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 Abstract 

Epileptic seizure or epilepsy is a chronic neurological disorder that occurs due to brain 

neurons' abnormal activities and has affected approximately 50 million people worldwide. 

Epilepsy can affect patients’ health and lead to life-threatening emergencies. Early detection of 

epilepsy is highly effective in avoiding seizures by intervening treatment. The 

electroencephalogram (EEG) signal, which contains valuable information of electrical activity in 

the brain, is a standard neuroimaging tool used by clinicians to monitor and diagnose epilepsy. 

Visually inspecting the EEG signal is an expensive, tedious, and error-prone practice. Moreover, 

the result varies with different neurophysiologists for an identical reading. Thus, automatically 

classifying epilepsy into different epileptic states with a high accuracy rate is an urgent requirement 

and has long been investigated. This PhD thesis contributes to the epileptic seizure detection 

problem using Machine Learning (ML) techniques. 

  Machine learning algorithms have been implemented to automatically classifying epilepsy 

from EEG data. Imbalance class distribution problems and effective feature extraction from the 

EEG signals are the two major concerns towards effectively and efficiently applying machine 

learning algorithms for epilepsy classification. The algorithms exhibit biased results towards the 

majority class when classes are imbalanced, while effective feature extraction can improve 

classification performance.   

In this thesis, we presented three different novel frameworks to effectively classify 

epileptic states while addressing the above issues.  Firstly, a deep neural network-based framework 

exploring different sampling techniques was proposed where both traditional and state-of-the-art 

sampling techniques were experimented with and evaluated for their capability of improving the 
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imbalance ratio and classification performance. Secondly, a novel integrated machine learning-

based framework was proposed to effectively learn from EEG imbalanced data leveraging the 

Principal Component Analysis method to extract high- and low-variant principal components, 

which are empirically customized for the imbalanced data classification. This study showed that 

principal components associated with low variances can capture implicit patterns of the minority 

class of a dataset. Next, we proposed a novel framework to effectively classify epilepsy leveraging 

summary statistics analysis of window-based features of EEG signals. The framework first 

denoised the signals using power spectrum density analysis and replaced outliers with k-NN 

imputer. Next, window level features were extracted from statistical, temporal, and spectral 

domains. Basic summary statistics are then computed from the extracted features to feed into 

different machine learning classifiers. An optimal set of features are selected leveraging variance 

thresholding and dropping correlated features before feeding the features for classification.   

Finally, we applied traditional machine learning classifiers such as Support Vector 

Machine, Decision Tree, Random Forest, and k-Nearest Neighbors along with Deep Neural 

Networks to classify epilepsy. We experimented the frameworks with a benchmark dataset through 

rigorous experimental settings and displayed the effectiveness of the proposed frameworks in 

terms of accuracy, precision, recall, and F-beta score. 
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Chapter 1:  Introduction 

This chapters discusses an overview of this thesis. We briefly discuss the problem 

definition, objectives of the study, proposals to solutions and finally, the outline of the dissertation.  

1.1 Motivation  

Epilepsy or Epileptic Seizure is a common chronic neurological disorder affecting 

approximately 50 million people worldwide, with over 100 million patients experiencing a seizure 

at least once in their lifetime [1]. Experiencing more than one seizure is one of the primary 

symptoms of epilepsy, while the consequences vary based on the starting location of the seizure 

in the brain. Seizures can occur unexpectedly and can cause sudden breakdown affecting motor, 

sensory, and automatic functions of the body, leading to disturbing the patients’ consciousness, 

cognition, and memory [2]. Accurately seizure detection enables medical professionals to monitor 

seizures and diagnose epilepsy, which is still a challenging task for researchers [3].  

The Electroencephalogram (EEG) has long been used to investigate electrical activities of 

the brain and diagnose epilepsy due to its affordable cost and efficiency in temporal resolution of 

long-term monitoring [2]. EEG evaluates voltage variations across electrodes throughout subjects’ 

scalp leveraging ionic currents flowing through brain neurons, providing temporal and 

geographical information regarding electrical activities in the brain [4, 5]. Thus, the underlying 

patterns contained in an EEG signal during seizure differ from the patterns contained in non-

epileptic persons’ EEG signal [4].  Consequently, analyzing and developing models based on the 

EEG data allows detect seizure and classify different epileptic states: normal, pre-ictal and inter-

ictal stages. An EEG signal recorded from a healthy person is the normal phase, while an EEG 
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recorded preceding a seizure and during a seizure refers to pre-ictal and inter-ictal stages of 

epilepsy, respectively. Distinguishing among different states of epilepsy using EEG data lead to 

predict the onset of seizures [6]. A visual scanning of EEG signal is one of the traditional practices 

by clinicians to classify different categories of epileptic states. However, visual scanning for long 

EEG readings is an expensive, time-consuming, error-prone exercise and is neurophysiologists 

dependent [2]. Therefore, developing an automatic and effective model for epilepsy detection 

using EEG signals is an urgent need.  

 Classification of epileptics’ states is a well-known challenge for more than 30 years. The 

unpredictability of seizures hamper the management of chronic epilepsy.  Recent effort 

emphasized on seizure detection using EEG signal obtained from real patient [4]. With the 

advancements of machine learning algorithms, many sophisticated and automatic systems have 

been implemented to improve the performance of EEG-based seizure detection. Classical ML 

approaches like Support Vector Machine (SVM), Logistic Regression (LR), Random Forest (RF), 

Naïve Bayes, and Decision Tree (DT) along with Deep Neural Network (DNN) have been applied 

to classify epilepsy [6, 7]. Despite the prevalence of ML techniques, machine learning algorithms 

experience biased results towards majority class and reduced performance when it comes to train 

imbalanced data, making the epilepsy detection a critical challenge.  

 A dataset is said to be imbalanced or skewed if there are relatively or significantly a smaller 

number of training instances in one class compared to the other class for a binary class 

classification problem. The class that contains more observations is called the majority class while 

the other class containing relatively or significantly less observations is called the minority class 

[8]. Many of the real-world datasets are imbalanced such as the epileptic seizure dataset that 

presented and experimented in this work. Class imbalance involves difficulties in learning since 
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most of the ML classifiers are biased towards the majority class [8]. Thus, the correct prediction 

for minority class can be significantly dropped. Therefore, developing an automatic method 

addressing the inherent class imbalance problem towards epilepsy classification is necessary.  

 On the other hand, effective feature extraction from the EEG signal data plays an important 

role to improve the classification performance of ML classifiers since the classifiers, in general, 

are used the extracted features to train [9, 10]. The feature extraction process reduces 

dimensionality and complexity of the data, provides interpretability to the model by extracting 

meaningful features, and improves model performance towards epilepsy classification [11]. 

Feature extraction is the process of defining a feature vector from a regular vector (e.g., EEG signal 

or a segment of EEG signal) where the features are distinctive measurements or structural 

components of the regular vector [6]. Time-domain, frequency-domain, and time-frequency 

domain features are generally extracted from EEG signal for epilepsy classification. Finally, an 

effective feature extraction process facilitates model development, provides interpretability, and 

improve performance towards epilepsy classification.  

1.2 Objectives 

The primary objective of this thesis is to develop an automatic and effective machine 

learning-based novel framework for epilepsy classification addressing the issues mentioned 

earlier. Therefore, in the process, our goal is to−  

1. Address the inherent imbalanced class problem in different epileptic states of the EEG 

data by exploring combinations of different sampling techniques and different ML 

classifiers.     
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2. Address the inherent imbalanced class problem by leveraging high- and low-variants 

principal components of the original EEG data and showing that principal components 

associated with low-variants can learn the underlying pattern of the minority class of 

the data.   

3. Develop an effective feature extraction process to reduce the dimensionality and 

provide meaningful features to feed the ML classifiers, leading to overall performance 

improvement.  

1.3 Contributions  

In this thesis, we presented three different novel ML-based frameworks to achieve 

objectives 1, 2 and 3, respectively. The contributions are listed below in sequence of the objectives:   

1. We presented an integrated machine learning approach for epilepsy detection to 

effectively learn from imbalanced data by experimenting several sampling techniques 

and evaluating their capability of improving the imbalance ratio. Different classical ML 

classifiers, along with a deep neural network-based framework, were applied with 

different class ratio, indicating performance improvement in classifying seizures [12]. 

