
A survey of checkpointing algorithms for parallel and
distributed computers

S KALAISELVI and V RAJARAMANa

Supercomputer Education and Research Centre (SERC), Indian Institute of
Science, Bangalore 560 012, India
aAlso at Jawaharlal Nehru Centre for Advanced Scientific Research, Indian
Institute of Science Campus, Bangalore 560 012, India
e-mail: rajaram@serc.iisc.ernet.in

MS received 27 August 1998; revised 8 June 2000

Abstract. Checkpoint is defined as a designated place in a program at which
normal processing is interrupted specifically to preserve the status information
necessary to allow resumption of processing at a later time. Checkpointing is
the process of saving the status information. This paper surveys the algorithms
which have been reported in the literature for checkpointing parallel=distributed
systems. It has been observed that most of the algorithms published for
checkpointing in message passing systems are based on the seminal article by
Chandy and Lamport. A large number of articles have been published in this
area by relaxing the assumptions made in this paper and by extending it to
minimise the overheads of coordination and context saving. Checkpointing for
shared memory systems primarily extend cache coherence protocols to maintain
a consistent memory. All of them assume that the main memory is safe for
storing the context. Recently algorithms have been published for distributed
shared memory systems, which extend the cache coherence protocols used in
shared memory systems. They however also include methods for storing the
status of distributed memory in stable storage. Most of the algorithms assume
that there is no knowledge about the programs being executed. It is however felt
that in development of parallel programs the user has to do a fair amount of
work in distributing tasks and this information can be effectively used to
simplify checkpointing and rollback recovery.

Keywords. Checkpointing algorithms; parallel & distributed computing;
shared memory systems; rollback recovery; fault-tolerant systems.

1. Introduction

Parallel computing with clusters of workstations (cluster computing) is being used exten-
sively as they are cost-effective and scalable, and are able to meet the demands of high

SaÅdhanaÅ , Vol. 25, Part 5, October 2000, pp. 489±510. # Printed in India

489

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publications of the IAS Fellows

https://core.ac.uk/display/291533731?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


performance computing. Increase in the number of components in such systems increases
the failure probability. It is, thus, necessary to examine both hardware and software
solutions to ensure fault tolerance of such parallel computers. (We refer to a cluster of
workstations as a parallel computer.) To provide fault tolerance it is essential to understand
the nature of the faults that occur in these systems. There are mainly two kinds of faults:
permanent and transient. Permanent faults are caused by permanent damage to one or more
components and transient faults are caused by changes in environmental conditions.
Permanent faults can be rectified by repair or replacement of components. Transient faults
remain for a short duration of time and are difficult to detect and deal with. Hence it is
necessary to provide fault tolerance particularly for transient failures in parallel computers.

Fault-tolerant techniques enable a system to perform tasks in the presence of faults. Fault
tolerance involves fault detection, fault location, fault containment and fault recovery. Fault
tolerance can be provided in a parallel computer at three different levels (Zomaya 1996):
hardware level, architecture level and application=system software level. In the hardware
and architecture levels, importance is given to fault detection and replication of tasks. In
the application=system software level, checkpointing techniques are used to provide fault
tolerance. It is easier and more cost effective to provide software fault tolerance solutions
than hardware solutions to cope with transient failures. Thus, checkpointing is an important
technique to ensure software fault tolerance.

Checkpoint is defined as a designated place in a program at which normal processing
is interrupted specifically to preserve the status information necessary to allow resumption
of processing at a later time (Zomaya 1996). Checkpointing is the process of saving
the status information. By periodically invoking the checkpointing process, one can save
the status of a program at regular intervals. If there is a failure one may restart computation
from the last checkpoint thereby avoiding repeating computation from the beginning. The
process of resuming computation by rolling back to a saved state is called rollback
recovery.

1:1 Application of checkpointing

Besides its use to recover from failures, checkpointing is also used in debugging distributed
programs and migrating processes in a multiprocessor system. In debugging distributed
programs state changes of a process during execution are monitored at various time
instances. Checkpoints assist in such monitoring. To balance the load of processors in a
distributed system, processes are moved from heavily loaded processors to lightly loaded
ones. Checkpointing a process periodically provides the information necessary to move it
from one processor to another. The main objective of this paper is to survey checkpointing
algorithms used in error recovery.

1:2 Checkpointing in uniprocessor systems

Events in a uniprocessor are governed by a single clock, providing a total ordering of events
with respect to this clock. Thus checkpointing may be performed at a specified clock time
by stopping the execution of the process and saving the state of the process in a stable
storage (e.g. a disk, Siewiorek & Swarz 1982). When an error is detected all the events after
the last checkpoint are repeated.

490 S Kalaiselvi and V Rajaraman



1:3 Checkpointing in distributed systems

Systems with more than one processor are known as multiprocessor systems. We use
distributed systems, parallel systems and multiprocessor systems interchangeably referring
to all of them as multiprocessor systems. As the number of processors increase the
probability of any one processor failing is high. It has been found in practice that over 80%
of the failures in such systems are transient and intermittent (Ralston & Reily 1993).
Checkpointing and rollback recovery are particularly useful in such situations. Check-
pointing, however, is more difficult in multiprocessors as compared to uniprocessors. This
is due to the fact that in multiprocessors there are multiple streams of execution and there is
no global clock. The absence of a global clock makes it difficult to initiate checkpoints in
all the streams of execution at the same time instance. We have to pick one checkpoint
from each stream in such a way that the set of these checkpoints are `̀ concurrent''. Such
a set of checkpoints permits a consistent rollback recovery. The concept of concurrency
is defined based on the `̀ happens before'' relation defined by Lamport (Chandy &
Ramamoorthy 1972). We will now review the methods used to select a set of checkpoints,
one per process, which forms a consistent global checkpoint allowing rollback recovery
from such a global state.

1:4 Ordering of events in distributed systems

When processors interact with each other by exchanging messages, dependency is intro-
duced among the events of different processors, making it difficult to have a total ordering
of events. Lamport pointed out this and he proposed a relation called `happens before'
to have a partial ordering of events in a distributed system. This is an irreflexive, anti-
symmetric, transitive relation.

DEFINITION 1 (Lamport's `happens before' relation)
(i) If a and b are two events occurring in the same process and if a occurs before b, then
a! b. (ii) If a is the event of sending a message and b is the event of receiving the same
message in another process then, a! b.

DEFINITION 2 (Concurrent events)
Two events a and b are said to be concurrent iff �a 6! b� and �b 6! a�.

We denote concurrency by ? .

DEFINITION 3 (Local checkpoint)
Local checkpoint is an event that records the state of a process at a processor at a given
instance.

DEFINITION 4 (Global checkpoint)
Global checkpoint is a collection of local checkpoints, one from each processor.

DEFINITION 5 (Consistent global checkpoint)
A global state is said to be consistent, if all the included events form a concurrent set. A
consistent global checkpoint Gc is a collection of local checkpoints, one from every pro-
cessor such that each local checkpoint is concurrent to every other local checkpoint.

Checkpointing algorithms for parallel and distributed computing 491



DEFINITION 6 (Rollback recovery)
It is a process of resuming=recovering a computation from a consistent global checkpoint.

