@ https://ntrs.nasa.gov/search.jsp?R=19750022531 2020-03-22T21:04:03+00:00Z

NASA CR-132702

(NASA~-C®-1327022) FFASIBILITY STURY FCE THE N75-306C4
IYCLEMENTATICN CF NASTEAN ON TH®Z ILLIZ2C 4
PARALLEZL PRCCFSSO® (McDonn=ll-Douglas
75 p HC $4.,25 CSCL 26K Unclas
G3/39 33997

Astrcnautics Co.)

FEASIBILITY STUDY FOR THE

IMPLEMENTATION OF HASTRAN 0 THE ILLIAC IV
PARALLEL PROCESSOR

by Eric I. Field

Prepared under Contract No. NAS1-12436 by
UNIVERSAL ANALYTICS, IMNC.
7740 West Manchester Boulevard
Playa Del Rey, California 90291

Subcontractor to
McDONNELL DOUGLAS ASTROMAUTICS COMPANY
Huntington Beach, California 22047

for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATIOMN

FOREWORD

This document presents the Final Report on the feasibility study of modifying
the NASTRAN (NASA Structural Analysis) computer program to make it execute
efficiently utilizing the new ILLIAC IV "parallel" processing computer. This
effort was sponsored by the NASTRAN Systems Management Office (NSMO) of the
National Aeronautics and Space Administration, Langley Research Center under
contract with and monitored by McDonnell Douglas Astronautics Company - West
(MDAC) .

Universal Analytics, Inc. (UAIL) performed this effort under MDAC Contract No.
6-74~489 H, supported by the MDAC prime contract with NASA, No. NAS1-12436.
The principal investigation was performed by Dr. E. I. Field with the able
technical support of Mr. R. L. Hoesly and Mr. S. E. Johnson and clerical sup-
port of Ms. C. Lassen. UAI extends its appreciation to MDAC's Dr. E. L.
Stanton for his welcomed critique and to Mr. H. P. Adam for his support and
contract monitoring efforts. Also, UAI thanks Mr. J. L. Rogers, Jr. of NSMO
for his and the many helpful comments and suggestions offered by the NASA - LRC
reviewing team.

This activity, however, could not have succeeded without the over two years of
contract support provided UAI by the Advanced Research Projects Agency (ARPA)
and supervised by the Defense Nuclear Agency (DNAOO1-72-C-0108) to develop
ILSA, a general purpose finite element structural analysis program for the
ILLIAC IV.

This report contains only unclassified material.

ABSTRACT

The ILLIAC IV, a fourth generation multiprocessor using "parallel" processing
hardware concepts, is now operational at Moffett Field, California. Its
capability to excell at matrix manipulation, makes the ILLIAC particularly
well suited for performing structural analyses using the finite element dis-
placement method. The NASTRAN Systems Management Office (NSMO), therefore,

- contracted with Universal Analytics, Inc. (UAI) to study the feasibility of
modifying the NASTRAN (NASA Structural Analysis) computer program to make
effective use of the ILLIAC IV.

This report summarizes the characteristics of the ILLIAC and the ARPANET, a
telecommunications network which spans the continent making the ILLIAC access-
ible to nearly all major industrial centers in the United States. Two distinct
approaches are studied: (1) Retaining NASTRAN as it now operates on many of
the host computers of the ARPANET to process the input and output while using
the ILLIAC only for the major computational tasks, and (2) Installing NASTRAN
to operate entirely in the ILLIAC environment.

Though both alternatives offer similar and very significant increases in
computational speed over modern third generation processors, the full installa-
tion of NASTRAN on the ILLIAC is recommended. Specifications are presented

for performing that task with manpower estimates and schedules to correspond.

ii

TABLE OF CONTENTS

FOREWORD'.‘. e e e e e e e e e e e e e e
ABSTRACT . ¢ ¢ o o o &+ o o o o o o o o o o o o o
LIST OF FIGURES AND TABLES « « . .
CHAPTER I - INTRODUCTION « « « + .
CHAPTER II - ILLIAC IV SYSTEM BACKGROUND

COMPUTER AND NETWORK HARDWARE

The ARPA Network « . « . .
The ILLIAC IV System Hardware
System Hardware Constraints

SYSTEM SOFTWARE« ¢ v ¢ & ¢ o « o o &

Process Control Languages . . . « « + + o«
FTP (File Transfer Protocol)
Application Languages
Key Language Features
Language Comparison and Selection Criteria

- CHAPTER III - DESIGN CRITERIA

SYSTEMS AND MAINTENANCE « « . .

Compiler Development + « « & &
Required Code Modifications
Linkage Editor and Overlays
Operating System Interfaces
Maintenance 4 . ¢ ¢ ¢ ¢ 4 4 o4 0. .
Implementation of Future Capabilities . .

EXECUTIVE . . ¢ ¢ ¢ ¢ 4 o ¢ o o o o o o o o »

Operations Sequence Controel
File Allocation . « ¢ . ¢« ¢« v ¢ v « o & &
Checkpoint/Restart « « « « v « « v « « « &

UTILITIES . . . & ¢ ¢ o ¢ ¢ ¢« + o o « o &

I/@ Routines . . . « & « v ¢« o & ¢ o «
String Notation and Matrix Packing . .
Open Core . . . & ¢ ¢ &« v ¢ & o« o o o o &
Miscellaneous Utilities

ENGINEERING COMPUTATIONS

Matrix Operations

Functional Modules
SELECTION CRITERTA . . © & ¢ v & o ¢ ¢ o o & &

Level of Effort « . ¢« ¢ ¢ ¢« « . .

Efficiency . « « ¢ ¢ ¢ ¢ v v 4 4 o 4 4 .

fage

ii

10
12
16

19

19
20
21
23
26

28

33

33
33
33
33
34
34

34

35
35
35

36

36
36
36
36

37

37
37

38

38
38

User Convenience
Conclusions . . . - « . . .

'CHAPTER IV - DESIGN SPECIFICATIONS .

PROGRAM ORGANIZATION
SYSTEM INTERFACE REQUIREMENTS

User Interface Requirements
Maintenance and Support . .

EXECUTIVE SEQUENCE MONITOR . . .

Checkpoint/Restart
Manual Overlay

Intermodule Communications .
Maintenance and Updates . .

UTILITIES « « « « .« .
Input/Output
Matrix Operations
Utility Routines

ENGINEERING COMPUTATION MODULES

SUMMARY « ¢« ¢ « v s+« + + s+ s

CHAPTER V - TASK DEFINITIONS

"TASK I - MAINTENANCE AND SUPPORT
TASK II - UTILITY ROUTINES . . .

General Purpose Input/Output
Special Purpose Utilities .
Matrix Operations

TASK III - EXECUTIVE SEQUENCE MON
TASK IV - ENGINEERING COMPUTATION

FACILITIES

ITOR . . .
ROUTINES .

TASK V - DOCUMENTATION AND DEMONSTRATION . .

TASK VI - PERFORMANCE EVALUATION
TASK VII - MODULE OPTIMIZATION .

CHAPTER VII - SUMMARY AND CONCLUSIONS
REFERENCES . « ¢« « ¢ « o o o o o & @

BIBLIOGRAPHY v v +» s + + + &

CHAPTER VI - ESTIMATED COST AND SCHEDULE

iv

42

42

44

46
49

49
51

53

53
54
54
54

55

55
56
57

59
60

61.

61
61

61
61
62

62
62
63
63
63

64
67
68

69

2.1.
2.2.
2.3.
2.4,
2.5.
2.6.
3.1.
3.2.
4.1.
4.2,

2.1.
2.2.
3.1.
3.2.
3.3.
3.4.
3.5.
6.1.

LIST OF FIGURES

Stfucture of the ILLIAC IV Hardware
Geographic Map of ARPA Network (1974)
System Access Via ARPANET « . « « 4« « .

Logical Map of ARPA Network Resources, January 1974
Major Functional Elements of the System
Data Movement Within the ILLIAC IV Subsystem . . .
Time Phasing of Available NASTRAN Capability on the
Installation Approach Decision Tree
NASTRAN Program Organization on the ILLIAC
User Interface to ILLIAC NASTRAN

LIST OF TABLES

Comparative Speeds of Execution
Comparison of Language Features
NASTRAN Module Characteristics
NASTRAN Installation Estimate for the ILLIAC IV . .

Timing Comparison ¢« ¢« ¢ ¢ ¢« « « o .
Timing Constants (Microseconds)
Performance Improvement Ratios

Detail Man-Time and Schedule Estimates

11
13
15
29
39
47
50

24
30
32
40
41
41
65

CHAPTER I
INTRODUCTION

The potential speed and power of fourth generation computers is being realized.
Though the electronics of computers has now reached a capacity to perform up

to 1.6 millions of arithmetic operations per second, the architecture of
existing computers has organized these electronics using multiprocessing
techniques to overlap these operations and effectively magnify this capacity to
provide up to 50 million such operations per second. These fourth generation
computers, such as the ILLIAC IV with '"parallel" processing and the STAR with
"pipeline" processing, also introduce the opportunity and necessity for
developing new computational algorithms. This opportunity has stimulated
government agencies, such as NASA, to initiate studies to determine the feasi-
bility of performing finite element structural analyses with these new fourth
generation multiporcessor computers.

In response to this challenge, the NASTRAN Systems Management Office of NASA
(NSMO) requested an evaluation study to determine the requirements for possibly
installing NASTRAN (NASA Structural Analysis), a finite element analysis pro-
gram, on the ILLIAC parallel processor. In response to this request, Universal
Analytics, Inc. (UAI) has prepared the following feasibility study under the
direction of McDonnell Douglas Astronautics Company - West (MDAC). This study
has been performed under MDAC Subcontract No. 6-74-489 H as part of MDAC's
overall contract NAS1-12436 with the NASA Langley Research Center.

The ILLIAC, which is now operational at Ames Research Center, Moffett Field,
California, provides unique capabilities already demonstrated [Ref. 1,2,3,5] to be
eminently suited to the matrix processing constructs of finite element analyses
as currently executed with the NASTRAN program. The multiprocessing capabili-
ties of the ILLIAC are achieved using parallel processing hardware concepts.
Very simply, the ILLIAC physically consists of 64 small computers or Processing
Elements (PE) directed by a single Control Unit (CU): (1) to execute a common
instruction sequence (2) simultaneously (3) on independent sets of data. These
three key phrases contain the essense of parallel processing. In other terms,
related to structural analysis, these 64 PEs can be used to compute 64 beam
element stiffness matrices simultaneously or they can be programmed to decompose
a matrix by simultaneously processing 64 columns of that matrix. Thus, with
parallel processing, the ILLIAC can provide 64 times the effective speed of a
single series processing computer. :

Installation of NASTRAN on the ILLIAC would provide a centralized, efficient,
and sophisticated analytical tool to potential users in nearly every major
industrial center in the United States. Not only does the ILLIAC provide its
users with a significant increase in computer efficiency, it is now accessible
to many government and university users throughout the nation via the high-
speed communications ARPA Network (ARPANET) of small, medium, and large com-
puters. In the future, the ILLIAC will be available to a broader spectrum of
users for government-related and/or government sponsored projects. So far,
however, specific provisions have not been made for a charging algorithm
designed for individual job accounting.

4 Based on the working knowledge gained by the UAI staff in developing structural
analysis software for the ILLIAC under contract with the Defense Nuclear Agency

(DNA) and sponsored by the Advanced Research Projects Agency (ARPA), two
basic approaches were studied for installing NASTRAN on the ILLIAC. One
approach would be to utilize the large CDC, UNIVAC, and IBM computers of
the ARPANET as host processors to perform selected NASTRAN input and output
processing and to use the ILLIAC for the major computational tasks of
NASTRAN. This "ILLIAC + Host'" approach is compared to an "ILLIAC-Only"
approach which assumes NASTRAN would be installed in its entirety on the
ILLIAC. The results of this study provide the basis for the following
conclusions:

1. Installation of NASTRAN using the "ILLIAC-Only" alternative
is feasible and the preferred approach.

2. A complete NASTRAN system could be installed and available for
execution in approximately 18 months. Full optimization would
require an additional 18 to 24 months.

3. User access to NASTRAN on the ILLIAC would be possible via
: ARPANET from nearly every major industrial center throughout
the United States.

The justification for expending the estimated 60 man-months for initial
installation and an additional 50 to 75 man-months for full optimization
of NASTRAN on the ILLIAC can be summarized as follows:

1. Major computational activity, such as matrix decomposition,
can be performed 25 to 130 times faster on the ILLIAC as com-
pared to current third generation serial processors.

2. The ILLIAC is ideally suited to processing large static, dynamic
and nonlinear analyses involving highly iterative techniques
which heretofore have not been practical on conventional serial
processors. ‘

3. Finally, the centralization of maintenance and development
efforts on the ILLIAC would reduce future costs of maintenance
and would provide ILLIAC users immediate access to all such
improvements.

Also presented in this study are the justifications for selecting the ILLIAC
over other multiprocessing computers. These may be summarized as follows:

1. The ILLIAC is now operational and has been demonstrated to be
highly suited for the matrix processing operations of NASTRAN.

2. The ILLIAC can perform from 1 to 1.7 times more arithmetic
operations per second compared to the most efficient alternative,
the CDC STAR pipeline processor.

3. The ILLIAC is currently available via the ARPANET from nearly
all parts of the nation.

To achieve these significant advantages, however, care must be exercised
during program design in order to overcome certain limitations of the

ILLIAC System hardware. These limitations, which are fully described in
Chapter II of this study, are as follows:

1. The ILLIAC System is dedicated to the execution of only one job
at a time. Therefore, the effective total time of execution
must include all phases of processing.

2. Data transfers from Central Memory to the ILLIAC disk is slow
compared with the transfer rates from that disk to ILLIAC
memory. This imposes practical limits on the size of problems
to be solved.

3. The total space available on the ILLIAC disk is also limited,
thereby accentuating the problems of slow data transfer to and
from Central Memory which would be required during execution
of very large problems.

These limitations, when properly accounted for, do not discount the impact
the ILLIAC can have in providing the structural analysis community with a
new increase in computer capability.

The background information for this study, from which each of the above
conclusions was derived, is presented below. The current Level 15.7.7
[Ref. A, B, C], a precursor to the upcoming Level 16 release of NASTRAN,
was assumed throughout. The following chapters are organized to present
first the background information on the ILLIAC hardware and available soft-
ware, and the design criteria for selecting the best aprnroach to installing
NASTRAN. Then, based on the selection of the "ILLIAC-Only" approach, the
design specifications, the task identification, and the cost and schedule
estimates for implementation are presented. The last chapter presents an
overall summary and the conclusions derived from this feasibility study.

CHAPTER II
ILLIAC IV SYSTEM BACKGROUND

Background information relating to the ILLIAC computer, its supporting
hardware and available software is presented here. Historical perspective
is also provided to illustrate the magnitude and complexity of the tasks
involved in developing a fourth generation computer system with the power
and capacity of the ILLIAC [Ref. 6,7,9 - 13].

ILLIAC, which is now operational, offers an exceptionally high computa-
tional throughput compared to current third generation computers. This high
rate is achieved principally through the parallel structure of its processor.
This structure is pictured in Figure.2.l. It consists of 64 small computers
called processing elements, or PEs. These 64 PEs are managed by a single
control unit, or CU, which directs the execution of the same instruction
sequence in each of the 64 PEs simultaneously. However, because the actual
data in each PE may be different, the effect is to achieve a computational
power as much as 64 times more effective than that of a conventional serial
processor.

