301,471 research outputs found

    Smoke and fire dynamics in atria and large enclosures: An overview

    Get PDF
    The proliferation of atria within modern large buildings is relatively recent. An atrium can be defined as a large open space connecting two or more storeys. Atria are important architectonical features since the 60's and can be found, among others, in shopping centres, office buildings and high-rise buildings, airports, stations and sports centres. However, the atrium represents an innovative, complex and non conventional architectonical element that can lead to fire environments diverging significantly from those in conventional compartments used in the development of current codes and standards. They are a source of discussion in the fire safety community because smoke can easily spread from one floor to another making the traditional methodologies for compartmentation of little or null effect. The design of smoke management in atria has been based on prescriptive codes since the 70's. It was not until the mid 80's that the phenomena started to be the objective of both experimental and numerical studies. It is because of the subsequent improved understanding on fire dynamics and smoke management together with the increased computing power available nowadays, that there is a progressive movement from prescriptive-based to performance-based codes which is also chaning the way atria are designed. The aim of the present work is to provide a broad overview of the current state-of-the-art of fires in atria. A brief introduction to the characteristics and types of atrium structures is presented first. Then, a description of the fire dynamics as well as the main safety problems that arise in case of fire are considered. A historical discussion of the research, including experimental and numerical studies, is presented, and current design methodologies and fire safety strategies are discussed. The final part of the overview addresses the international tendencies towards the introduction of performance-based fire protection codes. This overview highlights the need for further experimental studies and validations of numerical simulations for a wider range of fire conditions. © 2010 by Nova Science Publishers, Inc. All rights reserved

    Analysis of the Fire Season of 2020 in the Mediterranean Bioclimatic Zone of Croatian Adriatic

    Get PDF
    Fire season in the Mediterranean bioclimatic area is most associated with the period from June to late October. Despite this, a large number of fires occur in February and March due to the intentional burning of agricultural lands. A characteristic of the Mediterranean region is the strong adaptation of vegetation to fire, though this adaptation also depends on the frequency and intensity of fires. This frequency is shown on satellite images via MODIS. This paper provides an overview of indicators of vegetation fires in the Croatian coast and karst coastal belt in the 2020 fire season. The 2020 fire season was above average in comparison with the period 2010 to 2019, with more fires than average and more burnt area. A specificity of the 2020 season is seen in the large number of fires in February and March. Fire protection in Croatia is facilitated by the use of new remote sensing technologies, in combination with the existing surveillance and monitoring methods, and organised protection systems to prevent open fires

    Fact sheet: Characterizing spatial reference conditions in southwestern warm/dry mixed-conifer forests

    Get PDF
    Reference conditions describe attributes of ecosystem structure, composition, and function and are used to inform ecological restoration efforts. Reference condition information on tree spatial patterns that occurred prior to wide-spread fire exclusion is limited for warm/dry mixed-conifer forests of the western U.S. (Romme et al. 2009), particularly those in the Southwest (see Table 1). Spatial patterns of trees, and groups of trees, are important because they are known to influence understory biodiversity and productivity, fire behavior, distribution of surface fuels, wildlife habitat value, and regeneration (North et al. 2007, Sanchez Meador et al. 2009, Fry and Stephens 2010), yet this information is rarely quantified. The purpose of this fact sheet is to provide an overview of the existing research on spatial patterns in warm/dry mixed-conifer forests, and provide recommendations of future research

    PAN@FIRE: Overview of the cross-language !ndian Text re-use detection competition

