban
scenes where each patch is colored by checking how many elements are seen from it.
For example, the upper elements on the tallest buildings are red while the ones on
houses are blue. These results allow to predict that the F matrix corresponding to
a city, where each patch sees few others, is very sparse.

The previous fact derives into the main conjecture of the present work: different
kinds of cities have sparse F matrices with different density factors. This sparsity
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Figure 4.1: Singular values of F for the Cornell box scene and for City 1.

(a) City 1. (b) City 3.

Figure 4.2: Two example urban scenes. The color of a patch indicates the number
of patches that are seen from it. Both models are composed of 142k patches.

depends on many factors. For example, orography, construction type, buildings
disposition and heights are expected to have a great influence on the structure of
the matrices. As a first step, we focus on the variation of building heights. A city
with big variance on its buildings height (as a typical contemporary downtown with
skyscrapers) should generate less sparse matrices than a city with uniformly elevated
buildings (as, for example, Haussmann’s Paris [Loyer, 1988]). In following sections
the orography is also taken into account.

4.2.3 An Approximation of M = (I−RF)−1

The inverse of a sparse matrix is usually a full matrix [Duff, 1977], where its calcula-
tion is computationally expensive, and has memory limitations for medium to large
size matrices. However, in the case of the radiosity matrix, its inverse M has many
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elements below a small threshold. This is because the indirect energy exchange
between two occluded patches is predominantly small, in such way that it can be
ignored in many cases. Therefore, in relation to M, our proposal consists in finding
a sparse approximation (M̃ ≈M) that allows to compute low-error radiosity values.

In order to compute M̃ efficiently, we use a method based on the work by Kon-
tkanen [2006]. As described in Sec. 2.2.5, the algorithm is based on the use of
Neumann series and a compression strategy based on removing all elements below
a threshold ε. To obtain even sparser matrices, we apply this compression to RF
before starting the process. Algorithm 5 describes the proposed method, where the
function “remove” eliminates |T(i, j)| < ε,∀ij.

Algorithm 5 Calculate M̃.

1: M̃ = 0
2: T = I
3: while T 6= 0 do
4: M̃ = M̃ + T
5: T = T RF
6: T = remove(T, ε)
7: end while

Once the sparse approximation is computed, it is relatively inexpensive to cal-
culate the radiosity results for k different emissions (Eq. 4.1):

M̃ ≈ (I−RF)−1

B̃ = M̃E
(4.1)

where the ith column of E is an emission and the ith column of B̃ is the approximation
of its corresponding radiosity result, ∀i ∈ 1 .. k.

4.2.4 Daylight Simulation

Computing urban radiation exchange can have increasing interest if it is efficiently
calculated. In this work, we apply the described techniques on urban daylight sim-
ulation, such kind of simulation has been applied in different fields such as design
[Baker and Steemers, 2014], building energy consumption [Hviid et al., 2008] or
ecology [Longcore and Rich, 2004].

In order to simulate the sky and its interaction with the city, a hemisphere
containing the city is added to the model. This hemisphere is divided intom elements
and each element is given its corresponding emittance, simulating the skylight. For
more details on these concepts, refer to Sec. 2.5.2.

Once the sky is added to the model, we use the strategy described by Beckers
[2013] to calculate the first bounce of light from the sky in the city. We use this
as the urban emission, which allows us to work only with the form factors between
patches of the city. For this purpose, the discrete radiosity equation (Eq. 2.3) is
re-written in the following way:
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B = E + RFB (4.2)

Let us separate the sky (index s) and city (index u) contributions in Eq. 4.2:[
Bs

Bu

]
=

[
Es

Eu

]
+

[
(RF)ss (RF)su
(RF)us (RF)uu

] [
Bs

Bu

]
The sky is considered as a black surface, with zero reflectance, while the city has

no emission. Therefore, as (RFss) = 0, (RF)su = 0, and Eu = 0:[
Bs

Bu

]
=

[
Es

0

]
+

[
0 0

(RF)us (RF)uu

] [
Bs

Bu

]
In the previous equation, Bs = Es. This leads to the following statement:

Bu = (RF)usBs + (RF)uuBu = (RF)usEs + (RF)uuBu

Now, grouping the radiosities from both sides:

(I− (RF)uu)Bu = (RF)usEs

The left side of this equation is the radiosity matrix (I − (RF)uu) times the
radiosity result for the city. Therefore, following Eq. 2.3, the new emission is
E = (RF)usEs, which is the first bounce of light coming from the sky in the city.

4.3 Experimental Analysis

The results of the presented set of experiments were conducted on a desktop com-
puter, with Intel quad-core i7 processor and 16 Gbytes RAM. The calculation of each
F matrix was performed using the hemi-cube technique with a resolution of 512 ×
512 pixels, where the graphic component was executed on a NVIDIA GeForce-780
GPU processor. The code was implemented on C++, OpenGL, CUDA [Kirk and
Hwu, 2010], and MATLAB [MATLAB, 2010].

4.3.1 Example City Models

The following analysis is performed using three different urban scenes, which are
generated from the same cadastral plan. The first model contains only flat houses,
the second low and middle-sized buildings, and the third is composed of different
sized buildings, including tall skyscrapers. The urban scenes can be observed in
Fig. 4.3.

As can be seen, the first model has a small variance on building heights, while
the third one has a big variance. The three models are composed of 8897 patches.
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(a) City 1. (b) City 2. (c) City 3.

Figure 4.3: Three different urban scenes to experiment with.

