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Abstract

State estimation plays a key role in the development of advanced control strategies for Concentrating Solar Thermal Power (CSP)
systems, by providing an estimate of process variables that are otherwise infeasible to measure. The present study proposes a state
estimation scheme for a once-through direct steam generation plant, the SG4 steam generation system at the Australian National
University. The state estimation scheme is a modified Extended Kalman Filter that computes an estimate of the internal variables
of the mono-tube cavity receiver in the SG4 system, from a dynamic non-linear model of the receiver. The proposed scheme
augments the capabilities of a Continuous-Direct Extended Kalman filter to deal with the switched nature of the receiver, in order to
produce estimates during system start-up, cloud transients and operation of the plant. The estimation process runs at regular sample
intervals and happens in two stages, a prediction and a correction stage. The prediction stage uses the receiver model to calculate
the evolution of the system and the correction stage modifies the predicted estimate from measurements of the SG4 system. The
resulting estimate is a set of internal variables describing the current state of the receiver, termed the state vector. This paper
presents a description of the modified Extended Kalman Filter and an evaluation of the scheme using computer simulations and
experimental runs in the SG4 system. Simulations and experimental results in this paper show that the filtering scheme improves
a receiver state vector estimation purely based on the receiver model and provides estimates of a quality sufficient for closed loop
control.

Nomenclature

İsol Direct normal irradiation

ṁin Receiver inlet mass flow

Pin Receiver inlet pressure

Pout Receiver outlet pressure

Ta Ambient temperature

Tin Receiver inlet temperature

γ̄ System mean void fraction of saturated region

hout Specific enthalpy of fluid at receiver tube outlet

L1 Length of sub-cooled fluid region in receiver tube

L2 Length of saturated fluid region in receiver tube

P Average pressure in receiver tube

Tw1 Wall temperature of tube adjacent to sub-cooled fluid re-
gion

Tw2 Wall temperature of tube adjacent to saturated fluid region
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Tw3 Wall temperature of tube adjacent to superheated fluid re-
gion

φk Zero-mean white noise added to measurements

υk Zero-mean white noise added to process

Hk Observation matrix

Kk Kalman Filter gain

Pk Error covariance matrix

Qk Process noise covariance matrix

Rk Measurement noise covariance matrix

x̂k Estimated state vector

xk State vector

yk Measurement vector

Subscripts

∆t Intermediate (continuous) time between samples

h Numerical integrator time step

k|k Sample time for prediction (left) and correction (right)

k Current sample

tk Continuous time at sample k
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1. Introduction

Modern state-space control strategies incorporate the inter-
nal dynamic behaviour of a system to regulate their output, thus
providing a performance advantage over classical (PID) con-
trol (Franklin et al., 2010). This increase in sophistication re-
quires knowledge of the internal system behaviour, which may
not always be accessible with instruments. Concentrating Solar
Thermal Power (CSP) technologies face this challenge in pur-
suit of modern control strategies that improve their efficiency
(Camacho et al., 2012).

Kalman filters can compute an estimate of the internal vari-
ables of a system, when direct measurement is impractical or
not possible (Kailath et al., 2000). This technique has been ex-
tended to non-linear systems in a variety of ways, such as Ex-
tended Kalman Filters, Unscented Kalman Filters and particle
filters (Rawlings and Mayne, 2009). Extended Kalman Filters
have been applied to thermal systems (LeBreux et al., 2013;
Jonsson et al., 2007) and CSP applications. For example Schlipf
et al. (Schlipf et al., 2012) propose an EKF to estimate the state
of the evaporator in a Compact Linear Fresnel Reflector sys-
tem, and use this estimate in a closed loop controller. In the
ACUREX field, Gallego and Camacho (Gallego and Camacho,
2012b) use an Unscented Kalman Filter (Julier and Uhlmann,
1997) to estimate the heat transfer profile of the absorber tube
across the entire length of a parabolic trough collector from lo-
calised measurements of irradiation and temperature, and use
this estimate in an adaptive control scheme (Gallego and Ca-
macho, 2012a).

This study addresses the estimation of internal variables
in a mono-tube cavity receiver used for direct steam genera-
tion (DSG) with a modified Extended Kalman Filtering scheme.
The receiver is part of the SG4 steam generation system, a
once-through direct steam generation loop powered by a 500 m2

paraboloidal dish (Lovegrove et al., 2011). A control oriented
mathematical model of the receiver developed by Zapata et al.
(Zapata et al., 2013) forms the basis for the estimation algo-
rithm. Model inputs correspond to measurements that influence
the receiver behaviour: feed-water mass flow, temperature and
pressure, direct normal irradiation (DNI), and receiver outlet
pressure. The model produces a set of receiver variables, herein
the receiver state vector, that describe the internal dynamical
behaviour of the two-phase heat exchange in the receiver in real
time.

There exist several challenges to develop a filtering scheme:
the model is non-linear, switched, numerically stiff, and suscep-
tible to measurement noise and calibration errors. The filtering
scheme proposed in this study approaches these challenges by
integrating three Continuous-Discrete Extended Kalman Filters
(CDEKF) (Jorgensen et al., 2007; Frogerais et al., 2012) with
the SG4 receiver model. The filtering scheme switches between
CDEKF instances to handle the switched nature of the model,
and each instance handles non-linear numerical solution of the
model, including model/measurement uncertainty. The state
vector can be employed in modern state-space control strategies
for the SG4 system (e.g. Zapata, 2015). This paper describes
the modified EKF scheme in detail as well as its realisation in
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Figure 1: SG4 system diagram with steam engine, from January 2010 to June
2013
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Figure 2: SG4 system diagram with passive dissipation loop, after July 2013

the SG4 system. Preliminary results of this work have been
presented in (Zapata, 2014).

2. The SG4 steam generation system

The SG4 steam generation system is a once-through direct
steam generation loop, consisting of a 500 m2 paraboloidal con-
centrator, a mono-tube cavity steam receiver, and a hydraulic
circuit. The system originally powered a reciprocating steam
engine and electrical generator (Fig. 1), but in July 2013 the
engine was decommissioned and replaced with a passive back-
pressure dissipation loop for safety reasons (Fig. 2). Both con-
figurations have been included because experimental data for
section 6 comes from the original configuration and data for
section 7 was obtained with the modified configuration.

A Supervisory Control and Data Acquisition (SCADA) sys-
tem monitors and records experimental data for the SG4 plant.
The SG4 system features instruments to measure process vari-
ables (e.g. pressure and temperature) and environmental vari-
ables (e.g. ambient temperature and direct normal irradiation).
The SCADA system samples and stores these measurements at
2 s intervals in a database (Zapata, 2014).

3. State estimation problem

The state estimation problem in this study consists of for-
mulating a scheme to observe the internal dynamics of the SG4
receiver in real time from measurements of the system and a
dynamic model of the receiver. The receiver model provides a
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fast and accurate representation of the transient heat transfer be-
haviour in the SG4 system (Zapata et al., 2013). However, the
receiver model and measurements are susceptible to noise and
calibration errors. This section describes these challenges, and
how they steer the choice of a state estimation scheme towards
Kalman Filters.

3.1. Switched receiver model

The receiver model provides information about the internal
state of the receiver with the following state vector:

x =
[

L1 L2 P hout γ̄ Tw1 Tw2 Tw3

]T
(1)

These variables convey valuable information about the mass
inventory in the receiver tube, losses and the steam quality at
the receiver outlet. The receiver model is able to predict the
onset of two-phase and single phase flow at the outlet due to
its ability to switch between three different sets of equations,
termed modes. Mode ‘1’ corresponds to liquid at the receiver
outlet, mode ‘1-2’ represents saturated water/vapour mixture at
the outlet and mode ‘1-2-3’ corresponds to superheated steam.
As the model switches between modes, the meaning of some
variables in the state vector will change between representing
a physical quantity and tracking an initialisation value. A state
estimation scheme that uses the receiver model has to either
handle the switching nature of the model or be confined to op-
erating on a single mode.

