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1. Introduction 

 

The Cenozoic era is marked by a gradual cooling of Earth’s climate (Zachos et al., 

2001; Zachos et al., 2008) in parallel to a decrease of the atmospheric partial pressure of 

CO2, as documented by proxy records (Pagani et al., 1999, 2005; Pearson and Palmer, 

2000; Zachos et al., 2008; Kürschner et al., 2008; Pearson et al., 2009; Doria et al., 2011). 

Climate was particularly warm near 50 Ma, an episode termed the early Eocene climatic 

optimum. At this time oxygen isotopic data indicate deep oceanic temperature ~12 °C 

warmer than today (Zachos et al., 2001), suggesting an equivalent warming of sea 

surface temperatures in the high latitudes of the Northern Hemisphere where deep 

waters are formed. Then, at the onset of the Oligocene, climate cooled rapidly causing 

the development of the Antarctic ice sheet, probably as a response to a significant 

decrease in atmospheric CO2 (DeConto and Pollard, 2003; Zachos and Kump, 2005; 

Pearson et al., 2009). At the end of the Oligocene, global climate warmed again (De Man 

and Van Simaeys, 2004; Villa and Persico, 2006) and this warming culminated in the 

Miocene near 15 Ma, with another climate optimum, the so-called mid-Miocene climatic 

optimum (Zachos et al., 2001). This warm phase is characterized by a heavy carbon 

isotopic composition of deep sea carbonate sediments, suggesting high deposition fluxes 

of organic matter, either from the marine realm (Vincent and Berger, 1985) or from the 

land (Diester-Haass et al., 2009, 2013). This phase ended with the middle Miocene 

climate transition, between 14.2 and 13.8 Ma, when the Antarctic ice sheet started to 

grow again (Shevenell et al., 2004). This transition initiated a global and progressive 

cooling of the planet that persisted through the late Miocene, the Pliocene, and the 

Pleistocene until the present.  
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Cenozoic cooling is generally attributed to the decrease in atmospheric CO2 over 

the same period. However, other factors have likely been important too, such as the 

change in continental positions, the opening or closure of marine seaways, and the uplift 

of mountain ranges, such as the Himalaya. The impact of mountain uplift has been 

widely discussed in the literature (see, e.g., pioneer papers by Raymo et al., 1988; 

Molnar and England, 1990; Raymo and Ruddiman, 1992). Impacts of uplift on climate 

can be direct through changes, for instance, in the atmospheric circulation (e.g., Broccoli 

and Manabe, 1992) or indirect through enhancement of erosion and chemical 

weathering that ends in a decrease of the atmospheric CO2 mixing ratio (e.g., Raymo and 

Ruddiman, 1992; Goddéris and François, 1995, 1996; Garzione, 2008). Climate evolution 

over the Cenozoic is also characterised by a progressive increase of the equator-pole 

temperature gradient. Warmer climates of the past indeed seem to exhibit very weak 

latitudinal temperature gradients (e.g., Barron, 1987; Jiménez-Moreno and Suc, 2007). 

Over the Cenozoic, climate also showed a clear trend towards a globally drier state, as 

indicated by the worldwide development and expansion of grassland and desert 

ecosystems in the Neogene (Retallack, 2001).  Through climate-vegetation feedbacks, 

this expansion of grasslands and deserts at the expense of forests may have significantly 

amplified the global Cenozoic cooling (e.g., Dutton and Barron, 1997). 

 

Plant remains, both mega- and microfossils, are widely used as palaeoclimate 

indicators over the continents. Mosbrugger et al. (2005) have, for instance, 

reconstructed the climate evolution of Central Europe over the last 45 million years 

from palaeobotanical data. Their reconstruction is in general agreement with trends 

recorded in the marine isotopic data (Zachos et al., 2001). Besides climate, 

palaeobotanical data can also be used to infer vegetation distribution and ecosystem 
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structure in the past. This is the focus of this special issue of Palaeogeography, 

Palaeoclimatology, Palaeoecology, which aims at quantifying vegetation changes 

throughout  Cenozoic times using proxy data and models. This special issue is organised 

within the framework of NECLIME, an international project briefly outlined below. This 

special volume is largely a collection of papers presented at two workshops organised 

by NECLIME: a session entitled Cenozoic vegetation quantification with models and proxy 

data (a NECLIME and ROCEEH contribution) within the 9th European Palaeobotany and 

Palynology Conference, Padova, Italy,  26-31 August, 2014, and the NECLIME 2014 

annual meeting held in Izmir, Turkey, 19-22 October, 2014. After a short introduction to 

NECLIME, we present below the main methods used to reconstruct palaeovegetation, as 

an introduction to the papers in this special issue. 

