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GLOSSARY 

 Binary Space Partitioning: the technique used to speed up ray-object  

intersection computation in computer graphics by dividing objects in 

space into two parts recursively, so that objects in one half can be 

safely avoided if a ray does not intersect the bounding box of that 

half space. (Pharr, & Humphreys, 2010) 

 

 Global Illumination : a group of computer graphics algorithms those are  

intended to generate realistic lighting effects. The primary element 

is directly illumination. However, global illumination is usually about 

indirectly illumination, such as diffuse surface lighting, caustics, 

color bleeding, etc. (Moller, & Haines, 2002)  

 

 GPU : A hardware device primarily working on graphics data processing. 

It is supposed to accelerate graphical computing significantly. With 

its parallelism essence and its high performance, GPU is becoming 

pervasive in scientific computing. nVidia and AMD are recognized 

as the main GPU manufactures at present (Moller, & Haines, 2002)  

 

 Lightcuts: a method that is able to removed insignificant light sources, like  

ones too far-away, one too dim or ones nearly perpendicular to 

target points, from illumination evaluation process. It is claimed that 

Lightcuts is able to reduce Instant Radiosity (Kell, 1997) rendering 

complexity from linear to sub-linear. (Walter, 2005)



 x 

 Ray-Tracing : a computer graphics algorithm to generate direct  

Illumination by shooting a primary ray from camera and generate  

subsequent rays (by reflection and\or refraction) recursively. 

(Shirley et. al., 2005) 

 

 Radiosity : a computer graphics algorithm to generate indirect illumination  

by applying finite element method. Usually it emphasizes on diffuse 

lighting. (Moller, & Haines, 2002)  

 

 Rendering Equation: the mathematical representation (usually an integral  

equation) of physical light transport phenomena in the real world  

that is used in computer graphics. This equation indicates that the 

radiance leaving a point should be equal with the irradiance arriving 

at the same point. (Dutre, Bekaert, & Bala, 2006)  
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ABSTRACT 

Zhang, Tong. M.S., Purdue University, May 2011.  GPU-Based Global 
Illumination using Lightcuts.  Major Professor:  James Mohler. 

 

Global Illumination aims to generate high quality images. But due to its high 

requirements, it is usually quite slow. Research documented in this thesis was 

intended to offer a hardware and software combined acceleration solution to 

global illumination. The GPU (using CUDA) was the hardware part of the whole 

method that applied parallelism to increase performance; the “Lightcuts” 

algorithm proposed by Walter (2005) at SIGGRAPH 2005 acted as the software 

method. As the results demonstrated in this thesis, this combined method offers 

a satisfactory performance boost effect for relatively complex scenes. 
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CHAPTER 1. INTRODUCTION 

This chapter provides an overview of the research in this thesis. After 

introduction of research background, the research question is stated, followed by 

research scope, significance, assumptions, limitations and delimitations.  

1.1. Background 

 Global illumination is an active research area in computer graphics, and it 

is widely adopted in various areas of industries such as animation, movie 

making, gaming and CAD. Its primary goal is to generate as realistic images as 

possible. However global illumination requires a large amount of computation 

and it remains difficult to compute in real-time, so faster rendering speed is still 

one of the main objectives of research in global illumination. 

Several software and hardware solutions have been proposed recently. 

Lightcuts is a newly introduced algorithm for radiosity computation acceleration 

compared to traditional radiosity called “Instant Radiosity”. At the same time, the 

Graphics Processing Unit, abbreviated as GPU, is playing a more and more 

important role in the graphics area. The GPU is the hardware solution for parallel 

computation efficiency and numerous practical cases have proven that the GPU 

does a wonderful job in improving graphics computation performance. 
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However, currently the GPU has not been integrated into Lightcuts, so this 

thesis was a trial for this solution and the research was intended to reach a 

higher efficiency of photorealistic image rendering..  

1.2. Organization 

This research was intended to answer following questions, which consist 

of one primary question and several secondary questions. 

1.2.1. Primary Question 

        How much can Lightcuts, together with the GPU, speed up global 

illumination compared to the traditional Instant Radiosity rendering techniques? 

1.2.2. Secondary Questions 

1)  How much can Lightcuts speed up Instant Radiosity? 

 2)  How much can the use of the GPU speed up Lightcuts? 

1.3. Scope 

The thesis focused on global illumination technology and covered several 

core concepts and popular modern techniques; however it did not cover every 

aspect of global illumination. 

The concepts and knowledge that were covered include: 
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a)  Ray-tracing 

The whole architecture of the proposed project application was built on 

Ray-tracing because the diffuse lighting was simulated by putting point lights on 

diffuse surfaces with hit points. Thus, the traditional Ray-tracing framework was 

used. 

 

b)  Instant Radiosity 

This was the algorithm that the author was trying to improve. Instant 

Radiosity enables convincing effects of global illumination, especially diffuse 

lighting, by putting point lights on diffuse surface hit points. However there could 

be too many point lights. Its performance enhancement was one of the key parts 

of this thesis. 

 

c)  Lightcuts 

Lightcuts (Walter, 2005) addresses the main problem of Instant Radiosity 

directly. It is able to avoid unnecessary redundant use of point lights. It only 

chooses significant point lights for rendering one pixel. This algorithm was the 

key idea of the software method proposed in this research. 

 

d)  Another goal of author's thesis was to improve image quality using 

several modern techniques. The involved algorithms included:   

 

 



 

4 

 Photon Mapping: the author used it to render caustics from light reflection 

and refraction. 

Ambient Occlusion: it was used to generate object-object occlusion 

shadows so as to produce more realistic images. 

 

e)  Graphics Processing Unit 

The hardware aspect of performance optimization cannot be omitted 

nowadays. The Graphics Processing Unit is playing a more and more important 

role in graphics area. Ray-tracing is essentially a parallel procedure, which is the 

perfect situation into which the GPU fits. The GPU technique was the key method 

of the hardware solution in this thesis. 

 

f)  Several Basic Image Processing Skills 

Images computed using global illumination algorithms can be made more 

realistic by using some processing skills. For example, blooming accounts for the 

fact that the color of each pixel can impact other pixels, and tone mapping 

adjusts the colors of the image with different display devices. 

 

1.4. Significance 

Global illumination suffers from high requirement of computing time so it is 

really hard for the program to make it into real-time applications. Instant Radiosity 

simplifies the diffuse lighting quite a lot. It avoids the high Monte Carlo integration 
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methods cost. The introduction of Lightcuts improves the performance of Instant  

Radiosity significantly. 

 But no one has integrated GPU acceleration onto Lightcuts yet. Since 

Lightcuts is still a pixel-parallel algorithm, GPU integration can bring significant 

improvement to another level. 

1.5. Assumptions 

The following assumption was inherent to the pursuit of this study: 

 GPU accelerated computation would be significantly faster than CPU 

version implementation. In other words, the use of GPU needed to be at 

least 20% faster than the CPU implementation. The main argument was 

that pixels in generated images are independent with each other, in other 

words, the data is paralleled inherently. The GPU was the most suitable 

device to process paralleled data so it could compute different pixels at 

the same time and make image generation scalable. 

1.6. Delimitations 

The following delimitations were inherent to the pursuit of this study:  

 GPU: Graphics card products from other manufacturers such as AMD and 

Intel were not be considered in this thesis. 
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 Radiosity algorithm: There are also other kinds of radiosity algorithms 

using Monte Carlo integration or iterative matrix solutions. But they were 

not covered in the thesis. 

 Other global illumination algorithms: Many other available global 

illumination algorithms could also contribute to higher quality images, such 

as sub-surfaces algorithm, participating media algorithms etc. However 

they were not included. 

 Programming Tools: Microsoft Visual Studio was used as the development 

environment. Other compilers such as GCC were not involved. 

1.7. Limitations 

The following limitations were inherent to the pursuit of this study: 

 GPU: Only nVidia manufactured graphics cards were involved in the 

thesis. This was because CUDA was adopted as the basic programming 

tool for GPU and CUDA was only applicable to nVidia products. 

 Radiosity Algorithm: Instant Radiosity was the basic algorithm to be 

implemented. Another optimized algorithm over Instant Radiosity called 

Lightcuts was implemented also. 

 Programming Tools: CPU code was crafted using C++ because C++ was 

the best choice to implement a relatively large system; GPU code was 

implemented by CUDA. 
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1.8. Summary 

 This chapter offered an overview of the research, including the research 

question, research scope and significance. Also the limitations and delimitations 

of the research were introduced. 
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CHAPTER 2. LITERATURE REVIEW 

This chapter gives a general introduction to the recent research and 

industrial materials related to Global Illumination and C++, OpenGL and GPU. 

The literature provides the basic foundation and support to the research in this 

thesis. 

2.1. Ray-Tracing 

 As Witted (1980) mentioned, the development of global illumination 

started with several local illumination models at which time no global information 

had been considered yet. Other objects' illumination had not been involved yet, 

and this is why it was a local illumination model. At a later time, Blinn and Newell 

(1976) proposed a technique called 'environmental map' to simulate the 

illumination from other objects. However, it only partially solved the problem and 

was not a general solution for global illumination. Refractions were simulated by 

reverse ordering painting, just like the alpha blending in OpenGL. This was not 

the real simulation of refractions though. Shadows were calculated by checking 

the pixel visibility to light sources and viewer. Instead of above mocking 

techniques, Witted (1980) improved the lighting model by simulating the real light 

travelling way in the real world and formed a recursive tree structure for the light 
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paths. The radiance of one pixel consists of two parts: reflected radiance and 

transmitted radiance, which is to say that two lights make a resulting light - one 

light contains a reflected factor and a transmitted factor. This is the typical case 

in the real world. Then the two child lights can be traced in the same way and a 

recursive light tree can be obtained. Please note that due to the reflection and 

transmission of lights, this tree would involve other objects in the scene, and this 

leads to global illumination. This is the most seminal contribution of this paper. 