For example, in terms related to finite element analyses as performed by
NASTRAN, the power of the ILLIAC can be achieved by:

1. Generating 64 beam element stiffness matrices at the same time.
2. Decomposing 64 columns of a stiffness matrix simultaneously.

3. Performing forward and backward substitution on 64 sets of right-
hand sides simultaneously.

These examples of efficiency illustrate the optimum potential of the ILLIAC.
The significance of the ILLIAC's parallel processing power is magnified when
compared with other modern serial and multiprocessing computer systems such

as the new CDC STAR pipeline processor, CDC 7600, IBM 360/95, and IBM 360/75%

as shown below in Table 2.1 [Ref. 3]. This table compares the number of opera-
tions (in millions per second) that can be achieved by each of these computer
systems. Two extremes are shown: one for serial operations (N = 1), and one
for multiple processing with optimum efficiency (N = ©), Assuming optimum
efficiency, the ILLIAC would be

1. 180 to 300 times faster than the IBM 360/75
2. 10 times faster than the IBM 360/95

3. 8 to 9 times faster than the CDC 7600

4, 1 to 1.7 times faster than the CDC STAR

These same comparisons, assuming now a serial mode of operation (N = 1), show
that the ILLIAC in its least efficient mode is still faster than all but the
CDC 7600. Therefore, if only modest utilization of its parallel processing
capability is achieved, the resulting increase in efficiency over that of
current third generation computers would be quite significant.

*0f these, only the IBM 360/75 does not have some form of multiprocessing
capability.

—_
]

ety eyt apys i pime e tene gttt 11
'

unsn -
. .l-.!l»vl&!l“j i . gy,

HYVMAYVH AT OVITII FHL 40 TNLONYLS *T°g A4N9Id

SUNIHITT
INISEII0HS 9

1INN
- 7044N0D.
F79NIS
(3d/SAHOM 9505 &0 8502) SGHOM M 821 - TVNLdIONCI

. v | TVIISAHS
! J:JAJA\F\\.\\L\\\\ :...u““
=
| S —_

AT OViTId

‘posn aae

SoTiowsw 193sey ‘19TTeWS 9Y3l Aem Yl 03 IATITSUIS da' saaqunu 3yl ‘gpg/ pue G6T/09¢ @Yl 1og
*ATuo sesodand aATIBIISNTIT 103 pue Aieutuwpiaid aie s2iIn8T3 8yl ‘YVIS pue Al IVITII 9yl aog

*puodss i1ad suorjeaado jo suoplrryw uy (Aiowsw o3 Kiowsw) spsads uorreinduod uorstdvad IEq-49

L2°0 96°0 £€6°0 £EY°0 960°0 T=N
LT 6 Z1 0°¢ L1 960°0 o = N UOTSTAT(Q
69°0 LS°0 6T £€5°0 %1°0 IT=N
vy K4 A 9 $%1°0 w0 =N uoTIedTTdTITNK
8L°0 (S0 9°'T G50 %2°0 T=N
0S 0S 'S 9y $2°0 o = N UOTITPPY
¥vVLS 009! $6/09¢ SL/09¢€ 23e3s
AL DVITII 0ad o0 RYI 15001 1ad uorieaadg
sdaag

NOILNDIXH 40 SAFA4S FAILVIVAWOD

‘T°¢ 919VL

"

o

n

The ILLIAC processor, however, is only one component of an entire complex

of computer systems accessible via the ARPA Communications Network (ARPANET)
shown in Figure 2.2. As can be seen in Figure 2.2, the ARPANET offers the
user access to the ILLIAC from many parts of the United States. This acces-
sibility is one of the major justifications for implementing a nationally
recognized applications package, such as NASTRAN, on the ILLIAC.

The first of the two major sections to follow includes a more detailed view

of the ARPANET facilities followed by a detailed description of the ILLIAC and
its supporting hardware. This discussion of the ILLIAC hardware focusses on
the central system of PDP-10 computers that support and control the ILLIAC,
the specific requirements and facilities for data storage, the data file
transfers capabilities, and the major hardware constraints which would affect
installation of NASTRAN on the ILLIAC. These constraints, which affect the
specific design criteria and program specifications discussed later in
Chapters 3 and 4 respectively, may be summarized as follows:

1. The ILLIAC is a system dedicated to processing of a single job at a
time without overlap.

2. The rate of data transfer from the central system to the ILLIAC IV
Disk Memory (I4DM) is from 10 to 50 times slower than from the I4DM
to ILLIAC memory.

3. The rotational speed of the I4DM is relatively slow compared to
execution. time on the ILLIAC which tends to cause processing to be
1/0 bound.

4. Data transferred from one PE to disk may be read back only into the
core memory of that same PE.

. This section on the system hardware is then followed by a discussion of the
software packages available for process control and applications program
development. The best of the application languages are compared and a tabu-
lation of their key features is presented. This is followed by a summary
comparison and identifying the selection criteria. The major language section
criteria involve:

1. Access to unique hardware features of the ILLIAC
2. Variety of I/O capability
3. Future of maintenance and support

The eventual choice of language to be used depends on which alternative
approach is selected for implementing NASTRAN. Therefore, the final selection
is made part of the specifications for implementation presented in Chapter 4.

50 4vW DIHAVEDOED T Tano1d

(y161) >SNMOMLAN yaav

Y

gYOINVLS
WNS\R

~

1{7MH ©

GHVNEVH

ny;
NN T \\ (mL

“

gver SIdVII0E) Ty OM T TV

COMPUTER AND NETWORK HARDWARE

The system that includes the ILLIAC IV processor is an integrated system.of
data processing, information storage, and communications equipment located
at NASA Ames Research Center, Moffett Field, California. The system is
accessed, as shown in Figure 2.3, via a high-speed communications network
(ARPANET) which provides large-scale computational and file management
services to a growing community of users located throughout the nation.
Through ARPANET, specialized analysis and research groups seeking solutions
to a range of contemporary problems have access to required computational
power not otherwise available to them, and not economically feasible on an
individual or regional basis.

The ILLIAC system is being developed at Ames Research Center by the NASA
Institute for Advanced Computation (IAC). The Advanced Research Projects
Agency, ARPA, of the Department of Defense underwrote the research and produc-
tion that were required in the early phases of development. Since 1971, the
system at Ames has been sponsored and managed by a multi-agency board of
owners, and today IAC receives its technical direction from this board. The
board currently includes representatives of NASA, ARPA, and IAC.

—————— e 1

=
|| uNICON |
: MEMORY
{ .
_CENTRAL COMM.
: SYSTEM PROCESS. ARPA NETWORK
I
|
Il ILLIAC |]
} v
g N A W ¥ -
ILLIAC IV SYSTEM !
|
|
i
I - I
| |
| |
| !
| !
Lo e e T J

REMOTE HOST COMPUTER..SYSTEM

FIGURE 2.3. SYSTEM ACCESS VIA ARPANET

The system being developed by IAC is the largest of several systems of com-
puting resources available to users through ARPANET. Other resources, see
Figure 2.4, vary from small interactive systems to large conventional proces-
sors. This network approach to the distribution of computer system services

is one of the principal economic justifications for the development and opera-
tion of large systems - on the scale of the IAC System ~ for users whose
applications require such systems but who cannot economically justify a
dedicated system. The small systems on the network are used for communications
and for program and data preparation tasks, allowing larger resources to be
applied to tasks commensurate with their special capabilities.

The potential value of the system at Ames is greatly enhanced by its accessi-
bility to a large number of disparate and geographically remote users through
the ARPA communications network. All users, wherever located, access the
system remotely wvia ARPANET for both data transfer and interactive submission
of processing requests. Therefore, the ARPANET is described first, followed
by a summary of the ILLIAC System design specifications and a summary of
the critical hardware features which will affect the implementation of NASTRAN,

The ARPA Network

ARPANET is a wide-band (currently 50,000 bits per second) [Ref. 8] communi-
cations network linking together computing centers and terminal access
points throughout the country. The network has been constantly growing,
both in the number of computing facilities available through it and in its
geographic extent, since its inception in 1969. It should be noted that the
participating institutions are primarily universities, with a sprinkling of
public and private research organizations.

A primary purpose underlying ARPA's sponsorship of the network is to establish
the feasibility and to develop the technical and management basis for computer
system networks on a large scale. In the future, data rates in excess of one
million bits per second are expected over the ARPANET.

ARPANET not only represents a linking together of equipment, but also includes
a standard set of management procedures and communications protocol. For
example, network procedures include a file transfer facility that allows the
easy transfer of files to and from virtually any computing center in the net-
work. There is also a high degree of standardization in the control languages
of the various network systems.

Network users of any of the available computing and data storage services
interact with the resources of their choice, either directly through data
terminal devices tied into the network, or imdirectly through interaction with
local computer centers which are in turn tied into the network. A set of geo-
graphically dispersed network resources can be readily combined, and each
applied to an appropriate part of the solution of a single problem. Regard-
less of how the resources of the system are intended to be used, the procedures
for access and interaction are generally the same. The potential of the net-
work as a resource for servicing and making available the multitude of current
and yet-to-be-~developed structural mechanics programs is obvious.

10

T

YL6T XYVANVE ‘SADYNOSHY MIOMIIN VYV J0 dVK TVOINOT BANARCE(IRER S

O

IsoH laNnvaay - @
drl 1Envaey - (D)

A

2

YI0AI75

=i
0Y¥01vLS

1Y HYN

e

L3S0

The major centers available to the ARPANET, which are shown in Figure 2.4,
illustrate the generality of inter-system communication capabilities. For
example, the current development efforts at UAI have utilized several com-
ponents of this system. These include the IBM 360/91 at the University of
California at Los Angeles (UCLA), the Burroughs B6700 at the UC San Diego
(UCSD), and of course, the ILLIAC IV System at Ames, Moffett Field, California.
The IBM 360/91 at UCLA provides the host computer facilities on which NASTRAN
has been installed and modified to transmit basic structural data and the
control files for execution on the ILLIAC. Once a solution is obtained, the
results are communicated back to the IBM 360/91 host for the selective output
processing as requested by the user. Also, the B6700 at UCSD was used via
ARPANET during initial code development and testing via the SSK ILLIAC System
simulator. This effort, however, is no longer required as the ILLIAC is now
available directly for code development and testing.

The TIP (Terminal Interface Processor) at USC is used as the local resource
for interaction with the ARPANET. Any other TIP (marked by C) in Figure 2.4)
could be used interchangeably for dial-up typewriter terminal activities.

Via the TIP, a user can remotely control files and execution on any host to
which he is given access on the ARPANET. This feature allows a user in
Boston, for example, to.initiate computations on the UCLA IBM 360/91 for
creation of his input files for the ILLIAC, to transfer these files to Ames
and to process them on the ILLIAC, to return the results to UCLA for output
processing, and finally to interrogate these files selectively or have them
shipped to a local site in Boston for volume printout.

The hardware facilities of the ILLIAC IV System at Ames are described next.

The ILLIAC IV System Hardware

The ILLIAC IV System at Ames, which consists of a number of computing elements,
is a remotely accessible facility available to a variety of user groups as
described above. Figure 2.5 is a high-level block diagram showing the major
functional elements of the system as it is now in operation. Looking at these
elements first from a user's point of view, the communications processor ties
the system to ARPANET. It provides data error checking and performs the neces-
sary communications protocol.

The central processors (PDP 10 and 11, and one Burroughs 6700) control the
user job segquences and execute all of the utility programs provided to users
by the system. These processors interpret service requests from users and
either execute the necessary utility programs or pass on the requests when
they are for services provided by other resources in the system. The resource
management processors control and allocate the major resources in the system;
they do not directly execute user programs. The resources they control in-
clude the data storage devices and the ILLIAC processor itself which was pic-
tured earlier in Figure 2.1. ’

All of the system processors communicate with each other through central =
memory. Central memory also functions both as a program and data store for

the processors, and as an intermediate buffer for data transfers between any

two storage devices in the system and between the system and ARPANET. Central

memory is thus pictured as the central device in the system in Figure 2.5.

12

The major devices in the system are the UNICON laser memory and the ILLIAC
processor. The UNICON laser memory, with an on-line capacity of 700 billion
bits, is the largest storage device in a central file system which also includes
a large buffer disk and magnetic tapes. Users do not directly address or
specify the UNICON memory for data storage; rather, the location of all data
files in the system is controlled by the central file system.

The block labeled "ILLIAC IV" in Figure 2.5 represents both the ILLIAC pro-
cessor and the large ILLIAC disk memory system, which has a capacity of

over 32 million 32-bit words. The ILLIAC processor, which is the major
processor in the system, is totally dedicated to the execution of user code.
It is seen by the central system as a large peripheral device providing a
special user service, namely, very high-speed parallel processing on large
data volumes. These services can be used independently or in combination in
the solution of a single problem. The separate nature of these services is a
result of the architecture of the system. Although fully integrated, it can
be functionally utilized as three independent subsystems, namely, the ILLIAC,
the information storage subsystem, and the central system.

' ARPANET

TIONS
STORAG -\\\jS:“‘
E PROCESSOR

CENTRAL CENTRAL
MEMORY PROCESSORS
RESOURCE
v
.ILLIACY | MANAGEMENT. P
ARRA : PROCESSORS

FIGURE 2.5. MAJOR FUNCTIONAL ELEMENTS OF THE SYSTEM

13

Once the program and data have been stored on the system at Ames, the user
defines the general processing tasks to be performed, including those steps
to be done on the ILLIAC. This definition can be done interactively or in

a batch sequence. The central system then initiates the movement of the data
files from the UNICON memory to the ILLIAC memory system. The transfer takes
Place in a series of steps under control of resource management processors.
Once a sufficient quantity of data has been transferred to the ILLIAC disk
memory, the program itself is moved from the UNICON to the processor memory,
which functions as working storage for the ILLIAC. Execution then begins.
Refer to Figure 2.6 for an illustration of data movement within the ILLIAC IV
subsysten. _ -

The ILLIAC subsystem, which is distinct from the central system but con-
trolled by it, includes the ILLIAC processor, a 256K (32-bit word) processor
memory, and a 32-million-word main disk memory device (see Figure 2.6). The
high execution rate of the ILLIAC is achieved principally through the paral-
lel structure of its processor, presented here in general terms.

The ILLIAC processor executes a common instruction sequence simultaneously

on a large number of otherwise independent sets of data. This simple descrip-
tion contains the three key phrases in understanding the parallelism imple-
mented in the ILLIAC: (1) "a common instruction sequence", (2) "simultaneously",
and (3) "independent sets of data'.

The instruction sequence is similar to that of any modern large-scale processor.
"Simultaneously" means literally that each instruction in the program sequence
executes on every one of the independent data sets at the same time. The num-
ber of independent data sets can vary from one up to 512, depending on the re-
quired word size of each data item and the skill of the implementing programmer.
With a single data stream, the ILLIAC is functionally identical to a conven-
tional, nonparallel processor. The machine architecture, as seen in Figure 2.6,
facilitates 64, 128, or 512 parallel data streams which are 64, 32, or eight
bits wide, respectively. Both 64-bit and 32-bit words are standard ILLIAC word
sizes and are fully implemented in parallel in the hardware and in the program-
ming languages. Eight-bit wide parallelism may be thought of as a byte mode
with more limited implementation in the hardware and software.

