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ABSTRACT 

DEEP CELLULAR RECURRENT NEURAL ARCHITECTURE FOR EFFICIENT 

MULTIDIMENSIONAL TIME-SERIES DATA PROCESSING 

 

Lasitha S. Vidyaratne 

Old Dominion University, 2020 

Director: Dr. Khan M. Iftekharuddin 

 

Efficient processing of time series data is a fundamental yet challenging problem in pattern 

recognition. Though recent developments in machine learning and deep learning have enabled 

remarkable improvements in processing large scale datasets in many application domains, most are 

designed and regulated to handle inputs that are static in time.  Many real-world data, such as in 

biomedical, surveillance and security, financial, manufacturing and  engineering applications, are rarely 

static in time, and demand models able to recognize patterns in both space and time. Current machine 

learning (ML) and deep learning (DL) models adapted for time series processing tend to grow in 

complexity and size to accommodate the additional dimensionality of time. Specifically, the biologically 

inspired learning based models known as artificial neural networks that have shown extraordinary 

success in pattern recognition, tend to grow prohibitively large and cumbersome in the presence of large 

scale multi-dimensional time series biomedical data such as EEG.  

Consequently, this work aims to develop representative ML and DL models for robust and 

efficient large scale time series processing. First, we design a novel ML pipeline with efficient feature 

engineering to process a large scale multi-channel scalp EEG dataset for automated detection of 

epileptic seizures. With the use of a sophisticated yet computationally efficient time-frequency analysis 

technique known as harmonic wavelet packet transform and an efficient self-similarity computation 

based on fractal dimension, we achieve state-of-the-art performance for automated seizure detection in 



   

 

EEG data. Subsequently, we investigate the development of a novel efficient deep recurrent learning 

model for large scale time series processing. For this, we first study the functionality and training of a 

biologically inspired neural network architecture known as cellular simultaneous recurrent neural 

network (CSRN). We obtain a generalization of this network for multiple topological image processing 

tasks and investigate the learning efficacy of the complex cellular architecture using several state-of-the-

art training methods. Finally, we develop a novel deep cellular recurrent neural network (CDRNN) 

architecture based on the biologically inspired distributed processing used in CSRN for processing time 

series data. The proposed DCRNN leverages the cellular recurrent architecture to promote extensive 

weight sharing and efficient, individualized, synchronous processing of multi-source time series data. 

Experiments on a large scale multi-channel scalp EEG, and a machine fault detection dataset show that 

the proposed DCRNN offers state-of-the-art recognition performance while using substantially fewer 

trainable recurrent units.    
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CHAPTER 1 

INTRODUCTION 

The rapid growth in computing power and ever increasing availability of data has made 

computational intelligence (CI) an important part of human life. In the past, the use of CI has 

been limited to specific applications in industrial control and robotics. However, recent 

advancements in CI have affected almost every aspect of human life such as intelligent 

transportation [1, 2], intelligent diagnosis and health monitoring for precision medicine [3-5], 

robotics, automation and machine health diagnosis [6, 7], and many others. Computational 

intelligence plays a critical role in the recognition of patterns in data relevant to a specific task. 

Consequently, classical pattern recognition has seen major successes in detecting patterns of 

inputs that are primarily static in time [8]. Typical applications for such static pattern recognition 

involve classification of an input vector to one of multiple classes, such as recognition of objects 

in an image, or establishing relationships between observations, such as regression analysis. 

However, most real world data obtained through an observation or measurement almost always 

exhibit changes with time. Though in some cases, the change of observations in time can be 

ignored, certain applications that particularly deal with changes across time require this 

additional temporal dimension to be incorporated in the pattern recognition process.  For 

instance, many applications involving health monitoring and diagnosis, machine fault detection, 

speech recognition, and natural language processing require recognition of representative 

patterns in time. Moreover, certain applications such as processing video data for activity 

recognition, and monitoring multi-channel EEG for seizure detection, may require recognition of 

patterns that extend in both spatial and temporal dimensions. Analysis of these time series 
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requires computational models that are specifically capable of capturing complex patterns in time 

and space for time series data processing.  

Traditional CI methods used in time series data processing involve machine learning 

models that constitute a pipeline of multiple processing steps that extract representative features 

from raw data prior to applying a classification or regression based on the application. This 

intermediate representation of raw data, known as ‘hand-engineered’ features, requires domain 

expertise and human interpretation of physical patterns such as texture, shape, geometry, and 

frequency spectral patterns, among others.  

These traditional methods have been shown to perform quite well, especially in situations with 

limited availability of observations and with appropriate domain expertise.  However, there are a 

few problems that may impede the performance of traditional machine learning methods in 

computational intelligence. First, the ‘hand engineered’ features are based on human 

interpretation; thus, they are heavily dependent on the application and expertise of a human with 

the specific application. Second, the hand engineered features are extracted from each 

observation without regard to noise and variation of data. Finally, the hand engineered features 

may not generalize well for all possible observations.  

An alternative to hand engineering of features is automated learning of features using 

artificial neural networks (ANN). The ANNs essentially mimic the working principles of the 

biological neurons in the human brain. As such, ANNs have shown an ability to learn complex 

functions and are dubbed ‘universal approximators’. The potential of ANNs is recently being 

exploited with access to large datasets, efficient training methods, and improved computing 

resources. Recent advancements in ANN research have led to ‘deep learning’ (DL) [9, 10] where 

large scale neural architectures are developed to tackle complex tasks. Most DLmodels are 
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applied to solve problems related to static data such as visual image recognition. This is due to 

the fact that the feed-forward information processing observed in generic ANNs is unable to 

account for the variations of observations through time. Consequently, a special variant of ANNs 

called recurrent neural networks (RNN) are developed to process time series data. The RNNs 

incorporate additional neural links that feed the information backward, enabling accumulation of 

temporal trends through memory. The success of DL and deep recurrent learning is largely due 

to the following aspects. Deep learning offers end-to-end trainable architectures that jointly learn 

feature extraction, selection, and classification. Deep learning also offers feature learning, aided 

by the input data and the classification targets, and avoids hand engineering of intermediate 

features. Thus, the DL methods often outperform classical machine learning models by 

dynamically learning optimal features through observations. However, current state-of-the-art 

DL models face a major limitation. The complexity, and the amount of trainable parameters of 

the DL models increase proportionally to the complexity of the data processing task. This is 

further exacerbated in the recurrent learning models where the additional feedback links account 

for further increase in complexity and trainable parameters. Especially in the presence of time 

series data that constitute spatial and temporal patterns, such as multi-channel EEG, typical deep 

recurrent models may be prohibitively cumbersome to utilize effectively. Hence, it is essential to 

revisit the fundamental ANN architectures and their biological relevance to design more efficient 

recurrent learning models for complex time-series processing. The following sections summarize 

current feature engineering methods used for large-scale time-series processing and discuss 

aspects of neural processing that may yield more efficient ANN architectures.   
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1.1 FEATURE ENGINEERING FOR TIME SERIES DATA 

The two main problems faced in time-series processing for a certain application are 1) 

selecting an appropriate representation of the time series data and 2) selecting a suitable 

categorization/regression method [11]. With the complexity of the data and the application, a 

more efficient intermediate representation of time-series data may be required for improved 

categorization performance [11, 12]. Moreover, this intermediate representation can be a set of 

derived properties of data, commonly called ‘features’, that essentially convert the temporal 

classification to a more amenable static classification task [13]. These representative features 

could be a set of simple statistics of the time series data such as mean and variance, skewness, 

kurtosis, largest peak and number of zero crossings [14]. More descriptive features such as 

autoregressive coefficients [15], frequency power spectral features [16], and features derived 

from time-frequency analysis such as wavelet transform [4, 16], wavelet packet transform [4, 

17], filter banks [18], and self-similarity features [13], and further hand-crafted versions of these 

features may also be considered to obtain a more discriminatory representation of data. However, 

one of the main problems associated with feature engineering is that the potency of such features 

depend on the data and the task at hand. Therefore, the performance of a machine learning 

pipeline depends on the hand selection of a subset of the aforementioned features or newly 

engineered features based on the domain expertise. Another strategy may be to use many feature 

extraction algorithms to obtain a comprehensive set of features and subsequently perform feature 

selection to pick the best features [19, 20]. However, the comprehensive feature extraction and 

additional feature selection step may substantially increase the computational cost. Nevertheless, 

the biggest limitation of feature engineering is the requirement of human intervention in hand 

crafting the features that may be relevant to given data and the task. Feature learning with ANN 
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largely alleviates this problem by progressively learning the best possible discriminatory feature 

from data. 

 

1.2 TIME SERIES PROCESSING WITH ARTIFICIAL NEURAL NETWORKS 

The ANNs have been widely studied since their inception [21] due to their ability to 

approximate complex functions. With improvements in computational resources and training 

methods, deep neural networks have been quite successful in solving various problems in areas 

such as robotics [22], image recognition [23], and text recognition [24]. The typical feed-forward 

neural networks are predominantly used in processing data that is static in time due to an 

inability to process temporal relations owing to the limited forward information processing 

nature. Recurrent neural network (RNN) [25] or a time-delay neural network (TDNN) is a 

variant of ANN with the added capability of information aggregation through feedback 

connections. RNNs such as Elman and Jordan architectures [26-28] process time series by 

reading samples sequentially in time, and the feedback connections aid in retaining valuable 

information through time steps. Further improvements to the feedback units in retaining memory 

through longer time-sequences have been made through developments such as Long Short-term 

Memory (LSTM) [29] units and Gated Recurrent Units (GRU) [30]. Large-scale deep versions of 

such recurrent neural networks architecture have been successfully utilized for several problem 

domains [31-34]. Though deep learning has shown superior performance in most problem 

domains, current state-of-the-art models suffer from a major limitation. Depth, complexity, and 

amount of trainable parameters associated with these models grow proportionally to the 

complexity of the input dimensionality and the given task. This problem is further exacerbated in 

recurrent learning models as the additional feedback links constitute even more trainable 
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parameters. Therefore, such architectures can grow prohibitively large in the presence of large-

scale and multi-source time-series data such as EEG. Therefore, this research focuses on 

designing efficient neural network architectures to analyze multi-source and time series datasets. 

Due to the ANNs basis in biological neuronal processing in the brain, we believe it is prudent to 

look back into the working principles of biological neuronal systems to identify more efficient 

structural modeling.       

 

1.3 BIOLOGICAL BASIS FOR EFFICIENT INFORMATION PROCESSING 

Neurobiologists’ findings [35-39] suggest that primate visual brain can be characterized 

by a set of parallel, multistage systems that are specialized to process information 

simultaneously. The parallel information processing in the visual system begins from the retina. 

The retina in the primate visual system is composed of different types of ganglion cells [40]. 

Each ganglion cell type is thought to tile the retina, providing a complete representation across 

the entire visual field [41]. The soma of each ganglion cell appears to be regularly spaced across 

the retina so that, collectively, their dendritic field cover the retina uniformly and with constant 

overlap as shown in Fig. 1 [35]. This highly ordered mosaic architecture is then linked to parallel 

pathways into the input layers and compartments of other components in the visual system (e.g. 
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1 Image obtained from [35] J. J. Nassi and E. M. Callaway, "Parallel processing strategies of the primate visual system," Nature 

Reviews Neuroscience, vol. 10, pp. 360-372, 2009. for explanation purposes only. 

primary visual cortex) [35]. Each component processes the information in many different ways 

and for many different behaviors such as object recognition, scene understanding, etc. [36]. The 

information received at the primary visual cortex area also encounters a series of simultaneous 

processing [37]. Therefore, this parallelized ‘divide and conquer’ type information processing 

seems to be an integral part of the primate brain evidenced at multiple levels of processing.  

Consequently, our above observations on the biological neuronal system suggests that integrating 

some type of a distributed information processing scheme in our computational models may 

improve the efficacy of the model and also may lead to a more biologically plausible 

architecture.  

 

 

Fig. 1. The receptive field mosaic of an actual population of ganglion cells in the retina 

overlayed on an example natural scene. Red, blue and yellow ellipses refer to multiple 

ganglion cell types1. 
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1.4 CELLULAR SIMULTANEOUS RECURRENT NETWORK 

The cellular simultaneous recurrent network (CSRN) is a unique ANN architecture that 

mimics both the distributed computing properties and the local feedback inherent in the visual 

processing of the human brain. The CSRN architecture consists of a 2D cellular arrangement 

similar to the cellular neural networks proposed in [42-44]. This cellularity in the CSRN 

promotes parallelized processing of inputs that are distributed in 2D space.  Each cell of the 

CSRN consists of a simultaneous recurrent network (SRN). The SRN is essentially a generalized 

multi-layered perceptron (GMLP) augmented for biologically inspired localized feedback 

connections called simultaneous recurrency. These biologically inspired properties give the 

CSRN superior function approximation capabilities and the ability to share resources by sharing 

trainable weights. The CSRN was first introduced by Pang et al. [45] who demonstrated its 

capability in efficient approximation of highly dynamical functions by learning a complex 2D 

maze traversal task. Identifying its unique ability to learn 2D topological relationships, the 

CSRN is further extended to learn basic image processing tasks such as image transformations 

[46], image binarization [46, 47], filtering [48], and registration [49].   

Though efficient at learning complex functions, the cellularity and the simultaneous 

recurrency makes CSRN quite a complex neural network architecture. This in turn makes the 

training and applying modifications to the architecture quite difficult. The CSRN is initially 

trained with the backpropagation through time (BPTT) algorithm for the 2D maze traversal task 

in [45]. Though successful, the use of BPTT is time consuming, especially for large scale 

applications such as image transformation. The SRN training with extended Kalman filter (EKF) 

is subsequently introduced for such applications [46]. Though the overall training time is 

improved with EKF, it is still plagued by issues with instability, and the computation of Jacobian 
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for the EKF algorithm is still performed using BPTT, which inhibits structural changes. 

Therefore, we still consider the proper training of CSRN to be an open problem that we plan to 

address within this dissertation. 

 

1.5 FROM MACHINE LEARNING TO ANNS FOR TIME SERIES ANALYSIS 

  Machine learning (ML) based time series analysis follows the classical method of hand-

crafted feature extraction, feature selection, and classification. Consequently, each of these 

stages in the ML pipeline involves design and implementation of algorithms based on the 

experience and the domain expertise of the user. For instance, processing of multi-channel EEG 

for seizure detection may require the use of time-frequency feature extraction methods, such as 

wavelet transform to capture the discriminatory features. Inevitably, such a process leads to 

improvements in existing methods and the discovery of new methods and algorithms that may 

provide further insight into the data and the application domain. Moreover, a contemporary ML 

pipeline may provide the necessary baseline platform for further research with insight into the 

current limitations of algorithms and domain knowledge for a specific task. Therefore, it may be 

prudent to study the contemporary ML methods for large-scale time series analysis as our initial 

goal.  

ANNs have been widely used within ML pipelines as a trainable classification model. 

Though ANNs are regarded as universal function approximators, the limited scalability and 

associated difficulties in training severely limited its application for more complex tasks. The 

recent advent of deep learning and improvements in computing hardware have allowed ANNs to 

be effective and grow in size and depth at the same time. Such DL models have shown the ability 

to learn complex tasks, regularly achieving performance superior to contemporary ML methods. 
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However, typical deep ANN structures tend to grow prohibitively large in the presence of 

complex, multi-dimensional datasets such as large-scale time series studies in this work. There 

may also be further issues in effective training of such architectures especially with limited 

availability of training data and computing resources. Consequently, we believe a comprehensive 

preliminary study of contemporary ML methods applied to complex data may provide insights 

that may be beneficial for designing an efficient generalized DL model as a final contribution.    

 

1.6 PROPOSED WORK AND CONTRIBUTIONS 

This dissertation proposes to systematically address the prevailing intricacies in efficient 

analysis of complex multi-dimensional time series data. Consequently, we first investigate the 

efficacy of conventional machine learning with hand crafted feature extraction for a large scale 

multi-channel EEG classification task. A novel  

ML pipeline is proposed for high accuracy EEG classification with real-time performance, 

achieving state-of-the-art in ML based EEG processing for seizure detection.  
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Table 1. Summary of proposed contributions 

 

 

Next, we investigate the efficacy of ANN based feature learning for complex multi-

sensor signal data analysis. For this, we first characterize and develop a contemporary cellular 

recurrent neural network architecture for complex dynamic function approximation tasks. 

Specifically, we investigate and address the intricacies in generalization and training of the 

complex cellular SRN architectures for several applications.  

Finally, we introduce a novel state-of-the-art bi-directional deep cellular recurrent neural 

network (DCRNN) architecture for efficient processing of large-scale time series data from 

spatially distributed multi-sensor systems. We also obtain the generalization of the DCRNN for 

analysis multi-sensor time series data for different application domains.  Table 1 summarizes the 

proposed contributions of this dissertation. 

Research Goal Topic Contributions 

1 Contemporary machine 

learning for multi-dimensional 

time series analysis 

Characterization and development 

of a novel ML based pipeline for 

high accuracy EEG classification 

for real-time seizure detection 

2 Characterization and 

generalization of a 

contemporary cellular 

recurrent neural architecture 

and training for highly 

dynamical function 

approximation 

Comprehensive investigation of 

training and generalization of the 

cellular SRN architecture for a 

multitude of topological image 

processing applications 

3 Development of a novel 

efficient deep learning 

architecture for spatially 

distributed multi-sensor signal 

time series processing 

Introduction of novel bidirectional 

deep cellular recurrent neural 

network (DCRNN) architecture for 

efficient processing of complex 

multi-dimensional time-series data 

for multiple application domains  
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The research contributions of this dissertation have resulted in several peer reviewed 

publications as follows. The research findings related to research Goal 1 are published in IEEE 

Transactions on Neural Systems and Rehabilitation Engineering (TNSRE) [17]. The findings of 

research Goal 2 contributed to several publications in the proceedings of the International Joint 

Conference on Neural Networks (IJCNN) [44, 48, 50] and the Society of photo-Optical 

Instrumentation Engineers (SPIE) [49, 51]. Finally, the overall contributions of research Goal 3 

are under preparation to be submitted to IEEE Transactions on Neural Networks and Learning 

Systems (TNNLS).  

 

1.7 ORGANIZATION OF THE DISSERTATION 

This dissertation is organized as follows.  Chapter 2 describes the necessary background 

on the feature engineering methods used for the machine learning framework developed for 

multi-channel EEG time series analysis. As such, the sub-sections cover brief summaries of 

harmonic wavelet transform (HWPT) and fractal dimension analysis (FD). The remaining 

sections provide a brief understanding of artificial neural networks (ANNs), different types of 

architectures for feed-forward and recurrent learning, and cellular neural networks with a brief 

introduction to cellular simultaneous recurrent networks and associated learning schemes. 

Chapter 3 discusses the proposed ML pipeline developed for efficient processing of large-scale 

EEG time-series data. This chapter details the feature extraction and the multi-level moving 

window based analysis technique developed for the proposed pipeline, followed be experimental 

result and a comparison with state-of-the-art techniques. Chapter 4 investigates the efficacy and 

trainability of the CSRN architecture for several complex topological image processing tasks. 

This chapter obtains a generalization of CSRN architecture for multiple topological mapping 
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tasks and analyzes the trainability using several state-of-the-art learning algorithms based on 

variations in the input dimensionality and the respective cellularity of the model. Chapter 5 

discusses the proposed novel Deep Cellular Recurrent Neural Network (DCRNN) architecture 

for efficient processing of multi-source time series datasets. This chapter demonstrates the 

generalizability of the architecture for time series data on multi-channel EEG and machine fault 

classification. The chapter also highlights the efficacy of the proposed architecture cellular 

weight sharing functionality. Finally, the dissertation concludes with a summary and future work 

in chapter 6.    
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CHAPTER 2 

BACKGROUND OF THE STUDY 

This chapter provides a brief discussion of the techniques required to understand this 

dissertation. Accordingly, we summarize several hand engineered feature extraction techniques 

used for time-series processing that is utilized in chapter 3 of this work. We then illustrate the 

fundamentals of artificial neural networks (ANNs), basic ANN architectures and their training 

methods, working principles of recurrent neural networks, and the role of feedback connections 

in time-series data processing. In the next few sub-sections, we briefly go over each of these 

techniques.     

