28,807 research outputs found

    Contents lists available at ScienceDirect

    Get PDF
    journal homepage: www.elsevier.com/locate/palae

    Looking forward through the past: identification of 50 priority research questions in palaeoecology

    Get PDF
    1. Priority question exercises are becoming an increasingly common tool to frame future agendas in conservation and ecological science. They are an effective way to identify research foci that advance the field and that also have high policy and conservation relevance. 2. To date, there has been no coherent synthesis of key questions and priority research areas for palaeoecology, which combines biological, geochemical and molecular techniques in order to reconstruct past ecological and environmental systems on time-scales from decades to millions of years. 3. We adapted a well-established methodology to identify 50 priority research questions in palaeoecology. Using a set of criteria designed to identify realistic and achievable research goals, we selected questions from a pool submitted by the international palaeoecology research community and relevant policy practitioners. 4. The integration of online participation, both before and during the workshop, increased international engagement in question selection. 5. The questions selected are structured around six themes: human–environment interactions in the Anthropocene; biodiversity, conservation and novel ecosystems; biodiversity over long time-scales; ecosystem processes and biogeochemical cycling; comparing, combining and synthesizing information from multiple records; and new developments in palaeoecology. 6. Future opportunities in palaeoecology are related to improved incorporation of uncertainty into reconstructions, an enhanced understanding of ecological and evolutionary dynamics and processes and the continued application of long-term data for better-informed landscape management

    The role of sea-level change and marine anoxia in the Frasnian-Famennian (Late Devonian) mass extinction

    Get PDF
    Johnson et al. (Johnson, J.G., Klapper, G., Sandberg, C.A., 1985. Devonian eustatic fluctuations in Euramerica. Geological Society of America Bulletin 96, 567–587) proposed one of the first explicit links between marine anoxia, transgression and mass extinction for the Frasnian–Famennian (F–F, Late Devonian) mass extinction. This cause-and-effect nexus has been accepted by many but others prefer sea-level fall and cooling as an extinction mechanism. New facies analysis of sections in the USA and Europe (France, Germany, Poland), and comparison with sections known from the literature in Canada, Australia and China reveal several high-frequency relative sea-level changes in the late Frasnian to earliest Famennian extinction interval. A clear signal of major transgression is seen within the Early rhenana Zone (e.g. drowning of the carbonate platform in the western United States). This is the base of transgressive–regressive Cycle IId of the Johnson et al. (Johnson, J.G., Klapper, G., Sandberg, C.A., 1985. Devonian eustatic fluctuations in Euramerica. Geological Society of America Bulletin 96, 567–587) eustatic curve. This was curtailed by regression and sequence boundary generation within the early linguiformis Zone, recorded by hardground and karstification surfaces in sections from Canada to Australia. This major eustatic fall probably terminated platform carbonate deposition over wide areas, especially in western North America. The subsequent transgression in the later linguiformis Zone, recorded by the widespread development of organic-rich shale facies, is also significant because it is associated with the expansion of anoxic deposition, known as the Upper Kellwasser Event. Johnson et al.'s (Johnson, J.G., Klapper, G., Sandberg, C.A., 1985. Devonian eustatic fluctuations in Euramerica. Geological Society of America Bulletin 96, 567–587) original transgression-anoxia–extinction link is thus supported, although some extinction losses of platform carbonate biota during the preceeding regression cannot be ruled out. Conodont faunas suffered major losses during the Upper Kellwasser Event, with deep-water taxa notably affected. This renders unreliable any eustatic analyses utilising changes in conodont biofacies. Claims for a latest Frasnian regression are not supported, and probably reflect poor biostratigraphic dating of the early linguiformis Zone sequence boundary

    Testate amoebae (Protozoa: Testacea) as bioindicators in the Late Quaternary deposits of the Bykovsky Peninsula, Laptev Sea, Russia