To achieve this high degree of parallelism, the processor structure consists
of a single Control Unit (CU) that performs instruction decoding and program
control and 64 arithmetic and logic units referred to as Processing Elements
(PEs). The CU reads the instruction sequence stored in processor memory,
decodes each instruction, and generates identical control signals for each of
the PEs. The entire set of PEs (or any subset within it) executes the same
instruction simultaneously, under CU control, each on different sets of data.
Under program control, any subset of PEs can be selected not to execute the
current instruction. '

The instruction set and instruction execution times of each individual PE in
the ILLIAC processor equal or exceed those of existing conventional processors.
For example, a full 64-bit, floating point, normalized ADD takes approximately
300 nanoseconds. A MULTIPLY under the same conditions executes in about 600
nanoseconds. :

There is a single instruction sequence, stored in processor memory. Inter-
leaved in this instruction sequence, normally, are computational steps

14 _ .

WALSASHNS AL OVITII AHL NIHLIM INIWIAOW VIVA °9 *7 TNSIJ

SIN3KW3T3
ONISS3O0Ud 9

AJOVEW
40S

(SpaoM 318 ¥9
‘uorlLiW 91) SLINM
““nnnuuun” 39401 ASIA

C D aazmoskonss €L

(WavI) AYOWIW NSIO

T0Y1NOD

4d371041NOD

LINN

- 10YLINOD

T

15

executed by the PEs, and program control instructions executed by the CU
itself. Thus the CU, in addition to controlling the PEs, executes instruc-
tions such as branching, loop counting, and the generation of external system
calls. In order to provide a sophisticated control capacity (for example,
complex loop indexing), the CU has a complete instruction set including arith-
metic and logic, byte and bit, and special control instructions. The CU is,
if viewed as a stand-alone device, a full-scale processor.

Another vital function of the CU is to direct the transfer of data from one
PE to another. Each PE memory segment is hard-wired to four neighboring PEs
to provide high-speed, core-to-core transfer rates. Two methods of transfer
are available to the program user. One is broadcasting, which takes a single

word from one PE and broadcasts it to all PEs. The second provides for routing

of one word from each PE(i) the same distance j to PE(i + j) for all PEs
simultangously.

The high execution rate of the ILLIAC is achieved not only through the
parallel structure of the PEs but also through execution overlap. The execu-
tion of instructions within the CU is overlapped in time with the execution of
instructions by the PEs. The accessing of instructions from processor memory
is overlapped with the execution of these instructions. Finally, PE operand
fetches are overlapped with PE instruction execution.

The processor memory is working storage for both instructions and data for the
ILLIAC processor. This memory may be thought of as an array of 64 columns
and 2048 rows. Each column (which is either two 32-bit words or one 64-bit
word in width) is associated with an individual PE. The CU can access the
entire processor memory, while each PE accesses only its associated column.

As described earlier, however, data can also be moved from one PE to another
under control of the CU.

The main memory storage for the ILLIAC is the disk memory, the I4DM. This
device is a fixed-head rotating disk system with a capacity of about 32
million 32-bit words. The system is composed physically of 13 disks which
rotate synchronously with a 40-millisecond rotation period and which provide
a maximum data transfer rate of about 10° bits per second. The entire pro-
cessor memory can be written out to disk or loaded from disk in just one
revolution. That is, 256K 32-bit words can be transferred in 40 milliseconds.

System Hardware Constraints

Though the hardware facilities described above offer significant computational
speed, massive storage capabilities and unique inter-computer communication
features, certain of these facilities impose constraints which must be
mentioned. These constraints may be divided into four basic categories which
effect the design of any applications program to be implemented. These are:

1. Data transferred from one PE to disk may be read back only into the
core memory of that same PE.

2. The rotational speed of the disk is relatively slow compared to the
speed of execution so that the system tends to be I/® bound for pro-
grams that require significant temporary data storage on disk.

16

T

3. The relatively slow transfer rates from central memory to the I4DM
and the restricted number of I4DM disk drives (compared with current
IBM 3330 capacities) place limits on the size of problems to be solved.

4. The ILLIAC is a dedicated machine restricted to the processing of a
single job at a time without overlap.

Specifically, the first constraint requires that primary consideration must
be given to design of the data structures to be implemented. Files must be
organized to avoid as much as possible the necessity to transfer data from
one PE memory to another. For example, matrix genmeration and matrix assembly
modules need to be coordinated so that data output from one module is input to
the other module in such a manner as to minimize the time required to route
the data for assembly. Also, the storage of assembled matrix data should be
designed to anticipate the specific PE into which it must be read for subse-
quent processing. In anticipation of these objectives, attention must be
given to the selection of internal numbering schemes, to the design of
solution algorithms, to take advantage of numbering conventions in order to
minimize storage of pointer data and to the interfacing between modules which
operate on these data. Those modules responsible for the major computational
efforts probably should be specially coded to account for this constraint.

The second and third constraints impose a design requirement to optimize the
allocation of disk space to storage of matrix data. The software facilities
are provided, as described later, to "map" or assign data block storage on
the disk. Careful attention to estimates for execution time relative to data
transfer times is required to design "mapping" algorithms which will avoid
potentially lengthy wait periods for disk I/O to take place. Practical con-
siderations, however, dictate that this type of "tuning" of the application
software be limited only to the interfaces between major time consuming
modules. The relative overall speed of the ILLIAC will compensate for some
inefficiencies of less critical modules.

The fourth constraint imposes more global considerations on the design of a
large applications software package. The major concerns involved with current
serial processors for checkpointing and restarting to protect the user during
long running computations should be modified. An examination of the time
required to regenerate data versus the time required to checkpoint and then
restore that data will be required to establish new checkpointing criteria.
The speed and capacity of the ILLIAC and its I4DM will genmerally show less
time is required to regenerate matrices to insure cost effective utilization
of the system. The overriding criteria will be to selectively checkpoint only
the minimum size data blocks needed for restart rather than to implement the
practice of arbitrarily checkpointing nearly every item as is done now in
NASTRAN.

These hardware constraints apply primarily to the initial efforts of selecting
a basic approach and design methodology for implementing any large application
software package. The size of NASTRAN and the generality of its current capa-
bility also present major considerations. By retaining its original organiza-
tion as a modular program, installation of NASTRAN on the ILLIAC can be accom-
plished utilizing either of two basic approaches:

1. The current NASTRAN system which now can operate on several of the
remote host computers on the ARPANET can be modified to extend its

17

capabilities linking it to the ILLIAC for the execution of
selected modules specifically designed for optimal utlllzatlon

of the power and speed of the ILLIAC.

2. Directly implement all modules of NASTRAN on the ILLIAC first,
and then selectively redesign the major modules for optimum
utilization of the ILLIAC.

The first option would soon provide powerful and efficient code for a limited
set of capabilities. The second option would allow execution of all current
capabilities on the ILLIAC but at far from optimal efficiency. However, both
options eventually would reach a commensurate level of efficiency, thus pro-
viding the NASTRAN user community with access to the most powerful computa-
tional facility now available. ’

The final selection of an approach for installing NASTRAN obviously depends
heavily on the available software for its implementation and eventual opti-
mization. The next section, therefore, is devoted to an analysis of the
available software.

18

T
Vo

SYSTEM SOFIWARE

The system software available on the ILLIAC IV is divided into two categories:
that used for producing application programs and that used for providing the
job control and file control utilities.

There are four suitable application languages presently implemented for use
on the ILLIAC:

GLYPNIR

CFD Higher level languages
IVTRAN :
ASK Assembly language

Of these four, all but IVTRAN have seen extensive use on the ILLIAC. CFD is
a FORTRAN-based language. It has been used in a wide variety of climatic

and fluid dynamics problems. GLYPNIR, one of the first available languages
for the ILLIAC, is based on ALGOL. It is being used now for structural anal-
ysis with the UAI-TLSA system and by several others who are performing earth-
quake studies. Many of the ILLTAC users also use ASK in certain applications
where more efficient coding is desirable. IVTRAN, which is currently under
development, is also a FORTRAN-based language. Though it has not yet seen
much use, current studies indicate it is to be highly regarded as a major
candidate for major software development on the ILLIAC.

Several additional languages such as COCKROACH and TRANQUIL have received
some attention in recent years, but none has reached an operational state.

Two control languages are available to the user. These provide utility
services for file editing and job control. The two systems are:

ACL - Job control language
FTP -~ File transfer services

Both of these languages operate under the TENEX operating system of the cen-
tral system's PDP-10 computers. These are summarized in the first section
to follow. Next to be presented are the four application languages, along
with a summary of the key features of the three higher level alternatives.
The final section of this chapter presents an overall comparison of the
three languages, GLYPNIR, CFD and IVIRAN, to be used later in selecting the
language for implementing the NASTRAN capabilities on the ILLIAC.

Process Control Languages

ACL (A Control Language)
ACL is the general control language for the ILLIAC System. It provides

linkage between the ILLIAC IV, the central file system, and the PDP-10
system process controllers.

19

The language operates in two modes, batch and interactive, with several sub-
gsystems being restricted to only one mode. The language is sequential in
nature with only simple error tests and jumps allowed.

A summary of services supplied is listed below:

1. Compile and Assembly Steps:

Subsystems are provided to support the GLYPNIR and ASK languages.
IVIRAN will be available in the future. No services are avail-
able for CFD. These must be obtained through host computers
over the ARPANET.

2. Program Execution Steps:

The normal services exist for submitting and monitoring the
execution of user programs on the ILLIAC. Subsystems are
also provided for the transfer of data to and from the T4DM
and central memory.

3. Llinkedit and Map Steps:

Linking of relocatable code and formatting of the I4DM working disk
gtorage for the ILLIAC are provided with these subsystems:

Linkedit - Only simple linking procedures are supported. No
overlay structures are allowed. Commands are also provided to
control the manner in which unsatisfied external references
are supplied.

Map ~ The map subsystem allows the user to format his areas on
the I4DM for use during execution. A utility is also available
to produce a printed picture of the resultant disk layout.

4., TFile Utilities:

Several subsystems are available for the editing and listing of
files stored in the central file system. Three file types are
supported, 7 or 8 bit ASCII formatted files, binary files, and
ILLIAC Dump files.

' The file editor used primarily for maintenance of source code
and output viewing provides very good searching and updating
facilities combined with ease of use.

FTP (File Transfer Protocol)

The File Transfer Protocol is a processor for data transfers between host
computers on the ARPA network. The primary function is to transfer data
efficiently and reliably among hosts and to allow the convenient use of
remote file storage facilities.

FTP provides for only limited data representation. Four data formats are

1. %-bit ASCII formatted
2. 8-bit EBCDIC formatted

20

3. 1Image - continuous stream of binary data
4. Local - data is stored on logical bytes of a size specified
by the user

The conversion of data between internal storage representations and the FTP
representation is handled by the host computer before or after transfer.
The system also provides access controls to prevent unauthorized or acci-
dental use of files.

The following section describes the four primary application languages and
summarizes their key features.

Application Languages

GLYPNIR

GLYPNIR is an ALGOL-based language for the ILLIAC with extensions to pro-
vide parallel processing capabilities. The GLYPNIR compiler runs on the

B6700 computer and generates ASK code to be assembled and executed on the
ILLIAC. A simulator (SSK) which runs on a B6700 also exists which does a
bit-for-bit ILLIAC simulation of the GLYPNIR-generated machine code.

Being ALGOL-based, the language is quite flexible. Good capabilities exist
for string-and-bit manipulation and partial word operations. Sufficient
capabilities have been included to make efficient use of hardware capabilities.
Direct operations on hardware registers and several routing capabilities are
provided. ASK code may be inserted at any point in the GLYPNIR code and may
use any GLYPNIR-defined variables. Good storage management facilities exist
for assigning data to either PE or CU memory and to hardware registers. No
provision is included for code overlaying.

Sufficient I/0 capabilities exist for transferring data to and from the I4DM.
A crude display feature is provided to format data for later output. The
major drawbacks of the language come from its lack of formal support for
maintenance and improvement. The language, though it is advanced, also tends
to be difficult to program because of the large variety of constructs avail-
able to the user. That is, the existing FORTRAN code of NASTRAN could not
readily be converted, and a major rewrite would be required for every module
to be coded in GLYPNIR.

CFD

CFD is a FORTRAN-based language extended to include access to the parallel
processing of the ILLIAC. The CFD code can be either compiled directly into
ASK for execution on the ILLIAC, or it may be translated into equivalent
FORTRAN for execution on any of the larger IBM computers. This allows a CFD
program to be debugged externally from the ILLIAC. The language is actively
supported and used at NASA Ames. Being FORTRAN-based, the language is re-
stricted in its flexibility such as limited string-and-bit manipulation.
Also, no provisions are available to use some of the hardware features of the
ILLIAC. This includes no direct access to registers and limited routing

21

capabilities. It is possible to include ASK code at any location in the CFD
source statements. Good data assignment facilities are provided for storing
data in either PE or CU memory. The language does not allow any type of
mixed mode arithmatic.

Sufficient I/0 capabilities exist for transferring data to and from the I4DM.

No display feature is provided for formatted I/0 and, if desired, must be
accomplished with ASK.

Although easy to use, CFD is not as flexible or sophisticated as the GLYPNIR
language. Unnecessary syntax restrictions also have been imposed to

include parallel processing capabilities. These include the * in Column 6
on most cards and a required (*) subscript on all variables assigned to PE
memory.

IVIRAN

IVIRAN is a FORTRAN-based language for use on the ILLIAC. The language
syntax is very similar to standard FORTRAN, making conversion from existing
code a minimal effort. A major feature of the IVTRAN system 1is the
"paralyzer", a compiler option for use in this conversion effort. The para-
lyzer examines D@ loops of standard FORTRAN programs and converts them into
more efficient D@ FPR ALL loops for use on the ILLIAC,

IVIRAN 1is being actively developed by Massachusetts Computer Associates.
Although it 1is not available to users at this time, recent benchmarks give
encouraging results. The compiler appears to generate very efficient code
and has extensive optimization facilities. The user can also aid the com~
piler in optimization by specifying expected execution frequencies through
the FREQUENCY statement:

The I/0 facilities of IVIRAN are quite different from those of the other
languages. The biggest difference exists in formatted I/0. IVTRAN has very
good display features derived from the full implementation of the FORTRAN
FPRMAT statement. Binary I/0 is of a buffered variety which does not allow
for asynchronous processing. A non-buffered bulk I/0 is also available for
transferring whole IVTRAN arrays. This technique takes better advantage of
the I4 hardware and does allow asynchronous processing.

IVIRAN contains all the normal restrictions of a FORTRAN-based language.
These include poor string-and-bit manipulation facilities and no partial
word operations. However, good debugging facilities and a mixed mode arith-
metic feature are included,

One of the principal disadvantages of IVITRAN appears to be its limited
utilization of the unique characteristics of the ILLIAC. Although little

actual experience with the language is available, to produce code which fully- -~

utilizes this parallel processing feature could be difficult. Only one
language construct, the D@ FPR ALL clause, deals with this important concept.
No direct control is available over PE modes (on or off) or use of CU regis-
ters or CU memory. Also, no provision is available for inserting ASK code
directly within the IVTRAN code, although separate ASK subroutines may be
coded. :

22

The IVIRAN language attempts to relieve the programmer of many of the
idiosyncrasies and difficulties of working in a parallel processing environ-
ment. The efficient use of parallel processing is highly dependent on the
alignment of data in each PE memory. The facility for this in IVTRAN gives
the programmer only limited control while the compiler attempts to do the
majority of the work. Unfortunately, these attempts appear to have
restricted the efficient use by the programmer of these important ILLIAC
features.

