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Oestate amobae (TA) in the surface and fossil sediments from the Cape Mamontov

Klyk (73°60′–
^
73°63′ N, 116°88′–

^
117°18′ E), southern coast of the Laptev Sea, ca 150 kmwest of the Lena Delta

and to discuss the potential of TA analysis for Glacial/Interglacial environmental reconstructions in Arctic
Siberia. The radiocarbon age determination suggests that the studied sediments accumulated between ca
45,000 14C yr BP and present. A total of 98 TA taxa were identified in the 10 recent surface and 59 fossil
samples. Results of taxonomical identification and ecological analysis of TA in the modern and fossil samples
suggest that major changes in the soil moisture conditions took place. Our results show that soil-living taxa
dominated the testate TA assemblages at the study sites during the past 45,000 years. The environmental
conditions of the study area were most favourable (relatively warm and humid) during the Kargin
Interstadial (ca 45,000–

^
25,000 14C yr BP). An opposite situation is reconstructed for the Sartan Stadial (ca.

25,000–
^
15,000 14C yr BP). During the Kargin Interstadial, optimum conditions occurred between ca 44,000

and 40,000 14C yr BP characterised by highest TA abundances and taxa diversity. This initial optimal phase
was followed by the interval with drier and colder conditions about 40,000–

^
30,000 14C yr BP. The sediments

dated between ca. 24,000 and 18,000 14C yr BP show low TA abundances and diversity, in agreement with the
much colder and drier environments during the maximum phase of the last glacial. The onset of the
Holocene is indicated by a broad representation of obligate hydrophilic taxa, especially from genus Difflugia,
suggesting wet and relatively warm conditions. By comparison with other environmental proxies used in the
studied sections as well as from the neighbouring arctic regions our results suggest that TA analysis can
provide valuable information, contributing to the better understanding of the Late Quaternary climate and
environments in Arctic Siberia.

© 2008 Elsevier B.V. All rights reserved.
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R1. Introduction

The Arctic is more sensitive to climate change than most other
parts of our planet (ACIA, 2004). Here effects of the current warming
can obviously be seen from the present destruction of terrestrial and
sub-sea permafrost surfaces as well as the reduction of the sea-

^
ice

cover. There are alsomany indications of various palaeoenvironmental
changes in lowland regions of Northeast Siberia during the Late
Quaternary that are available from multi proxy studies of permafrost
records (e.g. Andreev et al., 2002b; Schirrmeister et al., 2002a).
Northern Eurasia has long been known as an important region for
understanding the magnitude of climatic and environmental changes
during the Late Quaternary and their consequences for other high-
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latitude regions (e.g. Velichko, 1984; Khotinskiy, 1984; Hubberten
et al., 2004; Lozhkin et al., 2007; Kienast et al., 2008). This area has
been lagged behind other regions in terms of high-resolution
palaeoclimatic studies. Therefore comprehensive multidisciplinary
and high-resolution palaeoecological studies are necessary in order to
understand the complex environmental changes that took place in the
Arctic periglacial environments in the past.

Permafrost sequences exposed around the Laptev Sea coast have
proven to represent informative archives of Late Quaternary
environmental and climate dynamics. One of the best preserved
sequences on the Laptev Sea coastal region has been studied using
a multi-proxy approach at Bykovsky Peninsula (e.g. Schirrmeister
et al., 2002a,b; Meyer et al., 2002; Andreev et al., 2002b; Bobrov
et al., 2004; Kienast et al., 2005; Sher et al., 2005). Environmental
changes from the Middle to the Late Weichselian and into the
Holocene have been reconstructed through multidisciplinary
studies. The two clearest results of these studies are (i) the
continuous existence of a treeless grass/herb-dominated vegetation
he Laptev Sea coast and its implication for the reconstruction of Late
atology, Palaeoecology (2008), doi:10.1016/j.palaeo.2008.11.003
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Fig. 1. Map of the Arctic (I) and Laptev Sea region (II) showing the location of the studied section at Cape Mamontov Klyk (III).; 1 —
^
Olenek channel; 2 —

^
Bykovsky Peninsula; 3 —

^
Bol'shoi Lyakhovsky Island; source for III: GoogleEarth software.
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(Andreev et al., 2002b), and (ii) very cold winters, attested by the
continuous growth of thick ice wedges and by their stable-isotope
composition (Meyer et al., 2002; Hubberten et al., 2004).
Please cite this article as: Müller, S., et al., Testate amoebae record from t
Pleistocene and Holocene environments..., Palaeogeography, Palaeoclim
6Recent studies in the Arctic regions show a complex response of
6the environmental system to major climatic fluctuations during the
6Late Pleistocene and Holocene. In such situations it is difficult, if at all
he Laptev Sea coast and its implication for the reconstruction of Late
atology, Palaeoecology (2008), doi:10.1016/j.palaeo.2008.11.003
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possible, to find a single proxy which provides complete information
about the palaeoenvironment at local to regional scale. It is therefore
important to find complementary records and proxies for multi-
disciplinary investigation of Late Quaternary sediments in the Arctic.

Testate amoebae (Cercozoa & Amoebozoa; hereafter TA) are small
single-celled organisms (7–450 μm) with a distinct organic shell
(testa) and well-defined ecological preferences. They are distributed
worldwide in freshwater environments, in peat bogs, and mosses, but
they are also frequent in soils, especially in soils with a high organic
content. The empty shell remains intact after the death of the
amoebae and allows precise taxonomic identification; inmost cases to
species level (Beyens and Meisterfeld, 2001). An important advantage
for palaeoecological investigations is the short generation time, which
makes TA sensitive indicators of short-lived environmental changes.
This provides a basis for reconstruction of past environments and
climates. The occurrence of the fragile shells in fossil sequences also
reflects non-disturbed sediment accumulation without reworking.
Beyens and Chardez (1987) reported that the moisture content
determines the structure of TA communities. Therefore fossil TA
assemblages can be used to detect changes in local hydrological
conditions. TA have been widely studied in peat bogs (e.g. Schönborn,
1962; Tolonen, 1986), in particular in Sphagnum-moss habitats (e.g.
Charman, 2001; Gilbert et al., 2003, Schnitchen et al., 2003; Mitchell
et al., 2004; Lamentowicz and Mitchell, 2005), and in lakes (Ogden
and Hedley, 1980). Most of the former studies have been done in
Europe. In the Arctic terrestrial moss habitats were studied for TA in
Greenland (Beyens et al., 1992; Trappeniers et al., 2002), Spitsbergen
(Beyens et al., 1986), Canada (Beyens et al., 1990) and Alaska (Beyens
and Chardez, 1995). Smith (e.g. 1992, 1996) and Wilkinson (e.g. 1990,
1994) performed several case studies focusing on distribution and
ecology of terrestrial TA in the Antarctic soil environments.
UN
CO

RR
EC

Fig. 2. Stratigraphic scheme of the main studied site of Cape Mamontov Klyk with position
thermo-erosional valley: dendritic u-shaped valleys with flat floor, very moist, often wit
thermokarst depression: deep ground subsidence area due to permafrost melting oftenwith
lakes may occur in the depressions; thermokarst mounds: intra-polygon sediment blocks su
organic and mineral soils containing large amounts of ground ice, erosional relicts of Late Pl
may contain a lake.
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Studies from aquatic environments have shown that TA are good
palaeoenvironmental indicators in freshwater environments. For
example Medioli and Scott (1988) noted that TA require a certain
minimum water temperature (6 °C) at some time during the year to
reproduce successfully. McCarthy et al. (1995) compared palaeotem-
peratures and precipitation amounts derived from pollen data with
the TA assemblages from the same sediment. Patterson et al. (1985)
found that the division between two major TA assemblages in some
small lakes appears to be a function of seasonal temperatures.
Dallimore et al. (2000) studied TA communities in lakes of the
Canadian Arctic in order to correlate modern TA assemblages to
varying environmental variables (e.g. summer lake temperature,
water conductivity) and in turn, to relate this information to past
assemblages from core material. In East Siberia the TA analysis of
lacustrine sediments of the Last Interglacial and the Holocene has
been reported from Bol'shoy Lyakhovsky Island in the Laptev Sea
(Andreev et al., 2004a,b; Andreev et al., in press), from Bykovsky
Peninsula, east of the Lena Delta (Bobrov et al., 2004), and from the
Olenek Channel, the westernmost outlet of the Lena Delta (Schirrme-
ister et al., 2003) where differences between Late Pleistocene and
Holocene environmental conditions as well as during Late Pleistocene
climate fluctuations are convincingly reflected by TA records.