The combined system of equations for each mode is non-
linear and does not have an analytical solution. Therefore, a
numerical integration scheme calculates the mode solution and
propagates the state vector forward in time. The model is nu-
merically stiff and its solution requires implicit numerical in-
tegration schemes (e.g. Kristensen et al., 2004). These aspects
of the model also impose restrictions on the state estimation
scheme.

3.2. Available input measurements

The receiver model propagates the state vector forward in
time when provided with the following set of measurements
(i.e. the measurement vector u):

u =
[

ṁin Pin Pout Tin Ta İsol

]T
(2)

Measurement error propagates through the receiver model
equations and may introduce deviations in the computed esti-
mate. Table 1 summarises the sensitivity of the receiver model
to each measurement in vector u. The effect of noise from input
measurements on the state vector estimate can be attenuated by
a Kalman filtering scheme, if one or more of the states can be
observed or measured as well. This condition is called observ-
ability, and it determines the number of elements in the state
vector of the system (if any) that are observable from its inputs
and outputs (Franklin et al., 2010).

Table 1: Measurement uncertainty for experimental data
Measurement Uncertainty Model Tout sensitivity
İsol ±20 W/m2 ±33 ◦C
ṁin ±1.1 g/s ±13 ◦C
Pin ±97 kPa ±0.75 ◦C
Pout ±97 kPa ±2 ◦C
Tin ±1 ◦C ±2 ◦C
Ta ±0.8 ◦C ±2 ◦C
Tout ±0.5 ◦C N/A
Total sensitivity ±36 ◦C

3.3. Available output measurements

In addition to the measurements required by the receiver
model, it is possible to measure receive outlet fluid tempera-
ture Tout and pressure Pout. These measurements can be used to
measure individual variables in the receiver state vector. Pres-
sure state P can be related to measurements at the inlet and
outlet of the receiver Pout at all times under the model assump-
tion that P = (Pin + Pout)/2. The enthalpy state hout can be
calculated from steam tables as a function hout = f (Pout,Tout)
when the receiver outlet is single phase flow (i.e. modes ‘1’ and
‘1-2-3’). In mode ’1-2’ it is not possible to calculate receiver
outlet enthalpy, because the flow at the receiver outlet is satu-
rated steam/water mixture, and there was no measurement of
steam quality available for this study.

Receiver measurements Pin, Pout and Tout create thus a set
of “virtual” output measurements for model states P and hout;
but virtual measurements are not consistent across modes. Ta-
ble 2 summarises the relation between real measurements, “vir-
tual” measurement and receiver vector states, in different re-
ceiver model modes.

Table 2: Relation between available output measurements in the SG4 system
and receiver model states, for each receiver model mode

State xk Measurement yk

Mode ‘1’ Mode ‘1-2’ Mode ‘1-2-3’
L1 - - -
L2 - - -
P 1

2 (Pin + Pout) 1
2 (Pin + Pout) 1

2 (Pin + Pout)
hout f 1(Pout,Tout) - f 123(Pout,Tout)
γ̄ - - -
Tw1 - - -
Tw2 - - -
Tw3 - - -

The observability of the receiver model was tested in this
by linearising the model at several operating points across all
three receiver modes, and calculating the rank of the resulting
observability matrix for each case Åstrom and Murray (2008).
This study found that in modes ‘1’ and ‘1-2-3’ the observabil-
ity matrix of the linearised model is of rank 8, the number of
states in the model, and thus the receiver state vector is observ-
able. In mode ‘1-2’ the observer was of rank 5, which limits the
choice of state estimators to algorithms that can reconstruct the
receiver state over multiple samples, e.g. Kalman Filters.
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3.4. Formulating a state estimation scheme

The state estimation scheme needs to handle a switched
non-linear model that is susceptible to calibration, noisy and/or
inconsistent measurements. Continuous - Discrete Extended
Kalman Filters (Frogerais et al., 2012) can handle the non-linear
numerical solution to the receiver model, including its suscepti-
bility to measurement and calibration uncertainty. To handle the
switched nature of the model and inconsistent output measure-
ments, three separate filters are combined to form the modified
Extended Filtering scheme proposed in this study. Section 4
provides a description of CDEKF and section 5 describes the
modified Extended Filtering scheme structure in detail.

4. Continuous-Discrete Extended Kalman Filtering

The CDEKF extends the estimation ability of the Kalman
filter to continuous-time non-linear systems, and is at the core
of the modified Extended Kalman Filtering scheme presented in
this study. This section first presents an abridged description of
Kalman Filtering to introduce the two-stage estimation process,
parameters and notation. Then, the specific characteristics of
the CDEKF are introduced.

4.1. The Kalman Filter

The Kalman filter is an optimal estimator widely used to
compute an estimate x̂k for a linear system state vector xk (Kalman,
1960; Grewal and Andrews, 2008). The linear system is of the
form:

xk = Fxk−1 + G(uk + υk) (3)
yk = Hxk + φk (4)

with F,G and H constant matrices and a given initial state vec-
tor condition x0. The system is represented in discrete-time
intervals k, due to the sampled nature of input measurements
uk and output measurements yk. The system is susceptible to
measurement and model uncertainty, and it is represented as
additive noise vector signals υk and φk.

Kalman filters assume that noise signals υk and φk are zero
mean, uncorrelated white noise disturbances with quantifiable
standard deviations. Under this assumption, the uncertainty in-
troduced to the system has expected values, quantified by ma-
trices Qk and Rk:

Qkδk j = Eυkυ
T
j Rkδk j = Eφkφ

T
j (5)

where the Kronecker delta is δk j = 1 for k = j and zero other-
wise (Kailath et al., 2000).

The matrix Qk is the process covariance matrix and quanti-
fies the uncertainty introduced to equation (3). The matrix Rk

is the measurement covariance and quantifies the uncertainty
introduced to equation (4).

The Kalman filter attempts to attenuate the effect of noise in
the state estimate by minimising the error vector x̃k = xk − x̂k.
From the knowledge of the system and its uncertainty, the error

between the state and its estimate x̃k = xk − x̂k will also have an
expected covariance:

Pkδk j = Ex̃x̃T (6)

The error covariance matrix Pk quantifies the accumulated error
of the state estimation, and is the metric used by the Kalman
filter to minimise the error vector x̃k.

At each sample k, the Kalman filter estimation occurs in two
steps: a prediction stage and a correction stage.1 The prediction
stage computes a predicted state x̂k|k−1 from the system model
equation (3) , previous estimate x̂k−1 = x̂k−1|k−1, and new input
samples uk. The correction stage uses the new output measure-
ment samples yk and the predicted state x̂k|k−1 to compute a cor-
rected state x̂k|k, and this becomes the current state estimate x̂k.
The Kalman filter procedure is as follows:

Prediction stage

x̂k|k−1 = Fx̂k−1|k−1 + Guk (7)
Pk|k−1 = FPk−1|k−1FT + GQkG (8)

Correction stage

ēk = yk −Hx̂k|k−1 (9)
Kk = Pk|k−1HT (HPk|k−1HT + Rk)−1 (10)
x̂k|k = x̂k|k−1 + Kkēk (11)
Pk|k = (I −KkH)Pk|k−1 (12)

Practical implementations of the Kalman filter feature modified
calculations that reduce the number of computations and round-
off errors (Grewal and Andrews, 2008).

