58 research outputs found

    A Research Platform for Artificial Neural Networks with Applications in Pediatric Epilepsy

    Get PDF
    This dissertation established a state-of-the-art programming tool for designing and training artificial neural networks (ANNs) and showed its applicability to brain research. The developed tool, called NeuralStudio, allows users without programming skills to conduct studies based on ANNs in a powerful and very user friendly interface. A series of unique features has been implemented in NeuralStudio, such as ROC analysis, cross-validation, network averaging, topology optimization, and optimization of the activation function’s slopes. It also included a Support Vector Machines module for comparison purposes. Once the tool was fully developed, it was applied to two studies in brain research. In the first study, the goal was to create and train an ANN to detect epileptic seizures from subdural EEG. This analysis involved extracting features from the spectral power in the gamma frequencies. In the second application, a unique method was devised to link EEG recordings to epileptic and non-epileptic subjects. The contribution of this method consisted of developing a descriptor matrix that can be used to represent any EEG file regarding its duration and the number of electrodes. The first study showed that the inter-electrode mean of the spectral power in the gamma frequencies and its duration above a specific threshold performs better than the other frequencies in seizure detection, exhibiting an accuracy of 95.90%, a sensitivity of 92.59%, and a specificity of 96.84%. The second study yielded that Hjorth’s parameter activity is sufficient to accurately relate EEG to epileptic and non-epileptic subjects. After testing, accuracy, sensitivity and specificity of the classifier were all above 0.9667. Statistical tests measured the superiority of activity at over 99.99 % certainty. It was demonstrated that 1) the spectral power in the gamma frequencies is highly effective in locating seizures from EEG and 2) activity can be used to link EEG recordings to epileptic and non-epileptic subjects. These two studies required high computational load and could be addressed thanks to NeuralStudio. From a medical perspective, both methods proved the merits of NeuralStudio in brain research applications. For its outstanding features, NeuralStudio has been recently awarded a patent (US patent No. 7502763)

    Connectivity Analysis of Electroencephalograms in Epilepsy

    Get PDF
    This dissertation introduces a novel approach at gauging patterns of informa- tion flow using brain connectivity analysis and partial directed coherence (PDC) in epilepsy. The main objective of this dissertation is to assess the key characteristics that delineate neural activities obtained from patients with epilepsy, considering both focal and generalized seizures. The use of PDC analysis is noteworthy as it es- timates the intensity and direction of propagation from neural activities generated in the cerebral cortex, and it ascertains the coefficients as weighted measures in formulating the multivariate autoregressive model (MVAR). The PDC is used here as a feature extraction method for recorded scalp electroencephalograms (EEG) as means to examine the interictal epileptiform discharges (IEDs) and reflect the phys- iological changes of brain activity during interictal periods. Two experiments were set up to investigate the epileptic data by using the PDC concept. For the investigation of IEDs data (interictal spike (IS), spike and slow wave com- plex (SSC), and repetitive spikes and slow wave complex (RSS)), the PDC analysis estimates the intensity and direction of propagation from neural activities gener- ated in the cerebral cortex, and analyzes the coefficients obtained from employing MVAR. Features extracted by using PDC were transformed into adjacency matrices using surrogate data analysis and were classified by using the multilayer Perceptron (MLP) neural network. The classification results yielded a high accuracy and pre- cision number. The second experiment introduces the investigation of intensity (or strength) of information flow. The inflow activity deemed significant and flowing from other regions into a specific region together with the outflow activity emanating from one region and spreading into other regions were calculated based on the PDC results and were quantified by the defined regions of interest. Three groups were considered for this study, the control population, patients with focal epilepsy, and patients with generalized epilepsy. A significant difference in inflow and outflow validated by the nonparametric Kruskal-Wallis test was observed for these groups. By taking advantage of directionality of brain connectivity and by extracting the intensity of information flow, specific patterns in different brain regions of interest between each data group can be revealed. This is rather important as researchers could then associate such patterns in context to the 3D source localization where seizures are thought to emanate in focal epilepsy. This research endeavor, given its generalized construct, can extend for the study of other neurological and neurode- generative disorders such as Parkinson, depression, Alzheimers disease, and mental illness