Another benefit of this model was “effective visible surface checking”. The 

surfaces that were not visible to the viewer may be visible through the reflections 

and, what's more, they were discovered as needed, which was more efficient. 

This model also facilitates anti-aliasing. Several other rays could be shot along 

the recursive tree to get multiple samplings. Witted (1980) brought a 

breakthrough for the light tracing model by introducing the real world light 

traveling style. This work improved the image quality significantly and made 

many of the following seminal techniques possible.  

 Ray tracing could be the starting point for all following advanced 

techniques. Shirley (2005) gives a clear and instructive explanation on Ray-

tracing. According to this literature, Ray-tracing simulated the light traveling in the 

real world and it traces each viewing ray from the viewers‟ eyes along its 

reflection, refraction, transmission directions. Ray-tracing started by computing 

viewing rays and intersections between a ray and objects. Intersection 

calculation was always the performance bottleneck. It required intensive 

geometrical computation. The next effect to compute was shadowing. It could be 
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done by checking the visibility of light sources. Refraction could be done by 

tracing the ray using Snell's Law. The most critical issue may be the acceleration 

for intersections. Bounding box and space participation were the most popular 

ones that are widely used. Bounding box was the simple representative for one 

unit of geometry that could simplify the intersection checking; space participation 

splitted the scene into several smaller parts to reduce the computing cost. Other 

aspects such as anti-aliasing, soft shadows, depth of field, glossy reflection and 

motion blur were also necessary for generating higher quality images. They all 

required more than one viewing ray per pixel for shading computing. Figure 2.1 

demonstrates a typical Ray tracing scene. 

 

Figure 2.1  A Ray-Tracing Scene 
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2.2. Radiosity 

 Radiosity is another major algorithm for global illumination rendering. One 

introductory book is Cohen and Wallace (1993). This book followed a traditional 

approach of radiosity computation. Discretizing the radiosity equation was the 

first step for implementation radiosity. This was the theoretical base for geometry 

meshing and form factor computation. Form factor was the most important 

variable that described how much impact each pair of triangles made to each 

other. It involved the geometrical relationships such as distance and illumination 

values. There was a form factor matrix, which is the typical linear system. The 

possible solutions included traditional iterative numerical algorithms and parallel 

computation. Geometry meshing was the prerequisite to compute form factors. 

Besides the regular meshing of geometry, adaptive meshing was a more 

effective algorithm that could generate more meshes on more detailed areas. 

 Moller and Haines (2002) has a chapter that offers an informative, 

comprehensive overview of global illumination. This chapter contained both the 

theoretical and practical aspects and made a perfect bridging and merging 

between the two. It started with the basic radiometry knowledge with modern 

optics and photics as the theoretical base. Briefly speaking, Ray-tracing and 

Radiosity were both derived from concepts and procedures described in physics. 

Some advanced topics like tone mapping took these as basics. BRDF was a 

large topic that was also briefed. BRDF depicts the possibility that an influx 

photon leaves at one specific direction. This was crucial to the realism of the 

object materials. BRDF was a bidirectional and reversible mathematical 
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abstraction for light reflection, but it doesn't cover the particle characteristics of 

lights. The traditional BRDF was isotropic and several anisotropic BRDF models 

have been proposed in recent years too. Two types of BRDF exist: one from 

physical theories and one from experimental data. The application of BRDF could 

be categorized into factorization and environment map filtering. Factorization 

takes the BRDF calculation into the influx angle and outflux angle and the BRDF 

value was calculated by these two components; environment map filtering took 

an environment texture and its corresponding filtering map and combines the two 

to  simulate the BRDF effect. Vertex shader, Fragment shader and shader 

language are the practical aspects of the topic. Vertex shader resides at the GPU 

as one of the nodes of the graphics pipeline - the vertex processing part. It used 

to be the fixed procedure in GPU and it was now programmable which allows 

geometry morphing functions to be customized. Fragment shader also resided at 

the GPU as a later stage of the graphics pipeline, and it focused on manipulating 

the pixel shading. Shading language was the tool to program the above two 

types of shaders. Several interesting effects were covered also. Motion blur was 

the delayed effect by fast moving objects and it could be implemented using an 

accumulation buffer. Depth of field was the simulation of the focal effect of a lens. 

The reflection part included flat reflection, glossy effect and curve reflection. 

Refraction was based on Snell‟s law. Shadow could be obtained by using 

shadow volume and shadow map. The former one judged whether an object was 

in the shadow by checking whether it is in the shadow volume or not; the latter  
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one applies the Z-buffer generated by the light source as the shadowing 

information.  

  Dutré, Bala, and Bekaert (2006) gives a relatively thorough elaboration on 

global illumination algorithms in a theoretical view. This book offered sufficient 

mathematical analysis on the various algorithms and offers a thorough 

introduction to the current research on global illumination. The most important 

mathematical tool 'rendering equation' played a key role in global illumination, 

which was the mathematical tool for almost all relevant algorithms. Almost every 

algorithm in this book was a variation of this equation. What is noticeable is that 

this equation made the assumption that light contains only one wave-length and 

it hit and left the surface at the same point. Instead of an intensive computation 

on linear systems, Monte Carlo methods had been introduced as an evolutionary 

solution. Monte Carlo methods were based on probability theories. The initial 

Monte Carlo methods were used to sample values on continuous signals. This 

was the typical case of sampling in computer graphics because of the inherent 

characteristic of discretization for computers. But original sampling method was 

not always optimal. So importance sampling and stratified sampling were 

introduced. The former one took more sampling on important data sets and the 

latter one conducts an adaptive treatment for a non-randomly distributed data 

sets. Path tracing is introduced first. Original Ray-tracing was presented. Monte 

Carlo integration into ray-tracing lead to the soft shadowing. A similar technique, 

called environment map, applied the basic process of ray-tracing to achieve this 

effect. With probability theory, indirect illumination could be described as the 
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possibility that a light source illuminates the sampled point. In contrast to ray-

tracing, light tracing was another possible solution for rendering. It was useful for 

caustics calculations. Stochastic Radiosity was a great evolution to original 

radiosity techniques. It replaced the massive form factor calculation with much 

simpler probability estimations. Now the light energy needed to be transferred 

iteratively according to the rendering equation. Another way was to randomly 

walk among the sampled points to estimate the possibilities. Photon density was 

also one possible solution for radiosity, in which the hit point density was 

recorded and interpolation was used to render the illumination. 

The state of the art research combined several primary algorithms 

together to form hybrid algorithms. For example, final gathering used another 

pass to refine the unnecessarily sampled areas again. Multi-pass methods and 

bidirectional path tracing used more than one tracing style to achieve better 

effects. Photon-mapping also took two steps: the first one put the photon 

sampling results and the second phase rendered the illumination by the results. 

Instant Radiosity adopted point lights to simulate indirect illumination, and 

Lightcuts was used to make an optimized solution for instant Radiosity.  

2.2.1. Instant Radiosity 

In the above, many modern radiosity solutions have been explained. Most 

of them were complex. For example, the original Radiosity required complex 

object meshing and a form factor matrix solution using iterative matrix solutions. 

Other Radiosity algorithms adopted Monte-Carlo integration as the algorithm 
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basis. This suffered from relatively slow execution. Instant Radiosity was a very 

simple but an effective algorithm that simulated diffuse lighting by adding many 

point lights Kell (1997). This transformed indirect illumination into direct 

illumination. This is robust, stable and efficient. An important issue was how to 

sample point lights from traditional area light sources. The Monte Carlo method 

still served well here. Figure 2.2 shows a scene rendered using Instant Radiosity. 

 

 Figure 2.2  A scene rendered using Instant Radiosity 

 

As mentioned above, point lights were mostly formed by the hit points 

from the rays of the light sources. In other words, it was the result from the light 

tracing procedure. It suffered from the low efficiency of the light rays projections - 

some light rays may not be visible at all. To avoid unnecessary light ray 
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projection, this paper proposed a bidirectional tracing procedure. It was a simple 

and direct process: camera rays were emitted into the scene and record the hit 

points. These points were visible to the observer and they deserved the light 

tracing. The next step was to emit light rays to the scene, at the same time 

whether the hit points were within the area that was visibly evaluated in the first 

step is check. If yes, put a light point there. The results showed that for the less-

occluded scenes, the improvement was quite obvious; however for the scenes 

that were heavily occluded, the first step would be wasteful. 

2.3. Lightcuts 

According to Walter, Fernandez, Arbree, Bala, Donikian and Greenberg 

(2005), Lightcuts was directly derived from Instant Radiosity. From Instant 

Radiosity, point light sources could be obtained. And later when evaluating 

indirect lights for each pixel, each point light should be considered. However, not 

every point light was useful. For some point lights, how much they contributed 

could even be omitted; another case was that several point lights were too similar 

so they contributed the same amount. For both the cases, there was space to 

make further simplification. This paper offered an efficient method for point light 

simplification. Before conducting simplification, all the light sources needed to be 

organized in some way and then evaluated. The metrics used in this paper 

involved the light type, geometry, and materials. With the mathematical tool 

provided, a final quantity for several lights could be retrieved. With the same 

metrics, several lights could be represented by a single point light - and it served 
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as the parent node of these lights. Finally, a light tree was formed. When 

rendering the image, for each pixel it is necessary to first check whether some 

inter node in the tree is possible so to avoid multiple light evaluation. If so, it can 

be used. Over all the pixels, the performance improvement was quite significant. 