4.3.2 Sparsity Results for F and M̃

We show the sparsity results for the described city models. For each model, three
variants are studied: the original (n=8897), dividing each patch into 4 (n=35588)
and into 16 (n=142352), where n is the number of patches. This allows to analyze
the proposed algorithm for bigger models, as well as the effect of dividing patches in
the sparsity factor. The calculation of F takes about 20s, 90s, and 600s for n=8897,
35588, and 142352, respectively.

First of all, we explore the density of M matrices (n=8897, inverted with MAT-
LAB) and the distribution of their elements, for different reflectivity indexes R
(Fig. 4.4). It can be appreciated that most of the matrices elements are non-zero,
and also that most of them have very small values. An increment in the value of
R is related to an increment in the values of the matrix elements. The matrices of
City 1 have smaller elements than those related to City 3. For example, only 3%
of the elements corresponding to City 1 are greater than 10−5 for R <= 0.7, while
approximately 10% of the elements in City 3 satisfy this property. In the rest of the
paper, a reflectivity index of 0.7 is used. This value is higher than the expected for
cities, but it is useful for challenging the sparsity of the matrices M̃.

The sparsity results and memory storage for F and M̃ matrices can be seen in
Table 4.1. As expected, the density factor of F grows as the city model becomes
less homogeneous, which implies the use of a larger memory space. Nevertheless,
the density reported in the worst case (City 3 with n = 8897) signifies a storage of
1.23% of the total elements of the matrix. On the other hand, the density factors
are shorter for finer meshes of the same city model.

The density factor of M̃ has a similar behavior to that described for F. Also,
for all cases, the density increases as the threshold ε becomes smaller. The memory
required to store the sparse matrices F and M̃ is always much less than its full
version, for every of the test cases executed.
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(a) City 1.
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(b) City 3.

Figure 4.4: Distribution function of the M elements, for different reflectivity indexes
and cities.

Density Density of M̃ Memory size (GB) Gain

n of F ε = 10−3 10−4 10−5 Full F M̃ (10−5) F M̃ (10−5)

City 1 8897 0.68 % 0.22 % 0.61 % 1.48 % 0.60 0.01 0.02 60× 30×
35588 0.48 % 0.10 % 0.31 % 0.83 % 9.66 0.09 0.17 107× 57×

142352 0.35 % 0.04 % 0.15 % 0.45 % 154.60 1.05 1.46 147× 106×
City 2 8897 0.84 % 0.30 % 1.01 % 2.58 % 0.60 0.01 0.03 60× 20×

35588 0.60 % 0.15 % 0.51 % 1.41 % 9.66 0.12 0.28 80× 34×
142352 0.44 % 0.05 % 0.24 % 0.75 % 154.60 1.34 2.42 115× 64×

City 3 8897 1.23 % 0.55 % 2.07 % 6.24 % 0.60 0.01 0.08 50× 7.5×
35588 0.87 % 0.20 % 0.88 % 2.98 % 9.66 0.17 0.59 57× 16×

142352 0.64 % 0.06 % 0.36 % 1.40 % 154.60 1.94 4.52 80× 34×

Table 4.1: Density and memory size of the form factors matrices and the approx-
imated inverse. The gain equals to the full memory size over the sparse memory
size.

4.3.3 Execution Times

In order to study the computational performance of the proposed algorithm, we
calculate the daylight illumination for a whole year. For this, we use the 3 city
models with the 3 mesh variants, along with 3650 sky configurations. There are
several ways to mesh the sky [Mardaljevic, 1999, Tregenza, 1987], though we use a
simple division with parallels and meridians (m=132) as a proof of concept. The
obtained data is compared to the execution times of solving the same radiosity
problem iteratively, using the Jacobi iteration (Eq. 2.5).

Table 4.2 shows the obtained execution times for the described test cases. Table
4.3 shows the speedup over the Jacobi based method. It is important to highlight
that this speedup is calculated taking into account both time to compute M̃ and time
to compute M̃E. That is: Speedup = TJ

/
(TM̃ + TM̃E), where TJ is the execution

time needed to calculate the radiosity using Jacobi. For each case, the number of
iterations (light bounces) used to compute TJ is the same than the used for M̃.



4.3 Experimental Analysis 62

As can be appreciated in the tables, the execution times depend highly on the
correspondent density factor of M̃. The sparser this matrix is, the lower the execu-
tion times are. For the considered example problem, the proposed algorithm works
faster than the Jacobi iteration method for all the test cases.

Time for M̃ (TM̃) Time for M̃E (TM̃E) Time for Jacobi (TJ)
n ε = 10−3 10−4 10−5 ε = 10−3 10−4 10−5 ε = 10−3 10−4 10−5

City 1 8897 0.17s 0.68s 2.51s 0.52s 1.22s 2.88s 32.78s 51.68s 79.77s
35588 1.10s 7.08s 32.80s 3.72s 10.20s 26.70s 334.51s 594.43s 993.65s

142352 7.33s 60.90s 440.00s 26.40s 89.80s 264.00s 3710.30s 6615.73s 14150.40s

City 2 8897 0.26s 1.49s 5.80s 0.71s 1.99s 4.99s 43.84s 76.56s 117.61s
35588 2.06s 15.20s 79.60s 5.17s 16.20s 45.70s 530.68s 963.98s 1691.55s

142352 11.80s 136.00s 1180.00s 34.20s 140.00s 442.00s 5704.00s 11509.20s 27411.80s

City 3 8897 0.52s 4.10s 18.40s 1.09s 4.04s 11.90s 72.93s 129.43s 203.01s
35588 3.35s 38.00s 264.00s 6.91s 29.10s 100.00s 826.96s 1758.02s 3385.20s

142352 15.80s 306.00s 4070.00s 37.70s 223.00s 837.00s 10058.00s 22323.80s 72132.90s

Table 4.2: Execution times (in seconds) of radiosity calculations for the test cases.
Both TM̃ and TJ are computed using 40 iterations (light bounces).