The kth global checkpoint Gc�k; np� in a system with np processors is defined as follows:
Gc�k; np� � fLc�i; l�jLc�i; l� ? Lc�j;m�; �i 6� j� and �1 � i; j � np�; �1 � l;m � k�g, where
Lc�i; l� denotes the lth checkpoint of the ith process. Note that the kth consistent global
checkpoint does not necessarily include the kth local checkpoints. In a parallel distributed
system, an inconsistent global checkpoint changes the order of events leading to improper
results.

Figure 1 shows a process time (PT) diagram, which depicts the events occurring in
various processors of a distributed system. Message transactions and checkpoints are
denoted as events. A recovery line (cut) in a (PT) diagram is a line connecting all the local
checkpoints of a consistent global checkpoint. In figure 1, fe13; e21g, fe15; e25g comprising
a set are the checkpoints at different locations. Each set defines a cut as illustrated in the
figure. In cut CS1, the checkpointing event e21 happens before the checkpointing event
e13, (changing the ordering of events) making it an inconsistent cut. In CS2, checkpointing
events e25 and e15 are concurrent, making the cut a consistent one.

Messages m2 and m3 are sent before the recovery line and received after the recovery
line. Unless they are logged as part of the global checkpoint, they will not be available at
recovery time. These messages are called missing messages (Lamport 1978). Message m1
is sent after the recovery line and received before the recovery line CS1. After recovery, m1
will be sent by P2 but P1 no longer needs this message. These kinds of messages are called
orphan messages (Lamport 1978) and are not present in a consistent state. Orphan
messages are responsible for creating inconsistent checkpoints. Netzer & Xu (1995) have
given the necessary and sufficient condition for a set of checkpoints to be consistent, based
on extensions of Lamport's relation (Tong et al 1992).

1:5 Aspects of checkpointing

Some of the aspects to be considered with checkpointing are (a) frequency of check-
pointing, (b) contents of a checkpoint, and (c) methods of checkpointing.

1:5a Frequency of checkpointing: A checkpointing algorithm executes in parallel with
the underlying computation. Therefore, the overheads introduced due to checkpointing

Figure 1. Process time diagram.

492 S Kalaiselvi and V Rajaraman



should be minimised. Checkpointing should enable a user to recover quickly and not lose
substantial computation in case of an error, which necessitates frequent checkpointing and
consequently significant overhead. The number of checkpoints initiated should be such that
the cost of information loss due to failure is small and the overhead due to checkpointing is
not significant. These depend on the failure probability and the importance of the compu-
tation. For example, in a transaction processing system where every transaction is important
and information loss is not permitted, a checkpoint may be taken after every transaction,
increasing the checkpointing overhead significantly.

1:5b Contents of a checkpoint: The state of a process has to be saved in stable storage so
that the process can be restarted in case of an error. The state=context includes code, data
and stack segments along with the environment and the register contents. Environment has
the information about the various files currently in use and the file pointers. In case of
message-passing systems, environment variables include those messages which are sent
and not yet received.

1:5c Methods of checkpointing: The methodology used for checkpointing depends on the
architecture of the system. Methods used in multiprocessor systems should incorporate
explicit coordination unlike uniprocessor systems. In a message-passing system, the
messages should be monitored and if necessary saved as part of the global context. The
reason is that the messages introduce dependencies among the processors. On the other
hand, a shared memory system communicates through shared variables which introduce
dependency among the nodes and thus, at the time of checkpointing, the memory has to be
in a consistent state to obtain a set of concurrent checkpoints.

1:6 Overheads of a checkpointing algorithm

During a failure-free run, every global checkpoint incurs coordination overhead and
context saving overhead in a multiprocessor system. We define them as follows.

DEFINITION 7 (Coordination overhead)
In a parallel=distributed system, coordination among processes is needed to obtain a con-
sistent global state. Special messages and piggy-backed information with regular messages
are used to obtain coordination among processes. Coordination overhead is due to these
special messages and piggy-backed information. The book-keeping operations necessary to
maintain coordination also contribute to coordination overhead.

DEFINITION 8 (Context-saving overhead)
The time taken to save the global context1 of a computation is defined as the context-saving
overhead. This overhead is proportional to the size of the context. If stable storage is not
available with every node in a multiprocessor system, the context is transferred over the
network. Network transmission delay is also included in the overhead.

1The information that is necessary to resume a computation after it is pre-empted is called the context of that
computation. In a distributed system, the computation is carried out on more than one node. Thus the global
context is the collection of local contexts from each node.

Checkpointing algorithms for parallel and distributed computing 493



1:7 Organisation of the paper

Section 2 describes the checkpointing algorithms of message-passing multiprocessors and
x 3 those for shared memory systems. Section 4 discusses distributed shared-memory
checkpointing algorithms. Section 5 describes our classification scheme. Section 6 is on
future directions of research in checkpointing algorithms. Section 7 concludes the paper.

2. Checkpointing algorithms for message-passing systems

Chandy & Lamport (1985) proposed a global snapshot algorithm for distributed systems.
We observe that every checkpointing algorithm proposed for message-passing (MP)
systems uses Chandy & Lamport's (1985) algorithm as the base. We show that most of the
algorithms proposed in the literature for checkpointing MP systems may be derived by
relaxing various assumptions made by them and by modifying the way each step is carried
out. As per Chandy and Lamport's model, a distributed system consists of a finite set of
processors and a finite set of channels (for a detailed description of the model, refer
Chandy & Lamport 1985). This section describes their algorithm, modifications possible at
each step of the algorithm, followed by the features and their alternatives.

2:1 Chandy and Lamport's algorithm

Chandy and Lamport's CL algorithm is based on the following assumptions.

� The distributed system has a finite number of processors and a finite number of channels.
� The processors communicate with each other by exchanging messages through

communication channels.
� The channels are fault-free.
� Communication delay is arbitrary but finite.
� The global state of the system includes the local states of the processors and the state of

the communication channels.
� State of a channel refers to the set of messages sent along that channel and not yet

received by the destination node from that channel.
� Buffers are of infinite capacity.
� Termination of the algorithm is ensured by fault-free communication.

2:1a Algorithm: The global state is constructed by coordinating all the processors and
logging the channel states at the time of checkpointing. Special messages called markers
are used for coordination and for identifying the messages originating at different check-
point intervals. The algorithm is initiated by a centralised node. The steps followed after a
checkpoint initiation, however, are the same in all the nodes except that a centralised node
initiates checkpoint on its own and the other nodes initiate checkpoints as soon as they
receive a marker. The steps are as below.

(1) Save the local context in stable storage;
(2) for i � 1 to all outgoing channels do Send markers along channel i;
(3) continue regular computation;
(4) for i � 1 to all incoming channels do Save incoming messages in channel i until a

marker is received along that channel.

494 S Kalaiselvi and V Rajaraman



The details of each step and the possible alternatives are discussed in the following
subsection.