 

2.1 TIME-SERIES DATA 

Time series data is essentially a sequence of values obtained through observations over 

time. The sequence of observations are usually evenly spaced through time and commonly 

represented [52] as a vector = {𝑥(1), 𝑥(2), … , 𝑥(𝑛)} , where each element 𝑥(𝑡) ∈ 𝑅𝑚 of 𝑋 is a 

vector of 𝑚 values such that 𝑥(𝑡) = {𝑥1
(𝑡)

, 𝑥2
(𝑡)

, … , 𝑥𝑚
(𝑡)

}. The size of 𝑚 is determined by the 

dimensionality of input at time 𝑡, and may have an impact on the processing speed the time 

series based on the algorithm used.  

 

2.2 FEATURE ENGINEERING FOR TIME-SERIES DATA 

This section provides details on the feature engineering algorithms utilized in the ML 

based data processing pipeline developed for the automated seizure detection with multi-channel 

scalp EEG.  
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2.2.1 FRACTAL ANALYSIS 

Fractal geometry has been exploited as a tool to describe, model, and analyze complex 

objects or curves found in nature [53]. Fractal dimension (FD) can be used to quantify the 

complexity of a self-similar pattern [54]. Strict self-similarity is a property characterized by 

artificially generated mathematical objects such as the Sierpinski triangle [55]. In time series 

analysis, fractals can be used to measure the complexity of a waveform [56]. 

This work proposes a seizure detection method employing the box-counting method, a 

fast and commonly used FD estimation algorithm, for estimating the complexity of the EEG 

waveform [57]. Let the size of a box be ε, where (휀 > 0), and the minimum number of boxes of 

size ε needed to cover signal s, be 𝑁𝐵(휀). The box-counting dimension of s, 𝑁𝐵(휀) is proportional 

to 1/휀𝑑𝐵 as 휀 → 0 where 𝑑𝐵 is the FD of s. This can be expressed using a positive constant k 

where, 

lim
𝜀→0

𝑁𝐵(휀)

1/휀𝑑𝐵
= 𝑘. (1) 

 

Using natural logarithm on Eq. (1) we have, 

lim
𝜀→0

(ln 𝑁𝐵(휀) − ln 1/휀𝑑𝐵) = ln 𝑘. (2) 

 

Rearranging Eq. (2) offers FD 𝑑𝐵 given as, 

𝑑𝐵 = lim
𝜀→0

ln 𝑁𝐵(휀) − ln 𝑘

ln 1/휀
. (3) 

 

In Eq. (3) as 휀 → 0, (− ln 𝑘 / ln(
1

𝜀
)) → 0. Therefore, we have, 
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𝑑𝐵 = lim
𝜀→0

ln 𝑁𝐵(휀)

ln 1/휀
. (4) 

 

Equation (4) shows that, if the relationship between ln 𝑁𝐵(휀) and ln 1/휀 is linear, the FD value 

𝑑𝐵 is obtained as the slope of the straight line formed by ln 𝑁𝐵(휀)  and ln 1/휀. 

 

2.2.2 HARMONIC WAVELET PACKET TRANSFORM 

The rhythmic patterns in most seizure related EEG occurs within multiple frequency 

ranges [58, 59]. Therefore, it is essential to accurately capture these spectral features to increase 

the sensitivity of seizure detection. Moreover, the non-stationary nature of EEG prompts the use 

of time-frequency analysis methods to extract such features [58, 60, 61].  

Accordingly, this work utilizes a variant of wavelet packet transform known as harmonic 

wavelet packet transform for feature extraction in EEG. Generic discrete wavelet packet 

transform methods require recursive calculations for systematic signal decomposition into 

subsequent levels. In contrast, discrete harmonic wavelet packet decomposition is obtained using 

harmonic kernels similar to the Fourier basis function and does not require recursive calculation 

to achieve higher frequency resolutions [7]. 

Wavelet transform is obtained by computing the correlation between the signal x(t) and 

the conjugate �̅�(𝑡) of the wavelet function 𝑤(𝑡) given as, 

 

𝑋(𝑡) =  ∫ 𝑥(𝜏)�̅�(𝜏 − 𝑡)
∞

−∞

𝑑𝜏. (5) 

 

X(t) denotes the resulting wavelet coefficients in Eq. (5). 
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Harmonic wavelet transform, on the other hand, uses the harmonic basis function [62]. 

The design of harmonic wavelets is based on the idea that its frequency spectrum is restricted to 

non-overlapping octave bands [63]. The frequency domain expression for the harmonic wavelet 

[7, 62] is given as, 

 

𝑊𝑚,𝑛(𝜔) = {

1

2𝜋(𝑛 − 𝑚)
    𝑓𝑜𝑟  2𝜋𝑚 ≤ 𝜔 ≤ 2𝜋𝑛,

0                                     𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (6) 

 

where m and n are wavelet scaling parameters and take real values [30]. The time domain 

expression for the harmonic wavelet is computed using inverse Fourier transform as follows, 

 

𝑤𝑚,𝑛(𝑡) =  ∫ 𝑊𝑚,𝑛(𝜔)𝑒𝑖𝜔𝑡𝑑𝜔 =  
𝑒𝑖2𝜋𝑛𝑡 − 𝑒𝑖2𝜋𝑚𝑡

𝑖2𝜋(𝑛 − 𝑚)𝑡

∞

−∞

, (7) 

where 𝑖2 = −1. Equation (7) can be further generalized by adding the wavelet translation 

parameter k such that 𝑤𝑚,𝑛(𝑡) → 𝑤𝑚,𝑛 (𝑡 −
𝑘

𝑛−𝑚
) . The harmonic wavelet transform is finally 

expressed as [7], 

 

ℎ𝑤𝑡(𝑚, 𝑛, 𝑘) = (𝑛 − 𝑚) ∫ 𝑥(𝜏)�̅�𝑚,𝑛 (𝜏 −
𝑘

𝑛 − 𝑚
)

∞

−∞

𝑑𝜏, (8) 

 

where ℎ𝑤𝑡(𝑚, 𝑛, 𝑘) are harmonic wavelet coefficients. Furthermore, the harmonic wavelet 

transform can be easily computed in the frequency domain by inner product between the signal 

and conjugate of the wavelet function: 
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𝐻𝑊𝑇(𝑚, 𝑛, 𝜔) = 𝑋(𝜔)�̅�𝑚,𝑛(𝜔), (9) 

 

where �̅�𝑚,𝑛(𝜔) is the conjugate of 𝑊𝑚,𝑛(𝜔). This is the Fourier transform of the harmonic 

wavelet at scale (𝑚, 𝑛), and 𝑋(𝜔) is the Fourier transform of the signal 𝑋(𝑡). As harmonic 

wavelets are compact in the frequency domain, the harmonic wavelet transform is easily 

computed using the Fourier transform operation. 

The bandwidth of harmonic wavelets is determined by the scaling parameters m and n. 

The generic octave band frequency spectrum of harmonic wavelets can be obtained by replacing 

m and n with 𝑚 = 2𝑗 and 𝑛 = 2𝑗+1 such that (𝑛 − 𝑚) = 2𝑗; where j denotes the octave scaling 

of the wavelet.  

Using appropriate values for scaling parameters m and n, it is possible to generate 

harmonic wavelets that are scaled to represent different regions in the frequency spectrum with 

the same bandwidth. This capability is used in deriving the Harmonic Wavelet Packet Transform 

[7]. Frequency sub-bands for harmonic wavelet packet transform (HWPT), are denoted by 2𝑗 

where j is the decomposition level [7]. Therefore, the bandwidth for each sub-band is determined 

as, 

 

𝑓𝑏 =
𝑓ℎ

2𝑗
, (10) 

 

where 𝑓ℎ is the highest frequency component of the signal to be transformed, and 𝑓𝑏 denotes the 

bandwidth of each sub-band in Hertz. The Bandwidth of the harmonic wavelet is given by 

2𝜋(𝑛 − 𝑚) as shown in Eq. (6). Therefore, the wavelet scaling parameters n and m must be 

chosen so that HWPT satisfies the following condition, 
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2𝜋(𝑛 − 𝑚) = 2𝜋𝑓𝑏 . (11) 

 

Then the harmonic wavelet packet coefficients can be found as [7], 

 

ℎ𝑤𝑝𝑡(𝑗, 𝑙, 𝑘) = ℎ𝑤𝑡(𝑚, 𝑛, 𝑘) (12) 

 

where ℎ𝑤𝑝𝑡(𝑗, 𝑙, 𝑘) denotes the harmonic wavelet packet coefficients of 𝑙𝑡ℎ sub-band in 𝑗𝑡ℎ 

decomposition level, and k is the index of the coefficient. The scaling parameters for this 

computation are selected such that, 

𝑚 = 𝑙 ×
𝑓ℎ

2𝑗
= 𝑙 × 𝑓𝑏 (13) 

 

and, 

 

𝑛 = (𝑙 + 1) ×
𝑓ℎ

2𝑗
= (𝑙 + 1) × 𝑓𝑏 , 

                                           𝑤ℎ𝑒𝑟𝑒 𝑙 = 0,1, ⋯ , 2𝑗 − 1.      

(14) 

   

In Eqns. (13) and (14), 𝑓𝑏 denotes the bandwidth of each sub-band as defined in Eqn. (10). The 

energy content in each sub-band of harmonic wavelet packet decomposed EEG signals are used 

as a feature for seizure detection as this effectively captures the oscillatory nature of seizures. 

The energy at each sub-band of the EEG signal is computed using the harmonic wavelet packet 

coefficients  ℎ𝑤𝑝𝑡(𝑗, 𝑙, 𝑘) such that, 
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𝐸𝑛(𝑗, 𝑙) = ∑|ℎ𝑤𝑝𝑡(𝑗, 𝑙, 𝑘)|
2

𝑁

𝑘=1

 (15) 

 

where 𝐸𝑛(𝑗, 𝑙) denotes the energy of the signal at 𝑙𝑡ℎ sub-band in 𝑗𝑡ℎ decomposition level. N 

denotes the total number of HWPT coefficients in each sub-band, and k denotes the index of 

each coefficient. 

 

2.3 ARTIFICIAL NEURAL NETWORKS 

Artificial Neural Networks (ANNs) are inspired by human and animal neural pathways 

such that the ANNs can mimic the ability to learn and adapt. The ANNs can be considered as 

universal approximators such that the ANNs have the ability to approximate a given function 

distribution. The structure of an ANN lightly resembles that of a biological neuronal cluster 

combining an array of simple processing units, called neurons [64].  

The first modeling of an artificial neuron complete with a possible linear or non-linear 

activation function is given in [21]. Fig. 2 shows an example of a non-linear neuronal. Inputs to 

the neuron are labeled as, 𝑥0, 𝑥1 … , 𝑥𝑛. The input 𝑥0 in the model is a fixed input that is typically 

set to 1 and provides a weighted external bias to the neuron. Each input to the neuron is 

multiplied by corresponding weights and summed at the summing junction. The output of the 

neuron is obtained by transforming the weighted sum of inputs, 𝑆𝑖, via the activation function, 

𝑓( ). 
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The model can be mathematically represented as: 

𝑦𝑖 = 𝑓(𝑆𝑖) = 𝑓 (∑ 𝑤𝑖𝑗 ∙ 𝑥𝑗

𝑛

𝑗=0

) (16) 

Commonly used linear and non-linear activation functions  𝑓( ) include sigmoid, hyperbolic 

tangent, piecewise linear, rectified linear, etc.  

 

 

 

∑ 𝑓(𝑆) 

𝑥0 

𝑥1 

𝑥2 

𝑥𝑛 

𝑆𝑖 
𝑦𝑖 

Neuron 

𝑤𝑖0 

𝑤𝑖1 

𝑤𝑖2 

𝑤𝑖𝑛 

Fig. 2. An Artificial neuron model. x0, x1 … , xn denote the bias and external inputs 

respectively. The corresponding synaptic weights are denoted by wi0, wi1 … , win, 

where i denotes the current neuron and n denotes the input number.  
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2.4 NEURAL NETWORK ARCHITECTURES 

Neural networks are constructed by connecting multiple artificial neurons (such as the 

model shown in Fig. 2) in some organized fashion.  Based on the direction of signal-flow, neural 

networks can be categorized as feed-forward and recurrent. In a feed forward network, the signal 

flows only in one direction. However, recurrent networks contain feedback connections, 

enabling signal flow in both directions.  

 

2.4.1 MULTI-LAYERED FEED-FORWARD NETWORKS 

Feed forward neural networks that connect neurons in a layered fashion are called multi-

layered feed-forward networks (MLFF), or multi-layered perceptrons (MLP) [65]. An example 

3-layer MLP is shown in Fig. 3. The layer between input and output layers is called the hidden 

layer. The neurons/nodes in this layer are referred to as 'hidden' as their outputs are not externally 

visible. Note that an MLP may contain multiple hidden layers. MLPs are regarded as the most 

popular type of ANN and have gone through extensive research. The MLPs have been shown to 

be able to approximate any sufficiently smooth function and are regarded as a universal 

approximator. 
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At its inception, successful training of MLPs was problematic due to the difficulties in 

computing the required derivatives. However, the introduction of the rule of back-propagation by 

Werbos [66], and other related studies [67] resulted in a tractable training algorithm for MLPs. 

 

2.4.2 RECURRENT NEURAL NETWORK 

Observe that the information flow of the neural network shown in Fig. 3 occurs in only 

one direction. However, the biological neural structures in the brain have been shown to exhibit a 

high level of recurrent behavior [68, 69]. This can be factored into the design of ANNs by 

considering feedback pathways. Such a neural network that contains one or more feedback 

connections among neurons is regarded as a recurrent neural network (RNN).  In fact, the MLFF 

shown in Fig. 3 can be converted to an RNN by adding a feedback loop to a hidden layer or an 

𝑥1 

𝑥2 

𝑥𝑛  

ℎ1 

ℎ2 

ℎ𝑚  

𝑦 
𝑦 

input layer hidden layer output layer 

Fig. 3. A multi-layered feed-forward network 
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output layer neuron. Though adding a feedback connection may seem trivial, recurrency in an 

ANN has a profound effect on its training and performance.  

Recurrent neural networks can be categorized into either time-delayed RNN or 

Simultaneous RNN, based upon the nature of the feedback connection.   

 

2.4.2.1 TIME-DELAYED RECURRENT NEURAL NETWORK  
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𝑥𝑁 
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Fig. 4. Time-delayed recurrent (Elman) neural network 
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Fig. 4 shows a simple Elman time-delayed recurrent neural network (TDRNN) 

architecture. The Elman TDRNN resembles a feed forward network but with an additional 

feedback connection from the hidden layer to the input layer with a unit delay. The forward 

propagation equation for the RNN in Fig. 4 is: 

 

𝑌𝑘
𝑖 = 𝑓 [(∑ 𝑊𝑙𝑘

𝑖𝑛𝑝

𝑁

𝑙=1

𝑋𝑙
𝑖) + ( ∑ 𝑊𝑚𝑘

𝑟𝑒𝑐

𝐾

𝑚=1

𝑌𝑚
𝑖−1)] ′ (17) 

 

where, 𝑌𝑘
𝑖 is the output from the hidden node 𝑘 at 𝑖𝑡ℎ time point in the data sequence. 𝑊𝑙𝑘

𝑖𝑛𝑝
 is the 

weight connecting  𝑙𝑡ℎ input component, 𝑋𝑙
𝑖 at time 𝑖, with hidden unit ℎ𝑘

𝑖 . Similarly, weight 

𝑊𝑚𝑘
𝑟𝑒𝑐 connects the previous (recurrent) output component 𝑌𝑚

𝑖−1 with the hidden unit ℎ𝑘
𝑖 . 

Note that eqn. (17) can be expanded backwards through the data sequence from 𝑖 − 1 

until the initial element of the input sequence. This reveals that the current output 𝑌𝑖 of the RNN 

depends on the current input 𝑋𝑖 as well as the context accumulated through the previous outputs.  

This way of processing, however, may not be quite efficient, especially if the whole data 

sequence is available, as the future context is unused. Moreover, the unidirectional model often 

fails to form proper responses to the first few inputs of a sequence due to lack of past context.  

The bidirectional RNN (BRNN) [70] alleviates these problems by making use of the past 

as well as the future context of a data sequence. BRNN can be thought of as a straightforward 

extension of the classic RNN, where it maintains two different recurrent layers for each direction 

(one for processing from left to right (𝑅𝑁𝑁𝑑1), the other from right to left (𝑅𝑁𝑁𝑑2)). BRNN 

then combines the outputs of 𝑅𝑁𝑁𝑑1 and 𝑅𝑁𝑁𝑑2 using an additional output layer. Fig. 5 shows 

the general composition of a BRNN. 
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The 𝑅𝑁𝑁𝑑1  and 𝑅𝑁𝑁𝑑2 in Fig. 5 are recurrent neural networks such as the one shown in 

Fig. 4. The common output layer combines outputs from each directional RNN to produce the 

final output 𝑌𝑖for the 𝑖𝑡ℎelement in the data sequence. Note that this bidirectional setup ensures 

constant contextual influence in processing any element 𝑖 of the input data sequence. 

 

2.4.2.2 LONG SHORT-TERM MEMORY NETWORK 

The generic recurrent neural networks such as in Fig. 4 face a known problem of limited 

reach of context over time series data on the network output. This is due to the limited or 

decaying backpropagation error over long time periods of a given time-series [71]. This can be 

considered as a vanishing gradient problem over time, similar to the vanishing gradient problem 

that occurs over depth of a deep network architecture. Consequently, the long short-term 

Fig. 5. Bidirectional RNN (BRNN) architecture 
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memory is developed to address this vanishing error signal, with the introduction of memory 

gates that control the flow of context over time [72]. Fig. 6 shows a signal flow diagram of an 

LSTM unit. 

 

 

 

The full operation of an LSTM unit for a single time step [73] is described in Eqns. (18) 

to (22).  

 

𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1), (18) 
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Fig. 6. Long Short-Term Memory Unit Signal Flow Diagram 
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𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1), (19) 

𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1), (20) 

𝑠𝑡 = 𝑓𝑡 ⊙ 𝑠𝑡−1 + 𝑖𝑡 tanh(𝑊𝑠𝑥𝑡 + 𝑈𝑠ℎ𝑡−1), (21) 

ℎ𝑡 = 𝑜𝑡 ⊙ tanh(𝑠𝑡). (22) 

 

Typical input components for an LSTM unit at time step 𝑡 includes the signal input 𝑥𝑡, 

hidden output of the previous time step ℎ𝑡−1, and memory accumulated at the previous time step 

𝑠𝑡−1. The input signal 𝑥𝑡 and previous hidden signal ℎ𝑡−1 are combined in Eqns. (18) to (20) and 

passed through a sigmoid activation function to obtain 𝑖𝑡, 𝑓𝑡 and 𝑜𝑡. These are known as the 

“gates” such that if the sigmoid output is near 0, the gate signals have the effect of inhibiting the 

propagation of the corresponding input signal. Accordingly, the input gate 𝑖𝑡 is used to control 

the effect of the signal input. The forget gate 𝑓𝑡 is used to clear the memory. The output gate 𝑜𝑡 is 

used to clear the hidden output. The effect of the three gates 𝑖𝑡, 𝑓𝑡 and 𝑜𝑡 on the running memory 

𝑠𝑡, and the hidden output ℎ𝑡 can be observed in Eqns. (21) and (22). This gate combination in 

LSTM helps preserve the long term and short term temporal relevance in time series of variable 

length [72]. 
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2.4.2.3 SIMULTANEOUS RECURRENT NEURAL NETWORK 

 

 

 

The main difference between TDRNN and simultaneous recurrent network (SRN) is the 

lack of time delay (𝑍−1) in the feedback loops, as shown in Fig. 7. The SRN architecture 

therefore prompts the use of two time scales: external and internal (core) in its data processing 

scheme. The external time runs slowly, to the point that each output only corresponds to the 

latest input (such as in the case of a feed forward network). The internal time, however, runs 

much faster, allowing for the system to run multiple forward propagations until the outputs settle 

down to the final stable values before being read externally. The forward propagation equations 

for the forward propagation of an SRN are: 
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Fig. 7. Simultaneous recurrent network (SRN) 
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𝑧𝑘
𝑖 = 𝑓 [(∑ 𝑊𝑙𝑘

𝑖𝑛𝑝

𝑁

𝑙=1

𝑋𝑙) + ( ∑ 𝑊𝑚𝑘
𝑟𝑒𝑐

𝐾

𝑚=1

𝑧𝑚
𝑖−1)]       𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝐶, 𝑧𝑚

0 = 0 (23) 

𝑌𝑘 = 𝑧𝑘
𝐶 , (24) 

 

where, 𝑌𝑘 is the external output from the hidden node 𝑘 that corresponds with the data sequence 

data sequence 𝑋. 𝑖 denotes the core network forward propagation iterations that correspond with 

the internal time scale, which runs for 𝐶 steps.   𝑊𝑙𝑘
𝑖𝑛𝑝

 is the weight connecting  𝑙𝑡ℎ input 

component, 𝑋𝑙, with hidden unit ℎ𝑘
𝑖 . Similarly, weight 𝑊𝑚𝑘

𝑟𝑒𝑐 connects the recurrent core output 

component 𝑧𝑚
𝑖−1 with the hidden unit ℎ𝑘

𝑖 .  