 

2. The NECLIME project 

 

The international open research network NECLIME – Neogene Climate Evolution 

in Eurasia – was established in 1999 in order to promote studies on climate change in 

Eurasia during the Neogene and the impact of climate change on the biosphere. The 

steadily growing network is co-ordinated by groups of researchers, and currently has 

142 members in 36 countries. NECLIME holds annual meetings, has working groups and 

advisers for specific topics, thus promoting scientific exchange, joint projects, and 

integration of the results obtained from research across various disciplines. NECLIME 

records are made available in Pangaea (www.pangaea.de). The publication policy of the 

network includes the release of special issues. The current issue is the 5th in a series of 

volumes published in Palaeogeography, Palaeoclimatology, Palaeoecology, (2007; 2011), 

the Turkish Journal of Earth Sciences (2012), and Palaeoworld (2013). 
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NECLIME research focuses on the reconstruction of Neogene 

palaeoenvironments of Eurasia and especially on interactions between the geo- and 

biosphere. This research includes proxy-based reconstructions of past palaeoclimate, 

palaeogeography, ecosystems and their diversity, and atmospheric CO2, with a clear 

emphasis on continental archives. Studies contributing to the network employ multiple, 

quantitative techniques applicable on various proxies such as palaeoflora, vertebrates 

and invertebrates complemented by geological and geochemical data. Partly, these 

techniques were developed by members of NECLIME, inspired by joint research within 

the network. Since the foundation of NECLIME, modelling studies add to the research of 

the network because they shed light on the processes behind the recorded proxy-based 

patterns. Modelling approaches carried out in the framework of NECLIME include ocean, 

atmosphere and biosphere on global or regional scales.  

 

The close interplay between proxy data and modelling not only provides a more 

complete understanding of the past along the later Neogene cooling trend, including the 

transition into the global ice-house in the earlier Pleistocene, but may also lead to a 

better assessment of anticipated changes. Combining a palaeogeography relatively close 

to present and globally warmer conditions, most Neogene time spans are suited for case 

studies related to model performance regarding the simulation of proxy-based patterns.  

 

Emphasis on quantitative reconstructions of past climates and ecosystems has 

driven the development and refinement of methodological approaches that has always 

been a primary focus of the NECLIME network. Several, now well-tested methodologies 

were designed within the context of NECLIME. These include the IPR (Integrated Plant 
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Record), the PCS (Plant Community Scenarios), the PFT (Plant Functional Type) 

Approach, the CAeco Approach and the CDA (micromammal-based Climate-Diversity 

Approach; van Dam and Utescher, 2016). The first four methods are designed for 

ecosystem reconstruction. They are summarised in the next section. Other quantitative 

techniques were upgraded and expanded in studies related to NECLIME (CLAMP - 

Climate Leaf Analysis Multivariate Program, e.g., Tao et al., 2013; Spicer et al., 2009; 

2011; Teodoridis et al., 2011a; CA -Coexistence Approach, e.g., Utescher et al., 2014).   

 

3. Reconstructing palaeovegetation and palaeoenvironment from proxies and 

models 

 

To reconstruct palaeovegetation based on compilations of fossil floras, several 

methods have been developed aiming at standardised procedures, to provide 

reproducible and comparable results, and to enable spatial interpolations of vegetation 

cover. Those methods vary mainly in the scale of their spatial scope and range from the 

reconstruction of local plant formations to large-scale biome level development. 