Speedup = TJ
/

(TM̃ + TM̃E)
n ε = 10−3 10−4 10−5

City 1 8897 47.5 × 27.2 × 14.8 ×
35588 69.4 × 34.4 × 16.7 ×

142352 110.0 × 43.9 × 20.1 ×
City 2 8897 45.2 × 22.0 × 10.9 ×

35588 73.4 × 30.7 × 13.5 ×
142352 124.0 × 41.7 × 16.9 ×

City 3 8897 45.3 × 15.9 × 6.7 ×
35588 80.6 × 26.2 × 9.3 ×

142352 188.0 × 42.2 × 14.7 ×

Table 4.3: Time speedup for radiosity calculations.

4.3.4 Radiosity Results

In this section we study the impact of the proposed algorithm on the radiosity
results. We use 132 different sky configurations, each one with a unique sky tile
illuminating the scene, to compute 132 radiosity solutions of the city. Given a patch
of the city, the radiosity value calculated for each of the sky configurations is related
to the concept of Daylight Coefficient [Tregenza and Waters, 1983]. The linear
combinations of the radiosity solutions for the 132 skies allow to find the radiosity
of the city for any other sky configuration. Fig. 4.3 shows the radiosity values of
the three cities for the same sky configuration, when ε=10−5.

Comparison with Jacobi

Table 4.4 shows the relative errors of the 132 radiosities obtained, comparing B̃=M̃E
to the solution (BJ) of the Jacobi iteration methodology (Eq. 2.5). The initial
emission is the first bounce of the light emitted from the sky (Sec. 4.2.4). The
mean, standard deviation and maximum values are reported. As expected, the error



4.3 Experimental Analysis 63

gets smaller as the city homogeneity increases and as the truncation factor decreases.
For every case, the standard deviation is small, as well as the maximum error is close
to the mean value.

Relative error of B̃: ‖B̃−BJ‖‖BJ‖ (×1000)

ε = 10−3 ε = 10−4 ε = 10−5

n µ σ Max µ σ Max µ σ Max

City 1 8897 27.80 2.29 29.40 7.83 0.73 8.29 1.88 0.19 2.00

35588 53.00 3.17 55.70 16.90 1.25 17.90 4.53 0.36 4.78

142352 48.60 5.09 52.80 15.30 1.88 16.70 4.15 0.57 4.57

City 2 8897 87.70 6.44 95.20 31.70 2.99 34.20 9.50 1.04 10.30

35588 86.50 9.15 97.80 35.00 5.42 39.80 11.00 2.20 12.80

142352 134.00 11.70 154.00 61.80 6.24 69.30 23.00 3.41 25.90

City 3 8897 92.60 3.92 98.20 33.30 2.11 35.30 9.86 0.72 10.50

35588 141.00 8.67 155.00 59.30 4.80 64.20 19.70 1.93 21.40

142352 189.67 17.74 221.03 99.20 8.45 113.05 42.14 4.77 47.12

Table 4.4: Radiosity errors for the test cases (all numbers are ×1000).

3rd and successive light bounces

The indirect lighting is an important component of the illumination of the city. Next,
a test is performed to measure the precision of the radiosity results without taking
the direct and first bounces into account. In Fig. 4.5, the average radiosity values for
the 132 different sky configurations are shown (for two city models). All the radiosity
curves are sorted from lowest to highest values. In both plots, we present the results
using the Jacobi iteration method for computing the full radiosity (BJ) and the
radiosity considering only the third and successive bounces (SJ). Also, we show the
same results using the proposed algorithm for different truncation thresholds.

As can be appreciated, the illumination is much higher in BJ than in SJ , because
the first two bounces are the main component of the total radiosity. Nevertheless,
the rest of the bounces together are not negligible, which means that they cannot be
discarded in the calculations. Taking a closer look into the results of the proposed
algorithm, it is evident that a higher truncation threshold implies a higher error.
When compared to the Jacobi solution, the results seem close enough for most
practical applications, when ε=10−4 and 10−5. Finally, the absolute errors ‖B−BJ‖
seem to have similar values to the errors ‖S − SJ‖, which leads to think that most
of the radiosity error is produced after the 2nd bounce.

4.3.5 Orography

Orography is the study of the topographic relief of a terrain [Glickman, 2000]. Iden-
tifying features and recognizing typical landform patterns are part of the field. It
has a major impact on several subjects such as heat exchange, air movement and
daylighting [Collier, 2006]. Topographic studies may have different goals: geolog-
ical exploration, planning and construction for civil engineering projects, or even
neuroimaging [Chakraborty, 2005].
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(a) City 1.
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(b) City 3.

Figure 4.5: Comparison of radiosity results between Jacobi (Bj), third and successive
bounces (Sj), and their approximations using different thresholds.

This field becomes very important for city planning purposes, because building
strategies depend highly on the properties of the surface to construct on. Moreover,
in an urban environment, there is a relation between orography and daylighting
[Johnson, 1981]. Different terrains lead to different occlusions between buildings,
which affects the light and heat interaction within the city. In this section, we study
the effect of changing the terrain where the city lies in. In particular, the density
factor of the correspondent form factors matrices is measured.