The filter computes a gain matrix Kk in the correction stage
that combines the predicted state x̂k|k−1 with output measure-
ments yk in such a way that it minimises the error variance
Pk = Pk|k of the estimate. 2

4.2. Continuous-Discrete Extended Kalman Filters

The Extended Kalman filter (EKF) employs the Kalman fil-
ter to compute a state estimate for non-linear systems by pro-
ducing a linear approximation of the system using a first or-
der Taylor series expansion (Kailath et al., 2000). The receiver
model is numerically stiff and ill-conditioned (Hairer and Wan-
ner, 1999), and a Taylor series approximation yields poor per-
formance for sample times k > 0.1 s, and is incompatible with
the SG4 system sample time of 2 s.

CDEKF algorithms employ sophisticated numerical inte-
grators to propagate the non-linear system equations and an
approximate error covariance matrix between sample times k,

1Double subscripts herein indicate prediction p on the left and correction c
on the right, i.e. xp|c.

2The error variance for the instant k depends on the previous estimate x̂k−1
and not on the actual state xk . Therefore, an adequate initial condition x̂0 is
needed for the success of the estimation.
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thus overcoming the numerical limitations of EKF. The litera-
ture offers a range of CDEKF algorithms, and the main differ-
ence between them is the strategy to numerically propagate the
state vector and approximate error covariance (Frogerais et al.,
2012).

In general terms, the prediction stage of the CDEKF re-
places equations (7) and (8) with

x̂k|k−1 = solve1(tk, x̂k−1|k−1,uk, f(x,u)) (13)
Pk|k−1 = solve2(tk, x̂k−1|k−1,Qk,Pk−1|k−1, g(x,u)) (14)

Where functions solve1 and solve2 are place-holders for the se-
lected numerical algorithms. The filtering scheme procedure in
study selected the numerical integrator and approximate error
covariance propagator proposed by Jorgensen et al. (Jorgensen
et al., 2007) (see section 5.1), due to its numerical stability and
fast computational performance. The functions proposed by
Mazzoni (Mazzoni, 2008) were also trialled in this study; they
exhibited good numerical stability, but exhibited higher compu-
tation times and thus were not employed for the results in the
paper.

The relation between states and outputs is no longer the ma-
trix H but the non-linear function y = g(x,u), the CDEKF al-
gorithm also modifies the Kalman filter correction equation (9)
with:

ēk = yk −Hkx̂k|k−1 where Hk =
∂g
∂x

∣∣∣∣∣∣
x̂k|k−1

(15)

It is possible to solve numerically at each time step k if an ana-
lytical solution is not possible.

5. A modified Extended Kalman Filtering Scheme for the
SG4 receiver

Figure 3: Diagram of the modified Extended Kalman Filter presented in this
study. Solid arrows represent the flow of variables in the active mode and dotted
arrows for inactive modes

This study solves the state estimation problem in section 3
with a modified Extended Kalman Filtering scheme. The filter-
ing scheme combines the SG4 receiver model in (Zapata et al.,
2013) with a set of Continuous - Discrete Extended Kalman

Filters (CDEKF), to compute an estimated receiver state vec-
tor. The filtering scheme can be viewed as an augmented state
estimator composed of three independent CDEKF filters run-
ning concurrently with the model, with one model mode and
corresponding CDEKF filter active at any given time (Fig. 3).
The filtering scheme thus switches between the same modes
as the receiver model, according to the same rules, and tailors
the estimation process accordingly. In addition, the filtering
scheme resets the error covariance matrix at switching for con-
sistency in the error estimation. Each CDEKF filter is tuned
independently to produce the best possible estimation for the
active mode.

This section outlines the filtering scheme procedure, the
strategy to switch and engage different model modes, the con-
siderations to tune the CDEKF filter for each mode, and numer-
ical considerations for the filtering scheme as a whole.

5.1. Filtering scheme procedure

The filtering scheme procedure follows the prediction and
correction stages of the CDEKF, but can switch model modes
and filter parameters in continuous time (i.e. between samples
k) during the prediction stage (step 2(d)). It is this modifica-
tion to the CDEKF procedure that allows the filtering scheme
to cover the entire range of operating conditions represented by
the receiver model. The CDEKF algorithm in (Jorgensen et al.,
2007) propagates the square root of the error covariance ma-
trix, to guard against numerical round-off errors.3 Hence, the
exponent 1/2 herein denotes the matrix square root operator.

The filtering scheme procedure is as follows:

1. Require x̂k−1|k−1, P1/2
k−1|k−1, tk, Q1/2

k , R1/2
k , yk, and receiver

mode.

2. Prediction stage. Start at ∆t = h

(a) Calculate intermediate model predicted state x̂∆t|k−1
with the solve1 function, i.e. the implicit Runge-
Kutta integrator in (Jorgensen et al., 2007)

(b) Calculate intermediate error covariance P1/2
∆t|k−1 us-

ing the solve2 function, i.e. the approximate co-
variance algorithm in (Jorgensen et al., 2007)

(c) Adjust integration step h based on integrator error
convergence

(d) Evaluate switching conditions. If required, switch
model mode and filter (see sec. 5.2)

(e) Increment ∆t = ∆t + h and repeat from 2(a) until
∆t = tk

(f) Return x̂k|k−1 = x̂tk |k−1 and P1/2
k|k−1 = P1/2

tk |k−1

3. Correction stage

(a) Compute approximated model output Hk =
∂g
∂x

∣∣∣∣
x̂k|k−1

(b) Compute measurement error ē = yk −Hkx̂k|k−1

3In particular to preserve its positive semi-definiteness (Kailath et al., 2000).
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(c) Compute filtering gains Kk

(d) Compute corrected estimate x̂k|k and refresh error
covariance matrix P1/2

k|k

4. Repeat for next time step tk+1

5.2. Switching between filters

Switching enables the filtering scheme to fully exploit the
ability of the receiver model to describe different flow patterns
in the receiver tube.

For the filtering scheme, the check for switching conditions
occurs at step 2(d) of the algorithm procedure. During this
step, the switching rules evaluate the intermediate state estimate
x̂∆t|k−1 and its time derivative ˙̂x∆t|k−1 employing the same rules
that trigger switching in the receiver model (see Zapata et al.,
2013).

If the filtering scheme detects when a switching condition
occurs, it proceeds to:

1. Store the intermediate state vector x̂∆t|k−1 in memory

2. Switch receiver model modes

3. Replace CDEKF matrices Qk, Rk and Hk with the corre-
sponding matrices for new the mode

4. Reinitialise the error covariance matrix P∆t|k

5. Resume the prediction stage with the active CDEKF set-
tings and x̂∆t|k−1 as the initial condition

The filtering scheme must substitute the parameters of the
prediction and correction stages of the CDEKF, so that the es-
timation process is consistent with the behaviour of the model.
All filtering scheme parameters (see section 5.4) are tuned from
knowledge of the SG4 system, receiver and filtering scheme
simulations.

Switching also reinitialises the error covariance matrix, to
prevent the filtering process from using information from an
inactive mode, as shown next.

5.3. Reinitialisation of intermediate error covariance matrix at
switching times

The filtering scheme updates the intermediate error covari-
ance matrix P∆t|k−1 at each integration step ∆t of the predic-
tion stage. Model switching affects the filtering scheme because
state variables change meaning between modes, and this poses
a mismatch with the information accrued in the error covariance
matrix.