2. We presented an integrated machine learning approach for epilepsy detection that can 

effectively learn from imbalanced data. The approach utilizes PCA at the first stage to 

extract both high- and low-variant principal components, which are empirically 

customized for imbalanced data classification. We hypothesized that principal 

components associated with low variances can capture the implicit pattern of minor 

class of a dataset and can contribute to improving the performance of a model [13]. 
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3. We proposed an integrated ML-based epilepsy classification framework involving a 

novel feature extraction process. We pre-processed the signals by denoising and 

imputing outliers. We extracted summary statistics of window-based statistical, 

temporal, and spectral features. Feature selection criteria are also applied to select an 

optimal set of discriminative features. We showed the effectiveness of our proposed 

method by comparing the classification performance to other recent advanced studies 

[14].  

Finally, this thesis can aid practitioners in adopting a low-cost model of classification 

with stable and high accuracy in the obtained results to apply in the clinical practice and research 

environment. 

1.4 Dissertation Outline  

This thesis is divided into six chapters. Chapter 1 introduces an overview of the subject, 

motivation, objectives, and proposals of the thesis. Chapter 2 discusses related works. Chapter 3 

presents a work explaining objective 1, titled- Analysis of Sampling Techniques Towards Epileptic 

Seizure Detection from Imbalanced Dataset. Chapter 4 presents a work explaining objective 2, 

titled- Epileptic Seizure Detection from Imbalanced Dataset using an Integrated Machine Learning 

Approach. Chapter 5 presents a work explaining objective 2, titled- A Statistical Summary 

Analysis of Window-Based Extracted Features for EEG Signal Classification. Chapter 6 concludes 

by discussing the findings, limitations, and future directions. 
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Chapter 2:  Related Work  

This chapters discusses related works to this study. We proposed three different novel 

frameworks to achieve the objectives as mentioned earlier. The discussion of the related works is 

included successive order to the objectives and proposals: 

2.1 Related works for Analysis of Sampling Techniques Towards Epileptic 

Seizure Detection from Imbalanced Dataset 

The primary goal of seizure prediction is to identify a time when seizures are likely 

approaching and occurring. In general, the duration of non-seizure periods in an EEG recording is 

too long; on the contrary, the seizure signal lasts for a few seconds, resulting in the EEG data 

becomes imbalanced [65]. Therefore, the real-world epilepsy detection dataset suffers from a class 

imbalance problem causing less performance in prediction. Though ML algorithms have been 

efficiently used in the healthcare area, the algorithms have shown reduced performance when 

training with imbalanced data, making epilepsy detection a critical challenge [66]. Therefore, 

researchers proposed in the literature several methods for handling imbalanced datasets. 

Many sampling techniques including undersampling, oversampling, and combined 

approaches have been applied to overcome class imbalance problem for improving classification 

performance. A multiple layer of intelligent signal classifier for brain EEG data was proposed 

where in the first layer an oversampling technique, SMOTE, was used to solve the class imbalance 

problem, and finally different machine learning classifiers was applied for epilepsy detection [35]. 

A simple technique was proposed where the imbalanced dataset at first is converted to a balanced 

dataset using under sampling, oversampling, and synthetic minority oversampling technique 

(SMOTE), and SVM was applied later to classify the class of the epilepsy [19]. 
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A weighted Extreme Learning Machine (ELM) method was proposed for seizure detection 

with imbalanced EEG data distribution [20]. KMeans method combined with SVM was applied to 

breast cancer diagnosis and showed improved performance in terms of G-mean and accuracy 

metrics [32]. Simple oversampling was applied to each of the clusters of KMeans to balance the 

data, and later SVM was applied for classification. SMOTE was applied to oral cancer and 

erythemato-squamous diseases dataset to produce a balanced training data that lead to better 

accuracy score for the classification problem [33]. A combination of KMeans and Boosted C5.0 

was proposed for prediction of imbalanced breast cancer data where KMeans clusters observations 

from both minority and majority classes and subsequently select similar number of samples from 

each of the clusters to deal with class imbalance of the data [34]. 

  In this work, we experimented with different combinations of sampling techniques and ML 

methods to handle imbalanced data sets’ problem and to achieve better classification. We utilized 

the real-world Epileptic Seizure Recognition dataset with these combinations. The experimental 

results show the effectiveness of using different sampling techniques.   

2.2 Related works for Epileptic Seizure Detection from Imbalanced Dataset 

Using and Integrated Machine Learning Approach 

The primary goal of seizure prediction is to identify a time when seizures are likely 

approaching and when they are occurring.  Earlier works focused on Frequency-based methods, 

nonlinear dynamics (Chaos), and statistical analysis of EEG signals to predict seizures [10, 62]. 

These approaches rely on transforming input signals using mathematical transformations 

(e.g., Fourier transform). Binary programming and dynamic system approach to predict seizures 

are explored in [63, 64]. 
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In recent years, machine learning algorithms have been applying in seizure classification 

using the EEG data and showing promising results. A combined approach was proposed to predict 

seizure status by extracting the features from the EEG signal using discrete wavelet transform 

method and later used the features as input to SVM classifier for classification of the signal [15]. 

A two-layer seizure detection classifier was proposed wherein the upper layer, a dimension 

reduction technique was used, and SVM was then applied to assign the class of epilepsy [16]. 

PCA, Independent Components Analysis (ICA), and Linear Discriminant Analysis (LDA) was 

applied to reduce the dimension of the data. An Improved Correlation-based Feature Selection 

method (ICFS) combined with RF classifier was proposed for detecting epilepsy status from EEG 

signals [17]. The ICFS method primarily applied to the EEG dataset to extract most important time 

domain-, frequency domain-, and entropy-based features that are consequently fed into RF 

classifier. Deep learning networks have been receiving increasing attention in epilepsy 

classification problems for improving model performance. A deep learning neural network was 

implemented on extracted frequency domain features from EEG signals [18].  

Machine learning algorithms exhibit reduced performance when training imbalanced data, 

making epilepsy detection a critical challenge. Researchers proposed several methods for handling 

imbalanced datasets. A simple technique was proposed where the imbalanced dataset at first 

converted to a balanced dataset by using under sampling, oversampling, and synthetic minority 

oversampling technique, and then SVM was applied to classify the class of the epilepsy [19]. A 

weighted extreme learning machine (ELM) was proposed for seizure detection with imbalanced 

EEG data distribution [20]. Our proposed integrated ML method can handle imbalanced data sets’ 

problem by utilizing high- and low-variant principal components in feature extraction process. We 
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experimented our model by applying it to a real-world Epileptic Seizure Recognition dataset. The 

experimental results show the robustness and effectiveness of our model. 

2.3 Related works for A Statistical Summary Analysis of Window-Based 

Extracted Features for EEG Signal Classification   

Significant research has been accomplished to correctly classify EEG signals for epilepsy, 

where many combined approaches, including feature extraction methods and ML classifiers, are 

proposed. A correlation-based feature selection method (ICFS) combined with Random Forest 

(RF) classifier was proposed for detecting epileptic states, where time-, frequency- and entropy-

based features were extracted [2]. A two-layer seizure detection classifier was proposed wherein 

the upper layer, a dimension reduction technique, including principal component analysis, 

independent component analysis, and linear discriminant analysis, were applied, and SVM was 

then applied to assign the class of epilepsy [46]. A random forest classifier with grid search hyper-

parameter tuning was applied to extract features (e.g., mean, energy, and standard deviation) of 

the Bonn dataset for epilepsy detection [47]. Another recent study based on the Bonn dataset 

extracted altogether 15 statistical features from the EEG signal, followed by a correlation-based 

feature selection method for epilepsy classification [48]. The study applied five different classifiers 

(RF, Logistic Tree Model, k-NN, SVM, and NB), where the RF classifier provided the best 

accuracy. A multi-feature fusion approach was presented where an ensemble decision tree 

classifier was applied to a selected number of features for epilepsy classification using EEG signal 

data [49]. The fusion approach applied a Pearson correlation-based feature selection method on 

the extracted temporal (5-features), spectral (5-features), and temporal-spectral (6-features) 

features. A combined approach was developed for EEG classification where an SVM classifier 
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was applied to temporal and spectral features that were extracted using empirical mode 

decomposition [50].   