To perform this study, three different terrains are used: a flat terrain, a hill
terrain, and a valley terrain. Then, the three city models presented at Fig. 4.3 are
skewed according to the terrains shapes, creating six new scenes. Fig. 4.6 illustrates
the different terrains. Example pictures of the new models are shown in Fig. 4.7.

(a) City over valley. (b) City over hill.

Figure 4.6: Illustration of the valley and hill terrains.

As shown in Sec. 4.3.3, the execution times of computing radiosity solutions
depends highly on the density factor of the matrix F. Regardless of the strategy to
use, this property helps to reduce the memory usage and the number of operations
to perform. Fig. 4.2 presented the number of patches that are seen from each patch
in a flat city, and this affected directly on the sparsity results. The same study
can be performed over the new scenes, in order to observe their patch classification
graphically. Fig 4.8 presents this result for the three different variations of City
3, using 35588 patches. The valley terrain leads the city patches to see much more
elements than over flat or hill terrains. This is because the “U” shape of the landform
creates more visibilities between patches.
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(a) City 1 over valley (b) City 2 over valley (c) City 3 over valley

(d) City 1 over hill (e) City 2 over hill (f) City 3 over hill

Figure 4.7: Six urban scenes generated by posing the three cities into different
terrains.

(a) City 3 flat. (b) City 3 over hill. (c) City 3 over valley.

Figure 4.8: Three variations of City 3. The color of a patch indicates the number of
patches that are seen from it. All three models are composed of 35k patches.

Next, the sparsity results are reported at Table 4.5, combining terrains, city
types and number of patches. Once again, the results show the same behavior as
the patch classification shown in Fig. 4.8. The valley terrain makes F much more
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dense (reaching a maximum value of 14.3%), while the hill landform produces similar
results than the flat one. Moreover, for City 3, results using the hill terrain are less
dense than using the flat. These results can be explained by taking a look into
the different types of patches in the models. For example, in the case of patches
belonging to a building’s ceiling, the visibility increases drastically in the lower part
of a valley terrain, because almost all the city is now seen from it. On the other
hand, their visibility is reduced when they are located at the top of a hill. These
facts, along with other similar phenomena, have a direct incidence in the density
results for F.

n Flat Valley Hill

City 1 8897 0.68% 14.3% 0.87%
35588 0.48% 9.10% 0.60%
142352 0.35% 4.87% 0.42%

City 2 8897 0.84% 6.48% 0.96%
35588 0.60% 4.19% 0.66%
142352 0.44% 2.48% 0.47%

City 3 8897 1.23% 2.99% 1.14%
35588 0.87% 1.97% 0.79%
142352 0.64% 1.31% 0.58%

Table 4.5: F density factors for different cities, orographies and n values.

4.4 Alternative optimizations

The described algorithms have shown good results for the tested city models. The
sparse radiosity matrix allows to speedup the computations, while the method for
approximating its inverse is suitable when the geometry is static and several thou-
sand radiosity calculations must be performed. However, there are still many opti-
mizations to be added to the algorithms. In this section, we propose a variation to
accelerate the form factors calculation on highly occluded environments, as well as
a corrective technique to improve the precision of radiosity results when using the
approximated inverse of the radiosity matrix.

4.4.1 Form factors generation

In the previous sections, the form factors were generated using the hemi-cube tech-
nique. This technique is thoroughly described in Chapter 2. An important variable
in this algorithm is the hemi-cube resolution, which determines the precision used in
the calculation. A bigger resolution leads to good form factors approximations, but
implies heavier computations. This is because the graphic hardware that executes
the rendering (using the Z-buffer technique) works slower for larger image resolu-
tions, which makes sense since more calculations at pixel level need to be performed.
In this section, the effect of changing the hemi-cube resolution for computing the
form factors of a city is studied.
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As stated in Sec. 4.2.2, the sparsity of F is related to the number of patches that
are seen from each patch on the scene. For every view link between two patches, F
has a new element different than zero. Given the obtained experimental results, it
can be said that every patch in a regular city scene is view-linked with few others.
This fact leads to think that, when using the hemi-cube algorithm to compute the
form factors, there should be a big coherence at pixel level in the resultant images.
If this is true, lower resolutions could be used with small errors in the form factors
results. Fig 4.9 presents an example hemi-cube view using different resolutions.

Figure 4.9: Same hemi-cube view with different resolutions.

To test this hypothesis, the following experiment is performed: for the three cities
that were presented, the matrix F is generated using different hemi-cube resolutions.
The sparsity results, execution times and obtained relative errors are reported in Ta-
ble 4.6. Fres is the form factors matrix generated using a hemi-cube with resolution
equal to res × res. The precision is calculated comparing each matrix Fr to F512,
which is the highest resolution used.

res
Density of Fres Speedup to F512 ≈ 90s ‖F512 − Fres‖/‖F512‖

City 1 City 2 City 3 City 1 City 2 City 3 City 1 City 2 City 3

512 0.48% 0.60% 0.87% 1.0 × 1.0 × 1.0 × 0 0 0
256 0.34% 0.46% 0.69% 1.8 × 1.8 × 1.8 × 0.0072 0.0072 0.0076
128 0.22% 0.32% 0.49% 2.8 × 2.8 × 2.7 × 0.0610 0.0125 0.0121
64 0.12% 0.19% 0.30% 3.1 × 3.1 × 3.1 × 0.0642 0.0360 0.0346
32 0.06% 0.09% 0.15% 3.2 × 3.2 × 3.2 × 0.1444 0.1281 0.1279

Table 4.6: Generation of F using different hemi-cube resolutions, n = 35588.