2:2 Modifications of Chandy and Lamport's algorithm

Each step of the CL algorithm can be modified to accommodate some improvements in the
basic global snapshot algorithm. In step one, a node saves its context in stable storage. The
overhead associated with step one is context-saving overhead. The objective of saving the
context in stable storage is to ensure its availability after a node failure. The overhead of
context saving is proportional to the size of the context and the time taken to access the
stable storage. Context-saving overhead can thus be reduced by (a) minimising the context
size, and (b) overlapping context saving with computation. Various techniques that mini-
mise context-saving overhead are discussed in detail in x 6.

In step two, markers are sent along all the outgoing channels. The purpose of a marker is

(1) to inform the receiving node that a new checkpoint has to be taken;
(2) to separate the messages of the previous and the current checkpoint interval.

At the time of checkpointing the centralised node informs all the nodes to initiate check-
points through this marker message. CL algorithm sends markers along every channel to
inform the nodes to log all transit messages onto stable storage. It is not necessary to send
markers along all the channels as they may be safely eliminated along those channels in
which there was no message exchange between the previous and the current checkpoint
(Koo & Toueg 1987; Venkatesan 1989; Li et al 1991). This is achieved at the cost of
monitoring all the messages exchanged along various channels from each node. Coor-
dination through markers can also be achieved in two phases by delaying the message
transmission between the two phases (Kim & Park 1993).

Checkpointing can be coordinated without using markers by sending with regular
messages a header which has the checkpoint interval number in which the message origi-
nated. The simplest would be a one-bit header, which toggles between one and zero
indicating the consecutive checkpoint intervals (Lai & Yang 1987). Note that the marker
overhead has now become header overhead; overhead due to appending headers with
regular messages. When a message is received with a header value different from that of
the receiving node, either a new checkpoint is initiated or the message is logged depending
on whether the message is an orphan message or a missing message. This one-bit header
complicates checkpoint initiation when out-of-sequence messages are encountered.
Message sequence numbers along with checkpoint interval number in the message header
can help in controlling the number of checkpoints along with logging of missing messages
and elimination of orphan messages (Venkatesh et al 1987). The cost of this approach is the
size of the header for maintaining the message sequence numbers and checkpoint interval
number. Algorithms that use only headers for coordination, require the nodes to have the
ability to initiate checkpoints on their own. When nodes initiate checkpoints on their own,
it is called distributed checkpointing. If checkpoint initiation completely depends on the
header of regular messages, those nodes which have not communicated with other nodes
between consecutive checkpoints cannot participate in a global checkpoint. One can also
use markers just to inform about checkpoints; markers take care of coordination and
headers take care of message logging (Leu & Bhargava 1988; Li et al 1991).

In all the schemes mentioned above, coordination is achieved at runtime and a consistent
global state is always maintained in stable storage. At recovery time, the global state is

Checkpointing algorithms for parallel and distributed computing 495



restored from stable storage and execution continues from the restored state. The next
major alternative called independent checkpointing eliminates coordination overhead at
runtime and forms a consistent global state only when it is needed, i.e only at recovery
time. Instead of coordinating the nodes during every global checkpoint, nodes can be
coordinated once at recovery time to form a consistent global state. When there is no
coordination, nodes should be able to initiate checkpoints independently on their own. To
form a consistent global state at recovery time, nodes have to maintain multiple checkpoints
and messages in stable storage. The advantages of this independent checkpointing are that
�i� coordination and thereby the use of markers is eliminated; �ii� nodes can initiate
checkpoints at their convenience without being forced to initiate by the receipt of marker
messages. The disadvantage is the maintenance of multiple checkpoints and message logs.
Multiple checkpoints occupy more space and garbage collection algorithms can be run
periodically to reclaim the space occupied by unwanted checkpoints (Wang et al 1995).
Consistent global state is constructed periodically and all the checkpoints which do not
belong to the recovery line are declared unwanted checkpoints. Though special messages
are used for identifying the recovery line, the frequency of usage is lower when compared
with a coordinated algorithm based on markers. The other significant overhead in
independent checkpointing is due to logging of messages (logging overhead) since it has to
log all the messages received. Pessimistic logging approach has the advantage of faster
recovery since it logs a message as and when it is received (Borg et al 1989). By grouping
the messages over a period and logging them once in a while optimistic logging approaches
reduce the stable storage access overhead (Strom & Yomini 1985; Juang & Venkatesan
1991). If sufficient messages are not logged, multiple rollbacks (domino effect, Randell
1975) are possible in optimistic logging schemes. One can also send sufficient information
with regular messages so that messages can be logged selectively (Wang & Fuchs 1992)
thereby reducing the message logging overhead. Optimistic schemes need a complicated
recovery procedure. The advantages of pessimistic and optimistic schemes can be com-
bined to achieve minimum logging overhead with faster recovery (Elnozahy & Zwaenepoel
1992; Alvisi et al 1993). Further modification of independent checkpointing algorithm is
possible depending on where a message is logged; at places other than the receiver
(Johnson & Zwaenepoel 1987). The advantage is that the messages need not be logged onto
stable storage (Young & Chiu 1994).

Yet another mode of coordination is to synchronise the clocks and initiate the check-
points approximately at the same time in all the nodes (Cristian & Jahanian 1991). To
account for the differences in the clock values, message sending can either be delayed
during checkpointing or headers can be used with messages (Tong et al 1992).

Step three of the CL algorithm allows regular processing to proceed without waiting for
the channel state recording and consequently the checkpoint operation to be completed.
This is a good way of reducing the intrusion of a checkpointing algorithm but a better
approach would be to overlap the context-saving process with regular computation.

Step four of CL algorithm logs those messages which cannot be generated at recovery
time. The purpose served by markers in identifying these messages can also be fulfilled by
headers and this was mentioned while discussing step two.

2:3 Modifications in the features of CL algorithm

There are certain other aspects of CL algorithm which can be improved.

496 S Kalaiselvi and V Rajaraman



2:3a FIFO vs. non-FIFO channels: CL algorithm works with FIFO channels only. If a
message m1 followed by m2 is sent from pi to pj, m1 reaches before m2 when the channels
are FIFO. Advantage of a FIFO channel is that without explicitly sending any message
sequence numbers with messages, it is possible to arrange the messages in a sequence.
Non-FIFO channels necessitate headers with regular messages to ensure correct ordering of
messages (Silva & Silva 1992). Headers should contain sequence numbers of regular
messages. The possibility of a non-FIFO channel is justified in a distributed environment,
since it is possible for messages to be routed through different channels and reach the
destination out of order.

2:3b Centralised vs. distributed checkpoint initiation: In a centralised algorithm like CL,
there is one node which always initiates the checkpoints and coordinates the participating
nodes. The disadvantage of a centralised algorithm is that all other nodes have to initiate
checkpoints whenever the centralised node decides to checkpoint. Nodes can be given
autonomy in initiating checkpoints by allowing any node in the system to initiate check-
points. Such a distributed checkpointing algorithm can either support complete check-
pointing (Lai & Yang 1987) or selective checkpointing (Koo & Toueg 1987).