    A machine learning system for automated whole-brain seizure detection

    Get PDF
    Epilepsy is a chronic neurological condition that affects approximately 70 million people worldwide. Characterised by sudden bursts of excess electricity in the brain, manifesting as seizures, epilepsy is still not well understood when compared with other neurological disorders. Seizures often happen unexpectedly and attempting to predict them has been a research topic for the last 30 years. Electroencephalograms have been integral to these studies, as the recordings that they produce can capture the brain’s electrical signals. The diagnosis of epilepsy is usually made by a neurologist, but can be difficult to make in the early stages. Supporting para-clinical evidence obtained from magnetic resonance imaging and electroencephalography may enable clinicians to make a diagnosis of epilepsy and instigate treatment earlier. However, electroencephalogram capture and interpretation is time consuming and can be expensive due to the need for trained specialists to perform the interpretation. Automated detection of correlates of seizure activity generalised across different regions of the brain and across multiple subjects may be a solution. This paper explores this idea further and presents a supervised machine learning approach that classifies seizure and non-seizure records using an open dataset containing 342 records (171 seizures and 171 non-seizures). Our approach posits a new method for generalising seizure detection across different subjects without prior knowledge about the focal point of seizures. Our results show an improvement on existing studies with 88% for sensitivity, 88% for specificity and 93% for the area under the curve, with a 12% global error, using the k-NN classifier

    Artificial immune system and particle swarm optimization for electroencephalogram based epileptic seizure classification

    Get PDF
    Automated analysis of brain activity from electroencephalogram (EEG) has indispensable applications in many fields such as epilepsy research. This research has studied the abilities of negative selection and clonal selection in artificial immune system (AIS) and particle swarm optimization (PSO) to produce different reliable and efficient methods for EEG-based epileptic seizure recognition which have not yet been explored. Initially, an optimization-based classification model was proposed to describe an individual use of clonal selection and PSO to build nearest centroid classifier for EEG signals. Next, two hybrid optimization-based negative selection models were developed to investigate the integration of the AIS-based techniques and negative selection with PSO from the perspective of classification and detection. In these models, a set of detectors was created by negative selection as self-tolerant and their quality was improved towards non-self using clonal selection or PSO. The models included a mechanism to maintain the diversity and generality among the detectors. The detectors were produced in the classification model for each class, while the detection model generated the detectors only for the abnormal class. These hybrid models differ from each other in hybridization configuration, solution representation and objective function. The three proposed models were abstracted into innovative methods by applying clonal selection and PSO for optimization, namely clonal selection classification algorithm (CSCA), particle swarm classification algorithm (PSCA), clonal negative selection classification algorithm (CNSCA), swarm negative selection classification algorithm (SNSCA), clonal negative selection detection algorithm (CNSDA) and swarm negative selection detection algorithm (SNSDA). These methods were evaluated on EEG data using common measures in medical diagnosis. The findings demonstrated that the methods can efficiently achieve a reliable recognition of epileptic activity in EEG signals. Although CNSCA gave the best performance, CNSDA and SNSDA are preferred due to their efficiency in time and space. A comparison with other methods in the literature showed the competitiveness of the proposed methods

    Integrated Machine Learning Approaches to Improve Classification performance and Feature Extraction Process for EEG Dataset

