114 research outputs found

    Green HPC: Optimizing Software Stack Energy Efficiency of Large Data Systems

    Get PDF
    High-performance computing (HPC) is indispensable in modern scientific research and industry applications, but its energy consumption is a growing concern. This thesis presents two novel approaches to optimize energy consumption in large data systems. The first chapter of the thesis will discuss the use of Dynamic Voltage and Frequency Scaling (DVFS) to optimize the energy efficiency of two popular lossy compression algorithms: SZ and ZFP. By adjusting the voltage and frequency levels of computing resources, DVFS can reduce energy consumption while maintaining the desired level of performance and accuracy. The second chapter of the thesis will focus on a detailed comparison and analysis of asynchronous and synchronous checkpointing energy consumption using the VELOC and GenericIO libraries. The study investigates the trade-offs between these two checkpointing techniques, offering insights into their energy consumption patterns and performance impacts on large-scale HPC systems. Based on the analysis, we provide recommendations for choosing the most energy-efficient checkpointing method for specific application scenarios. Together, these two approaches contribute to the development of Green HPC, paving the way for more sustainable and energy-efficient large data systems. This thesis will provide valuable insights for researchers and industry practitioners aiming to optimize energy consumption while maintaining high-performance computing capabilities. i

    A survey of checkpointing algorithms for parallel and distributed computers

    Get PDF
    Checkpoint is defined as a designated place in a program at which normal processing is interrupted specifically to preserve the status information necessary to allow resumption of processing at a later time. Checkpointing is the process of saving the status information. This paper surveys the algorithms which have been reported in the literature for checkpointing parallel/distributed systems. It has been observed that most of the algorithms published for checkpointing in message passing systems are based on the seminal article by Chandy and Lamport. A large number of articles have been published in this area by relaxing the assumptions made in this paper and by extending it to minimise the overheads of coordination and context saving. Checkpointing for shared memory systems primarily extend cache coherence protocols to maintain a consistent memory. All of them assume that the main memory is safe for storing the context. Recently algorithms have been published for distributed shared memory systems, which extend the cache coherence protocols used in shared memory systems. They however also include methods for storing the status of distributed memory in stable storage. Most of the algorithms assume that there is no knowledge about the programs being executed. It is however felt that in development of parallel programs the user has to do a fair amount of work in distributing tasks and this information can be effectively used to simplify checkpointing and rollback recovery

    Mitosis based speculative multithreaded architectures

    Get PDF
    In the last decade, industry made a right-hand turn and shifted towards multi-core processor designs, also known as Chip-Multi-Processors (CMPs), in order to provide further performance improvements under a reasonable power budget, design complexity, and validation cost. Over the years, several processor vendors have come out with multi-core chips in their product lines and they have become mainstream, with the number of cores increasing in each processor generation. Multi-core processors improve the performance of applications by exploiting Thread Level Parallelism (TLP) while the Instruction Level Parallelism (ILP) exploited by each individual core is limited. These architectures are very efficient when multiple threads are available for execution. However, single-thread sections of code (single-thread applications and serial sections of parallel applications) pose important constraints on the benefits achieved by parallel execution, as pointed out by Amdahl’s law. Parallel programming, even with the help of recently proposed techniques like transactional memory, has proven to be a very challenging task. On the other hand, automatically partitioning applications into threads may be a straightforward task in regular applications, but becomes much harder for irregular programs, where compilers usually fail to discover sufficient TLP. In this scenario, two main directions have been followed in the research community to take benefit of multi-core platforms: Speculative Multithreading (SpMT) and Non-Speculative Clustered architectures. The former splits a sequential application into speculative threads, while the later partitions the instructions among the cores based on data-dependences but avoid large degree of speculation. Despite the large amount of research on both these approaches, the proposed techniques so far have shown marginal performance improvements. In this thesis we propose novel schemes to speed-up sequential or lightly threaded applications in multi-core processors that effectively address the main unresolved challenges of previous approaches. In particular, we propose a SpMT architecture, called Mitosis, that leverages a powerful software value prediction technique to manage inter-thread dependences, based on pre-computation slices (p-slices). Thanks to the accuracy and low cost of this technique, Mitosis is able to effectively parallelize applications even in the presence of frequent dependences among threads. We also propose a novel architecture, called Anaphase, that combines the best of SpMT schemes and clustered architectures. Anaphase effectively exploits ILP, TLP and Memory Level Parallelism (MLP), thanks to its unique finegrain thread decomposition algorithm that adapts to the available parallelism in the application