ASK

ASK is the assembly language for the ILLIAC and is fully supported by the
Institute for Advanced Computations. It allows full use of the hardware con-
figuration of the machine. While powerful, coding is difficult and time
consuming, as with any assembly language.

I/0 capabilities are very good for assembly language programming. Macros
are available that provide disk and formatted I/0 similar to that of GLYPNIR.

Its major advantage is for use in optimizing selected sections of code. It

may be used as direct inserts into GLYPNIR and CFD program code and as a
macro language for subroutine constructs.

Key Language Features

There are many features that determine the suitability of a language for any
application. ' Table 2.2 summarizes the basic features for easy comparison of
the three best higher level languages available on the ILLIAC: GLYPNIR, CFD,
and IVTRAN. The more important of these features are identified below.

The user should have direct access to and control over the hardware functioms
unique to the parallel processing environment for optimal program design.

These include:

Routing of data between PEs.

. Access to the hardware registers.
. Access to the small, high-speed memory of the CU.
Direct control over the operational mode of each PE (on or off).

. Access to asynchronous I/0 capability.

[= RV, B - S VS A

. Ability to insert ASK code where needed to gain efficiency for
computation and I/0.

7. Access to central file system from the ILLIAC.
Other important features to be considered are:

1. Available data types, including string and complex.

2. Communication facilities between subroutines, including calling
parameters and common,

23

TABLE 2.2.

COMPARISON OF LANGUAGE FEATURES

GLYPNIR CFD IVTRAN
Base language ALGOL FORTRAN FORTRAN
Support -
maintenance very little good good
documentation poor good under development
improvement none fair good
Syntax -
readability good good good
programability difficult difficult good
reserve words = 120 x 25 none
loops several types D@ loop DY loop
mode control several types logical IF D@ FPR ALL
branches GP TP's several types several types
Code generation -
efficiency poor fair good
optimization none none good
ASK inserts yes yes no
Debugging -
bound checking yes no yes
subroutine call
traces yes no yes
conditional com-
pilation yes no no
variable displays no no yes
Hardware-related -
features -
routing functions yes no no
register avail-
ability yes no no
ADB* usages yes some no
mode control yes direct control no
Macros DEFINE no no
Subroutines and
functions -
separately compiled yes yes yes
in-line yes no no
Built-in functions -
trig yes yes yes
log and exp yes yes yes
type conversion yes yes yes
bit manipulation shifts & shifts & rotates shifts
rotates

*ADVAST, DATA, BUFFER

24

s
[t

TABLE 2.2.

COMPARISON OF LANGUAGE FEATURES (cont'd)

GLYPNIR CFD IVTRAN

Data types -

real 32 & 64 bit 32 & 64 bit 32 & 64 bit

integer 32 & 64 bit 32 & 64 bit 32 bit

alphanumeric yes no no

logical yes yes yes

complex no no no

string yes no yes
Implicit declaration no FORTRAN conventions { FORTRAN conventions

Allowable bases
Data initialization

Subscripted
variables

Dynamic storage
allocation

Data alignment -
by row
by column
equivalencing

Common/global
data areas

Mixed mode
arithmetic

Partial word
operations

“Relational operators
Logical operators

I/8 to I4DM disk -
full row
half row
quarter row

Formatted display
Asynchronous I/¢
I/¢ to Tenex disk

betw'n 2 & 36

yes

1 subscript

yes

PE variables
PE vectors
AS construct

Limited no. of
global areas

yes

yes
complete

complete

yes
yes
yes

no
yes

yes

base 10 only

some

3 subscripts

yes

(*) construct
vectors
EQUIVALENCE

COMMON

no

no
complete

AND, N@T, @R

yes
yes
yes

no
yes

no

8, 10, & 16

yes

unlimited
subscripts

no

physical skewing
aligned index

EQUIVALENCE,
OVERLAY & DEFINE

COMMON

yes

no
complete

complete

yes
no
no

yes’
yes

no

25

3. Available compiler-prdvided functions, including logical, mathe-
matical, and bit manipulative functions.

4. Compiler ability to utilize temporary storage, including dynamic
array allocation.

5. Ability to allocate data across PE memories and within the memory
of one PE.

6. Adequacy of debugging facilities, including checks on bounds of
array subscripts, temporary debug output, and subroutine call
tracebacks.

7. Compiler efficiency and code optimization.
8. Code checking facilities (simulators) external to the ILLIAC.
9. Appearance and readability of code syntax.

10. The level of support the language will receive, including error

correction and future enhancements.

The remaining features listed in Table 2.2 refer to specific technical items
important to the implementation of any major application package on the
ILLIAC. The following section presents a summary comparison of all three
languages. :

Language Comparison and Selection Criteria

In order to make the final selection, as will be done later in Chapter IV,
this section presents a summary comparison of the four available application
languages: ASK, GLYPNIR, CFD, and IVIRAN. The basic merits of these
languages are compared to determine their relative suitability for use in
the implementation of large application software systems on the ILLIAC.

The first and foremost criteria for selecting any ILLIAC language is its
ability to utilize the parallel processing features of the ILLIAC Array. The
language best suited for this purpose is ASK, the assembly language for the
ILLIAC. 1Its drawback, of course, is the same difficulty inherent in using
any assembly language. However difficult that may be, ASK must be used
selectively to optimize both the inner computational loops and I/O processing.

Of the three higher level languages, GLYPNIR offers the greatest flexibility
to the programmer in accessing the unique hardware features of the ILLIAC.
CFD also provides ample access to these features but is constrained by limi-
tations inherent in its FORTRAN-like constructs. Both, however, allow for
direct insertion of ASK code for optimal efficiency. IVTRAN provides only
for minimal utilization of the parallel processing features. Its major ad-
vantage is easy application to program conversion of existing code. If
IVIRAN is used, together with selected subroutines coded in ASK, the overall
conversion of an existing FORTRAN code can be performed efficiently, and
effective utilization of the ILLIAC can be achieved.

The second major criteria for selecting a language is its I/O capability.

The two basic types of I/0 required are binary and formatted. Only IVTRAN
provides formatted I/0 comparable with standard FORTRAN. GLYPNIR provides

26

very limited formatting and CFD provides none. Again, ASK may be used to
provide this capability for both GLYPNIR and CFD. GLYPNIR, CFD, and ASK
provide the best binary I/0 capabilities. IVTRAN is limited to buffered
binary I1/0 with no asynchronous capability.

The capacity to utilize the asynchronous I/0 feature of the ILLIAC will be
extremely important to avoid potentially severe I/0 bound operations. Though
GLYPNIR and CFD do provide for this capability, any large applications system
should include a general purpose I/0 package to manage these activities.

This package should be written in ASK to best utilize the sophisticated I/0
features of the ILLIAC.

A third criteria for selecting a language is the support it will be given

in the future. Only GLYPNIR is not actively being maintained. CFD and
IVIRAN will both be provided with ongoing maintenance for both error correc-
tion and improvements by their respective developers. ASK, of course, will
be actively maintained, as it is the basic assembly language for the ILLIAC.
CFD and GLYPNIR code can be tested outside the ILLIAC environment as an aid
to debugging. This is important for the near future while the ILLIAC is in
the checkout phase and turn-around remains a problem. IVTRAN is provided
with a "paralyzer" to assist in the conversion of existing FORTRAN code,

but checkout can only be performed on the ILLIAC Array itself.

The process of combining relocatable code produced by any of the compilers
into an executable program is similar for all the languages. The code pro-
duced by each compiler can be processed by the LINKEDITOR provided on the
ILLIAC system. What is lacking at present is an adequate overlay facility
for managing large application programs. Necessarily, therefore, a manual
overlay capability will have to be developed.

In summary, the selection of a language on overall capabilities is largely
dependent on the tasks to be performed. For coding a new program for opera-
tion on the ILLIAC, most likely CFD or GLYPNIR would be the best choice.
Both these languages allow the user the greatest flexibility to access the
unique features of the ILLIAC. Thus, optimizing the code for full utiliza-
tion of the parallel processing is possible. Of these two languages, CFD
offers the distinct advantage of a more familiar syntax, and initial checkout
of the code can be performed efficiently outside of the ILLIAC environment.
This approach would be recommended if only selected NASTRAN modules were to
be developed for optimal utilization of the ILLIAC. These selected modules
then could be accessed via the ARPANET from any remote host on which NASTRAN
is already operational.

If an entire application package such as NASTRAN, which has already been
programmed in FORTRAN, were to be implemented on the ILLIAC, then IVTRAN
would be the logical choice. The close resemblance of IVIRAN to FORTRAN
and the availability of a "paralyzer" to assist in code conversion, mini-
mizes the initial installation task. However, because the resulting code
would make inefficient use of the ILLIAC, the more time-consuming modules
would have to be recoded to fully utilize parallel processing. The singu-
lar advantage of this approach would be that a functioning integrated sys-
tem could be available early in the process and immediate gains would be
realized as each new optimized module is completed.

27

\
\

CHAPTER III
DESIGN CRITERIA

This chapter presents the fundamental design criteria for implementing NASTRAN
on the ILLIAC System. Pros and cons of the two alternative approachs for
installation are discussed. The technical feasibility of these approaches is
related to the basic design items or building blocks of the NASTRAN System.
The relationship between the possible installation approaches and installation
effort, program efficiency, and user convenience are explored. Finally, a
basic design for the installation of NASTRAN on the ILLIAC is selected.

The main purpose for this design would be to provide a user-oriented system,
commensurate with current NASTRAN standards, which minimizes the need for user
interaction with the ILLIAC IV System. There are two feasible approaches to
be considered for installing NASTRAN on the ILLIAC. These are:

1. The "ILLIAC-Only" approach wherein 100% of the NASTRAN program is
implemented directly on the ILLIAC.

2. The "ILLIAC + Host" approach wherein selected NASTRAN operations are
implemented on the ILLIAC so as to be accessible via the ARPANET from
an extended version of standard NASTRAN operating on a remote host
computer.

The first approach would involve taking the machine-independent code of
current NASTRAN and processing it by a FORTRAN compiler, translator, or other
source conversion program. Thus, installation of NASTRAN could proceed in a
"normal" manner even though the ILLIAC is not a "mormal' machine. However,
object code as initially generated by this method would probably not make
efficient use of the ILLIAC hardware. As noted in ChapterII, this code still
would execute on current third generation computers. Also, once installed
and operational, the full power of the ILLIAC could be exploited by selec-
tively optimizing the resulting source code to take full advantage of the
unique parallel processing features of the ILLIAC.

The ILLIAC + Host approach is not so much the installation of NASTRAN on

the ILLIAC as it is the extension of current NASTRAN to access the ILLIAC.

In this approach NASTRAN could be installed on one or more of the conventional
host computers (IBM, CDC, or UNIVAC) on the ARPANET. Functional modules which
perform heavy computational chores would be specially coded and installed on
the ILLIAC. Thus, the input card processing, geometry processing, output
file processing, etc. would continue to be performed by a conventional NASTRAN
computer. The real "number-crunching" portion of an analysis would be per-
formed by the ILLIAC. This approach has the advantage that the ILLIAC program-
ming effort would be concentrated on relatively few modules. The ILLIAC part
of NASTRAN could be specifically tailored to fully utilize the power of the
ILLIAC. Problems with source code conversions and inefficient utilization of
the ILLIAC could be avoided. However, the user will have to expend more
effort to make a NASTRAN run. For example, a scenario for solving a problem
with this approach might be as follows: :

28

1. Run NASTRAN on a conventional host computer to process input.

2. Log on to the ARPANET system to direct data files from the host to
the ILLIAC IV System.

3. Run NASTRAN on the ILLIAC to obtain solution.

4. Log on to the ARPANET system to direct data files from the ILLIAC IV
System to the host computer.

5. Restart NASTRAN on the host computer to obtain printed output.

As will be shown later, the end result of both approaches would provide the
user with a highly efficient code for executing structural analyses on the
ILLIAC. The time phasing of its availability would be different as shown
below in Figure 3.1. The solid line shows the sequence in which full optimi-
zation is achieved as each increment of capability is added. Note that for
the ILLIAC-Only approach, the process of optimization accelerates in time
while for the ILLIAC + Host, the time for implementation of each new capabil-
ity remains relatively constant. This difference reflects the fact that with
the ILLIAC-Only approach, the code to be implemented with optimization is
derived from existing tested capability and needs only to be modified, as
opposed to being developed especially for and tested entirely on the ILLIAC.
Table 3.1 has been prepared to help identify those modules which would be
prime candidates for optimization. The heavy computational modules shown are
the prime candidates for recoding under either approach. Conversely, those
modules which might be modified frequently for future developments would not
be prime candidates. Those modules with both characteristics would require

the exercise of engineering and programming judgment before a decision could
be made.

Full Availability with

\ Initial Installation
| ,— ————————————————
I,
Level of / Modular Optimization
Operational p
Capability on]
the ILLIAC / ILLIAC-Only Approach
II
]
L Time
A
Level ?f «—=2—— Modular Optimization
Operational
Capability on
the ILLIAC ILLIAC + Host Approach

> Time

FIGURE 3.1. TIME PHASING OF AVAILABLE NASTRAN CAPABILITY ON THE ILLIAC.

29

TABLE 3.1. NASTRAN MODULE CHARACTERISTICS

MODULE c MODULE MODULE M | MODULE c| M
ADD X GPWG PLA2 SMA3

" ADDS X IFP PLA3 X | smpl X
BMG 1FP1 PLA4 X SMP2 X
CASE 1FP3 PLOT X SMPYAD X
CEAD X 1FP4 PLTSET X | SOLVE X
CHKPNT IFP5 PLTTRAN SSG1 X
CoND INPUT PRTMSG SSG2
DDR1 INPUTTL PRTPARM SSG3 X
DDR2 INPUTT2 PURGE SSG4
DEC@MP X JuMP RAND@M TAL X
DPD MATGPR RBMG1 TABPRT
DSMGL X MATPRN RBMG2 TABPT
DSMG2 MATPRT RBMG3 TRD X
END MCE1 RBMG4 TRNSP X
EQUIV MCE2 READ UMERGE X
EXIT MERGE REPT UMFEDIT
FBS X MPYAD SAVE UPARTN X
FRRD X MTRXIN SCE1 VDR X
GKAD X @FP SDR1 VEC
GKAM @UTPUTL SDR2 XCSA X
GP1 @UTPUT2 SDR3 XGP1 X
GP2 @UTPUT3 SEEMAT XSFA
GP3 PARAM SETVAL XS@RT
GP4 PARTN SMAl X | XYPLQT
GPSP PLAL SMA2 X | XYTRAN

Module performs much computation
Module may be modified frequently

The main focus of this chapter, therefore, will be to identify the criteria
for selecting the best of these two feasible approaches to installing NASTRAN
capability on the ILLIAC. The relative efficiency and estimated manpower cost
for implementation of both approaches is developed and summarized in Table 3.2.
Man-time estimates are developed from the criteria presented for each of the
design items considered. The results of this comparison show that:

1. The manpower cost for implementing the ILLIAC-Only approach is esti-
mated to be from 257 to 307 less than that of the ILLIAC + Host approach.