2:3c Complete vs. selective checkpointing=rollback: In complete checkpointing, nodes
have to participate in every global checkpoint and a consistent global state is readily
available in the stable storage (Lai & Yang 1987). In selective checkpointing, a group of
nodes which are dependent on each other participate in a checkpointing process (Leu &
Bhargava 1988; Kim & Park 1993). The procedure for coordinating nodes in selective
checkpointing is difficult because it has to keep track of dependencies and resolve the
conflicts when multiple checkpoint requests come to a node. CL algorithm supports
complete rollback because consistent global state is always maintained in stable storage.
Complete rollback forces all the nodes in the system to rollback and restart. It is not,
however, necessary for all the nodes to rollback and repeat the computation. Only those
nodes which are dependent on each other need to rollback and the rest can continue with
their computation. If the nodes communicate sparsely with each other selective rollback is
better. When there is frequent communication among nodes, complete rollback is better
because of message dependencies among nodes. Selective rollback needs one to maintain
dependency information and to construct the recovery set after a failure (Elnozahy &
Zwaenepoel 1992; Tong et al 1992). This is the cost associated with selective rollback.

2:3d Periodic vs. nonperiodic checkpointing: Periodic checkpointing algorithms ensure
that the maximum information loss cannot exceed the period between consecutive global
checkpoints. Aperiodic algorithms do not force the nodes to initiate checkpoints at pre-
determined times. Aperiodic algorithms are helpful in situations where nodes should not be
interrupted for checkpointing at certain time instances. Aperiodic algorithms are also
helpful if advancing or delaying the checkpointing process minimises the context-saving
overhead. The cost incurred in aperiodic algorithms is once again in terms of constructing
global consistent state. Non-periodic algorithms will require nodes to initiate checkpoints
independently and so all the problems of independent checkpointing algorithms will be part
of this option.

2:3e Static vs. dynamic checkpointing: Chandy and Lamport's work does not assume any
knowledge about programs being executed. At runtime, periodically the checkpointing

Checkpointing algorithms for parallel and distributed computing 497



algorithm is initiated and the checkpoints are taken. It is a dynamic checkpointing
algorithm. An alternative is to identify the checkpointing locations statically before execut-
ing the programs. Static approach is widely used in uniprocessor checkpointing (Chandy &
Ramamoorthy 1972). One can employ a static approach only when knowledge about the
program is available. Further discussion about static approaches is given in x 6.

2:4 Summary of checkpointing algorithms for MP systems

We have examined Chandy & Lamport's (1985) work along with various checkpointing
algorithms in the literature and how they all relate to Chandy's work. We have summarised
them based on the parameters that have been taken for comparison and their features. The
comparison is listed in tables 1 and 2.

3. Checkpointing algorithms for shared-memory systems

Shared-memory (SM) systems have a global address space and nodes communicate using
shared variables. To reduce the memory latency, shared-memory systems use cache
memory which in turn requires coherence of caches. Cache coherence protocols (Archibald
& Baer 1986) help in maintaining a consistent memory. Checkpointing algorithms are
incorporated as part of the cache protocols because at the time of checkpointing all cache
lines must be updated and at the time of recovery no cache line should be updated more
than once. The shared variables of a SM system are equivalent to the messages of a
message passing system as they introduce dependency among the processes in the same
way the messages introduce dependency among the processes in a message passing system.

3:1 Cache-based checkpointing algorithms

The basic checkpointing algorithm for a SM system is given below.

(1) At the time of checkpointing, make the main memory consistent using the cache
coherence protocols.

(2) Save the process contexts in the memory.
(3) Save the global state in secondary storage.

A checkpoint can be taken whenever the memory is consistent and the state of all
processes are available. Existing checkpointing algorithms for shared-memory systems
initiate checkpoints based on the cache line modifications (cache-based algorithms). In
the simplest case, a node initiates a global checkpoint whenever the number of dirty cache
lines exceed a threshold (Ahmed et al 1990). This requires all the nodes to participate in the
global checkpoint. Limiting the participation to only those nodes which are dependent on
each other improves the algorithm. Another alternative is to initiate a global checkpoint
whenever the effect of a modified cache is made visible to other nodes. The above three
approaches were proposed by Ahmed et al (1990).

The cache-based recovery algorithm (Wu et al 1989) assumes the presence of a special
memory called recovery stack, to reduce the time taken for context saving. when a cache
line is updated, it is written onto recovery stack instead of the main memory. The main
memory is updated either when the recovery stack is full or when a new checkpoint is

498 S Kalaiselvi and V Rajaraman



Table 1. Comparison of coordinated checkpointing algorithms.
p ± number of processors; m ± number of regular messages exchanged; c ± number of communication channels; ps ± number of processors interacting
between consecutive checkpoints �ps � p�.

Centralised= Selective=
Marker Header distributed compelete

Algorithm by overhead overhead approach rollback Comments

Kim & Park (1993) / 2ps Nil Distributed Selective Messages delays during checkpointing
two-phase protocol

Silva & Silva (1992) / p / m Centralised Complete Non-FIFO message handling
Tong et al (1992) / p (once in few / 2m Distributed Selective Coordination by bounding the clock drift

checkpoints)
Li et al (1991) / p / m Centralised Complete
(a) Tag bit method
(b) Marker based / �p� c� Nil Centralised Complete Minimum no. of marker messages
Cristian & Jahanian (1991) Nil / m Distributed Complete Use of time stamps to detect commu-

nication failure
Venkatesan (1989) / 2ps / m Centralised Selective Minimum no. of marker messages
Leu & Bhargava (1988) / 2ps / m Distributed Selective Non-FIFO channel handling, concurrent

checkpoints=rollback
Venkatesh et al (1987) Nil / m Distributed Selective Vector information with regular messages
Lai & Yang (1987) Nil / m Distributed Complete Single-bit information with regular messages
Koo & Toueg (1987) / 2ps / m Distributed Selective Two-phase protocol
Chandy & Lamport (1985) / c Nil Centralised Complete Global snapshot algorithm

C
h
eckp

o
in

tin
g

a
lg

o
rith

m
s

fo
r

p
a
ra

llel
a
n
d

d
istrib

u
ted

co
m

p
u
tin

g
4
9
9



Table 2. Comparison of independent checkpointing algorithms.
p ± number of processors; m ± number of regular messages exchanged; ps ± number of processors interacting between consecutive checkpoints
�ps � p�.

Recovery line
Algorithm Header overhead Logging overhead construction overhead Comments

Young & Chiu (1994) / m (separate vector Nil (logged in volatile / p Requires a separate logical ring for
is circulated for stores of other nodes) circulating control messages, selective
each message) checkpoint maintenance, optimistic

logging, selective rollback, FIFO
requirement, quasi-synchronous approach

Leong & Agrawal (1994) / m (state interval All messages with / p Messages are selectively eliminated and
of the message) dependencies maximum recoverable state is constructed

at recovery time, optimistic logging
Alvisi et al (1993) / m (vector with Vector with five entries / �p� m� Optimistic logging of messages, acknow-

every message) for every message ledgments for every message, selective
rollback, no checkpoint in stable store,
adaptive logging

Wang & Fuchs (1992) / m (vector with Selective (dependency / p Selective checkpoint maintenance,
two entries) information with every optimistic selective receiver logging,

message) selective rollback
Elnoazahy & Zwaenepoel / m (antecedence Selective (dependency / p (logged info. is Selective checkpoints, sender based

(1992) graph with every information with each sent to recovering logging, forces checkpoints for fast
message) message) node) output commit

Strom & Yemini (1985) / m (time stamps of Selective (dependency / ps Optimistic logging, selective checkpoint
various nodes) information with every maintenance receiver based logging

message)

5
0
0

S
K

a
la

iselvi
a
n
d

V
R

a
ja

ra
m

a
n



initiated. The size of the recovery stack and the pattern of interaction among the processes
determine the frequency of checkpointing.