State variables can either be physical or inactive. Physical
states obey the mass and energy balance equations established
for the active receiver mode. Inactive states pertain the descrip-
tion of an inactive flow region in the receiver model and follow
convenient initialisation values. For each mode in the receiver
model, the set of physical and inactive state variables is:

Mode ‘1’ Physical states: P, hout and Tw1; inactive states L1,
L2, γ̄, Tw2 and Tw3.

Mode ‘1-2’ Physical states: L1, P, hout, γ̄, Tw1 and Tw2; inac-
tive states: L2 and Tw3.

Mode ‘1-2-3’ Physical states L1, L2, P, hout, γ̄, Tw1, Tw2 and
Tw3; inactive states: none.

If the information accrued by the error covariance matrix
about a physical state variable is used to correct an inactive state
variable (or vice versa), the filtering scheme can apply an erro-
neous correction to the state and cause the algorithm to diverge.
For example, early filtering scheme simulations revealed that
when the filtering scheme switches from mode ‘1-2-3’ to ‘1-2’
the information in the covariance matrix caused the correction
stage to incorrectly adjust L2, which caused L1 + L2 > L. When
the model switched back to mode ‘1-2-3’, L3 = L− L1 − L2 < 0
which is physically meaningless and caused the simulation to
diverge.

This study tried two different approaches to deal with the
mismatch between the error covariance matrix and the receiver
mode at switching times: re-initialising the covariance matrix
and keeping three separate covariance matrices, one for each
mode.

Re-initialisation of the covariance matrix consists of over-
writing the covariance matrix a diagonal matrix whose non-zero
elements are arbitrarily small (e.g. ε = 10−3). Initialising the
filter with a small error covariance matrix is a common practice
(Dhaouadi et al., 1991; Plett, 2004; Frogerais et al., 2012, e.g)
and it biases initial estimates towards the predicted state vector
(i.e. a small filter gain Kk).

Maintaining separate error covariance matrices keeps three
matrices in memory i.e. P1

k , P12
k and P123

k . At the start of the
estimation process, the filtering scheme initialises all three ma-
trices as arbitrarily small (see above) and selects the error co-
variance matrix corresponding to the active mode, e.g. P1

k for
mode ‘1’. The filtering scheme updates this covariance ma-
trix until step 2(d) triggers a mode switch. From then on, the
filtering scheme replaces the error covariance matrix with the
corresponding matrix for the new mode (e.g. P12

k for mode ‘1-
2’) but keeps the previous error covariance matrix in memory.
When the observer switches back to a previously used mode, it
uses the stored covariance matrix for that mode and so forth.

Simulations of the filtering scheme showed no difference in
performance between approaches. For simplicity, results in this
study use the first approach of reinitialising the error covariance
matrix as arbitrarily small at switching times.

5.4. Tuning the filtering scheme response
Each filtering scheme mode m uses three matrices to tune

the response of its corresponding filter: a process error covari-
ance matrix Qm

k , a measurement error covariance matrix Rm
k and

an observation matrix Hm
k . The coefficients assigned to each

matrix in each mode influence the computation of the filter gain
Kk, and together these matrices calibrate the filtering scheme
response (see Table 3).

5.4.1. Process error covariance matrix
For each mode m, the process covariance matrix Qm

k assigns
an expected uncertainty to the prediction stage, and the result-
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Table 3: Filtering scheme parameter matrices for all modes
Matrix Value
Q1

k diag {0, 0, 3, 50, 0, 2, 0, 0}

R1
k

(
3 0
0 50

)
H1

k

(
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0

)
Q12

k diag {0.1, 0, 3, 100, 0.01, 2, 2, 0}

R12
k

(
3 0
0 50

)
H12

k

(
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0

)
Q123

k diag {1, 0.5, 3, 150, 0.01, 2, 2, 5}

R123
k

(
3 0
0 50

)
H123

k

(
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

)

ing state vector x̂k|k−1. Three factors condition the expected un-
certainty of the state prediction: the inherently approximated
nature of the receiver model, errors introduced by noisy input
measurements to the model (e.g. DNI or mass flow), and the
meaning (i.e. physical or inactive) of each state in the active
mode m. When the meaning of a state is physical, its expected
uncertainty will reflect how the model uncertainty and input
measurement noise propagates through the receiver model.

When a state is inactive it has zero uncertainty so that the
correction stage of the filtering scheme does not interfere with
the receiver model propagation of inactive states. In both cases,
the expected uncertainty of each state corresponds to a coef-
ficient in the diagonal of matrix Qm

k (in the same order as the
state vector variables in eq. (3)). Non-diagonal coefficients in
matrix Qm

k represent the cross covariance between states, and
are also set to zero in the absence of statistical information
about the system. Table 3 summarises the coefficients for ma-
trix Qm

k employed in this study. These coefficients were chosen
from knowledge of the system and simulation trials. Note, for
example, that diagonal coefficients for the process covariance
matrix Q123

k are all non zero, consistent with all state variables
having a physical meaning in the prediction stage. States that
already had a physical meaning in modes ‘1’ and ‘1-2’ have
greater variances in this mode, as early trials showed that this
enhanced the performance of the filtering scheme. In particular,
this enhanced the filtering scheme ability to reject large spikes
in measurements (see section 6).

5.4.2. Measurement error covariance matrix
The measurement error covariance matrix Rm

k informs the
filtering scheme on the expected uncertainty in output mea-
surements. Output measurement uncertainty comes from noise,
instrument precision and their calibration, which is the same
across all filtering scheme modes.

The diagonal coefficients in measurement covariance matri-
ces Rm

k correspond to the expected uncertainty in “virtual” mea-
surements of average receiver pressure P and outlet enthalpy

Table 4: Numerical integrator parameters for the filtering scheme
Parameter Value
relative tolerance 1 × 10−2

absolute tolerance 1 × 10−4

iteration tolerance 1 × 10−1

hmin simulations 1 × 10−1 s
hmax simulations 2 s
hmin experiments 5 × 10−3 s
hmax experiments 5 × 10−1 s

hout. “Virtual” measurement uncertainties depend on the vari-
ance of real measurements Pin, Pout and Tout (see Table 1).

Average receiver pressure in the receiver model is defined
as P = Pin/2 + Pout/2, thus the variance for its measurement is
σ2

P = σ2
Pin
/2 + σ2

Pout
/2. Outlet enthalpy is a function of mea-

surements Pout and Tout from steam property tables, and the
variance of “virtual” measurement hout is the maximum devi-
ation that propagates through the steam table function, i.e.

σ2
hout

=
[
sup f (Pout ± σPout ,Tout ± σTout )

− inf f (Pout ± σPout ,Tout ± σTout )
]2 (16)

For the SG4 system, σ2
P ≈1 bar2 and σ2

hout
≈ [25, 50] kJ2/kg2,

depending on the combination of pressure and temperature fed
to steam tables. This study assigns conservative variance coef-
ficients, i.e. higher uncertainties to measurements.

5.4.3. Observation matrix
Observation matrices Hm

k map output measurements to state
vector variables, to asses the estimation error. Due to the pre-
processing of real output measurements into “virtual” measure-
ments (see previous section) the observation matrices Hm

k sim-
plify to linear matrices and there is no need to compute a linear
approximation as shown in eq. (15). However, there is an in-
consistency between modes as to which “virtual” measurements
are available to the correction stage.

It is possible to use both pressure and enthalpy measure-
ments when the fluid exits the receiver as single phase. But it
is only possible to use “virtual” measurement P when the fluid
at the outlet is saturated, as there is no steam quality measure-
ment in the SG4 system. Furthermore, early filtering scheme
simulations show that the enthalpy measurement hout prevents
the filter to switch from mode ‘1’ to mode ‘1-2’ as the esti-
mated enthalpy ĥout tends to follow the value of saturated liquid
enthalpy h f . Therefore, this study uses only “virtual” measure-
ments of pressure P for modes ‘1’ and ‘1-2’, and both P and
hout measurements for mode ‘1-2-3’ (see Table 3).