Many fusion approaches were proposed for EEG classification, where different ML 

classifiers were applied to extracted features from the original signal. This work presented a novel 

framework for EEG classification extracting window-based features and considered summary 

statistics of those features. In addition, we implemented a rigorous signal preprocessing step before 

the feature extraction and a feature selection process after the extraction. Finally, we applied 

different advanced ML classifiers to classify epileptic states to the Bonn dataset. 
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Chapter 3:  Analysis of Sampling Techniques Towards Epileptic 

Seizure Detection from Imbalanced Dataset 

This chapter discusses the impact of sampling techniques with varying class size ratios 

towards balancing the imbalanced dataset and overall epilepsy classification. This work was 

proposed to achieve the goal of the thesis associated with objective 1.  It contains an introduction, 

methodology, experiments and results, and a conclusion section. 

3.1 Introduction 

 This work investigates different sampling techniques along with ML classifiers to 

effectively balance and train the imbalanced data and improve performance for seizure detection.  

In the first stage, we applied different traditional and state-of-the-art sampling techniques, such as 

SMOTE, ADASYN, Random undersampling, Random Oversampling, SMOTEENN, 

SMOTETomek, Cluster centroids, and NearMiss to the original dataset and generated a number of 

new datasets. Random oversampling, and Random undersampling are conventional, easy to 

implement techniques. However, these techniques suffer from overfitting, and loss of valuable 

information problems, respectively. Therefore, some state-of-the-art sampling techniques were 

examined in this work.  

Different combinations of sampling methods were applied to the original dataset to 

generate new datasets, which are then fed into several ML classifiers to measure the performance 

of the prediction. The comparisons among different combinations of datasets and ML methods are 

presented to show the effectiveness of applying sampling techniques for prediction performance. 

Our results indicate that it is possible to predict more accurately seizure from EEG data with an 

oversampled or undersampled dataset, instead of using the original data. Furthermore, this work 
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can aid practitioners to adopt a more accurate model of classification with stable and high accuracy 

in the obtained results to apply in the clinical practice and research environment. 

3.2 Methodology  

3.2.1 Undersampling techniques  

Undersampling techniques balance the class distribution for a classification problem 

dataset by eliminating observations from the majority class of the training dataset. Many 

undersampling methods have been implemented to balance the class ratio of the data. Random 

undersampling, NearMiss, Edited nearest neighbors, and cluster centroids are the undersampling 

techniques that are explored in this work. 

Random undersampling 

It is the simplest method of balancing the imbalanced data by randomly removing 

observations from the majority class. The method may lead to the loss of valuable information 

about the data since it randomly eliminates data from the majority class [8]. If observations of 

majority class are close to each other, then the method might produce a good performance for 

classification problems [27].   

NearMiss 

NearMiss sampling technique performs undersampling on the majority class of the data by 

considering the distance of a data point in majority class to the data points in the minority class. 

Three different versions of this method are applied to balance class ratio: 1. NearMiss-1: Data 

points in majority class are eliminated that have a minimum average distance to k number of data 

points in minority class, where k is a hyperparameter. 2. NearMiss-2: Contrary to the NearMiss-1, 

NearMiss-2 drops the majority class data points that have the maximum average distance to k 
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number of data points in the minority class where k is a hyperparameter. 3. NearMiss-3: It only 

remains the data points in the majority class that are on the decision boundary, i.e., the data points 

with the lowest distance to each of the data points of the minority class are only kept. Hence, the 

size of the majority class directly controlled by the number of the minority class. 

Cluster centroid 

It is another undersampling technique that forms n number of clusters of data points in the 

majority class at first where n is a tunable parameter and then replaces the data points of a cluster 

by the cluster centroid. The method leverages the KMeans clustering technique in the process of 

clustering.    

Edited Nearest Neighbor (ENN)  

It is another similarity based undersampling technique that removes observation from the 

majority class if class of the observation differs from one of its nearest neighbors.  

3.2.2 Oversampling techniques  

Oversampling is a non-heuristic technique to balance the class distribution of training data. 

Random oversampling, Synthetic Minority Oversampling, and Adaptive synthetic sampling 

techniques are explored and implemented in this work.  

Random oversampling 

It is a simple oversampling technique that randomly replicates observations of minority 

class repetitively until the desired class ratio is achieved. It is the most used sampling technique 

among practitioners due to the simplicity and ease of application [28]. However, the major 

drawback is that it suffers from overfitting because of the random duplication of data [29]. 
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Synthetic Minority Oversampling Technique (SMOTE) 

SMOTE was proposed based on the similarities between data points of minority class to 

overcome the limitation of the random oversampling. Instead of random duplication, the method 

generates new synthetic observations by linearly interpolating between a randomly selected 

observation from minority class and its closest k observations in the minority class where k is a 

hyperparameter [28]. Assume, x is the randomly selected data from the minority class and y is one 

of the k-nearest neighbors of x. Then, a synthetic data z is generated by interpolating x and y:  

𝑧 =  𝑥 +  𝑤 (𝑦 − 𝑥) 

where x and y are vectors and w is a random weight in [0,1]. However, the method suffers 

from some downsides as well though it effectively overcomes the limitation of random 

oversampling. The method may introduce noise and within-class class imbalance if the randomly 

selected data from the minority class located among the majority class observations [30].   

Adaptive synthetic (ADASYN) sampling 

      ADASYN utilizes a similar idea of SMOTE, and additionally distributes weights to the 

minority class samples according to their complexity level in the training process. The samples 

that are difficult to learn are given more weights and more synthetic data are generated from those 

samples as well. Hence, applying ADASYN lower the bias introduced by the imbalance class and 

shifts the classification decision boundary towards the harder samples. 

3.2.3 Mixed sampling techniques  

      Combination of undersampling and oversampling techniques are applied to handle 

imbalance class ratio problem. The combined approaches can overcome some of the limitations of 
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the separate sampling approaches. Two of the combined approaches SMOTEENN, and 

SMOTETomek are discussed.  

SMOTEENN 

SMOTEENN is a combined approach to balance the class ratio of an imbalanced dataset. 

It utilizes SOMTE to over samples from the minority class and simultaneously, implements ENN 

to eliminates samples from both classes [31]. Hence, it provides in depth data cleaning. 

SMOTETomek 

It is another combining of oversampling and undersampling methods. SMOTE is applied 

to minority class for over sampling, but it may introduce noise and class imbalance in the dataset 

as discussed earlier. Hence, to overcome the challenges of SMOTE, a data cleaning method Tomek 

links is applied to the over-sampled synthetic samples. Tomek links is one of the neighbor-based 

undersampling techniques where Tomek links are formed by pairs of opposite class observations 

who are their own nearest neighbors. In the process of SMOTETomek, it removes Tomek links 

containing observations from both classes [31]. Subsequently, the method produces a balance data 

with well-defined class clusters. 

3.3 Machine learning classifiers 

Once the class imbalance problem is solved, machine learning classifiers are applied to the 

balanced dataset for classification. Here, we investigated Logistic Regression, Support Vector 

Machine, Decision Tree, Random Forest, and Deep neural network classifiers for epilepsy 

detection.  
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3.3.1 Support Vector Machine 

 SVM is a well-known supervised learning technique to analyze high-dimensional data. 

SVM searches for an optimal hyperplane in the input space that categorizes two classes given 

training data. Therefore, the hyperplane is used to classify new data [39].  

3.3.2 Decision Tree  

 Decision Tree is a well-known supervised machine learning technique for classification. It 

builds a classification model in the shape of a tree structure through a process known as binary 

recursive partitioning [7]. It iteratively splits the data into smaller and smaller subsets (branches) 

until each of the branches achieves homogeneous partitions. Therefore, it finally creates a tree with 

decision nodes and leaf nodes where the decision nodes contain two or more branches and leaf node 

assigns a class or decision. 