One important detail about simplification was that accuracy cannot be lost too 

much. This was achieved when constructing the tree. For each simplification, 

only 2% difference was permitted. However this 2% error cannot be accumulated 

because not all pixels suffered 2% error. Most cases indicated less than 2% error 

appeared in the final image. So the image quality was almost preserved. 

According to Walter, Arbree, Bala and Greenberg (2006), not only point 

Lightcuts were organized as a tree, but the gather points also had their 

corresponding tree. When each pixel was evaluated, two trees formed a product 

graph and all cuts were on this product graph. Also the time instance was 

involved in this model to support motion blur. With the gather point tree cuts 

depth of field effect could be provided. The same error analysis as Fernandez, 

Arbree, Bala, Donikian and Greenberg (2005) was conducted so this method had 

the same image quality approximation with the original Lightcuts. 

2.4. Other Global Illumination Algorithms 

2.4.1. Caustics and Photon-Mapping 

Caustics was one important lighting effect for transparent objects after 

direct illumination Jenson (1996). It was very hard to render using traditional ray-
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tracing, because in caustics each pixel shading value was accumulated from 

many light sources after refraction so it required a large amount of tracing rays. 

However it was quite slow and unsatisfactory results had been produced.  

 

 

Figure 2.3  Caustics rendering using Photon-mapping   

 

Figure 2.3 is a scene with caustics enabled. Caustics generation was 

inherently a light tracing process. Another piece of information about how light 

was accumulated for final rendering was required now. Discretized photons were 

projected on the plane to trace this information. Next, kernel functions were 

applied to reconstruct the shading values. Two passes were necessary in this 

procedure. In the first pass, light sources emitted many light rays that hit on the 
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objects and the planes in the scene - directly or indirectly. For each hit point, a 

'photon' was recorded on this point. After this pass, a photon set was formed. In 

the second pass, the author gave two usages. First was for general use. In this 

case, not only caustics was considered. With these photon densities the 

illumination of some area can be calculated. This gave important information 

about shadowing. Thus the shadow ray number could be reduced. The second 

case was for caustics computation. In this case, some kernel functions 

reconstructed the photon illuminations by interpolation so to get continuous 

caustics. 

Photon-mapping is actually another form of traditional Ray-tracing, without 

any global illumination computation involved. The only difference between 

Photon-mapping and Ray-tracing is that Photon-mapping shoots rays from light 

sources.  

2.4.2. Ambient Occlusion 

Ambient occlusion is one newly proposed image quality refinement 

method. It emphasized the ambient light aspect: the occlusions among the 

geometries had an impact on the ambient light illumination (Kontkanen & Laine, 

2005). It was darker in the areas that were occluded heavily. This idea can bring 

more realistic illumination effects. The initial ambient occlusion emphasized self-

occlusion effects while no other objects were considered. This literature filled this 

gap. Its basic idea was as follows: When each pixel was evaluated, a spherical 

cap was captured with the pixel's normal vector as the axis. This was the normal 
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case for how a point in real world ambient light was absorbed. To sample the 

occluding factor over this sphere, discretizing the sphere into many sampling 

squares and sampling an occluding value of this square - 0 for occluded and 1 

for not occluded are required. Lastly all these values together were evaluated to 

get an occluding value. Other objects in the scene were used to check the 

intersections. Figure 2.4 shows that this method can improve realism 

significantly. With this algorithm, shadows from ambient light simulated the 

situations in the real world. However this algorithm required extra preprocessing 

before rendering, but the performance in run-time was quite promising. 

 

Figure 2.4  An Ambient Occlusion Scene 

2.5. Implementation: C++, OpenGL and GPU 

The above mentioned techniques mostly focus on the theoretical aspects. 

Implementation also matters a lot and in this phase many possible effective 

improvements can be applied.  
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2.5.1. C++ 

For instance, a proper application of C++ and a good object-oriented 

design of the rendering system can improve the extensibility and performance 

greatly, and can also bring the benefit of easiness of debugging. Indeed, C++ 

and design patterns took key roles in engineering practices. Nowadays graphics 

hardware cannot be neglected. Proper manipulation of the graphics processing 

unit can significantly improve the performance. This was critical because global 

illumination was acknowledged as an off-line process instead of a real-time 

interactive process. However, GPU was suitable for parallel algorithms. Luckily 

the key algorithms were pixel based so it was inherently paralleled.  

A rendering engine was a relatively large system, so a lot of engineering 

aspects needed to be considered, especially for C++ - the API that was adopted 

as the basic implementation tool. C++ was a powerful but tough language. It was 

suitable for large systems but special care should be taken in many aspects 

especially details. Otherwise, the developers would go crazy easily. A very good 

book for guiding C++ users on how to use C++ properly is Meyers (2005). It 

provided many useful or even critical suggestions. It covered basic usage such 

as constructor, destructor, new and delete operators, exceptions, etc., and 

design views such as inheritance rules, smart pointers, etc. Constructor and 

destructor was a big topic that brings problems sometimes. The C++ compiler 

generated default operators in some cases and it had to be realized; for 

destructors, in base classes, 'virtual' keyword is necessary or the resource may 

leak in the child classes. What's more important, no exception throwing was 
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allowed in destructors, or the whole system was not exception safe. Resource 

management included smart pointers, which were a very useful skill to manage 

resources. Smart pointers were the classes that could handle resource allocation 

and deallocation automatically and required no extra manual work for the 

programmers. Several types of these were: scope pointer, shared pointer, 

reference pointer, etc. Proper manipulations on them can improve the stability 

and design elegance of the system significantly. Several design issues were also 

covered. Class design had to comply with one of the basic OOD rules: 

encapsulation. It meant that no private members could be exposed outside of the 

class. Another important guideline was: don't return objects directly in functions 

because it would invoke costly object copying. And maybe the most important 

consideration is that the less dependence the better. Dependence was probably 

the first culprit that brings most of the problems. Dependence meant complexity 

and hardness of debugging. A good system design was to make everything as 

simple as possible, instead of the contrary. Also, a more advanced topic, 'generic 

programming', was introduced. In C++, generic programming took templates as 

the basic tool, which contained the trickiest skills in C++, such as the technique 

called 'traits'. It used a C++ template specialization to introduce runtime 

distinctions. Meta-programming mixed macro and template together and it was 

probably the peak of the C++ usage.  With this book, a relatively stable, 

extensive and efficient C++ rendering system was possible. It was known that 

most part of the development time was spent in debugging.  

 



 

23 

2.5.2. OpenGL 

The graphics API used is OpenGL. OpenGL is now the industrial 

standard. It is efficient and versatile. The first book that every OpenGL 

programmer needs to refer to Shreiner, Woo, Neider, and Davis (2007). This 

book covered almost every aspect of OpenGL. First the pipeline of OpenGL was 

introduced. This was the key for the whole of OpenGL. The first stage was 

geometry related processing nodes such as call lists, evaluators and the vertex 

shader. They were all about the basic geometrical computations.  

The next stage was rasterization. This was the process that parsed the 

former geometrical objects into pixels to meet the inherent discretization of 

computers. It cost the most CPU cycles among all the phases in the pipeline. 

After the pixels were done, textures and other pixel operations such as fragment 

shaders could be applied.  

Lastly, a pixel value was transferred to the frame buffer. The geometry 

primitives API was used to put the geometrical information into the OpenGL 

pipeline for rendering; viewing the perspective setup API sets camera 

parameters. These two parts were basic steps when developing graphics 

applications, while for global illumination applications an individual mechanism 

was crafted from scratch. The color API and the lighting API were used for 

shading functions. They determined the final shading values. Alpha-blending, 

anti-aliasing, fogging and texturing, were implemented individually. Basically 

speaking, OpenGL was mainly for interactive applications. Most critical 

processing steps were inherent in this API and the programmer did not have too 
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much freedom to customize them. For example, in the anti-aliasing part, some 

new sampling strategies were better, but they cannot be integrated into the 

existing OpenGL pipelines; another example was viewing (camera) setup, there 

was no 'depth of field' in OpenGL.  

2.5.3. GPU 

With careful observation it was clear that pixel-based global illumination 

algorithm was paralleled. Unlike original patch-based Radiosity, Instant Radiosity 

enabled individual pixel based calculations. This inherent characteristic enabled 

us to apply the GPU to rendering algorithms to achieve a faster execution. In 

other words, the GPU was an unavoidable topic nowadays in graphics, in 

interactive graphics applications such as games, and in high computation density 

image synthesis field. The most popular GPU and its programming interface was 

from nVidia. So CUDA was the tool that was to be used in our project. The key 

issue about this was how to use the GPU in the right way to maximize the boost 

by GPU. Ryoo, Rodrigues, Baghsorkhi, Stone, Kirk and Hwu (2008) was a good 

paper on how to use GPU in the right way. It started with the detailed explanation 

of GPU architecture because the first step is to understand how the GPU works. 