5.5. Tuning the numerical integrator

During the prediction stage, the filtering scheme uses the
ESDIRK34 numerical integrator (Kristensen et al., 2004) to
propagate the solution of the receiver model forward in time.
The numerical integrator performs iterative calculations of the
receiver model and its Jacobian matrix to reach a solution at
each time step, and a variable integration step size h to manage
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the stability and computational cost of the solution. The filter-
ing scheme performance depends on the relative and absolute
tolerances of the iteration loop, the Jacobian matrix calculation
method, and the management of integration step size h. Table 4
shows the parameters employed in this study.

The filtering scheme calculates the Jacobian matrix of the
receiver model numerically, using a pre-conditioned backward
difference method (Brenan et al., 1996). During simulation tri-
als, a forward difference method exhibited numerical instabil-
ity and a central difference scheme showed comparable perfor-
mance to the backward scheme, at additional computation cost.

The filtering scheme manages the integration step size h by
evaluating the error convergence monitor of the ESDIRK34 in-
tegrator. If the error converge monitor reports non-convergence,
the filtering scheme halves h and repeats the integration step. If
h = hmin, the filtering scheme accepts the solution, to prevent
the algorithm from going beyond the numerical precision of the
implementation hardware. An adequately tuned value of hmin

(see table 1) minimises the possibility of solution divergence,
performs with stability over extended periods (see section 5).
When the error convergence monitor reports converges, the fil-
tering scheme increases h by hmin and continues. This basic
integration step size management balances the numerical stabil-
ity and computational cost of the filtering scheme and exhibits
typical time steps of h ≈ 10hmin.4

6. Simulated performance of the filtering scheme

The filtering scheme was implemented in simulations to
evaluate is ability to estimate the state of the SG4 receiver. This
section presents two simulations of the SG4 system. The first
simulation employs the receiver model in (Zapata et al., 2013)
to compute the system state, in order to establish a baseline
performance for the filtering scheme. The second simulation
employs the full filtering scheme to compute the receiver state,
and demonstrates how the correction introduced by the filtering
scheme aids the state estimation. The output of both simula-
tions is shown in Figs. 4 and 5.

6.1. Implementation

The filtering scheme was implemented using GNU Octave,
an open source package with advanced matrix and vector op-
eration capabilities (Eaton, 2001). GNU Octave also features a
C++ application programming interface (API), which enabled
the deployment of the filtering scheme in the experimental SG4
system (see section 7). The receiver model in (Zapata et al.,
2013) was re-implemented in GNU Octave from FORTRAN
without modifications, to constitute the prediction stage of the
filtering scheme. The simulated filtering scheme employs the
XSteam routine (Holmgren, 2007), to calculate water proper-
ties. Simulations read SG4 system measurements and filter pa-
rameters from text files, performed all computations in the fil-
tering scheme procedure (see section 5.1) and wrote state esti-

4The time step management strategy employed in (Kristensen et al., 2004)
was also trialled in this study, but exhibited worse performance in simulations.

Table 5: Parameters for receiver model in filtering scheme
Item Value Item Value
L 212 m U1

1 25 W/(m2 K)
Lmin 1 m U12

1 25 W/(m2 K)
hmin 10 kJ/kg U123

1 25 W/(m2 K)
Di 0.02 m U12

2 11.25 W/(m2 K)
Do 0.026 m U123

2 22.5 W/(m2 K)
cw 460 J/(kg K) U123

3 12.5 W/(m2 K)
ρw 9700 kg/m3 G1

1 0.13
τ 7.07 mN/m2 G12

1 0.14
ε 0.87 G123

1 0.15
τγ̄,τT 35 1/h G12

2 0.12
α1 2500 W/(m2 K) G123

2 0.13
α2 5166 W/(m2 K) G123

3 0.065
α3 860 W/(m2 K)

mations into text data files for analysis. All simulations ran on
a 64-bit personal computer.

6.2. Input data for simulations

An experimental run of the SG4 system provides data for
the simulations in this section. The run occurred on the 22nd of
January 2013 with the original system configuration (see fig 1).
During the experimental run, the SG4 concentrator tracked the
sun while maintaining approximately constant feed-water flow
for approximately 2.5 h. The fluid at the receiver outlet tran-
sitioned from liquid water to superheated steam and produced
steam for approximately 2 h. The steam engine came online at
approximately 0.4 h into the run, causing a sharp increase in
pressures along the line. The experimental run concluded when
cloud cover prevented operation for the remainder of that day.

This data was selected because it includes a start-up tran-
sient in the receiver response as well as a significant measure-
ment error: a short malfunction in the feed-water flow mea-
surement at 2.25 h. The start-up transient allows simulations
to demonstrate how the filtering scheme switches modes, and
the measurement errors demonstrate how the filtering scheme
attenuates noise.

Simulations also require: a set of receiver model parame-
ters, numerical integration parameters, and a set of filter tun-
ing parameters. Receiver model parameters correspond to the
values listed in Table 5 except for concentrator conditions (av-
erage concentrator reflectivity r =80 % and effective aperture
area Ae f f = 470 m2), which vary between runs. The numerical
integrator parameters correspond to values in Table 4 and filter
parameters correspond to values in Table 3.

6.3. Simulation results

Figs. 4(a) and 5(a) show measured DNI for the experimen-
tal run employed in simulations. The signal is zero at times
when the SG4 dish concentrator was not tracking the sun. Mea-
sured DNI exhibits two brief drops at approximately 1.8 h and
2.25 h caused by high altitude wispy clouds, and drastic changes
from approximately 2.3 h caused by the onset of permanent
cloud cover.
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Figure 4: Filtering scheme simulation with model-only prediction and SG4 ex-
perimental data. Measured (–), simulated (- -). Vertical dotted lines indicate
mode switching. (a) DNI. (b) Feed-water and outlet mass flow. (c) Receiver
outlet temperature. (d) Inlet, outlet and average receiver pressure. (e) Cumula-
tive length of fluid regions, with respect to tube length (horizontal dotted line).

Panel (b) in Figs. 4 and 5 show receiver outlet mass flows
computed by the model and the filtering scheme respectively,
alongside measured feed-water mass flow ṁin. The feed-water
mass flow was set to a constant value throughout the run, ex-
cept at the start of the run to protect the receiver from ther-
mal shock. Mass flow measurements exhibit moderate noise
throughout the run and a sharp drop at approximately 2.25 h,
caused by a temporary malfunction in the flow sensor. The out-
let mass flow computed by filtering scheme in Fig. 5(b) differs
from the model estimate during the start-up transient, as the
computed pressure estimate differs between model-only and fil-
tering scheme results.

The temperature estimate generated by the receiver model,
shown in Fig. 4(c), shows good agreement with measured tem-
peratures during the run, but is susceptible to noise in mass flow
and DNI measurements. In comparison, the temperature esti-
mate of the filtering scheme in Fig. 5(c) shows better agreement
than model-only results, including the rejection of a disturbance
caused by a sharp drop in mass flow measurements at approxi-
mately 2.25 h.