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-40087-2_6The development of models for automatic detection of text re-use and plagiarism across languages has received increasing attention in recent years. However, the lack of an evaluation framework composed of annotated datasets has caused these efforts to be isolated. In this paper we present the CL!TR 2011 corpus, the first manually created corpus for the analysis of cross-language text re-use between English and Hindi. The corpus was used during the Cross-Language !ndian Text Re-Use Detection Competition. Here we overview the approaches applied the contestants and evaluate their quality when detecting a re-used text together with its source.This research work is partially funded by the WIQ-EI (IRSES grant n. 269180)and ACCURAT (grant n. 248347) projects, and the Seventh Framework Programme (FP7/2007-2013) under grant agreement n. 246016 from the European Union. The first author was partially funded by the CONACyT-Mexico 192021 grant and currently works under the ERCIM “Alain Bensoussan” Fellowship Programme. The research of the second author is in the framework of the VLC/Campus Microcluster on Multimodal Interaction in Intelligent Systems and partially funded by the MICINN research project TEXT-ENTERPRISE 2.0 TIN2009-13391-C04-03 (plan I+D+i). The research from AU-KBC Centre is supported by the Cross Lingual Information Access (CLIA) Phase II Project.Barrón Cedeño, LA.; Rosso ., P.; Sobha, LD.; Clough ., P.; Stevenson ., M. (2013). PAN@FIRE: Overview of the cross-language !ndian Text re-use detection competition. En Multilingual Information Access in South Asian Languages. Springer Verlag (Germany). 7536:59-70. https://doi.org/10.1007/978-3-642-40087-2_6S59707536Addanki, K., Wu, D.: An Evaluation of MT Alignment Baseline Approaches upon Cross-Lingual Plagiarism Detection. In: FIRE [12]Aggarwal, N., Asooja, K., Buitelaar, P.: Cross Lingual Text Reuse Detection Using Machine Translation & Similarity Measures. In: FIRE [12]Alegria, I., Forcada, M., Sarasola, K. (eds.): Proceedings of the SEPLN 2009 Workshop on Information Retrieval and Information Extraction for Less Resourced Languages. University of the Basque Country, Donostia, Donostia (2009)Barrón-Cedeño, A., Rosso, P., Pinto, D., Juan, A.: On Cross-Lingual Plagiarism Analysis Using a Statistical Model. In: Stein, B., Stamatatos, E., Koppel, M. (eds.) ECAI 2008 Workshop on Uncovering Plagiarism, Authorship, and Social Software Misuse (PAN 2008), vol. 377, pp. 9–13. CEUR-WS.org, Patras (2008), http://ceur-ws.org/Vol-377Bendersky, M., Croft, W.: Finding Text Reuse on the Web. In: Baeza-Yates, R., Boldi, P., Ribeiro-Neto, B., Cambazoglu, B. (eds.) Proceedings of the Second ACM International Conference on Web Search and Web Data Mining, pp. 262–271. ACM, Barcelona (2009)Ceska, Z., Toman, M., Jezek, K.: Multilingual Plagiarism Detection. In: Proceedings of the 13th International Conference on Artificial Intelligence (ICAI 2008), pp. 83–92. Springer, Varna (2008)Clough, P.: Plagiarism in Natural and Programming Languages: an Overview of Current Tools and Technologies. Research Memoranda: CS-00-05, Department of Computer Science. University of Sheffield, UK (2000)Clough, P.: Old and new challenges in automatic plagiarism detection. National UK Plagiarism Advisory Service (2003), http://ir.shef.ac.uk/cloughie/papers/pasplagiarism.pdfClough, P., Gaizauskas, R.: Corpora and Text Re-Use. In: Lüdeling, A., Kytö, M., McEnery, T. (eds.) Handbook of Corpus Linguistics. Handbooks of Linguistics and Communication Science, pp. 1249–1271. Mouton de Gruyter (2009)Clough, P., Stevenson, M.: Developing a Corpus of Plagiarised Examples. Language Resources and Evaluation 45(1), 5–24 (2011)Comas, R., Sureda, J.: Academic Cyberplagiarism: Tracing the Causes to Reach Solutions. In: Comas, R., Sureda, J. (eds.) Academic Cyberplagiarism [online dossier], Digithum. Iss, vol. 10, pp. 1–6. UOC (2008), http://bit.ly/cyberplagiarism_csMajumder, P., Mitra, M., Bhattacharyya, P., Subramaniam, L., Contractor, D., Rosso, P. (eds.): FIRE 2010 and 2011. LNCS, vol. 7536. Springer, Heidelberg (2013)Gale, W., Church, K.: A Program for Aligning Sentences in Bilingual Corpora. Computational Linguistics 19, 75–102 (1993)Ghosh, A., Bhaskar, P., Pal, S., Bandyopadhyay, S.: Rule Based Plagiarism Detection using Information Retrieval. In: Petras, et al. [24]Gupta, P., Singhal, K.: Mapping Hindi-English Text Re-use Document Pairs. In: FIRE [12]Head, A.: How today’s college students use Wikipedia for course-related research. First Monday 15(3) (March 2010), http://www.uic.edu/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/2830/2476IEEE: A Plagiarism FAQ (2008), http://bit.ly/ieee_plagiarism (published: 2008; accessed March 3, 2010)Kulathuramaiyer, N., Maurer, H.: Coping With the Copy-Paste-Syndrome. In: Proceedings of World Conference on E-Learning in Corporate, Government, Healthcare, and Higher Education 2007 (E-Learn 2007), pp. 1072–1079. AACE, Quebec City (2007)Lee, C., Wu, C., Yang, H.: A Platform Framework for Cross-lingual Text Relatedness Evaluation and Plagiarism Detection. In: Proceedings of the 3rd International Conference on Innovative Computing Information (ICICIC 2008). IEEE Computer Society (2008)Martínez, I.: Wikipedia Usage by Mexican Students. The Constant Usage of Copy and Paste. In: Wikimania 2009, Buenos Aires, Argentina (2009), http://wikimania2009.wikimedia.orgMaurer, H., Kappe, F., Zaka, B.: Plagiarism - a survey. Journal of Universal Computer Science 12(8), 1050–1084 (2006)Palkovskii, Y., Belov, A.: Exploring Cross Lingual Plagiarism Detection in Hindi-English with n-gram Fingerprinting and VSM based Similarity Detection. In: FIRE [12]Palkovskii, Y., Belov, A., Muzika, I.: Using WordNet-based Semantic Similarity Measurement in External Plagiarism Detection - Notebook for PAN at CLEF 2011. In: Petras, et al. [24]Petras, V., Forner, P., Clough, P. (eds.): Notebook Papers of CLEF 2011 LABs and Workshops, Amsterdam, The Netherlands (September 2011)Potthast, M., Stein, B., Eiselt, A., Barrón-Cedeño, A., Rosso, P.: Overview of the 1st international competition on plagiarism detection. In: Stein, B., Rosso, P., Stamatatos, E., Koppel, M., Agirre, E. (eds.) SEPLN 2009 Workshop on Uncovering Plagiarism, Authorship, and Social Software Misuse (PAN 2009), vol. 502, pp. 1–9. CEUR-WS.org, San Sebastian (2009), http://ceur-ws.org/Vol-502Potthast, M., Barrón-Cedeño, A., Stein, B., Rosso, P.: Cross-Language Plagiarism Detection. Language Resources and Evaluation (LRE), Special Issue on Plagiarism and Authorship Analysis 45(1), 1–18 (2011)Potthast, M., Eiselt, A., Barrón-Cedeño, A., Stein, B., Rosso, P.: Overview of the 3rd International Competition on Plagiarism Detection. In: Petras, et al. [24]Potthast, M., Stein, B., Barrón-Cedeño, A., Rosso, P.: An Evaluation Framework for Plagiarism Detection. In: Huang, C.R., Jurafsky, D. (eds.) Proceedings of the 23rd International Conference on Computational Linguistics (COLING 2010), pp. 997–1005. COLING 2010 Organizing Committee, Beijing (2010)Potthast, M., Barrón-Cedeño, A., Eiselt, A., Stein, B., Rosso, P.: Overview of the 2nd International Competition on Plagiarism Detection. In: Braschler, M., Harman, D. (eds.) Notebook Papers of CLEF 2010 LABs and Workshops, Padua, Italy (September 2010)Rambhoopal, K., Varma, V.: Cross-Lingual Text Reuse Detection Based On Keyphrase Extraction and Similarity Measures. In: FIRE [12]Weber, S.: Das Google-Copy-Paste-Syndrom. Wie Netzplagiate Ausbildung und Wissen gefahrden. Telepolis (2007