For the test scene used, the relative errors are not very high for resolutions 256
and 128, and up to 2.8× speedups are obtained. These results are obtained for
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the three different city models, which seems promising if this technique needs to
be applied to other city models. On the other hand, for resolutions 64 and 32, the
errors are larger, and the speedups do not grow significantly.

With regard to the density factors, lower resolution hemi-cubes generate more
sparse matrices, because the city patches that are far from the hemi-cube tend to
disappear from the view. As shown in Sec. 4.3.3, the sparsity of F has a direct
impact on the execution times and memory consumption when solving radiosity.
Therefore, using lower resolutions can be a good alternative to speedup not only the
form factor calculation but the radiosity computation.

4.4.2 Considering discarded elements

The main error of the algorithm that computes M̃ is related to the removal of terms
below the input threshold. In the previous experimental analysis, these elements
were eliminated and not taken into account. In this section, we propose an alterna-
tive method for including them in the radiosity calculations in order to improve the
precision of the solutions.

Let’s consider ∆ to be the error produced by the method to approximate the
inverse of the radiosity matrix (M):

M = M̃ + ∆ (4.3)

By construction, ∆ can be approximated by accumulating the elements discarded
in the Neumann iteration (elements below the input threshold). Then, similarly to
Eq. 4.1, the radiosity vector B corresponding to an emission E can be approximated
in the following manner:

B ≈ (M̃ + ∆)E = M̃E + ∆E (4.4)

Because of the results shown at Fig. 4.4, we can predict that the matrix ∆ is a
full matrix with small elements. This fact prohibits its calculation. Therefore, the
term C = ∆E needs to be approximated using other techniques.

The i-th element of C is computed in the following way, where δi,j are the
elements of ∆, and ei is the i-th element of E:

Ci = δi,1ei + δi,2ei + ...+ δi,nei , ∀i ∈ 1..n (4.5)

When the values of ei are similar (for instance, in the city there are many
patches receiving direct sky and sun light), they can be approximated by their
mean µ(E)=

∑n
i=1 ei. Therefore, Eq. 4.5 can be substituted by Eq. 4.6.

Ci ≈ (δi,1 + δi,2 + ...+ δi,n)(
e1 + e2 + ..+ en

n
) = µ(E)

n∑
j=1

δi,j (4.6)
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Now, ∆ is approximated accumulating the discarded elements by row, at each
iteration. This is equivalent to accumulate the discarded elements by scene patch,
which gives an idea of how much error is produced by the technique at every polygon.
Besides, the emission is approximated by its mean value, which can be an inaccurate
approach if only few patches are emitters.

Algorithm 6 shows the new scheme, which is very similar to the previous al-
gorithm (Algorithm 5). ∆ is the matrix that contains all the elements that were
removed from T at each iteration. The operation “sum” performs the summation
by row, and the result is accumulated into vector δ.

Algorithm 6 Calculate M̃ and accumulate discarded elements.

1: M̃ = 0
2: δ = 0
3: T = I
4: while T 6= 0 do
5: M̃ = M̃ + T
6: T = T RF
7: [T,∆] = remove(T, ε)
8: δ = δ + sum(∆)
9: end while

The vector δ is calculated at almost no computational cost, and is then applied
to compute the radiosity vector. Once M̃ and δ are computed, and given an emission
vector E, the radiosity solution is calculated following Eq. 4.7. Here, µ(E) means
the average emission value.

B̃ = M̃E + δµ(E) (4.7)

As can be seen, this strategy adds an average energy value to the radiosity of
each patch, weighted by the sum of terms discarded when computing M̃. Next,
some experimental analyses are performed to test this technique in daylighting cal-
culations.

The new algorithm is re-executed for the three city examples presented before
(over flat terrain). In the same way than Sec. 4.3.4, we use 132 different sky con-
figurations, each one with a unique sky element illuminating the scene, to compute
132 radiosity solutions of the city. Table 4.7 shows the relative errors of the 132 ra-
diosities obtained, comparing B̃ = M̃E to the solution (BJ) of the Jacobi iteration
methodology (Eq. 2.5). The mean, standard deviation and maximum values are
reported.

The new results are much better than the previous (see Table 4.4). The mean
error is lower for all executed cases, which confirms that the new strategy allows to
reduce the relative error in radiosity results. Additionally, despite the fact that the
new standard deviations are greater, the maximum error values are still lower than
before.

In order to get a graphical view of the new error, Fig. 4.10 presents the relative
error for the 132 emissions, using both previous and new algorithms. These plots
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Relative error of B̃: ‖B̃−BJ‖‖BJ‖ (×1000)

ε = 10−3 ε = 10−4 ε = 10−5

n µ σ Max µ σ Max µ σ Max

City 1 8897 11.30 2.10 15.30 2.73 0.53 3.74 0.58 0.11 0.80
35588 23.00 4.82 32.00 6.31 1.38 8.96 1.51 0.35 2.19

142352 22.40 4.62 30.70 6.26 1.32 8.69 1.57 0.34 2.20

City 2 8897 43.00 9.69 60.50 13.70 3.01 19.40 3.80 0.85 5.38
35588 48.30 13.30 67.70 17.20 4.20 23.20 4.98 1.10 6.57