2. Study area

The study area, Cape Mamontov Klyk (73°60′–
^
73°63′N, 116°88′–

^
117°18′E; Fig. 1), is located at the Laptev Sea coast between the Anabar
Bay and the Olenek Bay, about 30 km to the north of the
Pronchishchev Ridge (about 270 m a.s.l.). The coastal lowland is a
gently inclined plain ca 25–

^
35 m a.s.l. in elevation. Wide flat

watersheds with gentle slopes and shallow valleys characterize the
TE
D

of investigated sections. Explanations for geomorphological terms used in this study:
h surface water and little ponds, dense grass/sedge vegetation; width about 50 m;
large extent (100 m to several km), dominated by wet tundra vegetation (mosses, grass),
rrounding the perimeter of ice wedges that have melted; Yedoma: frozen sequences of
eistocene surface; Alas: steep-sided depression formed by the melting of permafrost, it

he Laptev Sea coast and its implication for the reconstruction of Late
atology, Palaeoecology (2008), doi:10.1016/j.palaeo.2008.11.003
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Table 1t1:1

Selected geochemical characteristics, radiocarbon ages, and short lithological description of analysed samples; samples marked with ⁎ containing no testate amoebae shells
t1:2
t1:3 Sample Profile/unit 1/transition Height (m a.s.l.) pH TOC (wt.%) C/N Radiocarbon age (14C yr BP) Lithology

t1:4 MaK-1-9⁎ A to B 4.30 – 0.29 0.68 N44,520 Fine-sand silt, grass roots
t1:5 MaK-1-12 1/B 5.30 – 11.10 24.48 40,410+1230/−1070 Peaty palaeosol
t1:6 MaK-1-13 1/B 5.50 7.4 1.76 8.14 – Silty interlayer
t1:7 MaK-1-14 1/B 5.70 – 3.18 11.17 – Peaty palaeosol, peat inclusion
t1:8 MaK-2-1⁎ 1/A 6.20 7.3 0.21 2.34 N37,100 Sand, organic free
t1:9 MaK-2-3 1/B 7.40 6.5 15.30 24.96 – Peaty palaeosol, cryoturbated, peat inclusion
t1:10 MaK-2-4 1/B 7.80 6.6 3.02 10.46 – Fine sand silt, interlayer, plant remains
t1:11 MaK-2-5 1/B 8.10 – 2.82 10.00 – –

t1:12 MaK-2-6 1/B 8.30 6.0 9.90 18.65 42,260+1860/−1510 Peaty palaeosol, cryoturbated, peat inclusion
t1:13 MaK-2-7⁎ 1/B 8.70 7.9 0.98 7.37 – Fine sand silt, interlayer, plant remains, net-like structures
t1:14 MaK-2-8 1/B 9.20 7.4 0.83 5.35 – Fine sand to silt
t1:15 MaK-2-9 1/B 9.80 6.8 13.50 15.48 44,310+1260/−1090 Peaty palaeosol, cryoturbated, peat inclusion
t1:16 MaK-3-1⁎ 1/B 4.90 – 1.20 6.57 – Fine sand, peat inclusions
t1:17 MaK-3-3⁎ 1/B 5.90 – 1.96 9.78 – Reworked, refrozen slope material?, peat inclusion
t1:18 MaK-3-5 1/B 6.90 7.0 4.07 11.82 – Palaeosol, fine-sand silt, small, discontinuous peat inclusion
t1:19 MaK-3-7 1/B 7.00 6.7 4.86 10.00 43,510+1010/−900 Peaty palaeosol, see MaK 3–5
t1:20 MaK-3-10 1/B 8.40 7.2 2.56 6.56 – Palaeosol, plant remains
t1:21 MaK-3-12⁎ 1/B 9.40 7.3 0.81 2.95 – Palaeosol, plant remains
t1:22 MaK-3-14 1/B 10.30 7.6 2.72 6.67 43,620+1700/−1400 Peaty palaeosol, peat inclusions
t1:23 MaK-3-16 1/B 12.40 6.7 3.55 8.58 – Peaty palaeosol, peat inclusions
t1:24 MaK-3-17 1/B 13.20 – 3.62 8.91 31,250+1080/−950 Peaty palaeosol, peat inclusions
t1:25 MaK-5-3 1/C 14.30 6.7 3.37 8.08 24,600+170/−160 Palaeosol, peat inclusion, wood remains (twigs, roots)
t1:26 MaK-5-4⁎ 1/C 14.60 6.6 1.97 5.80 – Silty sand, grass roots, weakly laminated, sand laminae
t1:27 MaK-6-4⁎ 1/C 16.00 – 2.02 6.27 20,640±90 Sandy silt, vertical grass roots
t1:28 MaK-8-3 1/C 15.80 – 2.07 7.32 – Peaty palaeosol, peat inclusion, wood remains
t1:29 MaK-8-4⁎ 1/C 16.30 6.7 4.93 12.41 – Peaty palaeosol, peat inclusion, wood remains
t1:30 MaK-9-3 1/C 20.90 6.7 4.06 10.84 – Fine-sand silt, wood remains
t1:31 MaK-9-4 1/C 21.40 6.4 3.53 9.54 – Fine-sand silt, wood remains
t1:32 MaK-9-5 1/C 21.90 – 4.90 13.41 16,510±60 Fine-sand silt, wood remains
t1:33 MaK-10-5 1/D 24.30 6.7 21.80 16.53 9480±40 Cryoturbated palaeosol, peat inclusion
t1:34 MaK-10-7 1/D 24.90 – 11.10 15.25 – Peaty palaeosol, peat inclusion
t1:35 MaK-10-8 1/D 25.20 7.2 7.89 13.81 9510±45 Cryoturbated palaeosol, peat inclusion
t1:36 MaK-10-10⁎ 1/D 25.75 6.6 10.54 14.58 – Palaeosol, peat inclusion
t1:37 MaK-10-11 1/D 26.00 – 16.10 14.69 2785±30 Palaeosol, peat inclusion
t1:38 MaK-11-2⁎ sub-profile 2.50 – 3.50 10.58 11,060±45 Sandy silt, plant remains
t1:39 MaK-11-6 sub-profile 4.20 – 2.13 10.31 2075±30 Silty fine sand, laminated, grass roots
t1:40 MaK-11-7 sub-profile 4.90 5.5 1.99 9.57 – Peaty palaeosol, peat inclusions
t1:41 MaK-11-8⁎ sub-profile 5.20 – 3.81 11.57 – Peaty soil, peat inclusions
t1:42 MaK-11-9 sub-profile 5.50 5.8 6.41 12.85 – Peat inclusion
t1:43 MaK-11-10 sub-profile 5.80 – 6.55 12.82 – Fine sand to silt
t1:44 MaK-11-11 sub-profile 6.00 – 7.48 14.07 – Transition layer, soil
t1:45 MaK-12-1 2/C 0.50 6.6 6.13 10.89 27,220+310/−300 Peaty palaeosol, peat inclusion
t1:46 MaK-12-2 2/C 0.75 – 8.22 13.44 – Peaty palaeosol, peat inclusion
t1:47 MaK-12-4 2/C 1.00 6.6 8.52 15.58 – Peaty palaeosol, peat inclusion
t1:48 MaK-12-5 2/C 1.25 6.3 5.58 13.08 – Cryoturbated palaeosol, peat inclusion
t1:49 MaK-13-7 2/C 4.30 7.4 3.34 9.30 24,150±120 Fine-sand silt, few organic, wood remains
t1:50 MaK-14-4 sub-profile 1.40 5.6 14.15 11.73 1480±20 Alas deposit, interbedding peaty layers (2-4 cm)
t1:51 MaK-14-5 sub-profile 1.70 – 3.47 11.01 – Alas deposit, sand-peat interbedding
t1:52 MaK-14-6 sub-profile 2.00 5.3 3.57 11.54 – Alas deposit, sand-peat interbedding
t1:53 MaK-14-7⁎ sub-profile 2.30 – 6.18 15.82 – Alas deposit, sand-peat interbedding, more peaty
t1:54 MaK-14-8 sub-profile 2.60 5.5 4.88 14.34 3720±30 Alas deposit, peaty soil
t1:55 MaK-14-9⁎ sub-profile 2.90 – 4.20 14.11 – Alas deposit, cryoturbated peat soil, peat inclusion
t1:56 MaK-15-5⁎ 2/C 6.60 – 2.26 9.31 21,890±90 Fine-sand to silt, wood (twigs, roots)
t1:57 MaK-16-5⁎ 2/C 9.30 – 1.81 9.06 20,180±80 Fine-sand to silt, wood (twigs, roots)
t1:58 MaK-17-3 2/C 11.50 – 2.49 10.24 18,920±70 Peaty palaeosol, wood remains
t1:59 MaK-17-7⁎ 2/C 13.60 7.0 2.06 9.46 17,700+70/−60 Palaeosol
t1:60 MaK-19-3⁎ 2/C 15.30 – 1.41 7.17 16,350±90 Sand, few wood remains, finely distributed plant remains
t1:61 MaK-19-4 2/C 15.60 7.5 5.06 13.37 – Palaeosol, many wood remains, organic-rich spots
t1:62 MaK-19-7⁎ 2/C 17.10 7.5 2.61 11.32 14,545±50 Sandy silt

4 S. Müller et al. / Palaeogeography, Palaeoclimatology, Palaeoecology xxx (2008) xxx–xxx
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UNrelief. The coastal lowland is drained to the sea by several small
streams. The studied section (Fig. 2) is located at the lowland's cliff (10
to 25 m a.s.l.) formed by frozen deposits and ice wedges. The section
extends, from the Nuchcha Dziele River mouth ca 2.2 km eastwards
close to the navigation signal of Cape Mamontov Klyk.

