
Purdue University
Purdue e-Pubs
Department of Computer Graphics Technology
Degree Theses Department of Computer Graphics Technology

4-25-2011

GPU-Based Global Illumination Using Lightcuts
Tong Zhang
CGT, zhang214@purdue.edu

Follow this and additional works at: http://docs.lib.purdue.edu/cgttheses
Part of the Other Computer Engineering Commons

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Zhang, Tong, "GPU-Based Global Illumination Using Lightcuts" (2011). Department of Computer Graphics Technology Degree Theses.
Paper 5.
http://docs.lib.purdue.edu/cgttheses/5

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4951126?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fcgttheses%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/cgttheses?utm_source=docs.lib.purdue.edu%2Fcgttheses%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/cgttheses?utm_source=docs.lib.purdue.edu%2Fcgttheses%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/cgt?utm_source=docs.lib.purdue.edu%2Fcgttheses%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/cgttheses?utm_source=docs.lib.purdue.edu%2Fcgttheses%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/265?utm_source=docs.lib.purdue.edu%2Fcgttheses%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages

)))))))))))))))))))

� � � �� � �

_ _ _ _ ____________________________________

_
 _

¹¹¹¹ ¹¹¹¹¹

ÍÍÍÍÍÍÍÍÍ ÍÍÍÍÍÍ ÍÍÍÍÍÍÍÍ¹ÍÍÍ ÍÍÍÍÍ ÍÍÍÍ¹ÍÍ¹Í

Í¹»»»» ¹» Í»»»¹»»

®¹®»» Í¹¹®»»

Í»»»»¹ Í»¹»»

¸¹¹¹® Í®¹»¸¸¹»¹

®¹®»» Í¹¹®»»

®¹®»» Í¹¹®»» ïïïïïïïïïï

 e e

 e

,, , , ,, , , ,,, ,,,,, ,. , , . . . , ,.,*

 e

 e

 e e

� � e e

 e e e

 e e e e e e

 e

 e e

*

ÍÍÍÍÍÍÍÍÍ ÍÍÍÍÍÍ ÍÍÍÍÍÍÍÍÍÍÍÍ ÍÍÍÍÍ ÍÍÍÍÍÍÍÍÍ

Í»»»»» »» Í»»»»»»

Í»»¹ ¹¹»»¹

ïïïïïïïïïï

GPU-BASED GLOBAL ILLUMINATION USING LIGHTCUTS

A Thesis

Submitted to the Faculty

of

Purdue University

by

Tong Zhang

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science

May 2011

Purdue University

West Lafayette, Indiana

ii

For my dear Dad Shaoyi Zhang and my dear Mom Ping Wu.

 iii

ACKNOWLEDGMENTS

I would like to show my sincere appreciation to my committee members:

Dr. James Mohler (chair), Dr. Bedrich Benes and Professor Ronald Glotzbach.

Dr. Mohler‟s patient guidance on my Master study has kept me on the right track

of computer graphics and research methodology; Dr. Benes has inspired me a lot

with his rich experiences in graphics research; warm advice and help from

Professor Glotzbach also encouraged me in my research work.

My special thanks goes to Rebecca Lank. Thank you very much for your

aid and assistance on my study in Purdue for two years.

 iv

TABLE OF CONTENTS

 Page
LIST OF TABLES ...vi
LIST OF FIGURES .. vii
GLOSSARY ..ix
ABSTRACT ..xi

CHAPTER 1. INTRODUCTION .. 1
 1.1. Background ... 1
 1.2. Organization .. 2
 1.2.1. Primary Question .. 2
 1.2.2. Secondary Questions ... 2
 1.3. Scope .. 2
 1.4. Significance ... 4
 1.5. Assumptions .. 5
 1.6. Delimitations .. 5
 1.7. Limitations ... 6
 1.8. Summary ... 7

CHAPTER 2. LITERATURE REVIEW .. 8
 2.1. Ray-Tracing ... 8
 2.2. Radiosity .. 11
 2.2.1. Instant Radiosity ... 14
 2.3. Lightcuts .. 16
 2.4. Other Global Illumination Algorithms ... 17
 2.4.1. Caustics and Photon-Mapping .. 17
 2.4.2. Ambient Occlusion .. 19
 2.5. Implementation: C++, OpenGL and GPU .. 20
 2.5.1. C++ ... 21
 2.5.2. OpenGL .. 23
 2.5.3. GPU .. 24
 2.6. Summary ... 26

CHAPTER 3. METHODOLOGY ... 27
 3.1. Hypothesis ... 27
 3.2. Sampling and Sampling Approach .. 27
 3.3. Variables and Unit of Measurement .. 28

 v

Page

 3.4. Assessment Instruments ... 28
 3.5. Implementation .. 28
 3.6. Procedure .. 29
 3.7. Summary ... 30

CHAPTER 4. METHOD OF IMPLEMENTATION ... 31
 4.1. Workflow .. 31
 4.2. Data Structures .. 33
 4.2.1. Ray ... 33
 4.2.2. Light .. 33
 4.2.3. Geometry primitives .. 34
 4.3. System Architecture... 35
 4.4. Ray-Tracing and its Parallelization .. 37
 4.4.1. Ray-Tracing Recursion Iteratization.. 38
 4.4.2. Binary Space Partitioning Recursion Iterization 40
 4.5. Lightcuts and its Parallelization ... 43
 4.5.1. Introduction to Lightcuts .. 43
 4.5.2. Light-Tree Building.. 44
 4.5.3. Paralleled Light-tree Evaluation .. 46
 4.6. Summary ... 48

CHAPTER 5. RESULTS AND ANALYSIS .. 49
 5.1. Scene Testing Results ... 49
 5.1.1. Testing Platform ... 49
 5.1.2. Perceptual Difference Evaluation Tool .. 49
 5.1.3. Results .. 50
 5.2. Results Analysis .. 57
 5.2.1. GPU Acceleration ... 57
 5.2.2. Lightcuts Acceleration ... 58
 5.2.3. Overall Acceleration.. 60
 5.3. Summary ... 61

CHAPTER 6. Conclusions and future work .. 62
 6.1. Conclusions ... 62
 6.2. Future Work ... 63

LIST OF REFERENCES .. 65

APPENDICES
 Appendix A. Scene Description Files .. 67
 Appendix B. Data Structures .. 70
 Appendix C. Original Testing Data ... 74

 vi

LIST OF TABLES

Table Page

Table 5.1 Simple Scene Testing Results .. 51

Table 5.2 Venus Scene Testing Results ... 53

Table 5.3 Galleon Scene Testing Results .. 55

Table 5.4 GPU Acceleration Analysis ... 57

Table 5.5 Lightcuts Acceleration Analysis .. 59

Table 5.6 Overall Acceleration Analysis ... 60

 vii

LIST OF FIGURES

Figure Page

Figure 2.1 A Ray-Tracing Scene .. 10

Figure 2.2 A scene rendered using Instant Radiosity ... 15

Figure 2.3 Caustics rendering using Photon-Mapping .. 18

Figure 2.4 An Ambient Occlusion Scene .. 20

Figure 4.1 Workflow chart ... 32

Figure 4.2 System Architecture Chart ... 36

Figure 4.3 A typical ray-tracing scenario .. 39

Figure 4.4 A binary tree and its synthesis procedure .. 40

Figure 4.5 Array representation of a ray binary tree ... 40

Figure 4.6 Bounding Box and Binary Space Partition ... 41

Figure 4.7 BSP Tree and its traversal ... 42

Figure 4.8 Array Representation of a BSP Tree ... 43

Figure 4.9 A Lightcuts Scene ... 45

Figure 4.10 A Lightcuts Tree .. 46

Figure 4.11 Array representation of the Lightcuts Tree 46

Figure 4.12 Recursion traversal of a Lightcuts tree .. 47

Figure 5.1 Simple Scene images .. 52

Figure 5.2 Venus Scene images ... 54

Figure 5.3 Galleon Scene images .. 56

Figure 5.4 GPU Acceleration Chart .. 58

 viii

Figure Page

Figure 5.5 Lightcuts Acceleration Chart .. 59

Figure 5.6 Overall Acceleration Chart ... 60

Appendix Figure

Figure C.1 Original Testing Results for Simple Scene .. 74

Figure C.2 Original Testing Results for Venus Scene .. 74

Figure C.3 Original Testing Results for Galleon Scene 75

 ix

GLOSSARY

 Binary Space Partitioning: the technique used to speed up ray-object

intersection computation in computer graphics by dividing objects in

space into two parts recursively, so that objects in one half can be

safely avoided if a ray does not intersect the bounding box of that

half space. (Pharr, & Humphreys, 2010)

 Global Illumination : a group of computer graphics algorithms those are

intended to generate realistic lighting effects. The primary element

is directly illumination. However, global illumination is usually about

indirectly illumination, such as diffuse surface lighting, caustics,

color bleeding, etc. (Moller, & Haines, 2002)

 GPU : A hardware device primarily working on graphics data processing.

It is supposed to accelerate graphical computing significantly. With

its parallelism essence and its high performance, GPU is becoming

pervasive in scientific computing. nVidia and AMD are recognized

as the main GPU manufactures at present (Moller, & Haines, 2002)

 Lightcuts: a method that is able to removed insignificant light sources, like

ones too far-away, one too dim or ones nearly perpendicular to

target points, from illumination evaluation process. It is claimed that

Lightcuts is able to reduce Instant Radiosity (Kell, 1997) rendering

complexity from linear to sub-linear. (Walter, 2005)

 x

 Ray-Tracing : a computer graphics algorithm to generate direct

Illumination by shooting a primary ray from camera and generate

subsequent rays (by reflection and\or refraction) recursively.

(Shirley et. al., 2005)

 Radiosity : a computer graphics algorithm to generate indirect illumination

by applying finite element method. Usually it emphasizes on diffuse

lighting. (Moller, & Haines, 2002)

 Rendering Equation: the mathematical representation (usually an integral

equation) of physical light transport phenomena in the real world

that is used in computer graphics. This equation indicates that the

radiance leaving a point should be equal with the irradiance arriving

at the same point. (Dutre, Bekaert, & Bala, 2006)

 xi

ABSTRACT

Zhang, Tong. M.S., Purdue University, May 2011. GPU-Based Global
Illumination using Lightcuts. Major Professor: James Mohler.