2. The optimized capability for the ILLIAC-Only approach is estimated to
be within 10% of that of the ILLIAC + Host approach.

In addition to these two selection criteria of cost and efficiency, a third
criteria is also established giving consideration to user convenience. Noting
that the ILLIAC-Only approach provides for an integrated system, directly by
user from his office over ARPANET, that is entirely operational on the ILLIAC.
The multiple step processing sequence required for the ILLIAC + Host approach
is avoided. This observation, together with the estimates for lower cost of
installation, and relatively minor differences in efficiency, indicates that
the ILLIAC-Only approach must be selected as the best of the two altermatives.

The discussion of each design item used to establish the cost and efficiency
estimates summarized in Table 3.2 are presented below. These items are sub-
divided into four major sections as follows:

1. Systems and Maintenance
2. The Executive

3. Utilities

4. Engineering Computations

The final section of this chapter presents an overview of those three selection
criteria. Examples are also given to show that NASTRAN, using the parallel
processing capability of the ILLIAC, could provide the user with an effective
gain in efficiency from 10 to 500 times that of current third generation serial
processors. »

31

*G9T/0LE WII Ue 03 JVITII 243

103j sofjel poads Jurindwod ale ADUDTOTIFS, 10J sonNTep
*syjuow-uew ul passaadxa aie 310339, I0J SIANTBA

S6

08FO0Y 06 0v1-01

LE

09

STVLOL

0¢
St

0c
ot

0¢

0%-0¢ ST
05-0¢t S¢

0£-0¢
06-0¢

0¢
1 ot

oO~NO
O~NO -

T

Ta]

0¢

0¢

o
TNHNOOOO

01

0T
<1

~nN O~

T

tTmOoooo

S9TNPOK TeuOoIIdUng
suorleaadp XTalen

SNOILVLAAKOD ONIUAANIONH

SITITTITIN SNOSUBTTIOSTH
310) uadg

Suroed XTalBN PuEB UVOTIBION JUFaIIS
saurinoy ¢/1

SAILITILN

31els9y/iutodyooy)

uoT3ed0TTV STTd
Toajuo) aduanbag suorieaadp

HATILODIXT

s9TaTTTIqEede] 21nang jo uofiejuswatduy

BOUBUDJUTER

s9oBJa93u] we3lsAs 3urieaadg
sfef1anQ pue 1031p3x =.8eyuti

SUOTIBROTITPON 2p0) poaarnbay
jusmdoyaaaq i1371duwo)

JONVNILNIVH ANV SWALSAS

‘AL

‘TII

‘II

‘I

Aoua1oT33d|31033d

£>uatoT33d (310337

Aouatotr33d

310334

poz1wr3do

po3lwTsuea]

LSOH

+ JVITII

LKINO-OVITII

SW4LI NOISsdd

AL OVITII dHL 404 FLVWILSE NOLLVTIVLISNI NVIISVN

*7°¢ A9V

32

v

'

SYSTEMS AND MAINTENANCE

Compiler Development

This design item consists of the development or modification of FORTRAN source
conversion programs and/or the modification of an existing ILLIAC compiler.

For the ILLIAC + Host approach, no effort is required. ILLIAC code would be
developed from scratch. Therefore, existing ILLIAC compilers can be used.

For the ILLIAC-Only approach, two options are available. Either a source
conversion program can be written to convert NASTRAN's FORTRAN code to an
ILLIAC language, or the "paralyzer", which converts FORTRAN to IVTRAN, can be
used with minor modifications. The latter case is used in estimating the
level of effort for this design item in Table 3.1.

Required Code Modifications

Required code modifications for the ILLIAC-Only approach consist of adding
another allowable machine type to the machine-independent code. In particular,
this consists of modifications to subroutine BTSTRP plus all routines which
reference the 'machine-type'" parameter in the /SYSTEM/ common block. It also
includes checking all routines which use machine-dependent information such as
number-of-bits-per-word, number-of-bits-per-character, etc.

For the ILLIAC + Host approach, this item consists of developing an entire
Executive System for NASTRAN to execute on the ILLIAC. This Executive would
duplicate most of the functions of the standard NASTRAN Executive. It would
control the sequence of module execution, allocation of data blocks to the
modules, checkpoint/restart, etc.

Linkage Editor and Overlays

This item consists of the process of obtaining ILLIAC IV machine code from the
object code produced by a compiler. The present linkage editor for the ILLIAC
has no overlay capability. However, a non-automatic overlay may be implemented
by the ILLIAC User Support Group of the IAC if there is sufficient demand. In
order to use this feature, a source program would have to make a call to the
executive loader in order to load the required program segment before calling
any subroutines in that segment.

For the ILLIAC-Only approach, the link drivers XSEM1 to XSEM1l4 would be
replaced with machine-dependent code. This code would manually load the pro-
gram segment into core for each module to be executed.

For the ILLIAC + Host approach, a similar scheme would be used to load each
program segment. This scheme would be incorporated into a yet-to-be-designed
Executive System for the portion of NASTRAN to be installed on the ILLTAC.

Operating System Interfaces

This item consists of designing procedures to effectively utilize the job
control language, dynamic runstream modification, asynchronous input/output,

33

and data transfers between secondary storage devices, etc. These interfaces
are simple and well-defined because the ILLIAC is not a multiprogramming com-
puter. That is, it can execute only one user program at a time. The major
system interface, such as the equivalent of the GIN@ routines, are treated as
separate design items. 'Therefore, for either installation approach, the
effort required for this design will be small.

Maintenance

The maintenance design item includes the normal maintenance functions for
NASTRAN. These involve error correction, documentation, updating, and
incorporation of new developments into the system, etc. For purposes of
assigning a value for the level of effort for this item, consideration has
been given not only to the actual installation, but also to future maintenance.

During installation, the major effort for this item will be documentation.
Naturally, the amount of documentation required varies with each installation
approach. For the ILLIAC-Only approach, the source conversion program would
be documented, as would all subroutines which were recoded. Also, a section
in Chapter V, Operating System Interfaces, in the NASTRAN Programmer's Manual
would have to be added to cover the ILLIAC installation.

For the ILLIAC + Host approach, all new modules and subroutines for the ILLIAC
would be documented. Additional documentation also would be required for the
TLLIAC Executive System and the ILLIAC: Host interface. As in the ILLIAC-
Only approach, a section in Chapter 5 of the Programmer's Manual would be added.

After installation, the major effort for this item would be error correction,
updating, and incorporation of new developments. For the ILLIAC-Only approach,
this effort would be minimal. However, for the ILLIAC + Host approach, this
effort could be considerable because of the specialized code involved.

Implementation of Future Capabilities

The implementation of future capabilities developed in the FORTRAN version of
NASTRAN would be easiest for the ILLIAC-Only approach. For the ILLIAC + Host
approach, considerable effort would be required because the new capability
must be completely recoded. Of course, the original FORTRAN version would be
available to the user on the remote host computer during that development
period.

34

0

EXECUTIVE

Operations Sequence Control

This design item is concerned with controlling the execution sequence of the
functional modules. For the ILLIAC-Only approach, little effort would be
required because existing code can be used. However, for the ILLIAC + Host
approach, new routines will be needed to account for the special purpose
design of and unique interfacing between modules.

File Allocation

This item is concerned with the allocation of data blocks for the functional
modules and with formatting the ILLIAC disk memory (I4DM) for lowest possible
access times.

For the ILLIAC-Only installation approach, file allocation would be performed
by the standard NASTRAN routines GNFIAT, GNFIST, and XSFA. GNFIAT is machine-
dependent and it would therefore be recoded for the ILLIAC. In this imple-
mentation, GNFIAT would have the task of specifying initial I4DM formats for
the NASTRAN data blocks. During execution of the functional modules, these
formats would be extended by GINA. Thus, GNFIAT would specify the starting
disk addresses for data blocks and GINY would automatically obtain extents

on I4DM as needed. Permanent files such as NPTP, ¢PTP, PLT2, and so on

would be allocated by the user with ACL, the ILLIAC System Control Language.

For the ILLIAC + Host approach, file allocation would most likely be handled
dynamically by the module's own I/@ routines. Thus, the user would use ACL
to allocate his permanent files for input/output and checkpointing, plus a
large scratch area on the I4DM. This scratch area would be managed during
execution by the I/ routines.

Checkpoint/Resﬁart

For the TLLIAC-Only approach, checkpoint/restart can be performed simply by
allocating NPTP and @PTP to the Central File System instead of the ILLIAC
disk. Thus, when an ILLIAC run terminates, the checkpoint file would already
be stored on permanent storage. A more efficient method, however, would be
to "mark" the areas on the ILLIAC disk which have been "checkpointed”". These
areas would be copied to the Central File System either when execution termi-
nates or when more disk space is needed for other data blocks. With this.
method, module XCHK would have to be modified.

The same method of marking checkpointed ILLIAC disk areas also would be used
in the ILLIAC + Host approach. A new checkpoint module would be developed
for this purpose.

35

UTILITIES

I/¢ Routines

This item encompasses all routines from the highesi level GIN@ entry points
(PPEN, CL@SE, READ, WRITE, etc.) to the actual I/@ requests. All of these
routines are machine-dependent. For either installation approach, these
routines would be coded -in ASK, the Assembler Language for the ILLIAC. For
the ILLIAC + Host approach, these I/@ routines might differ functionally from
the GIN@ routines. However, development effort would be about the same for
either installation approach. /

String Notation and Matrix Packing

This design item is concerned with packing and unpacking of matrix data and
the transfer of matrix data between ILLIAC Array Memory and Disk Memory. For
the ILLIAC-Only installation approach, ASK subroutines would be developed to
perform pack/unpack operations. This corresponds to the way in which these
routines are currently implemented on the NASTRAN computers using machine-
dependent assembler language. For the ILLIAC + Host approach, functionally
similar subroutines would be implemented. Since entirely new modules would be
developed for this approach, new schemes for matrix packing and storage would
also be developed. The level of effort needed to design and implement these
new schemes is judged to be about the same as to recode the matrix packing
routines currently in NASTRAN for release with Level 16.

Open Core

The implementation of open core on the ILLIAC is quite easy for either of the
installation approaches. Since ILLIAC Array Memory is of fixed length and the
ILLIAC does not support multiprogramming, the K@R5Z function need only compute
the number of words of core between the starting absolute address of open core
and the highest possible absolute address.

Miscellaneous Utilities

Miscellaneous utilities -include various machine-dependent routines for per-
forming link switching, bit manipulation, sampling CPU and elapsed time,
writing console messages, generating plot files, etc. Their implementation
for either installation approach will be a relatively minor task.

36

VoA

ENGINEERING COMPUTATIONS

Matrix Operations

This design item is concerned with the installation of the subroutines and
modules which perform matrix multiplication, addition, decomposition, eigen-
value extraction, etc.

For the ILLIAC-Only approach, all of the machine-independent matrix routines
would first be installed "as is". The machine-dependent routines would be
recoded in ASK. The code installed in this initial implementation would
generally perform inefficiently. Therefore, the matrix subroutines would be
recoded one by one. Of course, while this recoding is being done, the original
versions will still be available for performing analyses. The priority sched-
ule used for recoding these routines and modules would be based on:

1. The amount of computational time used by the routines.
2. Frequency of occurance in each Rigid Format.
3. Frequency of use of each Rigid Format.

The programming effort required to recode all of these routines would naturally
be high, though certainly not more than would be required with the ILLIAC +
Host approach.

In the ILLIAC + Host approach, the routines which perform matrix operations
on the ILLIAC would be redesigned from scratch. This will result in the
most efficient code, and it will require a substantial development effort.

Functional Modules

This design item includes the installation of all the NASTRAN functional
modules except those concerned with the matrix operations discussed above.
For the ILLIAC-Only installation approach, this installation can be straight-
forward. The modules would simply be recompiled. The sheer number of sub-
routines involved makes this item a substantial effort. Recoding selected
modules to increase computing speed and efficiency naturally would require
additional effort.

For the ILLIAC + Host approach, NASTRAN functional modules might not be
recoded and installed on the ILLIAC on a one-for-one basis. It is likely

that only logical groups of modules (e.g., element matrix generation, assembly,
and solution) would be installed on the ILLIAC. The level of effort required
here would depend on the number of module sets to be installed on the ILLIAC.
The effort, of course, would be even greater than that required to modify the
initial code installed under the ILLIAC-Only approach.

37

SELECTION CRITERIA

This section presents the three basic criteria for selecting a basic design
approach to be used for installing NASTRAN on the ILLIAC IV. The two primary
options studied are shown in the decision tree presented in Figure 3.1.

Three major items are considered in arriving at the final selection. These
are the anticipated level of effort for installation, the efficiency of
execution, and user convenience. Each of these items is discussed below.

Level of Effort

As can be seen from Table 3.2 presented at the beginning of this chapter, the
ILLIAC + Host approach is estimated to require about 257 more effort than the
ILLIAC-Only approach. Based on this one parameter alone, the ILLIAC-Only
approach would be preferred. Also, note that, after expending only about one
third of the total effort for the ILLIAC-Only approach, a full NASTRAN System
would be operational on the ILLIAC. Once installed, comparative performance
studies can be made to define a priorities checklist of candidate modules

to be optimized in order to achieve the full benefits of parallel processing.

Efficiency

The overriding question related to efficiency must first be directed to the
issue of whether or not it is at all worthwhile to install NASTRAN on the
ILLIAC. Only after this question is answered, is it appropriate to examine
the efficiency of alternative approaches.

The potential efficiency of NASTRAN operations performed:on the ILLIAC compared
to both the IBM 370/165 and the CDC 6600 computers is summarized in Table 3.3.
For this comparison, the process of matrix decomposition was selected as a
representative operation involving large amounts of both computation and
input/output processing. Also included in this table are the run time esti-
mates for matrix decomposition using the initial implementation of the algorithm
under the ILLIAC-Only approach prior to its optimization.

Table 3.4 shows the timing constants used for these comparisons. The timing
constants for the ILLIAC were computed based on the estimated number of ASK
instructions generated before recoding and the actual number of ASK instruc-
tions used in the optimized code of the ILSA program being developed by UAI
for DNA. The constants P and I, representing packing and I/@ operations
respectively, include the actual time to read/write on secondary storage as
well as the CPU time incurred. The total times shown in Table 3.3 are com-
puted using equations 9 through 13 in Section 2.2.1 of the NASTRAN Theoretical
Manual. For the decomposition without spill, the extremely high speed of the
ILLIAC I4DM disk compensates for the inefficient use of the CPU as that total
execution is greatly reduced.

Using this typical example, performance improvement ratios of from 25 to 130
could be achieved on the ILLIAC when compared to current third generation
serial processors. Two considerations must be given to evaluating these very
significant improvement potentials indicated in Table 3.5. The first is

that not all modules can be recoded to achieve this marked an improvement.
Such modules include table and matrix assemblers as well as output generators.

38

i

ILLIAC-Only Which

‘ NASTRAN)

{

ILLIAC + Remote Host

Y

Approach?

Install without
parallelization

A

{ DONE
\

Recode for
parallelization

< DONE)

FIGURE 3.2.