The 'settling' response of the SRN is similar to that of a non-linear dynamical system. 

Therefore, SRNs incorporate the flexibly of performing the tasks of MLPs as well as being 

particularly proficient in approximating feedback based dynamic systems [74]. Furthermore, the 

SRN forward propagation process resembles the multiple time scales present in the learning 

process of the human brain [75]. 

Note from equations (17) and (23) that forward propagation functions of both TDRNN 

and SRN involve current input as well as previous/core outputs in the current output of the 

network. This inhibits the use of standard back-propagation (BP) for training this network. 

Werbos et al. [76] devised an extension to the BP algorithm termed Back-Propagation Through 

Time (BPTT) in order to effectively train RNNs. Taking the DTRNN forward propagation 

function as an example, it can be shown that equation (17) can be expanded backwards through 

the data sequence from i-1 until the initial value of the sequence. The BPTT algorithm works in a 

similar manner, where it ‘unfolds’ the network through time. This unfolding process creates a 

pseudo feed forward network that consists of replicas of the original RNN with the feedbacks 
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now feeding forward to the following replica of itself. BPTT then uses the standard BP algorithm 

on the pseudo feed forward network to compute weight updates. However, unlike usual feed 

forward networks, the pseudo network shares weight among each replica. Therefore, the weights 

are updated simultaneously at the end, using the sum of all the derivatives corresponding to each 

weight. The same BPTT algorithm can be applied to SRN by 'unfolding' equation (23). 

 

2.4.3 CELLULAR NEURAL NETWORK 

 

 

Cellular neural networks (Cellular ANNs) are another type of ANN architecture that 

consists of cells that contain identical elements arranged in some geometric pattern. The first 2D 

Cellular ANN was proposed by Chua et al. in [77]. Each element (cell) of the Cellular ANN 

Fig. 8. Cellular neural network architecture. This cellular neural network consists of 16 

cells in a 4×4 2D grid arrangement 
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could vary from a simple artificial neuron to a complex ANN. An example cellular architecture 

is shown in Fig. 8. 

 

Cellular ANNs, such as the one shown in Fig. 8, can efficiently process input patterns that 

contain some inherent geometric structure, such as images. Each cell of the network processes 

the corresponding element (e.g. a pixel of an image, a time-series signal from a particular signal 

source) of the input pattern, enabling efficient distributed processing. Though each element may 

be processed independently by the corresponding cell, the interactions between neighboring cells 

allow for processing local geometric patterns in 2D input. The cellular structure also utilizes 

network weight sharing between each cell. This helps process large input patterns with relatively 

few training weights. 

 

2.4.4 CELLULAR SIMULTANEOUS RECURRENT NETWORK 

The cellular simultaneous recurrent network (CSRN) was first introduced by Pang et al. 

[78] in an attempt to use ANNs to approximate the solution to the Bellman equation in dynamic 

programming. The authors use the popular 'maze traversal' problem, a popular dynamic 

programming example, as the testing environment for their study. The author's findings 

suggested that generic ANNs such as MLPs are incapable of efficiently learning the 'maze 

traversal' problem. As a means to solve this problem, the authors successfully utilized an SRN in 

a cellular architecture, which they referred to as cellular SRN or CSRN.  
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2.4.4.1 CSRN ARCHITECTURE 

 

 

  

 

 

Fig. 9 shows the external view of the CSRN. The cellular structure of the network 

matches that of a 2D input pattern such as a 2D maze or an image. Note that all the attributes of a 

Cellular ANN architecture (discussed in section 2.4.3) are preserved in the CSRN external 

architecture. Each cell of the CSRN communicates with its closest neighbors. As mentioned 

earlier, each cell in the CSRN external architecture contains an SRN as its core network. This 

core SRN architecture is shown in Fig. 10. 

 

 

Fig. 9. CSRN external architecture with an example input pattern 
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The SRN shown in Fig. 10 is slightly different from the usual layered ANN design. This 

type of architecture is largely known as a generalized multilayered perceptron, and was first 

introduced by Pang et al. in [78]. This SRN consists of 𝑙 external inputs, 𝑚 neighbor inputs 

originating from neighboring cells, and 𝑛 number of self recurrent active neurons. The original 

SRN within the CSRN structure [78] contains 4 closest neighbor inputs and five active nodes. 

Output from the first active node A1, known as the connector node is sent to the 4 closest 

neighbors. All active nodes are self-recurrent as shown in Fig. 10. In this SRN architecture, the 

inputs to each active node consist of the outputs from all previous nodes.  

From a computational stand point, one could easily identify the similarities in the inner 

workings of the brain and the CSRN architecture. The human brain is a complex, non-linear 

parallel processing device. It organizes billions of neurons to perform specific tasks. The 

Fig. 10. The SRN architecture utilized as the core in CSRN 
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organization of these neurons and the associated synaptic activity that is required to perform a 

specific task are learnt by experience. Neighboring neurons in the brain gather together, forming 

cell clusters. These clusters represent the basic building blocks of an entire system [69]. 

Neuroscientists have understood that the locally recurrent behavior plays a critical role in the 

higher functions of the brain [68, 69].  CSRN architecture mimics the parallel processing, 

neuronal clustering, and local recurrency of the brain, representing a strong biological basis for 

it.  

 

2.4.5 CSRN TRAINING 

This section summarizes the training algorithms commonly used for training the CSRN 

for dynamic programming and spatial domain image processing tasks. 

 

2.4.5.1 CSRN TRAINING WITH BPTT 

The original CSRN introduced by Pang et al. [78] utilize the back-propagation through 

time (BPTT) algorithm (briefly discussed in section 0) for training. This method is fundamental 

to training CSRN, as no other tractable method for the required derivative computation existed 

prior to BPTT.  The cellular structure of CSRN discussed in section 0 requires BPTT to perform 

the unfolding process through all the cells at each 'iteration through time'. Therefore, the cellular 

nature of CSRN significantly increases the complexity of BPTT and results in a lower efficiency. 

Pang and Werbos [12] successfully trained CSRN with BPTT to perform maze traversal. They 

report that training a single 2-dimentional maze of size 7 × 7 with BPTT requires approximately 

1000 epochs for convergence. 
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2.4.5.2 CSRN PARAMETER ESTIMATION THROUGH EKF 

The Kalman filters, originally proposed by Kalman [79], are commonly used in signal 

processing applications. The Kalman filter essentially provides a computational means to 

recursively estimate future states of a system based on past observations. The original Kalman 

filters are linear recursive filters that estimate the state of a linear dynamic system. For 

estimation of nonlinear models, an extension of Kalman filters referred to as Extended Kalman 

Filer (EKF) is used. Parameter estimation through Kalman filters has been utilized in neural 

network training [80]. In this case, the neural network weights are regarded as the parameters to 

be estimated, and the neural network outputs are regarded as the observations of the system. The 

basic idea of EKF is to linearize the system model at each iteration prior to applying the standard 

Kalman filter [80]. The linear approximation of the nonlinear model is performed by computing 

the partial derivative matrices (Jacobian) of the model. Since BPTT computes the derivatives of 

CSRN, the same algorithm is used in EKF to obtain the required jacobian. Ilin et al. in [81] 

successfully trained CSRN with EKF for maze navigation. The authors report a large reduction 

in training time with EKF. For example, CSRN trained with EKF for a single maze converges 

within 15 to 30 epochs while that with BPTT requires approximately 1000 epochs. This large 

reduction in training time is regarded as a breakthrough in training CSRN, as it expanded the use 

of CSRN from mere maze navigation to more complex image processing applications.   

However, there are a few major drawbacks in using EKF to train CSRN. Mainly, the 

Jacobian computation via BPTT can be quite complex due to the unique structure of the CSRN. 

This inhibits even minor structural changes to the network. Also, as the number of cells in CSRN 

is increased to account for more inputs, the size of the Jacobian matrix increases accordingly. 

Consequently, for a large number of network inputs, which is very common for large scale maze 
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and image data, computational complexity of computing Jacobian in EKF training becomes 

prohibitive [46]. Furthermore, the linear approximation of the nonlinear system model could 

introduce errors in the estimation process [80] of EKF, which may adversely affect convergence 

of the network. These drawbacks necessitate further research into finding a training algorithm 

that is better suited for training a complex universal approximator such as the CSRN. 

Current Applications of CSRN 

The original application of CSRN as discussed in section 0 is to solve the maze 

navigation problem by approximating the solution to the Bellman equation [78]. Further studies 

of CSRN for maze traversal tasks such as in [81, 82] demonstrated its capability to learn 

complex topological relations. Realizing that topological mapping tasks govern most 

fundamental image processing tasks, Anderson et al. [46, 83] introduce CSRN to learn image 

affine transformations. Apart from image affine transformations, a generalized version of CSRN 

has been shown to efficiently perform image gray-scale to binary conversion, and image low-

pass filtering. 
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CHAPTER 3 

EFFICIENT MACHINE LEARNING PIPELINE FOR REAL TIME EPILEPTIC 

SEIZURE DETECTION USING SCALP EEG 

 

3.1 CHAPTER OVERVIEW 

This chapter proposes a novel machine learning pipeline for large scale time series data 

processing. The proposed pipeline is applied as a patient-specific real-time automatic epileptic 

seizure onset detection method, using both scalp and intracranial EEG. The proposed technique 

obtains harmonic multiresolution and self-similarity-based fractal features from EEG for robust 

seizure onset detection. A fast wavelet decomposition method, known as harmonic wavelet 

packet transform (HWPT), is computed based on Fourier transform to achieve higher frequency 

resolutions without recursive calculations. Similarly, fractal dimension (FD) estimates are 

obtained to capture self-similar repetitive patterns in the EEG signal. Both FD and HWPT energy 

features across all EEG channels at each epoch are organized following the spatial information 

due to electrode placement on the skull. The final feature vector combines feature configurations 

of each epoch within the specified moving window to reflect the temporal information of EEG.  

Finally, Relevance Vector Machine (RVM) is used to classify the feature vectors due to its 

efficiency in classifying sparse yet high dimensional datasets. The proposed method is evaluated 

using two publicly available long term scalp EEG (dataset A) and short-term intracranial and 

scalp EEG (dataset B) databases. The results demonstrate that the proposed method is effective 

with both short and long-term EEG signal analyzes recorded with either scalp or intracranial 

modes respectively. Finally, the use of less computationally intensive feature extraction 
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techniques enables faster seizure onset detection when compared to similar techniques in the 

literature indicating potential usage in real-time applications. 

 

3.2 LITERATURE REVIEW 

This section provides a brief literature review of hand engineered feature extraction 

methods used on EEG time-series data for seizure detection.  

 

3.2.1 FEATURE EXTRACTION BASED ON WAVELET TRANSFORM 

Early attempts have led to the development of detection systems with accuracies within 

76-90% and false detection rates within 1-0.71 h-1 [84, 85]. This suggests the need for more 

computationally efficient methods capable of extracting oscillatory features over different 

frequencies and self-similar EEG patterns for more effective seizure detection.  

Wavelet transform for processing EEG has been pursued in automatic seizure detection due to its 

ability to obtain non-stationary time-frequency analysis of signals. Saab et al. [60] have 

introduced a seizure detection method for long-term scalp EEG based on simple Duabachies 

wavelet transform, achieving a sensitivity of 76%, false detection rate of 0.34 h-1, and median 

detection delay of 10 s. Similarly, many studies [4, 61, 85, 86] have utilized wavelet and wavelet 

packet transorm (WPT) based features with varying success in automated seizure detection. 

Though Wavelet based features have been effective in characterizing seizure events, generic 

WPT algorithms may be computationally expensive due to recursive computation. Similarly, 

other typical time-frequency analysis methods such as short-time Fourier transform are also used 

for seizure detection [87]. 
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3.2.2 SELF-SIMILARITY FEATURES WITH FRACTAL DIMENSION  

Fractal dimension has been used in time series analysis of signal complexity in 

physiological signals [88-91]. Accardo et al. [89] have studied the ability of fractal dimension 

(FD) to characterize EEG recordings corresponding to different physiopathological conditions. 

The authors use Higuchi's [92] algorithm to compute FD of EEG, and show that non-linear 

fractal analysis offers better temporal resolution than Fourier analysis. Polychronaki et al. [93] 

have performed a comparison of FD estimation algorithms such as Katz's [94], Higuchi's [92], 

and K-nearest neighbor [95] for epileptic seizure detection. The authors show that K-nearest 

neighbor offers the best seizure detection performance. The FD estimation algorithms are 

generally faster with minimal computational cost and provide high seizure detection accuracy. 

This makes FD attractive for potential real-time applications. However, the high seizure 

detection latency and false positive rates associated with FD computation suggest that FD 

features alone may not be adequate for robust seizure detection [93].  

 

3.2.3 FEATURE CLASSIFICATION WITH MACHINE LEARNING  

 Several recent studies highlight the importance in examining the functional brain 

connectivity in successful seizure detection and localization [96, 97]. Mierlo et al. [96] discussed 

the effectiveness in multivariate analysis of EEG to capture the changes in the spatial domain at 

the onset of a seizure for early detection. Furthermore, the evolution of spatial connectivity 

patterns in the brain at the onset of a seizure may also provide valuable cues for early detection 

[98]. The importance of this has led to several studies that utilize network based approaches to 

capture such connectivity patterns, as reviewed by Yaffe et al. [97]. They highlight the 



41 

 

importance of considering the temporal and spatial evolution of seizure activity for improved 

accuracy and early detection.     

Most detection methods in the literature use ML techniques such as artificial neural networks 

(ANN) as the final step to classify extracted features into the seizure and non-seizure events. 

Yuan et al. [99] have presented an EEG classification using an extreme learning machine and 

non-linear features [100] with an overall 96.5% accuracy. Shoeb et al. [59] also present a patient 

specific automated seizure detection method that utilizes a support vector machine (SVM) for 

feature classification. The method achieves 96% sensitivity with a mean delay of 4.6 s and a 

median false detection rate of 0.083 h-1 when evaluated using the CHB-MIT scalp dataset [101].  

Santaniello et al. [102] propose a ‘dynamic’ seizure detector that utilizes sequential hidden 

Markov model estimations of the singular value in long-term intracranial EEG. The model adapts 

to changing neural activity over time and obtains a mean false positive rate of 1.39 h-1 and an 

average delay of 9.6 s while tuned for 100% sensitivity.  In another study, Acharya et al. [103] 

have evaluated 7 different classifiers in detecting epileptic seizure onset. The highest 

classification accuracy of 98.1% is recorded using a fuzzy classifier. Many of these classifiers 

require estimating initial network parameters such as the number of free parameters, active 

neurons, and activation function for ANN and parameters related to hyperplane computation for 

SVM. 

 

3.2.4 SEIZURE DETECTION WITH EEG TIME SERIES DATA 

EEG can be segmented into intracranial and scalp recordings, based on the location of 

electrode placement. Intracranial EEG is recorded using electrodes placed invasively under the 

scalp. Scalp EEG is recorded non-invasively and is therefore more popular and more widely used 
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in clinical applications [86]. However, scalp EEG is sensitive to noise and tends to accumulate 

artifacts. Therefore, additional artifact reduction techniques and algorithms are used to reduce 

false detections in analysis. Though attempts have been made to develop algorithms for seizure 

detection using both scalp and intracranial EEG, a reliable automated algorithm with low 

computational complexity for real-time application is still needed. Applications based on generic 

wavelet decompositions and filter banks require a better compromise between computational 

complexity, efficiency, and accuracy. 

 

3.3 PROPOSED REAL-TIME EPILEPTIC SEIZURE DETECTION PIPELINE 

Most epileptic seizures are associated with oscillatory patterns [60, 84, 104]. Therefore, 

distinctive oscillatory patterns in EEG channels can be used as an indicator of an ictal state. 

However, EEG signals can also contain non-seizure related oscillatory patterns stemming from 

various activities of the brain. This inhibits the sole use of oscillatory patterns for seizure 

detection. Therefore, it is necessary to consider other discriminative features to increase the 

accuracy of seizure detection. Several studies [93, 105] have shown that seizure activity alters 

self-similarity characteristics in EEG, establishing fractal estimations as a probable feature in 

seizure detection. Spatial and temporal properties of seizure onset and progression also help to 

detect a seizure at an early stage. The proposed seizure detection algorithm based on fractal 

dimension and harmonic wavelet packet transform considers the oscillatory patterns as well as 

the self-similarity characteristics of seizure EEG signals. 
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3.3.1 EEG DATA 

This study uses two datasets, named Dataset A and Dataset B, for evaluation of the 

proposed methods. The first dataset (Dataset A) is CHB-MIT EEG database [101]. Dataset A 

consists of long-term bipolar referenced EEG recordings from pediatric patients with intractable 

seizures. The 23 subjects in the database consist of 5 males between ages 3 to 22 years and 17 

females of ages between 1.5 to 19 years. The case 'chb24' is a later addition to the database with 

an unspecified age and gender. Case 'chb21' is a second EEG recording of subject 'chb01' 

obtained after 1.5 years. Due to the large time gap between the recordings, 'chb21' is considered 

as a separate case. For each subject, the long-term EEG is recorded in continuous segments of 1 

to 4 hours. All EEGs are sampled at 256 Hz at 16-bit quantization. Most cases contain 23 bipolar 

EEG signals derived from electrodes placed according to the International Federation of Clinical 

Neurophysiology 10-20 placement system. Therefore, only the recordings that contain the 23 

EEG channels (FP1-F7, F7-T7, T7-P7, P7-O1, FP1-F3, F3-C3, C3-P3, P3-O1, FZ-CZ, CZ-PZ, 

FP2-F4, F4-C4, C4-P4, P4-O2, FP2-F8, F8-T8, T8-P8, P8-O2, P7-T7, T7-FT9, FT9-FT10, 

FT10-T8, T8-P8) are used in the analysis. The EEG recordings of ‘chb16’ are excluded from the 

analysis due to the unusually short seizure duration with an average ictal length of only 8.6 s. 

Table 2 summarizes the patient specific information such as the amount of EEG used in the 

study, the number of seizure events, and seizure duration of Dataset A. The seizure duration is 

presented for individual seizure events if the total number of events per patient is less than or 

equal to 4. Otherwise, the mean duration with standard deviation (stdev) is presented. 

 

 

 



44 

 

Table 2. Long term EEG dataset (Dataset A) 

Patient EEG 

Used 

(h) 

Number 

of 

Seizures 

Seizure 

Duration  

(sec) 

mean ± 

stdev, or 

individual 

Patient EEG 

Used 

(h) 

Number 

of 

Seizures 

Seizure 

Duration  

(sec) 

mean ± 

stdev, or 

individual 

chb01 20 7 63.1 ± 30.5 chb12 10 14 40.7 ± 

23.5 

chb02 15 3 82, 81, 9 chb14 24 8 21.1 ± 8.7 

chb03 20 7 57.4 ± 8.4 chb15 32 20 99.6 ± 

53.6 

chb04 15 4 49, 111, 102, 

116 

chb17 15 3 90, 115, 

88 

chb05 19 5 111.6 ± 9.4 chb18 17 6 52.9 ± 

14.4 

chb06 24 10 14.1 ± 2.8 chb19 14 3 78, 77, 81 

chb07 32 3 86, 96, 143 chb20 20 8 36.8 ± 6.2 

chb08 20 5 183.8 ± 49.2 chb21 20 4 56, 50, 81, 

12 

chb09 32 4 64, 79, 71, 

62 

chb22 15 3 58, 74, 72 

chb10 24 7 63.9 ± 17.2 chb23 20 7 60.6 ± 

32.6 

chb11 11 3 22, 32, 752 chb24 22 16 31.9 ± 

18.4 

 

 

The second dataset (Dataset B) is an EEG dataset shared freely by the University of Bonn 

[100]. The EEG recordings in this database are divided into five sets (A-E). Each set consists of 

100 segments of artifact free single channel EEG recorded for 23.6 s.  Sets A and B are scalp 

EEGs recorded from five healthy volunteers where A is recorded with 'eyes open' and B is 

recorded with 'eyes closed' conditions. Sets C, D, and E consist of intracranial EEG (IEEG) 

recordings obtained for pre-surgical evaluation from five patients with temporal lobe epilepsy. 