Global Illumination aims to generate high quality images. But due to its high

requirements, it is usually quite slow. Research documented in this thesis was

intended to offer a hardware and software combined acceleration solution to

global illumination. The GPU (using CUDA) was the hardware part of the whole

method that applied parallelism to increase performance; the “Lightcuts”

algorithm proposed by Walter (2005) at SIGGRAPH 2005 acted as the software

method. As the results demonstrated in this thesis, this combined method offers

a satisfactory performance boost effect for relatively complex scenes.

1

CHAPTER 1. INTRODUCTION

This chapter provides an overview of the research in this thesis. After

introduction of research background, the research question is stated, followed by

research scope, significance, assumptions, limitations and delimitations.

1.1. Background

 Global illumination is an active research area in computer graphics, and it

is widely adopted in various areas of industries such as animation, movie

making, gaming and CAD. Its primary goal is to generate as realistic images as

possible. However global illumination requires a large amount of computation

and it remains difficult to compute in real-time, so faster rendering speed is still

one of the main objectives of research in global illumination.

Several software and hardware solutions have been proposed recently.

Lightcuts is a newly introduced algorithm for radiosity computation acceleration

compared to traditional radiosity called “Instant Radiosity”. At the same time, the

Graphics Processing Unit, abbreviated as GPU, is playing a more and more

important role in the graphics area. The GPU is the hardware solution for parallel

computation efficiency and numerous practical cases have proven that the GPU

does a wonderful job in improving graphics computation performance.

2

However, currently the GPU has not been integrated into Lightcuts, so this

thesis was a trial for this solution and the research was intended to reach a

higher efficiency of photorealistic image rendering..

1.2. Organization

This research was intended to answer following questions, which consist

of one primary question and several secondary questions.

1.2.1. Primary Question

 How much can Lightcuts, together with the GPU, speed up global

illumination compared to the traditional Instant Radiosity rendering techniques?

1.2.2. Secondary Questions

1) How much can Lightcuts speed up Instant Radiosity?

 2) How much can the use of the GPU speed up Lightcuts?

1.3. Scope

The thesis focused on global illumination technology and covered several

core concepts and popular modern techniques; however it did not cover every

aspect of global illumination.

The concepts and knowledge that were covered include:

3

a) Ray-tracing

The whole architecture of the proposed project application was built on

Ray-tracing because the diffuse lighting was simulated by putting point lights on

diffuse surfaces with hit points. Thus, the traditional Ray-tracing framework was

used.

b) Instant Radiosity

This was the algorithm that the author was trying to improve. Instant

Radiosity enables convincing effects of global illumination, especially diffuse

lighting, by putting point lights on diffuse surface hit points. However there could

be too many point lights. Its performance enhancement was one of the key parts

of this thesis.

c) Lightcuts

Lightcuts (Walter, 2005) addresses the main problem of Instant Radiosity

directly. It is able to avoid unnecessary redundant use of point lights. It only

chooses significant point lights for rendering one pixel. This algorithm was the

key idea of the software method proposed in this research.

d) Another goal of author's thesis was to improve image quality using

several modern techniques. The involved algorithms included:

4

 Photon Mapping: the author used it to render caustics from light reflection

and refraction.

Ambient Occlusion: it was used to generate object-object occlusion

shadows so as to produce more realistic images.

e) Graphics Processing Unit

The hardware aspect of performance optimization cannot be omitted

nowadays. The Graphics Processing Unit is playing a more and more important

role in graphics area. Ray-tracing is essentially a parallel procedure, which is the

perfect situation into which the GPU fits. The GPU technique was the key method

of the hardware solution in this thesis.

f) Several Basic Image Processing Skills

Images computed using global illumination algorithms can be made more

realistic by using some processing skills. For example, blooming accounts for the

fact that the color of each pixel can impact other pixels, and tone mapping

adjusts the colors of the image with different display devices.

1.4. Significance

Global illumination suffers from high requirement of computing time so it is

really hard for the program to make it into real-time applications. Instant Radiosity

simplifies the diffuse lighting quite a lot. It avoids the high Monte Carlo integration

5

methods cost. The introduction of Lightcuts improves the performance of Instant

Radiosity significantly.

 But no one has integrated GPU acceleration onto Lightcuts yet. Since

Lightcuts is still a pixel-parallel algorithm, GPU integration can bring significant

improvement to another level.

1.5. Assumptions

The following assumption was inherent to the pursuit of this study:

 GPU accelerated computation would be significantly faster than CPU

version implementation. In other words, the use of GPU needed to be at

least 20% faster than the CPU implementation. The main argument was

that pixels in generated images are independent with each other, in other

words, the data is paralleled inherently. The GPU was the most suitable

device to process paralleled data so it could compute different pixels at

the same time and make image generation scalable.

1.6. Delimitations

The following delimitations were inherent to the pursuit of this study:

 GPU: Graphics card products from other manufacturers such as AMD and

Intel were not be considered in this thesis.

6

 Radiosity algorithm: There are also other kinds of radiosity algorithms

using Monte Carlo integration or iterative matrix solutions. But they were

not covered in the thesis.

 Other global illumination algorithms: Many other available global

illumination algorithms could also contribute to higher quality images, such

as sub-surfaces algorithm, participating media algorithms etc. However

they were not included.

 Programming Tools: Microsoft Visual Studio was used as the development

environment. Other compilers such as GCC were not involved.

1.7. Limitations

The following limitations were inherent to the pursuit of this study:

 GPU: Only nVidia manufactured graphics cards were involved in the

thesis. This was because CUDA was adopted as the basic programming

tool for GPU and CUDA was only applicable to nVidia products.

 Radiosity Algorithm: Instant Radiosity was the basic algorithm to be

implemented. Another optimized algorithm over Instant Radiosity called

Lightcuts was implemented also.

 Programming Tools: CPU code was crafted using C++ because C++ was

the best choice to implement a relatively large system; GPU code was

implemented by CUDA.

7

1.8. Summary

 This chapter offered an overview of the research, including the research

question, research scope and significance. Also the limitations and delimitations

of the research were introduced.

8

CHAPTER 2. LITERATURE REVIEW

This chapter gives a general introduction to the recent research and

industrial materials related to Global Illumination and C++, OpenGL and GPU.

The literature provides the basic foundation and support to the research in this

thesis.

2.1. Ray-Tracing

 As Witted (1980) mentioned, the development of global illumination

started with several local illumination models at which time no global information

had been considered yet. Other objects' illumination had not been involved yet,

and this is why it was a local illumination model. At a later time, Blinn and Newell

(1976) proposed a technique called 'environmental map' to simulate the

illumination from other objects. However, it only partially solved the problem and

was not a general solution for global illumination. Refractions were simulated by

reverse ordering painting, just like the alpha blending in OpenGL. This was not

the real simulation of refractions though. Shadows were calculated by checking

the pixel visibility to light sources and viewer. Instead of above mocking

techniques, Witted (1980) improved the lighting model by simulating the real light

travelling way in the real world and formed a recursive tree structure for the light

9

paths. The radiance of one pixel consists of two parts: reflected radiance and

transmitted radiance, which is to say that two lights make a resulting light - one

light contains a reflected factor and a transmitted factor. This is the typical case

in the real world. Then the two child lights can be traced in the same way and a

recursive light tree can be obtained. Please note that due to the reflection and

transmission of lights, this tree would involve other objects in the scene, and this

leads to global illumination. This is the most seminal contribution of this paper.

Another benefit of this model was “effective visible surface checking”. The

surfaces that were not visible to the viewer may be visible through the reflections

and, what's more, they were discovered as needed, which was more efficient.

This model also facilitates anti-aliasing. Several other rays could be shot along

the recursive tree to get multiple samplings. Witted (1980) brought a

breakthrough for the light tracing model by introducing the real world light

traveling style. This work improved the image quality significantly and made

many of the following seminal techniques possible.

 Ray tracing could be the starting point for all following advanced

techniques. Shirley (2005) gives a clear and instructive explanation on Ray-

tracing. According to this literature, Ray-tracing simulated the light traveling in the

real world and it traces each viewing ray from the viewers‟ eyes along its

reflection, refraction, transmission directions. Ray-tracing started by computing

viewing rays and intersections between a ray and objects. Intersection

calculation was always the performance bottleneck. It required intensive

geometrical computation. The next effect to compute was shadowing. It could be

10

done by checking the visibility of light sources. Refraction could be done by

tracing the ray using Snell's Law. The most critical issue may be the acceleration

for intersections. Bounding box and space participation were the most popular

ones that are widely used. Bounding box was the simple representative for one

unit of geometry that could simplify the intersection checking; space participation

splitted the scene into several smaller parts to reduce the computing cost. Other

aspects such as anti-aliasing, soft shadows, depth of field, glossy reflection and

motion blur were also necessary for generating higher quality images. They all

required more than one viewing ray per pixel for shading computing. Figure 2.1

demonstrates a typical Ray tracing scene.

Figure 2.1 A Ray-Tracing Scene

11

2.2. Radiosity

 Radiosity is another major algorithm for global illumination rendering. One

introductory book is Cohen and Wallace (1993). This book followed a traditional

approach of radiosity computation. Discretizing the radiosity equation was the

first step for implementation radiosity. This was the theoretical base for geometry

meshing and form factor computation. Form factor was the most important

variable that described how much impact each pair of triangles made to each

other. It involved the geometrical relationships such as distance and illumination

values. There was a form factor matrix, which is the typical linear system. The

possible solutions included traditional iterative numerical algorithms and parallel

computation. Geometry meshing was the prerequisite to compute form factors.

Besides the regular meshing of geometry, adaptive meshing was a more

effective algorithm that could generate more meshes on more detailed areas.

 Moller and Haines (2002) has a chapter that offers an informative,

comprehensive overview of global illumination. This chapter contained both the

theoretical and practical aspects and made a perfect bridging and merging

between the two. It started with the basic radiometry knowledge with modern

optics and photics as the theoretical base. Briefly speaking, Ray-tracing and

Radiosity were both derived from concepts and procedures described in physics.