The continental Arctic climate of this region is characterized by long
coldwinters and short cool summers. Themean annual air temperature is
about −

^
14 °C. The mean January temperature is about −

^
22 °C and the

mean July temperature 5 to 6 °C. Mean annual precipitation is 230–

^
270 mm with 75% of it falling as rain during the summer months. In
general, the snow cover stays from the end of September to the end of
June. The snow cover is thin but locally reaches up to 50 cm. The study
Please cite this article as: Müller, S., et al., Testate amoebae record from t
Pleistocene and Holocene environments..., Palaeogeography, Palaeoclim
1area belongs to the zone of continuous permafrost reaching 400–
^
600 m

1(Yershov, 1989). The mean annual ground temperature is about −
^
11 to

1−
^
12 °C. The active layer varies in depth from 20 to 50 cm in July.

1This area belongs to the northern tundra vegetation zone (Atlas
1Arktiki, 1985). The CAVM Team (2003) classifies it further to the
1nontussock-sedge, dwarf-shrub, moss tundra characterized by hemi
1prostrate and dwarf shrubs (b40 cm high) and a well-developed moss
1layer (5–

^
20 cm thick). Prostrate and hemi prostrate dwarf shrubs

1include Betula exilis, Salix arctica, S. polaris, S. reticulata, and Dryas.
1Among other common taxa are sedges (Carex arctisibirica, C. bigelowii,
1and Eriophorum), grasses (e.g. Arctagrostis latifolia, Poa arctica), forbs
1(e.g. Silene, Sagina nivalis, Senecio frigidus, Saxifraga oppositifolia,
he Laptev Sea coast and its implication for the reconstruction of Late
atology, Palaeoecology (2008), doi:10.1016/j.palaeo.2008.11.003
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Table 2t2:1

List of testate amoebae taxa in Late Pleistocene and Holocene deposits and their habitat
preference (after Chardez, 1965)

t2:2
t2:3 Species Frequency

(%)
Ecology

t2:4 Pleistocene Holocene Surface
samples

t2:5 Arcella arenaria v. compressa Chardez 10.3 18.2 0.97 M
t2:6 A. artocrea Leidy 9.1 0.19 Sh
t2:7 A. c.f. crenulata Deflandre 3.4 ShM
t2:8 A. discoides v. scutelliformis Playfair 6.9 W
t2:9 A. rotunda v. aplanata Deflandre 0.39 ShM
t2:10 A. sp. 3.4 –

t2:11 Bullinularia gracilis Thomas 3.4 MS
t2:12 B. indica Penard 0.6 MS
t2:13 Trigonopyxis arcula (Leidy) Penard 10.3 MS
t2:14 T. minuta Schönborn & Peschke 3.4 S
t2:15 Centropyxis aculeata (Ehrenberg)

Stein
3.4 W

t2:16 C. aculeata f. A 3.4 W
t2:17 C. aerophila Deflandre 86.2 63.6 5.41 M
t2:18 C. aerophila v. minuta Chardez 86.2 72.7 0.58 WMS
t2:19 C. aerophila v. sphagnicola Deflandre 41.4 45.5 ShM
t2:20 C. cassis (Wallich) Deflandre 3.4 27.3 0.19 ShMS
t2:21 C. constricta (Ehrenberg) Penard 51.7 18.2 6.76 MS
t2:22 C. constricta v. minima Decloitre 79.3 63.6 12.16 MS
t2:23 C. discoides (Penard) Deflandre 3.4 W
t2:24 C. gibba Deflandre 3.4 ShM
t2:25 C. orbicularis Deflandre 20.7 18.2 0.19 WShM
t2:26 C. plagiostoma Bonnet, Thomas 86.2 45.5 0.39 S
t2:27 C. plagiostoma f. A major 37.9 0.58 S
t2:28 C. plagiostoma f. B minor 48.3 54.5 3.86 S
t2:29 С. plagiostoma Bonnet, Thomas

v. oblonga Chardez
9.1 S

t2:30 C. plagiostoma v. terricola
Bonnet, Thomas

3.4 54.5 S

t2:31 C. platystoma (Penard) Deflandre 6.9 27.3 0.19 WMS
t2:32 C. pontigulasiformis Beyens, Chardez

& and De Bock
0.19 WM

t2:33 C. sylvatica (Deflandre) Thomas 86.2 72.7 4.05 S
t2:34 C. sylvatica v. globulosa Bonnet 3.4 S
t2:35 C. sylvatica v. microstoma Bonnet 37.9 9.1 S
t2:36 C. sylvatica v. minor Bonnet, Thomas 86.2 63.6 0.39 ShS
t2:37 C. sp. 1 3.4 –

t2:38 C. sp. 2 9.1 –

t2:39 Cyclopyxis arcelloides Penard 3.4 WShM
t2:40 С. eurystoma Deflandre 44.8 36.4 1.16 S
t2:41 C. eurystoma v. parvula

Bonnet, Thomas
72.4 81.8 11.39 S

t2:42 C. kahli Deflandre 67.2 18.2 WShS
t2:43 C. c.f. kahli Deflandre f. A (minor) 6.9 WShS
t2:44 C. sp. 6.9 –

t2:45 Plagiopyxis bathystoma Bonnet 10.3 S
t2:46 P. callida Penard 20.7 9.1 WShMS
t2:47 P. declivis Thomas 3.4 ShS
t2:48 P. minuta Bonnet 3.4 0.39 MS
t2:49 P. penardi Thomas 31.0 36.4 WS
t2:50 Heleopera petricola Leidy 20.7 WSh
t2:51 H. petricola v. amethystea Penard 6.9 WSh
t2:52 H. petricola v. humicola

Bonnet & Thomas
3.4 S

t2:53 H. sphagni Leidy 3.4 WM
t2:54 Nebela bigibbosa Penard 0.19 WShM
t2:55 N. collaris (Ehrenberg) Leidy 3.4 18.2 ShM
t2:56 N. lageniformis Penard 3.4 0.39 ShM
t2:57 N. parvula Cash 6.9 ShM
t2:58 N. penardiana Deflandre 9.1 W
t2:59 N. tincta (Leidy) Awerintzew 3.4 9.1 9.85 ShM
t2:60 N. tincta f. stenostoma Jung 0.58 ShMS
t2:61 N. sp. 6.9 –

t2:62 Argynnia sp. 31.0 18.2 WSh
t2:63 Argynnia sp. f. A (minor) 3.4 WSh
t2:64 Schoenbornia humicola (Schönborn)

Decloitre
5.02 S

t2:65 Sch. viscicula Schönborn 0.39 S
t2:66 Difflugia bryophila (Penard) Jung 3.4 ShM
t2:67 D. cratera Leidy 3.4 18.2 W

(continued on next page)

t2:68Table 2 (continued)

t2:69Species Frequency
(%)

Ecology

t2:70Pleistocene Holocene Surface
samples

t2:71D. difficilis Thomas 18.2 W
t2:72D. globulus Wallich 37.9 36.4 1.93 WSh
t2:73D. lucida Penard 20.7 9.1 WSh
t2:74D. mammilaris Penard 6.9 W
t2:75D. microstoma (Thomas) 3.4 W
t2:76D. minuta Rampi 10.3 9.1 Sh
t2:77D. oblonga Ehrenberg 9.1 W
t2:78D. oblonga v. longicollis Gassowsky 9.1 W
t2:79D. penardi Hopkinson 6.9 9.1 W
t2:80D. pristis Penard 6.9 W
t2:81D. c.f. pyriformis Perty 3.4 W
t2:82D. sp. 1 3.4 –

t2:83D. sp. 2 3.4 –

t2:84Phryganella acropodia (Hert. & Less.)
Hopkinson

55.2 27.3 0.97 WMS

t2:85Ph. acropodia c.f. v. australica Playfair 13.8 45.5 W
t2:86Ph. hemisphaerica Penard 9.1 WShM
t2:87Paraquadrulla irregularis Archer 3.4 M
t2:88Assulina muscorum Greef 2.90 M
t2:89Valkanovia delicatula (Valkanov) 0.39 ShM
t2:90Euglypha ciliata (Ehrenberg) Wailes 0.19 WShM
t2:91E. ciliata f. glabra Wailes 9.46 WShMS
t2:92E. cuspidata Bonnet 0.39 S
t2:93E. dolioliformis Bonnet 0.19 MS
t2:94E. laevis (Ehrenberg) Perty 5.41 WShMS
t2:95E. strigosa f. glabra Wailes 2.32 ShMS
t2:96Corythion dubium Taranek 0.77 WShM
t2:97Trinema enchelys (Ehrenberg) Leidy 0.58 WShM
t2:98T. lineare (Ehrenberg) Leidy 6.56 WShMS
t2:99T. penardi Thomas-Chardez 1.93 MS
t2:100Pseudodifflugia c.f. gracilis

Schlumberger
3.4 27.3 W

t2:101P. gracilis v . terricola Bonnet &
Thomas

6.9 9.1 S

t2:102Testacea sp. 1 10.3 9.1 –

t2:103Testacea sp. 2 –

t2:104Testacea sp. 3 0.19 –

t2:105N, species 68 42 40

S — soil, Sh — Sphagnum, M — other mosses, W — water. t2:106
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Pedicularis lanata), mosses and liverworts (Tomenthypnum nitens,
Hylocomnium splendens, Aulacomnium turgidum), and lichens (Tham-
nolia, Peltigera, Cladonia).