Average receiver pressure P as computed by the receiver
model (Fig. 4(d)) shows fair agreement with pressure measure-
ments, except during large pressure transients during the exper-
imental run. A large pressure transient occurs at 0.35 h, when
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Figure 5: Filtering scheme simulation with full scheme prediction/correction
and SG4 experimental data. Measured (–), simulated (- -). Vertical dotted lines
indicate mode switching. (a) DNI. (b) Feed-water and outlet mass flow. (c)
Receiver outlet temperature. (d) Inlet, outlet and average receiver pressure.
(e) Cumulative length of fluid regions, with respect to tube length (horizontal
dotted line).

the SG4 steam system directs steam from the receiver to the
engine instead of the cooling tower. Model simplifications sac-
rifice pressure P agreement during such transients, to preserve
agreement with outlet temperatures (Zapata et al., 2013). On
the other hand, the filtering scheme receiver pressure P̂ esti-
mate (Fig. 5(d)) stays between measurements Pin and Pout at all
times.

Flow regions computed by model-only and filtering scheme
simulations behave similarly (panel (e) of figs. 4 and 5). In both
simulations region lengths vary in length according to mass
inventory changes in the receiver tube, and as modes switch.
The filtering scheme however, switches to mode ‘1-2-3’ ap-
proximately 90 s later and then returns to mode ‘1-2’ approx-
imately 60 s earlier than the model-only simulation. The filter-
ing scheme switching times depend on the trajectory of pres-
sure estimates P̂, which differ from model-only pressure calcu-
lations. Flow region lengths computed by the filtering scheme
are also more sensitive to the mass flow measurement error at
2.25 h. Fig. 6 in page 10 zooms into this transient, to compare
the model-only and filtering scheme responses.
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in model-only (left hand panels) and full filtering scheme (right hand panels)
simulations, with SG4 experimental data. (a) Model-only mass flows. (b) Full
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6.4. Filtering scheme performance during mass flow measure-
ment error

The simulated filtering scheme (Fig. 5) overcomes the er-
ror introduced by uncertainty using the information provided
by “virtual” measurements P and hout. Although the predic-
tion stage of the filtering scheme is susceptible to the same
bias as model-only calculations, the initial condition for each
model prediction is the corrected state x̂k|k, which has been ad-
justed from measurements. Fig. 6 shows model-only and filter-
ing scheme simulations side by side to compare their behaviour
when the mass flow sensor disturbance occurs.

Receiver outlet temperatures are shown in Figs. 6(c) and
6(d). The model-only simulation follows measured tempera-
tures closely, until the disturbance in feed-water flow measure-
ment happens at 2.25 h. The receiver model interprets the drop
in ṁin as an energy and mass balance transient in the absorber
tube, and this results in a spike and subsequent transient in mod-
elled Tout. By contrast, the filtering scheme exhibits a moderate
spike, and the transient is suppressed.

The filtering scheme attenuates the effect of the mass flow
measurement error on the receiver pressure estimate P̂. Fig.
6(e) shows a fluctuation on model-only receiver pressure caused
by the false drop in mass flow. In contrast, Fig. 6(f) shows
how the filtering scheme attenuates the pressure disturbance
and closely follows virtual measurement P = Pin/2 + Pout/2.

The correction stage of the filtering scheme affects all vari-
ables in the state vector, even if they are not related to avail-
able measurements. For example fluid region lengths L1 and
L2, shown in Figs. 8(g) and 8(h). In both model-only and fil-
tering scheme simulations, fluid region lengths show a transient
fluctuation at the time of the mass flow measurement distur-
bance. However, region lengths vary more drastically in the
full filtering scheme than in model-only simulations. The filter-
ing scheme gain Kk applies a correction across all state vector
variables during the mass flow measurement disturbance, intro-
ducing greater variation to region length estimates. This arises
from the trade-off encountered when tuning the filter with the
parameters employed in the simulation.

6.5. Parameter influence on filtering scheme simulations
The performance of the filtering scheme depends on the tun-

ing of all its parameters: model calibration, covariance matrices
Qk and Rk, and numerical integration parameters.

Tuning the filtering scheme depends strongly on the calibra-
tion of the receiver model. It is possible to tune filtering scheme
to run with worse model calibrations, by increasing the magni-
tude of coefficients in process covariance matrices Qk. In effect,
larger coefficients in Qk assign greater uncertainty to input mea-
surements and how they propagate through the receiver model.
But tuning the filtering scheme to deal with greater model un-
certainty leads to an increase in the accumulated error in Pk,
and thus to greater correction to estimates. Large correction es-
timates can cause the filter to diverge, if it leads to a violation of
the physical constraints of the receiver model (e.g. it may make
fluid region lengths violate the condition L1 + L2 + L3 = L).
Therefore, it is best to ensure an adequate model calibration and
then select the smallest coefficients in matrices Qk that provide
an acceptable performance for the filtering scheme (see section
5.4 for details).

The amount of allowable calibration error for each parame-
ter in the receiver model depends on its influence on the model
response. Experience with the SG4 system suggests that the
main source of uncertainty is the current conditions of the con-
centrator surface, characterised by reflectivity r and effective
receiver aperture Ae f f . An increase in average concentrator re-
flectivity r from 84 % to 85 % results in an increase of approx-
imately 4.7 kW in incoming power. The increase changes state
variables by up to 2% while other inputs are maintained con-
stant. Other model parameters (see Table 5) both exert less in-
fluence on the model and tend not to vary, so they may remain
at their initial calibration values.

Measurement covariance matrices Rk account for the uncer-
tainty in “virtual” measurements P and hout and thus depend on
the precision of measurements Pin, Pout and Tout (see section
5.4). Although it is possible to alter the filtering scheme per-
formance by varying the coefficients in matrices Rk, it is rec-
ommended that they only reflect instrument precision to avoid
overcorrection to the state vector estimate.

Filtering scheme simulations are more sensitive to numeri-
cal integration parameters than model-only simulations. In par-
ticular, full scheme simulations require a minimum integration
step hmin = 0.1 s (see Table 4) to perform adequately across
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a range of data sets, whereas model-only simulations produce
good results with hmin = 0.5 s. Filtering scheme simulations
incur additional calculations to propagate the error covariance
matrix Pk, and this increases the chances of numerical insta-
bility caused by round-off errors (Grewal and Andrews, 2008).
This study takes a conservative approach to tune the numerical
parameters of the filtering scheme, preferring numerical stabil-
ity over computational cost.

7. Experimental performance of the filtering scheme in the
SG4 system

The filtering scheme was implemented in the SG4 system
to evaluate its ability to compute a state vector for the SG4 re-
ceiver in real time. Experimental results confirm that the fil-
tering scheme performs as predicted by simulations in the SG4
system.

7.1. Experimental filtering scheme implementation
The experimental filtering scheme employed the same code

as simulations in section 6; modified to exchange data with the
SG4 SCADA system in real time at 2 s intervals during opera-
tion. Experimental filtering scheme parameters were identical
to simulations, except for concentrator conditions and numeri-
cal integration step size. Measurements carried out on the 8th
of October 2013 determined an average concentrator reflectiv-
ity r = (86.2 ± 0.5) % to account for soiling, and an effective
aperture Ae f f = 460 m2 to account for damaged mirror pan-
els. Numerical integration step size bounds hmin and hmax used
in experiments were smaller than simulations, as early runs of
the experimental filtering scheme suffered from numerical in-
stability and/or diverged. Early run data was re-simulated of-
fline, but the simulated filtering scheme did not exhibit numeri-
cal problems. One possibility for this difference is that simula-
tions were compiled and run in a 64-bit processor using Ubuntu
Linux, whereas experimental runs were executed in a Windows
7 personal computer and built using a 32-bit MinGW tool-kit.
Despite this difference, acceptable numerical performance was
attained by the experimental filtering scheme by using smaller
integration step size bounds (see Table 4). The experimental
filtering scheme executes one iteration of the scheme procedure
in section 5.1, in approximately 25 ms.