Set D consists of EEGs from the epileptogenic zone and set C from the hippocampal formation 
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of the opposite hemisphere. EEGs of both C and D are recorded in inter-ictal intervals. EEGs in 

set E are recorded at seizure activities from all recording sites showing ictal activity. All the 

recordings are digitized and amplified using a 128 channel system with the average common 

reference method. The original sampling rate for all EEGs in Dataset B is 173.61 Hz. We up-

sample the EEG segments to 256 Hz for seamless analysis using the pipeline developed in this 

work. 

 

3.3.2 FEATURE EXTRACTION 

The scalp EEG data is filtered using a band-pass filter between 3 Hz and 32 Hz since 

most seizure activity at ictal state occurs within this frequency range [60, 84]. On the contrary, 

the IEEG in dataset B is filtered between 3 Hz and 80 Hz. The EEG activity from 0-3 Hz is 

typically associated with frequent non-ictal sleep patterns [60] rather than seizure activity. A zero 

phase 4th order Butterworth filter is utilized to filter EEG data from all EEG channels. The EEG 

signals are segmented prior to feature extraction in such a way that the spectral and spatial 

features are captured accurately. Since the desired frequency range is less than 30 Hz, 

segmenting EEGs into very small epochs is unnecessary. Consequently, an epoch window length 

of 2 s is considered in this study as this represents the minimum stationary interval for EEGs 

[106]. Furthermore, for EEGs sampled at 256 Hz, the 2 s epoch window offers a desirable 

number of samples per epoch that provides sufficient decomposition depth for an effective 

wavelet analysis [60, 86]. Changes in EEG at ictal state may occur in multiple frequency 

components. The spectral features are captured by performing HWPT at decomposition level 5, 

with (L = 2 s) non-overlapping epochs of each EEG channel. This decomposes the signal epoch 

into frequency sub-bands of bandwidth 4 Hz. HWPT decomposition level 5 is chosen as the best 
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compromise between accuracy and processing time using a preliminary experiment with a subset 

of dataset B as shown in Fig. 11.  Note the observation from Fig. 11 can be directly applicable 

for both scalp and intracranial EEG as the epoch duration does not change. The energy of each 

sub-band spanning from 4 Hz to 32 Hz (for scalp EEG) or 4 Hz to 80 Hz (for IEEG) is calculated 

as shown in Eq. (15). The fractal analysis is also performed simultaneously on 2 s epochs of each 

EEG channel. The spectral and fractal features are then concatenated to form a feature vector of 

size M. 

Spatial disperse patterns at the onset may provide important information in differentiating 

a seizure from other brain activity. Therefore, spatial features must be incorporated in the seizure 

analysis. To capture both spectral and spatial features of EEG, feature extraction is performed 

across all EEG channels. The M spectral features extracted from each EEG channel on L s epoch 

Fig. 11. Seizure classification accuracy (subset of dataset B) and processing time vs. HWPT 

decomposition level. Level 5 gives the best compromise between seizure detection accuracy 

and processing time. 
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at time 𝑡 =  𝑇, are concatenated together to form a combined feature vector XT. If the EEG data 

is recorded using N number of channels, the combined feature vector contains 𝑀 × 𝑁 elements. 

Though XT captures both spectral and spatial information of EEG, it does not contain 

information about the progression of a seizure. Progression information is important as the goal 

is to detect an epileptic seizure as early as possible. Medical personnel typically monitor 

abnormal activity in an EEG over 6 to 10 s before declaring a seizure event [59, 107]. As such, 

the temporal information is encoded into the feature vectors as follows: (1) Declare a moving 

window 𝑊 of length 6 s, (2) Segment the EEG data within this window into 3 non-overlapping 

(L = 2 s) epochs, and (3) Perform spectral and spatial feature extraction on each of the EEG 

epochs as described above. (4) Move the window W by 1 s (5 s overlap) and repeat (1) to (4).   

Consider that window 𝑊 is captured at time 𝑡 = 𝑇. Then, the three feature vectors in 𝑊 are 

given as, 𝑿𝑻, 𝑿𝑻−𝑳, 𝑿𝑻−𝟐𝑳, where L is 2 s non-overlapping epoch. Concatenate these feature 

vectors to form the final feature vector 𝑭𝑻 as follows, 

 

𝑭𝑻 = [𝑿𝑻,  𝑿𝑻−𝑳,  𝑿𝑻−𝟐𝑳] 
(25) 

 

Therefore, the final feature vector 𝐹𝑇 contains 𝑀 × 𝑁 × 3 elements. The window 𝑊 is set for 6 s 

as a compromise between seizure detection accuracy, delay, and processing speed. A similar 

feature vector formation method is introduced by Chan et al. [108] for seizure onset detection 

using offline intracranial EEG. Shoeb et al. also [59] show that this method successfully captures 

temporal information with scalp EEG. 
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3.3.3 FEATURE CLASSIFICATION  

The classification of feature vectors to seizure and non-seizure classes is performed by an 

RVM classifier.   A Radial basis function is chosen as the kernel function to generate non-linear 

decision boundaries. The RVM is trained with seizure feature vectors derived from the first 20 s 

of seizure events recorded from the patient under evaluation [18] so that the seizure onset is 

accurately characterized. The performance is analyzed using patient-specific leave one out cross-

validation scheme. Dataset A typically contains 1hour segments of patient specific EEG that 

contains seizure and inter-ictal activity. Consider EEG recordings of one patient contain 𝑆 

number of seizure events. The classifier is trained using EEG segments which typically amount 

to a minimum of 10 hours. The training data consists of (𝑆 − 1) × 20 seconds of seizure EEG 

along with ~10 hours of non-seizure inter-ictal EEG segments. The testing is done on the EEG 

segment containing the seizure record that is withheld from the training set including the 

surrounding inter-ictal data that typically exceeds ~1 hour. This is repeated 𝑆 times so that each 

seizure record along with all associated inter-ictal data is tested once. With this strategy, the 

testing and training sets are never overlapped. In Dataset A, the duration of a seizure event 

varies, even for the same patient. Consequently, we determine that two seizure notifications 

within a 150 s interval belong to the same seizure event. 

The overall pipeline of the proposed seizure detection algorithm is shown in Fig. 12. 
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Fig. 12. Pipeline of the proposed automated seizure detection algorithm. 

 

3.4 RESULTS AND DISCUSSION 

The performance of the proposed automated seizure detector is analyzed in terms of three 

different criteria: (1) seizure detection sensitivity, (2) number of false positives (specificity), and 

(3) seizure detection delay (latency). Sensitivity is the percentage of seizures correctly detected 

in the test dataset. Specificity is computed by the number of times the algorithm misclassifies a 

feature vector as a seizure event per hour. Latency is the time delay (in s) between the seizure 

detected by the algorithm and the seizure onset marked by an expert. 

The analysis using Dataset A is presented and discussed in sections 3.4.1 to 3.4.4. The 

results and discussion of the analysis using Dataset B are presented in section 3.4.5. The 

proposed algorithm is implemented using MATLAB 8 with a workstation: Intel Xeon 3GHz and 

32 GB of RAM. 
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Fig. 13. Patient specific seizure detection results 

 

3.4.1 SEIZURE DETECTION SENSITIVITY 

The proposed method successfully detects 144 of 150 seizure events. This amounts to a 

detection sensitivity of ~96%. Fig. 13 shows the patient-specific seizure detection results with 

the total number of seizure events used for testing per patient and corresponding successful 

detections. The algorithm has misclassified only six seizure events specifically from patients 

'chb05', 'chb14', 'chb15', 'chb17', 'chb22', and 'chb23'.  
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Fig. 14 (a) shows an EEG segment of an example seizure event commonly seen for 

patient ‘chb05’, while Fig. 14(b) shows the uncommon misclassified seizure event of ‘chb05’. 

Close observation of Fig. 14 suggests that the seizure characteristics of the two events are quite 

different from one another. For example, Fig. 14 (b) shows many high-frequency fluctuations 

and sudden spikes at the onset. In contrast, a common seizure event of 'chb05' as in Fig. 14 (a) 

shows low-energy rhythmic activity at the onset which gradually intensifies as it progresses. 

The seizure detector inherently assumes that characteristics of seizure EEG do not change 

over different events of the same patient. Therefore, since the detector is largely trained with 

EEG events like that of Fig. 14 (a), the probability of misclassifying a seizure with significant 

deviations of characteristics such as in Fig. 14 (b) is rather high. 

 

Fig. 14.  (a) An example EEG data segment of a patient 'chb05' used for training. (b) EEG 

segment of the same patient misclassified by the trained classifier. 
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3.4.2 SEIZURE DETECTION LATENCY  

As the goal of this study is to detect the onset of seizures, the detection latency is critical 

[109]. The EEG segmentation and feature extraction methods discussed in Section 3.3.2 are 

specifically utilized to capture the formation and evolution of seizure events with the hopes of 

reducing the detection latency. The proposed algorithm achieves a median seizure detection 

latency of 1.34 s across all EEG patient data with more than 70% of all seizures being detected 

with less than or equal to 2 s after the onset. Average seizure detection latency along with the 

minimum and maximum recorded latencies per patient is shown in Fig. 15.  

 

Fig. 15. Patient specific average seizure detection latency with minimum and maximum recorded 

values 

 

Instances of 0 second minimum latency are achieved in most cases except for ‘chb17’ 

and ‘chb22’. The consistently low average latencies across the patients show that the instances of 

high latency recordings are quite rare. This is especially true in the case of ‘chb24’ in which one 

seizure event is classified at a latency of 45 s while all other events are classified at 0 sec. Along 
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with sensitivity, the latency also depends on representative seizure onset characteristics in the 

training dataset. A slow starting seizure with its oscillatory and fractal characteristics that 

develops over time or a seizure onset with a large number of artifacts can easily induce a delay in 

classification. The seizures associated with 'chb22' records the largest average detection delay of 

9.5 s, while 91% of patient wise average detection delays are less than or equal to 4 s. 

 

3.4.3 SEIZURE DETECTION SPECIFICITY 

 

Fig. 16. Patient specific false positive score of the proposed seizure detection algorithm 

 

A good seizure detector must achieve maximum seizure detection sensitivity while 

minimizing false detections. Even with very high sensitivity, a large number of false alarms can 

be equally problematic for the patient as well as the medical staff in real life applications. Fig. 16 

summarizes the number of false seizure detections per hour for each subject. The patient-wise 

0

0.2

0.4

0.6

0.8

1

1.2

F
al

se
 P

o
si

ti
ve

s
(h

-1
)

Subject



54 

 

specificity (h-1) is computed as the total number of false detections that occur in cross-validation 

steps, divided by the total duration of EEG (in hours) used in the patient-wise cross-validation 

analysis. The median false detection rate across all subjects is 0.1 h-1. Note that the algorithm 

records a very low false positive rate of less than 0.2 for approximately 70% of patients as shown 

in Fig. 16. However, for EEG data of some subjects, such as in the case of ‘chb18’, the algorithm 

produces relatively high false positive rates. The cause of false positives in seizure detection can 

be explained as a problem of over sensitivity. As discussed in section 3.3.2, the algorithm utilizes 

the oscillatory and self-similarity (fractal) characteristics of seizure EEG recordings as features 

for seizure detection.  However, it is possible for recordings to contain non-seizure EEG 

segments exhibiting oscillatory and fractal characteristics similar to a seizure event in a subject.  

 

3.4.4 PERFORMANCE COMPARISON WITH OTHER METHODS 

The proposed algorithm is geared towards seizure detection using long-term continuous 

recordings of scalp EEG, such as those included in Dataset A. Therefore, this section compares 

the performance of our algorithm with relevant methods in the literature that also analyzes long 

term EEGs. Several seizure detection methods are chosen based on the criteria that the 

algorithms obtain seizure detection utilizing long-term scalp EEG data. However, this must be 

regarded as a qualitative comparison, as the majority of these methods except for the study of 

Shoeb et al. [59, 110] utilize EEG datasets that are not publicly available and not tested on 

Dataset A. The performance metrics are summarized in Table 3. 
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Table 3. Seizure detection algorithm performance comparison using Dataset A 

Seizure 

Detection 

Algorithms 

Data used 
EEG 

Channels 
Method 

Sensitivity 

(%) 

Specificity 

(False 

Detections 

h-1) 

Detection 

Delay 

(Sec) 

Saab et al. 

[60] 

652 h  of EEG 

from 28 

Patients with 

126 seizures 

Bipolar 24 or 

32 channels 

Features: Wavelet 

transform (WT), 

Amplitude, Energy, 

Variance. 

Classification: Bayes    

78 0.86 9.8 

(median) 

Shoeb et al. 

[59]   

844 h of EEG 

from 23 patients 

with 163 

seizures  

Bipolar 18 or 

23 channels. 

(From Dataset 

A) 

Features: windowed 

filter bank, Spectral 

energy, spatial features, 

temporal feature vectors. 

Classification: SVM  

96 0.083 3 (median) 

4.6 (mean) 

Zandi et al. 

[86] 

76 h of EEG 

from 14 patients 

with 63 seizures 

Bipolar 15 

channels  

Features: windowed 

WPT, spectral Energy, 

Combined seizure index. 

Classification: CUSUM 

Thresholding  

90.5 0.51 7 (median) 

8.02 

(mean) 

Zandi et al. 

[4] 

236 h of EEG 

from 26 patients 

with 79 seizures 

Bipolar 18 

channels 

Features: windowed 

WPT, Regularity index, 

Energy index, Combined 

seizure index. 

Classification: CUSUM 

Thresholding 

91 0.33 7 (median) 

9 (mean) 

Kuhlmann 

et al. [61] 

525 h of EEG 

from 21 patients 

with 88 seizures 

Bipolar 16 

channels 

Features: WT, 

Amplitude, Energy, 

Variance measures, 

Cross-correlation, 

Relative derivative 

Classification: Bayes    

81 0.60 16.9 

(median) 

Hopfengart

ner et al. 

[87] 

25,278 h of 

EEG from 159 

patients with 

794 seizures 

CAR 

electrodes on 

standard 10-20  

and 10-10 

montages 

Features: Moving 

window STFT, averaged 

and integrated power. 

Classification: Adaptive 

thresholding 

87.3 0.22 - 

Fergus et. al 

[111] 

171 seizure and 

non-seizure 

blocks of EEG 

(of 60 sec 

duration) 

extracted from 

dataset A 

Bipolar 23 

channels 

(From Dataset 

A) 

Features: PSD, peak 

frequency, median 

frequency, correlation 

dimension, PCA, LDA 

methods. 

Classification: Tested 

with multiple classifiers. 

KNN classifier shows 

best performance  

93% (94%) - 

Proposed 

Algorithm 

440 h of EEG 

from 23 patients 

with 150 

seizures  

Bipolar 23 

channels  

Features: HWPT, FD, 

spatial and temporal 

feature vector 

arrangement 

Classification: RVM 

96 0.1 1.34 

(median) 

1.89 

(mean) 
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The proposed algorithm achieves a seizure sensitivity of 96.2%, which is comparable to 

Shoeb et al. [59] and is significantly higher than the other similar seizure detection algorithms 

presented in Table 3. The proposed algorithm further shows comparable results in median 

specificity. However, the seizure detection delay is significantly lower than the other seizure 

detection algorithms in Table 3. Note that the dataset used in [59] is used in this study; hence, the 

findings in that paper can be used for direct comparison with this work. The considerably lower 

latency can be largely attributed to the acute performance of HWPT (further analyzed under 

Section 3.4.6) aided by overlapped sliding window based processing of the proposed method. 

The sensitivity is slightly higher than that of [59] while the median false positive rate is 

comparable. The proposed algorithm gains a more than 50% improvement over the seizure 

detection latency. 

 

3.4.5 PERFORMANCE EVALUATION USING SHORT TERM EEG 

We further evaluate the generalization of the proposed technique for classifying short 

term patient non-specific intracranial and scalp EEGs using Dataset B. Set E in this dataset 

represent ictal state intracranial EEGs, while sets A-D contain seizure free scalp and intracranial 

EEGs. The task is to detect seizure EEG (set E) amongst the seizure free segments. Several 

recent studies have utilized different combinations of this dataset for performance evaluation. 

For example, Samiee et al. [112] formulate six different classification tasks: 1) Classification of 

E from a combination of E and A. 2) Classification of E from E and B. 3) Classification of E 

from E and C. 4) Classification of E from E and D. 5) Classification of E from E, A and C. 6) 

Classification of E from A, B, C and D. We evaluate the proposed method following the task 6 in 

[112] as it is the most challenging classification problem involving this dataset. 
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Table 4. Seizure detection algorithm performance comparison using Dataset B (short term EEG) 

 Ocak et al. 

[113] 

Samiee et 

al. [112] 

Guo et al. 

[114] 

Tzallas et 

al. [115] 

Song et al. 

[116] 

Proposed 

method 

Accuracy 96.2% 98.1% 98.3% 97.7% 97.5% 99.8% 

Sensitivity 98% 99.2% 99% 99% 99% 99% 

Specificity 94.3% 93.8% 95.5% 94.2% 96% 100% 

 

 

The proposed pipeline for classification is slightly altered to process short-term EEGs. 

First, all EEG segments are re-sampled to 256 Hz. Then, each segment is epoched using the 

same method explained in Section 3.3.2. This results in ~18 epochs per EEG segment. All EEGs 

in Dataset B are filtered using a band-pass filter between 3 Hz to 80 Hz as intracranial recordings 

may contain vital seizure components in higher frequencies. The upper cutoff of 80 Hz is chosen 

to adhere to the Nyquist criterion. Accordingly, HWPT decomposition is also performed within 

the same bandwidth. The fractal feature extraction procedure is unchanged. Though the pipeline 

is designed to perform epoch based classification, entire EEG segments in Dataset B are intended 

to be classified for seizure availability. Therefore, we use a two-step process in which epoch 

based classification on each EEG segment is performed first, and then the whole segment is 

classified based on its majority epoch classifications. The analysis is performed using the 5 fold 

cross-validation procedure. Note that the short-term nature of Dataset B prohibits a detection 

latency analysis. Table 4 shows the performance of the proposed method and presents a 

comparison with other seizure detection techniques in the literature that utilize the same dataset. 
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The proposed algorithm achieves 99.8% classification accuracy with a single false 

negative, and consequently offers 100% specificity and 99% sensitivity. This performance is 

notably higher than that of other seizure detection techniques in the literature for the same 

dataset. Similar to the scalp EEG, subsequent IEEG analysis with a narrower frequency band (3 

Hz to 32 Hz) also yields the same seizure classification accuracy of 99.8%. This shows the 

robustness of the proposed algorithm in both scalp and intracranial seizure detection and 

classification. Note the artifact free nature of dataset B may also have contributed to improved 

performance in IEEG classification. Overall, the results with dataset B suggest that the proposed 

technique offers effective seizure detection performance using non-patient specific and artifact-

free EEG recordings. Additionally, with sets D and E being IEEG, we show that the proposed 

method can be applied across both recording paradigms seamlessly. 

Furthermore, we utilize Dataset B to investigate the benefits of using RVM over a more 

common classifier such as SVM for classification. The RVM in the proposed pipeline is replaced 

with an SVM classifier, while the rest is unchanged. The pipeline with SVM classifier achieves 

the same 99.8% accuracy as the RVM. However, RVM offers important advantage in training 

efficacy. The SVM requires ~1047 s per training fold, while the RVM needs ~552.7 s for the 

same. This advantage in training efficacy enables the use of RVM for large and high dimensional 

data classification tasks that are common in seizure detection with long term EEG. 

 

3.4.6 COMPARATIVE EVALUATION OF FEATURE IMPORTANCE 

The performance of the proposed seizure detection method relies on two main features of 

EEG such as fractal dimension estimates and HWPT spectral energy estimates. To investigate 

the influence of each of these features on the combined seizure detection method, we perform 



59 

 

seizure detection using each feature separately and compare the results with the combined 

method. The feature importance evaluation on the long term EEG is obtained using a subset of 

data selected from Dataset A containing 26 seizure events recorded from 4 subjects such as 

‘chb1’, ‘chb3’, ‘chb5’, and ‘chb7’. These subjects are chosen for the availability of adequate and 

a similar number of seizure events and includes a challenging event that is misclassified in the 

main analysis. The results are obtained using the leave one out cross validation method. Analysis 

is also conducted on the short-term EEG with all of Dataset B, using the processing method 

described in Section 3.4.5. Table 5 shows the seizure detection performance of each of these 

features on Dataset A and Dataset B, respectively. 