    Get PDF
    Epileptic seizure or epilepsy is a chronic neurological disorder that occurs due to brain neurons\u27 abnormal activities and has affected approximately 50 million people worldwide. Epilepsy can affect patients’ health and lead to life-threatening emergencies. Early detection of epilepsy is highly effective in avoiding seizures by intervening in treatment. The electroencephalogram (EEG) signal, which contains valuable information of electrical activity in the brain, is a standard neuroimaging tool used by clinicians to monitor and diagnose epilepsy. Visually inspecting the EEG signal is an expensive, tedious, and error-prone practice. Moreover, the result varies with different neurophysiologists for an identical reading. Thus, automatically classifying epilepsy into different epileptic states with a high accuracy rate is an urgent requirement and has long been investigated. This PhD thesis contributes to the epileptic seizure detection problem using Machine Learning (ML) techniques. Machine learning algorithms have been implemented to automatically classifying epilepsy from EEG data. Imbalance class distribution problems and effective feature extraction from the EEG signals are the two major concerns towards effectively and efficiently applying machine learning algorithms for epilepsy classification. The algorithms exhibit biased results towards the majority class when classes are imbalanced, while effective feature extraction can improve classification performance. In this thesis, we presented three different novel frameworks to effectively classify epileptic states while addressing the above issues. Firstly, a deep neural network-based framework exploring different sampling techniques was proposed where both traditional and state-of-the-art sampling techniques were experimented with and evaluated for their capability of improving the imbalance ratio and classification performance. Secondly, a novel integrated machine learning-based framework was proposed to effectively learn from EEG imbalanced data leveraging the Principal Component Analysis method to extract high- and low-variant principal components, which are empirically customized for the imbalanced data classification. This study showed that principal components associated with low variances can capture implicit patterns of the minority class of a dataset. Next, we proposed a novel framework to effectively classify epilepsy leveraging summary statistics analysis of window-based features of EEG signals. The framework first denoised the signals using power spectrum density analysis and replaced outliers with k-NN imputer. Next, window level features were extracted from statistical, temporal, and spectral domains. Basic summary statistics are then computed from the extracted features to feed into different machine learning classifiers. An optimal set of features are selected leveraging variance thresholding and dropping correlated features before feeding the features for classification. Finally, we applied traditional machine learning classifiers such as Support Vector Machine, Decision Tree, Random Forest, and k-Nearest Neighbors along with Deep Neural Networks to classify epilepsy. We experimented the frameworks with a benchmark dataset through rigorous experimental settings and displayed the effectiveness of the proposed frameworks in terms of accuracy, precision, recall, and F-beta score

    Deep Cellular Recurrent Neural Architecture for Efficient Multidimensional Time-Series Data Processing

    Get PDF
    Efficient processing of time series data is a fundamental yet challenging problem in pattern recognition. Though recent developments in machine learning and deep learning have enabled remarkable improvements in processing large scale datasets in many application domains, most are designed and regulated to handle inputs that are static in time. Many real-world data, such as in biomedical, surveillance and security, financial, manufacturing and engineering applications, are rarely static in time, and demand models able to recognize patterns in both space and time. Current machine learning (ML) and deep learning (DL) models adapted for time series processing tend to grow in complexity and size to accommodate the additional dimensionality of time. Specifically, the biologically inspired learning based models known as artificial neural networks that have shown extraordinary success in pattern recognition, tend to grow prohibitively large and cumbersome in the presence of large scale multi-dimensional time series biomedical data such as EEG. Consequently, this work aims to develop representative ML and DL models for robust and efficient large scale time series processing. First, we design a novel ML pipeline with efficient feature engineering to process a large scale multi-channel scalp EEG dataset for automated detection of epileptic seizures. With the use of a sophisticated yet computationally efficient time-frequency analysis technique known as harmonic wavelet packet transform and an efficient self-similarity computation based on fractal dimension, we achieve state-of-the-art performance for automated seizure detection in EEG data. Subsequently, we investigate the development of a novel efficient deep recurrent learning model for large scale time series processing. For this, we first study the functionality and training of a biologically inspired neural network architecture known as cellular simultaneous recurrent neural network (CSRN). We obtain a generalization of this network for multiple topological image processing tasks and investigate the learning efficacy of the complex cellular architecture using several state-of-the-art training methods. Finally, we develop a novel deep cellular recurrent neural network (CDRNN) architecture based on the biologically inspired distributed processing used in CSRN for processing time series data. The proposed DCRNN leverages the cellular recurrent architecture to promote extensive weight sharing and efficient, individualized, synchronous processing of multi-source time series data. Experiments on a large scale multi-channel scalp EEG, and a machine fault detection dataset show that the proposed DCRNN offers state-of-the-art recognition performance while using substantially fewer trainable recurrent units
    • …
    corecore