    Get PDF
    Testate amoebae (Protozoa: Testacea) were studied in the Late Quaternary permafrost depositsin the Siberian Arctic (Bykovsky Peninsula of the Laptev Sea coast, 71º40'-71º80'N and 129º-129º30'E). The studied Testacea associations reflect specific environmental conditions in paleocryosols,which were controlled by the local micro-relief as well as regional climate conditions. Totally, 86species, varieties, and forms of testate amoebae were found in 38 Pleistocene and Holocenesamples. The rhizopods indicate that soil conditions at ca 53,000 14C yr BP were probably rathersimilar to the modern cold and wet arctic tundra environment. More moisture and warmer soilconditions were relatively favourable for rhizopods ca 45,300-43,000 14C yr BP, but significantlydrier at about 42,000 14C yr BP. Drier and colder environmental conditions were also presentabout 39,300-35,000 14C yr BP. The Late Pleistocene samples, radiocarbon dated to 33,000-12,000 yr BP, are characterized by a low species diversity and density. This period may have beenextremely cold and dry, which is also supported by the polymorphism of some species.Hydrophilic Difflugia species (mostly obligate hydrobiotes) are broadly represented in theHolocene samples. The species composition and density of rhizopods in the majority of Holocenesamples suggest wet and relatively warm conditions. Changes in rhizopod assemblages during thelast 53,000 years were not very dramatic, mostly consisting of rare species and changes in thedominant species complexes during the Pleistocene and Holocene. However, these changes weremore drastic during the Pleistocene. They, probably, were at least partly responsible for thedisappearance of some rare testacean species such as Argynnia sp

    Palaeobiology of Pliocene-Pleistocene shallow-water biocalcarenites (Northern Apennines, Italy) and their relationship with coeval sapropels

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Cau, S., Roveri, M., & Taviani, M. Palaeobiology of Pliocene-Pleistocene shallow-water biocalcarenites (Northern Apennines, Italy) and their relationship with coeval sapropels. Bollettino Della Societa Paleontologica Italiana, 59(1), (2020): 25-40, doi:10.4435/BSPI.2020.04.The interplay between carbonate and siliciclastic sediment production in shallow marine environments may result in the development of mixed depositional systems showing a cyclical arrangement of sedimentary facies. The palaeoenvironmental record associated with these cyclical facies changes is not always univocally correlated with eustatic oscillations, suggesting that other forcing processes have played an additional role. The Castell’Arquato Basin (CAB: Pliocene-Pleistocene, Northern Apennines, Italy) offers the opportunity to integrate the study of small and large-scale stratigraphic architectures with that of shell beds in shelf to deep-water successions. The analysis of diversity trends allows a first insight into the structure of CAB benthic communities associated with minor and major biocalcarenites. Biofacies types are identified through a multivariate analysis of a large quantitative database including shells of all molluscs, serpulids and brachiopods. The study shows that these bio-detrital deposits and their bracketing marine mudstones developed at inner-shelf settings and that taphonomic feedback played an important role in the stratigraphic distribution of biofacies. Benthic communities from shelly bottoms depend on the winnowing of fines by bottom currents, a factor that is not related to water depth in a simple manner. Heterogeneity of the seafloor is associated to high-diversity of communities of topset strata of major biocalcarenites. Communities living in siliciclastic bottoms depend on factors that are largely depth-dependant. The study confirms the correlation of major biocalcarenite cycles with coeval deep-water sapropels, supporting the hypothesis of a more effective role of high-amplitude climatic changes driven by orbital forcing. This affects the source-to-sink dynamics of the whole basin and the biological structuring processes of shelfal depositional settings and related ecosystems.Thanks to Stefano Dominici (Museo di Storia Naturale, Università di Firenze) for his review and editorial handling. Ronald Nalin (Loma Linda University, California, USA) and an anonymous reviewer are acknowledged for their constructive comments and suggestions that improved an early version of the paper. We thank Alessandro Freschi, Gianluca Raineri (Riserva Geologica del Piacenziano e dello Stirone) and Carlo Francou (Museo Geopaleontologico “G. Cortesi”, Castell’Arquato) for their assistance with sample collection. This is ISMAR CNR, Bologna, scientific contribution n. 1950

    Eastern Beringia and beyond: Late Wisconsinan and Holocene landscape dynamics along the Yukon Coastal Plain, Canada