 

Table 5. Evaluation of feature importance 

 Dataset A Dataset B 

 

Sensitivity (%) Latency (sec) 

False Positive 

rate (h-1) 

 Accuracy (%) 

FD Estimates 97 5.86 0.243 99.6 

HWPT spectral 

estimates 

97 0.39 0.254 99.2 

Combined 

Features 

97 0.514 0.1 99.8 

 

 

The results for Dataset A show that the seizure detection sensitivity is 97% for FD, 

HWPT and the combined FD and HWPT features respectively. This illustrates that both FD and 

HWPT can successfully characterize the oscillatory patterns of seizure EEG. However, the 
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difference in performance can be seen in terms of latency and false positive rate. The FD feature 

based detection results in a detection delay of 5.86 s while HWPT based detection delay is just 

0.39 s. This shows that HWPT characterizes the onset of a seizure event much better than FD for 

this dataset. The combined features result in a slightly higher latency of 0.514 s than that of 

HWPT. However, this minor drawback for combined FD and HWPT features is offset by the 

notable reduction of the false positive rate to 0.1 h-1. The false positive rates of FD and HWPT 

based detection are comparable to each other at 0.243 h-1 and 0.254 h-1 respectively. However, 

combining FD and HWPT features for detection results in an excellent false positive rate 

percentage reduction of 59%.  

On the other hand, the seizure detection accuracy for Dataset B offers 99.6%, 99.2%, and 

99.8% for FD, HWPT, and combined features respectively. This is because Dataset B consists of 

artifact-free EEG segments as opposed to the raw EEGs in Dataset A. The results illustrate that 

EEG artifacts due to interference may cause many of the false detections in Dataset A. Seizure 

latency is not applicable for the short-term EEG Dataset B with the analysis described in section 

3.4.5. 

Though widely used in seizure detection methods, generic wavelet decomposition 

techniques are computationally complex and time-consuming, especially if the number of EEG 

channels is high. This may complicate the real-time seizure detection ability of many algorithms. 

In contrast, the HWPT method exploits the fast Fourier transform for signal decomposition 

which is significantly less cumbersome. Similarly, the fractal estimation utilized in this study is 

also computationally simple and less involved. The seizure detection algorithm designed in this 

study is fully implemented in MATLAB, and the time taken for HWPT of a 2 s signal epoch is 

~0.0003 s on average. Fractal estimation requires an average time of 0.004 s. As the time taken 
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for the classification step is negligible (1.5 × 10−5 s), the total run-time of the algorithm on a 23 

channel EEG segment of 6 s (the moving window used in the proposed method) is 0.4286 s. In 

comparison with HWPT, classic wavelet packet decomposition on a 2 s signal epoch on the same 

hardware and software takes ~0.024 s on average. This shows a substantial run-time advantage in 

using HWPT over classic WPT methods; this is an advantage of the proposed method over 

comparable studies that use classic WPT in the seizure detection task. Therefore, our proposed 

technique is highly sensitive and useful for real-time implementation. 

 

3.5 SUMMARY 

This chapter proposes a novel algorithm for epileptic seizure detection with scalp EEGs 

that utilize a wavelet decomposition method, known as HWPT, and FD estimation. The 

procedure of feature extraction and the formation of feature vectors are designed such that 

spectral, fractal, spatial, and temporal information of seizure EEGs are captured in the feature 

vectors. The proposed algorithm has a sensitivity of 96% with a median false positive rate of 0.1 

h-1and an average detection delay of 1.89 s for the long term EEG Dataset A. Analysis of short-

term scalp and intracranial EEGs in Dataset B yields a 99.8% seizure detection accuracy. These 

results suggest that the seizure detection performance for the proposed method is better than 

other methods published in the literature. The results also demonstrate that the proposed method 

is effective with both short- and long-term EEG signal analysis recorded with either scalp or 

intracranial modes respectively. Further analysis of FD and HWPT suggest that the combination 

of these features offers distinct improvements in seizure detection latency and false positive 

rates. 
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The results also show that the proposed algorithm is computationally efficient. The 

HWPT is performed using fast Fourier transform and is much faster than other wavelet transform 

methods. The FD estimation also involves low computational complexity compared with other 

methods. Consequently, the run-time of the proposed algorithm of approximately 0.43 s to 

process a 6 s epoch of 23 channel scalp EEG highlights the potential use for real-time 

applications. These findings are published in [17]. 

The proposed ML pipeline shows improved performance and speed compared to state-of-

the-art models. However, the pipeline still suffers from the problems inherent to classical ML 

methods. For instance, the HWPT based feature extraction is hand engineered upon observation 

that the seizure EEG may contain oscillatory patterns through time. Similarly, FD features are 

hand selected to capture self-similarity characteristics observed in EEG. However, as evidenced 

in section 3.4.1, sudden deviations in these observations may yield erroneous results. These 

limitations of ML motivate us to utilize deep recurrent learning models that are capable of 

feature learning for time series processing.  

Moreover, we implement HWPT and FD feature extraction methods to capture time-

frequency, and self-similar characteristics. However, observe that the features are computed per 

each EEG channel separately and aggregated for final classification. This setup is quite rigid and 

is unable to account for the EEG channel locality in processing multi-channel data. Additionally, 

increment of the number of channels (increasing the dimensionality of input data) results in 

rather large increase in computational cost (observe run time per channel versus all channels 

together). This motivates us to investigate efficient spatially distributed neural network 

architectures for multi-source time series data processing applications.  
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Consequently, in the next chapter, we change our focus to investigate a unique neural 

network architecture known as cellular simultaneous neural network. CSRN architecture is 

shown to be quite adept at processing topological relevance in spatially distributed data in an 

efficient manner. However, the complexity of the structure makes training the CSRN quite 

challenging. Therefore, in the next chapter we address the issues faced in training CSRN for 

complex topological image processing tasks.   
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CHAPTER 4 

COMPARISON OF CONSTRAINED AND UNCONSTRAINED LEARNING FOR 

CELLULAR SIMULTANEOUS RECURRENT NETWORK IN IMAGE PROCESSING 

 

4.1 CHAPTER OVERVIEW 

This chapter investigates the efficacy of training algorithms for the neural network 

architecture called Cellular Simultaneous Recurrent Neural network (CSRN). This network is 

considered as the platform to develop a novel architecture for large-scale multisource time series 

data processing. The CSRN architecture is shown to be quite adept at learning certain complex 

image processing tasks such as affine image transformations. The unique cellular structural 

composition of CSRN allows approximation of the complex topological mapping involved in the 

image transformations.   However, training CSRN for topological image processing is a 

challenging task because of the complexity of the network and the sheer size of the image data. 

Several representative training algorithms such as Back-propagation Through Time (BPTT), 

Extended Kalman Filtering (EKF), and Particle Swarm Optimization (PSO) have been used to 

train CSRN for different applications. However, the literature does not show a systematic 

approach for choosing an appropriate learning algorithm for training a complex universal 

approximator such as the CSRN in generalized image processing applications. Consequently, 

this work obtains generalization of the network architecture for image processing and 

simultaneously performs a systematic comparison of the CSRN network to solve complex 

topological image mapping problems. Specifically, a comprehensive comparison among three 

state-of-the-art learning techniques such as EKF, Unscented Kalman Filter (UKF) and PSO in 

training the CSRN are investigated. It is shown that introduction of an unconstrained Jacobian 
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free UKF learning algorithm alleviates the high computational cost otherwise associated with 

calculating Jacobian for EKF. Our result also shows that Jacobian-free training algorithms such 

as UKF and PSO for unconstrained optimizers perform better than a Jacobian-based algorithm 

such as EKF in image data processing. 

 

4.2 LITERATURE REVIEW 

The Artificial Neural Networks (ANNs) can be considered as universal approximators 

such that the ANNs can approximate a given function distribution. However, generic feed-

forward MLPs perform poorly in approximating highly non-linear dynamical systems with 

multiple feedbacks [65, 117]. On the other hand, Recurrent neural networks (RNNs) and their 

variants such as simultaneous recurrent networks (SRNs) incorporate the flexibly of performing 

the tasks of MLPs as well as being particularly proficient in approximating feedback based 

dynamic systems [74, 118, 119]. Moreover, a composite cellular version of SRN known as the 

CSRN is shown to be adept at performing complex tasks such as long-term optimization, 

reinforced learning and topological mapping efficiently [120]. 

 

4.2.1 TYPICAL TRAINING METHODS USED FOR CSRN 

An efficient learning algorithm is necessary to train any universal approximator for 

implementing a given function. Back-propagation based gradient decent is one of the first 

algorithms introduced to train feed-forward neural networks and MLPs. The introduction of 

RNNs with inherent feedback connections rendered the generic back-propagation algorithm 

unusable. For training RNNs, a modified version of the back-propagation algorithm known as 

Back-propagation Through Time (BPTT) is introduced. BPTT was also utilized to train more 
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complex universal approximators such as SRN and CSRN [78]. However, BPTT proved to be 

inefficient for complex tasks such as approximating Bellman’s cost function [78]. To improve 

the efficiency of training complex universal approximators, Extended Kalman Filter (EKF) was 

introduced as an alternative to BPTT to train CSRN [120]. The EKF training offered several 

orders of magnitude improvement in time over that of BPTT for solving a maze traversal 

problem [81].  The EKF is an extension of the original Kalman filter [79] that is applicable for 

state predictions in non-linear systems [80] by computing the first order linear approximation of 

the non-linear derivative functions (known as Jacobian). However, for complex universal 

approximators such as CSRN, the Jacobian calculation can be computationally expensive, 

especially for large scale image data processing applications. 

Unscented Kalman filter (UKF) alleviates the drawbacks of EKF and offers more accurate state 

estimation of non-linear systems. UKF utilizes the unscented transform, a method of analyzing a 

random variable that traverses a non-linear system, for its state estimation process [80]. Even 

though several studies have proposed the use of UKF to train ANNs and RNNs [80, 121], none 

have been reported to train a cellular RNN such as the CSRN. The UKF is especially desirable 

for complex universal approximators as it only requires the forward propagation function of the 

network during the training process and therefore avoids Jacobian computation. Likewise, 

another Jacobian free learning technique known as Particle Swarm Optimization (PSO) [122] can 

be another candidate for training universal approximators such as a CSRN [123]. 

 

4.2.2 FUNCTION APPROXIMATION AND OPTIMIZATION CAPABILITY OF CSRN 

One of the earliest attempts to study the versatility of CSRN was reported by Ilin et al. 

[120] wherein the authors showed two representative tasks such as maze traversal and 
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connectedness problem.  Demonstrating the versatility and generalizability of CSRN, a few of 

our prior studies [46, 47] showed that CSRN can also handle complex topological mapping tasks 

commonly observed in image processing. In addition, complex function approximation tasks like 

image transforms can be considered as challenging test cases for a universal approximator. 

Therefore, building on our preliminary work [46], this paper proposes three representative image 

analysis tasks such as image binarization, spatial filtering and Affine transformations to 

demonstrate and compare the function approximation and optimization capability of CSRN. As 

such, we obtain a generalized CSRN structure that is suitable for a multitude of spatial domain 

image processing tasks. Furthermore, this work introduces a CSRN based spatial domain image 

processing pipeline.  The pipeline systematically compares the performance of three state-of-the-

art learning algorithms: one with Jacobian (e.g., EKF) and the other two without Jacobian (UKF 

and PSO) computation for large scale image data processing. The results show that all three 

learning techniques can train CSRN to solve the image processing tasks with varying efficacy. 

 

4.3 PROPOSED TRAINING ALGORITHMS FOR CSRN BASED IMAGE PROCESSING 

This section outlines the training algorithms utilized in the generalized CSRN model for 

image processing. Each algorithm is implemented and evaluated by training the CSRN for a 

variety of image processing tasks.  

 

4.3.1 CSRN TRAINING WITH EXTENDED KALMAN FILTER (EKF) 

The EKF models the training of an ANN as a parameter estimation process. This state-

space model of the non-linear ANN system can be described using the following state transition 

and observation equations,  
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𝑊𝑘+1 = 𝑊𝑘 + 𝛾𝑘, (26) 

and, 

𝑌𝑘+1 = 𝐹(𝑊𝑘 , 𝑢𝑘) + 𝜂𝑘. (27) 

 

where 𝑊𝑘 and 𝛾𝑘 are the system state (neural network weights in this case) and process noise at 

iteration 𝑘 respectively. In (27), 𝐹 is the forward propagation function of the neural network, 

while 𝑢𝑘 is the neural network input, and 𝜂𝑘 is the measurement noise (typically zero mean white 

noise) at iteration 𝑘.  𝑌𝑘+1 is the observation at 𝑘 + 1. The EKF training algorithm is shown in 

Algorithm 1. Further details on EKF based training of CSRN can be found in [120]. 

 

Algorithm 1  CSRN Training Procedure with EKF  

1.Initialization: Initialize CSRN weights, 𝑊 and compute initial 

weight mean, 𝜇𝑘 and covariance, 𝑃𝑘. Initialize process and 

measurement covariance, 𝑅𝑘  and 𝑄𝑘 respectively. 

 

2.For each training step 𝑘: Compute the output of the network, 𝑌𝑘 

and the error between the target and network output (Innovation) 

a𝑘. 

 

3.Utilize BPTT to compute the Jacobian, 𝐶𝑘 

 

4.Compute Kalman Gain, K𝑘 

 

5.Compute the new weight mean estimate, 𝜇𝑘+1 and covariance 

estimate, 𝑃𝑘+1. 
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4.3.2 CSRN TRAINING WITH UNSCENTED KALMAN FILTER (UKF) 

Like EKF, the problem of training an ANN using UKF is also posed as a parameter 

estimation problem. The system state transition and measurement equations are respectively 

given as follows, 

 

𝑤𝑘+1 = 𝑤𝑘 + 휀𝑘, (28) 

and, 

𝑦𝑘 = 𝐹(𝑤𝑘, 𝑢𝑘) + 𝛿𝑘, (29) 

 

where, 휀𝑘 in (28) and 𝛿𝑘 in (29) correspond to the zero mean additive white process and 

measurement noise with covariance 𝑄𝑘 and 𝑅𝑘 respectively. The system state (Network weights) 

is denoted as 𝑤𝑘 at iteration 𝑘 and the non-linear function (Network forward propagation) is 

denoted as 𝐹. The neural network input at iteration 𝑘 is 𝑢𝑘. The UKF utilizes system state 

statistics of the previous iteration, network input and target of the current time step to estimate 

the current system state. The UKF based training algorithm is given in Algorithm 2. Note this 

process eliminates the need for a Jacobian calculation. A more detailed description specifically 

on using UKF in training CSRN can be found in [47]. 
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Algorithm 2  CSRN Training Procedure with UKF  

1.Initialization: Initialize CSRN weights, 𝑊 and compute initial weight 

mean, 𝜇𝑘
𝑤 and covariance, 𝑃𝑘

𝑤. Initialize process and measurement 

covariance, 𝑅𝑘  and 𝑄𝑘 respectively. 

 

2.For each training step 𝑘: Perform Bayesian prediction step to obtain, 

�̅�𝑘+1
𝑤  and �̅�𝑘+1

𝑤  

 

3.Compute the sigma points, 𝒁𝑘+1 

 

4.Pass each sigma point from 𝒁𝑘+1 through CSRN forward-propagation 

function to obtain measurement updates, 𝒀𝑘+1 

 

5.Compute updated estimate statistics, 𝜇𝑘+1
𝑦

, 𝑃𝑘+1
𝑦

 and 𝑃𝑘+1
𝑤,𝑦

 using 

transformed sigma points 𝒀𝑘+1 

 

6.Compute Kalman Gain, K𝑘+1 

 

7.Compute the new weight mean estimate, 𝜇𝑘+1
𝑤  and covariance estimate, 

𝑃𝑘+1
𝑤 . 

 

 

4.3.3 CSRN TRAINING WITH PARTICLE SWARM OPTIMIZATION (PSO) 

Training a neural network with W number of weights can be considered as a search for an 

optimal location in a W dimensional weight space, with regards to the Network cost function 

output, called the fitness value. The fitness value is usually the sum-squared error or the mean 

squared error between the known target and actual Network outputs of a training set. The PSO 

algorithm generates a swarm of 'particles' that traverse through this weight space under swarm 

behavioral performance criteria in search of the optimal location [124]. All the particle locations 

are evaluated with regards to the function at each movement step. The PSO based training 

algorithm is given as Algorithm 3. 
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Algorithm 3  CSRN Training Procedure with PSO  

1. Initialization: Initialize a swarm of particles with random positions, 𝑋𝑖(0) and 

velocities, 𝑉𝑖(0) in the weight (𝑊) space. Initialize particles best fitness value, 𝑝𝑖 

and location, 𝑋𝑖
𝑝

, swarms best 𝑝𝑔 and 𝑋𝑔. 

 

2.For each particle, evaluate the fitness function (i.e. the error between target and 

network output), 𝑓𝑖. 

 

3. For each training step 𝑘: Compare each particles fitness value, 𝑓𝑖 with its best fitness 

value, 𝑝𝑖. If 𝑓𝑖 < 𝑝𝑖, set 𝑝𝑖 =  𝑓𝑖 and 𝑋𝑖
𝑝 = 𝑋𝑖(𝑘) 

 

4. Compare each particles 𝑝𝑖 with swarms best 𝑝𝑔. If any 𝑝𝑖 < 𝑝𝑔, set 𝑝𝑔 = 𝑝𝑖, and 

𝑋𝑔 = 𝑋𝑖(𝑘). 

5.Compute new velocity:  

𝑉𝑖(𝑘 + 1) = 𝑤. 𝑉𝑖(𝑘) + 𝑐1. 𝑟𝑎𝑛𝑑1 (𝑋𝑖
𝑝(𝑘) − 𝑋𝑖(𝑘)) +  𝑐2. 𝑟𝑎𝑛𝑑2 (𝑋𝑔(𝑘) −

𝑋𝑖(𝑘)),  

and new position:  

𝑋𝑖(𝑘 + 1) = 𝑋𝑖(𝑘) + 𝑉𝑖(𝑘 + 1),  

where 𝑤, 𝑐1, 𝑐2 are momentum, cognitive acceleration, and social acceleration terms 

and functions  𝑟𝑎𝑛𝑑1 and 𝑟𝑎𝑛𝑑2 are uniformly distributed random vectors 

 

 

4.4 GENERALIZED SPATIAL DOMAIN IMAGE PROCESSING WITH CSRN 

This section introduces the proposed generalized image processing pipeline based on the 

CSRN and discusses three state-of-the-art learning algorithms used in this study. 
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The flow diagram in Fig. 17 shows the proposed pipeline for training CSRN for image 

processing. This flow diagram includes the three state-of-the-art learning methods such as EKF, 

UKF and PSO identifying the common and independent processing blocks for each. The diagram 

Fig. 17. Pipeline developed for comparison of training algorithms for generalized 

image processing 
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also includes the sub-image processing paradigm introduced by Anderson et al. [46] which adds 

the capability to process larger and complex gray-scale images. This is a generalized platform 

that may allow a quick comparison of competitive training algorithms for any given complex 

universal approximator to perform a complex task such as large-scale image processing. This 

pipeline implements three types of spatial domain image processing tasks: 1) greyscale to binary 

conversion, 2) spatial filtering, 3) affine transformations. 

 

4.4.1 BINARY IMAGE PROCESSING 

Greyscale to binary conversion, also referred to as image binarization, is a simple image 

processing task that transforms each pixel of a greyscale image to binary depending upon the 

intensity of the pixel relative to a threshold value. Greyscale to binary conversion of an 𝑁 × 𝑀 

image 𝐼1 is given as, 

 

𝐼2(𝑥, 𝑦) = {
0      𝑖𝑓  𝐼1(𝑥, 𝑦) < 𝑇𝐻

1     𝑖𝑓   𝐼1(𝑥, 𝑦) ≥ 𝑇𝐻
  (30) 

                                                𝑓𝑜𝑟 𝑥 = 1 𝑡𝑜 𝑁, 𝑦 = 1 𝑡𝑜 𝑀  

 

where (𝑥, 𝑦) represents the current location of the filter mask and TH is the threshold value and  

𝐼2(𝑥, 𝑦) is the resulting binary image. 