39

\
/

Recode for
parallelization

i
DONE

INSTALLATION APPROACH DECISION TREE

spiom Q000§ °8ex0ls Furiom

Jop QS SUWNTOD DATIOY
sanoy 4 sanoy g sanoy (Gt sanoy QT 39P 009 UIPEMPUEQIUSS
JoP 00001 19pa0 XIaIen
(T11ds yaTm) uof3Fsodwodaq
Jop Q¢ SUWNTOD JATIOV
3OoP 00¢ YapTmapueqrueg
sanoy 10°0 sanoy /°0 sanoy ¢°1 sanoy 9-°Q 70P 0000T 19pI0 XTIIER
(ITTds ou) uotritsodwmodaq
Suipooaa a933e) | (Burpooax axoje :
(Suzp 3e) | (Burp PO 0099 0w SOT/0LE WEI

AI DVITII

AT DVITII

'NOSTHVAWOD ONIWIL °€°€ ATAVL

40

TABLE 3.4.

TIMING CONSTANTS (MICROSECONDS)

. . ILLIAC IV ILLIAC IV
Coefficient|IBM 370/165| CDC 6600 (before recoding)|(after recoding)
MB 2 5 3 0.05
12 7 .1
MC 5 0
1 240 340 22 10
4 120 170 11 5
Notes: 1. MB = time to process one term inside the band
MC = time to process one active column term
I = time to store and retrieve one term of intermediate
results on a secondary storage device
P = time to store one term of final results on a secondary
storage device

Constants for IBM 370/165 and CDC 6600 were obtained from the

MSC/NASTRAN Applications Manual, "Section 7.3.

Constants for ILLIAC were calculated from instruction timing

data for a sample assembler language program.

I and P include the real time for the data transfer between
core and secondary storage.

I is estimated, in all cases, to be twice P.

TABLE 3.5.

PERFORMANCE IMPROVEMENT RATIOS

IBM 360/165
to ILLIAC IV

CbC 6600
to ILLIAC IV

Decomposition (no spill)

60

130

Decomposition (with spill)

25

37.5

However, the raw power achieved by the basic speed of the ILLIAC will still
yield marked improvement in the execution times for these modules if only
modest parallelization is achieved.

Second, the hardware constraints discussed at the conclusion of Chapter II of
this study indicate that limitations may be imposed on the size of problems
that can be efficiently solved on the ILLIAC. These constraints arise from
the limited storage available on the I4DM and the slow transfer rates to the
I4DM from central memory. The latter constraint could severely increase the
overall execution times for certain large problems requiring run-time spillage
from the I4DM to central memory. However, even with this constraint, and
noting that similar sized ﬁroblems would severely tax the largest of modern
serial processors, the ILLIAC should prove to be a most viable alternative
computing resource. :

Having shown the dramatic efficiency gains to be realized by installing
NASTRAN on the ILLIAC the question of which approach to use for installation
can now be asked. Referring again to Table 3.2, the completed installation
of the ILLIAC-Only approach would only be about 107 slower than the ILLIAC +
Host approach. Of course, the initial installation of NASTRAN with the
ILLIAC-Only approach would suffer significant inefficiencies at first. As
selected modules are upgraded, the effects of their improved operating
efficiency would be immediately apparent.

By comparison, the ILLIAC + Host approach offers the singular advantage that,
as each new set of capabilities is installed, the full effectiveness of the
ILLIAC for those operations would be available and could be accessed from the
remote host computer. If only selected NASTRAN capabilities were to be
implemented on the ILLIAC, this approach would be preferable. Otherwise, the
relative speed of execution with either approach is not a major deciding
factor. ’

Efficiency, however, also includes factors other than speed of execution.

Total turn-around time from input to output is a critical issue to the even-
tual user of the system. This design item is discussed next.

User Convenience

The fewer steps and the less work a user must perform to complete a NASTRAN
execution on the ILLIAC, the more cost effective and convenient it is for him
to use NASTRAN on the ILLIAC. In the ILLIAC-Only approach, the user has only
one batch job to run in order to get a completed NASTRAN execution. The
ILLTAC + Host approach requires three separate execution steps: (1) NASTRAN
on host, (2) ILLIAC, and (3) NASTRAN on host. Therefore, considering user
convenience and the ever present potential for system failures at each step
of a multistep sequence, the ILLIAC-Only approach is preferred.

Conclusions

The following three conclusions may be drawn from the discussions of design
and selection criteria presented above:

42

1\

1. Installation of NASTRAN on the ILLIAC IV is feasible and practicable.

2. 1Installation of NASTRAN on the ILLIAC is justified on the basis of
dramatically increased execution efficiency derivable from parallel
processing - e.g., the ILLIAC could execute 25 to 130 times faster than
current serial computers.

3. The preferred approach is the "ILLIAC-Only" approach to full NASTRAN
installation on the ILLIAC with subsequent optimization of selected
modules to achieve the full potential of parallel processing.

Based on these conclusions, which are derived from consideration of cost
effectiveness, overall efficiency, and user convenience, the overall systems
design can now be developed for implementation of NASTRAN on the ILLIAC IV.
The specifications for this implementation are outlined in the following
chapter.

43

CHAPTER IV
DESIGN SPECIFICATIONS

This chapter presents the design specifications for implementing NASTRAN on
the ILLIAC. The bases for selecting an approach were discussed in Chapters II
and III. The specifications presented here, therefore, reflect the considera-
tions given in those two chapters related to the ILLIAC IV System hardware
and its supporting software as well as to the NASTRAN program itself.

Both- alternatives studied, the "ILLIAC-Only' approach and the "ILLIAC + Host"

approach, were determined to be not only desirable, but feasible and practical
as well. The ILLIAC is now operational and has been demonstrated successfully
as a tool for executing application codes similar to NASTRAN. Because of its

availability, implementation of NASTRAN could start immediately.

Both alternative approaches would provide for optimum utilization of the
ILLIAC. Execution of NASTRAN on the ILLIAC was shown to offer a very signifi-
cant increase in efficiency over current third generation serial processors.
And, the resulting capability would be accessible via the ARPANET from most
major industrial centers in the United States. The ILLIAC-Only approach,
however, offers certain advantages over the alternative ILLIAC + Host. These
are:

1. The user executes his entire analysis only on the ILLIAC. He may
utilize any host computer on the ARPANET to assemble his input data
card file and to receive listings and/or plots of his output.

2. Execution turn-around will be faster and less subject to system pro-
blems by avoiding the execution of segments of his analysis on a
remote host computer.

3. The cost of implementation is estimated to be lower and the estimated
cost of subsequent development and maintenance would also be lower.

As summarized in the final section of Chabter III, the ILLIAC-Only approach
has been selected for implementing NASTRAN on the ILLIAC. The sequence of
major events to accomplish this implementation would be as follows:

1. Adapt the existing IVTRAN compiler and its accompanying paralyzer as
a preprocessor for initial optimization of existing FORTRAN code.

2. Develop an general purpose I/0 package to provide efficient data
management functions similar to current NASTRAN GIN@.

3. Develop a specialized Executive Sequence Monitor to control data file
transfers, checkpoint/restart, program overlay, and execution of
functional modules. -

4. Develop an optimized set of utility routines for use by the functional
modules to perform matrix packing and unpacking, bit manipulation,
core size computations, and other necessary functions.

44

T
.

5. Develop optimized code to replace the current machine-dependent code
of NASTRAN.

6. Install the machiﬁe—independent code using the tools developed for
translating FORTRAN code into IVIRAN code for the ILLIAC.

7. Document and demonstrate the initial installation of NASTRAN and
measure the relative performance of the functional modules to
establish priorities for Step 8.

8. Optimize, document, and demonstrate the functional modules selected
according to priorities established in Step 2.

The specifications presented below to accomplish these steps are subdivided
into five major sections. The first section outlines the overall organization
of the program and the environment in which it will be installed. The second
section outlines the specifications for the system maintenance and development
utilities required. The last three sections define the specifications for
developing the Executive Sequence Monitor, for optimizing the utility func-
tions, and finally for installing the modules which perform engineering
computations. Detail specifications for subsequent optimization of the com-
putational modules are not presented here. These specification would involve
details of the individual computational algorithms being optimized and there-
fore are beyond the scope of this study. They are, however, proper province
of the design effort to be undertaken at the conclusion of Step 7 mentioned
above. The general requirements for these optimization tasks are presented

as part of the next section.

45

PROGRAM ORGANIZATION

This section outlines the overall design philosophy and ILLIAC as shown in
Figure 4.1. The NASTRAN program is hierarchically divided into two levels.
The highest level performs the executive functions to be controlled by the
new NASTRAN Executive Sequence Monitor. This executive system provides a set
of operations that are independent of the problem to be solved. The actual
problem solution is provided by a lower level set of functional modules
~controlled by the Executive Sequence Monitor. Each module is independent of
all other modules in the sense that the modification or addition of a module
would require only table updates in the Executive Sequence Monitor and updates
to only those other modules affected by changes (if any) in the communication
data blocks. Communication between modules is only allowed through auxiliary
files and a parameter table maintained by the Executive Sequence Monitor.

The Executive Sequence Monitor is also charged with other functional respon-
sibilities usually performed by the resident operating system on conventional
third generation computers. These include:

1. The loading and overlay of code for exeuction on the ILLIAC.

2. The generation of file control commands (in ACL) to monitor and
define checkpoint/restart operations involving data transfers between
the Central System and the I4DM, and between the Central System and
the UNICON.

3. The physical mapping of data onto the I4DM to efficiently utilize
the high transfer rates to and from ILLIAC memory.

The solution of a structural analysis problem is performed by the functional
modules. These modules are divided into three categories:

1. Preface Modules - These modules are the first executed in the solu-
tion of a problem. They perform two functions:

a. Process the NASTRAN input deck
b. Perform general problem initialization

2. Utility Modules - These modules perform functions that are independent
of problem solution. These include the basic matrix operations and
the user-controlled options such as output processing and reporting.

3. Structurally Oriented Modules - These modules perform all the problem-
dependent functions such as matrix generation, matrix assembly,
load generation, stress recovery, and plotting.

The order of execution of these modules, which is controlled by the Executive
System Monitor, is dependent on the general type of analysis requested or by
the sequence of DMAP instructions selected by the user. The independent
design of each module is required to facilitate future maintenance and develop-
ment efforts. These requirements provide for: -

46

v

User Interface for
data card input
solution printout

ILLIAC IV
Memory

>

Central File

System
<
(TENEX & AN
UNICON) \
v N
Data T L \\
Transfers \
\
\
\
\
I4DM
Central
High Speed Processors
Disk
A
/
Data /
Transfers / NASTRAN
/ Commands
/
/

Executive Sequence Monitor

4

Functional Modules

FIGURE 4.1. NASTRAN PROGRAM ORGANIZATION ON THE ILLIAC

47

1. The ability to modify small sections of relevant code without
affecting other modules.

2. Selectively optimizing existing modules to utilize the parallel pro-
cessing features of the ILLIAC while minimizing impact on other
modules.

3. Adding new modules and capabilities with minimal changes to the
existing ILLIAC System, especially those already tested in the NASTRAN
environment on conventional serial processors.

Unlike conventional application software development efforts, which typically
find machine-independence to be a major design specification, this installa-
tion of NASTRAN should exploit the special hardware features of the ILLIAC

in order to reap the full benefit of its power and efficiency. This philosophy,
however, imposes certain limitations on the above requirements for module
independence.

As individual segments of NASTRAN's analytical capability are assigned for
optimization following the initial installation of NASTRAN on the ILLIAC,
detail specifications for each set of associated modules must be prepared.
By grouping these modules together, the unique paths of data communication
between modules can be identified. With this information, together with the
detail knowledge of the processing steps to be programmed, the data storage
on, and data transfers to and from the I4DM can be optimized. Careful atten-
tion must be given to the design of these special purpose data files.
Additional utilities may have to be developed to pre~ or post-process these
files in order to maintain the integrity of all communications between these
and the previously existing modules of NASTRAN. The high transfer rates
between I4DM and the ILLIAC memory justifies the special formatting of data
blocks which may be read and processed repeatedly, as would be the case with
any iteration analysis procedure. Also, specialized formats could be used
to minimize routine of data between individual PE memories. In summary,
therefore, the basic design optimization requirements are:

1. Selectively identify sets of analytically related modules for
optimization as a group.

2. Identify unique data communication paths between analytically
associated modules.

3. Design the formats for these data to allow optimization of computa-
tional algorithms with special attention to efficiency of I/0
operations between I4DM and ILLIAC memory.

4. 1Include in any such specifications the necessary utilities to pre- or
post-process those data files used to maintain generality of communi-
cation links between the set of module to be optimized and the other
modules of NASTRAN.

In order to meet these overall program design objectives, certain non-NASTRAN
capabilities must be made available. These include the maintenance utilities
for optimizing existing FORTRAN codes, for compilations, and for linkage
editing. Specifications for these utilities are given in the next section.

48

SYSTEM INTERFACE REQUIREMENTS

This section describes the components of the system involved in the interface
between the user and NASTRAN on the ILLIAC for both problem solving and.pro-
gram development. These components include the hardware facilities and the
software necessary for communication and program implementation.

User Interface Requirements

The user interface to NASTRAN operating on the ILLIAC is quite similar to
that of NASTRAN operating on third generation machines of today. The main
difference results from the necessity of accessing the ILLIAC over the
ARPANET. This interface is shown in Figure 4.2.

The host computer is required only as a interface for the user. It performs
no computational role in the NASTRAN problem solution. Its main function is
to provide the user with card input and printed and plotted output capabili-
ties. The local file storage will also provide for the temporary allocation
of user input and output files until final disposition is determined. The
unique advantage to this approach is that the host computer need not support
NASTRAN itself. It is therefore possible for those users with any host com-
puter on ARPANET, such as a PDP-10, or IBM 360/44 etc., to execute NASTRAN
on the ILLIAC. :

Once the NASTRAN input, which remains unaltered, is loaded onto the host com-
puter, the user must utilize the services of a FTP processor, Chapter II, to
transfer his data over the ARPANET to the ILLIAC complex. This process must
also be repeated to transfer results back to the host computer after the
execution of NASTRAN on the ILLIAC.

The execution of NASTRAN on the ILLIAC is a straightforward process. Once the
desired input files have been transferred to the central file system, the user
must utilize the ARPANET to access the ACL system of the ILLIAC complex. He
may then submit a batch job to execute NASTRAN on the ILLIAC.

As future capabilities are provided by the ILLIAC complex, the necessity of

the user interactively transferring data between the ILLIAC and host may become
unnecessary. The transfers would then be made directly from ACL with no

direct interface with the FTP processors being necessary.

A sample batch job executed on the ILLIAC with this capability might contain
the following ACL statements:

CPYNET (INPUT,H@STID,USERID), transfer input from Host to ILLTAC

ALLAC NASTRAN MAP,ID allocate I4DM space

M@VE INPUT,I4DM:INPUT transfer input to I4DM

RUN NASTRAN EXEC execute NASTRAN

M@VE I4DM:@UTPUT,@PUTPUT transfer output to central file system
DALL@#C ID free ILLIAC and I4DM

CPYNET QUTPUT, (JUTPUT ,HPSTID,USERID) transfer output

49

Input
Deck

User = _ >
Terminal <
(-3
)
|
|
v
$ermina1
Interface
Processor
TIP
n
ARPANET
Command
Transfer :
|
]
|
|
|
]
|
e e — —
Data Transfer
————— ~—-=- Commands

FIGURE 4.2.