Some advanced topics like tone mapping took these as basics. BRDF was a

large topic that was also briefed. BRDF depicts the possibility that an influx

photon leaves at one specific direction. This was crucial to the realism of the

object materials. BRDF was a bidirectional and reversible mathematical

12

abstraction for light reflection, but it doesn't cover the particle characteristics of

lights. The traditional BRDF was isotropic and several anisotropic BRDF models

have been proposed in recent years too. Two types of BRDF exist: one from

physical theories and one from experimental data. The application of BRDF could

be categorized into factorization and environment map filtering. Factorization

takes the BRDF calculation into the influx angle and outflux angle and the BRDF

value was calculated by these two components; environment map filtering took

an environment texture and its corresponding filtering map and combines the two

to simulate the BRDF effect. Vertex shader, Fragment shader and shader

language are the practical aspects of the topic. Vertex shader resides at the GPU

as one of the nodes of the graphics pipeline - the vertex processing part. It used

to be the fixed procedure in GPU and it was now programmable which allows

geometry morphing functions to be customized. Fragment shader also resided at

the GPU as a later stage of the graphics pipeline, and it focused on manipulating

the pixel shading. Shading language was the tool to program the above two

types of shaders. Several interesting effects were covered also. Motion blur was

the delayed effect by fast moving objects and it could be implemented using an

accumulation buffer. Depth of field was the simulation of the focal effect of a lens.

The reflection part included flat reflection, glossy effect and curve reflection.

Refraction was based on Snell‟s law. Shadow could be obtained by using

shadow volume and shadow map. The former one judged whether an object was

in the shadow by checking whether it is in the shadow volume or not; the latter

13

one applies the Z-buffer generated by the light source as the shadowing

information.

 Dutré, Bala, and Bekaert (2006) gives a relatively thorough elaboration on

global illumination algorithms in a theoretical view. This book offered sufficient

mathematical analysis on the various algorithms and offers a thorough

introduction to the current research on global illumination. The most important

mathematical tool 'rendering equation' played a key role in global illumination,

which was the mathematical tool for almost all relevant algorithms. Almost every

algorithm in this book was a variation of this equation. What is noticeable is that

this equation made the assumption that light contains only one wave-length and

it hit and left the surface at the same point. Instead of an intensive computation

on linear systems, Monte Carlo methods had been introduced as an evolutionary

solution. Monte Carlo methods were based on probability theories. The initial

Monte Carlo methods were used to sample values on continuous signals. This

was the typical case of sampling in computer graphics because of the inherent

characteristic of discretization for computers. But original sampling method was

not always optimal. So importance sampling and stratified sampling were

introduced. The former one took more sampling on important data sets and the

latter one conducts an adaptive treatment for a non-randomly distributed data

sets. Path tracing is introduced first. Original Ray-tracing was presented. Monte

Carlo integration into ray-tracing lead to the soft shadowing. A similar technique,

called environment map, applied the basic process of ray-tracing to achieve this

effect. With probability theory, indirect illumination could be described as the

14

possibility that a light source illuminates the sampled point. In contrast to ray-

tracing, light tracing was another possible solution for rendering. It was useful for

caustics calculations. Stochastic Radiosity was a great evolution to original

radiosity techniques. It replaced the massive form factor calculation with much

simpler probability estimations. Now the light energy needed to be transferred

iteratively according to the rendering equation. Another way was to randomly

walk among the sampled points to estimate the possibilities. Photon density was

also one possible solution for radiosity, in which the hit point density was

recorded and interpolation was used to render the illumination.

The state of the art research combined several primary algorithms

together to form hybrid algorithms. For example, final gathering used another

pass to refine the unnecessarily sampled areas again. Multi-pass methods and

bidirectional path tracing used more than one tracing style to achieve better

effects. Photon-mapping also took two steps: the first one put the photon

sampling results and the second phase rendered the illumination by the results.

Instant Radiosity adopted point lights to simulate indirect illumination, and

Lightcuts was used to make an optimized solution for instant Radiosity.

2.2.1. Instant Radiosity

In the above, many modern radiosity solutions have been explained. Most

of them were complex. For example, the original Radiosity required complex

object meshing and a form factor matrix solution using iterative matrix solutions.

Other Radiosity algorithms adopted Monte-Carlo integration as the algorithm

15

basis. This suffered from relatively slow execution. Instant Radiosity was a very

simple but an effective algorithm that simulated diffuse lighting by adding many

point lights Kell (1997). This transformed indirect illumination into direct

illumination. This is robust, stable and efficient. An important issue was how to

sample point lights from traditional area light sources. The Monte Carlo method

still served well here. Figure 2.2 shows a scene rendered using Instant Radiosity.

 Figure 2.2 A scene rendered using Instant Radiosity

As mentioned above, point lights were mostly formed by the hit points

from the rays of the light sources. In other words, it was the result from the light

tracing procedure. It suffered from the low efficiency of the light rays projections -

some light rays may not be visible at all. To avoid unnecessary light ray

16

projection, this paper proposed a bidirectional tracing procedure. It was a simple

and direct process: camera rays were emitted into the scene and record the hit

points. These points were visible to the observer and they deserved the light

tracing. The next step was to emit light rays to the scene, at the same time

whether the hit points were within the area that was visibly evaluated in the first

step is check. If yes, put a light point there. The results showed that for the less-

occluded scenes, the improvement was quite obvious; however for the scenes

that were heavily occluded, the first step would be wasteful.

2.3. Lightcuts

According to Walter, Fernandez, Arbree, Bala, Donikian and Greenberg

(2005), Lightcuts was directly derived from Instant Radiosity. From Instant

Radiosity, point light sources could be obtained. And later when evaluating

indirect lights for each pixel, each point light should be considered. However, not

every point light was useful. For some point lights, how much they contributed

could even be omitted; another case was that several point lights were too similar

so they contributed the same amount. For both the cases, there was space to

make further simplification. This paper offered an efficient method for point light

simplification. Before conducting simplification, all the light sources needed to be

organized in some way and then evaluated. The metrics used in this paper

involved the light type, geometry, and materials. With the mathematical tool

provided, a final quantity for several lights could be retrieved. With the same

metrics, several lights could be represented by a single point light - and it served

17

as the parent node of these lights. Finally, a light tree was formed. When

rendering the image, for each pixel it is necessary to first check whether some

inter node in the tree is possible so to avoid multiple light evaluation. If so, it can

be used. Over all the pixels, the performance improvement was quite significant.

One important detail about simplification was that accuracy cannot be lost too

much. This was achieved when constructing the tree. For each simplification,

only 2% difference was permitted. However this 2% error cannot be accumulated

because not all pixels suffered 2% error. Most cases indicated less than 2% error

appeared in the final image. So the image quality was almost preserved.

According to Walter, Arbree, Bala and Greenberg (2006), not only point

Lightcuts were organized as a tree, but the gather points also had their

corresponding tree. When each pixel was evaluated, two trees formed a product

graph and all cuts were on this product graph. Also the time instance was

involved in this model to support motion blur. With the gather point tree cuts

depth of field effect could be provided. The same error analysis as Fernandez,

Arbree, Bala, Donikian and Greenberg (2005) was conducted so this method had

the same image quality approximation with the original Lightcuts.

2.4. Other Global Illumination Algorithms

2.4.1. Caustics and Photon-Mapping

Caustics was one important lighting effect for transparent objects after

direct illumination Jenson (1996). It was very hard to render using traditional ray-

18

tracing, because in caustics each pixel shading value was accumulated from

many light sources after refraction so it required a large amount of tracing rays.

However it was quite slow and unsatisfactory results had been produced.

Figure 2.3 Caustics rendering using Photon-mapping

Figure 2.3 is a scene with caustics enabled. Caustics generation was

inherently a light tracing process. Another piece of information about how light

was accumulated for final rendering was required now. Discretized photons were

projected on the plane to trace this information. Next, kernel functions were

applied to reconstruct the shading values. Two passes were necessary in this

procedure. In the first pass, light sources emitted many light rays that hit on the

19

objects and the planes in the scene - directly or indirectly. For each hit point, a

'photon' was recorded on this point. After this pass, a photon set was formed. In

the second pass, the author gave two usages. First was for general use. In this

case, not only caustics was considered. With these photon densities the

illumination of some area can be calculated. This gave important information

about shadowing. Thus the shadow ray number could be reduced. The second

case was for caustics computation. In this case, some kernel functions

reconstructed the photon illuminations by interpolation so to get continuous

caustics.

Photon-mapping is actually another form of traditional Ray-tracing, without

any global illumination computation involved. The only difference between

Photon-mapping and Ray-tracing is that Photon-mapping shoots rays from light

sources.

2.4.2. Ambient Occlusion

Ambient occlusion is one newly proposed image quality refinement

method. It emphasized the ambient light aspect: the occlusions among the

geometries had an impact on the ambient light illumination (Kontkanen & Laine,

2005). It was darker in the areas that were occluded heavily. This idea can bring

more realistic illumination effects. The initial ambient occlusion emphasized self-

occlusion effects while no other objects were considered. This literature filled this

gap. Its basic idea was as follows: When each pixel was evaluated, a spherical

cap was captured with the pixel's normal vector as the axis. This was the normal

20

case for how a point in real world ambient light was absorbed. To sample the

occluding factor over this sphere, discretizing the sphere into many sampling

squares and sampling an occluding value of this square - 0 for occluded and 1

for not occluded are required. Lastly all these values together were evaluated to

get an occluding value. Other objects in the scene were used to check the

intersections. Figure 2.4 shows that this method can improve realism

significantly. With this algorithm, shadows from ambient light simulated the

situations in the real world. However this algorithm required extra preprocessing

before rendering, but the performance in run-time was quite promising.

Figure 2.4 An Ambient Occlusion Scene

2.5. Implementation: C++, OpenGL and GPU

The above mentioned techniques mostly focus on the theoretical aspects.

Implementation also matters a lot and in this phase many possible effective

improvements can be applied.

21

2.5.1. C++

For instance, a proper application of C++ and a good object-oriented

design of the rendering system can improve the extensibility and performance

greatly, and can also bring the benefit of easiness of debugging. Indeed, C++

and design patterns took key roles in engineering practices. Nowadays graphics

hardware cannot be neglected. Proper manipulation of the graphics processing

unit can significantly improve the performance. This was critical because global

illumination was acknowledged as an off-line process instead of a real-time

interactive process. However, GPU was suitable for parallel algorithms. Luckily

the key algorithms were pixel based so it was inherently paralleled.