7.2. Experimental run data
The results in this section, shown in Fig. 7, correspond to

an experimental run of the SG4 system conducted on the 11th
of October 2013, for approximately 4 h. Ambient conditions
consisted of clear skies and ambient temperatures ranging from
15 ◦C to 20 ◦C. The SG4 system configuration was the post July
2013 (Fig. 2), where steam travels through a back-pressure
pipe network instead of driving a reciprocating steam engine.
The back-pressure pipe network maintained receiver pressures
ranging from 3 MPa to 4 MPa, comparable to experimental runs
with the steam engine (c.f. experimental data for Figs. 4 and
5). The SG4 system operated for 30 min before the experimen-
tal run, which preheated the receiver and caused a faster than
typical start-up time.

Fig. 7(a) shows the measured DNI during the experimental
run. A discrete “on-sun” signal modulates DNI measurements
to indicate the moments in the run when the SG4 concentrator
starts and stops tracking the sun.

Feed-water mass flow Fig. 7(b) exhibit high frequency os-
cillations at flows below 350 g/s (i.e. in the first two hours of
the run). The cause of these oscillations is not known, but as
they do not result in receiver outlet temperature variations, it is
conjectured to be a form of sensor/measurement noise.

Initially, a high flow was set to protect the receiver preheat-
ing section while the concentrator moves to track the sun. Sub-
sequently, feed-water flows were changed at incremental steps
by the operator to obtain receiver outlet temperatures of 520 ◦C,
460 ◦C and 400 ◦C during the run. At each steady state, receiver
temperatures exhibited small fluctuations attributed to oscilla-
tions in DNI.

7.3. Experimental filtering scheme results

The filtering scheme produced receiver outlet temperature
estimates that agree well with measurements, in particular when
the receiver outlet is superheated (see Fig. 7(c)). This agree-
ment occurs despite the noise in feed-water flow measurements,
which demonstrates the ability of the filtering scheme to atten-
uate noise in estimates. In mode ‘1-2’ measured and estimated
receiver outlet temperatures do not agree during start-up, but
they do so during cool-down. The start-up transient is exam-
ined in more detail in section 7.3.1.

Receiver pressure estimates behave as predicted by simula-
tions. Fig. 7(d) shows that throughout the entire experimental
run, estimated receiver pressures stayed half way between mea-
surements of inlet and outlet receiver pressure.

Estimated region lengths in Fig. 7(e) reflect the change in
mass inventory in the absorber tube as the filtering scheme tran-
sitions between modes ‘1’, ‘1-2’ and ‘1-2-3’. During the start-
up transient, the filtering scheme estimates the movement of re-
gion boundaries as regions become active and occupy the length
of the absorber tube. Later in the run, the filtering scheme es-
timated subtler changes in region lengths as the SG4 system
operated at different mass flow settings. At the end of the run,
region lengths show the reverse mode transition from mode ‘1-
2-3’ to modes ‘1-2’ and mode ‘1’ at the end of the experimen-
tal run, consistent with the predicted behaviour of the filtering
scheme in simulations.

7.3.1. Experimental filtering scheme performance during the
start-up transient

Receiver outlet temperatures in Fig. 7(c) show that during
the start-up period, the filtering scheme disagrees with temper-
ature measurements while in mode ‘1-2’. Steam at the receiver
outlet reached a superheated condition approximately 5 min af-
ter the SG4 dish started to track the sun for this run.

This start-up time is 3 times faster than typical, and it is
due to a false system start that preheated the receiver before the
experimental run. In the SG4 system, it typically takes approx-
imately 15 min for receiver outlet temperatures to reach super-
heat once the dish starts to track the sun (c.f. data in Fig. 4).
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Figure 7: Experimental results of the filtering scheme, calculated simultaneously with an experimental run on 11th of October 2013. Measured (–), experimental
(– - -). Vertical dotted lines indicate mode switching. (a) DNI. (b) Feed-water and outlet mass flow. (c) Receiver outlet temperature. (d) Inlet, outlet and average
receiver pressure. (e) Cumulative length of fluid regions, respect to tube length (horizontal dotted line).

The filtering scheme prediction did not account for the receiver
preheating and therefore underestimated the rate of increase in
outlet enthalpy during the start-up transient.

The filtering scheme did follow the progression from liq-
uid, to saturated and then to superheated steam at the outlet,
eventually recovering from this mismatch. Once in mode ‘1-
2-3’, the filtering scheme corrected the state estimate thanks to
the additional “virtual” measurement of receiver outlet enthalpy
hout, and showed agreement to less than 0.5 ◦C with outlet re-
ceiver temperatures, even under fast fluctuations in measured
feed-water flow (Fig. 7(b)).

This slow start-up estimation was repeated in simulations
of the filtering scheme, confirming that this phenomenon is a
limitation of the receiver model and not an experimental imple-
mentation issue.

7.3.2. Experimental filtering scheme performance at steady op-
erating periods

Fig. 8 shows the performance of the filtering scheme at
an intermediate period in the experimental run from 2.5 h to
3.5 h. In this portion of the run, the SG4 system responded to
incremental increases in feed-water mass flow and fluctuations
in DNI.

Feed-water mass flows, shown in Fig. 8(b), were changed
in step increments to lower the receiver outlet temperature from

460 ◦C to 400 ◦C, with the largest step increment at approxi-
mately 2.88 h. This mass flow increment also caused a slight in-
crease in system pressures, as shown in Fig. 8(d). DNI, shown
in Fig. 8(a), remained at approximately (1030 ± 5) W/m2 and
oscillated with a period of approximately 7 min. The SG4 dish
concentrator converted the DNI oscillation into concentrator
power fluctuations of approximately ±2 kW.

The experimental filtering scheme responded to these fluc-
tuations and maintained close agreement with measurements.
Measured and estimated temperatures in Fig. 8(c) agree to
less than 0.5 ◦C and the filtering scheme reproduces both tran-
sient and oscillatory fluctuations in temperature. The estimated
receiver pressure P̂ in Fig. 8(d) tracks pressure fluctuations
caused by both DNI oscillation and step increases in mass flow.

Estimated flow region lengths respond to changes in mass
flow and oscillations in DNI. Fig. 8(e) shows that the length of
the estimated saturation region L̂2 grew after the step increase in
feed-water flow. At higher flows, the fluid obtains less heat per
unit mass from the absorber tube and thus travels further along
the tube length to reach superheated conditions. Additionally,
both region boundaries exhibit small oscillations due to the in-
fluence of DNI fluctuation on the energy and mass balances in
the absorber tube.
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Figure 8: Experimental results of the filtering scheme, calculated simultane-
ously with an experimental run on 11th of October 2013; intermediate operation
period. Measured (–), experimental (– - -). Vertical dotted lines indicate mode
switching. (a) DNI. (b) Feed-water and outlet mass flow. (c) Receiver outlet
temperature. (d) Inlet, outlet and average receiver pressure. (e) Cumulative
length of fluid regions, respect to tube length (horizontal dotted line).

8. Conclusion

The filtering scheme proposed in this paper combines the
state-space description of the SG4 receiver in (Zapata et al.,
2013) with the estimation ability of Continuous-Discrete Ex-
tended Kalman Filtering, to provide a robust estimation of the
mono-tube cavity receiver state vector. The filtering scheme
handles the switched nature of the receiver model and the incon-
sistency of available output measurements to correct the state
vector estimate. The scheme runs three separate CDEKF fil-
ters and switches between them depending on the trajectory
of state estimates. Each filter possesses its own set of tuning
parameters, and it is tailored to work with the active receiver
mode and corresponding available measurements. The com-
puted state vector estimate describes the internal state of the
SG4 receiver, with tolerance to uncertainty in both the receiver
model and measurements.