 

The aim of the PCS (Plant Community Scenario) approach (Martinetto and Vassio, 

2010; Vassio and Martinetto, 2012) is to reconstruct and compare local vegetation 

formations. Originally PCS was developed for interpreting fossil fruit and seed 

assemblages in a standardised quantitative way as a simplified 2D sketch (PCS), similar 

to a vegetation transect, considering growth forms and ecological preferences. PCS has 

also been applied to pollen (Martinetto et al., 2012; Vassio, 2012) and leaf assemblages 

(Vassio, 2012) (see Teodoridis et al., this issue). 
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The IPR (Integrated Plant Record) vegetation analysis is a semi-quantitative 

technique developed by Kovar-Eder and Kvaček (2003) to reconstruct and map regional 

zonal vegetation (Kovar-Eder and Kvaček, 2007; Kovar-Eder et al., 2008; Teodoridis et 

al., 2011b), based on plant taxonomy, physiognomy, and autoecological characteristics 

of the fossil taxa from leaf, carpological, wood, and pollen assemblages. Kayseri Özer 

(this issue) uses IPR analysis to study plant evolution in Anatolia from the late Oligocene 

to the Pliocene. Also Bondarenko et al. and Teodoridis et al. (both this issue) apply this 

approach in comparison to other methods. 

 

The PFT (Plant Functional Type) approach (Utescher et al., 2007; François et al., 

2011; Popova et al., 2013) aims at reconstructing regional biomes. The biomisation 

method of Prentice et al. (1996) and Ni et al. (2010) is restricted to pollen data, whereas 

the approach of François et al. (2011) can be applied to all plant organs. The assignment 

of PFTs to fossil taxa allows for the abstraction from taxonomy to universal plant traits. 

The method provides a likelihood level of presence, as well as a diversity index, for all 

reconstructed PFTs at each studied site. Such a PFT-level vegetation reconstruction has 

the advantage of being easily comparable with the results of vegetation models. Several 

contributions within this issue use the PFT approach (Bondarenko et al.; Popova et al.; 

Henrot et al.). 

 

Another rather large-scale approach is the CAeco approach (Bruch et al. 2012), i.e., 

the application of the Coexistence Approach technique on vegetation parameters such as 

leaf area index and vegetation cover to obtain quantified, globally comparable data on 

productivity and canopy density (see Bondarenko et al., this issue; Popova et al., this 

issue).  
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Palaeovegetation can also be reconstructed from vegetation models forced with 

climate model outputs.  Although more empirical species distribution models could be 

used for this purpose, it is mostly dynamic vegetation models (DVMs) that have been 

applied to reconstruct pre-Pleistocene vegetation (François et al., 2006, 2011; Lunt et al., 

2007; Henrot et al., 2010; Pound et al., 2011; Forrest et al., 2015). The use of DVMs is a 

very powerful method for palaeovegetation reconstruction, since it provides not only 

large-scale vegetation distribution, but also many vegetation attributes, such as leaf area 

index, gross and net primary productivity, biomass, soil organic carbon storage, etc. 

However, the reliability of the results depends on the quality of the climate model 

reconstructions used as inputs to the DVM. It is thus necessary to validate these model 

results with vegetation reconstructions from other methods (see Henrot et al., this issue; 

Fer et  al., this issue). 

 

Finally, palaeobotanical data can also be used to reconstruct environmental 

parameters that control vegetation development. For instance, stomatal data from fossil 

leaves is now widely used to reconstruct palaeo-CO2 levels (e.g., Kürchner et al., 2008; 

Franks and Beerling, 2010).  This method is exploited in this volume and expanded by 

the use of leaf-level ecophysiological modelling (Sun et al., this issue; Roth-Nebelsick and 

Konrad, this issue). Another example of environmental reconstruction is the possibility 

that palaeobotanical data enables the study of habitats of ancient hominids (Rudaya et 

al., this issue).    
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All these methods have to deal with the challenge of different signals provided by 

the different plant organs – fossil leaf assemblages over-represent arboreal vegetation 

whereas pollen assemblages usually show a greater diversity of herbs.  Because each 

plant organ has its own characteristics in regard to production, taphonomy, and 

preservation, all methods struggle to truly integrate those data. It is obvious that the 

information provided by the different plant organs are complementary and must be 

integrated, but integration has to be done with care (as discussed by Popova et al., this 

issue). 

 

This volume contains 16 contributions using the above methods to reconstruct 

past vegetation and environments for different epochs of the Cenozoic. The order of 

contributions follows the geological time sequence, starting with the papers dealing 

with most remote times or spanning a large portion of the Cenozoic era. All epochs from 

the Oligocene to the Pleistocene are represented. These studies encompass many spatial 

scales, from the regional to the global. Thus all continents are covered, although the 

emphasis for most studies is on the Eurasian continent, consistent with NECLIME 

objectives. 
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