142352 79.30 24.50 113.00 32.30 9.08 45.20 11.10 2.55 14.80

City 3 8897 42.90 10.60 61.80 13.30 3.11 19.20 3.42 0.85 5.05
35588 74.10 18.70 105.00 27.30 6.22 38.70 8.15 1.84 11.60

142352 117.16 38.09 177.58 55.12 16.81 79.35 20.92 5.64 29.41

Table 4.7: Radiosity errors using the new algorithm (all numbers are ×1000).

correspond to City 3 with n = 35588, but it is necessary to highlight that the rest
of the environments show similar results. It can be observed that the new relative
errors are lower than the previous, for every emission configuration and ε value.
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(c) ε = 10−5

Figure 4.10: Relative error: ‖B̃−BJ‖‖BJ‖ for the 132 emissions. These results correspond
to City 3 with n = 35588. The red plot is the error for the original algorithm, while
the blue plot is the error for the new algorithm.

4.4.3 A better approach for a small number of emitters

The computation of M is useful when a big portion of the total amount of patches
are potential emitters. Nevertheless, when only a small number s of patches are
emitters (for example, a coarse sky for daylighting, or a few luminaries for artificial
lighting), another pre-computation step can be executed to speed-up the process. A
n×s matrix Bs containing s radiosity results is computed using the Jacobi iteration
(Eq. 4.8) for s emission vectors (Es is an n×s matrix).

B(i+1)
s = RFB(i)

s + Es , where B(0)
s = Es (4.8)
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The ith column of Bs corresponds to the radiosity result of the ith potential
emitter patch emitting only by itself (the ith column of Es has all zeros except
for a 1 in the index of the ith patch). The contribution of each emitter does not
interfere with the contribution of other emitters, therefore the radiosity result B
corresponding to a set of emitters can be computed by a linear combination of the
previous vectors (B = BsS, where S is a vector of length s containing the emission of
each emitter). After the computation of Bs using Eq. 4.8, many thousand emission
configurations can be solved in very short execution times.

This approach was exploited for computing daylighting in our work [Fernandez
et al., 2016], where City 3 with a Tregenza sky dome (145 tiles [Tregenza, 1987]) was
used along with an hourly test reference weather data [EERE, 2016] from London.
The daylighting results were an input for optimizing opening shapes for a standard
office [Nabil and Mardaljevic, 2005], located at several positions in the same build-
ing. The results show that the city illumination affects the window configuration
drastically, as well as it has a direct impact on the number of hours in the year that
have a satisfactory lighting condition.

In this work, we used City 3 with 142k patches. The calculation of F takes about
600s. The matrix F is sparse, with only 0.64% of non-zero elements. Its sparseness
allows to store it in main memory, with a size of almost 2 GBytes. The calculation
of Bs considering each of the 145 sky tiles as emitters takes about 140s after 5
iterations of Eq. 4.8. This iterative process was also executed 42 times, stopping

when B
(i+1)
s =B

(i)
s was satisfied. This last process takes about 1000s to finish. Once

Bs is calculated, the illumination of the city for 3650 emissions (10 working hours
per day) is computed in less than 5 seconds in a regular desktop computer.

4.5 Overview and conclusions of the chapter

With the goal of studying environments with a high occlusion rate between its
elements, several city models were used. The correlation between the characteristics
of a city and the sparsity of its form factors matrix (F) was analyzed. Additionally,
an iterative method to approximate the inverse of the radiosity matrix was proposed,
based on the use of Neumann Series. At each iteration, all elements below a threshold
are removed, which leads to very sparse matrices.

The proposed method was intended for daylight simulation. There are several
strategies to simulate the skylight. We used a dome model composed of not-many
tiles, where each one represents a section of the celestial sphere. Then, meteorological
data can be used to determine the energy contribution of each tile. Once a sparse
approximation of the radiosity matrix is computed, the radiosity corresponding to
a sky configuration can be calculated using a single matrix-vector operation. This
allows to determine the city illumination for a whole year of daylight at reasonable
execution times.

In the experimental analysis, the sparsity of F was analyzed for three different
types of cities with different variation on their building heights. Also, various number
of patches were tested for each scene. We found that more homogeneous cities
produce more sparse F matrices. The matrices are sparse enough to be stored in
the main memory of a desktop computer, considering city scenes that contain up to
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140k patches.
Another result is the calculation of a sparse approximation to the inverse of the

radiosity matrix (M̃). This approximation is based on the use of Neumann series
and the elimination of all terms with lower values than a given threshold. M̃ is also
sufficiently sparse as to be stored in main memory.

These matrices were tested doing radiosity calculations for several sky configura-
tions. We compared the results with a Jacobi iteration method, and found that the
radiosities have low relative errors. This is accomplished in much better execution
times than the Jacobi method. For example, it reaches a 42.2× speedup to find a
radiosity solution with less than 0.1 relative error.

Regarding orography, it was found that the terrain were the city lies in has a big
influence on F. For example, if the landform is a valley, F becomes more full than
in a flat terrain. On the other hand, when using hill-type topographies, the results
do not vary significantly with respect to flat-type.



Chapter 5

Conclusions and future work

This chapter presents the conclusions of the research work related to the hierarchical
factorization technique, and to the proposed methods for radiosity calculations in
urban environments. The principal lines of future work emerged during the devel-
opment of this thesis are described next.