Simulations in section 6 showed that the filtering scheme
improves the model-only estimation of the receiver state vector
thanks to the corrective action of available measurements. In
particular, estimated receiver outlet temperatures in mode ‘1-2-
3’ show very good agreement with measurements when com-
pared with model-only estimates. The filtering scheme uses
measurements of receiver pressures Pin, Pout and outlet temper-

ature Tout to correct the estimate of average receiver pressure P̂
and receiver outlet enthalpy ĥout.

Simulations also revealed that the filtering scheme has a
limited ability to correct for model uncertainty, and it benefits
from adequate parameter tuning. Adequate parameter calibra-
tion can easily be established by obtaining good agreement be-
tween model-only simulations and experimental measurements.
Out of all receiver model parameters, average reflectivity r and
effective aperture area Ae f f are both the most likely parameters
to vary, and the ones with the largest influence over the receiver
model.

Experimental results show the successful implementation of
the filtering scheme in the SG4 steam generation system. The
filtering scheme ran concurrently with the operation of the SG4
system, obtained measurements from the SCADA and com-
puted state estimates at regular intervals. Numerical stability
issues with initial trials in the experimental scheme can be man-
aged by reducing the numerical integration step size and tuning
the software compilation process.

The estimates produced by the filtering scheme proposed in
this study are suitable for the development modern state-space
based control schemes to regulate the temperature at the outlet
of the SG4 receiver.

9. Acknowledgements

The author wishes to acknowledge the insightful comments
provided by Dr. Jochen Trumpf to develop the theoretical part
of this study, and the assistance of Mr. Greg Burgess for experi-
mental development and testing. This work has been supported
by the Australian Renewable Energy Agency (ARENA).

13



References

Åstrom, K.J., Murray, R.M., 2008. Feedback Systems. Princeto University
Press.

Brenan, K., Campbell, S.L., Petzold, L., 1996. Numerical Solution of Initial-
Value Problems in Differential-Algebraic Equations. second ed., SIAM,
Philadelphia.

Camacho, E., Berenguel, M., Rubio, F., Martinez, D., 2012. Control of Solar
Energy Systems. Springer.

Dhaouadi, R., Mohan, N., Norum, L., 1991. Design and implementation of
an extended Kalman filter for the state estimation of a permanent magnet
synchronous motor. Power Electronics, IEEE Transactions on 6, 491–497.
doi:10.1109/63.85891.

Eaton, J.W., 2001. Octave: Past, present, and future, in: DSC 2001 Proceedings
of the 2nd International Workshop on Distributed Statistical Computing.

Franklin, G.F., Powell, J.D., Emami-Naeini, A., 2010. Feedback Control of
Dynamics Systems. 6th ed., Upper Saddle River [N.J.]: Pearson.

Frogerais, P., Bellanger, J.J., Senhadji, L., 2012. Various ways to compute
the continuous-discrete extended Kalman filter. Automatic Control, IEEE
Transactions on 57, 1000 –1004. doi:10.1109/TAC.2011.2168129.

Gallego, A., Camacho, E., 2012a. Adaptative state-space model predictive con-
trol of a parabolic-trough field. Control Engineering Practice 20, 904 – 911.
doi:10.1016/j.conengprac.2012.05.010.

Gallego, A., Camacho, E., 2012b. Estimation of effective solar irradiation using
an unscented Kalman filter in a parabolic-trough field. Solar Energy 86,
3512 – 3518. doi:10.1016/j.solener.2011.11.012.

Grewal, M., Andrews, A., 2008. Kalman Filtering: Theory and Practice using
MATLAB. Wiley-IEEE Press.

Hairer, E., Wanner, G., 1999. Stiff differential equations solved by Radau meth-
ods. Journal of Computational and Applied Mathematics 111, 93 – 111.
doi:http://dx.doi.org/10.1016/S0377-0427(99)00134-X.

Holmgren, M., 2007. Freeware IF97 properties for water and steam. www.

x-eng.com. Accessed June 2009.
Jonsson, G.R., Lalot, S., Palsson, O.P., Desmet, B., 2007. Use of extended

Kalman filtering in detecting fouling in heat exchangers. International
Journal of Heat and Mass Transfer 50, 2643 – 2655. doi:10.1016/j.
ijheatmasstransfer.2006.11.025.

Jorgensen, J., Thomsen, P., Madsen, H., Kristensen, M., 2007. A computation-
ally efficient and robust implementation of the continuous-discrete extended
Kalman filter, in: American Control Conference, 2007. ACC ’07, pp. 3706
–3712. doi:10.1109/ACC.2007.4282549.

Julier, S.J., Uhlmann, J.K., 1997. New extension of the Kalman filter to non-
linear systems, in: AeroSense’97, International Society for Optics and Pho-
tonics. pp. 182–193.

Kailath, T., Sayed, A.H., Hassibi, B., 2000. Linear Estimation. Prentice Hall
New Jersey.

Kalman, R.E., 1960. A new approach to linear filtering and prediction prob-
lems. Transactions of the ASME–Journal of Basic Engineering 82, 35–45.

Kristensen, M.R., Jørgensen, J.B., Thomsen, P.G., Jørgensen, S.B., 2004. An
esdirk method with sensitivity analysis capabilities. Computers & Chemical
Engineering 28, 2695 – 2707. doi:10.1016/j.compchemeng.2004.08.
004.

LeBreux, M., Désilets, M., Lacroix, M., 2013. An unscented Kalman filter
inverse heat transfer method for the prediction of the ledge thickness inside
high-temperature metallurgical reactors. International Journal of Heat and
Mass Transfer 57, 265 – 273. doi:10.1016/j.ijheatmasstransfer.
2012.10.036.

Lovegrove, K., Burgess, G., Pye, J., 2011. A new 500 m2 paraboloidal dish
solar concentrator. Solar Energy 85, 620 – 626. doi:DOI:10.1016/j.
solener.2010.01.009.

Mazzoni, T., 2008. Computational aspects of continuous–discrete extended
Kalman-filtering. Computational Statistics 23, 519–539. doi:10.1007/
s00180-007-0094-4.

Plett, G.L., 2004. Extended Kalman filtering for battery management sys-
tems of LiPb-based HEV battery packs: Part 1. background. Journal of
Power Sources 134, 252 – 261. doi:http://dx.doi.org/10.1016/j.
jpowsour.2004.02.031.

Rawlings, J.B., Mayne, D.Q., 2009. Model predictive control: Theory and
design. Nob Hill Publishing.

Schlipf, D., Hanel, L., Maier, H., 2012. Model based controller design for a
steam drum in linear fresnel CSP-plant using direct evaporation, in: Pro-
ceedings of the 18th SolarPACES Conference, Marrakech, Morocco.

Zapata, J., 2014. A modified extended Kalman filter to estimate the state of
the SG4 receiver at the Australian National University, in: Proceedings of
the 52nd Annual Conference of the Australian Solar Council, Melbourne,
Australia.

Zapata, J., 2015. Full state feedback control of steam temperature in a once-
thorough direct steam generation receiver powered by a paraboloidal dish.
Journal of Solar Energy Engineering 137, 0210171–10.

Zapata, J.I., Pye, J., Lovegrove, K., 2013. A transient model for the heat ex-
change in a solar thermal once through cavity receiver. Solar Energy 93, 280
– 293. doi:10.1016/j.solener.2013.04.005.

14