Analytical studies (Wu et al 1989) showed that the use of special memory improved
the performance only when the cache lines were frequently modified. The reason is that the
special memory acts as another layer in the memory hierarchy and efficiently overlaps the
updation process. It is also shown that the effect of modifying the cache protocols for
checkpointing does not significantly degrade the performance of the cache. Janssens &
Fuchs (1994) studied the impact of various checkpointing and recovery algorithms on the
performance of cache memory. Simulation shows that the effect of these algorithms are
insignificant on the performance of cache memory and the use of special memory is helpful
in reducing the cache write back traffic.

One important point to observe in the cache-based algorithms is that the context is not
saved in stable storage. The algorithms are meant only for soft error recovery (Ahmed et al
1990). The context is either maintained in a special memory or in the main memory. It is
assumed that the memory is safe and the state of the processors can be restored from
memory. The advantages of soft recovery approach are: (a) time taken for checkpointing is
considerably less than the checkpointing which moves the state to stable store, (b) large
number of checkpoints can be initiated and the time interval between consecutive check-
points can be small. The disadvantage is that memory failure will require the system to
restart from the beginning, making the efforts expended on checkpointing useless. In this
kind of soft error recovery algorithm, the checkpointing overhead is mainly due to the large
number of checkpoints. Moreover, when there is no control over the number of check-
points, it is not advisable to take a checkpointing approach that saves context in stable
storage. There should be assurance that the time between consecutive checkpoints is large
enough for saving the context in stable storage. From the above observation it is clear that
the frequency of checkpointing cannot be predicted in any cache-based algorithm and is
influenced significantly by the pattern of interaction among the nodes.

4. Checkpointing algorithms for distributed shared-memory systems

Distributed shared memory (DSM) systems have global address space like shared-memory
systems but the memory is distributed across all the nodes. It is a software layer that
provides the appearance of a shared-memory system to the user and internally com-
municates through messages. Caches are present to minimise latency in data access and the
programming paradigm is shared-memory paradigm. Since DSM systems are similar to
SM systems, the checkpointing algorithms for DSM systems should concentrate on making
the memory consistent at the time of checkpointing. DSM systems cannot, however, use
checkpointing algorithms identical to SM systems because a node failure makes a portion
of the global memory not available, unlike an SM system where memory is separate and is
assumed to be safe. To tolerate node failures, checkpoints should be maintained in stable
storage like MP systems.

Considering the facts mentioned above, a basic DSM checkpointing algorithm is given
below.

(1) At the time of checkpointing, make the distributed main memory consistent through
the memory management protocols.

(2) Save the process contexts in the memory.
(3) Save the global state in secondary storage.

Checkpointing algorithms for parallel and distributed computing 501



Step three of the algorithm cannot be omitted in DSM systems unlike as in SM systems.
Techniques have been proposed to bring down the time taken for context saving. Wu &
Fuchs (1989) proposed an algorithm for recovery in DSM systems in which checkpoints
are initiated when a modified page of the memory is communicated to other nodes. Because
it takes a long time to write pages onto secondary storage, a technique called `Twin Paging'
(Reuter 1980) is used to overlap the context-saving time with regular computation. Twin-
paging technique allots two pages for every address and checkpointing algorithm flips
between the pages and efficiently overlaps the context-saving overhead by overlapping the
checkpointing activity with computation. The disadvantage of this algorithm is that if the
nodes frequently update pages, many checkpoints will be initiated. It is even possible for
the checkpoint frequency to become so high that the context saving may not be over before
the initiation of the next checkpoint.

Tam & Hsu (1990) proposed an algorithm for the retrieval of page table information in a
DSM system. Brown & Wu (1994) proposed an algorithm to retrieve the lost pages of a
faulty node with the help of a snooping protocol. The above two techniques have to be
combined with other techniques that save the context of the processes to make them
suitable for resuming the computation of a failed process.

By examining the few algorithms available in the literature for DSM systems, it is clear
that the approaches are extensions of cache-based algorithms because the dependency
among the nodes is created through sharing of memory. We can call them memory-based
algorithms because they are incorporated as part of memory coherence protocols. Note that
these algorithms resort to techniques for overlapping the context-saving process with
computation because the time taken to write the context in stable storage is significant.

5. Classification of checkpointing algorithms

Having seen the various algorithms available in the literature, we propose a classification
scheme. We also give a list of desirable features of a checkpointing algorithm.

5:1 Classification tree

The classification tree is given in figure 2. The first level of classification is based on the
availability of a global clock. Absence of a global clock has led to a variety of check-
pointing algorithms in multiprocessor systems. In both uniprocessor and multiprocessor
systems two major approaches known as static and dynamic approaches are used to identify
checkpointing locations. In uniprocessors, static approaches identify the checkpointing
locations prior to program execution using either a task graph of the program (Chandy &
Ramamoorthy 1972) or by the compiler analysing the program (Li & Fuchs 1990) the
dynamic approach identifies the checkpointing locations at runtime.

In multiprocessor systems, the static approach has not been widely used except for a
recent algorithm based on task graphs (Kalaiselvi & Rajaraman 2000). Almost all the
algorithms we have seen for distributed systems are dynamic. Dynamic algorithms for
multiprocessors are classified based on the architecture of the system as it determines the
way dependencies are introduced among the communicating processes which in turn
influence the way checkpointing has to be carried out. Shared memory systems use cache-
based algorithms and they are meant only for soft error recovery. Distributed shared
memory systems use memory-based schemes that can withstand node failures.

502 S Kalaiselvi and V Rajaraman



In message-passing systems, the major difference in algorithms is based on whether
coordination is done at runtime or at recovery time. Coordinated approaches coordinate the
nodes and form a consistent state at runtime, whereas independent algorithms form a con-
sistent state only at recovery time. The recent approach is to coordinate the checkpoints
partially and is called quasi-synchronous approach (Manivannan & Singhal 1996). In coor-
dinated algorithms, coordination is achieved through markers, headers or both. The
main distinction between approaches used in independent schemes is the method used to
log messages. They follow pessimistic, optimistic or a combination of pessimistic and

Figure 2. Classification of checkpointing algorithms.

Checkpointing algorithms for parallel and distributed computing 503



optimistic logging methods. Optimistic methods can further be classified based on where
the messages are logged: sender-based logging or receiver-based logging.

5:2 Desirable features of a checkpointing algorithm

(1) The time taken by the checkpointing algorithm should be minimum during a failure-
free run. In other words, increase in total execution time due to checkpointing should
not be signi®cant.