    Structure and architectural project: two examples with masonry walls.

    Get PDF
    International Conference on Structures and Architecture(1ª.2010.Guimarães, Portugal)[Abstract] The paper presents two buildings solved with masonry walls: a family house in Betanzos and a multi-storey apartment building located at Lugo. The structure of the first one is solved by load-bearing walls of precast concrete blocks that arise from an elevated floor slab. The concrete block, though hidden, provides housing modulating, simplifying the tasks of construction, the wholeness of the building as well as guarantees other physical properties (fire resistance, thermal inertia, sound insulation). The second building is a residential building, which has four floors (the fourth one under the roof) built on a small site. There is a real ‘tour de force’ in this building project whose load-bearing walls of brickwork (perforated klinker) solve both structural requirement and thermal insulation of the façade with a reduced thickness. Through these examples, we offer an overview of various aspects relating to the materialization of the architectur

    Interacting regional-scale regime shifts for biodiversity and ecosystem services

    Get PDF
    Current trajectories of global change may lead to regime shifts at regional scales, driving coupled human–environment systems to highly degraded states in terms of biodiversity, ecosystem services, and human well-being. For business-as-usual socioeconomic development pathways, regime shifts are projected to occur within the next several decades, to be difficult to reverse, and to have regional- to global-scale impacts on human society. We provide an overview of ecosystem, socioeconomic, and biophysical mechanisms mediating regime shifts and illustrate how these interact at regional scales by aggregation, synergy, and spreading processes. We give detailed examples of interactions for terrestrial ecosystems of central South America and for marine and coastal ecosystems of Southeast Asia. This analysis suggests that degradation of biodiversity and ecosystem services over the twenty-first century could be far greater than was previously predicted. We identify key policy and management opportunities at regional to global scales to avoid these shifts

    Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites (BORTAS) experiment: design, execution and science overview

    Get PDF
    We describe the design and execution of the BORTAS (Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites) experiment, which has the overarching objective of understanding the chemical aging of air masses that contain the emission products from seasonal boreal wildfires and how these air masses subsequently impact downwind atmospheric composition. The central focus of the experiment was a two-week deployment of the UK BAe-146-301 Atmospheric Research Aircraft (ARA) over eastern Canada, based out of Halifax, Nova Scotia. Atmospheric ground-based and sonde measurements over Canada and the Azores associated with the planned July 2010 deployment of the ARA, which was postponed by 12 months due to UK-based flights related to the dispersal of material emitted by the Eyjafjallajökull volcano, went ahead and constituted phase A of the experiment. Phase B of BORTAS in July 2011 involved the same atmospheric measurements, but included the ARA, special satellite observations and a more comprehensive ground-based measurement suite. The high-frequency aircraft data provided a comprehensive chemical snapshot of pyrogenic plumes from wildfires, corresponding to photochemical (and physical) ages ranging from 45 sr 10 days, largely by virtue of widespread fires over Northwestern Ontario. Airborne measurements reported a large number of emitted gases including semi-volatile species, some of which have not been been previously reported in pyrogenic plumes, with the corresponding emission ratios agreeing with previous work for common gases. Analysis of the NOy data shows evidence of net ozone production in pyrogenic plumes, controlled by aerosol abundance, which increases as a function of photochemical age. The coordinated ground-based and sonde data provided detailed but spatially limited information that put the aircraft data into context of the longer burning season in the boundary layer. Ground-based measurements of particulate matter smaller than 2.5 μm (PM2.5) over Halifax show that forest fires can on an episodic basis represent a substantial contribution to total surface PM2.5

    Audit report on the Westory Fire Agency for the year ended June 30, 2009

    Get PDF
    Audit report on the Westory Fire Agency for the year ended June 30, 200
    corecore