 

4.4.2 IMAGE FILTERING 

Spatial filtering operates directly on the pixels of an image [125] in a neighborhood 

surrounding the pixel of interest, referred to as the filter window. The response of the filter at a 
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given pixel location is the discrete convolution of the filter mask with the underlying sub-image. 

This filtering operation on an 𝑁 × 𝑀 image 𝐼3 can be represented as, 

𝐼4(𝑥, 𝑦) = ∑ ∑ 𝑤(𝑖, 𝑗) ∙ 𝐼3(𝑥 + 𝑖, 𝑦 + 𝑖),    

𝑏

𝑗=−𝑏

𝑎

𝑖=−𝑎

 (31) 

𝑓𝑜𝑟 𝑥 = 1 𝑡𝑜 𝑁   𝑎𝑛𝑑   𝑦 = 1 𝑡𝑜 𝑀  

 

where the filter mask, 𝑤(𝑖, 𝑗) is of size 𝑚 × 𝑛, and  𝑎 =
𝑚−1

2
, and  𝑏 =

𝑛−1

2
. 𝐼4(𝑥, 𝑦) is the 

resulting filtered image. 

 

4.4.3 IMAGE AFFINE TRANSFORMATIONS 

Image Affine transformation is a topological mapping technique, where the locations of 

the intensity values of an input image are mapped to new locations of an output image. The 

Affine transformation is given as, 

 

[
𝑥𝑛

𝑦𝑛

] = [
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃

𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃
] [

𝑆𝑥 0

0 𝑆𝑦

] [
𝑥𝑜

𝑦𝑜

] + [
𝑡𝑥

𝑡𝑦

] (32) 

where (xn, yn) and (xo, yo) are the spatial coordinates of the corresponding pixel locations in 

transformed and original images, respectively. Rotation is performed by the 2 × 2 rotation 

matrix with an angle of “θ”. “tx” and “ty” represent the translation along 𝑥 and 𝑦 axis. “Sx” and 

“Sy” represent the scaling parameter in 𝑥 and 𝑦 directions. More details on image Affine 

transformations can be found in [126]. 

Equation (32) suggests that in order to perform affine transformations using CSRN, 

several inputs must be provided for each of its SRN. They are (i) pixel location (the "𝑥" and "𝑦" 
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locations of a pixel within the image) and (ii) transformation parameter (he amount of 

transformation to be performed). This may be the translation, rotation or scaling parameter. The 

output of the network will be the pixel’s (new) location in the transformed image.  

The neighbor inputs for each cell of CSRN are taken as the four closest neighbors for all 

the image processing operations in this study. The first active neuron is connected to the 

neighbors, i.e. output from A1 (Fig. 10) is sent to the four nearest neighbors. Five active neurons 

are used in each SRN for this work. The output of the final active neuron An is multiplied by a 

scaling weight, Ws, to produce the cell’s final output, �̂�. 

 

4.4.4 COST FUNCTION FORMULATION FOR GENERALIZED IMAGE PROCESSING 

WITH CSRN 

In order to use CSRN for any image processing tasks, the CSRN learning must be 

capable of approximating the cost function for a specific task. Consider the cost-function for 

affine transformation of an image. Let 𝐼5 represent the transformed image obtained using the 

affine transformation Eq. (32) and 𝐼5
𝑖  represent the ith pixel in the transformed image. Let 𝐼𝑇

𝑖  

represent the target (true) pixel location of the transformed image. The error between each pair of 

target and transformed pixel location is given as follows, 

𝑒𝑖 = 𝐼𝑇
𝑖 − 𝐼5

𝑖 . (33) 

The total error in the transformed image is given by, 

 

𝐸𝑖 =
1

2
∑ 𝑒𝑖

2𝑙
𝑖=1 , (34)  

where 𝑙 is the number of pixels in the image.  The corresponding error for an entire set of N 

images is given as, 



76 

 

 

𝐸 = ∑ [
1

2
∑ 𝑒𝑖

2𝑙
𝑖=1 ]𝑁

𝑛=1 . (35) 

Equation (34) represents the general cost- function for affine transformation (Eq. (32)). 

Minimizing this cost function also minimizes the Euclidean distance between the computed pixel 

locations and their target locations. 

 

4.4.5 A QUALITATIVE COMPARISON BETWEEN CONSTRAINED AND 

UNCONSTRAINED TRAINING ALGORITHMS 

Choosing an appropriate learning algorithm for a complex universal approximator such 

as CSRN can be challenging for efficient training. Table 6 summarizes a qualitative comparison 

between these three state-of-the-art learning methods. The UKF and PSO algorithms do not 

involve back-propagation of the error gradient and, hence, computationally expensive Jacobian 

computation for a large and complex network. This enables UKF and PSO to be applied to any 

neural network structure easily. For EKF and other Jacobian based learning algorithms, a small 

change in the structure of an ANN requires deriving the back-propagation equations from the 

beginning, which can be computationally expensive. This computational complexity and the 

rapid expansion of the Jacobian matrix with network size constrain the usage of EKF with the 

CSRN.  
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Table 6. Comparison of constrained and unconstrained optimizers for training universal 

approximators 

Comparison criteria 

Training Algorithm 

EKF UKF PSO 

Optimization method Statistical Statistical Biologically 

inspired 

Jacobian computation Yes No No 

Forward-propagation Yes (Once) Yes (Multiple) Yes (Multiple) 

Back-propagation Yes (Once) No No 

Adaptability for 

different ANNs 

Limited High High 

Computational 

complexity 

𝑂(𝑛2) [80] 𝑂(𝑛2) [80, 

127] 

𝑂(𝑛𝑘) [128] 

 

 

On the other hand, both UKF and PSO have their own drawbacks. A potential drawback 

of using UKF for ANN training lies in the sigma point sampling and the measurement update 

calculation. If the number of trainable weights is n, then UKF draws 2𝑛 + 1 sample points. Each 

sample point travels through the neural network forward propagation function, one at a time. 

Therefore, training a neural network with a large amount of weights with UKF may not be 

efficient. The disadvantage of PSO is that it may not always guarantee a global solution and the 

goodness of solution depends on the number of particles involved. Conversely, increasing the 

number of particles also increases the training duration of CSRN. The computational complexity 
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of EKF and UKF in parameter optimization is similar at 𝑂(𝑛2) where 𝑛 is the number of 

parameters (the number of weights in training NN). The computational complexity of PSO 

(𝑂(𝑛𝑘)) is highly dependent on the number of particles k used. 

 

4.5 RESULTS AND DISCUSSION 

This section discusses results on the efficacy of constrained (e.g., EKF) versus 

unconstrained (e.g., UKF and PSO) learning for the CSRN in spatial domain image processing. 

These learning algorithms are evaluated on three image processing tasks such as, image 

binarization, filtering, and Affine transformation. These three image processing tasks represent 

increasingly complex pixel-wise operations. The following subsections  provide the efficacy of 

the three representative learning algorithms for each image processing task. 

YaleB face dataset [129] is used for all the experiments conducted in this study. Table 7 

lists the evaluation metrics related to image comparison, function approximation, and speed. All 

simulations are performed on a workstation with an Intel i7-2630QM 4-core 2.00 GHz CPU and 

8.0 GB of RAM. 
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Table 7 performance evaluation metric for image processing 

Metric Description 

JSSE Sum Squared Error between the target function and network output. This 

evaluates how well the network learns. JSSE varies with image size. 

JMSE Mean Squared Error between the target function and network output. 

Computed by normalizing JSSE  by image size and the number of training 

images. 

JACC Percentage of cell outputs which exactly match known target function 

values. It evaluates the accuracy of the function. 

IMACC Percentage of matching pixels between the target image and the output 

image. 

IMCR Correlation ratio between the target image and the output image. It 

evaluates the similarity between target and output image. IMCR closed to 

1 indicates a higher similarity between the two images. 

TTR Training time (secs) – time required to train the CSRN. 

 

 

4.5.1 BINARY IMAGE PROCESSING 

Greyscale to binary conversion is a spatial domain pixel-wise operation that does not 

affect the surrounding pixels. This operation does not involve information sharing among 

neighboring pixels; therefore’ the connections with the neighboring cells in CSRN are not 

required. In this experiment, the CSRN is trained using 11 facial images with a threshold value 

𝜃 = 0.4 chosen as an example. The target images for training CSRN are generated using 
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MATLAB©'s greyscale to binary conversion function. The CSRN is tested using a different set 

of 11 test images from the same dataset. An example test image is considered as the primary test 

case and is shown in Fig. 18. 

 

 

Target 

Image 
Input Image 

Output Image 

EKF UKF PSO 

     

Fig. 18. Greyscale to binary conversion results (Primary Test Cases). 

 

 

Fig. 18 illustrates that the output images obtained by training the CSRN with three 

different learning algorithms are very similar to the target image. This is confirmed by the 

proposed performance metrics IMACC = 98.3% and IMCR = 96.4%; IMACC = 99.10% and IMCR = 

98.0%; IMACC = 99.35% and IMCR = 99.0% using EKF, UKF and PSO, respectively. The results 

show that all three learning methods can train CSRN to successfully perform greyscale to binary 

transformation with comparable accuracies. 

 

4.5.2 IMAGE FILTERING 

In this experiment, we implement a low pass filter (LPF) using CSRN in order to 

investigate the performance of the learning methods in spatial filtering. Like the greyscale to 

binary conversion, spatial filtering is performed at the individual pixel level. Therefore, a simpler 
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CSRN structure like the one used for greyscale to binary conversion is used. The CSRN is 

trained using the same 11 facial images as used in the greyscale to binary conversion experiment 

with filter coefficient, 𝜃 =
1

9
. The target images are generated using MATLAB©'s standard 

image filtering function. The CSRN is tested using the same 11 facial images used as the test 

samples in the greyscale to binary conversion. An example outcome on a test image sample is 

shown in Fig. 19. 

 

 

Target 

Image 
Input Image 

Output Image 

EKF UKF PSO 

     

Fig. 19. Results for LPF implementation. 

 

Fig. 19 shows that the output images produced by the CSRN trained with three different 

learning algorithms are very similar to the target image. This is quantitatively confirmed by the 

performance metric such as IMCR = 93.0%; IMCR = 96.6%; and IMCR = 97.0% using EKF, UKF 

and PSO, respectively. Among the three learning algorithms, UKF and PSO show better 

performance in the low pass filtering application when compared to EKF. 

 

4.5.3 IMAGE AFFINE TRANSFORMATIONS 

This section evaluates the efficacy of both learning techniques for CSRN in a more 

complex image processing task such as affine transformation of facial images in greyscale. The 



82 

 

computation complexity of CSRN increases with image size. Specifically, with the current state-

of-the-art EKF-based CSRN training, the computation of Jacobian becomes increasingly 

complex with large images [83]. In order to lessen the computation complexity of the Jacobian in 

EKF, each input image is segmented into 5 × 5 non-overlapping sub-images, and a separate 

CSRN is assigned for each sub-image [46]. Following the steps in Fig. 17, the CSRN is first 

trained, and the transformation is obtained by first segmenting the test image into 5 × 5 sub-

images and then sending each sub-image through the corresponding CSRN. 

The transformed sub-images are recombined to produce the final output. In order to make 

a fair comparison between the training algorithms, UKF and PSO are also utilized in a similar 

manner to train the CSRN. A 35 × 35 greyscale facial image is considered for performing the 

Affine transform. The image transformation results for the primary test cases (PTC: 𝑡𝑥 = 10,

𝜃 = 16°, 𝑆𝑥 = 𝑆𝑦 = 0.73) are shown in Fig. 20 and Table 8. 

The Affine translation of greyscale images is performed through 0 𝑡𝑜 10 pixels using 11 

training images. The examples of translation on the test image are shown in Fig. 20. Table 8 

shows that CSRN trained with EKF, UKF, and PSO achieves 𝐼𝑀𝐴𝐶𝐶 = 100%, 96.41% and 

100% for translation, respectively. The approximation accuracy (𝐽𝐴𝐶𝐶) for the translation 

function is 100% by both EKF and PSO, while UKF shows a slightly lower accuracy of 92.24%. 
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Fig. 20. Greyscale image affine transformation results (Primary Test Cases). 

 

Affine rotation on greyscale images is performed in the range 𝜃 =  0° 𝑡𝑜 20° in 2° steps 

using 11 training images. For rotation, the CSRNs trained with EKF, UKF, and PSO yield  

𝐼𝑀𝐴𝐶𝐶 = 94.9%, 89.22% and 96.64%, respectively. The CSRNs trained with EKF, UKF and 

PSO also yield 𝐽𝐴𝐶𝐶 = 96.8%, 85.06%, and 94.40%, respectively in approximating the rotation 

function. 

The experiment for the scaling of greyscale images is limited to training images of scale 

factor  𝑆𝑥 = 𝑆𝑦 = 0.5 to 1.0. Seven training images with scale factors 𝑆𝑥 = 𝑆𝑦 = 0.52, 0.6,

0.68, 0.76, 0.84, 0.92 and 1 have been used. For Affine scaling, the CSRNs trained with EKF, 

UKF, and PSO achieve 𝐼𝑀𝐴𝐶𝐶 = 68.3%, 36.32% and 66.24%, respectively. The accuracies in 

approximating the scaling function have been found as 𝐽𝐴𝐶𝐶 = 96.8%, 51.52% and 91.36% for 

CSRNs trained with EKF, UKF and PSO, respectively. 
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Table 8 shows that the EKF and PSO train CSRN with a higher function approximation 

accuracy (JACC) than that of UKF. Note that the above experiments utilize the sub-image 

processing scheme which is developed specifically for EKF-based learning of large images. As 

mentioned earlier, Jacobian computing becomes difficult with large image sizes which in turn 

drastically degrades the EKF performance. In contrast, the performance of UKF and PSO is 

largely unaffected by the size of the input image. 

 

Table 8. Summary of greyscale image transformation with CSRN 

Metric 

(Units) 

Greyscale Transformation 

Translation (PTC: 𝜃’ =

10𝑝𝑖𝑥) 
Rotation (PTC: 𝜃’ = 160) 

Scaling (PTC: 𝜃’ =

0.73) 

EKF UKF PSO EKF UKF PSO EKF UKF PSO 

JACC (%) 100 92.24 100 96.8 85.06 94.40 96.8 51.52 91.36 

JMSE 0.0 0.01 0.0 0.003 0.024 0.01 0.005 0.08 0.01 

IMACC (%) 100 96.41 100 94.9 89.22 96.64 68.3 36.32 66.24 

IMCR 1.0 1.0 1.0 0.9979 0.99 1 0.9734 0.91 0.98 

TTR -total 

(sec) 

835 1277.86 560.79 887 1337.55 791.18 1060 816.46 582.13 

 

 

We also compare the training time for all three learning algorithms. The training time is 

obtained to study the performance of UKF and PSO when trained with larger full size grey scale 

images. The rotation is chosen as an example Affine transform considering its complexity. The 

results are shown in Table 9 and Fig. 21. 
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Table 9. Training time vs. Image size for EKF, UKF, and PSO based training of CSRN 

Image Size 

Training Time (Sec.) 

EKF UKF PSO 

25x25 232.58 410.05 1050.19 

35x35 1030.01 845.375 2564.00 

45x45 3950.74 1581.575 13986.81 

55x55 10670.78 3011.69 29299.93 
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Fig. 21. Training time vs. Image size using EKF, UKF, and PSO for image Affine 

transform 
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All three training algorithms are used with the same set of greyscale facial images and 

trained for 50 epochs. Table 9 shows that EKF training time is much lower than that of both 

UKF and PSO for smaller sized images (25x25). As the image size increases, the training time 

for UKF becomes much lower than that of EKF and PSO. Compared to EKF and PSO, the 

training time for UKF grows at a slower rate with respect to the input image size as shown in 

Fig. 21. As an example, for an image size of 55x55, the training time for EKF is about 3.5 times 

than that of UKF whereas, the training time for PSO is 10 times that of UKF. This shows that 

UKF can handle larger size input samples more efficiently than EKF and PSO for a universal 

approximator such as CSRN. For the case of UKF, the increase in the input size only increases 

the number of cells. Since the number of weights does not increase (because of the weight 

sharing property of CSRN), it does not alter the complexity of the optimization process of UKF. 

Note the training time for the UKF algorithm depends on the number of weights 

associated with the network. The reason behind higher training time for EKF is explained above. 

For PSO, the value of the cost function grows with the size of the input which in turn increases 

the time for each particle to calculate its fitness value. As a result, the PSO algorithm takes more 

time to reach the global convergence. 

The results suggest that EKF offers better performance when the input image size is 

small. On the other hand, UKF shows better performance for larger images in terms of training 

time. PSO shows better convergence for both small and large input images. Our results also 

show that on average the training time of UKF is about 3 times faster than EKF and 8 times 

faster than that of PSO for larger image samples. In conclusion, for large scale applications, a 

constrained learning method such as EKF may not be a good choice for training complex 
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universal approximators. Unconstrained (e.g., Jacobian free) learning techniques such as UKF 

and PSO may be better choices for a universal approximator in large scale complex applications. 

 

4.6 SUMMARY 

This chapter first obtains a generalized structure of CSRN with variable external and 

neighbor connections for spatial domain image processing applications. We then compare three 

representative training algorithms for generalized image processing. A sub-image processing 

scheme is developed for the ease of Jacobian computation in an EKF training algorithm for 

large-scale images. In order to make a fair comparison, the sub-image processing is also used for 

UKF and PSO training algorithms respectively. In general, results show that all three learning 

techniques are capable of training CSRN for the spatial domain image processing tasks.  

However, EKF and PSO show better performance than UKF in terms of image accuracy, 

function accuracy, and training time for a smaller sub-image. Further, UKF outperforms EKF 

and PSO for larger images, especially in terms of the training time. Therefore, while EKF and 

PSO are desirable for low dimensional input applications, UKF is optimal for applications with 

larger input patterns. Moreover, UKF and PSO present clear advantages over EKF due to the 

added versatility from Jacobian free learning for CSRN. These findings and further experiments 

conducted on CSRN are published in [44, 48-50]. 

This chapter illustrates the experiments conducted on the CSRN and its training in highly 

complex topological image processing tasks. The results demonstrate the unique capability of the 

cellular structure in processing spatial relationships in data. This is beneficial for our task of 

processing large-scale time series data such as EEG that may include signal-source locality 

features. Additionally, the ability of CSRN to share the trainable weights among its cells is also 
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of importance to us as we strive to develop an efficient architecture with limited use of trainable 

parameters for our task. This chapter also addresses the difficulties encountered in training a 

complex cellular architecture by experimenting on several state-of-the-art learning algorithms. In 

summary, we establish the advantages of a cellular architecture in processing complex 

multidimensional inputs, and we address the problems in training cellular architecture. Using the 

cellular structure as our base, in the next chapter we develop a novel efficient recurrent neural 

network architecture that is capable of processing large-scale time series data with superior 

efficiency.   
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CHAPTER 5 

DEEP CELLULAR RECURRENT NEURAL NETWORK FOR EFFICIENT TIME-

SERIES ANALYSIS 

 

5.1 CHAPTER OVERVIEW  

Efficient processing of large-scale time series data is an intricate problem in machine 

learning. Conventional sensor signal processing pipelines with hand engineered feature 

extraction often involve huge computational costs with high dimensional data. Deep recurrent 

neural networks have shown promise in automated feature learning for improved time-series 

processing. However, generic deep recurrent models grow in scale and depth with increased 

complexity of the data. This is particularly challenging in the presence of high dimensional data 

with temporal and spatial characteristics. Consequently, this chapter proposes a novel deep 

cellular recurrent neural network (DCRNN) architecture to efficiently process complex multi-

dimensional time series data with spatial relevance. The cellular recurrent architecture in the 

proposed model allows for location-aware synchronous processing of time series data from 

spatially distributed sensor signal sources. Extensive trainable parameter sharing due to 

cellularity in the proposed architecture ensures efficiency in the use of recurrent processing units 

with high-dimensional inputs. The proposed DCRNN architecture is evaluated using two time-

series datasets: a multichannel scalp EEG dataset for seizure detection and a machine fault 

detection dataset obtained in-house. The results suggest that the proposed architecture achieves 

state-of-the-art performance while utilizing substantially fewer trainable units when compared to 

comparable methods in the literature. 
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5.2 LITERATURE REVIEW 

This section provides a brief literature review of the typical time series processing 

methods. These methods vary in terms of the methodology and the functionality. Most feature-

based methods usually follow a two step-process: 1) time series feature Extraction and selection, 

and 2) feature classification. Consequently, numerous feature extraction methods and 

classification methods have been introduced with feature-based methods. However, the overall 

performance of feature-based methods heavily depend on the hand engineering of appropriate 

feature extraction and selection for a given task.   

