11,788 research outputs found

    Global Tracking Passivity--based PI Control of Bilinear Systems and its Application to the Boost and Modular Multilevel Converters

    Full text link
    This paper deals with the problem of trajectory tracking of a class of bilinear systems with time--varying measurable disturbance. A set of matrices {A,B_i} has been identified, via a linear matrix inequality, for which it is possible to ensure global tracking of (admissible, differentiable) trajectories with a simple linear time--varying PI controller. Instrumental to establish the result is the construction of an output signal with respect to which the incremental model is passive. The result is applied to the boost and the modular multilevel converter for which experimental results are given.Comment: 9 pages, 10 figure

    A review of convex approaches for control, observation and safety of linear parameter varying and Takagi-Sugeno systems

    Get PDF
    This paper provides a review about the concept of convex systems based on Takagi-Sugeno, linear parameter varying (LPV) and quasi-LPV modeling. These paradigms are capable of hiding the nonlinearities by means of an equivalent description which uses a set of linear models interpolated by appropriately defined weighing functions. Convex systems have become very popular since they allow applying extended linear techniques based on linear matrix inequalities (LMIs) to complex nonlinear systems. This survey aims at providing the reader with a significant overview of the existing LMI-based techniques for convex systems in the fields of control, observation and safety. Firstly, a detailed review of stability, feedback, tracking and model predictive control (MPC) convex controllers is considered. Secondly, the problem of state estimation is addressed through the design of proportional, proportional-integral, unknown input and descriptor observers. Finally, safety of convex systems is discussed by describing popular techniques for fault diagnosis and fault tolerant control (FTC).Peer ReviewedPostprint (published version

    State estimation of a solar direct steam generation mono-tube cavity receiver using a modified Extended Kalman Filtering scheme

    Get PDF
    State estimation plays a key role in the development of advanced control strategies for Concentrating Solar Thermal Power (CSP) systems, by providing an estimate of process variables that are otherwise infeasible to measure. The present study proposes a state estimation scheme for a once-through direct steam generation plant, the SG4 steam generation system at the Australian National University. The state estimation scheme is a modified Extended Kalman Filter that computes an estimate of the internal variables of the mono-tube cavity receiver in the SG4 system, from a dynamic non-linear model of the receiver. The proposed scheme augments the capabilities of a Continuous-Direct Extended Kalman Filter to deal with the switched nature of the receiver, in order to produce estimates during system start-up, cloud transients and operation of the plant. The estimation process runs at regular sample intervals and happens in two stages, a prediction and a correction stage. The prediction stage uses the receiver model to calculate the evolution of the system and the correction stage modifies the predicted estimate from measurements of the SG4 system. The resulting estimate is a set of internal variables describing the current state of the receiver, termed the state vector. This paper presents a description of the modified Extended Kalman Filter and an evaluation of the scheme using computer simulations and experimental runs in the SG4 system. Simulations and experimental results in this paper show that the filtering scheme improves a receiver state vector estimation purely based on the receiver model and provides estimates of a quality sufficient for closed loop control.This work has been supported by the Australian Renewable Energy Agency (ARENA)

    Design and Analysis of a Non-Isolated High Gain Step-Up Cuk Converter

    Get PDF
    Renewable energy sources, such as solar energy, are desired for both economic and ecological issues. These renewable energy sources are plentiful in nature and have a terrific capability for power generation. The only drawback of solar energy, which is one of the best forms of energy sources, is that the output has a low voltage and needs to be stepped up in order to be inserted into the DC grid or an inverter for AC applications. To overcome this drawback, a high gain DC-DC power converter is required in this kind of system. These power converters are needed for a better regulation capability with a small density volume, lightweight, high efficiency, and low cost. In this dissertation, different topologies of a non-isolated high gain step-up Cuk converter based on switched-inductor (SL) and switched-capacitor (SC) techniques for renewable energy applications, such as photovoltaic and fuel cell, are proposed. These kinds of Cuk converters provide a negative-to-positive step-up DC-DC voltage conversion. The proposed Cuk converters increase the voltage boost ability significantly using the SL and SC techniques compared with the conventional Cuk and boost converters. Then, a maximum power point tracking (MPPT) technique is employed in the proposed Cuk converter to get the maximum power point (MPP) from the PV panel. The proposed Cuk converters are derived from the conventional Cuk converter by replacing the single inductor at the input, output sides, or both by a SL and the transferring energy capacitor by a SC. The main advantages of the proposed Cuk converters are achieving a high voltage conversion ratio and reducing the voltage stress across the main switch. Therefore, a switch with a lower voltage rating and thus a lower RDS-ON can be used, and that will lead to a higher efficiency. For example, the third topology of the proposed Cuk converter has the ability to boost the input voltage up to 13 times when D=0.75, D is the duty cycle. The voltage gain and the voltage stress across the main switch in all topologies have been compared with conventional converters and other Cuk converters used different techniques. The proposed topologies avoid using a transformer, coupled inductors, or an extreme duty cycle leading to less volume, loss, and cost. The proposed Cuk converters are analyzed in continuous conduction mode (CCM), and they have been designed for 12V input supply voltage, 50kHz switching frequency, and 75% duty cycle. A detailed theoretical analysis of the CCM is represented, and all the equations have been derived and matched with the results. The proposed Cuk converters have been simulated in MATLAB/Simulink and the results are discussed

    A path planning and path-following control framework for a general 2-trailer with a car-like tractor

    Full text link
    Maneuvering a general 2-trailer with a car-like tractor in backward motion is a task that requires significant skill to master and is unarguably one of the most complicated tasks a truck driver has to perform. This paper presents a path planning and path-following control solution that can be used to automatically plan and execute difficult parking and obstacle avoidance maneuvers by combining backward and forward motion. A lattice-based path planning framework is developed in order to generate kinematically feasible and collision-free paths and a path-following controller is designed to stabilize the lateral and angular path-following error states during path execution. To estimate the vehicle state needed for control, a nonlinear observer is developed which only utilizes information from sensors that are mounted on the car-like tractor, making the system independent of additional trailer sensors. The proposed path planning and path-following control framework is implemented on a full-scale test vehicle and results from simulations and real-world experiments are presented.Comment: Preprin

    Distributed tracking control of leader-follower multi-agent systems under noisy measurement

    Full text link
    In this paper, a distributed tracking control scheme with distributed estimators has been developed for a leader-follower multi-agent system with measurement noises and directed interconnection topology. It is supposed that each follower can only measure relative positions of its neighbors in a noisy environment, including the relative position of the second-order active leader. A neighbor-based tracking protocol together with distributed estimators is designed based on a novel velocity decomposition technique. It is shown that the closed loop tracking control system is stochastically stable in mean square and the estimation errors converge to zero in mean square as well. A simulation example is finally given to illustrate the performance of the proposed control scheme.Comment: 8 Pages, 3 figure

    Engineering evaluations and studies. Volume 2: Exhibit B, part 1

    Get PDF
    Ku-band communication system analysis, S-band system investigations, payload communication investigations, shuttle/TDRSS and GSTDN compatibility analysis are discussed
    • …
    corecore