3.3.3 Random Forest 

Random forest is an ensemble of multiple individual decision trees. In the training period, 

it produces a class prediction for each of the decision trees and the class with the majority votes 

becomes the methods’ prediction class [25].    

3.3.4 Neural Network 

 At present, neural networks are widely used for many applications due to the capability of 

highly non-linear systems and flexibility in architecture design. The neural network’s basic 

architecture contains input layers, one or more hidden layers, and output layers where each of the 

layers includes a certain number of neurons. Weighted linear combination of neurons of a layer is 

computed and then used as input to another neuron in the succeeding layer. To capture the non-
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linearity of the data, a non-linear function, called activation function, can be applied to the weighted 

sums of neurons. All the weights of a neural network are set to random values at the initial stage of 

training. Data is fed into the input layer of the network, then it travels through the hidden layers, 

and finally output is produced in the output layer. The network continually updates the weights 

applying backpropagation based on the output and desired target of the neural network. The network 

consequently reduces the error between the output and target in each iteration [17]. In the process, 

a loss function is used to calculate the error of the network and the error is minimized by applying 

optimization function during backpropagation. 

3.4 Experiments and Results  

3.4.1 Dataset specification 

We performed all experiments on Epileptic Seizure Recognition dataset to evaluate model 

performance for using different combination of sampling techniques and machine learning 

algorithms. The dataset is publicly available on UCI’s machine learning repository [21]. The 

dataset represents a recording of brain activity which includes 4097 EEG readings over 23.6 

seconds for a single subject/patient, with 25 patients overall. Each patients’ 4097 readings were 

then divided and shuffled into 23 chunks where each chunk contains 178 readings for 1 second. 

Each of the 23 chunks of a single patient were then translated into one row of the dataset where 

each row contains 178 columns (readings). Collectively, there are 23 × 500 = 11,500 rows, and 

178 columns in the dataset. The response variable contains five different categories: 1. Healthy 

and Eyes Open, 2. Healthy and Eyes Closed, 3. Epileptic, Inter-ictal, 4. Epileptic, Inter-ictal, and 

5. Epileptic, Ictal. The patients in category 5 (Epileptic, Ictal) have epileptic seizures, and patients 

falling in the rest of the classes did not have an epileptic seizure with distinctive characteristics. 
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Each of the classes contains 20% data of the total dataset. We transformed classes 2,3,4, and 5 (no 

having seizure) into a single class to prepare the dataset for binary classification. Hence, the dataset 

became imbalanced and consists of two classes: class 1 (Epileptic seizure), and class 0 (no seizure) 

where class 1 contains 20% of data and rest 80% of the data are in class 0.  

3.4.2 Model evaluation metrics  

The dataset is become imbalanced after the transformation. Therefore, we ought not to 

consider the "accuracy" metric to assess the performance of the models. Thus, the following 

performance measurements are considered in the assessment of the models [10]. 

1. Recall: Recall is the the quantity of correct positive predictions among all the positive 

samples. Mathematically:  

Recall =
TP

TP + FN
 

Where, TP is True Positive (quantity of correct positive predictions) and FN is False 

Negative (quantity of misclassified positive predictions) 

2. Precision: Precision is the proportion of the correctly identified positives to all the predicted 

positives. Mathematically:   

Precision =
TP

TP + FP
 

3. F1 score: F1 score is the harmonic mean of Precision and Recall. F1 score is a better 

performance metric than the accuracy metric for imbalanced data [10].  

F1 = 2 ×
Precision × Recall

Precision + Recall
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The F-beta score is the weighted harmonic mean of precision of recall where F-beta value 

at 1 means perfect score (perfect precision and recall) and 0 is worst.   

𝐹𝛽 = (1 + β2)
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

(𝛽2 ×  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) + 𝑅𝑒𝑐𝑎𝑙𝑙
 

When 𝛽 = 1, F-beta is 𝐹1 𝑠𝑐𝑜𝑟𝑒. The 𝛽 parameter determines the weight of precision and 

recall. 𝛽 < 1 can be picked, if we want to give more weight to precision, while  𝛽 > 1 

values give more weight to recall. Since we want to identify maximum number of seizure 

cases, we give more weights to recall and utilize 𝛽 > 1 values. Hence, the F-beta score was 

considered the principal performance metric to evaluate models in our experiments. 

3.4.3 Experimental Design  

Sampling techniques were used to generate new datasets. Eight different sampling 

techniques in total were implemented with attaining three different class ratios. The sampling 

techniques include Random undersampling, NearMiss, and cluster centroids as undersampling 

techniques. Random oversampling, SMOTE, and ADASYN as oversampling techniques and 

SMOTEENN, and SMOTETomek as combined approach were implemented on the epilepsy 

dataset for balancing class ratio. 0.5, 0.75, and 1 class ratio between majority and minority class 

was attained for all eight different techniques. Altogether 3 × 8 = 24 datasets were used. Machine 

learning algorithms: Random Forest (RF), Decision Tree (DT), Support Vector Machine (SVM), 

Logistic Regression (LR), and Deep Neural Network (DNN) based framework were applied to the 

24 variants of datasets for classifying epileptic seizure. In total, 5 × 24 = 110 were experimented 

in this work. All the experiments were performed with 10-fold cross validation.   
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Table 1:Distribution of samples in majority and minority classes 

Ratio # of sample in No 

seizure 

# of samples in 

Seizure 

0.5 9200 4600 

0.75 9200 6900 

1.00 9200 9200 

 

Table 2: Performance evaluation of original dataset 

Classifiers F-beta Precision Recall 

RF 0.966 0.942 0.888 

DT 0.939 0.862 0.823 

SVM 0.972 0.956 0.904 

LR 0.817 0.966 0.890 

DNN 0.970 0.955 0.894 

 

The original data consists of 9,200 of no seizure and remaining 2,300 seizure samples. In 

the process of oversampling from minority class and undersampling from majority class, we opted 

to attain 0.5, 0.75, and 1.00 ratios between minority and majority class. We wanted to minimum 

number of synthetic or duplicate data since both kinds of techniques have some limitations. Hence, 

we select the final model that achieve maximum performance by including minimum number of 

synthetic or duplicate data and maximum. Table 1 shows the number of samples in minority and 

majority classes when different ratios are picked.  

All the datasets were randomly split into training and test data while maintaining the class 

ratio between seizure and no seizure samples. The training data was used to train each of the 

models we experimented with while the test data was used for evaluating the performance of the 

models. To verify the consistency of the model, we experimented with each of the models with 

10-fold cross-validation. The SVM, DT, LR, and RF were implemented using Python scikit-learn 

library with default hyperparameter options.   
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The DNN consists of four layers: one input layer, two hidden layers, and one output layer. 

We used ‘ReLu’ activation function in the hidden layer and ‘sigmoid’ function in the output layer 

to train the DNN. ‘Adam’ and ‘binary cross-entropy’ were used for optimizer and loss function 

respectively. We implemented an early stopping method to stop training once the model 

performance stops improving on the test data. The initial learning rate was set to 0.001 with a 

decay of 1𝑒 − 5 in every epoch. All the parameters and hyperparameters used in the model were 

optimized by grid search. The ‘beta’ parameter in calculating the F-beta score was set to 50 to give 

more weight to recall so that the maximum number of seizures can be identified.  

The experiments are carried out on a Windows 10 Intel(R) Core (TM) i7-8565U CPU 1.80 

GHz with 16.0 GB RAM and NVIDIA GeForce MX250 2GB GDDR5. We implemented our 

experiment on Keras framework in Python 3.7 version [22]. 

3.4.4 Experimental Results  

F-beta score, precision, and recall were used to evaluate the models’ performance. We 

applied five different classifiers (SVM, RF, DT, LR, and DNN) on 24 different datasets to detect 

seizures. 10-fold cross-validation was performed for each of the experiments. The same 

configuration was applied to each experiment for maintaining consistency. 

All the classifiers were trained on 90% of data and tested on the remaining 10% of the data. 

