1,591 research outputs found

    Coherent ONU based on 850 µm-long cavity-RSOA for next-generation ultra-dense access network

    Get PDF
    In this Letter, an efficient bidirectional differential phase-shift keying (DPSK)-DPSK transmission for a ultradense wavelength division-multiplexed passive optical network is proposed. A single distributed feedback laser at the optical network unit (ONU) is used both as the local laser for downlink coherent detection and the optical carrier for uplink. Phase-shift keying is generated using a low-cost reflective semiconductor optical amplifier (RSOA) at the ONU. The RSOA chip has the bandwidth of 4.7 GHz at the maximum input power and bias current. For uplink transmission, the sensitivity of the RSOA chip reaches -48.2 dBm at the level of bit error rate = 10(-3) for back-to-back, and the penalty for 50 km transmission is less than 1 dB when using polarization diversity.Peer ReviewedPostprint (published version

    High performance FORTRAN without templates: An alternative model for distribution and alignment

    Get PDF
    Language extensions of FORTRAN are being developed which permit the user to map data structures to the individual processors of distributed memory machines. These languages allow a programming style in which global data references are used. Current efforts are focussed on designing a common basis for such languages, the result of which is known as High Performance Fortran (HPF). One of the central debates in the HPF effort revolves around the concept of templates, introduced as an abstract index space to which data could be aligned. A model for the mapping of data which provides the functionality of High Performance Fortran distributions without the use of templates is presented

    Introducing Molly: Distributed Memory Parallelization with LLVM

    Get PDF
    Programming for distributed memory machines has always been a tedious task, but necessary because compilers have not been sufficiently able to optimize for such machines themselves. Molly is an extension to the LLVM compiler toolchain that is able to distribute and reorganize workload and data if the program is organized in statically determined loop control-flows. These are represented as polyhedral integer-point sets that allow program transformations applied on them. Memory distribution and layout can be declared by the programmer as needed and the necessary asynchronous MPI communication is generated automatically. The primary motivation is to run Lattice QCD simulations on IBM Blue Gene/Q supercomputers, but since the implementation is not yet completed, this paper shows the capabilities on Conway's Game of Life

    Energy efficiency of mmWave massive MIMO precoding with low-resolution DACs

    Full text link
    With the congestion of the sub-6 GHz spectrum, the interest in massive multiple-input multiple-output (MIMO) systems operating on millimeter wave spectrum grows. In order to reduce the power consumption of such massive MIMO systems, hybrid analog/digital transceivers and application of low-resolution digital-to-analog/analog-to-digital converters have been recently proposed. In this work, we investigate the energy efficiency of quantized hybrid transmitters equipped with a fully/partially-connected phase-shifting network composed of active/passive phase-shifters and compare it to that of quantized digital precoders. We introduce a quantized single-user MIMO system model based on an additive quantization noise approximation considering realistic power consumption and loss models to evaluate the spectral and energy efficiencies of the transmit precoding methods. Simulation results show that partially-connected hybrid precoders can be more energy-efficient compared to digital precoders, while fully-connected hybrid precoders exhibit poor energy efficiency in general. Also, the topology of phase-shifting components offers an energy-spectral efficiency trade-off: active phase-shifters provide higher data rates, while passive phase-shifters maintain better energy efficiency.Comment: Published in IEEE Journal of Selected Topics in Signal Processin

    Assessment of algorithms for mitosis detection in breast cancer histopathology images

    Get PDF
    The proliferative activity of breast tumors, which is routinely estimated by counting of mitotic figures in hematoxylin and eosin stained histology sections, is considered to be one of the most important prognostic markers. However, mitosis counting is laborious, subjective and may suffer from low inter-observer agreement. With the wider acceptance of whole slide images in pathology labs, automatic image analysis has been proposed as a potential solution for these issues. In this paper, the results from the Assessment of Mitosis Detection Algorithms 2013 (AMIDA13) challenge are described. The challenge was based on a data set consisting of 12 training and 11 testing subjects, with more than one thousand annotated mitotic figures by multiple observers. Short descriptions and results from the evaluation of eleven methods are presented. The top performing method has an error rate that is comparable to the inter-observer agreement among pathologists
    corecore