20,957 research outputs found

    Gait analysis methods in rehabilitation

    Get PDF
    Introduction: Brand's four reasons for clinical tests and his analysis of the characteristics of valid biomechanical tests for use in orthopaedics are taken as a basis for determining what methodologies are required for gait analysis in a clinical rehabilitation context. Measurement methods in clinical gait analysis: The state of the art of optical systems capable of measuring the positions of retro-reflective markers placed on the skin is sufficiently advanced that they are probably no longer a significant source of error in clinical gait analysis. Determining the anthropometry of the subject and compensating for soft tissue movement in relation to the under-lying bones are now the principal problems. Techniques for using functional tests to determine joint centres and axes of rotation are starting to be used successfully. Probably the last great challenge for optical systems is in using computational techniques to compensate for soft tissue measurements. In the long term future it is possible that direct imaging of bones and joints in three dimensions (using MRI or fluoroscopy) may replace marker based systems. Methods for interpreting gait analysis data: There is still not an accepted general theory of why we walk the way we do. In the absence of this, many explanations of walking address the mechanisms by which specific movements are achieved by particular muscles. A whole new methodology is developing to determine the functions of individual muscles. This needs further development and validation. A particular requirement is for subject specific models incorporating 3-dimensional imaging data of the musculo-skeletal anatomy with kinematic and kinetic data. Methods for understanding the effects of intervention: Clinical gait analysis is extremely limited if it does not allow clinicians to choose between alternative possible interventions or to predict outcomes. This can be achieved either by rigorously planned clinical trials or using theoretical models. The evidence base is generally poor partly because of the limited number of prospective clinical trials that have been completed and more such studies are essential. Very recent work has started to show the potential of using models of the mechanisms by which people with pathology walk in order to simulate different potential interventions. The development of these models offers considerable promise for new clinical applications of gait analysis

    Intelligent systems in manufacturing: current developments and future prospects

    Get PDF
    Global competition and rapidly changing customer requirements are demanding increasing changes in manufacturing environments. Enterprises are required to constantly redesign their products and continuously reconfigure their manufacturing systems. Traditional approaches to manufacturing systems do not fully satisfy this new situation. Many authors have proposed that artificial intelligence will bring the flexibility and efficiency needed by manufacturing systems. This paper is a review of artificial intelligence techniques used in manufacturing systems. The paper first defines the components of a simplified intelligent manufacturing systems (IMS), the different Artificial Intelligence (AI) techniques to be considered and then shows how these AI techniques are used for the components of IMS

    Ancient and historical systems

    Get PDF

    Principles in Patterns (PiP) : Project Evaluation Synthesis

    Get PDF
    Evaluation activity found the technology-supported approach to curriculum design and approval developed by PiP to demonstrate high levels of user acceptance, promote improvements to the quality of curriculum designs, render more transparent and efficient aspects of the curriculum approval and quality monitoring process, demonstrate process efficacy and resolve a number of chronic information management difficulties which pervaded the previous state. The creation of a central repository of curriculum designs as the basis for their management as "knowledge assets", thus facilitating re-use and sharing of designs and exposure of tacit curriculum design practice, was also found to be highly advantageous. However, further process improvements remain possible and evidence of system resistance was found in some stakeholder groups. Recommendations arising from the findings and conclusions include the need to improve data collection surrounding the curriculum approval process so that the process and human impact of C-CAP can be monitored and observed. Strategies for improving C-CAP acceptance among the "late majority", the need for C-CAP best practice guidance, and suggested protocols on the knowledge management of curriculum designs are proposed. Opportunities for further process improvements in institutional curriculum approval, including a re-engineering of post-faculty approval processes, are also recommended

    Bi-directional coordination of plug-in electric vehicles with economic model predictive control

    Get PDF
    © 2017 by the authors. Licensee MDPI, Basel, Switzerland. The emergence of plug-in electric vehicles (PEVs) is unveiling new opportunities to de-carbonise the vehicle parcs and promote sustainability in different parts of the globe. As battery technologies and PEV efficiency continue to improve, the use of electric cars as distributed energy resources is fast becoming a reality. While the distribution network operators (DNOs) strive to ensure grid balancing and reliability, the PEV owners primarily aim at maximising their economic benefits. However, given that the PEV batteries have limited capacities and the distribution network is constrained, smart techniques are required to coordinate the charging/discharging of the PEVs. Using the economic model predictive control (EMPC) technique, this paper proposes a decentralised optimisation algorithm for PEVs during the grid-To-vehicle (G2V) and vehicle-To-grid (V2G) operations. To capture the operational dynamics of the batteries, it considers the state-of-charge (SoC) at a given time as a discrete state space and investigates PEVs performance in V2G and G2V operations. In particular, this study exploits the variability in the energy tariff across different periods of the day to schedule V2G/G2V cycles using real data from the university's PEV infrastructure. The results show that by charging/discharging the vehicles during optimal time partitions, prosumers can take advantage of the price elasticity of supply to achieve net savings of about 63%

    A review of key planning and scheduling in the rail industry in Europe and UK

    Get PDF
    Planning and scheduling activities within the rail industry have benefited from developments in computer-based simulation and modelling techniques over the last 25 years. Increasingly, the use of computational intelligence in such tasks is featuring more heavily in research publications. This paper examines a number of common rail-based planning and scheduling activities and how they benefit from five broad technology approaches. Summary tables of papers are provided relating to rail planning and scheduling activities and to the use of expert and decision systems in the rail industry.EPSR

    Implementing total productive maintenance in Nigerian manufacturing industries

    Get PDF
    Remarkable improvements have occurred recently in the maintenance management of physical assets and productive systems, so that less wastages of energy and resources occur. The requirement for optimal preventive maintenance using, for instance, justin-time (JIT) and total quality-management (TQM) techniques has given rise to whathas been called the total productive-maintenance (TPM) approach. This study explores the ways in which Nigerian manufacturing industries can implement TPM as a strategy and culture for improving its performance and suggests self-auditing and bench-marking as desirable prerequisites before TPM implementation

    A Plant Life Management Model Including Optimized MS&I Program - Safety and Economic Issues

    Get PDF
    This report collects the experience of the European Countries in the field of Plant Life Management (PLIM) and maintenance optimisation, as a background for the development of a new PLIM models, suitable for the European framework. The research highlights the the basic goal of PLiM in terms of support to a safe long-term supply of electricity in an economically competitive way. A PLIM model is proposed, validated with the experience of the SENUF research network members and with the essential contribution of managers and staff of a selected nuclear plant. The model addresses both technical and economic issues, as well as organizational and knowledge management issues and is now open for a broader validation by the research and engineering communities, to be carried out in the coming research steps.JRC.F.5-Nuclear operation safet
    corecore