Table 2 illustrates the experimental results of using the original dataset without any sampling 

techniques implementation. Table 2 shows the results for using original dataset without any 

sampling techniques. SVM achieves the maxum F-beta score of 0.972 while our proposed DNN 

based framework achieved the second maximum F-beta score of 0.970.  Though LR shows highest 

precisoin, but it fails to attain a good recall score, i.e., it poorly predicts on the seizure cases. 
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Tables 3, 4, and 5 illustrate the experimental results of using different combinations of 

sampling techniques and ML classifiers when class ratio between minority and majority classes is 

0.5, 0.75, and 1.00, respectively. From Table 3: RF, SVM, and our presented DNN based 

framework demonstrate similar kind of performance with insignificant margin.  The NearMiss 

undersampling technique with SVM achieves the highest F-beta (0.996), precision (0.999), and 

recall (0.989) indicating that more seizures can be correctly detected by using sampling techniques 

instead of original dataset. On the other hand, LR fails to provide good performance for with any 

combination with different ML classifiers. Random oversampling with DNN based framework 

shows second best F-beta score of 0.990. From Table 4, NearMiss with RF classifier outperforms 

other combinations in terms of F-beta and precision score while highest recall score is achieved 

by Random oversampling + RF. Our presented DNN-based framework achieves rewarding 

performance as well. All the experiments in Table 5 were done with equal number of observations 

in each class. Once again, NearMiss undersampling method outclasses other sampling techniques. 

NearMiss combines with RF achieves the highest F-beta and recall score. Overall, sampling the 

original dataset for balancing the class ratio helps ML classifiers to better learning from the 

minority class and result in better performance in epileptic seizure detection.  
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Table 3: Experimental results of using different combination of sampling techniques and ML classifiers 

when class ratio is 0.5. 
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Table 4: Experimental results of using different combination of sampling techniques and ML classifiers 

when class ratio is 0.75. 
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Table 5: Experimental results of using different combination of sampling techniques and ML classifiers 

when class ratio is 1. 

 

 

Fig. 1, 2, & 3 display the comparative result (Recall) analysis using boxplots with varying 

balancing ratios. We focus on comparing the recall score since minimizing the false negative 

relatively significant for epilepsy classification.  Fig. 1 shows that the NearMiss sampling 

technique with RF classifier achieved the highest recall score for balancing ratio 0.50, while 

random oversampling with the RF classifier outperformed other combinations of sampling and 

classifiers for ratio 0.75 (Fig. 2). For the equal sample ratio between majority and minority class, 

the combination of random oversampling and random forest classifier achieved the highest recall 

score (Fig. 3). Fig. 4 exhibits the changes in performance (recall) while changing the balancing 
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ratios.  The performance of the random forest classifier increases while the ratios between majority 

and minority classes increase. The RF classifier achieved a recall score of 88.8 with the original 

dataset where the balancing ratio is 0.20, while the classifier achieved the highest recall score of 

99.7 when the size of the minority class data is equal to the majority class size (ratio: 1.00). 

 

Figure 1: Comparative result analysis using boxplots for balancing ratio 0.50. 
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Figure 2: Comparative result analysis using boxplots for balancing ratio 0.75. 

 

Figure 3: Comparative result analysis using boxplots for balancing ratio 1.00. 
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Figure 4: Changes of performance (Recall) for different balancing ratios 

 

3.5 Conclusion  

In this study, we applied an integrated machine learning approach for epilepsy detection 

that can effectively learn from imbalanced data. In this work, several sampling techniques have 

been experimented and evaluated for their capability of improving the imbalance ratio. Different 

classical machine learning classifiers along with a deep neural network-based framework are 

applied to all the new datasets that indicate performance improvement in classifying seizures. The 

NearMiss undersampling technique outperforms other sampling techniques while RF, SVM, and 

DNN demonstrate similar results. Finally, sampling techniques can be applied to imbalance dataset 

for balancing class ratio to improve the classification performance. 
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Chapter 4:  Epileptic Seizure Detection for Imbalanced Datasets 

using an Integrated Machine Learning Approach 

 

This chapter explores high-and low-variant principal components to cope with inherent 

imbalanced class distribution problem, leading to an effective epilepsy classification model. This 

work was proposed to achieve the goal of the thesis associated with objective 2.  It contains an 

introduction, methodology, experiments and results, and a conclusion section. 

4.1 Introduction  

  We developed a new integrated analysis technique of PCA and ML classifiers to effectively 

train imbalanced data and improve performance for seizure detection.  In the first stage, PCA was 

applied to the original dataset and extract both the high- and low-variant attributes or components. 

Conventionally, PCA is used for dimension reduction of a dataset leveraging principal components 

(PCs) with high variances. In this work, we show that PCs associated with low variances can capture 

the implicit pattern of minor class of a dataset. Our assumption is that the high variant PCs may 

effectively learn the underlying structure of the majority class of a dataset, but they may not be 

enough to represent the implicit pattern of minor class of the dataset. Based on the hypothesis, our 

proposed method selects both high- and low-variant PCs and combine them subsequently.  

 Different Combinations of high- and low-variant PCs are then fed into several ML 

classifiers and measure the performance of the prediction. The comparisons between selective 

components and all attributes in the original dataset show a wide difference in terms of performance 

in prediction. Our results indicate that it is possible to predict more accurately seizure from EEG 

data with a limited and selective number of attributes/components, instead of all attributes in the 
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original data. Our contributions in this work include: (1) a novel integrated ML approach that can 

handle imbalanced data, and (2) a comprehensive assessment with rigorous experimental setting to 

assess our proposed models’ performance with a publicly available real-world epileptic seizure 

detection dataset. Further, the experimental results show that the statistical significance of our 

proposed model. Finally, our work can aid practitioners to adopt a fast and low-cost model of 

classification with stable and high accuracy in the obtained results to apply in the clinical practice 

and research environment.  

4.2 Methodology 

Fig. 5 demonstrates the architecture of our proposed method. The method consists of two 

stages: in the first stage high- and low-variant features are extracted by applying PCA on the 

original EEG data. The extracted features associated with high variance are then combine with 

different chunks of low-variant components. The construction of chunks is described in Section 

IV(C). In the second step, the combination of high-low variant features is fed into different 

machine learning classifiers that classify the label of the dataset.  
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Figure 5: Architecture of our proposed Framework 

4.3 Experiments and Results 

4.3.1 Dataset Specification 

We performed all experiments on Epileptic Seizure Recognition dataset to evaluate our 

proposed integrated approach. The description of the dataset is already previously discussed in 

Chapter 2 dataset specification section.  

4.3.2 Model Evaluation Metrics  

The dataset is become imbalanced after the transformation. Therefore, we ought not to 

consider the "accuracy" metric to assess the performance of the models. Thus, we utilize weighted 

F-beta score to measure the model performance and more weights were given to recall (𝛽 > 1, 𝛽 

is the weight parameter in F-beta score) to identify maximum number of seizure cases, Wilcoxon 

Rank Sum test is applied to evaluate statistical significance of the model performance.  
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4.3.3 Experimental Design 

We extracted high- and low- variant principal components by applying PCA on the original 

dataset. The data was normalized with mean 0 before applying the PCA. The number of principal 

components is 178.  

 

Figure 6: Cumulative variation explanation of original data 

Table 6: Process of constructing combinations of high- and low-variant principal components. 

Chunks PCs Combinations High- and Low-variant PCs 

C1 170-178 HLC1 1st 60 PCs + C1 

C2 161-169 HLC2 1st 60 PCs + C2 

C3 152-160 HLC3 1st 60 PCs + C3 

C4 143-151 HLC4 1st 60 PCs + C4 

C5 134-142 HLC5 1st 60 PCs + C5 

C6 161-178 HLC6 1st 60 PCs + C6 

C7 143-160 HLC7 1st 60 PCs + C7 

 

as the number of features is 178 in the original dataset. Fig. 6 shows the cumulative variation 

explanation of original data by principal components. Approximately 99% of the variation of the 

original dataset is explained by the first 60 PCs. We considered rest of the PCs are associated with 

low variances. To experiment empirically, we took last 25% of the PCs and divided into 5 chunks 

where each chunk contains 5% of PCs. For instance, the 170-178 PCs last are the last 5% PCs 
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which is a single chunk. We also added two more chunks where each fold contains 10% of PCs of 

last 20% PCs. In total, 7 folds of low variance PCs were then combined with the high-variant first 

60 PCs that result in 7 different datasets. Table 6 shows the chunks and different combinations of 

datasets. For example, the first combination HLC1 is made up of the first 60 PCs and 170-178 

PCs.  