The GPU consisted of many paralleled stream processors that represented one 

thread; eight stream processors form a stream multi-processor and many stream 

multi-processors formed a processing grid. The numbers varied among the 

different versions of GPU. There was a global memory on a GPU chip that can 

be accessed by all threads; one shared memory in each stream multi-processor 
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that was visible to all its eight stream processors and it was much faster than the 

global memory. Basically speaking, the GPU was a data-paralleled processing 

device, and special care needed to be taken with the thread-memory accessing 

model that is critical to the GPU performance.  

There were three mentioned methods for CUDA performance tuning. The 

first one was local memory storage. As mentioned above, global memory was 

much slower than the shared memory in each stream multi-processor. Shared 

memory could be used as a cache for eight threads in the same stream multi-

processor. According to the paper, this could improve the performance by 4.5 

times. The second method was loop unrolling. This didn‟t show a significant 

performance improvement in the paper but it did have some positive effects in 

some cases. The last method was more strategic. It hid the memory accessing 

time by allocating another cluster of threads on the processors. For some 

memory access intensive applications this could improve the performance a lot. 

Of course there were other ways to improve CUDA efficiency. To make the best 

of our application performance, how our application works needs to be 

understood well- is it data parallel or instruction parallel? If it is data parallel, are 

there many memory accessing actions? Are they reading or writing? After that, 

with a good understanding of the GPU working model, a proper way to speed up 

the code can be found.  
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2.6. Summary 

 Several important sources relevant to the author‟s research have been 

briefed here. A series of global illumination techniques from Ray-tracing to 

Radiosity and finally to Lightcuts, together with some other popular algorithms 

such as Photon Mapping and Ambient Occlusion, are all covered. The 

corresponding implementation tools such as C++, OpenGL and CUDA are also 

mentioned. These papers and books offer the basic knowledge and also inspire 

the author with the research idea in the thesis. 
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CHAPTER 3. METHODOLOGY 

This chapter provides the framework of the research methodology. The 

process that the research is introduced here. 

3.1. Hypothesis 

H0: The GPU cannot accelerate global illumination significantly enough. 

Ha: The GPU can accelerate global illumination significantly enough. 

3.2. Sampling and Sampling Approach 

Since performance is the key concern of this research, sampling was 

focused on performance, including: CPU rendering time cost, GPU rendering 

time cost and the breakdown of the rendering time, as initialization time cost and 

intersection time cost. 

The sample approach is to use CPU cycle count as the basic measuring 

basis to check the execution time of the rendering time cost of both CPU version 

implementation and GPU version. By obtaining CPU cycle counts of the time 

when rendering begins and ends, the difference of two values can be adopted as 

the benchmark for further analysis and judgment of the results of the research. 
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3.3. Variables and Unit of Measurement 

The variables to be measured are of course the measurement of 

rendering performance - rendering time cost, in seconds, with two or three as the 

decimal places of precision. However, the initial measure variables - CPU cycle 

marks - need to be transformed into seconds. 

3.4. Assessment Instruments 

There are two required assessment instruments: 

a) CPU: Intel or AMD CPUs can be adopted in the research, as long as it 

remains consistent. 

b) GPU: Because CUDA is the choice as the implementation tool, only 

GPUs from nVidia can be considered - CUDA is the product from nVidia and it is 

not the industrial standard yet. 

There are also some required infrastructure elements: 

a) A complete computer work station. 

b) A data analysis software package. Microsoft Excel is a good choice. 

3.5. Implementation 

The core algorithm to implement is Instant Radiosity and its enhancement 

called Lightcuts. Instant Radiosity achieves global illumination by putting point 

lights on diffuse surfaces followed by another pass of traditional ray-tracing 

procedure. Lightcuts is a newly proposed improvement on Instant Radiosity that 
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assembles all the point lights and computes one representative point light for a 

bunch of similar point lights, which reduces the light computation amount in 

rendering. 

The application was implemented using C++ and CUDA. C++ is a very 

good choice for crafting a relatively large system. CUDA is the language the 

author chose as the tool to program GPU. CUDA is a C language extension that 

is easy to start with and enables programmers to control GPUs directly. 

3.6. Procedure 

The basic procedure of the algorithms is a two-pass procedure. The first 

pass is basically a traditional ray-tracing that computes specular colors, while the 

difference is that the point lights that represent diffuse reflections were put on the 

ray hit points on diffuse surfaces. 

The second pass is still a traditional ray-tracing procedure but this pass 

will only consider the diffuse point lights that have been added in the first pass. 

The computed colors were directly integrated into the final results. The Lightcuts 

algorithm (Walter, 2005) goes in this pass. Non-significant virtual point lights to 

one hit point were skipped. 

The procedure on CPU is a sequential style. Each pixel is computed after 

one pixel and it can only start the computation after the last pixel has finished its 

calculation. But the GPU can handle many pixels at the same time. So only one 

pixel‟s time cost is required for many pixels. In the author‟s implementation, one 

row of pixels (about 512) was processed at the same time on GPU. 
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The testing scenes consisted of several versions of the Cornell Box, which 

is considered as a standard scene for testing global illumination algorithms. The 

Cornell Box scene provides physically-exact bases for pixel-wise algorithm 

testing, so they can serve as the ideal testing benchmarks for the GPU version 

algorithms of author‟s work. 

3.7. Summary 

 The methodology of research in the thesis has been introduced in this 

chapter. Important factors such as sampling, variables to sample, instruments, 

procedure and implementation are stated in detail. 
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CHAPTER 4. METHOD OF IMPLEMENTATION 

This chapter covers the necessary implementation techniques used for 

crafting this research application, including data structures, general workflow, 

algorithms and their parallelization on GPU using CUDA. The algorithm 

parallelization is the emphasis because it is the key to the performance 

enhancement. The traditional Ray-Tracing and original Lightcuts algorithm in 

Walter (2006) is elaborated in detail as well as how they are paralleled using 

CUDA.   

4.1. Workflow  

As mentioned in Chapter 3, it is a two-pass procedure of rendering. The 

first pass is a typical Ray-Tracing, and the only difference is that Virtual Point 

Lights were put in the target 3D scene on the hit points that are shiny enough, on 

diffuse surfaces of the objects. However they will not serve as lights sources in 

the first pass, because they are supposed to contribute to diffuse illumination 

only. The second pass will take the Virtual Point Lights added in the first pass as 

light sources, and the same Ray-Tracing process will take place to compute 

diffuse-diffuse illumination, which is the essence of global illumination. 
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In second pass, a large amount of light sources (the virtual point light 

sources) usually cause expensive computations on illumination evaluation of a 

single hit point - however some of the virtual point light sources do not have 

significant contribution. For example, the lights that don‟t point to the hit point, 

and the lights those are too far away or too dim. The basic idea of the Lightcuts 

algorithm proposed in Walter (2006) is the very solution for this situation. Based 

on its light contribution metric method, the unnecessary virtual point lights can be 

skipped in color evaluation in the second pass, hence the performance of second 

pass can be enhanced accordingly. According to Walter (2006), it can reduce the 

complexity of illumination computation from linear to sub-linear. Figure 4.1 

depicts the workflow of the whole system. 

 

 

Figure 4.1  Workflow Chart 
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4.2. Data Structures 

This section introduces the key data structures used in the research 

application. The CPU implementation takes Object-Oriented Design as the basic 

design strategy, however it is not possible for GPU CUDA code, which doesn‟t 

support Object-Oriented language features, so all data members in the class 

hierarchy should be put in a struct together.  

There are many data structures in the system, while only the most 

important ones are covered in this section, such as Ray, Light and geometry. 

4.2.1. Ray 

The basic information to take in a Ray is its id, starting position coordinate, 

direction vector, color, hit point coordinate (if applicable) and some other data 

that may facilitate the engine to process, such as offset values used in 

randomized sampler and a boolean mark indicating whether it is inside an object 

or not.There is no inheritance or polymorphism in this struct, so the GPU CUDA 

code can share the same struct declaration. Appendix B provides the source 

code for this data structure. 

4.2.2. Light 

On the CPU, lights should follow an inherited class hierarchy so as to 

represent different types of light sources. First, in the parent class of Light, it  
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should contain some common data such as attenuation, ambient color, diffuse 

color and specular color. 

The first concrete light source type is directional point light, from which 

light rays were emitted from a single point in 3D space along the indicated 

direction, but they also spread within the hemi-spherical space with a cosine 

attenuation factor so the extra data needed are only its position and its direction. 

The second supported light type is directional light source, which only 

requires extra information of its direction. 

As mentioned earlier, CUDA does not support inheritance and 

polymorphism, so the only solution  is to combine all information in all previous 

classes together, and put an enum variable to mark its light type. 

The initial parameters for rendering were set up through regular CPU 

C\C++ code, when these parameters are to be transferred from CPU to GPU, the 

data from different sub-classes, as DirPointLight and DirLight here, were copied 

to its corresponding fields. Appendix B provides the source code for this data 

structure. 

4.2.3. Geometry primitives 

Three types of primitives are supported: sphere, square and triangle. They 

are represented on the CPU as belows. The parent class contains common data 

that all geometry primitives require, in which material is a common struct 

containing the object‟s light characteristics: id, reflection factor, refraction factor, 

refraction constant, emission factor and material reference. In the material 
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section, specular, diffuse and ambient color should be recorded, and also the 

shininess factor. 

A Triangle needs its three vertice‟s 3D coordinates, surface normal, and 

vertice normals if applicable. Two boolean variables mark whether there are 

vertice normals and whether illumination should be smoothed along the surface. 