(2) Recovery should be fast in the event of a failure. Availability of a consistent global
state in stable storage expedites recovery.

(3) Domino effect or rollback propagation should be eliminated completely. Cascading
rollbacks of processes due to dependencies among them is termed the domino effect.

(4) Selective rollback should be possible.
(5) Dependency on the cache=memory coherence protocols in shared-memory systems

should be minimum.
(6) Resource requirements (memory and processor) for checkpointing should be minimum.
(7) Modi®cations introduced on the network transmission protocols in case of message-

passing systems and cache=memory coherence protocols in case of shared-memory
systems should be minimum.

6. Future direction of research in checkpointing

In the first subsection (x 6.1) we summarise shared and distributed shared-memory
checkpointing algorithms and their current status. Section 6.2 summarises message-passing
algorithms and their current status, while x 6.3 considers the potential for improvement if
one concentrates on minimising context-saving overhead. Section 6.4 points out the
advantage of adopting static approaches in multiprocessor systems which minimise the
runtime overhead of a checkpointing algorithm.

6:1 Shared and distributed shared-memory systems

From the discussion about shared-memory checkpointing algorithms, it is clear that cache
coherence protocols already maintain consistent memory and that checkpointing algorithms
are part of them. Only the number of checkpoints needs to be controlled and this depends on
the node interactions, which in turn depend on the program behaviour. Distributed shared-
memory (DSM) systems are considered to be better than the conventional bus-based shared-
memory systems as they are scalable. DSM systems should allow sufficient time between
checkpoints to complete the context-saving process. We saw that DSM systems should save
the context in stable storage, if they have to withstand node failures. Periodic checkpointing
algorithms would be suitable for DSM systems since they have control over the number of
checkpoints unlike algorithms which depend on the interactions among nodes. One such
attempt was made recently for DSM systems based on Scalable Coherent Interface (SCI)
(IEEE 1992) standards. The algorithm is initiated periodically to maintain consistency in
memory and to maintain the consistent state in stable storage.

One may proceed to develop improved checkpointing algorithms for DSM systems by
considering the following: (a) Control over number of checkpoints, and (b) scalability of
the checkpointing algorithm along with system scalability.

504 S Kalaiselvi and V Rajaraman



6:2 Message passing systems

In message passing systems, earlier performance studies by Bhargava et al (1990) showed
that coordinated checkpointing algorithms are costlier because they incur extra communica-
tion. Later simulation studies by Elnozahy et al (1992), however, revealed that coordinated
algorithms are better than independent algorithms. The cost of coordination is much lower
when compared with the cost of maintaining multiple checkpoints and logging messages.

One can follow an approach that is a combination of coordinated and independent
checkpointing algorithms to reap the benefits of both the approaches. Recently, Elnozahy &
Zwaenepoel (1994) proposed one such algorithm. In between two coordinated checkpoints,
messages are logged like the independent approach so that the rollback recovery is restricted
to just the faulty processor. Periodically checkpoints are initiated to maintain a consistent
global state in stable storage at all times. Manivannan & Singhal (1996) have suggested a
quasi-synchronous approach recently. Like the coordinated approach a consistent recovery
line is always maintained in stable storage by selectively logging messages and initiating
checkpoints when necessary. Instead of the usual garbage collection techniques followed in
independent approaches, this algorithm always maintains the latest checkpoint and makes
sure that the rollback will not go beyond the latest checkpoint of a node.

We have seen all possible modifications that can be made in checkpointing algorithms of
MP systems. The algorithms concentrate on different ways to handle coordination. From
the recent algorithms, it is clear that further improvement is possible by combining the
existing approaches. We feel that future algorithms should concentrate possibly on static
approaches for further improvement. Detailed discussion about static approaches is given
subsequently.

6:3 Minimising context-saving overhead

The interesting observation in all the algorithms discussed so far is that they all attempt to
minimise the coordination and message-logging overheads. A better performance can be
achieved by concentrating on minimising the context-saving overhead which constitutes a
significant portion of the checkpointing overhead.

Context-saving overheads can be reduced by (a) reducing the context size and (b)
overlapping context-saving with computation. One way to reduce the context size is to go
for incremental checkpointing Elzonahy et al (1992). Instead of moving all the pages to
stable storage, it is sufficient to move only those pages which were modified in the current
checkpoint interval. Unmodified pages can be obtained from the previous checkpoint.
Results show that incremental checkpointing is certainly better than moving all the pages
of the process to secondary storage (Elzonahy et al 1992). The second method to reduce the
context size is to use compression techniques (Plank & Li 1994) on the context. Fast
compression algorithms should be used for significant improvement in context-saving time.

The above techniques reduce the size of the context but copying the context to stable
storage takes significant time. The time spent in context-saving cannot be eliminated but
can be overlapped with computation. Overlapping hides the context-saving overhead and
reduces the context-saving time. In the pre-copying technique (Theimer et al 1985), a
portion of the main memory is reserved for checkpointing. At the time of checkpointing,
the pages to be written to stable storage are moved to this special memory area. The special
memory pages are moved to stable storage when computation proceeds. When the number

Checkpointing algorithms for parallel and distributed computing 505



of pages to be written to stable storage is more than the capacity of this special memory,
multiple precopying phases are needed. Any attempt made to modify a page when the
special memory is full, suspends the process, moves the page to stable storage and resumes
the process. This technique is advantageous compared to other techniques when the
number of pages to be written is small. An extension of this technique is main-memory
checkpointing (Plank 1993) where the size of the special memory is as big as the memory
itself. The entire address space is first copied into special memory and the contents are
moved to stable storage when computation proceeds. The advantage of this method over
the pre-copying technique is that it avoids page faults, but the memory requirements are
high. With incremental checkpointing pre-copying is a good technique. In copy-on-write
(Fitzgerald & Rashid 1986) technique all the modified pages are just write-protected at the
time of checkpointing and later moved to stable storage. Computation proceeds in parallel
with context saving. Once a page is moved to the special memory area write-protect is
removed from that page and it is available for further modification. Any attempt to modify
a write-protected page results in a page fault. The page is first copied onto a special
memory area and write-protect is removed from the page. From special memory, the page
is moved to stable storage. Zwaenepoel's experiment (Elnozahy et al 1992) shows that the
overlapping techniques mentioned above help in minimising the context-saving overhead.
Bowen & Pradhan (1992) suggested a technique called virtual checkpointing, which can be
directly included in the virtual memory management protocol. This can be included in
shared-memory systems, message-passing systems and in DSM systems and needs exten-
sive support from memory management protocols.

Plank & Li (1994) suggested diskless checkpointing technique, which eliminates access to
stable storage completely. A dedicated checkpoint processor maintains copies of all the pro-
cessors' checkpoints by XOR-ing their memory contents. Since the copy is maintained in the
memory of the extra processor, frequency of checkpointing can be higher. The checkpoint
processor periodically saves its memory in stable storage. The idea of using the parities and
saving the contents is similar to the one used by RAID (Chen et al 1994) architectures. In
addition to the extra processors this technique demands special memory in each processor.