Host
Computer

=l

———— — — —— — — — — — — ——— — —— — — —

HOST MACHINE

ILLIAC COMPLEX

Central

- Processor

PDP-10's

— et iy — —_ — — —

A
[
|
|
l
|

¥

ILLIAC IV
Processor

Local
Storage

v

File
Transfer
Protocol

FTP

50

USER INTERFACE TO ILLIAC NASTRAN

ARPANET

Data

Central

File
System

Transfer

A

The actual execution of NASTRAN is controlled by the Executive Sequence
Monitor (ESM) described later. Once transfer of the files is complete, con-
trol is passed to the ESM which takes over, loads the program, allocates.
scratch space, manages internal data files, and directs the execution
sequences requested by the user. Development of the ESM and the functional
modules of NASTRAN for implementation requires development of certain
maintenance utilities as described next.

Maintenance and Support

One of the major issues in the design of a large software system is the level
of effort required for maintenance and future improvements once the initial
system is installed. The section discusses how this support is provided for
NASTRAN on the ILLIAC IV.

The most important feature of NASTRAN which aids in maintenance is its modular
design. As discussed previously, each module is an independent program which
is loaded and executed by the executive system. This means that maintenance
and modifications to any one module may be done by handling onlv a small
portion of the total code comprising the NASTRAN program. This is an impor-
tant factor from the standpoint of cost for both computer time and manpower.

The system scftware available to support NASTRAN on the ILLIAC is discussed
in Chapter II. As previously mentioned, the IVTRAN language was chosen
because of its similarity with the FORTRAN language operating on most other
computers today. The ILLIAC-Only approach selected for installing NASTRAN,
which is a program written primarilv in FORTRAN, therefore requires the
following already existing utilities to be provided and/or modified:

1. A "paralyzer" to initially optimize and translate existing FORTRAN
code into the IVTRAN language

2. The IVIRAN compiler

3. Linkage editor

A "paralyzer" for IVTRAN already exists as described in Chapter II above.
This utility reads existing FORTRAN code, performs selective optimization,
and generates an equivalent IVIRAN code capable of compilation and execution
on the ILLIAC. The current capabilities of this 'paralyzer" should be
extended to include additional features such as:

1. Identify code sequences suitable for specialization to subroutines for
optimal coding in ASK.

2. Restructure multiple entry point routines.

3. Develop block structures to facilitate subsequent debugging efforts
using structured programming techniques.

Once the "paralyzer" processing has been performed, the resulting IVTRAN code
must then be manually checked and updated prior to compilation. Such steps
are required to remove obviously inefficient constructs, check the efficiency
of alterations performed by the "paralyzer", and plan the development of any
required ASK subroutine inserts. The manually updated code would then be
ready for compilationm.

51

The IVIRAN compiler itself may require enhancements to provide for special
purpose syntax developed from the special purpose optimization design of the
"paralyzer'. Otherwise, the current compiler should be adequate. Because

the ILLIAC is now operational, the usual advantages of an independent simu-
lator checkout of the resulting code are minimal. Verification of the IVTRAN
code could proceed directly on the ILLIAC. Also, by the time the NASTRAN code
is actually ready for initial installation, additional debugging, testing,

and core display facilities should be available as part of the ILLIAC System
software.

The third major item required is the Linkage Editor. The currently available
ILLIAC control language, ACL, (Chapter II), provides a linkage editing
capability which does not yet include overlay features. These overlay
requirements must, therefore, be incorporated as part of the Executive Sequence
Monitor (ESM) described next.

52

P

EXECUTIVE SEQUENCE MONITOR

The Executive Sequence Monitor (ESM) is charged with the full responsibility
of directing the execution of NASTRAN on the ILLIAC. TIts design will be an
adaptation of the current NASTRAN executive system to be driven via the cur-
rent DMAP control language. The ESM takes over full control from the central
processor once the central processor has executed the user ACL commands sub=-
mitted from his terminal, see Figure 4.2 discussed earlier. These ACL
commands direct the central processor to load the ILLIAC disk with both the
executable code and the data requested for input by the user. The ESM is then
transferred from the I4DM to ILLIAC memory and execution begins. At this
point, the ESM takes over. The esscntial functions of the ESM are:

1. Establish, protect, and communicate values of parameters for each
module.
2. Allocate secondary file space.

3. Maintain a restart capability for restarting program cxecution after
either a scheduled or unscheduled interruption.

4. Control execution according to options specified by the user.

Load and overlay the program segments required for each subsequent
step ‘in the execution sequence.

Checkpoint/Restart

NASTRAN is designed to execute large problem analyses which require large
volumes of data and large amounts of computation. Often such analyses must
be performed in segments so as to allow the user to examine intermediate out-
put. Even with the best system, a hardware error is not uncommon for long
running jobs. Also, data errors, analysis aborts, and 1/0 errors all contri-
bute to the requirement for a checkpoint/restart capability which must be
provided by the ESM.

Unlike conventional NASTRAN as exercised now on serial processors, arbitrary
and possibly indiscriminate checkpointing of data files is most undesirable.
As noted earlier in Chapter II, the data transfer rates to and from the I4DM
and Central Memory is slow compared to the execution power of the ILLIAC.
Often, therefore, the cost effective approach would be to recalculate rather
than restore. For example, a data file that may take 3 minutes to rzad onto
the I4DM may have been generated in 5 seconds on the ILLIAC. Once execution
is initiated, therefore, these 3 minutes to load the I4DM would be idle time
for the ILLIAC.

The new NASTRAN checkpoint/restart capability, though similar to the current
approach, would checkpoint a data block from the I4DM to Central Memory only
under the following two conditions:

1. The available space on the I4DM is exhausted requiring the release of
areas which are no longer needed.

2. The desired data to be checkpointed requires a sufficient amount of
time to regenerate such that the added expense of a checkpoint opera-
tion is cost effective. '

53

Should the ILLIAC System terminate abnormally, the data on the I4DM to be
saved would be transferred to the UNICON via Central Memory by the central
processors as a normal termination procedure.

Manual Overlay

Because the ILLIAC is a machine dedicated to the execution of user code only,
the NASTRAN executive system must therefore assume some of the responsibilities
customarily performed by the operating system on a third generation machine.
These additional responsibilities include:

1. Controlling the overlay of program segments for each functional module.

2. 1Issuing control commands (ACL) for all data management operations to
and from the central memory and the I4DM as required for checkpoint/
restart and as requested for input and output to each module.

Only the ESM can load and start the execution of a module. The order in which
modules are executed is determined by the General Problem Initiator (GPI)
which is one of the preface modules of the ESM. It constructs a set of
control statements based on input requests which are later used by the execu-
tive system to control problem execution.

Intermodule Communications

Communication between modules is only allowed through auxiliary files and a
parameter table maintained by the executive system.

The executive system must be open ended in the sense that it can control an
unlimited number of modules, data blocks, and parameters. Modification of
the executive system necessary for the change, addition, or extension of
functional modules is restricted to changing entries in control tables stored
within the executive.

Maintenance and Updates

This independence allows modules to be modified individually without the need
to manipulate the entire NASTRAN System. The feature is advantageous for
several reasons: '

1. Maintenance tasks need deal only with a small section of relevant
code.

2. Individual modules may easily be modified to utilize the parallel
features of the ILLIAC without interferring with existing modules.

54

UTILITIES

The new NASTRAN system will require development of certain gemeral purpose
utility routines to facilitate the exploitation of the parallel processing
and asynchronous I/0 features of the ILLIAC. These utilities can be sub-
divided into three basic categories:

1. General purpose I/0 routines commensurate with current NASTRAN GIN@.

2. General matrix operation routines to replace MPYAD, SDC@MP, FBS1,
MERGE, PARTN, etc.

3. General purpose routines for bit manipulations, matrix packing and
unpacking, and sorting, etc.

Certain of these optimized capabilities must be developed first and others
may be postponed until later. The requirements for each set are given below.

Input/Output

The general purpose input/output (GIN@) routines are the most important general
capabilities requiring optimization at the earliest stages of NASTRAN installa-
tion on the ILLIAC. The efficient handling of 1/0 in the ILLIAC IV single

user environment is of great importance. This generalized 1/0 package must

be provided in the new NASTRAN system to handle the bulk of data transfers
between PE memory and the I4DM. To do its job efficiently, GIN@ will be
allocated the entirety of available space on the I4DM. GIN@, therefore, will
have complete responsibility for managing that space as required during
execution of each module. This package will also provide various levels of
support to the functional modules utilizing it.

At the highest level, GIN@ functions would be quite similar to those now
provided on the three NASTRAN computers today. These functions include the
allocation of space on the I4DM and the blocking of records to reduce I/0 time.
Because of the single user environment of the ILLTAC, it becomes necessary

for GIN@ to utilize a double buffering technique. This technique allows for
asynchronous I/0 whereby I/0 and computations can be performed simultaneously.

Because of the high‘ﬁata transfer rate available on the I4DM, greater
efficiency can be obtained by the careful formatting or mapping of data omn
the disk. In this manner, the time waiting on disk rotation can be signifi-
cantly reduced by insuring the required data is mapped properly. This
positioning of data on the I4DM is very dependent on the type of computatiouns
being performed. Therefore, a generalized package will be able to achieve
only a partial optimization of ILLIAC I/0.

A second level of GIN@ operation will therefore allow the computation modules
to specify to GIN@ the type of formatting desired for each data block. This
type of information would include data on the expected timing between read

and write operations. This type of information allows GIN® to more efficiently
allocate disk space for the executing module.

As certain functional modules are rewritten to utilize the unique computational

power of the ILLIAC, the idea of a generalized 1/0 package becomes less
desirable. As modules are recoded, a large amount of the required design

55

effort is spent in developing an efficient scheme for storage of data on the
I4DM and the dynamic overlapping of I/0 and computational operations. Sets
of NASTRAN modules that frequently execute in conjunction with each other,
e.g., decomposition and forward/backward substitution, could be given maximum
freedom to specialize the organization and format of those data files that
are used for their intercommunication. On the other hand, a functional
module cannot be allowed complete freedom because it has little knowledge

of what data is presently stored on the disk and that data must be protected.

The third level of GIN@ would provide these modules the desired freedom and,
at the same time, retain overall control of the I/0 operations. This would
be accomplished by allocating a block of disk space to the module for its
own use as a scratch area. The module itself would be responsible for all
I/0 to that block, but GIN@ would allow no operations outside that block.

Matrix Operations

The general matrix operation modules of NASTRAN are prime candidates for
optimization because of their frequent use in every analysis performed by
NASTRAN. The specifications for implementation, however, depend on whether
the code from which they are to be developed is:

1. Machine-dependent, e.g., FBS, MERGE, MPYAD, PARTN, etc.
2. Machine-independent, e.g., ADD, DECPMP, TRNSP, etc.

The machine-dependent routines must necessarily be coded especially for the
ILLIAC at the outset. Even selected segments of the machine-independent
code should be given serious consideration for those are also frequently
called from other functional modules. Hence, the efficiency of these utili-
ties would greatly enhance the performance of NASTRAN upon initial
installation.

Because these general matrix operations are of such critical importance to
the overall performance of NASTRAN, detail specifications for each must be
developed before actual implementation can proceed. This is required in
order to assure consistency in definition of all operations and data storage
schemes to be used. These preliminary design requirements must be developed
giving consideration to:

1. Definition of array storage conventions within the ILLIAC PE memories.
This includes providing standards for development of the calling rou-
tines and for providing options for alternmative storage schemes
appropriate to the functions being performed in such calling routines.

2. Specialized storage schemes and disk mapping criteria for internal
file communications.

3. Specialized storage schemes and disk mapping criteria for external
files used for intermodule communication.

This latter requirement is critically controlled by limitations imposed for
maintaining generality of data storage conventions in the event any such files
may be used by modules other than those for which they were intended. For
example, the upper and lower triangular components of a decomposed matrix

56

Il

generated by DECOMP are unlikely to be used by other than the forward/backward
substitution module FBS. Therefore, these two matrices should be designed
specifically for optimizing these basic matrix operations.

Special attention should be given also to the following detail design consider-
ations in order to achieve full optimization of I/0 and computatioms:

1. Routing - data transfer between PEs should be minimized by:

a. Designing the output module so as to output the matrix data from
the PE into which it later will be used.

b. Developing schemes whereby routing is performed in parallel so
that each move operation is designed to include one word from
each PE.

c¢. Summing across PE arrays in parallel (a maximum of 6 moves only
are required to compute the sum of 64 terms stored one per PE!).

2. Notation - matrix terms can be implicitly identified by bit positien
in row and column identifiers. Special matrix notation schemes can
be designed to save space and for mode control (on/cff) of each PE pro-
cessing that data. Note that the ILLIAC offers excellent bit manipu-
lation software and hardware using the 64-bit word to control the
functions of each of the 64 PEs.

3. Mapping - matrix data should be blocked for disk storage so that by
mapping the position of each block, effective overlapping of I/0 with
computation can be achieved using the asynchronous I/0 capability
of the ILLIAC. Spacing between blocks on disk is dependent cn the
anticipated computation time for both generationm of, and subsequent
operations on the data.

Input and output processing is by far the more critical design item. The
computational speed of the ILLIAC is so high, it can practically be ignored

for matrix operations. Hence, matrix notation schemes are critical to further
optimization of NASTRAN on the ILLIAC. To facilitate that optimization, the
conventions for standardization customarily used on serial processors must be
extended to include the above considerations. The greater flexibility required
can be provided via the matrix packing/unpacking and format conversion utilities
described next.

Utility Routines

A number of utility routines must be developed to provide the bit manipulatioen,
core size, timing, logic, matrix packing/unpacking, and searching functions
required by nearly every NASTRAN module. These operations should be developed
directly in ASK.

A second category of utilities are also required. These routines would pro-
vide input card processing, message writers, printout control, and debug
utilities needed during the development phase. These can be provided directly
with the IVTRAN formatted I/0 capability.

57

As noted above, new sets of utilities also must be designed to provide for
format identification and for the essential format conversion of matrix data
needed for optimized I/0O. The primary function of these utilities will be

to assist in communication between optimized NASTRAN modules. Their design
should be developed as part of the initial installation effort. Both the
standard string notation conventions and the special purpose mapping and block
formats needed for intermodule communication must be provided. The matrix
trailer should be extended to provide this added control information. The
calling sequence to be provided must allow for the calling module to specify
the format desired and mapping criteria to be used. These new utilities

must also adhere to the control requirements imposed by the Executive Sequence
Monitor and the general purpose GIN@ management facilities described earlier.

58

ENGINEERING COMPUTATION MODULES

These modules are defined as structurally oriented functional modules. They
provide for the following general categories of engineering computations:

. Preface operations -~ for input data table assembly

Matrix generation - for stiffness, mass, damping, and loads
Matrix assembly

Matrix solution algorithms - static, dynamic, non-linear

. Stress recovery

. Plotting

ScSbnmPwive

These modules are generally coded in FORTRAN and can therefore be handled by
the "paralyzer" and compiled from the IVTRAN code generated. Before compila-
tion, however, careful examination of the "paralyzer' output is required to
validate the syntax generated, to insert ASK subroutines where practicable to
provide an initial level of optimization, and finally, to incorporate the new
utility routines described above.

Once initial installation and testing is complete, then each module, or set of
associated modules, can be examined to establish priorities for further opti-
mization. These priorities should be established on the following criteria
as discussed in Chapter IIL:
1. Need - frequency of utilization expected
Initial costs - effort required to implement

3. Cost effectiveness - potential gains to be achieved compared with
performance as initially installed

4. Maintenance - frequency of expected subsequent modification

59

SUMMARY

NASTRAN on the ILLIAC will look quite similar to NASTRAN operating today.