Only two extra members are needed for a Sphere: center coordinate and 

its radius, but it is a little more complex for a square. Its center point coordinate, 

width and height, surface normal, and its two direction vectors along the edges 

should also be included to indicate square‟s direction. 

The same strategy could be adopted again for geometry primitives‟ 

representation on GPU, all data members were put in the same GPU struct 

together, and the same as light class hierarchy, different data members were 

copied to its corresponding fields in the GPU geometry struct. Appendix B 

provides the source code for this data structure. 

4.3. System Architecture 

The whole application consists of several components and each of them 

addresses one aspect of the rendering process. Different parts as geometry, 

scene setup (camera, objects coordinates, etc.), rendering engine, anti-aliasing, 

binary space partitioning, etc. could be organized and understood from input to 

output,  shown in Figure 4.2. 
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Figure 4.2  System Architecture Chart 

As shown in Figure 4.2, several input elements include camera setting, 

light source setup and geometry data (geometry can be input from external files 

using Obj Loader). These should be the beginning of the whole engine. After all 

information mentioned are ready, the Sampler will generate rays according to the 

camera setting and provide them to scene manager. Then the scene manager 

will take the geometry, light sources and rays to the Tracer (CPU or GPU version) 

and drive it to execute the rendering. During rendering, the Tracer applies BxDF 

(as the color evaluation core), BSP Tree and Lightcuts component to do a two-

pass Ray-Tracing procedure, on CPU or GPU, as indicated from user. At last, the 

Integrator will take the computed colors from the Tracer and compose the final 

pixel colors. Anti-Aliasing also happens in the Integrator. 
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4.4. Ray-Tracing and its Parallelization 

Ray-Tracing is the basic framework of pixel illumination evaluation. Due to 

the Independence essence of rays, the parallelization could be applied upon the 

computation of these rays. 

After all data mentioned in section 4.2 has been transferred to GPU, they 

become read-only global information, visible to all rays shot by the rendering 

engine. According to Shirley (2005), one ray goes along the shooting direction 

until it hits a point on an object, after it collects its current evaluated color, 

another two individual rays for reflection and refraction to go through the same 

ray process. However one or both of them may not be shot considering the 

material of the hit object. At last, a recursive binary tree was formed with one ray 

as its node element Turner (1980). Then a pixel‟s color can be evaluated by 

summing up all rays in the tree from bottom to top, weighted by corresponding 

reflection and refraction ratio in the ray. 

Ray-Object hit testing is usually the most time-consuming part of a Ray-

tracer. According to Shirley (2005), the most common way to accelerate this 

computation is using Binary Space Partitioning, which partitions the whole space 

into two parts recursively so that a ray can search for its hit point faster by 

avoiding all objects in the half of space which the ray does not intersects. It 

results in a complexity of lg(n), instead of the original linear complexity. 
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4.4.1. Ray-Tracing Recursion Iteratization 

C\C++ on the CPU supports function recursion intrinsically, so there is no 

extra difficulty to implement ray-tracing. However, nVidia‟s GPU programming 

language extension CUDA doesn‟t support function recursion, for the sake of 

performance - because popping and pushing a stack would bring a lot of runtime 

cost. 

The basic strategy is to replace recursion by iteration so it is no longer 

necessary to use stacks. Each iteration handles one layer of the ray binary tree, 

which are produced by last iteration as reflection and refraction rays. The depth 

of a ray binary tree is the maximum ray-tracing depth, and the total ray number is 

2n-1, in which n is the depth number. 

As mentioned before, the final pixel color is a weighted illumination sum of 

all rays in the tree, so the whole tree should be stored, and the pixel color can be 

accumulated iteratively from rays in the bottom layer and upward to the original 

single ray (the root ray). This is accomplished on GPU under CPU‟s control. 

Array is the best representation of a ray tree on GPU, in which rays are 

order from upper layer to bottom layer and from left to right for children in the 

same layer. Figure 4.3 shows a concrete example: 
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Figure 4.3  A typical ray-tracing scenario 

 

As Figure 4.3 shows, the root ray (ray0) produces two rays, ray1 and ray2 

(ray1 for reflection ray and ray2 for refraction ray), then ray2 produces ray3 and 

ray4, ray2 generates ray5 only, assuming ray2‟s hit object cannot refract lights.  

 

Figure 4.4 depicts the procedure of a pixel color computation by iterative 

recursion along the ray binary tree. In which ray3 and ray4 contributes to ray1, 

ray5 contributes to ray2, then ray1 and ray2 contributes to the root ray, at last the 

final illumination can be retrieved from ray0. As shown, this synthesis procedure 

also goes layer by layer, from bottom to top. 
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Figure 4.4  A binary ray tree and its synthesis procedure 

 

Figure 4.5 shows the tree representation in GPU memory as an array, and 

rays are ordered in the way mentioned above.  

 

 

Figure 4.5  Array representation of a ray binary tree 

4.4.2. Binary Space Partitioning Recursion Iterization 

Consider this scenario: there are 10000 triangles, and a ray hits only one 

of them, so traversing all of them is not a proper solution. What‟s more, ray object 

intersection computation is usually the most time-consuming part in a ray-tracing 

application. The regular solution is to divide a space into two parts recursively, if 

a ray hits only one of the two parts, then all the objects in the missing part can be 

avoided from intersection computation Shirley (2005). 
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The data structure for recording this partitioning information is called BSP 

tree, which can be built recursively, similar to the procedure described in sub-

section 4.3.1. It takes a bounding box that holds the whole space as the starting 

point, and then a bounding box was divided into two sub-boxes, with each of 

them containing nearly same number of geometry primitives. Then the same 

process was applied on these two sub-boxes, recursively, until there is small 

enough number of primitives. BSP tree building can be finished on CPU and the 

resulting tree can be directly copied to GPU. Figure 4.6 shows an example. 

 

Figure 4.6  Bounding Box and Binary Space Partition 

 

As shown in Figure 4.6, when a ray has been shot, it is checked which box 

it intersects from outside to inside boxes. It hits box1 in box0 (the root box) first, 

so all objects in box2 can be safely avoided. Then, box3 in box1 is hit, and box4 

doesn‟t. So primitives in box4 can be avoided too. As shown, BSP acceleration 

can avoid unnecessary ray-object intersection computation. 
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A node of a BSP tree contains the space dimension it covers but only leaf 

nodes contain geometry primitives. On the CPU, it is not difficult to implement 

because the CPU supports recursion function calling. And iterative recursion can 

be applied again to solve this problem on the GPU. All BSP tree nodes can be 

arranged sequentially in an array on the GPU, and BSP tree traversal follows a 

layer-by-layer iteration style, as shown in Figure 4.7. 

 

 

Figure 4.7  BSP Tree and its traversal 

 

In Figure 4.7, node P0 represents the whole space, node P1 and P2 are 

the two children of node P0. Each represents one half of the space, and the 

same for node 3, 4, 5, 6, 7 and 8. The workflow for finding the last hit node is 

conducted from top to bottom – P0, P1, P3, P5 and P7.  
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On the GPU, the tree node is indexed by its positions in the array, as 

shown in Figure 4.8. 

 

 

Figure 4.8  Array Representation of a BSP Tree 

 

After the hit node is found, all its primitives were checked. Then the final 

hit point was found, or not if this ray did not hit any primitive.  

4.5. Lightcuts and its Parallelization  

Lightcuts was first proposed in Walter (2005), which addresses the 

problem of over-amount of light sources in a scene. According to the paper, it is 

able to avoid unnecessary light source illumination evaluations from the ones that 

have little contribution to the target pixel effectively. 

4.5.1. Introduction to Lightcuts 

According to Walter (2005), in complex scenes, there are usually tens of 

thousands of light sources. The traditional way of pixel color evaluation is 

iterating each of them. It results in a linear complexity for scene illumination 

calculation that is unacceptable in complex scenes. However, some of light 

sources are totally non-significant. For example, the lights that are too far away  
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from a hit point, lights too dim or direction lights that don‟t point to the target pixel, 

are not necessary and can be safely avoided.  

The solution is actually simple: just cut them off. The problem is: how to 

tell whether a light is significant enough or not? In Walter (2005), considered 

factors such as visibility, geometry (distance to a hit point, directions if 

applicable), intensity and materials are introduced as the metric aspects of 

significance of a light. And the next question is: what data structure should be 

used to record significance information?  A binary tree is used with each node as 

one light in a scene Walter (2005). A parent of two nodes is selected from one of 

its two children, because we don‟t need extra virtual lights and what‟s more, it is 

able to save memory space. 

After the light tree has been built, it was traversed from the root down to 

the bottom recursively. Here an error bounding metric method was applied on 

each node. If the calculated error is below a tolerance value, the visited node 

was chosen to be present in the final pixel color evaluation; if the bounding error 

exceeds the tolerance value, its two children were visited then Walter (2005). 

4.5.2. Light-Tree Building 

The light tree is built from the bottom-up recursively, until there is only one 

node left. The first step is to select two similar lights from the scene (mainly 

judged based on their geometric similarity, like distance and light direction), and 

then one of them was selected as the parent, with intensity as the possibility of 

selection. Walter (2005) provides a formula to evaluate this “similarity”, and 



 

45 

because there are only directional point lights in this research, the formula 

adopted here is slightly different from the one in Walter (2005): 

                 IC * (DC
-2 + (1 - cosβ)2)  (Equation 4.1) 

As shown in Equation 4.1, IC is the total illumination of two virtual point 

lights; DC is the distance between two point lights (Walter (2005)) put it as the 

diagonal length of the bounding box); β is the angle between the direction vectors 

of two point lights (In  Walter (2005) it is the half angle of the bounding cone). 