All these techniques for minimising the context-saving overhead can be followed by the
existing checkpointing algorithms, when assistance is provided by the memory manage-
ment protocols. This certainly improves the algorithms. One can consider how efficiently
these techniques can be integrated with existing algorithms and can explore the com-
patibility of a checkpointing algorithm with a context-minimising technique.

6:4 Static approaches

Multiprocessor algorithms discussed so far in this paper are dynamic which identify the
checkpointing locations at run time. As mentioned in x1, they assume that they do not have
any knowledge about the interactions among the various modules of a problem being
solved. This is the main reason for coordinating the checkpoints in coordinated approach
and maintaining multiple checkpoints and messages in case of independent checkpointing
approach. In reality, a thorough understanding of the various modules of the program is
necessary for developing a parallel program. This information can be used effectively to
identify the checkpointing locations statically before running the program.

Chandy & Ramamoorthy (1972) proposed one of the earliest static checkpointing
algorithms for uniprocessor system. Their objective was to locate the optimal places to

506 S Kalaiselvi and V Rajaraman



checkpoint so that the recovery overhead is minimum. They assume knowledge about the
execution and recovery times of various modules of the program. Upadhyaya & Saluja
(1986) suggested that by using cache for recovery, the context saving time can be reduced.
Mishra et al (1991) suggested an algorithm that identifies optimal locations of recovery
points in an inverted binary tree structured task graph. Chen et al (1989) suggested solu-
tions for recovery point selection in uniprocessor and multiprocessor systems. In single-
processor systems, solutions for optimal placement of recovery points and in multiprocessor
systems, analyses for placement strategy are given by them. They have not considered the
effect of maintaining a consistent recovery line in multiprocessor systems.

Li & Fuchs (1990) suggested a compiler assisted checkpointing technique. Their claim is
that it is easier to include checkpoints by analysing the code generated by a compiler than
by generating graphs of the program and identifying checkpointing locations. This
technique analyses the code and locates the optimal checkpointing places. Based on this
idea and a technique called user-directed checkpointing, Plank et al (1995), and Beck et al
(1994) suggested a compiler-assisted checkpointing method that uses many techniques.
Incremental checkpointing technique identifies the dirty pages of the memory and moves
them to stable storage, and cannot identify the lifetime of the variables. With user-
assistance the lifetime of variables can be identified and those variables which are no
longer in use (dead) can be safely eliminated from the context. There may be some read-
only variables which can also be eliminated from the context because they can be restored
along with the code. Since identification is done by a user the technique is called user-
directed checkpointing. Performance studies show that user-directed checkpointing is
better in many cases (Beck et al 1994).

The advantage of a static approach is that it eliminates coordination overhead at run
time. Compiler-assisted and user-assisted static techniques help in minimising the context
size too. The overheads incurred by static algorithms are preprocessing overheads and do
not increase the runtime overheads. In a parallel=distributed environment, one cannot
follow the approaches as such because the interactions among the nodes introduce depen-
dencies among the multiple streams of execution.

A recent approach based on directed acyclic task graph being the computation model is
proposed for static checkpointing (Kalaiselvi & Rajaraman 2000). From the task graph, a
consistent global checkpoint is identified statically in O�m� time where m is the number of
edges present in the task graph. Unlike other static techniques, this is meant for multi-
processor environment. The coordination overhead is eliminated and context-saving over-
head is minimized by introducing checkpoints at places that incur minimum overhead. One
more advantage to note is that since the checkpoints are not initiated at the same time in all
nodes, there will not be contention for accessing the stable storage when checkpoints are
saved in a single disk.

One can further investigate this algorithm considering the scheduling effects and the
programming paradigms. Other static methods can also be investigated because they have
the advantage of minimum runtime overhead.

7. Conclusions

A survey of the literate on checkpointing algorithms show that a large number of papers
have been published on checkpointing message-passing distributed computers. A majority
of these algorithms are based on the seminal article by Chandy & Lamport (1985) and have

Checkpointing algorithms for parallel and distributed computing 507



been obtained by relaxing many of the assumptions made by them; the main aim of
improving the earlier extensions of the Chandy & Lamport (1985) algorithms was to
minimise the overhead of coordination between processes in a multiprocessor system.
More recent published work attempts to minimise the context-saving overhead.

A smaller number of algorithms have been proposed to checkpoint shared-memory
multiprocessors. These algorithms primarily extend cache coherence protocols to maintain
a consistent memory. These algorithms assume the main memory to be safe and do not save
context in disk.

More recently, algorithms have been proposed for distributed shared-memory systems. In
these systems also maintenance of cache coherence of the logical global memory is
important for checkpoints. As the physical memory is distributed it is necessary to save
main memory contents in the disk. Thus context saving overhead is higher when compared
to shared-memory systems.

We also see that most of the algorithms assume no prior knowledge on the structure of
programs meant for execution on multiprocessors. In practice, considerable information
about such programs is available. We suggest that use of this knowledge by checkpointing
algorithms can considerably reduce the coordination and context-saving overheads of such
algorithms.

References

Ahmed R E, Frazier R C, Marinos P N 1990 Cache aided rollback error recovery (CARER)
algorithms for shared memory multiprocessor systems. Proc. IEEE 20th Int. Symp. on Fault
Tolerant Computing pp 82±88

Alvisi L, Hoppe B, Marzullo K 1993 Nonblocking and orphan free message logging protocols. Proc.
IEEE 23rd Int. Symp. Fault Tolerant Computing pp 145±154

Archibald J, Baer J-L 1986 Cache coherence protocols: Evaluation using a multiprocessor simulation
model. ACM Trans. Comput. Syst. 4: 273±298

Beck M, Plank J S, Kingsley G 1994 Compiler-assisted checkpointing. Technical Report, CS-94-
269, University of Tennessee, Knoxville, TN

Bhargava B, Lian S-R, Leu P-J 1990 Experimental evaluation of concurrent checkpointing and
rollback-recovery algorithms. Proc. IEEE 6th Int. Conf. on Data Eng. pp 182±189

Borg A, Blau W, Gratsch W, Herrman H, Oberle W 1989 Fault tolerance under UNIX. ACM Trans.
Comput. Syst. 7: 1±24

Bowen N S, Pradhan K 1992 Virtual checkpoints: Architecture and performance. IEEE Trans.
Comput. 41: 516±525

Brown L, Wu J 1994 Dynamic snooping in a fault-tolerant distributed shared memory. Proc. IEEE
14th Int. Conf. on Distributed Computing Syst. pp 218±226

Chandy K M, Lamport L 1985 Distributed snapshots: Determining global states of distributed
systems. ACM Trans. Comput. Syst. 3: 63±75

Chandy K M, Ramamoorthy C V 1972 Rollback and recovery strategies for computer programs.
IEEE Trans. Comput. C-21: 546±556

Chen P M, Lee E K, Gibson G A, Katz R H, Patterson D A 1994 RAID-High performance, reliable
secondary storage. ACM Comput. Surv. 26: 145±185

Chen S-K, Tsai W T, Thuraisingham M B 1989 Recovery point selection on a reverse binary tree
task model. IEEE Trans. Software Eng. 15: 963±976