3. Data and analytical methods

3.1. Sediments and chronology

Two large vertical composite profiles were studied at the coastal
cliff consisting mostly of frozen sediments accumulated in polygonal
centres of ice wedge polygon systems (Fig. 2). The sub-profiles are
mostly exposed in so-called thermokarst mounds between large ice
wedges. Additionally, deposits from a thermo-erosional valley and
from a thermokarst depression were collected. After cleaning the
profile wall the soil morphology of the sections were described in the
field. Then about 0.5–

^
1 kg of frozen sediment was collected with a

hammer or a small axe and stored in sealed plastic bags formultiproxy
analysis, including TA analysis, and radiocarbon dating.

In the laboratory the content of total organic carbon (TOC) and
total nitrogen (TN) were measured with a CNS elementary analyser
(Elementar vario EL III). pH measurements of the filtrated water
extract were done with a pH-meter (WTW multilab 540) in the
laboratory. Organic material from 32 samples was extracted for
Accelerated Mass Spectrometry (AMS) dating at the Leibniz Labora-
tory (Nadeau et al., 1997, 1998). For TA analysis we tried to select dated
samples. The age estimation of non-dated sediment samples was done
he Laptev Sea coast and its implication for the reconstruction of Late
atology, Palaeoecology (2008), doi:10.1016/j.palaeo.2008.11.003
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Table 3t3:1

List of summarised testate amoebae taxa
t3:2
t3:3 Ecological preference/

habitat
TA groups TA taxa

t3:4 Eurybiotic soil Centropyxis plagiostoma group
(5 taxa)

C. plagiostoma
t3:5 C. plagiostoma f. A major
t3:6 C. plagiostoma f. B minor
t3:7 С. plagiostoma v. oblonga
t3:8 C. plagiostoma v. terricola
t3:9 Plagiopyxis group (3 taxa) P. callida
t3:10 P. minuta
t3:11 P. penardi
t3:12 Sphagnophilic and moss Arcella group (4 taxa) Arcella arenaria v.

compressa
t3:13 A. artocrea
t3:14 A. c.f. crenulata
t3:15 A. rotunda v. aplanata
t3:16 Heleopera group (3 taxa) Heleopera petricola
t3:17 H. petricola v. amethystea
t3:18 H. sphagni
t3:19 Nebela group (5 taxa) N. collaris
t3:20 N. lageniformis
t3:21 N. parvula
t3:22 N. penardiana
t3:23 N. tincta
t3:24 Difflugia group 2 (4 taxa) Difflugia bryophila
t3:25 D. globulus
t3:26 D. lucida
t3:27 D. minuta
t3:28 Aquatic Difflugia group 1 (8 taxa) D. cratera
t3:29 D. difficilis
t3:30 D. mammilaris
t3:31 D. microstoma
t3:32 D. oblonga
t3:33 D. oblonga v. longicollis
t3:34 D. penardi
t3:35 D. pristis
t3:36 D. c.f. pyriformis

Taxawith similar ecological preferences were grouped into three ecological groups. (see
also Fig. 3.)t3:37
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using a simple altitude-age correlation according to Schirrmeister
et al. (in press).

In order to compare fossil and modern TA assemblages we
collected ten modern surface soil samples (ca 500 g) from different
permafrost formations and habitats in the study area. Detailed
sedimentological and geomorphological descriptions as well as results
of more comprehensive palaeoecological and geochronological inves-
tigations of the studied sections are presented in separate papers
(Schirrmeister et al., 2004, in press). Here we focus on the additional
data sets, which are relevant to the TA study.

3.2. TA analysis

Three grams of each representative and carefully mixed fossil or
modern surface sample were prepared for TA analysis. The samples
were first suspend in distilled water and passed through a 500 μm
meshed sieve to remove large masking organic and mineral particles.
The next day a drop of suspension mixed with a drop of glycerine was
added on a glass slide. The samples were counted under light
microscope at magnifications 100–

^
400×

^
. On the average, five slides

were examined for each sample. If possible a minimum of 150 TA
shells were counted for each sample. We stopped counting if no shells
were found in the first two slides.

The TA identification followed Chardez (1967), Ogden and Hedley
(1980), Ogden (1983), Ellison and Ogden (1987), Gel'tser et al. (1985,
1995). For ecological interpretation of TA assemblages we followed
Chardez (1965), former arctic studies (Beyens et al., 1990,1995; Dallimore
et al., 2000, Andreev et al., 2004a; Bobrov et al., 2004), as well as our own
field observations. TA analysis described here was done in the laboratory
of the Soil Science Faculty at Moscow State University.
Please cite this article as: Müller, S., et al., Testate amoebae record from t
Pleistocene and Holocene environments..., Palaeogeography, Palaeoclim
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2The TILIA, TILIAGRAPH, and TGView computer programswere used
2for calculation of taxa percentages and graphing the data (Grimm,
21993, 2004). The sum of all TA taxa counted in each sample was taken
2as 100%. Photographs were done with the light microscope Axioskop
2Zeiss 40 and a digital camera (inteq). Scanning electron microscope
2observations were done using the microscope Jeol GSM 6060A.

24. Results

24.1. Description of the general profile

2The studied sequences were subdivided into several units (A to D,
2Fig. 2) according to geochronological and sedimentological data.
2Results of sediment analyses, which are used for the interpretation of
2TA records, are presented in Table 1. The lowest unit A consists of
2yellowish-grey, weakly bedded fine-grained sand without visible
2plant remains (lower part of MaK-1). A transition layer of about one
2meter thickness, which contains numerous in situ grass roots, covers
2the organic-free sands. The sand is considered as fluvial deposit, and
2the transition layer reflects shallow facies conditions of a flood plain.
2The subsequent unit B (upper part of MaK-1, MaK-2 and MaK-3)
2consists of an alternation of four cryoturbated peaty horizons and of
2weakly laminated, dark-grey silty to fine sandy interbeds. The peaty
2horizons mostly consist of brown coloured moss peat. The sandy
2interbeds contain numerous plant remains like grass roots and twig
2fragments. The sediments of unit B are most probably formed by
2alternating processes of alluviation in the flood plain. Both units
2contain separate ice wedges and are additionally penetrated by ice
2wedges coming from the overlying unit C. The transition to unit C is
2gradual without a sharp boundary. Unit C represents the Ice Complex
2deposits with their typical huge ice wedges reaching from about 25 m
2a.s.l. down below the present sea level. Unit C is composed of many
2palaeosol layers with peat inclusions and numerous twig fragments.
2This unit is subdivided into two subunits. The lower horizon of about 0
2to 2 m a.s.l. consists of cryoturbated peat soils with silty to fine sandy
2interbeds (MaK-12). The main part of unit C is formed by several
2weakly developed palaeosol horizons and silty to fine sandy interbeds
2with in situ grass roots and fragments of shrub twigs (MaK-5 to MaK-9
2and Mak-13 to MaK-19). In places, unit C is covered by a 2 m thick
2sequence of peat soils representing the filling of small thermokarst
2ponds, which have developed on the surface of the Ice Complex
2formation (Yedoma). They were often observed as peat spots
2irregularly distributed on the Yedoma surface. These uppermost
2deposits (MaK-10) were assigned to the Holocene (unit D). Addition-
2ally unit D includes deposits of thermo-erosional valleys (sub-profile
2MaK-11) and of a thermokarst depression, 8 km west of the Nuchcha
2Dziele River mouth (sub-profile MaK-14).