A rendering engine was a relatively large system, so a lot of engineering

aspects needed to be considered, especially for C++ - the API that was adopted

as the basic implementation tool. C++ was a powerful but tough language. It was

suitable for large systems but special care should be taken in many aspects

especially details. Otherwise, the developers would go crazy easily. A very good

book for guiding C++ users on how to use C++ properly is Meyers (2005). It

provided many useful or even critical suggestions. It covered basic usage such

as constructor, destructor, new and delete operators, exceptions, etc., and

design views such as inheritance rules, smart pointers, etc. Constructor and

destructor was a big topic that brings problems sometimes. The C++ compiler

generated default operators in some cases and it had to be realized; for

destructors, in base classes, 'virtual' keyword is necessary or the resource may

leak in the child classes. What's more important, no exception throwing was

22

allowed in destructors, or the whole system was not exception safe. Resource

management included smart pointers, which were a very useful skill to manage

resources. Smart pointers were the classes that could handle resource allocation

and deallocation automatically and required no extra manual work for the

programmers. Several types of these were: scope pointer, shared pointer,

reference pointer, etc. Proper manipulations on them can improve the stability

and design elegance of the system significantly. Several design issues were also

covered. Class design had to comply with one of the basic OOD rules:

encapsulation. It meant that no private members could be exposed outside of the

class. Another important guideline was: don't return objects directly in functions

because it would invoke costly object copying. And maybe the most important

consideration is that the less dependence the better. Dependence was probably

the first culprit that brings most of the problems. Dependence meant complexity

and hardness of debugging. A good system design was to make everything as

simple as possible, instead of the contrary. Also, a more advanced topic, 'generic

programming', was introduced. In C++, generic programming took templates as

the basic tool, which contained the trickiest skills in C++, such as the technique

called 'traits'. It used a C++ template specialization to introduce runtime

distinctions. Meta-programming mixed macro and template together and it was

probably the peak of the C++ usage. With this book, a relatively stable,

extensive and efficient C++ rendering system was possible. It was known that

most part of the development time was spent in debugging.

23

2.5.2. OpenGL

The graphics API used is OpenGL. OpenGL is now the industrial

standard. It is efficient and versatile. The first book that every OpenGL

programmer needs to refer to Shreiner, Woo, Neider, and Davis (2007). This

book covered almost every aspect of OpenGL. First the pipeline of OpenGL was

introduced. This was the key for the whole of OpenGL. The first stage was

geometry related processing nodes such as call lists, evaluators and the vertex

shader. They were all about the basic geometrical computations.

The next stage was rasterization. This was the process that parsed the

former geometrical objects into pixels to meet the inherent discretization of

computers. It cost the most CPU cycles among all the phases in the pipeline.

After the pixels were done, textures and other pixel operations such as fragment

shaders could be applied.

Lastly, a pixel value was transferred to the frame buffer. The geometry

primitives API was used to put the geometrical information into the OpenGL

pipeline for rendering; viewing the perspective setup API sets camera

parameters. These two parts were basic steps when developing graphics

applications, while for global illumination applications an individual mechanism

was crafted from scratch. The color API and the lighting API were used for

shading functions. They determined the final shading values. Alpha-blending,

anti-aliasing, fogging and texturing, were implemented individually. Basically

speaking, OpenGL was mainly for interactive applications. Most critical

processing steps were inherent in this API and the programmer did not have too

24

much freedom to customize them. For example, in the anti-aliasing part, some

new sampling strategies were better, but they cannot be integrated into the

existing OpenGL pipelines; another example was viewing (camera) setup, there

was no 'depth of field' in OpenGL.

2.5.3. GPU

With careful observation it was clear that pixel-based global illumination

algorithm was paralleled. Unlike original patch-based Radiosity, Instant Radiosity

enabled individual pixel based calculations. This inherent characteristic enabled

us to apply the GPU to rendering algorithms to achieve a faster execution. In

other words, the GPU was an unavoidable topic nowadays in graphics, in

interactive graphics applications such as games, and in high computation density

image synthesis field. The most popular GPU and its programming interface was

from nVidia. So CUDA was the tool that was to be used in our project. The key

issue about this was how to use the GPU in the right way to maximize the boost

by GPU. Ryoo, Rodrigues, Baghsorkhi, Stone, Kirk and Hwu (2008) was a good

paper on how to use GPU in the right way. It started with the detailed explanation

of GPU architecture because the first step is to understand how the GPU works.

The GPU consisted of many paralleled stream processors that represented one

thread; eight stream processors form a stream multi-processor and many stream

multi-processors formed a processing grid. The numbers varied among the

different versions of GPU. There was a global memory on a GPU chip that can

be accessed by all threads; one shared memory in each stream multi-processor

25

that was visible to all its eight stream processors and it was much faster than the

global memory. Basically speaking, the GPU was a data-paralleled processing

device, and special care needed to be taken with the thread-memory accessing

model that is critical to the GPU performance.

There were three mentioned methods for CUDA performance tuning. The

first one was local memory storage. As mentioned above, global memory was

much slower than the shared memory in each stream multi-processor. Shared

memory could be used as a cache for eight threads in the same stream multi-

processor. According to the paper, this could improve the performance by 4.5

times. The second method was loop unrolling. This didn‟t show a significant

performance improvement in the paper but it did have some positive effects in

some cases. The last method was more strategic. It hid the memory accessing

time by allocating another cluster of threads on the processors. For some

memory access intensive applications this could improve the performance a lot.

Of course there were other ways to improve CUDA efficiency. To make the best

of our application performance, how our application works needs to be

understood well- is it data parallel or instruction parallel? If it is data parallel, are

there many memory accessing actions? Are they reading or writing? After that,

with a good understanding of the GPU working model, a proper way to speed up

the code can be found.

26

2.6. Summary

 Several important sources relevant to the author‟s research have been

briefed here. A series of global illumination techniques from Ray-tracing to

Radiosity and finally to Lightcuts, together with some other popular algorithms

such as Photon Mapping and Ambient Occlusion, are all covered. The

corresponding implementation tools such as C++, OpenGL and CUDA are also

mentioned. These papers and books offer the basic knowledge and also inspire

the author with the research idea in the thesis.

27

CHAPTER 3. METHODOLOGY

This chapter provides the framework of the research methodology. The

process that the research is introduced here.

3.1. Hypothesis

H0: The GPU cannot accelerate global illumination significantly enough.

Ha: The GPU can accelerate global illumination significantly enough.

3.2. Sampling and Sampling Approach

Since performance is the key concern of this research, sampling was

focused on performance, including: CPU rendering time cost, GPU rendering

time cost and the breakdown of the rendering time, as initialization time cost and

intersection time cost.

The sample approach is to use CPU cycle count as the basic measuring

basis to check the execution time of the rendering time cost of both CPU version

implementation and GPU version. By obtaining CPU cycle counts of the time

when rendering begins and ends, the difference of two values can be adopted as

the benchmark for further analysis and judgment of the results of the research.

28

3.3. Variables and Unit of Measurement

The variables to be measured are of course the measurement of

rendering performance - rendering time cost, in seconds, with two or three as the

decimal places of precision. However, the initial measure variables - CPU cycle

marks - need to be transformed into seconds.

3.4. Assessment Instruments

There are two required assessment instruments:

a) CPU: Intel or AMD CPUs can be adopted in the research, as long as it

remains consistent.

b) GPU: Because CUDA is the choice as the implementation tool, only

GPUs from nVidia can be considered - CUDA is the product from nVidia and it is

not the industrial standard yet.

There are also some required infrastructure elements:

a) A complete computer work station.

b) A data analysis software package. Microsoft Excel is a good choice.

3.5. Implementation

The core algorithm to implement is Instant Radiosity and its enhancement

called Lightcuts. Instant Radiosity achieves global illumination by putting point

lights on diffuse surfaces followed by another pass of traditional ray-tracing

procedure. Lightcuts is a newly proposed improvement on Instant Radiosity that

29

assembles all the point lights and computes one representative point light for a

bunch of similar point lights, which reduces the light computation amount in

rendering.

The application was implemented using C++ and CUDA. C++ is a very

good choice for crafting a relatively large system. CUDA is the language the

author chose as the tool to program GPU. CUDA is a C language extension that

is easy to start with and enables programmers to control GPUs directly.

3.6. Procedure

The basic procedure of the algorithms is a two-pass procedure. The first

pass is basically a traditional ray-tracing that computes specular colors, while the

difference is that the point lights that represent diffuse reflections were put on the

ray hit points on diffuse surfaces.

The second pass is still a traditional ray-tracing procedure but this pass

will only consider the diffuse point lights that have been added in the first pass.

The computed colors were directly integrated into the final results. The Lightcuts

algorithm (Walter, 2005) goes in this pass. Non-significant virtual point lights to

one hit point were skipped.

The procedure on CPU is a sequential style. Each pixel is computed after

one pixel and it can only start the computation after the last pixel has finished its

calculation. But the GPU can handle many pixels at the same time. So only one

pixel‟s time cost is required for many pixels. In the author‟s implementation, one

row of pixels (about 512) was processed at the same time on GPU.

30

The testing scenes consisted of several versions of the Cornell Box, which

is considered as a standard scene for testing global illumination algorithms. The

Cornell Box scene provides physically-exact bases for pixel-wise algorithm

testing, so they can serve as the ideal testing benchmarks for the GPU version

algorithms of author‟s work.

3.7. Summary

 The methodology of research in the thesis has been introduced in this

chapter. Important factors such as sampling, variables to sample, instruments,

procedure and implementation are stated in detail.

31

CHAPTER 4. METHOD OF IMPLEMENTATION

This chapter covers the necessary implementation techniques used for

crafting this research application, including data structures, general workflow,

algorithms and their parallelization on GPU using CUDA. The algorithm

parallelization is the emphasis because it is the key to the performance

enhancement. The traditional Ray-Tracing and original Lightcuts algorithm in

Walter (2006) is elaborated in detail as well as how they are paralleled using

CUDA.