Cristian F, Jahanian F 1991 A timestamp-based checkpointing protocol for long-lived distributed
computations. Proc. IEEE Conf. on Reliable Distributed Syst. pp 12±20

Elnozahy E N, Zwaenepoel W 1992 Manetho: Transparent rollback recovery with low overhead,
limited rollback and fast output commit. IEEE Trans. Comput. 41: 526±531

508 S Kalaiselvi and V Rajaraman



Elnozahy E N, Zwaenepoel W 1994 On the use and implementation of message logging. Proc. IEEE
Int. Symp. on Fault Tolerant Computing pp 298±307

Elnozahy E N, Johnson D B, Zwaenepoel W 1992 The performance of consistent checkpointing.
Proc. IEEE 11th Symp. on Reliable Distributed Syst. pp 39±47

Fitzgerald R, Rashid R F 1986 The integration of virtual memory management and interprocess
communication in accent. ACM Trans. Comput. Syst. 4: 147±177

IEEE 1992 Std. 1596±1992. IEEE Scalable Coherent Interface (SCI) (Piscataway, NJ: IEEE)
Janssens B, Fuchs W K 1994 The performance of cache based error recovery in multiprocessors.

IEEE Trans. Parallel Distributed Syst. 5: 1033±1043
Johnson D B, Zwaenepoel W 1987 Sender-based message logging. Proc. IEEE Int. Symp. Fault

Tolerant Comput. pp. 14±19
Juang T T-Y, Venkatesan S 1991 Crash recovery with little overhead. Proc. IEEE 11th Int. Conf. on

Distributed Comput. Syst. pp 454±461
Kalaiselvi S, Rajaraman V 2000 Task graph based checkpointing in parallel=distributed systems. J.

Parallel Distributed Comput. (submitted)
Kim J L, Park T 1993 An efficient protocol for checkpointing recovery in distributed systems. IEEE

Trans. Parallel Distributed Syst. 4: 955±960
Koo R, Toueg S 1987 Checkpointing and rollback recovery for distributed systems. IEEE Trans.

Software Eng. SE-13: 23±31
Lai T H, Yang T H 1987 On distributed snapshots. Inf. Process. Lett. 25: 153±158
Lamport L 1978 Time clocks and the ordering of events in a distributed system. Commun. ACM 21:

558±565
Leong H V, Agrawal D 1994 Using message semantics to reduce rollback in optimistic

message logging recovery schemes. Proc. IEEE 14th Conf. on Distributed Computing Syst. pp
227±234

Leu P-J, Bhargava B 1988 Concurrent robust checkpointing and recovery in distributed systems.
Proc. Int. Conf. on Data Engineering pp 154±163

Li C-C J, Fuchs W K 1990 CATCH-Compiler-assisted techniques for checkpointing. Proc. 1990 Int.
Symp. on Fault Tolerant Computing pp 74±81

Li K, Naughton J F, Plank S 1991 Checkpointing multicomputer applications. Proc. IEEE Conf. on
Reliable Distributed Syst. pp 2±11

Manivannan D, Singhal M 1996 A low-overhead recovery technique using quasi-synchronous
checkpointing. Proc. IEEE Int. Conf. on Distributed Computing Syst. pp 100±107

Mishra S K, Raghavan V V, Tzeng N-F 1991 Efficient algorithms for selection of recovery points in
task models. IEEE Trans. Software Eng. 17: 731±734

Netzer R H B, Xu J 1995 Necessary and sufficient conditions for consistent global snapshots. IEEE
Trans. Parallel Distributed Syst. 6: 165±169

Plank J S 1993 Efficient checkpointing on MIMD architectures. Doctoral dissertation, Dept. of
Computer Science, Princeton University, Princeton, NJ

Plank J S, Li K 1994a ickp: A consistent checkpointer for multicomputers. IEEE Parallel Distributed
Technol. 2: 62±67

Plank J S, Li K 1994b Faster checkpointing with N � 1 parity. Proc. IEEE Int. Symp. on Fault
Tolerant Computing pp 288±297

Plank J S, Beck M, Kingsley G, Li K 1995 Libckpt: Transparent checkpointing under unix. USENIX
Winter Technical Conference, New Orleans, Louisiana

Ralston A, Reily E D 1993 Encyclopedia of computer science 3rd edn (New York: IEEE Press)
Randell B 1975 System structure for software fault tolerance. IEEE Trans. Software Eng. SE-1:

220±232
Reuter A 1980 A fast transaction-oriented logging scheme for undo recovery. IEEE Trans. Software

Eng. SE-6: 348±356
Siewiorek D P, Swarz S 1982 The theory and practice of reliable system design (Cambridge, MA:

Digital Press)

Checkpointing algorithms for parallel and distributed computing 509



Silva L, Silva J 1992 Global checkpointing for distributed programs. Proc. IEEE 11th Symp. on
Reliable Distributed Syst. pp 155±162

Strom R E, Yemini S 1985 Optimistic recovery in distributed systems. ACM Trans. Comput. Syst.
3: 204±226

Tam V-O, Hsu M 1990 Fast recovery in distributed shared virtual memory systems. Proc. IEEE 10th
Int. Conf. on Distributed Computing Syst. pp 38±45

Theimer M, Lantz K, Cheriton D R 1985 Preemptable remote execution facilities in the V-system.
Proc. of the 10th ACM Symp. on Operating Syst. Principles pp 2±11

Tong Z, Kain R Y, Tsai W T 1992 Rollback recovery in distributed systems using loosely
synchronized clocks. IEEE Trans. Parallel Distributed Syst. 3: 246±251

Upadhyaya J S, Saluja K K 1986 A watchdog processor based general rollback technique with
multiple retries. IEEE Trans. Software Eng. SE-12: 87±95

Venkatesan S 1989 Message optimal incremental snapshots. Proc. IEEE 9th Int. Conf. Distributed
Comput. Syst. pp 53±60

Venkatesh K, Radhakrishnan T, Li H F 1987 Optimal checkpointing and local recording for domino-
free rollback recovery. Inf. Process. Lett. 25: 295±303

Wang Y-M, Fuchs W K 1992 Optimistic message logging for independent checkpointing in message
passing systems. Proc. IEEE 11th Symp. on Reliable Distributed Syst. pp 147±154

Wang Y-M, Chung P-Y, Lin I-J, Fuchs W K 1995 Checkpoint space reclamation for uncoordinated
checkpointing in message passing systems. IEEE Trans. Parallel Distributed Syst. 6: 546±554

Wu K-L, Fuchs W K 1989 Recoverable distributed shared virtual memory: Memory coherence and
storage structures. Proc. 1989 Int. Symp. on Fault Tolerant Computing pp 520±527

Wu K-L, Fuchs W K, Patel J H 1989 Cache based error recovery for shared memory multiprocessor
systems. Proc. Int. Conf. on Parallel Processing pp I159±I166

Young C, Chiu G 1994 A crash recovery technique in distributed computing systems. Proc. IEEE
14th Int. Conf. on Distributed Computing Syst. pp 235±242

Zomaya A Y H 1996 Parallel and distributed computing handbook (New York: McGraw-Hill)

510 S Kalaiselvi and V Rajaraman