 

5.2.1 FEATURE BASED TECHNIQUES IN TIME-SERIES PROCESSING 

Typical pattern recognition applications oftentimes involve classification or regression of 

input data that is static in time. However, most real-world data obtained through a set of 

observations almost always exhibit changes with time. Though in some cases, the change of 

observations in time can be ignored, certain applications that particularly deal with changes 

across time require an additional temporal dimension to be incorporated in the pattern 

recognition process. Moreover, tasks such as monitoring multi-channel EEG for seizure 

detection and complex machine health monitoring may require recognition of patterns that 

extend in both spatial and temporal dimensions. Computational models that are specifically 

capable of capturing complex patterns in time and space are required to process such multi-

dimensional time series data. One of the most challenging steps in constructing a ML model for 

complex time series analysis is an appropriate feature extraction scheme that effectively captures 

the patterns across time and spatial dimensions. These representative features may be a set of 

simple statistics of the time series data such as mean, variance, skewness, kurtosis, largest peak, 
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and number of zero crossings. [14]. More descriptive features such as autoregressive coefficients 

[15], frequency power spectral features [16], and features derived from time-frequency analysis 

such as wavelet transform [4, 16], wavelet packet transform [4, 17], filter banks [18], and self-

similarity features [13], and further engineered versions of these may also be considered to 

obtain a more discriminatory representation of data. However, one of the main problems 

associated with feature engineering is that the efficacy of such features essentially depend on the 

data, and the application. Therefore, the performance of a ML pipeline depends on the hand 

selection of a subset of features or extraction of a set of new features based on the domain 

expertise. Feature learning with artificial neural networks (ANN) largely alleviates this problem 

by progressively learning the best possible discriminatory feature from data. 

 

5.2.2 DEEP NEURAL NETWORKS FOR TIME SERIES PROCESSING 

The availability of powerful computational tools and training methods have enabled deep 

neural networks to solve many difficult recognition problems in robotics [22], object recognition 

[23], and text recognition [24]. The typical feed-forward neural networks are predominantly used 

in processing data that is static in time due to its inability to process temporal relations owing to 

the limited forward information processing capability. Recurrent neural network (RNN) [25] or a 

time-delay neural network (TDNN) is a variant of ANN with the added capability of information 

aggregation through feedback connections. RNNs such as Elman and Jordan architectures [26-

28] process time-series by reading samples sequentially in time, and the feedback connections 

aid in retaining valuable information through time steps. Further improvements to the feedback 

units in retaining memory through longer time-sequences are tasked to Long Short-term Memory 

(LSTM) [29] units, and Gated Recurrent Units (GRU) [30]. Large-scale deep versions of 
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recurrent neural networks have been successfully utilized in multiple domains [31-34]. Few 

works suggest the use of deep CNN and/or deep LSTM networks for processing EEG [130-132]. 

These typically involve an additional feature extraction step such as Fourier spectrum 

computation prior to the application of CNN for improved compatibility. The deep CNN is 

primarily used as a feature extractor while a LSTM layer is applied subsequently for temporal 

processing. However, current state-of-the-art deep models suffer from a major limitation. The 

depth, complexity, and number of trainable parameters associated with these models grow 

proportionally to the complexity of the input dimensionality and the given task. This problem is 

further exacerbated in recurrent learning models as the additional feedback links demand even 

more trainable parameters. Therefore, such architectures can increase prohibitively in the 

presence of large-scale, multi-source time-series data such as EEG.  

Furthermore, the deep CNN and LSTM methods still largely ignore the spatial relevance 

in large scale time series data for some applications (e.g., EEG and machine fault detection) 

where space location information is of interest.  The time series data recorded from different 

components in a machine health diagnosis, and fault detection system such as in [133] may hold 

spatial correlation based on the locality of the components. Specifically, the particle accelerator 

facility of Jefferson Nation Labs contains multiple cavities situated serially on cryomodules 

[133]. Multiple RF signals from each cavity are recorded for monitoring the operating conditions 

[133]. Automated detection and classification of faults in this system involves efficient 

processing of time series data obtained from each cavity. Interestingly, Thodoroff et al. [131] 

propose an image-based representation combining Fourier spectral features from individual EEG 

electrodes into a single image based on the 2D projection of the EEG montage. This 

representation maintains the spatial locality of individual EEG electrodes to exploit the spatial 
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relevance of seizure EEG. However, this is still processed using a large-scale multi-layer CNN 

and LSTM combined architecture that suffers from large computational costs for the networks.   

In order to address the general lack of computationally efficient methods for processing 

time series data that also maintain spatial relevance, this study proposes a novel DL architecture 

called deep cellular recurrent neural network (DCRNN). The DCRNN is inspired by the cellular 

neural network architectures [42-44] that are shown useful for real time image processing [43] 

and approximating the dynamic programming tasks [45]. The typical cellular architecture spans 

the area of a 2D input such as an image, overlapping each pixel with a corresponding cell in the 

network [44, 45]. Such cellular architectures enable distributed processing of information while 

maintaining synchronized communication with the neighboring cells. The cellular architecture 

also promotes extensive sharing of tunable parameters by placing identical neural structures in 

each cell [44]. We utilize this unique cellular sub-architecture in designing our DCRNN 

architecture for multi-dimensional time series data processing. The cellularity of the proposed 

architecture allows for processing sensor signals obtained from individual sources. The grid-like 

placement of cells in turn enables communication with the neighboring cells, which allows 

learning spatial characteristics based on the locality of sensor signal sources. We also gain 

extensive trainable weight sharing by placing identical recurrent neural models within each cell. 

Moreover, the cellularity enables straightforward expansion of architecture for changes in the 

number of input sources, with only negligible increments to the number of trainable weights. 
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5.3 THE DEEP CELLULAR RECURRENT NEURAL NETWORK FOR LARGE-SCALE 

TIME SERIES PROCESSING 

This section illustrates the details of the proposed deep cellular recurrent neural network 

(DCRNN) architecture and the associated input formulation and training procedure along with 

complexity analysis.  

 

5.3.1 DCRNN ARCHITECTURE FOR TIME SERIES PROCESSING 

The DCRNN model combines the versatility of cellular neural processing with the 

recurrent LSTM for flexible time series processing. The proposed architecture is shown in Fig. 

22. 

 

  

 

Fig. 22. Proposed DCRNN architecture. Each cell in the cellular sub-architecture hold a 

configurable LSTM network. Final outputs of each cell is aggregated and passed through a feed-

forward network followed by classification. 
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Note that the cellular front end of the proposed architecture is expanded to overlap the 

multi-source 2D input pattern as illustrated in Fig. 22. This enables the LSTM network core in 

each cell to process the time series generated from the corresponding signal source 

simultaneously. The LSTM core network within each cell can be configured as needed for a 

particular task. However, we constrain the LSTM core architecture to be identical for each cell to 

ensure maximum trainable weight sharing. This novel DCRNN model, therefore, offers 

versatility of cellular neural processing combined with flexible time series processing of 

recurrent LSTM while keeping the spatial location information of the input sensor signal. 

It is also evident from Fig. 22 that communication paths exist between a given cell and its 

four neighboring cells. The neighborhood information processing occurs at each time step. For 

instance, consider the cell 𝑗, 𝑘 of the cellular grid of size 𝐽 × 𝐾 is processing a time series at time 

step 𝑡. Along with the input of time series at 𝑡, we configure an additional path to the core 

architecture coming from the neighbors ((𝑗 − 1, 𝑘), (𝑗 + 1, 𝑘), (𝑗, 𝐾 − 1), (𝑗, 𝑘 + 1)) outputs 

obtained at time 𝑡 − 1. In order to accommodate this additional neighbor information path in a 

2D cellular setting, we augment the LSTM equations (18) – (22) in section 2.4.2.2 by taking the 

DCRNN core at cell 𝑗, 𝑘 as follows: 

 

𝑖𝑗,𝑘,𝑡 = 𝜎(𝑊𝑖𝑥𝑗,𝑘,𝑡 + 𝑊𝑁𝑖𝑁𝑗,𝑘,𝑡 + 𝑈𝑖ℎ𝑡−1), (36) 

𝑓𝑗,𝑘,𝑡 = 𝜎(𝑊𝑗𝑥𝑗,𝑘,𝑡 + 𝑊𝑁𝑓𝑁𝑗,𝑘,𝑡 + 𝑈𝑓ℎ𝑡−1), (37) 

𝑂𝑗,𝑘,𝑡 = 𝜎(𝑊𝑜𝑥𝑗,𝑘,𝑡 + 𝑊𝑁𝑜𝑁𝑗,𝑘,𝑡 + 𝑈𝑜ℎ𝑡−1), (38) 
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𝑆𝑗,𝑘,𝑡 = 𝑓𝑗,𝑘,𝑡 ⊙ 𝑆𝑗,𝑘,𝑡−1 ⊙ 𝑡𝑎𝑛ℎ(𝑊𝑠𝑥𝑗,𝑘,𝑡 + 𝑊𝑁𝑠𝑁𝑗,𝑘,𝑡 + 𝑈𝑠ℎ𝑡−1), (39) 

ℎ𝑗,𝑘,𝑡 = 𝑂𝑗,𝑘,𝑡 ⊙ tanh(𝑆𝑗,𝑘,𝑡) (40) 

where,  

 

𝑁𝑗,𝑘,𝑡 = [ℎ𝑗−1,𝑘,𝑡−1, ℎ𝑗+1,𝑘,𝑡−1, ℎ𝑗,𝑘−1,𝑡−1, ℎ𝑗,𝑘+1,𝑡−1]. (41) 

 

Note that the previous time-step hidden output information of the four closest neighbors 

is used as an additional input signal  𝑁𝑗,𝑘,𝑡 for the LSTM network at each cell. With a 𝐺 × 1 

dimensional hidden output per cell, we typically assign just one neuron output (the 𝐺𝑡ℎelement) 

as the output for neighbors. Though this is configurable, we have found that a single neighbor 

output per cell is sufficient for adequate performance.  

The cellular configuration makes it necessary to hold cell specific intermediate, final 

hidden and memory outputs as shown in Eqns. (36) to (40). However, maintaining identical 

LSTM settings for each cell allows sharing of trainable parameters. Though only shown for a 

single LSTM layer, the cell core architecture can be expanded for multiple layers or bidirectional 

processing as necessary. The final outputs at time step 𝑇 of each cell ℎ𝑗,𝑘,𝑇 are aggregated to 

obtain the feature vector 𝐻. Subsequently, the feature vector 𝐻 is passed through the feed-

forward sub-net to obtain the final output as follows: 

 

𝐹𝐹 = 𝜎(𝑊𝑓𝑓𝐻 + 𝑏𝑓𝑓), (42) 

�̅� = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊�̅�𝐹𝐹 + 𝑏�̅�), (43) 
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Given the ground truth classification as 𝑦 the classification error 𝐸 is computed using the Mean 

Squared Error based loss-function: 

 

𝐸 =
1

2
‖𝑦 − �̅�‖2

2; 
(44) 

 

The training of the network is performed by obtaining partial derivatives of feed-forward 

weights ∆𝑊�̅� and ∆𝑊𝑓𝑓 using the standard back-propagation algorithm and  ∆𝑊𝑐 using back-

propagation through time across all cells. The detailed training procedure of the proposed 

DCRNN architecture is shown in Algorithm 4. 

 

 

 



98 

 

 

Algorithm 4: Training procedure of DCRNN 

Initialization: 

∎ Set cellular sub-structure parameters 𝑊𝑐 ∈ {𝑊𝑖, 𝑊𝑗 , 𝑊𝑜 , 𝑊𝑠, 𝑊𝑁} and feed-

forward parameters 𝑊𝑓𝑓 , 𝑊�̅� with random values 

Training: 

for each epoch  

    for each sample/batch 

   for each time step 𝑡 ← 0 𝑡𝑜 𝑇 

            1. propagate through the cellular sub-net: 

     for each cell 𝑗, 𝑘 ← 0 𝑡𝑜 𝐽 𝑎𝑛𝑑 0 𝑡𝑜 𝐾: 

 Obtain corresponding signal input 𝑥𝑗,𝑘,𝑡 and input from neighbors 

𝑁𝑗,𝑘,𝑡 

 Compute LSTM memory 𝑆𝑗,𝑘,𝑡 and hidden output ℎ𝑗,𝑘,𝑡 using 

Eq.(6)-(10) 

                end 

        end  

       2. Propagate through feed-forward sub-net: 

 Aggregate ℎ𝑗,𝑘,𝑇 from each  cell 𝑗, 𝑘 to form 𝐻 

 Compute  output �̅� using Eq.(12),(13) 

 Compute 𝐸 using Eq. (14)  

3. Perform DCRNN back-propagation: 

 Use standard back propagation to obtain ∆𝑊�̅�, and ∆𝑊𝑓𝑓  

 Use BPTT to obtain ∆𝑊𝑐: 

for each time step 𝑡 ← 𝑇 𝑡𝑜 0 

for each cell 𝑗, 𝑘 ← 𝐽 𝑡𝑜 0 𝑎𝑛𝑑 𝐾 𝑡𝑜 0 

∆𝑊𝑐 = ∆𝑊𝑐 + ∇𝑊𝑐
𝐸 

         end 

  end 

4. Update the Weight parameters: 

 𝑊�̅�(𝑛𝑒𝑤) = 𝑊�̅�(𝑜𝑙𝑑) − 𝛼 ∗ ∆𝑊�̅� 

 𝑊𝑓𝑓(𝑛𝑒𝑤) = 𝑊𝑓𝑓(𝑜𝑙𝑑) − 𝛼 ∗ ∆𝑊𝑓𝑓 

 𝑊𝑐(𝑛𝑒𝑤) = 𝑊𝑐(𝑜𝑙𝑑) − 𝛼 ∗ ∆𝑊𝑐 

    end 

end 
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5.3.2 COMPLEXITY ANALYSIS OF THE PROPOSED DCRNN ARCHITECTURE 

This section analyzes the complexity of the proposed DCRNN architecture compared to a 

state-of-the-art deep LSTM (DLSTM) network of similar depth in terms of the 𝐵𝑖𝑔 𝑂 notation. 

One clear advantage for DCRNN is the extensive use of weight sharing in the cellular recurrent 

sub-architecture as shown in Fig. 22 . This is evident especially when the DCRNN is used to 

process time series data with multiple signal sources spread in space, such as EEG. Consider a 

time series data sample at time-step 𝑡 with 𝐽 × 𝐾 individual signal sources spread in a 2D space. 

The total number of parameters (𝑁𝐷𝐶𝑅𝑁𝑁) of the DCRNN architecture is given by, 

 

𝑁𝐷𝐶𝑅𝑁𝑁 = (𝑛𝐶𝐿𝑆𝑇𝑀 × 𝑚) + (𝐽 × 𝐾 × 𝑛𝑓𝑓) + 𝑐 × 𝑛𝑓𝑓 

   

(45) 

 

 

whereas, the required number of parameters (𝑁𝐷𝐿𝑆𝑇𝑀) of a deep LSTM with similar depth is 

given by,  

 

𝑁𝐷𝐿𝑆𝑇𝑀 = (𝑛𝐿𝑆𝑇𝑀 × 𝑚 × 𝐽 × 𝐾) + (𝑛𝐿𝑆𝑇𝑀 × 𝑛𝑓𝑓) + 𝑐 × 𝑛𝑓𝑓 (46) 

 

Considering the fact that the LSTM network contains multiple trainable weights as shown 

in Eq. (18) to (22), the upper bound of the required number of parameters for the generic deep 

LSTNM (DLSTM) in presence of the above data is 𝑂(𝑛𝐿𝑆𝑇𝑀 × 𝑚 × 𝐽 × 𝐾) where 𝑚 denotes the 

dimensionality of the data in a single signal source. Conversely, the cellular architecture with 

weight sharing manages to process the same data with just 𝑂(𝑛𝐶𝐿𝑆𝑇𝑀 × 𝑚) complexity. Further 

note that typically  𝑛𝐿𝑆𝑇𝑀 ≫ 𝑛𝐶𝐿𝑆𝑇𝑀 due to the large sensor signal input dimensionality faced by 
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the generic DLSTM architecture. In contrast, the DCRNN requires a very small amount of 

recurrent LSTM core units as the cellular architecture processes data from each sensor signal 

source separately. 

 

5.3.3 MULTI-CHANNEL EEG PROCESSING WITH DCRNN 

 As discussed in Section 5.2, multi-channel scalp EEG data exhibits the characteristic of 

time series with spatial locality. The spatial locality may specifically be of interest in automated 

EEG signal processing as EEG signals collected at different locations in the brain represent 

specific seizure activity [131]. Accordingly, we utilize a multi-channel scalp EEG dataset known 

as the CHB-MIT EEG database [134]. This dataset consists of long-term multi-channel EEGs 

recorded from multiple pediatric patients with intractable seizures. More importantly, the scalp 

Fig. 23. The 2D grid mapping of the long-term bipolar EEG montage used in the CHB-

MIT scalp EEG Dataset. The 2D grid approximation is a typical input to the proposed 

DCRNN. 
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EEG setup used in most cases contains 23 bipolar EEG signals recorded from individual 

electrodes placed according to the International Federation of Clinical Neurophysiology 10-20 

system. 

For effective processing of the EEG with spatial orientations intact, we map the EEG 

montage with 18 representative bipolar channels onto a 2D grid setting for better visualization as 

shown in Fig. 23. Note that the raw EEG signals localized as shown in Fig. 23 match with a 2D 

spatial input arrangement required for the proposed DCRNN architecture. In this study we utilize 

the mapping shown in Fig. 23. To obtain an input grid arrangement of size 𝐽 = 4 and 𝐾 = 5. 

Note the mapping in Fig. 4 is scalable so that any additional signal sources (channels) may be 

easily accommodated by rearranging the specified grid. This simply expands the cellular 

arrangement of the DCRNN correspondingly without additional complexity due to weight 

sharing. We utilize this dataset arrangement with the proposed DCRNN architecture to perform 

automated seizure detection. 

 

5.3.4 MACHINE FAULT DETECTION WITH DCRNN 

In order to investigate the versatility of the proposed DCRNN architecture, we utilize a 

second dataset for machine fault detection. The dataset is derived from a database maintained by 

the Jefferson National Laboratory based on the hardware specific faults encountered in the 

particle accelerator facility. A brief description of the hardware arrangement is as follows. The 

Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Laboratory incorporates 

multiple cryomodules with superconducting radio frequency (SRF) cavities. Each cryomodule 

contains eight such cavities connected serially. A fault that occurs in any of these cavities 

disrupts the experimentation at the CBAF facility. More information on the facility, the 
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hardware, and the associated data can be found in [133]. In summary, multiple radio frequency 

(RF) signals are recorded from each SRF cavity in each cryomodule, and a database of recording 

with cavity faults are maintained for further study.  

We utilize this database for automated multi-class fault detection with the proposed 

DCRNN. The cavities are arranged in a serial fashion within the cryomodule. We select 5 

representative RF time series signals per cavity based on expert recommendation. We 

subsequently map the eight cavities and corresponding RF signals in a 2D grid layout as shown 

in Fig. 24. With this mapping, the 5 time series data from each cavity are separated in rows while 

the serial cavity arrangement is preserved in columns. This ultimately obtains a grid of size 𝐽 = 5 

and 𝐾 = 8, and an efficient 2D arrangement for the proposed DCRNN architecture. 

 

Fig. 24. The 2D time-sequence grid arrangement of the Jefferson Lab cavity fault 

detection database. 
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5.3.5 NETWORK PREPARATION 

This section summarizes the input specific configuration of the proposed DCRNN 

architecture.  

First, the DCRNN architecture is prepared for analysis with the EEG dataset as follows. 

We first implement the cellular recurrent architecture based on the EEG input mapping shown in 

Fig. 23. In the cellular sub-net, we implement a bidirectional LSTM architecture with 5 LSTM 

units in each direction. Note that the bidirectional LSTM architecture is made identical in all 

cells to allow sharing of trainable weights. The outputs from the bidirectional architecture are 

aggregated across all cells and passed to the first feed-forward layer consisting of 50 neurons. 

The final classification layer is configured for two class classifications (seizure vs. non-seizure 

EEG) with softmax activation. The other feed-forward layers utilize sigmoid activation as 

discussed in Eq. (43).  With this setup, each 1 second segment of EEG is classified as either 

normal or a seizure EEG. 