24.2. TA analysis of fossil samples

2In total, 59 samples from Late Quaternary deposits were studied.
2TA were found in 40 samples of unit B, C and D. A total of 97 species,
2varieties, and morphological forms of TA (Table 2) belonging to
2different ecological groups were identified (Table 3). The sand
2deposits of unit A did not contain visible plant remains and organic
2material at all. No TA shells could be found in these sediments. The
2number of taxa found per sample varied from 1 to 32. The number of
2TA shells counted in one sample varied from 1 to 356. In the fossil TA
2diagram (Fig. 3) the samples were ordered following the age-height
2model. According to the chrono-stratigraphic information for Siberia
2and results of the radiocarbon AMS-dating the diagram was divided
2into three zones – Kargin Interstadial (MIS 3, Middle Weichselian),
2Sartan Stadial (MIS 2, Late Weichselian), and Holocene (MIS 1) (Kind,
21974; Hubberten et al., 2004; Svendsen et al., 2004).
2Kargin Interstadial sediments dated to between 44,310 and 26,400
2

14C yr BP. In sediments dated to 44,310–
^
40,000 14C yr BP the highest
he Laptev Sea coast and its implication for the reconstruction of Late
atology, Palaeoecology (2008), doi:10.1016/j.palaeo.2008.11.003
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Table 4t4:1

List of studied samples containing testate amoebae shells and palaeoecological interpretation of testate amoebae assemblages (correlated ages were estimated according to age-
height correlations of Schirrmeister et al., in press)

t4:2
t4:3 Sample ID,

height, m a.s.l.
Type of sediment Age, 14C yr BP

correlated ages
TA assemblages with palaeoecological interpretation

t4:4 Unit B
t4:5 Peat-sand-complex deposits
t4:6 MaK-1-

14, 5.7
Peaty palaeosol, cryoturbated, peat
inclusion

40,800 32 species and varieties. Highest species diversity (10 hydrobiotic Difflugia taxa) within studies
samples including modern ones. Presence of sphagnobiotic Heleopera, Nebela and Argynnia sp.
indicates boggy habitat conditions with permanent or temporal open water bodies. Numerous
ostracod shells also indicate the existence of aquatic habitats. The climate was rather warm and wet.

t4:7 MaK-1-
13, 5.5

Silty interlayer 40,600 13 taxa. Presence of Trigonopyxis arcula, characteristic for bogs with low water table (Woodland et al.,
1998; Tolonen et al., 1992) reflects soil with well-developed humus litter.

t4:8 MaK-1-
12, 5.3

Peaty palaeosol 40,410+1230/
−1070

15 species and varieties. Mainly eurybiotic Centropyxis aerophila and C. sylvatica. Sphagnobiotic
Trigonopyxis arcula, Heleopera petricola, Argynnia sp. f. A (minor) and calceophilic Centropyxis taxa
indicating meso-oligotrophic peatland conditions.

t4:9 MaK-2-3, 7.4 Peaty palaeosol, cryoturbated, peat
inclusion

41,600 17 species, varieties and forms including hydrophilic Difflugia, sphagnobiotic species from Heleopera
and Argynnia. 2 species from the hydrophilic Arcella discoides v. scutelliformis. First find of
Paraquadrulla irregularis in Late Pleistocene sediments. Increasing soil moisture.

t4:10 MaK-2-4, 7.8 Fine sand silt, plant remains 41,900 15 taxa. Sphagnobiotic/hydrophilic Heleopera petricola v. amethystea and hydrophilic Difflugia sp. 1
and sp. 2, indicating increasing moisture.

t4:11 MaK-2-5, 8.1 Palaeosol 42,100 12 species, varieties and forms from soil-eurybiotic Centropyxis, Cyclopyxis, Plagiopyxis, and
Phryganella, partly represented by smaller forms (minor, minuta, minima). Soil environment.

t4:12 MaK-2-6, 8.3 Peaty palaeosol, peat inclusion 42,260+1860/
−1510

8 taxa. Mostly soil and eurybiotic species, like Centropyxis aerophila, Cyclopyxis eurystoma v. parvula.
Single find of Centropyxis plagiostoma. Sphagnophilic Heleopera petricola and H. sphagni indicating
peatland development. Hydrophilic taxa are absent. Sediment formation under more dry conditions,
than in the previous sample.

t4:13 MaK-2-8, 9.2 Fine sand to silt 43,000 15 taxa including calceophilic C. plagiostoma and Cyclopyxis kahli, sphagnophilic Heleopera petricola
and Argynnia sp., hydrophilic Difflugia globulus. Rather wet meso-oligotrophic peatland conditions.

t4:14 MaK-2-9, 9.8 Peaty palaeosol, peat inclusion 44,310+1260/
−1090

24 taxa including genera Centropyxis (50%), Arcella, Cyclopyxis, Heleopera, Nebela, Difflugia,
Pseudodifflugia, and Phryganella. Aquatic Centropyxis aculeata and C. cassis as well as hydrophilic
Difflugia (D. globulus, D. lucida, D. penardi) are indicating wet habitat conditions. Calceophilic
Centropyxis plagiostoma and Cyclopyxis kahli suggests pH close to neutral. Sphagnobiotic Arcella and
Nebela species suggest an oligotrophic environment typical for bogs with a high water table.

t4:15 MaK-3-5, 6.9 Palaeosol, fine- sand silt, small,
discontinuous peat inclusion

43,700 12 taxa. Dominated by eurybiotic and soil taxa (including Plagiopyxis). Species diversity decreased
only half of previous level. No hydrophilic species. Rather dry soil conditions.

t4:16 MaK-3-7, 7.0 Palaeosol, fine- sand silt, small,
discontinuous peat inclusion

43,510+1010/
−900

17 taxa (mostly Centropyxis and Cyclopyxis taxa). Hydrophilic Difflugia globulus and sphagnobiotic
Heleopera petricola v. humicola reflecting more humid conditions compared to MaK-3-5.

t4:17 MaK-3-10, 8.4 Palaeosol 43,550 13 taxa. Predominantly soil and eurybiotic species from Centropyxis, Cyclopyxis, Plagiopyxis, and
Phryganella mostly represented by smaller forms likeminor, minuta, minima. High decrease of species
diversity and disappearance of numerous genera (in detail hydro- and sphagnobiotic taxa).
Sedimentation under soil conditions.

t4:18 MaK-3-14,
10.3

Peaty palaeosol, peat inclusions 43,620+1700/
−1400

3 taxa. Soil-eurybiotic Centropyxis aerophila, C. constricta v. minima, C. plagiostoma f. minor.
Unfavourable conditions for TA, probably too dry.

t4:19 MaK-3-16,
12.4

Peaty palaeosol, peat inclusions 32,700 10 soil-eurybiotic taxa from Centropyxis, Cyclopyxis, and Phryganella. Centropyxis and Cyclopyxis taxa
mostly represented by f. minor, minuta, minima reflecting dry soil conditions.

t4:20 MaK-3-17, 13.2 Peaty palaeosol, peat inclusions 31,250+1080/
−950

9 taxa. Species composition is similar to MaK 3-16. However, the presence of hydrophilic and
sphagnobiotic Argynnia sp. indicates wetter habitat conditions.

t4:21 Unit C
t4:22 Ice Complex sediments
t4:23 Profile 1
t4:24 MaK-5-3, 14.3 Palaeosol, peat inclusion 24,600+170/

−160
21 taxa. Presence of sphagnobiotic Trigonopyxis arcula and T. minuta, inhabitants of a coarse-humus
litter, as well as soil taxa Plagiopyxis callida, P. minuta, and P. penardi.

t4:25 MaK-8-3, 15.8 Peaty palaeosol, peat inclusion 22,000 11 species and forms. Predominantly soil taxa from genera Centropyxis, Cyclopyxis, Plagiopyxis, and
Phryganella. Presence of sphagnobiotic Nebela parvula reflects short flooding. Absence of calceophilic
taxa indicates acidic pH of soil solution.

t4:26 MaK-9-3, 20.9 Fine-sand silt 18,000 16 taxa of soil-eurybiotic Centropyxis, Cyclopyxis, Plagiopyxis, and Phryganella. Dominance of
calceophilic C. plagiostoma (43.5%) point to nearly neutral pH soil solution.

t4:27 MaK-9-4, 21.4 Fine-sand silt 17,600 15 taxa. Species composition similar to that in MaK 9-3, but soil-living Plagiopyxis is replaced by
hydrophilic Difflugia globulus and D. lucida. Presence of hydro-sphagnobiotic Argynnia sp. indicating
increasing habitat moisture.

t4:28 MaK-9-5, 21.9 Fine-sand silt 16,510±60 17 taxa from the soil-eurybiotic group,mainly (63.5%) represented by small sized forms. Soil formation
under unfavourable conditions – lower temperatures and decreasing moisture.

t4:29 Unit D2

t4:30 Holocene cover
t4:31 MaK-10-5,

24.3
Cryoturbated palaeosol, peat inclusion 9480±40 17 species and varieties reflecting meso-oligotrophic peatland conditions. Arcella arenaria v.

compressa, Argynnia sp., and Phryganella hemisphaerica are indicating active processes of
paludification.

t4:32 MaK-10-7,
24.9

Peaty palaeosol, peat inclusion 9500 13 taxa reflecting soil formation under dry conditions.

t4:33 MaK-10-8,
25.2

Cryoturbated palaeosol, peat inclusion 9510±45 7 taxa reflecting the same environmental conditions like in MaK 10-7.

t4:34 MaK-10-11,
26.0

Palaeosol, peat inclusion 2785±30 4 taxa. Centropyxis cassis and Heleopera sphagni indicating peatland habitat conditions.