The 7 different datasets of PCs consequently fed into different ML classifiers like SVM, 

RF, DT, and DNN. Finally, the different combined datasets performance was evaluated by 

comparing with original dataset’s performance.  

All the datasets were randomly split into training and test data while maintaining the class 

ratio between seizure and no seizure samples. The training data was used to train each of the 

models we experimented with while the test data was used for evaluating the performance of the 

models. To verify the consistency of the model, we experimented with each of the models with 

10-fold cross-validation. The SVM, DT, and RF were implemented using Python scikit-learn 

library with default hyperparameter options. The DNN consists of four layers: one input layer, two 

hidden layers, and one output layer. We used ‘ReLu’ activation function in the hidden layer and 

‘sigmoid’ function in the output layer to train the DNN. ‘Adam’ and ‘binary cross-entropy’ were 

used for optimizer and loss function, respectively. We implemented an early stopping method to 

stop training once the model performance stops improving on the test data. The initial learning rate 

was set to 0.001 with a decay of 1𝑒 − 5 in every epoch. All the parameters and hyperparameters 

used in the model were optimized by grid search. 

The ‘beta’ parameter in calculating the F-beta score was set to 50 to give more weight to 

recall so that the maximum number of seizures can be identified. We implemented our experiment 

on Keras framework in Python 3.7 version [22]. 
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4.3.4 Experimental Results  

F-beta score, FPR, and TPR are used to evaluate the models’ performance. We applied four 

different classifiers (SVM, RF, DT, and DNN) on 8 different datasets including the original dataset 

to detect seizures. 10-fold cross-validation was performed for each of the experiments. The same 

configuration was applied to each experiment for maintaining consistency.  

All the classifiers were trained on 90% of data and tested on the remaining 10% of the data. 

Table 7 illustrates the experimental results of using different datasets. The four classifiers achieved 

maximum F-beta score by using combination of high- and low-variant dataset. SVM achived 

highest F-beta score of 0.9786 by using HLC3 (1st 60 high-variant PCs + low-variant PCs of 152-

160) combination. RF shows a substantial imrpovement of F-beta score for using high- and low-

variant PCs. RF achieved 97.31% F-beta score using HLC4 combination while 92.84% F-beta 

score was achieved by using the original dataset. DT and DNN achieved maximum F-beta score 

of 95.06% and 97.34% by using HLC5 and HLC7 dataset, respectively. RF, and DT classifiers 

show considerable improvement of performance for using combination high- and low-variant PCs 

compare to other two classifiers.  

Tables 8 and 9 illustrate the results of TPR and FPR, respectively. From Table 8, maximum 

TPR was achieved by using high- and low-variant combinations for all the four classifier which 

shows the effectiveness of our proposed model. The highest TPR of 95.08% was achieved by 

applying SVM on HLC5 dataset. From Table 9, the lowest FPR of 0.91% was achieved by DNN 

for HLC6 combination. Though SVM shows lowest FPR for original dataset, other two classifiers 

RF and DT present better FPR for high- and low-variant combination of PCs. Table 10 presents 

the statistical significance of the performance of the models. SVM, RF, and DT demonstrate a 

statistically better F-beta score for using different combinations than using original dataset 
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considering 0.05 significance level. DNN does not show statistically significant imrpovement in 

terms of F-beta score.  

Table 7: Experimental results of different classifiers on different datasets using F-beta score as 

performance matric. 

Datasets SVM RF DT DNN 

Original 0.9747 0.9284 0.9387 0.9709 

HLC1 0.9784 0.9705 0.9484 0.9727 

HLC2 0.9784 0.9711 0.9483 0.9713 

HLC3 0.9786 0.9719 0.9472 0.9721 

HLC4 0.9784 0.9731 0.9486 0.9716 

HLC5 0.9786 0.9702 0.9506 0.9726 

HLC6 0.9783 0.9691 0.9477 0.9718 

HLC7 0.9781 0.9699 0.9498 0.9734 

 

Table 8: Experimental results of different classifiers on different datasets using TPR as performance 

matric. 

Datasets SVM RF DT DNN 

Original 0.9182 0.9008 0.8330 0.8965 

HLC1 0.9504 0.9139 0.8443 0.9013 

HLC2 0.9500 0.9178 0.8508 0.8960 

HLC3 0.9491 0.9117 0.8556 0.9004 

HLC4 0.9495 0.9143 0.8552 0.9004 

HLC5 0.9508 0.9108 0.8586 0.9073 

HLC6 0.9469 0.9121 0.8578 0.9082 

HLC7 0.9465 0.9221 0.8500 0.9082 
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Table 9: Experimental results of different classifiers on different datasets using FPR as performance 

matric. 

Datasets SVM RF DT DNN 

Original 0.0111 0.0848 0.0346 0.0110 

HLC1 0.0142 0.0166 0.0277 0.0109 

HLC2 0.0143 0.0154 0.0277 0.0104 

HLC3 0.0143 0.0157 0.0266 0.0104 

HLC4 0.0143 0.0150 0.0272 0.0107 

HLC5 0.0143 0.0158 0.0283 0.0110 

HLC6 0.0136 0.0150 0.0276 0.0091 

HLC7 0.0139 0.0147 0.02771 0.0117 

 

Table 10: Statistical significance of classifiers using different datasets. 

Datasets SVM RF DT DNN 

Original vs. HLC1 0.041* 0.0001* 0.001* 0.650 

Original vs. HLC2 0.041* 0.0001* 0.002* 0.545 

Original vs. HLC3 0.034* 0.0001* 0.003* 0.405 

Original vs. HLC4 0.041* 0.0001* 0.008* 0.570 

Original vs. HLC5 0.034* 0.0001* 0.000* 0.198 

Original vs. HLC6 0.041* 0.0001* 0.000* 0.705 

Original vs. HLC7 0.058 0.0001* 0.000* 0.212 

*Statistical significance considering 0.05 significance level. 

4.4 Conclusion 

In this chapter, we present an integrated machine learning approach for epilepsy detection 

that can effectively learn from imbalanced data. The approach utilizes PCA at the first stage to 

extract both high- and low-variant principal components (PCs) which are empirically customized 

for imbalanced data classification. We hypothesized that PCs associated with low variances can 



37 
 

capture the implicit pattern of minor class of a dataset and can contribute to improving the 

performance of a model. We experimented with different combinations of high- and low-variant 

components on the Epileptic Seizure Recognition dataset to evaluate our proposed model. The 

experimental results show statistically significant performance improvement that strongly support 

our hypothesis.  
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Chapter 5:  A Statistical Summary Analysis of Window-Based 

Extracted Features for EEG Signal Classification 

This chapter presents an effective feature extraction process from EEG signal dataset for 

epilepsy classification. This work was proposed to achieve the goal of the thesis associated with 

objective 3.  It contains an introduction, methodology, experiments and results, and a conclusion 

section.  

5.1 Introduction  

We propose an automatic and effective framework for EEG signal classification towards 

epilepsy, where we mainly leverage summary statistics analysis of window-based statistical, 

temporal, and spectral features. A recent experimental study showed that window-based feature 

extraction outperformed traditional feature extraction from original signal [45]. Our contributions 

to the proposed frameworks are: 

1. Window-based features extraction from statistical, temporal, and spectral domains 

2. Applying a robust signal pre-processing step including denoising signals with power 

spectrum density analysis, identifying outliers with the z-score method, and replacing 

outliers with k-NN imputer 

3. Summary statistics analysis of window level features  

4. Developing ML classifiers with a significantly smaller number of meaningful features 

compare to original signals 

5. A rigorous experimental setting to assess the performance of the proposed framework with 

a benchmark epileptic seizure dataset (University of Bonn) 
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Finally, this work can aid practitioners in adopting a low-cost model of classification with stable 

and high accuracy in the obtained results to apply in the clinical practice and research 

environment.  