4.1. Workflow

As mentioned in Chapter 3, it is a two-pass procedure of rendering. The

first pass is a typical Ray-Tracing, and the only difference is that Virtual Point

Lights were put in the target 3D scene on the hit points that are shiny enough, on

diffuse surfaces of the objects. However they will not serve as lights sources in

the first pass, because they are supposed to contribute to diffuse illumination

only. The second pass will take the Virtual Point Lights added in the first pass as

light sources, and the same Ray-Tracing process will take place to compute

diffuse-diffuse illumination, which is the essence of global illumination.

32

In second pass, a large amount of light sources (the virtual point light

sources) usually cause expensive computations on illumination evaluation of a

single hit point - however some of the virtual point light sources do not have

significant contribution. For example, the lights that don‟t point to the hit point,

and the lights those are too far away or too dim. The basic idea of the Lightcuts

algorithm proposed in Walter (2006) is the very solution for this situation. Based

on its light contribution metric method, the unnecessary virtual point lights can be

skipped in color evaluation in the second pass, hence the performance of second

pass can be enhanced accordingly. According to Walter (2006), it can reduce the

complexity of illumination computation from linear to sub-linear. Figure 4.1

depicts the workflow of the whole system.

Figure 4.1 Workflow Chart

33

4.2. Data Structures

This section introduces the key data structures used in the research

application. The CPU implementation takes Object-Oriented Design as the basic

design strategy, however it is not possible for GPU CUDA code, which doesn‟t

support Object-Oriented language features, so all data members in the class

hierarchy should be put in a struct together.

There are many data structures in the system, while only the most

important ones are covered in this section, such as Ray, Light and geometry.

4.2.1. Ray

The basic information to take in a Ray is its id, starting position coordinate,

direction vector, color, hit point coordinate (if applicable) and some other data

that may facilitate the engine to process, such as offset values used in

randomized sampler and a boolean mark indicating whether it is inside an object

or not.There is no inheritance or polymorphism in this struct, so the GPU CUDA

code can share the same struct declaration. Appendix B provides the source

code for this data structure.

4.2.2. Light

On the CPU, lights should follow an inherited class hierarchy so as to

represent different types of light sources. First, in the parent class of Light, it

34

should contain some common data such as attenuation, ambient color, diffuse

color and specular color.

The first concrete light source type is directional point light, from which

light rays were emitted from a single point in 3D space along the indicated

direction, but they also spread within the hemi-spherical space with a cosine

attenuation factor so the extra data needed are only its position and its direction.

The second supported light type is directional light source, which only

requires extra information of its direction.

As mentioned earlier, CUDA does not support inheritance and

polymorphism, so the only solution is to combine all information in all previous

classes together, and put an enum variable to mark its light type.

The initial parameters for rendering were set up through regular CPU

C\C++ code, when these parameters are to be transferred from CPU to GPU, the

data from different sub-classes, as DirPointLight and DirLight here, were copied

to its corresponding fields. Appendix B provides the source code for this data

structure.

4.2.3. Geometry primitives

Three types of primitives are supported: sphere, square and triangle. They

are represented on the CPU as belows. The parent class contains common data

that all geometry primitives require, in which material is a common struct

containing the object‟s light characteristics: id, reflection factor, refraction factor,

refraction constant, emission factor and material reference. In the material

35

section, specular, diffuse and ambient color should be recorded, and also the

shininess factor.

A Triangle needs its three vertice‟s 3D coordinates, surface normal, and

vertice normals if applicable. Two boolean variables mark whether there are

vertice normals and whether illumination should be smoothed along the surface.

Only two extra members are needed for a Sphere: center coordinate and

its radius, but it is a little more complex for a square. Its center point coordinate,

width and height, surface normal, and its two direction vectors along the edges

should also be included to indicate square‟s direction.

The same strategy could be adopted again for geometry primitives‟

representation on GPU, all data members were put in the same GPU struct

together, and the same as light class hierarchy, different data members were

copied to its corresponding fields in the GPU geometry struct. Appendix B

provides the source code for this data structure.

4.3. System Architecture

The whole application consists of several components and each of them

addresses one aspect of the rendering process. Different parts as geometry,

scene setup (camera, objects coordinates, etc.), rendering engine, anti-aliasing,

binary space partitioning, etc. could be organized and understood from input to

output, shown in Figure 4.2.

36

Figure 4.2 System Architecture Chart

As shown in Figure 4.2, several input elements include camera setting,

light source setup and geometry data (geometry can be input from external files

using Obj Loader). These should be the beginning of the whole engine. After all

information mentioned are ready, the Sampler will generate rays according to the

camera setting and provide them to scene manager. Then the scene manager

will take the geometry, light sources and rays to the Tracer (CPU or GPU version)

and drive it to execute the rendering. During rendering, the Tracer applies BxDF

(as the color evaluation core), BSP Tree and Lightcuts component to do a two-

pass Ray-Tracing procedure, on CPU or GPU, as indicated from user. At last, the

Integrator will take the computed colors from the Tracer and compose the final

pixel colors. Anti-Aliasing also happens in the Integrator.

37

4.4. Ray-Tracing and its Parallelization

Ray-Tracing is the basic framework of pixel illumination evaluation. Due to

the Independence essence of rays, the parallelization could be applied upon the

computation of these rays.

After all data mentioned in section 4.2 has been transferred to GPU, they

become read-only global information, visible to all rays shot by the rendering

engine. According to Shirley (2005), one ray goes along the shooting direction

until it hits a point on an object, after it collects its current evaluated color,

another two individual rays for reflection and refraction to go through the same

ray process. However one or both of them may not be shot considering the

material of the hit object. At last, a recursive binary tree was formed with one ray

as its node element Turner (1980). Then a pixel‟s color can be evaluated by

summing up all rays in the tree from bottom to top, weighted by corresponding

reflection and refraction ratio in the ray.

Ray-Object hit testing is usually the most time-consuming part of a Ray-

tracer. According to Shirley (2005), the most common way to accelerate this

computation is using Binary Space Partitioning, which partitions the whole space

into two parts recursively so that a ray can search for its hit point faster by

avoiding all objects in the half of space which the ray does not intersects. It

results in a complexity of lg(n), instead of the original linear complexity.

38

4.4.1. Ray-Tracing Recursion Iteratization

C\C++ on the CPU supports function recursion intrinsically, so there is no

extra difficulty to implement ray-tracing. However, nVidia‟s GPU programming

language extension CUDA doesn‟t support function recursion, for the sake of

performance - because popping and pushing a stack would bring a lot of runtime

cost.

The basic strategy is to replace recursion by iteration so it is no longer

necessary to use stacks. Each iteration handles one layer of the ray binary tree,

which are produced by last iteration as reflection and refraction rays. The depth

of a ray binary tree is the maximum ray-tracing depth, and the total ray number is

2n-1, in which n is the depth number.

As mentioned before, the final pixel color is a weighted illumination sum of

all rays in the tree, so the whole tree should be stored, and the pixel color can be

accumulated iteratively from rays in the bottom layer and upward to the original

single ray (the root ray). This is accomplished on GPU under CPU‟s control.

Array is the best representation of a ray tree on GPU, in which rays are

order from upper layer to bottom layer and from left to right for children in the

same layer. Figure 4.3 shows a concrete example:

39

Figure 4.3 A typical ray-tracing scenario

As Figure 4.3 shows, the root ray (ray0) produces two rays, ray1 and ray2

(ray1 for reflection ray and ray2 for refraction ray), then ray2 produces ray3 and

ray4, ray2 generates ray5 only, assuming ray2‟s hit object cannot refract lights.

Figure 4.4 depicts the procedure of a pixel color computation by iterative

recursion along the ray binary tree. In which ray3 and ray4 contributes to ray1,

ray5 contributes to ray2, then ray1 and ray2 contributes to the root ray, at last the

final illumination can be retrieved from ray0. As shown, this synthesis procedure

also goes layer by layer, from bottom to top.

40

Figure 4.4 A binary ray tree and its synthesis procedure

Figure 4.5 shows the tree representation in GPU memory as an array, and

rays are ordered in the way mentioned above.

Figure 4.5 Array representation of a ray binary tree

4.4.2. Binary Space Partitioning Recursion Iterization

Consider this scenario: there are 10000 triangles, and a ray hits only one

of them, so traversing all of them is not a proper solution. What‟s more, ray object

intersection computation is usually the most time-consuming part in a ray-tracing

application. The regular solution is to divide a space into two parts recursively, if

a ray hits only one of the two parts, then all the objects in the missing part can be

avoided from intersection computation Shirley (2005).

41

The data structure for recording this partitioning information is called BSP

tree, which can be built recursively, similar to the procedure described in sub-

section 4.3.1. It takes a bounding box that holds the whole space as the starting

point, and then a bounding box was divided into two sub-boxes, with each of

them containing nearly same number of geometry primitives. Then the same

process was applied on these two sub-boxes, recursively, until there is small

enough number of primitives. BSP tree building can be finished on CPU and the

resulting tree can be directly copied to GPU. Figure 4.6 shows an example.

Figure 4.6 Bounding Box and Binary Space Partition

As shown in Figure 4.6, when a ray has been shot, it is checked which box

it intersects from outside to inside boxes. It hits box1 in box0 (the root box) first,

so all objects in box2 can be safely avoided. Then, box3 in box1 is hit, and box4

doesn‟t. So primitives in box4 can be avoided too. As shown, BSP acceleration

can avoid unnecessary ray-object intersection computation.

42

A node of a BSP tree contains the space dimension it covers but only leaf

nodes contain geometry primitives. On the CPU, it is not difficult to implement

because the CPU supports recursion function calling. And iterative recursion can

be applied again to solve this problem on the GPU. All BSP tree nodes can be

arranged sequentially in an array on the GPU, and BSP tree traversal follows a

layer-by-layer iteration style, as shown in Figure 4.7.

Figure 4.7 BSP Tree and its traversal

In Figure 4.7, node P0 represents the whole space, node P1 and P2 are

the two children of node P0. Each represents one half of the space, and the

same for node 3, 4, 5, 6, 7 and 8. The workflow for finding the last hit node is

conducted from top to bottom – P0, P1, P3, P5 and P7.

43

On the GPU, the tree node is indexed by its positions in the array, as

shown in Figure 4.8.

Figure 4.8 Array Representation of a BSP Tree

After the hit node is found, all its primitives were checked. Then the final

hit point was found, or not if this ray did not hit any primitive.