(continued on next page)(continued on next page)
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t4:35 Table 4 (continued)

t4:36 Sample ID,
height, m a.s.l.

Type of sediment Age, 14C yr BP
correlated ages

TA assemblages with palaeoecological interpretation

t4:37 Profile 2
t4:38 MaK-12-1, 0.5 Peaty palaeosol, peat inclusions 27,220+310/

−300
19 species and intraspecific taxa. Mostly soil-eurybiontic species. Hydrophilic Difflugia globulus and D.
pristis c.f., and single find of sphagnobiotic Argynnia sp. reflect rather wet conditions. Centropyxis
plagiostoma represented by different morphological types point to meso-oligotrophic water regime of
the habitat. Numerous diatom shells also reflect wet habitat conditions.

t4:39 MaK-12-2,
0.75

Peaty palaeosol, peat inclusions 27,000 19 taxa. Species composition is similar to MaK 12-1, but hydrophilic Difflugia are replaced by aquatic
and sphagnobiotic Arcella. Numerous diatom and ostracod shells support the assumption of moist bog
conditions.

t4:40 MaK-12-4, 1.0 Peaty palaeosol, peat inclusions 26,800 23 taxa. Sphagnobiotic Arcella, Nebela and Difflugia indicate meso-oligotrophic peatland conditions.
Dominance of Centropyxis taxa and especially C. plagiostoma confirms this interpretation.

t4:41 MaK-12-5,
1.25

Cryo-turbated palaeosol, peat inclusion 26,400 15 taxa. Species composition resembles that in MaK 12-4. Meso-oligotrophic peatland conditions.

t4:42 MaK-13-7, 4.3 Fine-sand silt 24,150±120 4 Centropyxis taxa. Presence of morphological f. major of calceophilic Centropyxis plagiostoma
previously found under higher moisture conditions (Bobrov et al., 2004) point to wet soil
environments.

t4:43 MaK-17-3, 11.5 Peaty palaeosol 18,920±70 8 species and varieties from Centropyxis and Cyclopyxis represented by f. minor, minuta, minima,
microstoma, which probably indicate unfavourable climatic conditions, e.g. lower temperatures
(Smith, 1988) and/or climate deterioration accompanying with dehumidification (Bobrov et al., 1999),
resulting in a reduction of shell size. Presence of Cyclopyxis eurystoma v. parvula (small sized variety)
also confirms unfavourable habitat conditions.

t4:44 MaK-19-4,
15.6

Palaeosol, organic rich spots 16,000 2 taxa. Soil-eurybiotic Centropyxis aerophila v. minor and C. sylvatica v. minor indicates a period of
unfavourable environmental conditions.

t4:45 Unit D3

t4:46 Deposits in thermokarst depressions
t4:47 MaK-14-4, 1.4 Alas deposit, interbed-ding, peaty layers 1480±20 9 taxa. Dominance of Difflugia globulus (25%) indicating marshy environmental conditions. Absence of

calceophilic taxa reflecting slightly acidic pH.
t4:48 MaK-14-5, 1.7 Alas deposit, sand-peat interbedding 14 taxa including some hydrobiotic (Difflugia cratera, D. globulus, D. minuta) and hydro-sphagnobiotic

(Cyclopyxis arcelloides). Wet Sphagnum-peatland environment, probably with periodically open water
bodies. Numerous diatom and ostracod shells confirm the existence of open water bodies. Soil taxa
Plagiopyxis callida and P. penardi suggest seasonal changes in water table.

t4:49 MaK-14-6, 2.0 Alas deposit, sand-peat interbedding 17 taxa. Species composition indicates meso-oligotrophic peatland conditions. Presence of soil species
Plagiopyxis penardi and xerophilic moss-soil inhabitant Bullinularia indica, as well as ostracod shells,
indicate fluctuations in the seasonal water regime, interchange with a period of water supply and
drying. Similar combination of hydrophilic and xerophilic species is rather chracteristic for sediments
in the Arctic region (Bobrov et al., 2004).

t4:50 MaK-14-8, 2.6 Alas deposit, peaty soil 3720±30 Single find of aquatic Difflugia cratera reflect a lacustrine stage of sedimentation.

t4:51 Unit D1

t4:52 Thermo-erosional valley deposits
t4:53 MaK-11-6,4.2 Laminated silty fine sand 2075±30 Single find of soil-eurybiotic Cyclopyxis eurystoma v. parvula.
t4:54 MaK-11-7, 4.9 Peaty palaeosol, peat inclusions 9 taxa including hydro-sphagnophilic Centropyxis platystoma, Cyclopyxis arcelloides, and

Pseudodifflugia gracilis indicating an active stage of paludification.
t4:55 MaK-11-9, 5.5 Peat inclusion 22 taxa. Aquatic Difflugia globulus, D. minuta, D. oblonga, D. sp., hydro-sphagnobiotic Centropyxis

platystoma, and sphagnobiotic Nebela collaris indicate wet peatland stage with near-surface water
table. Numerous diatom shells confirm the existence of very wet habitats.

t4:56 MaK-11-10,
5.8

Fine sand to silt 18 taxa including Centropyxis cassis, Heleopera petricola, Pseudodifflugia gracilis characteristic for drier
habitat conditions than in MaK 11-9. Youngest find of sphagnobiotic Argynnia sp., previously found
only in Ice Complex sediments in the Laptev Sea region.

t4:57 MaK-11-11, 6.0 Soil transition layer 17 soil-eurybiotic, sphagnobiotic taxa (like Nebela collaris, N. penardiana), and hydrophilic (like
Difflugia globulus, D. penardi and D. sp.) indicate wetter conditions than in MaK 11-10. Numerous
diatom shells and tardigrada eggs confirm this interpretation.

t4:58 Modern surface samples
t4:59 MaK-AA-1 Modern vegetation on dry Yedoma top Recent 22 taxa, mostly soil-eurybiotic. Presence of few hygro- and hydrophilic taxa (like Arcella artocrea, A.

arenaria v. compressa, Centropyxis cassis) may reflect seasonal fluctuations in the hydrological regime.
t4:60 MaK-AA-2 Large temporary polygon 22 cm deep

pond on Yedoma top
t4:61 MaK-AA-2.1 Litter Recent 10 taxa. Hydrophilic Difflugia globulus and Arcella arenaria v. compressa indicate wet habitats in the

local environment.
t4:62 MaK-AA-2.2 Upper humus horizon Recent 5 taxa. Litter indicating and hydrophilic taxa absent.
t4:63 MaK-AA-3 Large pond (b50 cm deep) on the

bottom of a thermo-erosional valley
Recent 10 taxa. Dominance (29%) of sphagnobiotic Nebela tincta reflects marshy habitats.

t4:64 MaK-AA-4 Modern soil with litter Recent 18 taxa. Hydrophilic and sphagnobiotic Difflugia difficilis, Nebela biggibosa, N. lageniformis, and N. tincta
confirm wet habitat conditions.

t4:65 MaK-G-2 Thermokarst mound on the slope of a
thermo-erosional valley

Recent Poorly preserved amoebae shells. 3 soil-eurybiotic taxa.

t4:66 MaK-G-5 Very moist bottom of a thermokarst
depression

Recent Single find of Centropyxis sylvatica.

t4:67 MaK-G-11 Peaty detritus from beach Recent Single hydrophilic Difflugia globulus and hygrophilic Centropyxis platystoma.

Unit C
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amounts in TA sums (150–
^
356 shells per sample) and taxa diversity

(15–
^
32 taxa per sample) for the whole studied units are noted,

especially for hydrophilic Difflugia taxa (10). Dominant taxa are soil
eurybiotic and moss-living Centropyxis. During the period between ca
40,000 and 33,000 14C yr BP TA shells were absent in the studied
samples. After 32,700 14C yr BP TA abundance and diversity slowly
increases to 150 shells per sample and 20 taxa per sample and remain
stable until the end of the interstadial. Dominant taxa are still soil-
living TA and hydrophilic taxa are rarely found.

Sartan Stadial sediments are dated to 24,600–
^
16,000 14C yr BP. At

the beginning of this zone TA abundance slightly increases (almost
200 shells per sample) while TA diversity remained constant (20 taxa
per sample). Dominant taxa are from soil eurybiotic genera Centro-
pyxis and Plagiopyxis. Hydrophilic taxa are absent until ca 17,600 14C yr
BP. In one sample (ca 18,000 14C yr BP) the number of calceophilic
Centropyxis plagiostoma group sharply increases (up to 43.5%).
Sediments accumulated during the Sartan Stadial are generally
characterized by the absence of hydrobiont taxa.