5.2 Methodology 

 

Figure 7: Flowchart of the proposed framework for EEG classification 

 

Fig. 7 shows the flowchart of the proposed framework. The raw EEG signals are pre-

processed using three different processes: denoising, standardization, and outlier imputation. Since 

the original EEG signals are recorded on human scalps using sensors, they are prone to noise (e.g., 

EEG artifacts) and may have a low signal-to-noise ratio [43]. Thus, denoising is a necessary step 

to be taken before the signals are analyzed to reveal the characteristics of EEG signals. Though 

both Wavelets and Fourier transformation have been using for transforming signals into power 

spectrum, an experimental study showed the superiority of Fourier transformation in noise analysis 
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[53]. Thus, we applied a power spectrum threshold denoising method using Fast Fourier 

Transformation (FFT). Notably, power per frequency is calculated in the power spectrum by 

applying FFT to the raw EEG signal. A threshold is used in the power spectrum to keep all the 

frequencies with large power (spectra) and zero out all other frequencies related to low power. 

Finally, the inverse FFT is applied to achieve a cleaned and filtered signal. Fig. 8 demonstrates the 

process of the denoising process using the power spectrum threshold (green line) method.   

 

Figure 8: Process of the denoising process using the power spectrum threshold method. 

 

In the second step of pre-processing, the signal is standardized using the z-score 

standardization method. Outliers are identified using the z-score and then replaced using the k-

Nearest Neighbors (KNN) imputation technique. 

A non-overlapping sliding window is used to segment the filtered EEG signal, and then 

different features in statistical, spectral, and temporal domains are extracted from each of the 

segments. Basic summary statistics (e.g., mean, mode, median, minimum, maximum, and standard 

deviation) are calculated from features of all segments of a single signal. The summary statistics 
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of the window-based features can capture more implicit and consistent patterns of the signals. Fig. 

9 shows the process of collecting summary statistics (e.g., mean, median, minimum, maximum, 

and standard deviation) as features from each of the signals.  

 

 

Figure 9: Process of generating summary statistics from window-based features of EEG signal. 

 

The new set of features are then passed through a feature selection process where variance 

thresholding and correlated feature methods are applied. Feature’s− variance lower than a 

threshold and higher than a correlation coefficient is removed.  Finally, ML classifiers are applied 

to the selected features for epilepsy classification.  

5.3 Experiments and Results 

5.3.1 Dataset Specification 

The EEG database used in this analysis consists of five EEG datasets (Set A-E) and 

developed by the Department of Epileptology, University of Bonn [51]. Each dataset contains 100 
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single channels to represent recordings of brain activities, where each channel includes 4097 EEG 

readings over 23.6 seconds. Fig. 10 shows five random samples from each of the datasets.  

 

Figure 10: Visualization of EEG signals from each of the datasets. Sets (A-D) display samples of no 

seizure EEG signal, while Set E displays a seizure EEG signal.  

 

While selecting the signals, different artifacts such as muscle activities and eye movements 

were considered for quality check. Table 11 displays summary of the five EEG data with patients’ 

state, electrode type and placements, and the number of channels [2]. Set A and Set B contain 

surface EEG readings of five healthy awake volunteers with eyes open and closed, respectively. 

On the other hand, Sets C, D, and E contain EEG readings of five epileptic patients with state 

seizure-free (inter-ictal) for sets C and D and seizure activity (ictal) for set E. Sets A and B 

recording are captured by the international 10-20 electrode placement scheme. Set C readings are 

captured by placing electrode opposite to epileptogenic zone, while the recordings of Sets D and 

E are captured by placing electrodes within epileptogenic zone.  
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Table 11: Summary of the Bonn Dataset 

Set Patient State Electrode 

Type 

Electrode Placement Channels 

A Healthy, Awake, 

and Eyes Open 

 

Surface International 10-20 system 100 

B Healthy, Awake, 

and Eyes Closed 

 

Surface International 10-20 system 100 

C Epileptic, Inter-

ictal 

Intracranial Opposite to epileptogenic 

zone 

100 

D Epileptic, Inter-

ictal 

Intracranial Within epileptogenic zone 100 

E Epileptic, Ictal Intracranial Within epileptogenic zone 100 

 

In this work, we considered three classification cases for epilepsy classification− Case 1: 

Healthy (AB) vs. Seizure (E); Case 2: inter-ictal (CD) vs. ictal (E); and Case 3: non-seizure 

(ABCD) vs. seizure (E)  

5.3.2 Model Evaluation Metrics 

Different performance evaluation metrics− accuracy, precision, recall, and F-beta score, 

are used to assess the models’ performance which are mainly used in biomedical research. Recall 

accounts for the proportion of correctly classified ictal out of total ictal samples, while precision 

is the proportion of correctly classified non-ictal out of the total number of non-ictal samples. F-

beta score is the weighted harmonic mean of sensitivity and specificity, and accuracy is the ratio 

of correctly classified EEG signals vs. the total number of EEG signals.  
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5.3.3 Experimental Design 

We evaluated the proposed framework for EEG signal classification using one of the 

benchmark datasets: The University of Bonn. The raw EEG signals of the dataset were denoised 

using the power spectral density analysis. A threshold value of 10 was selected to filter the signals. 

The z-score standardization was applied to each signal for standardizing the values and identify 

outliers of the signal. A z-score value outside of 3-standard deviation was considered as an outlier 

and replaced with neighbor values using a k-NN imputation technique, where the value of 𝑘 = 3 

was chosen for imputation. As the EEG signal contains 4097 readings over 23.6 seconds, where 

each second consists of 178 data points, we segmented the signal where each segment is a 1 

seconds of EEG readings. Conventional ML classifiers such as Decision Tree (DT), Random 

Forest (RF), Support Vector Machine (SVM), and k-Nearest Neighbors (k-NN) cannot be directly 

applied to the original signal as these methods do not consider temporal dependencies while 

training the model. Hence, features can be extracted to feed into the classifiers. We extracted 

statistical, temporal, and spectral features from each segment of a signal. TSFEL, a python 

package, was used for non-overlapping window-level feature extraction from the signals [52]. 

Table 12 shows the list of statistical, spectral, and temporal features that are extracted for analysis.  

Each feature contains 23 different values generated by 23 segments of a signal. Summary 

statistics− mean, median, minimum, maximum, and standard deviation, are calculated for each of 

the features. 
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Table 12: List of extracted statistical, spectral, and temporal features 

Domain Features 

Statistical FFT mean coefficient, Wavelet absolute mean, Wavelet standard deviation, Wavelet 

variance, Spectral distance, Fundamental frequency, Maximum frequency, Median 

frequency, Spectral maximum peaks, Maximum Power Spectrum, Spectral 

Centroid, Decrease, Kurtosis, Skewness, Spread, Slope, Variation, Spectral Roll-off, Roll-

on, Human Range Energy, MFCC, LPCC, Power Bandwidth, Spectral Entropy, Wavelet 

Entropy, and Wavelet Energy 

Temporal Autocorrelation, Centroid, Mean absolute differences, Mean differences, Median absolute 

differences, Median differences, Distance, Sum of absolute differences, Total energy, 

Entropy, Peak to peak distance, Area under the curve, Absolute energy, Maximum peaks, 

Minimum peaks, Slope, Zero crossing rate,  

Spectral  Histogram, Interquartile range, mean absolute deviation, Median absolute deviation, Root 

mean square, Standard deviation, Variance, ECDF percentile count, ECDF slope, Kurtosis, 

Skewness, Maximum, Minimum, Mean, Median, ECDF, ECDF, and Percentile  

 

We applied feature selection methods on the overall features as some of the features are 

unnecessary due to highly correlated to each other and low variances. Pairwise correlation of 

features is computed using the Pearson method, and then, highly correlated features are removed 

applying a threshold.  Variance threshold method is applied to the features to drop all the low 

variant features considering a threshold value. Optimal thresholds 0.98 and 0.80 were selected 

using grid-search hyperparameter tuning for correlation coefficients and variance, respectively. 