4.5. Lightcuts and its Parallelization

Lightcuts was first proposed in Walter (2005), which addresses the

problem of over-amount of light sources in a scene. According to the paper, it is

able to avoid unnecessary light source illumination evaluations from the ones that

have little contribution to the target pixel effectively.

4.5.1. Introduction to Lightcuts

According to Walter (2005), in complex scenes, there are usually tens of

thousands of light sources. The traditional way of pixel color evaluation is

iterating each of them. It results in a linear complexity for scene illumination

calculation that is unacceptable in complex scenes. However, some of light

sources are totally non-significant. For example, the lights that are too far away

44

from a hit point, lights too dim or direction lights that don‟t point to the target pixel,

are not necessary and can be safely avoided.

The solution is actually simple: just cut them off. The problem is: how to

tell whether a light is significant enough or not? In Walter (2005), considered

factors such as visibility, geometry (distance to a hit point, directions if

applicable), intensity and materials are introduced as the metric aspects of

significance of a light. And the next question is: what data structure should be

used to record significance information? A binary tree is used with each node as

one light in a scene Walter (2005). A parent of two nodes is selected from one of

its two children, because we don‟t need extra virtual lights and what‟s more, it is

able to save memory space.

After the light tree has been built, it was traversed from the root down to

the bottom recursively. Here an error bounding metric method was applied on

each node. If the calculated error is below a tolerance value, the visited node

was chosen to be present in the final pixel color evaluation; if the bounding error

exceeds the tolerance value, its two children were visited then Walter (2005).

4.5.2. Light-Tree Building

The light tree is built from the bottom-up recursively, until there is only one

node left. The first step is to select two similar lights from the scene (mainly

judged based on their geometric similarity, like distance and light direction), and

then one of them was selected as the parent, with intensity as the possibility of

selection. Walter (2005) provides a formula to evaluate this “similarity”, and

45

because there are only directional point lights in this research, the formula

adopted here is slightly different from the one in Walter (2005):

 IC * (DC
-2 + (1 - cosβ)2) (Equation 4.1)

As shown in Equation 4.1, IC is the total illumination of two virtual point

lights; DC is the distance between two point lights (Walter (2005)) put it as the

diagonal length of the bounding box); β is the angle between the direction vectors

of two point lights (In Walter (2005) it is the half angle of the bounding cone).

Figure 4.9 shows an example.

Figure 4.9 A Lightcuts scene

As Figure 4.9 demonstrates, there are four lights in the scene. As shown,

light0 and light1 are similar enough because they are close enough, light2 and

light3 are considered as similar too by the same reason. Then light0 and light3

46

are chosen as parents (suppose they are the brighter ones). As last, light 3 is

chosen as the tree root (suppose light 3 is brighter than light 1).

Figure 4.10 A Lightcuts Tree

Figure 4.10 depicts the Lightcuts tree in the sample scene. Since this tree

will not change through out the rendering, this building process can be put on

CPU, and the tree can be copied to GPU. As mentioned before, this binary tree

can also be represented in an array, as shown in Figure 4.11.

Figure 4.11 Array representation of the Lighcuts Tree

4.5.3. Paralleled Light-tree Evaluation

With a Lightcuts tree is available, it is universally available in the process

of a pixel color computation. According to Walter (2005) it is also a recursive

47

process: each traversal starts from the root, if the current node‟s error bound

value is below the preset tolerance value, the light is chosen and its children will

not be visited. If the error bound value is above the tolerance value, it was be

skipped and its two direct children were visited then, until the lights with error

bound values smaller than tolerance are selected. The formula to estimate

bounding error of two directional point lights is as below (taken from Walter

(2005)):

 max(cosβ, 0) * (y - x)-2 (Equation 4.2)

In Equation 4.2, β is the angle between the virtual point„s direction and the

normal vector of the hit point; y is the light‟s position and x is the hit point

position.

It is trivial to implement recursion on CPU because CPU supports function

recursive calling; this procedure should be completed iteratively layer by layer, by

a top-down manner on GPU.

Figure 4.12 Recursion traversal of a Lightcuts tree

48

By Figure 4.12, a Lightcuts tree is visited from root downward, until the

right lights are chosen.

4.6. Summary

As the two key components of this research, Ray-Tracing and Lightcuts,

demonstrated, the most important skill here is replacing recursion by iteration on

GPU, and the tree data structure on CPU should be stored as a one-dimension

array, on which iteration occurs. All these iterations occur simultaneously on GPU

cores, with each core taking one task of one pixel‟s color computation.

 Due to the pixel independence essence of Ray-Tracing, parallelism is

supposed to be able to enhance performance significantly. What‟s more,

Lightcuts is considered to be able to further improve pixel color computation

performance. The detailed performance testing results upon three different

scenes with different complexity were elaborated in the following chapter, in

which it was clear how much all the mentioned techniques in this chapter could

take effect.

49

CHAPTER 5. RESULTS AND ANALYSIS

In this chapter, the acceleration effects are demonstrated through three

different scenes with different complexities. The measured rendering time is laid

out first, and its analysis follows. After analysis, it could be clear whether the

solution proposed in chapter 4 is effective enough or not, and the validity of this

research could be verified.

5.1. Scene Testing Results

This section elaborates testing details including testing platform,

perceptual checking tool and final testing results.

5.1.1. Testing Platform

The computer used for testing has the following characteristics:

CPU: Intel Xeon E5520 @ 2.27GHz 2.26GHz

GPU: nVidia Tesla C1060

5.1.2. Perceptual Difference Evaluation Tool

To promise the acceleration solution proposed in this research does not

damage image quality by introducing discernible differences or even errors, all

50

accelerated images were compared with the original non-accelerated CPU

generated image. A third party open source tool called Perceptual Image Diff was

applied to all generated images for perceptual error detection.

Briefly speaking, this tool is based on spatial frequency, luminance, color

and observer parameters. With its algorithms, perceptual differences of images

can be effectively examined. More details can be found at

http://pdiff.sourceforge.net/.

5.1.3. Results

Three scenes with different complexities are designed for the testing work

of this research. A very simple scene with only a few geometric primitives, a

scene with 1418 triangles and a scene with 4698 triangles are separately

rendered and their rendering results including generated images, rendering time

cost are recorded.

5.1.3.1. Simple Scene

This scene contains only two spheres in a Cornell Box that consists of five

sides (five squares), so there are only seven primitives in the scene.

Four different scene configurations are involved: CPU without Lightcuts,

CPU with Lightcuts, GPU without Lightcuts and GPU with Lightcuts. Each of the

four configurations has been tested three times and their average values were

http://www.google.com/url?q=http%3A%2F%2Fpdiff.sourceforge.net%2F&sa=D&sntz=1&usg=AFQjCNHgMCp67kgsChBir9xZrn8SjD9gbw
http://www.google.com/url?q=http%3A%2F%2Fpdiff.sourceforge.net%2F&sa=D&sntz=1&usg=AFQjCNHgMCp67kgsChBir9xZrn8SjD9gbw
http://www.google.com/url?q=http%3A%2F%2Fpdiff.sourceforge.net%2F&sa=D&sntz=1&usg=AFQjCNHgMCp67kgsChBir9xZrn8SjD9gbw
http://www.google.com/url?q=http%3A%2F%2Fpdiff.sourceforge.net%2F&sa=D&sntz=1&usg=AFQjCNHgMCp67kgsChBir9xZrn8SjD9gbw
http://www.google.com/url?q=http%3A%2F%2Fpdiff.sourceforge.net%2F&sa=D&sntz=1&usg=AFQjCNHgMCp67kgsChBir9xZrn8SjD9gbw
http://www.google.com/url?q=http%3A%2F%2Fpdiff.sourceforge.net%2F&sa=D&sntz=1&usg=AFQjCNHgMCp67kgsChBir9xZrn8SjD9gbw
http://www.google.com/url?q=http%3A%2F%2Fpdiff.sourceforge.net%2F&sa=D&sntz=1&usg=AFQjCNHgMCp67kgsChBir9xZrn8SjD9gbw
http://www.google.com/url?q=http%3A%2F%2Fpdiff.sourceforge.net%2F&sa=D&sntz=1&usg=AFQjCNHgMCp67kgsChBir9xZrn8SjD9gbw

51

used for analysis. Table 5.1 presents the testing results (All data values are in

seconds).

Table 5.1

Simple Scene Testing Results

 First Pass

(In Seconds)

Second

Pass

(In Seconds)

Total

(In Seconds)

Light Ratio

(%)

P-Diff

Check

CPU - no

Lightcuts

0.808 76.945 77.753 X X

CPU -

Lightcuts

0.869 394.284 395.160 63.007% Pass

GPU - no

Lightcuts

7.891 45.457 53.353 X Pass

GPU -

Lightcuts

7.414 65.856 73.287 64.035% Pass

In Table 5.1, the virtual point light count on CPU is 271 and 253 for GPU.

The number difference is caused by randomness of the implemented algorithm.

The columns “First Pass” and “Second Pass” contain the rendering time of first

pass and second pass, and the total rendering time is in column “Total”. The

“Light Ratio” column records how much percent of all virtual point lights are

52

selected for the second pass by Lightcuts. The last column records the

perceptual checking among the images, and the reference image is the CPU

without Lightcuts, all the other three are checked by comparison with that one. As

shown in Table 5.1, all images pass the perceptual checking. As shown in Table

5.1, no perceptual differences have been detected. Figure 5.1 shows the

generated images.

Figure 5.1 Simple Scene images

5.1.3.2. Venus Model Scene

This scene contains a more complicated model, Venus, that possesses

1418 triangles, together with the five squares as in the Cornell Box sides.

53

Four different scene configurations were involved: CPU without Lightcuts,

CPU with Lightcuts, GPU without Lightcuts and GPU with Lightcuts. Each of the

four configurations was tested three times and their average values were used

for analysis. Table 5.2 shows the testing results (All data values are in seconds):

Table 5.2

Venus Scene Testing Results

 First Pass

(In Seconds)

Second

Pass

(In Seconds)

Total

(In Seconds)

Light Ratio

(%)

P-Diff

Check

CPU - no

lightcuts

38.263 1383.921 1422.187 X X

CPU -

lightcuts

38.569 1545.119 1583.69 60.021% Pass

GPU - no

lightcuts

14.461 374.228 388.693 X Pass

GPU -

lightcuts

15.077 354.584 369.667 66.855% Pass

In Table 5.2, the virtual point light count on CPU is 136 and 131 for GPU.