Figure 4.9 shows an example. 

 

Figure 4.9   A Lightcuts scene 

 

As Figure 4.9 demonstrates, there are four lights in the scene. As shown, 

light0 and light1 are similar enough because they are close enough, light2 and 

light3 are considered as similar too by the same reason. Then light0 and light3 
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are chosen as parents (suppose they are the brighter ones). As last, light 3 is 

chosen as the tree root (suppose light 3 is brighter than light 1). 

 

 

Figure 4.10  A Lightcuts Tree 

 

Figure 4.10 depicts the Lightcuts tree in the sample scene. Since this tree 

will not change through out the rendering, this building process can be put on 

CPU, and the tree can be copied to GPU. As mentioned before, this binary tree 

can also be represented in an array, as shown in Figure 4.11. 

 

 

Figure 4.11  Array representation of the Lighcuts Tree 

4.5.3. Paralleled Light-tree Evaluation 

With a Lightcuts tree is available, it is universally available in the process 

of a pixel color computation. According to Walter (2005) it is also a recursive 
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process: each traversal starts from the root, if the current node‟s error bound 

value is below the preset tolerance value, the light is chosen and its children will 

not be visited. If the error bound value is above the tolerance value, it was be 

skipped and its two direct children were visited then, until the lights with error 

bound values smaller than tolerance are selected. The formula to estimate 

bounding error of two directional point lights is as below (taken from Walter 

(2005)): 

           max(cosβ, 0) * (y - x)-2                              (Equation 4.2) 

In Equation 4.2, β is the angle between the virtual point„s direction and the 

normal vector of the hit point; y is the light‟s position and x is the hit point 

position. 

It is trivial to implement recursion on CPU because CPU supports function 

recursive calling; this procedure should be completed iteratively layer by layer, by 

a top-down manner on GPU.  

 

 

Figure 4.12  Recursion traversal of a Lightcuts tree 
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By Figure 4.12, a Lightcuts tree is visited from root downward, until the 

right lights are chosen.   

4.6. Summary  

As the two key components of this research, Ray-Tracing and Lightcuts, 

demonstrated, the most important skill here is replacing recursion by iteration on 

GPU, and the tree data structure on CPU should be stored as a one-dimension 

array, on which iteration occurs. All these iterations occur simultaneously on GPU 

cores, with each core taking one task of one pixel‟s color computation. 

 Due to the pixel independence essence of Ray-Tracing, parallelism is 

supposed to be able to enhance performance significantly. What‟s more, 

Lightcuts is considered to be able to further improve pixel color computation 

performance. The detailed performance testing results upon three different 

scenes with different complexity were elaborated in the following chapter, in 

which it was clear how much all the mentioned techniques in this chapter could 

take effect. 

 

 

 

 

 

 

 



 

49 

CHAPTER 5. RESULTS AND ANALYSIS 

In this chapter, the acceleration effects are demonstrated through three 

different scenes with different complexities. The measured rendering time is laid 

out first, and its analysis follows. After analysis, it could be clear whether the 

solution proposed in chapter 4 is effective enough or not, and the validity of this 

research could be verified. 

5.1. Scene Testing Results 

This section elaborates testing details including testing platform, 

perceptual checking tool and final testing results. 

5.1.1. Testing Platform 

The computer used for testing has the following characteristics: 

CPU: Intel Xeon E5520 @ 2.27GHz 2.26GHz 

GPU: nVidia Tesla C1060 

5.1.2. Perceptual Difference Evaluation Tool 

To promise the acceleration solution proposed in this research does not 

damage image quality by introducing discernible differences or even errors, all 
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accelerated images were compared with the original non-accelerated CPU 

generated image. A third party open source tool called Perceptual Image Diff was 

applied to all generated images for perceptual error detection. 

Briefly speaking, this tool is based on spatial frequency, luminance, color 

and observer parameters. With its algorithms, perceptual differences of images 

can be effectively examined. More details can be found at 

http://pdiff.sourceforge.net/. 

5.1.3. Results 

Three scenes with different complexities are designed for the testing work 

of this research. A very simple scene with only a few geometric primitives, a 

scene with 1418 triangles and a scene with 4698 triangles are separately 

rendered and their rendering results including generated images, rendering time 

cost are recorded. 

5.1.3.1. Simple Scene 

This scene contains only two spheres in a Cornell Box that consists of five 

sides (five squares), so there are only seven primitives in the scene. 

Four different scene configurations are involved: CPU without Lightcuts, 

CPU with Lightcuts, GPU without Lightcuts and GPU with Lightcuts. Each of the 

four configurations has been tested three times and their average values were 

 

http://www.google.com/url?q=http%3A%2F%2Fpdiff.sourceforge.net%2F&sa=D&sntz=1&usg=AFQjCNHgMCp67kgsChBir9xZrn8SjD9gbw
http://www.google.com/url?q=http%3A%2F%2Fpdiff.sourceforge.net%2F&sa=D&sntz=1&usg=AFQjCNHgMCp67kgsChBir9xZrn8SjD9gbw
http://www.google.com/url?q=http%3A%2F%2Fpdiff.sourceforge.net%2F&sa=D&sntz=1&usg=AFQjCNHgMCp67kgsChBir9xZrn8SjD9gbw
http://www.google.com/url?q=http%3A%2F%2Fpdiff.sourceforge.net%2F&sa=D&sntz=1&usg=AFQjCNHgMCp67kgsChBir9xZrn8SjD9gbw
http://www.google.com/url?q=http%3A%2F%2Fpdiff.sourceforge.net%2F&sa=D&sntz=1&usg=AFQjCNHgMCp67kgsChBir9xZrn8SjD9gbw
http://www.google.com/url?q=http%3A%2F%2Fpdiff.sourceforge.net%2F&sa=D&sntz=1&usg=AFQjCNHgMCp67kgsChBir9xZrn8SjD9gbw
http://www.google.com/url?q=http%3A%2F%2Fpdiff.sourceforge.net%2F&sa=D&sntz=1&usg=AFQjCNHgMCp67kgsChBir9xZrn8SjD9gbw
http://www.google.com/url?q=http%3A%2F%2Fpdiff.sourceforge.net%2F&sa=D&sntz=1&usg=AFQjCNHgMCp67kgsChBir9xZrn8SjD9gbw
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used for analysis. Table 5.1 presents the testing results (All data values are in 

seconds). 

Table 5.1  

Simple Scene Testing Results 

 First Pass 

(In Seconds) 

Second 

Pass 

(In Seconds) 

Total 

(In Seconds) 

Light Ratio 

(%) 

P-Diff 

Check 

CPU - no 

Lightcuts 

0.808 76.945 77.753 X X 

CPU - 

Lightcuts 

0.869 394.284 395.160 63.007% Pass 

GPU - no 

Lightcuts 

7.891 45.457 53.353 X Pass 

GPU - 

Lightcuts 

7.414 65.856 73.287 64.035% Pass 

 

In Table 5.1, the virtual point light count on CPU is 271 and 253 for GPU. 

The number difference is caused by randomness of the implemented algorithm. 

The columns “First Pass” and “Second Pass” contain the rendering time of first 

pass and second pass, and the total rendering time is in column “Total”. The 

“Light Ratio” column records how much percent of all virtual point lights are 
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selected for the second pass by Lightcuts. The last column records the 

perceptual checking among the images, and the reference image is the CPU 

without Lightcuts, all the other three are checked by comparison with that one. As 

shown in Table 5.1, all images pass the perceptual checking. As shown in Table 

5.1, no perceptual differences have been detected. Figure 5.1 shows the 

generated images. 

 

Figure 5.1 Simple Scene images 

5.1.3.2. Venus Model Scene 

This scene contains a more complicated model, Venus, that possesses 

1418 triangles, together with the five squares as in the Cornell Box sides. 



 

53 

Four different scene configurations were involved: CPU without Lightcuts, 

CPU with Lightcuts, GPU without Lightcuts and GPU with Lightcuts. Each of the 

four configurations was tested three times and their average values were used 

for analysis. Table 5.2 shows the testing results (All data values are in seconds): 

Table 5.2 

Venus Scene Testing Results 

 First Pass 

(In Seconds) 

Second 

Pass 

(In Seconds) 

Total 

(In Seconds) 

Light Ratio 

(%) 

P-Diff 

Check 

CPU - no 

lightcuts 

38.263 1383.921 1422.187 X X 

CPU - 

lightcuts 

38.569 1545.119 1583.69 60.021% Pass 

GPU - no 

lightcuts 

14.461 374.228 388.693 X Pass 

GPU - 

lightcuts 

15.077 354.584 369.667 66.855% Pass 

 

In Table 5.2, the virtual point light count on CPU is 136 and 131 for GPU. 

The number difference is caused by randomness of the implemented algorithm. 

The columns “First Pass” and “Second Pass” contain the rendering time of first 
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pass and second pass, and the total rendering time is in column “Total”. The 

“Light Ratio” column records how much percent of all virtual point lights are 

selected for the second pass by Lightcuts. The last column records the 

perceptual checking among the images, and the reference image is CPU without 

Lightcuts, all the other three are checked by comparison with that one. As shown 

in Table 5.2, all images pass the perceptual checking. As shown in Table 5.2, no 

perceptual differences have been detected. Figure 5.2 shows the generated 

images. 