Holocene sediments are dated to between 9510 and 500 14C yr BP.
In the lowermost two samples dated to ca 9000 14C yr BP TA
abundance is very low (50 shells), but increases up to 200 at 7400 14C
yr BP. After that a sedimentary hiatus is noted between ca 7400 and
3720 14C yr BP (Schirrmeister et al., in press). Within the TA
palaeocoenoses the number of hygro-hydrophilic and sphagnophilic
taxa strongly increase (up to 40%) towards present times. However,
dominant taxa are belonging to the soil- and moss living Centropyxis
genus.

4.3. TA analysis of modern surface samples

No TA shells were found in two modern samples. One sample
(MaK-G-1) was taken from the beach of a marine terrace where
frequent flooding and poor or no available organic substrate makes it
an unfavourable habitat for TA. The other sample (MaK-G-8) was
taken from a thermokarst depression with sparse vegetation and very
dry soil which also makes it impossible for TA communities to
establish and survive, because TA require a certain minimum amount
of water for their activity. In total 40 species, subspecies, and forms
were identified in the other eight surface samples. The results are
compiled in a diagram (Fig. 4). Sample AA-1 was taken from the
surface vegetation of a Yedoma hill. In this sample we counted the
highest number of TA shells (259). Taxa diversity was the highest (25),
too. We also counted a high number of shells in sample AA-3, which
was taken from a large pond (b50 cm depth) on the floor of a thermo-
erosional valley. Sphagnophilic and moss taxa dominate this TA
spectrum. In the other six surface samples, taken from different
habitats, TA abundance was rather low (b100 shells per sample). The
TA communities of modern habitats include representatives of all
ecological groups found in the fossil samples. Main differences of the
studied surface samples from the fossil ones are (1) significantly
smaller number of sphagno-, hygro- and hydrobiont taxa from genera
Arcella, Bullinularia, Trigonopyxis, Heleopera, Nebela, Argynnia, Difflu-
gia; (2) rare finds of soil-living taxa from genus Plagiopyxis; (3)
frequent finds of Sphagnum-moss taxa from genera Valkanovia,
Assulina, Euglypha and Trinema in modern TA communities. Simila-
rities are in dominant taxa from soil-living genera Centropyxis.

5. Interpretation and discussion

The TA assemblages and their palaeoecological interpretations, as
well as radiocarbon and correlated ages are presented according to the
sample height in Table 4. The sand deposits of unit A do not contain
any TA shells. This is most likely caused by the fluvial origin of these
sediments. TA communities could not develop in this environment
and/or TA shells were mechanically damaged and destroyed by the
fluvial processes. This unit is also almost free of pollen and plant
Please cite this article as: Müller, S., et al., Testate amoebae record from t
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macro fossils (Schirrmeister et al., in press). Running water tends to
remove lightweight sediment fractions, including TA shells, pollen,
and plant macrofossils.

TA assemblages of the Kargin Interstadial zone (unit B) reflect
environments with well drained soils. High abundance and diversity
of TA in these samples indicate favourable environmental conditions
and possibly also a diversity of microhabitats allowing species with
diverse ecological requirements to develop. Especially the high taxa
diversity of hydrophilic genus Difflugia indicates the existence of
small, shallow water bodies in either low-centred ice wedge polygons
or in small thermokarst depressions that could warm during the
summer season prior ca 40,000 14C yr BP. This conclusion is supported
by the high contents of green algae colonies of Botryococcus and Pe-
diastrum recorded in the microscopic analysis of these sediments as
well as by the plant macrofossil record, demonstrating that wetland
plants such as sedges and cotton grass dominated the macrofossil
assemblages (Schirrmeister et al., in press). Dominant TA taxa include
the soil eurybiotic Centropyxis and among them frequent moss-living
taxa such as Heleopera petricola, H. sphagni, and Argynnia species. Ar-
cella species and Centropyxis aerophila reflecting wet moss-tundra
habitats, rather similar to the modern vegetation in the study area.
Based on the TA data, the climate at ca 40,000 14C yr BP can be
described as moderately warm and humid. In the sample dated to
43,600 14C yr BP the abundance of TA is strongly decreased suggesting
a change to colder and drier habitat conditions. The variations of
habitat conditions reconstructed by TA assemblages demonstrate
slight environmental changes during the Kargin Interstadial. After ca
40,000 14C yr BP TA taxa completely disappeared suggesting
unfavourable environmental conditions induced by repeated flooding
and soil erosion caused by fluvial activity, respectively. The drastic
decrease in hydrophilic taxa persisting until ca 32,700 14C yr BP may
also be interpreted as an indication of a general climatic deterioration.
From ca 32,700 14C yr BP to 27,220 14C yr BP low TA shell concentration
indicate a cooling period and the transition to the Sartan Stadial
interval. Soil eurybiotic taxa dominate the TA assemblages, but
sphagnobiotic taxa from genera Centropyxis and Argynnia are also
frequent. This together with the abundance of calceophilic Centropyxis
plagiostoma indicates the presence of meso-oligotrophic peatland
conditions. The deposits of this peat-sand alternating complex (unit B)
demonstrate the highest variations in the organic carbon contents.
TOC contents vary from 0.2% to 15.3% and the C/N ratios of the studied
sediments vary from 1.2 to 24.9 (Table 1). Environmental conditions
must have changed drastically during the formation of unit B
sequence. Sediment accumulation occurred in swampy and water-
logged areas, most likely situated in the floodplain environments near
the river channel. Periods of soil formation with stable surface
conditions were interrupted by periods or short events of increased
sediment accumulation pointing to unstable surface conditions. Thus,
changes of water level, bog and soil stages can be reconstructed for the
period of the Kargin Interstadial by the TA analysis.

Prior to the transition to the Sartan Stadial TA abundance as well as
taxa diversity of soil- andmoss-living taxa increased before 24,150 14C
yr BP reflecting recurring stable environmental conditions. The strong
decrease in TA abundance and diversity and the complete disappear-
ance of hydrophilic taxa reflect climate deterioration between 24,150
14C yr BP and 18,000 14C yr BP (Last Glacial Maximum/LGM).
Hubberten et al. (2004) found out that most of the Sartan Stadial
(24,000–

^
15,000 14C yr BP) was characterized by the lowest levels of

xerophilic insects and a dominance of Arctic tundra taxa. They
inferred from palaeobotanical data that the LGM was marked by high
aridity and relatively low summer temperatures compared to the
previous Interstadial. TA assemblages are reflecting a period of rather
stable environmental conditions, less favourable than in unit B
sediments. Decreasing C/N ratios reflect relatively dry well aerated
conditions in the unfrozen active layer zone with enhanced decom-
position of the organic material. The decreasing TOC content and low
he Laptev Sea coast and its implication for the reconstruction of Late
atology, Palaeoecology (2008), doi:10.1016/j.palaeo.2008.11.003
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Table 5t5:1

Relative frequency (min, max, average) and standard deviation of five different forms and varieties of Centropyxis plagiostoma in Late Pleistocene (n=27) and Holocene (n=13; except
surface samples) deposits

t5:2
t5:3 Taxa Pleistocene/Holocene min (%) Max (%) Average (%) SD (%)

t5:4 Centropyxis
plagiostoma

0/0 45.50/14.10 13.31/2.76 12.43/4.12

t5:5 C. plagiostoma f. major 0/0 10.00/0 1.04/0 2.13/0
t5:6 C. plagiostoma f. minor 0/0 11.11/7.50 1.92/1.98 3.15/2.68
t5:7 C. plagiostoma v. oblonga 0/0 0/0.89 0/0 0/0
t5:8 C. plagiostoma v. terricola 0/0 2.04/0.70 0.08/0 0.39/0
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C/N ratios reflect the reduction of the number of nutrition rich
habitats (mainly bogs). Many taxa, especially soil eurybiotic Centro-
pyxis and Cyclopyxis, are represented by small sized forms and
varieties (minor, minuta, minima, microstoma) probably indicating
unfavourable climatic conditions, e.g. lower temperatures (Smith,
1988) and/or colder and drier climate (Bobrov et al., 1999), resulting in
a reduction of shell size. The presence of Cyclopyxis eurystoma v. par-
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Fig. 5. Some characteristic testate amoebae taxa in surface samples, and Late Quaternary sedi
plagiostoma v. oblonga, 4 — C. plagiostoma, 5 — C. platystoma, 6 — C. sylvatica.

Please cite this article as: Müller, S., et al., Testate amoebae record from t
Pleistocene and Holocene environments..., Palaeogeography, Palaeoclim
F

4vula, small sized variety, reflects unfavourable habitat conditions
4during this period, too. Pollen and macrofossil data indicate that open
4tundra- and steppe-like associations dominated the area during the
4Sartan Stadial (Andreev et al., 2002a,b; Kienast, 2002; Schirrmeister
4et al., in press). It can be therefore assumed a very continental, winter-
4cold and yearly dry climate for this period. After ca 16,000 14C yr BP, at
4the end of the Late Pleistocene, a hiatus in the sediments is noted.
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Probably the result of a short period of warmer climate conditions
(Allerød) and permafrost thawing enabled the establishment favour-
able habitats and thus aquatic TA palaeocoenoses.