The number difference is caused by randomness of the implemented algorithm.

The columns “First Pass” and “Second Pass” contain the rendering time of first

54

pass and second pass, and the total rendering time is in column “Total”. The

“Light Ratio” column records how much percent of all virtual point lights are

selected for the second pass by Lightcuts. The last column records the

perceptual checking among the images, and the reference image is CPU without

Lightcuts, all the other three are checked by comparison with that one. As shown

in Table 5.2, all images pass the perceptual checking. As shown in Table 5.2, no

perceptual differences have been detected. Figure 5.2 shows the generated

images.

Figure 5.2 Venus Scene images

55

5.1.3.3. Galleon Model Scene

This scene contains an even more complex model Galleon, containing

4698 triangles, together with the five squares as the Cornell Box sides.

Four different scene configurations are involved: CPU without Lightcuts,

CPU with Lightcuts, GPU without Lightcuts and GPU with Lightcuts. Each of the

four configurations has been tested three times and their average values were

used for analysis. Table 5.3 presents the testing results (All data values are in

seconds).

Table 5.3

Galleon Scene Testing Results

 First Pass

(In Seconds)

Second

Pass

(In Seconds)

Total

(In Seconds)

Light Ratio

(%)

P-Diff

Check

CPU - no

lightcuts

133.787 4265.908 4399.7 X X

CPU -

lightcuts

133.702 3519.038 3652.74 48.247% Pass

GPU - no

lightcuts

28.345 816.96 845.34 X Pass

GPU -

lightcuts

28.515 741.397 769.93 53.335% Pass

56

In Table 5.3, the virtual point light count on CPU is 131 and 146 for GPU.

The number difference was caused by randomness of the implemented

algorithm. The columns “First Pass” and “Second Pass” contain the rendering

time of the first pass and second pass, and the total rendering time is in column

“Total”. The “Light Ratio” column records how much percent of all virtual point

lights are selected for the second pass by Lightcuts. The last column records the

perceptual checking among the images, and the reference image is the CPU

without Lightcuts. The other three images are checked by comparison to it. As

shown in Table 5.3, all images pass the perceptual checking. As shown in Table

5.3, no perceptual differences have been detected. Figure 5.3 shows the

generated images.

Figure 5.3 Galleon Scene images

57

5.2. Results Analysis

With experiment results stated in section 5.1, the performance

acceleration percentage can be acquired easily, and also an intuitive

representation using charts for data is able to be drawn for effective analysis.

Three aspects would be emphasized in the follows: GPU acceleration, Lightcuts

acceleration, and overall acceleration.

5.2.1. GPU Acceleration

From original testing data, the following compared acceleration

percentage of GPU is shown in Table 5.4. Figure 5.4 shows this data as a chart.

Table 5.4

GPU Acceleration Analysis

 Simple(1) Venus(1418) Galleon(4698)

Pass 1 -88.262% 160.201% 369.681%

No Lightcuts - 2 81.109% 269.807% 425.165%

No Lightcuts - all 58.122% 265.889% 423.311%

58

Figure 5.4 GPU Acceleration Chart

Please notice that to emphasize the GPU performance boost effect,

Lightcuts has not been considered. And what is noticeable, if there are too many

geometry primitives in the scene, the GPU driver on Windows will halt because of

long kernel function execution.

5.2.2. Lightcuts Acceleration

Like the GPU testing data, Lightcuts performance increase effect data can

be calculated too, as shown in Table 5.5. Figure 5.5 shows this data as a chart.

59

Table 5.5

Lighcuts Acceleration Analysis

Pass 2 Simple(1) Venus(1418) Galleon(4698)

CPU -82.1% -10.433% 22.378%

GPU -33.67% 5.54% 10.553%

Figure 5.5 Lightcuts Acceleration Chart

To make it clear how much Lightcuts makes rendering faster, CPU and

GPU configurations are individually considered. As with as the GPU situation, if

there were too many virtual point lights, pixel computation would cause Windows

GPU driver to halt.

60

5.2.3. Overall Acceleration

At last, a combined effect of both GPU and Lightcuts is provided in Table

5.6. Figure 5.6 shows the overall acceleration graphically.

Table 5.6

Overall Acceleration Testing Results

 Simple(1) Venus(1418) Galleon(4698)

Overall 9.941% 284.721% 476.524%

Figure 5.6 Overall Acceleration Chart

61

These overall data derive from the time cost of the CPU without Lightcuts

and the GPU with Lightcuts.

5.3. Summary

From the testing results analysis in last section, it is not difficult to make

some judgments on the performance acceleration effect of the GPU and

Lightcuts:

 The GPU is able to offer satisfactory acceleration for scene rendering for

relatively complex scenes, but not for a simple scene with only a few

geometries, due to the memory manipulation cost between CPU and

GPU.

 Lightcuts can only provide effective acceleration on complex scenes; for

relatively simple scenes, it even makes rendering slower because of its

Lightcuts tree traversal cost.

 With the GPU and Lightcuts combined, rendering speed-up ratio is almost

linear with scene complexity (geometry primitives‟ number).

62

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

6.1. Conclusions

Encouraging results have been produced by research in this thesis, as

demonstrated in Chapter 5. From these results, several conclusions about GPU

acceleration on Ray-tracing, and Lightcuts algorithm acceleration can be stated.

● Ray-Tracing parallelism using the GPU can enhance rendering

performance effectively for complex scenes.

The assumption in Chapter 2 has partially been proved by the solution

proposed in this thesis. Hardware parallelism handles the pixel

independence essence of Ray-Tracing and gives satisfactory results for

relatively complex scenes. However, the GPU acceleration will make

rendering simple scenes even worse.

● Lightcuts can further improve the rendering performance significantly for

complex scenes.

According to testing results in Chapter 5, Lightcuts can cut unnecessary

63

virtual point lights off from the second pass so that rendering is reduced

significantly. However, as with the GPU, Lightcuts has to maintain its light

tree at runtime, so this cost will make simple scene rendering even slower.

6.2. Future Work

Better performance cannot guarantee a perfect rendering engine. There

are some other important aspects for a good rendering engine those are not

emphasized or involved in this thesis. So there is still room for further

improvements.

 A proper CUDA kernel design is expected.

The current kernel function implementation suffers from Windows Driver

Watchdog mechanism. So the kernel function could be further splitted, so

its execution time on GPU could be shorter. Thus the GPU driver halting

problem could be alleviated.

 More global illumination effects.

Besides diffuse-diffuse illumination, there are many other more interesting

global illumination effects, such as color bleeding, participating media etc.

Such effects can make images more realistic and attracting. But they

require more computation efforts of course.

64

 More shading material effects, as metal, plastic etc.

In current research, only one shading model has been implemented: the

Phong shading model, which is considered too simple to represent

complex materials, such as metal, plastic, wood etc., which possess much

more complex lighting interactions with objects.

LIST OF REFERENCES

65

LIST OF REFERENCES

Akenine-Moller, T., & Haines, E. (2002). Real-time rendering. Natick, MA:

 A. K. Peters Press.

Cohen, M., & Wallace, J. (1993). Radiosity and realistic image synthesis

San Francisco, CA: Mogan Kaufmann Publishers, Inc.

Jenson, H. (1996). Global illumination using photon maps. Natick, MA:

 A. K. Peters Press

Keller, A. (1997). Instant Radiosity. Proceedings of SIGGRAPH 97, Computer

 Graphics Proceedings, Annual Conference Series, 49 – 56.

Kontkanen, J., & Laine, S. (2005) Ambient occlusion fields. Proceedings of

the ACM SIGGRAPH 2005 Symposium on Interactive 3D Graphics and

Games, ACM Press, 41 - 48.

Meyers, S. (2005). Effective C++ 3rd Edition. Indianapolis, IN: Addison-Wesley

 Professional Press.

Ryoo, S., Rodrigues, C., Baghsorkhi, S., Stone, S., Kirk, D., & Hwu, W. (2008).

Optimization Principles and Application Performance Evaluation of a

Multithreaded GPU Using CUDA. Proceedings of the 13th ACM SIGPLAN

Symposium on Principles and practice of parallel programming. ACM

Press, 73 – 82.

66

Segovia, B., Lehl, J.C., Mitanchey, R., & Peroche. (2006). Bidirectional instant

radiosity. Eurographics Symposium on Rendering, 389 – 398.

Shirley, P. (2005). Fundamentals of computer graphics. Natick, MA:

 A. K. Peters Press.

Shreiner, D., Woo, M., Neider, J., & Davis, T. (2007). OpenGL

programming guide. Indianapolis, IN: Addision-Wesley Professional

Press.

Turner, W. (1980). An improved illumination model for shaded display.

Communications of the ACM 23(6), 343-349.

Walter, B., Arbree, A., Bala, K., & Greenberg, D. (2006). Multidimensional

Lightcuts. ACM Transactions on Graphics - Proceedings of ACM

 SIGGRAPH 2006, 25(3), 1081 – 1088.

Walter, B., Fernandez, S., Arbree, A., Bala, K., Donikian, M., & Greenberg, D.

 (2005). Lightcuts: A scalable approach to illumination. . ACM

 Transactions on Graphics - Proceedings of ACM SIGGRAPH 2005,

 24(3), 1098 – 1107.

APPENDICES

67

Appendix A. Scene Description Files

The scenes are described in text format files, in which all information like

geometry positions, sizes, scales and lighting parameters are indicated.