    Get PDF
    Terrestrial permafrost archives along the Yukon Coastal Plain (northwest Canada) have recorded landscape development and environmental change since the Late Wisconsinan at the interface of unglaciated Beringia (i.e. Komakuk Beach) and the northwestern limit of the Laurentide Ice Sheet (i.e. Herschel Island). The objective of this paper is to compare the late glacial and Holocene landscape development on both sides of the former ice margin based on permafrost sequences and ground ice. Analyses at these sites involved a multi-proxy approach including: sedimentology, cryostratigraphy, palaeoecology of ostracods, stable water isotopes in ground ice, hydrochemistry, and AMS radiocarbon and infrared stimulated luminescence (IRSL) dating. AMS and IRSL age determinations yielded full glacial ages at Komakuk Beach that is the northeastern limit of ice-free Beringia. Herschel Island to the east marks the Late Wisconsinan limit of the northwest Laurentide Ice Sheet and is composed of ice-thrust sediments containing plant detritus as young as 16.2 cal ka BP that might provide a maximum age on ice arrival. Late Wisconsinan ice wedges with sediment-rich fillings on Herschel Island are depleted in heavy oxygen isotopes (mean δ18O of −29.1‰); this, together with low dexcess values, indicates colder-than-modern winter temperatures and probably reduced snow depths. Grain-size distribution and fossil ostracod assemblages indicate that deglaciation of the Herschel Island icethrust moraine was accompanied by alluvial, proluvial, and eolian sedimentation on the adjacent unglaciated Yukon Coastal Plain until ~11 cal ka BP during a period of low glacio-eustatic sea level. The late glacial–Holocene transition was marked by higher-than-modern summer temperatures leading to permafrost degradation that began no later than 11.2 cal ka BP and caused a regional thaw unconformity. Cryostructures and ice wedges were truncated while organic matter was incorporated and soluble ions were leached in the thaw zone. Thermokarst activity led to the formation of ice-wedge casts and deposition of thermokarst lake sediments. These were subsequently covered by rapidly accumulating peat during the early Holocene Thermal Maximum. A rising permafrost table, reduced peat accumulation, and extensive ice-wedge growth resulted from climate cooling starting in the middle Holocene until the late 20th century. The reconstruction of palaeolandscape dynamics on the Yukon Coastal Plain and the eastern Beringian edge contributes to unraveling the linkages between ice sheet, ocean, and permafrost that have existed since the Late Wisconsinan

    Stable isotope (δ18O and δ13C) sclerochronology of Callovian (Middle Jurassic) bivalves (Gryphaea (Bilobissa) dilobotes) and belemnites (Cylindroteuthis puzosiana) from the Peterborough Member of the Oxford Clay Formation (Cambridgeshire, England): Evidence of palaeoclimate, water depth and belemnite behaviour

    Get PDF
    Incremental δ18O and δ13C signals were obtained from three well-preserved specimens of Cylindroteuthis puzosiana and from three well-preserved specimens of Gryphaea (Bilobissa) dilobotes from the Peterborough Member of the Oxford Clay Formation (Cambridgeshire, England). Through-ontogeny (sclerochronological) δ18O data from G. (B.) dilobotes appear to faithfully record seasonal temperature variations in benthic Callovian waters of the study area, which range from c. 14 °C to c. 17 °C (arithmetic mean temperature c. 15 °C). Water depth is estimated to have been in the region of c. 50 m, based upon comparisons between these data, previously published non-incremental sea surface δ18O values, and a modern analogue situation. Productivity in Callovian waters was comparable with that in modern seas, based upon δ13C data from G. (B.)dilobotes, with 13C depletion occurring during warmer periods, possibly related to an interaction between plankton blooms and intra-annual variations in mixing across a thermocline. Incremental δ18O data from C.puzosiana provide temperature minima of c.11 °C for all specimens but with maxima varying between c.14 °C and c.16 °C for different individuals (arithmetic mean values c. 13 °C). Temperatures for late ontogeny, when the C. puzosiana individuals must have been living close to the study site and hence the analysed specimens of G. (B.) dilobotes, are closely comparable to those indicated by the latter. However, for significant portions of ontogeny C. puzosiana experienced temperatures between c. 2 °C and c. 3 °C cooler than the winter minimum as recorded by co-occurring G. (B.) dilobotes. Comparisons with modern seas suggest that descent to a depth of c. 1000 m would be necessary to explain such cool minimum temperatures. This can be discounted due to the lack of deep waters locally and due to estimates of the depth tolerance of belemnites. The most likely cause of cool δ18O signals from C. puzosiana is a cosmopolitan lifestyle including migration to more northerly latitudes. Mean δ13C values from C. puzosiana are comparable with those from G.(B.)dilobotes. However, the incrementally acquired data are highly variable and probably influenced by metabolic effects.The probable identification of migratory behaviour in C. puzosiana calls into question the reliability of some belemnite species as place-specific palaeoenvironmental archives and highlights the benefits of adopting a sclerochronological approach
    corecore