Subsequently, the DCRNN architecture is reconfigured for the machine fault detection 

data analysis as follows. We implement the cellular recurrent architecture to complement the 

data mapping arrangement in Fig. 24. Accordingly, the cellular sub-architecture contains 40 

individual cells in 5 × 8 configuration. Within each cell, we setup a unidirectional LSTM 

architecture consisting of 5 LSTM units. Like EEG, the LSTM sub-sub-architecture is made 

identical in each cell to ensure full weight sharing. Final outputs of LSTMs in each cell are 

aggregated and processed through a feed-forward layer consisting of 100 neurons following Eq. 

(42). The final classification layer is configured for a 5 class classification task with softmax 

activation. We classify each of the ~600 waveform events based on the corresponding fault class. 
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5.4 RESULTS AND DISCUSSION 

In this section, we evaluate the performance of the proposed DCRNN model using two 

time series datasets such as CHB-MIT scalp EEG [134], and the Jefferson Lab machine fault 

dataset [133]. We specifically select these datasets from different application domains to 

evaluate the scalability of the proposed DCRNN architecture in multiple application domains. 

 

5.4.1 MULTI-CHANNEL SCALP EEG DATASET 

As discussed in section 5.3.3, the CHB-MIT scalp EEG dataset consists of a long-term 

bipolar referenced multi-channel EEG recorded from pediatric patients with epileptic seizures. 

We utilize EEG data from 20 patients containing 124 separate seizure events for the analysis. 

The EEG is recorded in continuous segments of 1 to 4 hours. All EEG time series signals are 

sampled at 256 Hz. The seizure events within the long-term EEG segments are annotated by an 

expert [134]. We perform patient specific seizure detection using the proposed DCRNN model. 

The EEG preparation for analysis is as follows. We extract and segment all available raw 

seizure EEGs into 1 second segments. We subsequently segment the non-seizure EEG into 1 

second segment and perform randomized sampling to obtain a patient specific dataset of seizure 

and non-seizure EEG. The dataset is then prepared with the mapping procedure specified in 

section 5.3.3 for analysis. Note that we simply normalize the raw EEG without any additional 

pre-processing or feature extraction for this analysis. The patient specific dataset is finally 

utilized in a 5-fold cross validation procedure to obtain the performance of the proposed 

architecture. 
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Fig. 25. Summary of patient specific seizure detection performance of the proposed DCRNN 

model 

 

 

Fig. 25 summarizes the patient specific EEG classification results obtained with the 

DCRNN architecture. According to Fig. 25, seizure detection accuracy for most patients are well 

over 90%. Specifically, the DCRNN achieves an average accuracy of 91.3% with a median of 

92.1%. However, when seizure detection criterion is considered, sensitivity score plays a more 

important role. This is because in a realistic setting, one would expect to correctly identify all 

seizure events even at the cost of relatively higher false positive numbers. Considering this, we 

show that the proposed architecture achieves an average sensitivity value of 94% with a median 

sensitivity of 95%. The DCRNN model still manages to maintain a median specificity value of 
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90.5%. The proposed model also achieves mean and median F1 scores of 91.4% and 92.25% 

respectively. 

Table 10 compares the seizure detection performance of the proposed DCRNN model 

with other studies in the literature. 

 

 

Table 10. Performance comparison of the proposed DCRNN model with other methods on 

seizure detection with scalp EEG 

Methods 
Sensitivity 

(%) 

Specificity 

(%) 

Accuracy 

(%) 

Conventional 

Feature 

Engineering 

and 

Classification 

Automated 

Feature 

Learning and 

Classification 

Yuan et al. 

[135] 

93.8 94.8 94.9 Yes No 

Subasi et al. 

[136] 

93.10 92.8 93.1 No Yes 

Shoeb et al. 

[59] 

96 - - Yes No 

Vidyaratne et 

al. [17] 

96 - - Yes No 

Khan et al. 

[137] 

83.6 100 91.8 Yes No 

Fergus et al. 

[138] 

93 94 - Yes No 

Yao et al. 

[139] 

87.3 86.7 87 No Yes 

Park et al. 

[140] 

80.8 91.7 85.6 No Yes 

DCRNN 94 90 91.3 No Yes 
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Table 10 compares the seizure detection performance of the proposed DCRNN model 

with other studies in the literature. Table 10 shows that the proposed architecture manages to 

achieve comparable seizure detection performance to other state-of-the-art methods in the 

literature. Specifically, the sensitivity of seizure detection is only slightly lower than the methods 

in [59] and [17] and higher than that of [138], all of which utilize the same dataset. However, we 

point out that these methods use several complex feature extraction, feature selection, and 

classification methods in the associated seizure detection pipelines. For example, the seizure 

detection algorithm in [17] uses fractal dimension and harmonic wavelet packet transform on 

each EEG signal to extract features and subsequently utilizes relevance vector machine (RVM) 

classifier for seizure classification. The method in [59] constructs a filter bank to extract features 

from each EEG signal followed by classification with SVM. The method in [138] uses several 

features-based power spectral density (PSD) measures and temporal statistics of EEG time series 

data followed by feature selection methods such as principal component analysis (PCA) and 

linear discriminant analysis (LDA). The study then experiments with several classification 

models such as linear discriminant classifier, quadratic discriminant classifier, polynomial 

classifier, etc. and obtains the best sensitivity of 93% with a K-nearest neighbor (KNN) 

classifier. Yao et al. [139] propose a deep recurrent learning approach for seizure detection using 

the same dataset. The architecture includes 15 recurrent layers with different time-scale 

hierarchies that are composed of 128, 200, and 250 hidden recurrent units for each 5 layer block, 

respectively. Similarly, Park et al. [140] utilize a 7 layer CNN architecture containing both 1D 

and 2D convolutional filters to process a multi-channel EEG dataset for seizure detection. 

In contrast, the proposed DCRNN contains only 5 bidirectional LSTM units in the 

recurrent hidden layers of each cell. With cellular weight sharing, we maintain the same number 
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of units among all cells that process corresponding channels. This comparison shows the highly 

superior computational efficiency of the proposed architecture. In summary, the proposed 

architecture performs efficient feature learning and classification simply utilizing minimally pre-

processed EEG. Moreover, time series processing with LSTM is performed within the cellular 

sub-net, which allows for simultaneous processing of each EEG channel while considering the 

locality of electrodes on the scalp. Minimal pre-processing with automatic feature learning and 

efficient use of trainable weights make DCRNN desirable for multi-channel EEG processing 

applications. 

 

5.4.1 MACHINE FAULT DETECTION DATASET 

The Jefferson Labs machine fault detection dataset includes approximately 600 samples 

of cavity waveform data acquired from the particle accelerator system. Each sample contains 17 

RF waveforms recorded from each of the 8 SRF cavities. Each waveform contains ~1.6 seconds 

(8196 time samples) of data that includes system failure due to a certain fault event. The dataset 

is inspected and categorized into 5 known fault types by an expert. An example waveform 

extracted from cavity 1 is shown in Fig. 26. 
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Fig. 26. Example RF waveforms extracted from cavity 1. 

 

We prepare the machine fault data for analysis as follows. We select the 5 most 

significant RF waveforms for analysis based on visual analysis by an expert. We subsequently 

normalize the waveforms based on the z-score normalization technique. Even though the RF 

waveforms are sampled at a very high rate, we observe that the actual fault event is a relatively 

low frequency event. Therefore, we perform aggressive down sampling of the selected 

waveforms by a factor of 20 to obtain time series data of approx. 410 time samples. The data is 

subsequently arranged based on the mapping introduced in section 5.3.4 and visualized in Fig. 

24. The dataset is utilized in a 10-fold cross validation process to obtain the performance of the 

proposed DCRNN architecture. 

 

 

 



110 

 

Table 11. Performance comparison of the proposed DCRNN model with other methods on 

machine fault detection dataset 

Method 
Number of recurrent 

units in each layer 

10-fold accuracy ± 

standard deviation  

AR features + SVM  - 90%  ± 4% 

AR features +RF - 91.5% ± 2% 

AR features + LR - 87.4% ± 4.8% 

Deep LSTM 256-256 88.83% ± 2.4% 

DCRNN 5-5 89.1% ± 2.7% 

 

 

In order to compare the performance of DCRNN on the fault classification dataset, we 

construct bidirectional LSTM architecture with two 256 LSTM units each followed by a feed 

forward layer of 512 neurons and a 5 class classification layer. Additionally, we set up a machine 

learning framework for the fault classification task. For this, we perform feature extraction on 5 

selected waveforms utilizing autoregressive (AR) analysis. Accordingly, we obtain a 6-

dimensional feature vector per waveform to construct a 240 (6 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 × 5 𝑤𝑎𝑣𝑒𝑓𝑜𝑟𝑚𝑠 ×

8𝑐𝑎𝑣𝑖𝑡𝑖𝑒𝑠) element feature vector for each data sample. We subsequently perform 10-fold cross 

validation analysis using classifiers such as Logistic regression (LR), support vector machine 

(SVM), and Random Forrest (RF). The 10-fold cross validation performance of the proposed 

architecture along with comparison with other methods are shown in Table 11. 

As shown in Table 11, between the two DL models, the proposed DCRNN offers 

comparable accuracy. However, note the large difference in hidden LSTM units used for the 
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recurrent layers in both deep LSTM and DCRNN. This is due to the cellular processing feature 

that maintains the location information for sensor signal in DCRNN as illustrated in Fig. 22. 

Therefore, the input dimensionality of the sensor signal per cell is quite small and will require a 

much smaller number of LSTM units per cell. Moreover, since the LSTM architecture is shared 

among cells, the number of trainable parameters does not grow. The ROC curve of DCRNN for 

multi-class processing is shown in Fig. 27. 

 

 

 

Though the ML based methods in Table 11 perform slightly better than those of the 

proposed DCRNN model, we point out that the associated pipeline requires autoregressive 

Fig. 27. ROC performance curve of DCRNN for multi-class machine fault 

detection. 
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feature extraction from each RF waveform of each cavity. This may be a tedious and 

computationally intensive process, especially if the number of waveforms or cavities is higher. 

The proposed DCRNN architecture is quite helpful in this regard as it simply requires expanding 

the cellular grid to accommodate the increased input sources. The spatial domain trainable 

weight sharing functionality of cellular architecture would contain the computational complexity 

as analyzed in section 5.3.2. 

 

5.5 SUMMARY 

This chapter proposes a novel deep cellular recurrent neural network (DCRNN) 

architecture for efficient processing of large-scale time-series data with spatial relevance. The 

DCRNN model consists of a cellular recurrent sub-network that operates in 2D space to enable 

efficient processing of time series data while considering multiple signals from spatially 

distributed sensors. The cellular architecture processes data from each localized sensor signal 

source individually in a synchronized manner. This 2D distributed processing approach enables 

minimum use of recurrent LSTM units within each cell due to the locally reduced input 

dimensionality. Moreover, time series data obtained from spatially distributed sensor systems 

such as multi-channel EEG may hold importance in the locality of the sensor signal for many 

associated tasks. The cellular architecture of the proposed DCRNN preserves the locality of the 

distributed sensor signals by mapping itself onto the 2D space. The inter-cellular weight sharing 

property further improves the efficiency of the proposed model. The performance of the 

proposed DCRNN model is evaluated using two large-scale time series datasets obtained from 

biomedical and machine fault analysis domains. The results show that the proposed architecture 



113 

 

achieves state-of-the-art performance with respect to comparable ML and DL methods while 

utilizing significantly fewer recurrent processing units and trainable parameters. 
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORKS 

 

The overall goal of this dissertation is to propose a novel biologically inspired deep 

cellular recurrent neural network model for efficient processing of large-scale time series data 

with spatial information. We begin by investigating the efficacy of feature engineered machine 

learning models in time series analysis.  Accordingly, as our first goal, we develop a novel, 

efficient ML pipeline to process a large-scale EEG dataset. The proposed pipeline utilizes 

computationally efficient feature extraction methods such as harmonic wavelet packet transform 

and fractal analysis to obtain state-of-the art performance among machine learning models on 

EEG processing for seizure detection. We also identify the potential limitations incurred by the 

feature engineering process and recognize the need for an efficient feature learning model for 

such large-scale time-series processing tasks. Therefore, we investigate a particular neural 

network architecture known as CSRN as a platform to build a novel recurrent architecture. 

Though quite adept at learning intricate tasks, the inherent structural complexity of the CSRN 

affects its training. Consequently, as our second goal, we perform a comprehensive investigation 

of training CSRN utilizing several constrained and unconstrained learning algorithms. 

Subsequently, as our final goal, we introduce a novel deep cellular recurrent architecture for 

efficient processing of large-scale time-series datasets. The overall outcomes of this dissertation 

are summarized in Table 12 and further discussed below.  
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Table 12. Summary of novel contributions  

Chapter Topic Contributions Results Comments 

3 Efficient ML 

pipeline for 

real time 

epileptic 

seizure 

detection using 

scalp EEG 

 A novel 

machine 

learning pipeline 

for automated 

seizure detection 

 Feature 

engineering with 

harmonic 

wavelet (HW) 

analysis and 

fractal analysis 

(FD) 

The proposed 

pipeline shows 

improved 

seizure 

detection 

performance 

compared to 

the state-of-

the-art ML 

models 

 The proposed 

method is 

significantly 

more 

computationally 

efficient with 

respect to other 

methods 

 Works with 

both scalp and 

intracranial 

EEG  

4 Comparison of 

constrained 

and 

unconstrained 

learning for 

cellular 

simultaneous 

recurrent 

network 

(CSRN) in 

image 

processing 

 Generalized 

structure of 

CSRN for a 

variety of spatial 

domain image 

processing  

 Introduced 

Jacobian free 

optimization for 

CSRN 

The composite 

cellular 

architecture of 

CSRN is 

capable of 

learning 

complex 

topological 

image 

processing 

tasks using 

several 

optimization 

methods 

 The cellular 

architecture aids 

in learning 

topological 

relevance of 

data effectively 

 Jacobian free 

optimization is 

appropriate for 

complex 

architectures 

with limited 

trainable 

parameters 

5 Deep cellular 

recurrent 

neural network 

(DCRNN) for 

efficient time-

series analysis 

 Introduced a 

unique deep 

cellular 

recurrent 

architecture for 

large-scale time 

series processing  

DCRNN 

model 

demonstrates 

comparable 

performance to 

state-of-the-art 

models while 

using 

substantially 

less computing 

resources 

 DCRNN 

Processes both 

spatial and 

temporal 

relevance of 

data 

 The DCRNN 

requires 

significantly 

reduced training 

parameters 

achieve high 

performance 
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For the first goal, we propose a novel ML pipeline for efficient large-scale time series 

processing for patient-specific real-time automatic epileptic seizure onset detection. The 

proposed technique obtains the harmonic multiresolution and self-similarity-based fractal 

features from multi-channel EEG for robust seizure onset detection. Accordingly, a fast wavelet 

decomposition method, known as harmonic wavelet packet transform (HWPT), is computed 

based on Fourier transform to achieve higher frequency resolutions without the recursive 

calculations ubiquitous to generic methods. Similarly, we consider fractal dimension (FD) 

estimates in order to capture the self-similar repetitive patterns in the EEG signal. Subsequently, 

we organize both FD and HWPT energy features across all EEG channels at each epoch to 

capture the spatial information due to electrode placement on the skull. Moreover, we construct 

the final feature vector using a moving window analysis to capture the temporal information of 

EEG. Our experimental results using a large-scale multi-channel scalp EEG dataset and a small-

scale intracranial EEG dataset show that the proposed pipeline outperforms the state-of-the-art 

methods on multi-channel EEG processing for automated seizure detection. Moreover, the 

results show that use of less computationally intensive feature extraction techniques such as 

HWPT and FD enables considerably faster seizure onset detection when compared to similar 

techniques in the literature. We also show that the superior speed indicates potential usage in 

real-time applications. We recognize the potential limitations of feature engineering and the 

difficulty in processing the spatial locality of large-scale time series such as EEG with traditional 

methods.   

For the second goal, we investigate a unique artificial neural network architecture known 

as cellular simultaneous recurrent neural network (CSRN) and its training. Many practical 

applications such as large-scale spatial domain image processing represents extremely complex 
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topological mapping functions that typical ANN architectures are unable to approximate 

effectively. However, the distinctive cellular architecture makes CSRN particularly adept at such 

topological mapping tasks typically found in image data processing. However, training CSRN 

for topological image processing is a challenging task because of the complexity of the network 

and the sheer size of the image data. Several representative training algorithms such as Back-

propagation Through Time (BPTT), Extended Kalman Filtering (EKF), and Particle Swarm 

Optimization (PSO) have been used to train CSRN for different applications. However, the 

literature does not show a systematic approach for choosing an appropriate learning algorithm 

for training a complex universal approximator such as the CSRN in generalized image 

processing applications. Consequently, we first develop a generalization of the network 

architecture for several topological image processing tasks. Then we perform a systematic 

comparison of the CSRN network training algorithms developed to effectively solve the 

topological image mapping problems. Consequently, we show that introduction of an 

unconstrained Jacobian free UKF learning algorithm alleviates the high computational cost 

otherwise associated with calculating Jacobian for EKF. Moreover, our results show that 

Jacobian-free training algorithms such as UKF and PSO for unconstrained optimizers perform 

better than a Jacobian-based algorithm such as EKF in large scale image data processing. We 

also note that the Jacobian free training methods are efficient on architectures with a limited 

number of trainable parameters.  

Finally, for the third goal we characterize and develop a novel bidirectional deep cellular 

recurrent neural network (DCRNN) architecture for efficient processing of large scale high 

dimensional time series data obtained from spatially distributed multi-sensor systems. 

Specifically, we design our DCRNN architecture based on the cellular structure of the CSRN 
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investigated under our second goal in the fourth chapter. The cellular recurrent architecture in the 

proposed model allows for location-aware synchronous processing of time series data obtained 

from spatially distributed multiple sensor signal sources. Additionally, we show that the 

extensive trainable parameter sharing enabled by the cellular architecture ensures superior 

efficiency in the use of recurrent processing units with high-dimensional inputs. We also 

demonstrate the generalizability of the novel DCRNN architecture utilizing two large-scale 

multi-sensor time series datasets: a multichannel scalp EEG dataset for a binary seizure 

classification task, and a multi-class machine fault detection time series dataset. The results 

indicate that the proposed DCRNN architecture achieves state-of-the-art performance with 

respect to comparable ML and DL methods while utilizing substantially fewer recurrent 

processing units and trainable parameters.   

Our plan for the DCRNN is to further expand its efficacy and scalability by promoting 

parallelized information processing. The cellular structure of DCRNN inherently promotes 

parallelized processing of information that is organized in 2D space. As discussed in Chapters 4 

and 5, each cell in a cellular architecture processes data independently and in a synchronized 

manner. Therefore, cellular processing can essentially be performed in a distributed manner. 

However, in order to fully leverage the parallelized processing in cells, the implementation of the 

architecture may be realized in a dedicated multi-processor hardware system such as a graphics 

processing unit (GPU), or a field-programmable gate array (FPGA). The sparse use of trainable 

parameters may further assist the implementation of DCRNN in a dedicated, stand-alone, 

lightweight hardware system.  Such implementation may substantially improve the processing 

time of DCRNN to allow for potential real-time and real-world use. Additionally, we plan to 

further extend the DCRNN architecture for multi-dimensional time-series processing 
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applications. Currently, the cellularity in DCRNN allows for flexible expansion of architecture in 

a 2D grid-like input environment. However, some large-scale time series data, such as fMRI may 

contain time-series signal-sources spread in a 3D volumetric space. The CDRNN may be 

expanded to obtain a 3D cellular architecture for processing such volumetric time-series data 

efficiently. Another area of investigation is in the ability of DCRNN for transfer learning. Most 

generic DL models are susceptible to abrupt changes in the input dimensionality. For instance, a 

reduction or an addition of an EEG channel changes the input dimensionality of the multi-

channel EEG data. This may require a generic deep recurrent neural network model to be 

retrained to accommodate the change in the input. However, the cellular structure of DCRNN 

may simply expand by adding a new cell to accommodate the additional input. The weight 

sharing property of DCRNN may further aid in this process and may require only minimal 

adjustments. Further investigations into this property may reveal possibilities of using DCRNN 

for the intricate problem of missing data. In general, the findings of this dissertation suggest that 

future research in efficient deep learning may need to focus on architectures that enable 

decentralized processing of information to support the data analysis requirements of prevailing 

multi-sensor environments in modern computational intelligence.  
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