Using the features selection process, the number of features significantly reduced to 151 from 4097 

features of the original signal. Moreover, the selected features are meaningful to further analyze 

the EEG signal. Finally, the optimal subset of features was fed into ML classifiers for EEG 

classification.  

Ten-fold cross validation was performed to check performance consistency, where each 

fold contains 90% of the signals as training data and remaining 10% signals as test data. Class 
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ratio was preserved in the process of splitting the data into training and testing in all three cases 

that we experimented. Moreover, training parameters were used to standardize both training and 

test data to avoid data leakage. The training data was used to train each of the models, while the 

test data was used for evaluating the performance of the models.   

5.3.4 Experimental Results  

Accuracy, F-beta score, Precision, and Recall are used to evaluate the models’ 

performance. We applied four different ML classifiers (SVM, RF, DT, and k-NN) on the 

University of Bonn dataset for EEG classification. 10-fold cross-validation was performed for each 

of the experiments. The same configuration was applied to each experiment to maintain 

consistency.  The hyperparameters for the ML classifiers were selected using the grid search 

technique. Our focus is on recall rates as our goal is to minimize the number of false negatives. 

Table 13 displays the experimental results of applying different ML classifiers on the Bonn 

Dataset. RF, SVM, and k-NN classifiers produced identical results (accuracy:99.7%; recall:99.9% 

& F-beta: 99.9%), while the DT classifier performed slightly less. For Case 1: the RF classifier 

outperformed the other three classifiers in terms of accuracy and recall by producing an accuracy 

and recall score of 98.4% and 98.0%, respectively. k-NN achieved the highest precision score of 

98.1% for Case 2. RF classifier achieved the maximum accuracy and recall score (98.8% and 

97.0%, respectively) for Case 3, while the nearest accuracy 98.4% and recall 96.0% achieved by 

the k-NN method.  

We evaluated effectiveness of the proposed framework by comparing it to some other 

advanced methods where the Bonn datasets were used for experiments. Table 14 illustrates 

comparative results of our proposed framework and other existing methods. The experimental 
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results demonstrated that the proposed framework achieved higher accuracies than most of the 

listed methods. For instance, the proposed framework achieved second highest accuracy for Case 

3 (ABCD vs. E) among the listed 9 recent studies. For Case 1 (AB vs. E): the proposed framework 

jointly achieved the second highest accuracy (99.7%) with [20], while our framework ranked 

fourth considering accuracy for Case 2 (CD vs. E).  

Table 13: Performance comparison of different classifiers for EEG classification 

 Case 1 Case 2 Case 3 

Acc. Recall Precision F-beta Acc. Recall Precisio

n 

F-beta Acc. Recall Precision F-beta 

RF   99.7
± 0.01 

  99.0
± 0.02 

  1.0
± 0.0 

  99.99
± 0.00 

   98.4
± 0.01 

   98.0
± 0.02 

   97.4
± 0.05 

   97.4
± 0.05 

   98.8
± 0.01 

   97.0
± 0.04 

   96.99
± 0.02 

   96.99
± 0.02 

DT   99.0
± 0.01 

  98.0
± 0.02 

  99.05
± 0.02 

  99.05
± 0.02 

   97.3
± 0.02 

   96.0
± 0.05 

   96.2
± 0.03 

   96.2
± 0.03 

   98.2
± 0.02 

  95.0
± 0.08 

  96.05
± 0.04 

  95.0
± 0.08 

SVM   99.7
± 0.01 

  99.0
± 0.02 

  1.0
± 0.0 

  99.99
± 0.00 

   98.0
± 0.01 

   97.0
± 0.02 

   97.04
± 0.02 

   97.04
± 0.02 

  98.2
± 0.01 

  93.4
± 0.07 

  97.04
± 0.02 

  97.04
± 0.02 

k-NN   99.7
± 0.01 

  99.0
± 0.02 

  1.0
± 0.0 

  99.99
± 0.00 

  97.6
± 0.02 

  95.0
± 0.03 

  98.1
± 0.03 

  98.1
± 0.03 

  98.4
± 0.01 

  96.0
± 0.04 

  96.04
± 0.02 

  96.04
± 0.02 
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Table 14: Comparison between proposed and other methods 

Studies Classifiers Cases Accuracy  

Swami et al. [15] (2016) DNN Case 1 

Case 3 

99.2 

95.2 

Zhang et al. [16] (2016) SVM Case 3 98.9 

Wang et al. [26] (2018) RF   Case 1 

Case 2  

Case 3  

100 

98.2 

98.5 

Singh et al. [18] (2018) DNN Case 1 

Case 2  

Case 3 

89.0 

99.3 

95.6 

Mursalin et al. [9] (2019) RF  Case 1 

Case 2  

Case 3 

98.6 

96.2 

96.9 

Raghu et al. [17] (2019) DNN Case 1 

Case 2  

Case 3 

97.1 

96.8 

97.2 

Gupta et al. [19] (2019) LS-SVM Case 2  

Case 3 

99.0 

98.6 

Mamli et al. [20] (2019) SVM Case 1 

Case 2  

Case 3 

99.7 

99.6 

97.4 

This Study RF  Case 1 

Case 2  

Case 3 

99.7 

98.4 

98.8 

5.4 Conclusion 

This chapter presented a novel classification framework involving feature extraction, 

feature selection, and employing ML classifiers for automatically and effectively classifying EEG 

signals. We pre-processed the signals by denoising using power spectrum density analysis and 

imputing outliers with k-NN methods. Moreover, we extracted summary statistics of window-

based statistical, temporal, and spectral features. Feature selection criteria: variance thresholding 

and correlated features removal are also applied to select an optimal set of discriminative features. 

We showed the effectiveness of our proposed method by comparing the classification performance 

to other recent advanced studies. Finally, our work can aid practitioners in adopting a fast and low-

cost classification model with stable and high accuracy in the results of the clinical practice and 

research environment. 
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Chapter 6:  Conclusion  

Epileptic seizure or epilepsy is a chronic neurological disorder that occurs due to brain 

neurons' abnormal activities and has affected approximately 50 million people worldwide. 

Automatically classify epilepsy into different epileptic states with a high accuracy rate is an urgent 

requirement. Though, machine learning algorithms has long been studied, imbalance class 

distribution problems and effective feature extraction from the EEG signals are still major 

challenges toward developing effective epilepsy classification methods. In this thesis, we 

presented three different novel frameworks to effectively classify epileptic states addressing the 

challenges by exploring state-of-the-art sampling techniques, empirically customizing the high- 

and low-variant principal components of PCA and leveraging summary statistics analysis of 

window-based features of EEG signals, respectively. The first two analysis contribute to effective 

epilepsy classification explaining imbalanced class distribution problem, while the third study 

exhibited the impact of effective feature extraction process. The experimental results demonstrated 

the effectiveness of our proposed novel, integrated machine learning-based, frameworks using a 

benchmark- University of Bonn EEG dataset.    

In this thesis, our experimentation was limited to University of Bonn EEG dataset 

containing a single channel. An extended research with other EEG datasets containing multiple 

channels can be performed to support our findings. Automatic channel selection is an active 

research field, which was not included in this study as the dataset we used contained single channel. 

In future, we can extend our research using multiple channel EEG datasets: Upenn and Mayo 

Clinics’ seizure detection dataset, and CHB-MIT Scalp EEG dataset [60, 61].  
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In the first study, we were limited to experiment different ratio size empirically, for 

oversampling the minority class or undersampling the majority class. Similarly in the second study, 

we empirically selected the cut for high-and low-variant principal components. These limitations 

can be avoided in future studies by developing an automatic selection criterion. We plan to 

automate the selection criteria using the Bayesian Optimization technique.   

Interpretability of machine learning is crucial for predictive analytics as it explains why the 

model operates. Though machine learning methods have been successfully applied, providing 

interpretability towards epilepsy classification yet to be explored. We plan to develop a window-

based interpretable machine learning framework that can provide valuable information towards 

epilepsy classification.   
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