 

Figure 5.2 Venus Scene images 
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5.1.3.3. Galleon Model Scene 

This scene contains an even more complex model Galleon, containing 

4698 triangles, together with the five squares as the Cornell Box sides. 

Four different scene configurations are involved: CPU without Lightcuts, 

CPU with Lightcuts, GPU without Lightcuts and GPU with Lightcuts. Each of the 

four configurations has been tested three times and their average values were 

used for analysis. Table 5.3 presents the testing results (All data values are in 

seconds). 

Table 5.3 

Galleon Scene Testing Results 

 First Pass 

(In Seconds) 

Second 

Pass 

(In Seconds) 

Total 

(In Seconds) 

Light Ratio 

(%) 

P-Diff 

Check 

CPU - no 

lightcuts 

133.787 4265.908 4399.7 X X 

CPU - 

lightcuts 

133.702 3519.038 3652.74 48.247% Pass 

GPU - no 

lightcuts 

28.345 816.96 845.34 X Pass 

GPU - 

lightcuts 

28.515 741.397 769.93 53.335% Pass 
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In Table 5.3, the virtual point light count on CPU is 131 and 146 for GPU. 

The number difference was caused by randomness of the implemented 

algorithm. The columns “First Pass” and “Second Pass” contain the rendering 

time of the first pass and second pass, and the total rendering time is in column 

“Total”. The “Light Ratio” column records how much percent of all virtual point 

lights are selected for the second pass by Lightcuts. The last column records the 

perceptual checking among the images, and the reference image is the CPU 

without Lightcuts. The other three images are checked by comparison to it. As 

shown in Table 5.3, all images pass the perceptual checking. As shown in Table 

5.3, no perceptual differences have been detected. Figure 5.3 shows the 

generated images. 

 

Figure 5.3 Galleon Scene images 



 

57 

5.2. Results Analysis 

With experiment results stated in section 5.1, the performance 

acceleration percentage can be acquired easily, and also an intuitive 

representation using charts for data is able to be drawn for effective analysis. 

Three aspects would be emphasized in the follows: GPU acceleration, Lightcuts 

acceleration, and overall acceleration. 

5.2.1. GPU Acceleration 

From original testing data, the following compared acceleration 

percentage of GPU is shown in Table 5.4. Figure 5.4 shows this data as a chart. 

 

Table 5.4 

GPU Acceleration Analysis 

 Simple(1) Venus(1418) Galleon(4698) 

Pass 1 -88.262% 160.201% 369.681% 

No Lightcuts - 2 81.109% 269.807% 425.165% 

No Lightcuts - all 58.122% 265.889% 423.311% 
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Figure 5.4 GPU Acceleration Chart 

 

Please notice that to emphasize the GPU performance boost effect, 

Lightcuts has not been considered. And what is noticeable, if there are too many 

geometry primitives in the scene, the GPU driver on Windows will halt because of 

long kernel function execution. 

5.2.2. Lightcuts Acceleration 

Like the GPU testing data, Lightcuts performance increase effect data can 

be calculated too, as shown in Table 5.5. Figure 5.5 shows this data as a chart. 

 

 

 

 



 

59 

Table 5.5  

Lighcuts Acceleration Analysis 

Pass 2 Simple(1) Venus(1418) Galleon(4698) 

CPU -82.1% -10.433% 22.378% 

GPU -33.67% 5.54% 10.553% 

 

 

 

Figure 5.5  Lightcuts Acceleration Chart 

 

To make it clear how much Lightcuts makes rendering faster, CPU and 

GPU configurations are individually considered. As with as the GPU situation, if 

there were too many virtual point lights, pixel computation would cause Windows 

GPU driver to halt. 



 

60 

5.2.3. Overall Acceleration 

At last, a combined effect of both GPU and Lightcuts is provided in Table 

5.6. Figure 5.6 shows the overall acceleration graphically. 

 

Table 5.6 

Overall Acceleration Testing Results 

 Simple(1) Venus(1418) Galleon(4698) 

Overall 9.941% 284.721% 476.524% 

 

 

 

Figure 5.6 Overall Acceleration Chart 
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These overall data derive from the time cost of the CPU without Lightcuts 

and the GPU with Lightcuts. 

5.3. Summary 

From the testing results analysis in last section, it is not difficult to make 

some judgments on the performance acceleration effect of the GPU and 

Lightcuts: 

 

 The GPU is able to offer satisfactory acceleration for scene rendering for 

relatively complex scenes, but not for a simple scene with only a few 

geometries, due to the memory manipulation cost between CPU and 

GPU. 

 

 Lightcuts can only provide effective acceleration on complex scenes; for 

relatively simple scenes, it even makes rendering slower because of its 

Lightcuts tree traversal cost. 

 

 With the GPU and Lightcuts combined, rendering speed-up ratio is almost 

linear with scene complexity (geometry primitives‟ number). 
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CHAPTER 6. CONCLUSIONS AND FUTURE WORK 

6.1. Conclusions 

Encouraging results have been produced by research in this thesis, as 

demonstrated in Chapter 5. From these results, several conclusions about GPU 

acceleration on Ray-tracing, and Lightcuts algorithm acceleration can be stated. 

 

● Ray-Tracing parallelism using the GPU can enhance rendering 

performance effectively for complex scenes. 

 

The assumption in Chapter 2 has partially been proved by the solution 

proposed in this thesis. Hardware parallelism handles the pixel 

independence essence of Ray-Tracing and gives satisfactory results for 

relatively complex scenes. However, the GPU acceleration will make 

rendering simple scenes even worse. 

 

● Lightcuts can further improve the rendering performance significantly for 

complex scenes. 

 

According to testing results in Chapter 5, Lightcuts can cut unnecessary 
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virtual point lights off from the second pass so that rendering is reduced 

significantly. However, as with the GPU, Lightcuts has to maintain its light 

tree at runtime, so this cost will make simple scene rendering even slower. 

6.2. Future Work 

Better performance cannot guarantee a perfect rendering engine. There 

are some other important aspects for a good rendering engine those are not 

emphasized or involved in this thesis. So there is still room for further 

improvements. 

 

 A proper CUDA kernel design is expected. 

The current kernel function implementation suffers from Windows Driver 

Watchdog mechanism. So the kernel function could be further splitted, so 

its execution time on GPU could be shorter. Thus the GPU driver halting 

problem could be alleviated. 

 

 More global illumination effects. 

Besides diffuse-diffuse illumination, there are many other more interesting 

global illumination effects, such as color bleeding, participating media etc. 

Such effects can make images more realistic and attracting. But they 

require more computation efforts of course. 
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 More shading material effects, as metal, plastic etc. 

In current research, only one shading model has been implemented: the 

Phong shading model, which is considered too simple to represent 

complex materials, such as metal, plastic, wood etc., which possess much 

more complex lighting interactions with objects. 
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Appendix A. Scene Description Files 

 

The scenes are described in text format files, in which all information like 

geometry positions, sizes, scales and lighting parameters are indicated. 

Three testing scenes‟ description files are included here: 

 

Simple Scene: 

# Cornell Box 
# VPL(0.0001/0.7/GPU:0.08-CPU:0.075) - LC(1*10^-6) 
S BK{0.0, 0.0, 0.0}| 
# camera 
C STRAT|PERS(10)|C{0, 0, 960}|V{0, 0, -1}|U{0, 1, 0}| 
# lights 
L OMNI|POS{0, 100, 0}|DIR{0, 0, -1}|ATTEN(1)|S{1, 1, 1}|D{1, 1, 1}|A{1, 1, 1}| 
# Sphere 
P SPH|FRKE{0, 1, 0.1, 0}|C{-80, -100, 70}R(60)|S{0.35, 0.35, 0.1}D{0.35, 0.35, 
0.1}A{0.35, 0.35, 0.1}SH(20)| 
P SPH|FRKE{0.0, 0.0, 0.7, 1}|C{100, -100, -40}R(60)|S{0.2, 0.2, 0.2}D{0.2, 0.2, 
0.2}A{0.2, 0.2, 0.2}SH(20)| 
# Walls 
# Bottom 
P SQU|FRKE{0.0, 0.0, 0.6, 1}|C{0, -200, 0}N{0, 1, 0}H{0, 0, 
1}|W400:H400|S{0.14, 0.14, 0.14}D{0.14, 0.14, 0.14}A{0.0, 0.0, 0.0}SH(20)| 
# Top 
P SQU|FRKE{0.0, 0.0, 0.6, 1}|C{0,  200, 0}N{0,-1, 0}H{0, 0, 
1}|W400:H400|S{0.14, 0.14, 0.14}D{0.14, 0.14, 0.14}A{0.0, 0.0, 0.0}SH(20)| 
# Back 
P SQU|FRKE{0.0, 0.0, 0.6, 1}|C{0, 0, -200}N{0, 0, 1}H{0, 1, 
0}|W400:H400|S{0.14, 0.14, 0.14}D{0.14, 0.14, 0.14}A{0.0, 0.0, 0.0}SH(20)| 
# Left 
P SQU|FRKE{0.0, 0.0, 0.6, 1}|C{-200, 0, 0}N{1, 0, 0}H{0, 1, 0}|W400:H400|S{0.0, 
0.0, 0.0}D{0.88, 0.05, 0.05}A{0.0, 0.0, 0.0}SH(20)| 
# Right 
P SQU|FRKE{0.0, 0.0, 0.6, 1}|C{200, 0, 0}N{-1, 0, 0}H{0, 1, 0}|W400:H400|S{0.0, 
0.0, 0.0}D{0.05, 0.05, 0.95}A{0.0, 0.0, 0.0}SH(20)| 
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Venus Scene: 