5.1 Conclusions

This thesis was dedicated to the study of different strategies applied to the resolution
of the radiosity equation. The goal of achieving fast global illumination solutions is
still a subject of study in computer graphics, which has emphasized the development
of new ray tracing based methods in recent years. As stated in Chapter 2, several
works related to radiosity have been developed, exploiting general and particular
opportunities and advantages. These are usually based on iterative methods, which
slow down the process, and require large volumes of memory to achieve precise
solutions. In this way, we studied techniques to reduce the representations of the
radiosity matrix for two different types of scenes: high spatial coherence models,
and highly occluded environments.

Since high spatial coherence scenes are related to low numerical rank form fac-
tors matrices F, we proposed a new hierarchical technique to factorize them (HF).
This one-pass algorithm works faster than other studied methods for medium-to-
large sized problems, and allows to work with matrices that do not fit into system
memory. Furthermore, the Z-order curve is used to sort the patches of the scene,
grouping them by nearness, which accelerates the process by exploiting the spatial
coherence. We conclude that the sorting of rows/columns of the RF matrix is a
powerful strategy to reduce the execution times of the algorithm.

In order to test radiosity results, two models were used. HF was successfully
applied to factorize their RF matrices. As a result, it was possible to calculate
the global radiosity (with infinite bounces) for multiple scenes (2560, 21888, and
79232 patches) with negligible relative error. After a pre-computation stage, this
was performed in real-time for the static geometries, and without the use of any
specialized hardware resource (like GPU) to compute the matrix-vector and matrix-
matrix multiplications.
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On the other hand, with the goal of studying environments with a high occlusion
rate between its elements, several city models were used. The correlation between
the characteristics of a city and the sparsity of its form factors matrix was studied.
In the experimental analysis, the sparsity of F was analyzed for three different types
of cities with different variation on their building heights. Also, different mesh
resolutions were tested for each scene. We found that cities with more homogeneous
buildings produce more sparse F matrices. The matrices are sparse enough to be
stored in the main memory of a desktop computer, considering city scenes that
contain up to 140k patches.

Another result is the calculation of a sparse approximation of the inverse of
the radiosity matrix (M̃), which is also sufficiently sparse as to be stored in main
memory. These matrices were tested doing radiosity calculations for several sky
configurations. This is accomplished in much better execution times than the Jacobi
method, with low relative errors. For example, it reaches a 42.2× speedup to find a
radiosity solution with less than 0.1 relative error.

Regarding orography, it was found that the terrain where the city lies in has a
big influence on F. For example, if the landform is a valley, F becomes denser than
in a flat terrain. On the other hand, when using hill-type topographies, the results
do not vary significantly with respect to flat-type. This study allows to conclude
that it is possible to work with different types of terrains for city models, but this
will have an impact on the execution times and memory consumption of radiosity
calculations.

5.1.1 Summary of contributions

In summary, the principal contributions of this thesis are the following:

1. The proposal and implementation of a novel one-pass hierarchical technique
to factorize low numerical rank matrices, applying multiple decompositions re-
cursively. Several theoretical studies were performed to analyze the proposal.
In the experimental stage, this new method was applied to factorize RF, al-
lowing to compute real-time radiosity results with low relative error, for static
scenes.

2. The factorization of matrices that do not fit into system memory using the
proposed method, which allows to compute radiosity for problems that are
not solvable with the classic formulation.

3. The use of the Z-order curve as a row/column sorting strategy to accelerate
the factorization method.

4. The advance on the study of the factorization of form factors matrices and its
relation to the spatial coherence.

5. The study of the sparsity properties of F in urban models, and on how to take
advantage of them in radiosity calculations.

6. The analysis of F for different types of cities, taking building height homo-
geneity, mesh granularity, and orography into account.
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7. The implementation and experimental analysis of a method to approximate
the inverse of the radiosity matrix by a very sparse matrix, useful for solving
global illumination problems efficiently.

5.2 Future Work

This thesis leads to several lines of future work. The proposed methods are intended
to solve the radiosity problem efficiently, but more specific applications should be
studied. Both the HF method and the sparse F solution could be used in diverse
areas of computer graphics, such as inverse lighting problems and Computer Aided
Design.

5.2.1 Scenes classification

It is important to highlight that both techniques solve what seem to be problems
associated with orthogonal concepts, because big spatial coherence is not usually
reported when there is a high occlusion factor in the scene. For example, the Cornell
Box scene presented at Chapter 3 has a big spatial coherence, i.e. most of the action
of its corresponding F matrix is captured using few singular values. Nevertheless,
its density factor is around 20%, which makes it unsuitable for the sparse matrix
approach. On the contrary, City 1 from Chapter 4 has a density factor of less than
1%, but its singular values decay slowly.

A future work should address the study of the properties of the models that lead
to low numerical rank and/or sparse matrices. A classification of problems would
be very important in order to assess the election of the correct technique in every
case. In this regard, there are scenes where neither sparse nor low-rank matrices
are generated. Also, both sparse and low-rank F matrices could be associated with
some kinds of scenes. Fig. 5.1 presents a diagram associated with these ideas, using
four example models, each one with different properties. A picture of the scene, the
sparsity structure of its associated F, and a plot of its singular values are shown.

The upper left model corresponds to City 1, whose F is sparse and its associated
singular values decay slow. The lower right scene is the Cornell Box, whose F is
full and its numerical rank is low. The other two models were generated to test the
existence of other scenes with different properties.

The upper right scene is composed of several rooms, and corridors connecting
them. The rooms are simple boxes composed of a fine mesh, which makes them
numerically low-rank by their own. Each room “sees” almost nothing of the others.
This makes its form factors matrix to be sparse, as can be seen in the structure,
but its singular values decay fast enough to be considered numerically low-rank.
On the other hand, the lower left scene represents an anechoic chamber, which is a
room designed to absorb wave reflections. For this, its walls are filled with pyramids
pointing in. This particular property makes F to be highly dense and not numerically
low-rank.