    Mitosis based speculative multithreaded architectures

    Get PDF
    In the last decade, industry made a right-hand turn and shifted towards multi-core processor designs, also known as Chip-Multi-Processors (CMPs), in order to provide further performance improvements under a reasonable power budget, design complexity, and validation cost. Over the years, several processor vendors have come out with multi-core chips in their product lines and they have become mainstream, with the number of cores increasing in each processor generation. Multi-core processors improve the performance of applications by exploiting Thread Level Parallelism (TLP) while the Instruction Level Parallelism (ILP) exploited by each individual core is limited. These architectures are very efficient when multiple threads are available for execution. However, single-thread sections of code (single-thread applications and serial sections of parallel applications) pose important constraints on the benefits achieved by parallel execution, as pointed out by Amdahl’s law. Parallel programming, even with the help of recently proposed techniques like transactional memory, has proven to be a very challenging task. On the other hand, automatically partitioning applications into threads may be a straightforward task in regular applications, but becomes much harder for irregular programs, where compilers usually fail to discover sufficient TLP. In this scenario, two main directions have been followed in the research community to take benefit of multi-core platforms: Speculative Multithreading (SpMT) and Non-Speculative Clustered architectures. The former splits a sequential application into speculative threads, while the later partitions the instructions among the cores based on data-dependences but avoid large degree of speculation. Despite the large amount of research on both these approaches, the proposed techniques so far have shown marginal performance improvements. In this thesis we propose novel schemes to speed-up sequential or lightly threaded applications in multi-core processors that effectively address the main unresolved challenges of previous approaches. In particular, we propose a SpMT architecture, called Mitosis, that leverages a powerful software value prediction technique to manage inter-thread dependences, based on pre-computation slices (p-slices). Thanks to the accuracy and low cost of this technique, Mitosis is able to effectively parallelize applications even in the presence of frequent dependences among threads. We also propose a novel architecture, called Anaphase, that combines the best of SpMT schemes and clustered architectures. Anaphase effectively exploits ILP, TLP and Memory Level Parallelism (MLP), thanks to its unique finegrain thread decomposition algorithm that adapts to the available parallelism in the application.Postprint (published version

    Feasibility study for the implementation of NASTRAN on the ILLIAC 4 parallel processor

    Get PDF
    The ILLIAC IV, a fourth generation multiprocessor using parallel processing hardware concepts, is operational at Moffett Field, California. Its capability to excel at matrix manipulation, makes the ILLIAC well suited for performing structural analyses using the finite element displacement method. The feasibility of modifying the NASTRAN (NASA structural analysis) computer program to make effective use of the ILLIAC IV was investigated. The characteristics are summarized of the ILLIAC and the ARPANET, a telecommunications network which spans the continent making the ILLIAC accessible to nearly all major industrial centers in the United States. Two distinct approaches are studied: retaining NASTRAN as it now operates on many of the host computers of the ARPANET to process the input and output while using the ILLIAC only for the major computational tasks, and installing NASTRAN to operate entirely in the ILLIAC environment. Though both alternatives offer similar and significant increases in computational speed over modern third generation processors, the full installation of NASTRAN on the ILLIAC is recommended. Specifications are presented for performing that task with manpower estimates and schedules to correspond

    Compiler-Assisted Multiple Instruction Rollback Recovery Using a Read Buffer

    Get PDF
    Multiple instruction rollback (MIR) is a technique to provide rapid recovery from transient processor failures and was implemented in hardware by researchers and slow in mainframe computers. Hardware-based MIR designs eliminate rollback data hazards by providing data redundancy implemented in hardware. Compiler-based MIR designs were also developed which remove rollback data hazards directly with data flow manipulations, thus eliminating the need for most data redundancy hardware. Compiler-assisted techniques to achieve multiple instruction rollback recovery are addressed. It is observed that data some hazards resulting from instruction rollback can be resolved more efficiently by providing hardware redundancy while others are resolved more efficiently with compiler transformations. A compiler-assisted multiple instruction rollback scheme is developed which combines hardware-implemented data redundancy with compiler-driven hazard removal transformations. Experimental performance evaluations were conducted which indicate improved efficiency over previous hardware-based and compiler-based schemes. Various enhancements to the compiler transformations and to the data redundancy hardware developed for the compiler-assisted MIR scheme are described and evaluated. The final topic deals with the application of compiler-assisted MIR techniques to aid in exception repair and branch repair in a speculative execution architecture