# Cornell Box 
# VPL(0.00003/0.5/GPU:0.15-CPU:0.16) -  VPL\LC(5*10^-7) 
S BK{0.0, 0.0, 0.0}| 
# camera 
C STRAT|PERS(10)|C{0, 0, 960}|V{0, 0, -1}|U{0, 1, 0}| 
# lights 
L OMNI|POS{0, 50, 250}|DIR{0, 0, -1}|ATTEN(1)|S{1, 1, 1}|D{1, 1, 1}|A{1, 1, 1}| 
# venus : G:/RenderT/glm-data/venus.obj 
O FRKE{0, 0.0, 0.9, 0.8}|PATH:venus.obj|SMTH(1)|TRAN{0, 0, 0}|SCAL{1.3, 1.3, 
1.3}|ROT{0, 1, 0}:0|MAT(1)|S{0.2, 0.2, 0.2}D{0.2, 0.2, 0.2}A{0.2, 0.2, 0.2}SH(30)| 
# Walls 
# Bottom 
P SQU|FRKE{0.0, 0.0, 0.6, 1}|C{0, -200, 0}N{0, 1, 0}H{0, 0, 
1}|W400:H400|S{0.14, 0.14, 0.14}D{0.14, 0.14, 0.14}A{0.0, 0.0, 0.0}SH(20)| 
# Top 
P SQU|FRKE{0.0, 0.0, 0.6, 1}|C{0,  200, 0}N{0,-1, 0}H{0, 0, 
1}|W400:H400|S{0.14, 0.14, 0.14}D{0.14, 0.14, 0.14}A{0.0, 0.0, 0.0}SH(20)| 
# Back 
P SQU|FRKE{0.0, 0.0, 0.6, 1}|C{0, 0, -200}N{0, 0, 1}H{0, 1, 
0}|W400:H400|S{0.14, 0.14, 0.14}D{0.14, 0.14, 0.14}A{0.0, 0.0, 0.0}SH(20)| 
# Left 
P SQU|FRKE{0.0, 0.0, 0.6, 1}|C{-200, 0, 0}N{1, 0, 0}H{0, 1, 0}|W400:H400|S{0.0, 
0.0, 0.0}D{0.95, 0.05, 0.05}A{0.0, 0.0, 0.0}SH(20)| 
# Right 
P SQU|FRKE{0.0, 0.0, 0.6, 1}|C{200, 0, 0}N{-1, 0, 0}H{0, 1, 0}|W400:H400|S{0.0, 
0.0, 0.0}D{0.05, 0.05, 0.95}A{0.0, 0.0, 0.0}SH(20)| 
 

Galleon Scene: 

# Cornell Box 
# VPL(0.000035/0.5/GPU:0.3 -  VPL\LC(10^-7)  
S BK{0.0, 0.0, 0.0}| 
# camera 
C STRAT|PERS(10)|C{0, 0, 960}|V{0, 0, -1}|U{0, 1, 0}| 
# lights 
L OMNI|POS{0, 50, 350}|DIR{0, 0, -1}|ATTEN(1)|S{1, 1, 1}|D{1, 1, 1}|A{1, 1, 1}| 
# venus  
O FRKE{0.0, 0.0, 0.9, 0.9}|PATH:galleon.obj|SMTH(1)|TRAN{0, -80, 60}|SCAL{4, 
4, 4}|ROT{0, 1, 0}:45|MAT(1)|S{0.1, 0.1, 0.05}D{0.1, 0.1, 0.05}A{0.1, 0.1, 
0.05}SH(30)| 
# Walls 
# Bottom 
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P SQU|FRKE{0.0, 0.0, 0.6, 1}|C{0, -200, 0}N{0, 1, 0}H{0, 0, 
1}|W400:H400|S{0.14, 0.14, 0.14}D{0.14, 0.14, 0.14}A{0.0, 0.0, 0.0}SH(20)| 
# Top 
P SQU|FRKE{0.0, 0.0, 0.6, 1}|C{0,  200, 0}N{0,-1, 0}H{0, 0, 
1}|W400:H400|S{0.14, 0.14, 0.14}D{0.14, 0.14, 0.14}A{0.0, 0.0, 0.0}SH(20)| 
# Back 
P SQU|FRKE{0.0, 0.0, 0.6, 1}|C{0, 0, -200}N{0, 0, 1}H{0, 1, 
0}|W400:H400|S{0.14, 0.14, 0.14}D{0.14, 0.14, 0.14}A{0.0, 0.0, 0.0}SH(20)| 
# Left 
P SQU|FRKE{0.0, 0.0, 0.6, 1}|C{-200, 0, 0}N{1, 0, 0}H{0, 1, 0}|W400:H400|S{0.0, 
0.0, 0.0}D{0.95, 0.05, 0.05}A{0.0, 0.0, 0.0}SH(20)| 
# Right 
P SQU|FRKE{0.0, 0.0, 0.6, 1}|C{200, 0, 0}N{-1, 0, 0}H{0, 1, 0}|W400:H400|S{0.0, 
0.0, 0.0}D{0.05, 0.95, 0.05}A{0.0, 0.0, 0.0}SH(20)| 
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Appendix B. Data Structures 

In this section, the core data structures used in the system are listed in 

detail, which are supposed to be references of Chapter 4. 

Ray Struct: 

struct Ray 
{ 
 long id; 
 
 vect3d start_point; 
 vect3d direction_vec; 
 vect3d color; 
 
 float fDeltaX, fDeltaY; 

bool bIsInObj; 
 
 vect3d _hitPoint; 
 vect3d _hitNorm; 
}; 

 

Parent Light class: 

class Light 
{ 
public: 
 float _fAttenuate; 
 vect3d _ambientColor; 
 vect3d _diffuseColor; 
 vect3d _specularColor; 
}; 
 

 
Sub-class of Light for directional point light: 
 

class DirPointLight : public Light 
{ 
public: 
 vect3d _pos;  
 vect3d _dir; 
}; 
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Sub-class of Light for directional light: 
 

class DirLight : public Light 
{ 
public: 
 vect3d _dir; 
}; 

 

Struct for lights on GPU: 

struct LightGpu 
{ 
 LightType eType; // Light type 
 
 // common 
 float _fAttenuate; 
 
 vect3d_gpu _ambientColor; 
 vect3d_gpu _diffuseColor; 
 vect3d_gpu _specularColor; 
 
 // DirPoint 
 vect3d_gpu _dirp_pos;  
 vect3d_gpu _dirp_dir; 
 
 // Dir 
 vect3d_gpu _dir_dir; 
}; 
 
 

Struct for object material: 
 

struct material 
{ 
 vect3d specColor; 
 vect3d diffColor; 
 vect3d ambiColor; 
 float fShininess; 
}; 
 

 
Parent class for all objects: 
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class Object 
{ 
public: 
 unsigned _id; 

material _mat; 
 
protected: 
 float _fReflectionRatio;   
 float _fRefractionRatio;  
 float _fRefractionK; 
 float _fEmitRatio; 
}; 

 

Sub-class of Object for triangles: 

class Triangle : public Object 
{ 
public:  
 vect3d _vertices[3]; 
 vect3d _normal; 
 vect3d _vnormal[3]; 
 
 bool _bSmooth; 
 bool _bHasVNorm;  
}; 

 

Sub-class of Object for sphere: 

class Sphere : public Object 
{ 
public: 
 float _fRad; 
 vect3d _ctr; 
}; 
 

Sub-class of Object for square: 
 

class Square : public Object 
{ 
public: 
 vect3d _vNormal;  // Directions 
 
 // Positions 
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 vect3d _vCenter; 
 float _nWidth; 
 float _nHeight;  
 
 // For Calc. 
 vect3d _v2HeightVec; 
 vect3d _v2WidthVec; 
}; 
 
GPU struct and the enum for objects: 
 

enum GpuObjType {TRI_GPU, SQU_GPU, SPH_GPU, 
NONE_GPU}; 
 

struct PrimGpuObj 
{ 
 // common 
 float _fReflectionRatio; 
 float _fRefractionRatio; 
 float _fRefractionK; 
 float _fEmitRatio; 
 material_gpu _mat;  
 
 GpuObjType eType;  // for GPU use 
 int nId; 
 
 // Triangle 
 vect3d_gpu _vertices[3]; 
 vect3d_gpu _normal; 
 vect3d_gpu _vnormal[3]; 
 bool _bSmooth; 
 bool _bHasVNorm; 
 
 // Sphere 
 float _fRad; 
 vect3d_gpu _ctr; 
 
 // Square 
 vect3d_gpu _vNormal; 
 vect3d_gpu _vCenter; 
 float _nWidth; 
 float _nHeight;  
 vect3d_gpu _v2HeightVec; 
 vect3d_gpu _v2WidthVec; 
}; 
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Appendix C. Original Testing Data 

 

In the testing analysis part, the average values are considered. Those  

values derive from original testing data from three times running for each scene: 

 

 

Figure C.1 Original Testing Results for Simple Scene 

 

 

Figure C.2 Original Testing Results for Venus Scene 
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Figure C.3 Original Testing Results for Galleon Scene 
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