More work is needed to study these aspects, and to find new techniques to
represent the radiosity matrix efficiently in the above mentioned cases. The upper
right case opens the door to combine techniques, in order to exploit both properties
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Figure 5.1: Diagram of sparsity and low-rank properties of four example scenes.

in a productive manner. On the contrary, new techniques should be developed to
compute radiosity in models similar to the lower left one, especially if they are
composed of a large number of elements.

5.2.2 Further works

It is necessary to continue the study and development of the HF algorithm. There
are plenty of areas of scientific work in which this new factorization can be applied
and exploited, such as signal processing, inverse problems, and principal component
analysis.

A better estimation of the error bound should be found, where the spatial co-
herence of the scene could be taken into consideration. In this sense, other types
of norms such as the Frobenius norm could be used. On the other hand, another
pending work is to develop a strategy to predict the optimal number of levels in
the recursion that minimizes the number of operations to perform. This is closely
related to the computational complexity study presented before.

Despite the fact that SVD is a well-known factorization strategy, the use of other
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factorization techniques in the base case of the recursion could be analyzed. The
only restriction is that the new factorization needs to produce two n × k matrices,
such that its produced error is less than a given (expected) error. For example, the
RRQR decomposition is a factorization strategy that can be adapted to satisfy this
restriction.

Regarding the implementation, several optimizations are pending, for example
the use of multiple threads to execute each leaf decomposition in parallel. Besides,
specialized hardware such as GPUs could be used to perform a faster factorization
in the base case, or matrix-vector and matrix-matrix products.

The sparsity of F is a promising property for solving radiosity in other scenes
with high occlusion, such as mazes or plant canopies. It would be very important
to develop a classification of these type of models, in order to choose the correct
method for global illumination calculations. Also, a more efficient method to com-
pute the form factors matrix could be studied, taking the high occlusion factor as
an advantage to speedup the process.

Further works should address the study of the form factors associated with real
city models, and also take other characteristics into account, such as different oro-
graphies or the building density. These approaches can lead to simulate the effect of
light over cities, which can be the empirical basis to the proposal and/or modifica-
tion of city regulations. Other possible line of work is related to the design of new
city elements, like buildings and public places, taking into consideration the main
characteristics of the surroundings.

Finally, it would be interesting to use the proposed methods as additional ele-
ments for computing global radiation exchange in the city, including heat transfer
calculations. This requires the inclusion of the heat equation.
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Robinson, D., Haldi, F., Kämpf, J., Leroux, P., Perez, D., Rasheed, A., and Wilke, U.
(2009). CitySim: Comprehensive micro-simulation of resource flows for sustainable
urban planning. In Proc. Building Simulation.

Robinson, D. and Stone, A. (2005). A simplified radiosity algorithm for general ur-
ban radiation exchange. Building Services Engineering Research and Technology,
26(4):271–284.

Rudelson, M. (2014). Recent developments in non-asymptotic theory of random
matrices. Modern Aspects of Random Matrix Theory, 72:83.

Sillion, F. and Puech, C. (1989). A general two-pass method integrating specular
and diffuse reflection. In ACM SIGGRAPH Computer Graphics, volume 23, pages
335–344. ACM.

Simon, H. D. and Zha, H. (2000). Low-rank matrix approximation using the
lanczos bidiagonalization process with applications. SIAM Journal on Scientific
Computing, 21(6):2257–2274.

Sloan, P.-P., Kautz, J., and Snyder, J. (2002). Precomputed radiance transfer for
real-time rendering in dynamic, low-frequency lighting environments. In ACM
Transactions on Graphics (TOG), volume 21, pages 527–536. ACM.

Smits, B., Arvo, J., and Greenberg, D. (1994). A clustering algorithm for radiosity in
complex environments. In Proceedings of the 21st annual conference on Computer
graphics and interactive techniques, SIGGRAPH ’94, pages 435–442, New York,
NY, USA. ACM.

Stewart, G. (1998). Matrix Algorithms: Volume 1: Basic Decompositions. Society
for Industrial and Applied Mathematics.

Sutherland, I. E., Sproull, R. F., and Schumacker, R. A. (1974). A characterization
of ten hidden-surface algorithms. ACM Comput. Surv., 6(1):1–55.

Teller, S. and Hanrahan, P. (1993). Global visibility algorithms for illumination
computations. In Proceedings of the 20th annual conference on Computer graphics
and interactive techniques, pages 239–246. ACM.



BIBLIOGRAPHY 87

Tregenza, P. (1987). Subdivision of the sky hemisphere for luminance measurements.
Lighting Research and Technology, 19(1):13–14.

Tregenza, P. and Waters, I. (1983). Daylight coefficients. Lighting Research and
Technology, 15(2):65–71.

van Eekelen, T., Beckers ed., B., and Wiley, J. (2012). Radiation modeling using
the finite element method. Solar Energy at Urban Scale, pages 237–257.

Vershynin, R. (2010). Introduction to the non-asymptotic analysis of random ma-
trices. arXiv preprint arXiv:1011.3027.

Vijayan, V. (2014). Fast svd and pca. http://www.mathworks.com/

matlabcentral/fileexchange/47132-fast-svd-and-pca/content/svdecon.

m. Accessed: May 2016.
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