    Parallel programming systems for scalable scientific computing

    Get PDF
    High-performance computing (HPC) systems are more powerful than ever before. However, this rise in performance brings with it greater complexity, presenting significant challenges for researchers who wish to use these systems for their scientific work. This dissertation explores the development of scalable programming solutions for scientific computing. These solutions aim to be effective across a diverse range of computing platforms, from personal desktops to advanced supercomputers.To better understand HPC systems, this dissertation begins with a literature review on exascale supercomputers, massive systems capable of performing 10¹⁸ floating-point operations per second. This review combines both manual and data-driven analyses, revealing that while traditional challenges of exascale computing have largely been addressed, issues like software complexity and data volume remain. Additionally, the dissertation introduces the open-source software tool (called LitStudy) developed for this research.Next, this dissertation introduces two novel programming systems. The first system (called Rocket) is designed to scale all-versus-all algorithms to massive datasets. It features a multi-level software-based cache, a divide-and-conquer approach, hierarchical work-stealing, and asynchronous processing to maximize data reuse, exploit data locality, dynamically balance workloads, and optimize resource utilization. The second system (called Lightning) aims to scale existing single-GPU kernel functions across multiple GPUs, even on different nodes, with minimal code adjustments. Results across eight benchmarks on up to 32 GPUs show excellent scalability.The dissertation concludes by proposing a set of design principles for developing parallel programming systems for scalable scientific computing. These principles, based on lessons from this PhD research, represent significant steps forward in enabling researchers to efficiently utilize HPC systems

    Wireless Communication Protocols for Distributed Computing Environments

    Get PDF
    The distributed computing is an approach relying on the presence of multiple devices that can interact among them in order to perform a pervasive and parallel computing. This chapter deals with the communication protocol aiming to be used in a distributed computing scenario; in particular the considered computing infrastructure is composed by elements (nodes) able to consider specific application requests for the implementation of a service in a distributed manner according to the pervasive grid computing principle (Priol & Vanneschi, 2008; Vanneschi & Veraldi, 2007). In the classical grid computing paradigm, the processing nodes are high performance computers or multicore workstations, usually organized in clusters and interconnected through broadband wired communication networks with small delay (e.g., fiber optic, DSL lines). The pervasive grid computing paradigm overcomes these limitations allowing the development of distributed applications that can perform parallel computations using heterogeneous devices interconnected by different types of communication technologies. In this way, we can resort to a computing environment composed by fixed ormobile devices (e.g., smartphones, PDAs, laptops) interconnected through broadband wireless or wired networks where the devices are able to take part to a grid computing process. Suitable techniques for the pervasive grid computing should be able to discover and organize heterogeneous resources, to allow scaling an application according to the computing power, and to guarantee specific QoS profiles (Darby III & Tzeng, 2010; Roy & Das, 2009). In particular, aim of this chapter is to present the most important challenges for the communication point of view when forming a distributed network for performing parallel and distributed computing. The focus will be mainly on the resource discovery and computation scheduling on wireless not infrastructured networks by considering their capabilities in terms of reliability and adaptation when facing with heterogeneous computing requests

    Study of fault-tolerant software technology

    Get PDF
    Presented is an overview of the current state of the art of fault-tolerant software and an analysis of quantitative techniques and models developed to assess its impact. It examines research efforts as well as experience gained from commercial application of these techniques. The paper also addresses the computer architecture and design implications on hardware, operating systems and programming languages (including Ada) of using fault-tolerant software in real-time aerospace applications. It concludes that fault-tolerant software has progressed beyond the pure research state. The paper also finds that, although not perfectly matched, newer architectural and language capabilities provide many of the notations and functions needed to effectively and efficiently implement software fault-tolerance
    corecore