Three testing scenes‟ description files are included here:

Simple Scene:

Cornell Box
VPL(0.0001/0.7/GPU:0.08-CPU:0.075) - LC(1*10^-6)
S BK{0.0, 0.0, 0.0}|
camera
C STRAT|PERS(10)|C{0, 0, 960}|V{0, 0, -1}|U{0, 1, 0}|
lights
L OMNI|POS{0, 100, 0}|DIR{0, 0, -1}|ATTEN(1)|S{1, 1, 1}|D{1, 1, 1}|A{1, 1, 1}|
Sphere
P SPH|FRKE{0, 1, 0.1, 0}|C{-80, -100, 70}R(60)|S{0.35, 0.35, 0.1}D{0.35, 0.35,
0.1}A{0.35, 0.35, 0.1}SH(20)|
P SPH|FRKE{0.0, 0.0, 0.7, 1}|C{100, -100, -40}R(60)|S{0.2, 0.2, 0.2}D{0.2, 0.2,
0.2}A{0.2, 0.2, 0.2}SH(20)|
Walls
Bottom
P SQU|FRKE{0.0, 0.0, 0.6, 1}|C{0, -200, 0}N{0, 1, 0}H{0, 0,
1}|W400:H400|S{0.14, 0.14, 0.14}D{0.14, 0.14, 0.14}A{0.0, 0.0, 0.0}SH(20)|
Top
P SQU|FRKE{0.0, 0.0, 0.6, 1}|C{0, 200, 0}N{0,-1, 0}H{0, 0,
1}|W400:H400|S{0.14, 0.14, 0.14}D{0.14, 0.14, 0.14}A{0.0, 0.0, 0.0}SH(20)|
Back
P SQU|FRKE{0.0, 0.0, 0.6, 1}|C{0, 0, -200}N{0, 0, 1}H{0, 1,
0}|W400:H400|S{0.14, 0.14, 0.14}D{0.14, 0.14, 0.14}A{0.0, 0.0, 0.0}SH(20)|
Left
P SQU|FRKE{0.0, 0.0, 0.6, 1}|C{-200, 0, 0}N{1, 0, 0}H{0, 1, 0}|W400:H400|S{0.0,
0.0, 0.0}D{0.88, 0.05, 0.05}A{0.0, 0.0, 0.0}SH(20)|
Right
P SQU|FRKE{0.0, 0.0, 0.6, 1}|C{200, 0, 0}N{-1, 0, 0}H{0, 1, 0}|W400:H400|S{0.0,
0.0, 0.0}D{0.05, 0.05, 0.95}A{0.0, 0.0, 0.0}SH(20)|

68

Venus Scene:

Cornell Box
VPL(0.00003/0.5/GPU:0.15-CPU:0.16) - VPL\LC(5*10^-7)
S BK{0.0, 0.0, 0.0}|
camera
C STRAT|PERS(10)|C{0, 0, 960}|V{0, 0, -1}|U{0, 1, 0}|
lights
L OMNI|POS{0, 50, 250}|DIR{0, 0, -1}|ATTEN(1)|S{1, 1, 1}|D{1, 1, 1}|A{1, 1, 1}|
venus : G:/RenderT/glm-data/venus.obj
O FRKE{0, 0.0, 0.9, 0.8}|PATH:venus.obj|SMTH(1)|TRAN{0, 0, 0}|SCAL{1.3, 1.3,
1.3}|ROT{0, 1, 0}:0|MAT(1)|S{0.2, 0.2, 0.2}D{0.2, 0.2, 0.2}A{0.2, 0.2, 0.2}SH(30)|
Walls
Bottom
P SQU|FRKE{0.0, 0.0, 0.6, 1}|C{0, -200, 0}N{0, 1, 0}H{0, 0,
1}|W400:H400|S{0.14, 0.14, 0.14}D{0.14, 0.14, 0.14}A{0.0, 0.0, 0.0}SH(20)|
Top
P SQU|FRKE{0.0, 0.0, 0.6, 1}|C{0, 200, 0}N{0,-1, 0}H{0, 0,
1}|W400:H400|S{0.14, 0.14, 0.14}D{0.14, 0.14, 0.14}A{0.0, 0.0, 0.0}SH(20)|
Back
P SQU|FRKE{0.0, 0.0, 0.6, 1}|C{0, 0, -200}N{0, 0, 1}H{0, 1,
0}|W400:H400|S{0.14, 0.14, 0.14}D{0.14, 0.14, 0.14}A{0.0, 0.0, 0.0}SH(20)|
Left
P SQU|FRKE{0.0, 0.0, 0.6, 1}|C{-200, 0, 0}N{1, 0, 0}H{0, 1, 0}|W400:H400|S{0.0,
0.0, 0.0}D{0.95, 0.05, 0.05}A{0.0, 0.0, 0.0}SH(20)|
Right
P SQU|FRKE{0.0, 0.0, 0.6, 1}|C{200, 0, 0}N{-1, 0, 0}H{0, 1, 0}|W400:H400|S{0.0,
0.0, 0.0}D{0.05, 0.05, 0.95}A{0.0, 0.0, 0.0}SH(20)|

Galleon Scene:

Cornell Box
VPL(0.000035/0.5/GPU:0.3 - VPL\LC(10^-7)
S BK{0.0, 0.0, 0.0}|
camera
C STRAT|PERS(10)|C{0, 0, 960}|V{0, 0, -1}|U{0, 1, 0}|
lights
L OMNI|POS{0, 50, 350}|DIR{0, 0, -1}|ATTEN(1)|S{1, 1, 1}|D{1, 1, 1}|A{1, 1, 1}|
venus
O FRKE{0.0, 0.0, 0.9, 0.9}|PATH:galleon.obj|SMTH(1)|TRAN{0, -80, 60}|SCAL{4,
4, 4}|ROT{0, 1, 0}:45|MAT(1)|S{0.1, 0.1, 0.05}D{0.1, 0.1, 0.05}A{0.1, 0.1,
0.05}SH(30)|
Walls
Bottom

69

P SQU|FRKE{0.0, 0.0, 0.6, 1}|C{0, -200, 0}N{0, 1, 0}H{0, 0,
1}|W400:H400|S{0.14, 0.14, 0.14}D{0.14, 0.14, 0.14}A{0.0, 0.0, 0.0}SH(20)|
Top
P SQU|FRKE{0.0, 0.0, 0.6, 1}|C{0, 200, 0}N{0,-1, 0}H{0, 0,
1}|W400:H400|S{0.14, 0.14, 0.14}D{0.14, 0.14, 0.14}A{0.0, 0.0, 0.0}SH(20)|
Back
P SQU|FRKE{0.0, 0.0, 0.6, 1}|C{0, 0, -200}N{0, 0, 1}H{0, 1,
0}|W400:H400|S{0.14, 0.14, 0.14}D{0.14, 0.14, 0.14}A{0.0, 0.0, 0.0}SH(20)|
Left
P SQU|FRKE{0.0, 0.0, 0.6, 1}|C{-200, 0, 0}N{1, 0, 0}H{0, 1, 0}|W400:H400|S{0.0,
0.0, 0.0}D{0.95, 0.05, 0.05}A{0.0, 0.0, 0.0}SH(20)|
Right
P SQU|FRKE{0.0, 0.0, 0.6, 1}|C{200, 0, 0}N{-1, 0, 0}H{0, 1, 0}|W400:H400|S{0.0,
0.0, 0.0}D{0.05, 0.95, 0.05}A{0.0, 0.0, 0.0}SH(20)|

70

Appendix B. Data Structures

In this section, the core data structures used in the system are listed in

detail, which are supposed to be references of Chapter 4.

Ray Struct:

struct Ray
{
 long id;

 vect3d start_point;
 vect3d direction_vec;
 vect3d color;

 float fDeltaX, fDeltaY;

bool bIsInObj;

 vect3d _hitPoint;
 vect3d _hitNorm;
};

Parent Light class:

class Light
{
public:
 float _fAttenuate;
 vect3d _ambientColor;
 vect3d _diffuseColor;
 vect3d _specularColor;
};

Sub-class of Light for directional point light:

class DirPointLight : public Light
{
public:
 vect3d _pos;
 vect3d _dir;
};

71

Sub-class of Light for directional light:

class DirLight : public Light
{
public:
 vect3d _dir;
};

Struct for lights on GPU:

struct LightGpu
{
 LightType eType; // Light type

 // common
 float _fAttenuate;

 vect3d_gpu _ambientColor;
 vect3d_gpu _diffuseColor;
 vect3d_gpu _specularColor;

 // DirPoint
 vect3d_gpu _dirp_pos;
 vect3d_gpu _dirp_dir;

 // Dir
 vect3d_gpu _dir_dir;
};

Struct for object material:

struct material
{
 vect3d specColor;
 vect3d diffColor;
 vect3d ambiColor;
 float fShininess;
};

Parent class for all objects:

72

class Object
{
public:
 unsigned _id;

material _mat;

protected:
 float _fReflectionRatio;
 float _fRefractionRatio;
 float _fRefractionK;
 float _fEmitRatio;
};

Sub-class of Object for triangles:

class Triangle : public Object
{
public:
 vect3d _vertices[3];
 vect3d _normal;
 vect3d _vnormal[3];

 bool _bSmooth;
 bool _bHasVNorm;
};

Sub-class of Object for sphere:

class Sphere : public Object
{
public:
 float _fRad;
 vect3d _ctr;
};

Sub-class of Object for square:

class Square : public Object
{
public:
 vect3d _vNormal; // Directions

 // Positions

73

 vect3d _vCenter;
 float _nWidth;
 float _nHeight;

 // For Calc.
 vect3d _v2HeightVec;
 vect3d _v2WidthVec;
};

GPU struct and the enum for objects:

enum GpuObjType {TRI_GPU, SQU_GPU, SPH_GPU,
NONE_GPU};

struct PrimGpuObj
{
 // common
 float _fReflectionRatio;
 float _fRefractionRatio;
 float _fRefractionK;
 float _fEmitRatio;
 material_gpu _mat;

 GpuObjType eType; // for GPU use
 int nId;

 // Triangle
 vect3d_gpu _vertices[3];
 vect3d_gpu _normal;
 vect3d_gpu _vnormal[3];
 bool _bSmooth;
 bool _bHasVNorm;

 // Sphere
 float _fRad;
 vect3d_gpu _ctr;

 // Square
 vect3d_gpu _vNormal;
 vect3d_gpu _vCenter;
 float _nWidth;
 float _nHeight;
 vect3d_gpu _v2HeightVec;
 vect3d_gpu _v2WidthVec;
};

74

Appendix C. Original Testing Data

In the testing analysis part, the average values are considered. Those

values derive from original testing data from three times running for each scene:

Figure C.1 Original Testing Results for Simple Scene

Figure C.2 Original Testing Results for Venus Scene

75

Figure C.3 Original Testing Results for Galleon Scene

	Purdue University
	Purdue e-Pubs
	4-25-2011

	GPU-Based Global Illumination Using Lightcuts
	Tong Zhang