This approach was selected because it would entail the least amount of dinitial
effort to get a fully operational system up on the ILLIAC. The specifications
presented above provide for the flexibility to subsequently select segments

of the program for recoding to fully utilize the parallelism of the ILLIAC
hardware. This flexibility is primarily due to the modular design of NASTRAN.
On the ILLIAC, this modular design is extended even farther by constructing
each functional module as an independent program, capable of being loaded and
executed by the new NASTRAN Executive Sequence Monitor.

Because the ILLIAC operates in a single user environment, great care must be
given to efficiently utilize all the real time taken by the system while
running on the ILLIAC. This is accomplished by extending the checkpoint and
GIN@ functions of NASTRAN to more efficiently utilize this time. The data
formats for input by, and output to the user are unchanged. The internal data
file structure is, for the most part, unchanged. Only that data used to
communicate between the major time-consuming modules is allowed to be specially
designed to assist in optimizing those operations. Standards are established
and new utilities are provided to meet these standards so that generality can
be retained.

The user interface with NASTRAN on the ILLIAC, therefore, is nearly identical
to current NASTRAN. The only difference is the necessity of accessing the
ILLIAC via the ARPANET. However, this can be achieved from practically every
major industrial center in the United States and it requires minimal facilities
at the user end. Furthermore, the maintenance effort is centered on one
machine with the capacity to service practically any number of users. As
further optimization is achieved, errors are corrected or new capability is
added, the user will have immediate access to these enhancements. Finally,
due to this centralization of the maintenance and development effort, a
similar centralization of analytical expertise on the part of the development
staff can also be achieved.

60

vl

CHAPTER V
TASK DEFINITIONS

This chapter outlines the individual tasks for implementing NASTRAN on the
ILLTAC IV System according to the design specifications presented in Chapter IV,
These tasks are organized and presented below in the form of a work statement

so that individually, they are clearly and easily identified. Chapter VI, to
follow, presents the estimated man-time and recommended schedule for performance.

TASK I - MAINTENANCE AND SUPPORT FACILITIES

This task involves development of all system interface facilities required for
subsequent installation of NASTRAN on the ILLTIAC IV System. The principal
effort is in the modification of the IVTRAN '"paralyzer" to preprocess existing
FORTRAN code and identify code sequences suitable for ASK subroutinization,
restructure multiple entry point routines, and develop block structured program
output. Together with these modifications, the IVTRAN compiler must be adapted
to accept complex variables, specialized syntax output by the paralyzer, and
standard FORTRAN common blocks.

TASK II - UTILITY ROUTINES

This task involves design and development of key utilities required for initial
installation of NASTRAN. These include:

1. General Purpose Input/Output

A General Input/Output package (GIN@®) will be developed for ILLIAC NASTRAN.
GIN® will use a double buffering method to achieve asynchronous input/
output. GIN@ will have the following capabilities:

Sequential input/output.

Random input/output.
c. Dynamic ILLIAC 1V Disk Memory mapping.
d. Dynamic ILLIAC IV Disk Memory allocation and de-allocation with pro-

tection for non-allocated areas.

Three levels of development are required. First, to provide standard
capabilities commensurate with existing NASTRAN code. Second, to allow
computational modules to specify formatting. Third, to provide access by
each module to scratch areas for any special purpose I/0.

2. Special Purpose Utilities

These utilities perform miscellaneous functions of a specific nature
which may be used by any module. These functions include:

61

a. Standard packing/unpacking for conventional matrix data formats.

b. Special packing/unpacking for special purpose matrix data formats
required for optimization.

c. Machine-dependent functions of MAPFNS as well as bit manipulation,
core size, time, and data search functions.

d. Input and output utilities for interpreting input cards, formatting
output, message writers, and debug facilities.

3. Matrix Operations

Several general purpose matrix operation modules are used frequently in
every NASTRAN analysis. Design specifications will be developed for each
of these operations to assure compatability with the new GIN@ and
Executive Sequence Monitor. Development may, however, be done in two
steps:

a. Operations originally coded as machine-~dependent will be optimized
initially.

b. Operations originally coded as machine-independent may be installed
directly and later optimized as dictated by the detail specifications
prepared above. ’

TASK III - EXECUTIVE SEQUENCE MONITOR

Detail specifications will be developed for the Executive Sequence Monitor
according to the design specifications presented in Chapter IV. Upon comple-
tion of the detail specifications, the ESM will be implemented to provide
the following functions:

a. Interface with the Central Processor to control data communications
between Central Memory and the ILLIAC I4DM disk.
b. Control Checkpoint and Restart operations.

c. Control data transfers between the I4DM and ILLIAC memory as required
for communication between modules.

d. Allocate secondary storage for use internally as required by each
module. '

e. Control the executive sequence retaining the current matrix abstraction
capability (DMAP) of NASTRAN.

f. Load and overlay each program segment.

g. Transfer control to the functional module.
TASK IV - ENGINEERING COMPUTATION ROUTINES
All of the machine-independent routines of NASTRAN will be installed on the .

ILLIAC. Required modifications to these routines will be effected in the
NASTRAN FORTRAN subset. The FORTRAN routines will then be converted with the

IVTRAN "paralyzer' and compiled with the IVTRAN compiler. Adaptation of these -

62

l

routines will be made to conform to the requirements of the special purpose
utilities, the new GIN@, and the Executive Sequence Monitor. Any optimization
to be implemented initially would be restricted to satisfying the structured
programming requirements indicated by the output from the "paralyzer'".

TASK V - DOCUMENTATION AND DEMONSTRATION

As each component of the new system, including all maintenance and support

facilities are developed, full documentation will be provided prior to

installation. Structured programming concepts will be employed to assure full

integrity of the completed system. Hence, each segment of code will be demon-
strated prior to integration. Following integration, demonstration of its

~ performance will be repeated and the associated documentation will be updated.

Documentation will follow current NASTRAN standards for Programmer's, User's,
Theoretical, and Demonstration Problem Manuals.

TASK VI ~ PERFORMANCE EVALUATION

Upon initial implementation of each NASTRAN capability, performance of that
segment of code will be tested and evaluated for large problem execution.

As each integrated capability, e.g., static, dynamic, non-linear, becomes
available, several full-size structural models will be tested on the ILLIAC.
These problems will be used to obtain timing and performance data on all of
the NASTRAN modules. This information plus information on the frequency of
use of the functional modules and the Rigid Formats, will be used to develop
a list of prioritjes. This list will indicate for each module the priority
for recoding to obtain maximum efficiency on the ILLIAC.

The checkpoint/restart process of ILLIAC NASTRAN will be evaluated to deter-)
mine: (1) which data blocks should be checkpointed, (2) what size and type
of analyses should use the checkpoint feature, and (3) the desirability of
recoding module XCHK to achieve greater efficiency.

TASK VII - MODULE OPTIMIZATION

The list of priorities for module optimization will be developed to determine
the priority in which modules are to be recoded. All recoding will be per-
formed in IVIRAN and ASK. Recoded modules and subroutines will make efficient
use of the parallel nature of the ILLIAC IV system architecture.

63

CHAPTER VI
ESTIMATED COST AND SCHEDULE

This chapter is devoted to developing the estimated costs, in terms of man-
time, and schedule required to implement NASTRAN on the ILLIAC. The speci-
fications presented in Chapter IV were used to identify the individual tasks
defined in Chapter V.

The first phase, Tasks I through VI, for initial installation is estimated

to require 60 man-months of effort over approximately 18 months. The second
phase, Task VII - Optimization, is estimated to require 50 to 75 man-months
and can be accomplished in 18 to 24 months following initial installation.
The time-phasing of the first five tasks, including detailed manpower loading
for each, is shown in Table 6.1.

These estimates are based on UAI's current experience and practical working
knowledge of the ILLIAC System, its reliability, the capabilities of its
software, and the expected level of support each has been given in the past.
The operating conditions and assumptions made in developing these estimates
are as follows:

1. TFour (4) hour turnaround for each job from submittal to
returned hard-copy output.

2. Capability to control user programs under TENEX on the ILLIAC IV
System's PDP-10 Central Processor.

3. Prompt and able response from the ILLIAC IV User Support Group.

4. Complete and up-to-date documentation of the ILLIAC IV System
hardware and software, including listings and source for the
IVIRAN "paralyzer" and compiler.

5. Full documentation and complete source code for the latest
tested version of NASTRAN.

6. Availability of serial processor with standard NASTRAN to obtain
comparison test data.

The rational established for the phasing of each activity as shown in Table
6.1 is as follows for each task:

TASK I - Development of the IVIRAN "paralyzer" and compiler is essen-
tial to all subsequent implementation efforts.

TASK II - All communications require detail specifications for GIN@ and
the utilities necessary for internal processing of every module.
-Matrix operations to be installed as is or with optimization
are also used in the execution of every NASTRAN Analysis.

64

,
i
o

¢'1

6z

'€

St

e

¢'e

G ¢

Gt

G'¢

Gt

grefsre

~

09

SutproT aameduel

S°T

¢°'1

1

ST

S'T

ST

61

S'T

ST|S'T

S°T|S°T

ST

¢'1

S°¢

ST

S T

(8

01

<1

uotjenTeEA}
9DUBUXOJABDg

uoTIRI]SUOWI]
pUB UOTIRIUBUNDIOQ

saufinoy uoriejndworn
Sutassutuy

103TuOly @2ouanbag
9ATINDIXY

suofjeaadg XTaeR °¢g
asodang Tefoods °¢
PNID °T1

S9TITTITM

310ddng pue
aourULIUTER

- I1I

- 11

-1

8T

(1

91

ST

vas

£T

T

1T

ot

6

8

L

918§

paadoag o3 A3IFIoyiny woij SYy3uol

SY3IUOR
—-uep

UOTIBTTBISUI ~ SBYJ ISITJ

SHALVWILSY IINAIHDS ANV JIWLL-NVH TIVIIA T°9 FATIVL

65

TASK III

The Executive Sequence Monitor is required primarily for inte-
grated testing, hence, can be postponed until all details of
GIN@ and special purpose utilities have been worked out. How-
ever, it is required prior to installing the machine-independent
code.

TASK IV The final programming task of installing the engineering compu-
tational modules can best be performed last to take advantage

of all the utility and Executive Sequence Monitor developments.

TASK V

Documentation is an essential task at the outset to plan the

specific details of implementation. Once developed, updating
is carried out as part of the installation effort. The final
demonstration of the integrated system and user manual prep-

aration completes this task.

TASK VI

As each analysis capability is functionally integrated, per-
formance evaluation can begin to establish the priorities for
the second phase of NASTRAN optimization on the ILLIAC.

The next, and final chapter, presents a summary of the conclusions drawn from
this study.

66

At
P

CHAPTER VII
SUMMARY AND CONCLUSIONS

The following major conclusions can be drawn to summarize the above study of
the feasibility of installing NASTRAN on the ILLIAC 1IV:

1.

2.

Installation of NASTRAN on the ILLIAC IV is feasible and is
recommended.

The ILLIAC IV is now operational and has been demonstrated to be
an excellent resource for finite element structural analysis pro-
cessing with programs as complex as NASTRAN.

Adequate hardward and software support is provided to make optimal
utilization of that capability a feasible objective.

NASTRAN can be installed to provide an integrated system operating
entirely on the ILLIAC within approximately 18 months with an
estimated 60 man-months of effort.

Full optimization of NASTRAN's current capability can be achieved
within 18 to 24 additional months with an estimated 50 to 65 man-
months of effort.

The installation of NASTRAN on the ILLIAC IV would provide access
to users throughout the United States via the ARPANET.

The resulting centralized system provides for reduced overall costs
of maintenance and development, and provides all users immediate
access to all new developments.

With this resulting capability, large problems can be solved efficiently and
within practical limits of total computer time. The ILLIAC IV is especially
well suited to highly iterative types of problems such as would be encountered
in nonlinear static and dynamic analyses. Though the power of the computer

is extremely great compared with current serial processors, it does suffer
from certain limitations:

1.

The ILLIAC IV is dedicated to executing a single job at a time.
Therefore, the effective total time of execution must include all

‘phases of processing.

Data transfer from Central Memory to the ILLIAC IV disk for process-
ing is slow compared with the transfer rates from disk to ILLIAC 1V
memory. This imposes practical limits on the size of problems to be
solved and limits the practicality of a full checkpoint/restart
capability.

The space available on the ILLIAC IV disk is limited, thereby
accentuating the problem of slow data transfer to and from Central
Memory.

In spite of these limitations, the overall capacity and speed of the ILLIAC IV
offers a significant improvement over conventional third generation serial
processors.

67

10.

11.

12.

13.

REFERENCES

Field, E. I., Johnson, S. E., Stralberg, H., "Software Development
Utilizing Parallel Processing," Proceedings of the Symposium on Structural
Mechanics Computer Programs, University of Maryland, 1974.

Frazier, G. A., Alexander, J. H., Petersen, D. M., "3-D Seismic Code for
ILLIAC IV, Interim Report,'" SSS5-R-73-1506, Systems, Science and Software,
La Jolla, Calif., Feb. 1973.

Graham, W. R., "A Review of Capabilities and Limitations of Parallel and
Pipeline Computers,'" Numerical and Computer Methods in Structural Mechanics,
Academic Press, Inc., New York and London, 1973.

ILLIAC IV Systems Characteristics and Programming Manual, 550000 IL4-PML1,

Burroughs Corporation, Defense, Space and Special Systems Group, May 1972.

Interim Systems Manual, ILSA, DNAO0O1-72-C-0108, Universal Analytics, Inc.,

Los Angeles, Calif., Feb. 1973.

McIntyre, D. E., "An Introduction to the ILLIAC IV Computers, Datamation,
April 1970, pp. 60-67.

McIntyre, D. E., "ILLIAC IV Language Evaluation - A Preliminary Report,"
ILLIAC IV Document No. 213, University of Illinois, May 1970.

NASTRAN Theoretical Manual, R. H. MacNeal, ed., NASA SP-221(01),

April 1972.

NASTRAN User's Manual, C. W. McCornick, ed., NASA SP-222(01), June 1971.

NASTRAN Programmer's Manual, F. J. Douglas, ed., NASA SP-223(01),
Sept. 1971.

"Press Seminar Handout,' Prepared by the Institute for Advanced Computa-
tions, Ames Research Center, Moffett Field, Calif., Aug. 1973.

Systems Guide for the ILLIAC IV User, SG-I1000-0000-C, Institute for

Advanced Computation, Ames Research Center, Moffett Field, Calif., July 1973.

Winograd, S., "On the Time Required to Perform Addition," J. Ass. Comput.
Machinery, Vol. 12, No. 2, 1965, pp. 277-285.

Winograd, S., "On the Time Required to Perform Multiplication," J. Ass.
Comput. Machinery, Vol. 14, No. 4, 1967, pp. 743-802.

Wirsching, J. E., and Alberts, A. A., "Application of the STAR Computer
to Problems in the Numerical Calculation of Electromagnetic Fields,"
AFWL~TR-69-165, Air Force Weapons Laboratory, New Mexico, April 1970.

Wirsching, J. E., et al., "Application of the ILLIAC IV Computer to

Problems in the Numerical Calculation of Electromagnetic Fields,"
ARWL~TR~69-91, Air Force Weapons Laboratory, New Mexico, March 1970.

68

H