The increase of the calceophilic Centropyxis plagiostoma and Pla-
giopyxis group taxa reflect higher nutrient supply between 18,000 and
16,000 14C yr BP. The favourable habitat conditions for calceophilic TA
taxa are also confirmed by the pH measurements showing rather
alkaline values (Table 1). C. plagiostoma is present in more than 75% of
the samples, but it was found only in samples with relatively high TA
abundance and high TA diversity. C. plagiostoma is a well-defined
stenobiotic species whose polymorphism was already mentioned in
permafrost deposits from the Bykovsky Peninsula (Bobrov et al.,
2004). They distinguished between forms major, typica, and minor in
the samples. It was concluded that f. typica occurred more frequently
in the Holocene habitats, which were wetter than the Pleistocene
ones. Whereas f. minor and major were more frequent in the
Pleistocene habitats, probably because of the greater diversity of
ecological niches during the Late Pleistocene due to a greater biotope
differentiation as compared with the Holocene. In our analysis we
distinguished between f. major, typica, and minor but also between
varieties terricola and oblonga (Tables 2 and 5). In this study C.
plagiostoma f. minor and f. typica were frequent in Holocene samples,
whereas f. major was exclusively found in Late Pleistocene (Kargin
Interstadial and Sartan Stadial) samples. We conclude that the forms
typica and major correspond to the forms that Bobrov et al. (2004)
found on Bykovsky Peninsula. In contrast to this we found f. minor in
Holocene samples in higher abundances as they did on Bykovsky. It
can be explained by an overall high abundance of small-sized TA forms
in the whole MaK-sequences and may be interpreted as an adaptation
to the specific permafrost habitats around the study site of Cape
Mamontov Klyk.

Slight increases in TOC (up to 8%) contents and C/N ratios (14) during
the Holocene sediments reflect a general shift in environmental
conditions. Around 9500 14C yr BP environmental conditions were
more favourable and TA communities established in the study area. The
relatively high amount of Alnus fruticosa, Betula sect. Nanae and Salix
pollen as well as plant macrofossils point to higher temperatures and
increasing humidity than before, too (shrub-tundra vegetation) (Andreev
et al., 2004b; Schirrmeister et al., in press). Samples are characterized by
high TOC contents (up to 21.8%) and C/N ratios (around 13) indicating
favourable plant growth and nutrient supply for TA after the hiatus
between 9480±40 and 3720±30 14C yr BP, probably caused by thermo-
erosion. During the Late Holocene TA abundance slowly increased
towards modern values reflecting favourable conditions that allow TA
to spread and become abundant in all distinguished habitats. Especially
the number of hydrophilic taxa is increased until present times.
Schirrmeister et al. (2003) described that after 7700 14C yr BP the local
soil environment at the Olenek Channel (Lena Delta) was much wetter
than during the previous Late Glacial period indicated by the presence of
hydrophilic and sphagnophilic taxa. A single find of aquatic Difflugia
cratera shell may reflect a lacustrine stage of sedimentation. Only vascular
plant remains, belonging to Salix, Luzula and Juncus were identified
among the moss remains in the macrofossil record. These plants indicate
continuously wet conditions in the study area (Schirrmeister et al., in
press).

TA taxa diversity is about 30% higher in the Kargin Interstadial
samples than in Holocene ones. This was also shown by Bobrov et al.
(2004) from Ice Complex sediments from Bykovsky Peninsula, where the
maximum diversity was recorded for the Kargin Interstadial (54,000

^
–

^̂
33,000 14C yr BP) too. The pronounced cold/dry periods during the last
45,000 14C yr BP are characterized by the lack of hydrophilic TA taxa. This
is consistent with Bobrov et al. (2004) study on Bykovsky Peninsula and
finds of Schirrmeister et al. (2003) at the Olenek Channel. It can be
assumed that the minimum temperature required for successful
reproduction is higher for TA taxa living in aquatic environments than
for those living in soils.
Please cite this article as: Müller, S., et al., Testate amoebae record from t
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Beyens et al. (1992) found a higher number of TA taxa in soils with
a high content of organic matter. This can be explained by the
hypothesis that higher organic content results in more food resources
for the TA. However, Trappeniers et al. (2002) reported that the
observation of higher diversity together with a higher organic content
could not be consistently proved. Our study does not show direct
correlations either. The loss of an important soil TA Phryganella
acropodia already described in Beyens et al. (1990) for the Canadian
Arctic (Devon Island) could be observed in our study too, where only
in 19 of the 40 samples this taxa was found.

TA analyses show that different sedimentation processes and
different habitats result in different species composition. The genus
Centropyxis (Fig. 3) dominated in all types of sediments. Beyens
et al. (1992) has already drawn attention to the shift in faunistic
composition within the water-dwelling TA communities. In the arctic
water bodies the genus Difflugia is replaced by the genus Centropyxis.

Special interest is given to findings of rare TA species in Late
Pleistocene Ice Complex and Holocene sediments. Shells of Argynnia
sp. were found in 10 Late Pleistocene samples (9 in Kargin Interstadial
samples,1 in Sartan Stadial sample) and in 2 Holocene samples. Today,
only two species of the 15 known species, A. dentistoma and A. vitrea
have cosmopolitan distribution (Ogden and Hedley, 1980). Other
species are restricted to specific regions in Canada, Eurasia, Australia
and the Antarctic (Deflandre, 1936; Meisterfeld, 1998). Almost all Ar-
gynnia species inhabit Sphagnum-bogs and acidic hummocks within
the forest zone. No species of this genus, except A. dentistoma, have
been found in the present-day Arctic biotopes (Beyens and Chardez,
1995). This fact provides an additional evidence of a unique soil
environment that existed in northeastern Siberia during the Kargin
Interstadial. It is also interesting to notice the findings of the
sphagnophilic Nebela bigibbosa (syn. Porosia bigibbosa; Fig. 5) in the
surface sample AA-4 (litter). Our study presents the most northern
find of this species for the Eurasian mainland. Todorov (2001) pointed
out that Nebela bigibbosa is not a typical inhabitant of Sphagnum-
mosses but is closely related to the litter soil layer. So far this species
was only identified in Late Pleistocene sediments from Bykovsky
Peninsula (Bobrov et al., 2004). Another rare species Paraquadrulla
irregularis, typical for mesotrophic peatlands (Opravilova and Hajek,
2006), was identified in fluvial sediment samples (MaK 2-3, Kargin
Interstadial). Until today the find of P. irregularis in Late Quaternary
sediments is unique.

A striking feature in the Pleistocene TA communities is the absence of
the filose genera Trinema, Euglypha and Corythion. These were frequently
found in the modern surface samples and are also known to be
sometimes dominant genera in Arctic habitats (e.g. Beyens et al., 1992;
Trappeniers et al., 2002). The absence of these taxa in the Late Pleistocene
samples couldmainly be explained by taphonomical problems; composi-
tion difficulties and bad preservation could cause the absence of filose
genera in the studied Late Quaternary sediments. Further investigation in
this particular region and comparison of fossil samples with reliable
surface samples can probably answer this question.

Located at the Laptev Sea coast, the study area today is subject to
and effectively changed by strong coastal erosion. This study has
shown that complex relationships between TA and different environ-
mental factors can be detected. Climate change could be the main
cause of environmental change and thus habitat variations. In
permafrost landscapes thermokarst processes have also to be taken
into account when interpreting the TA changes through the time.

6. Conclusions

Our study represents one of the first attempts to use TA from
permafrost regions of Eurasia as indicators of environmental changes
at local and regional scales. During the last 45,000 14C yr the
composition of TA communities in permafrost sequences shifted
along with changes in habitat and climate conditions. The recorded TA
he Laptev Sea coast and its implication for the reconstruction of Late
atology, Palaeoecology (2008), doi:10.1016/j.palaeo.2008.11.003
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fauna from the studied high arctic locality show highest abundances
and taxa diversity in fossil samples dated to 44,000–

^
40,000 14C yr BP

(during the Kargin Interstadial). Low TA abundances were recorded
during the period between 24,000 and 18,000 14C yr BP (Sartan
Stadial). Our study confirm that TA are valuable as complementary
palaeoenvironmental proxies for the Arctic regions and can thus
provide more detailed information for environmental changes in the
study area and their causes. The low number of surface samples
analysed so far prevents from quantitative interpretations of the fossil
samples. Further work will focus on detailed analysis of recent surface
samples from the Arctic Siberia collected in summer 2007 to get
reliable information of arctic micro-habitats and to quantify observed
changes in the fossil TA records.
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