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1. Introduction 

The first recordings of brain activity in the form of electrical signals, through the use of a 
galvanometer and insertion of two electrodes on the scalp of an individual, were conducted 
in 1875 by British scientist Richard Caton. Since then, the electroencephalogram (EEG) has 
been used to denote the neural electrical activity of the brain (Sanei & Chambers, 2007). 
The EEG signal acquisition can be performed by introducing electrodes inside the brain 
tissue (depth EEG), the placement of electrodes directly into the exposed surface of the 
cerebral cortex (electrocorticogram - ECoG) or the positioning of electrodes in a non- 
invasive, on the surface of the scalp (scalp EEG - sEEG). 
The human scalp EEG, in relation to its physical characteristics, occupies a frequency band 
of 0Hz to 100 Hz and an amplitude range of 2μV to 200μV, however, in general, the signal is 
concentrated between 0,5Hz and 60Hz with an average amplitude of 50μV (Coimbra, 1994). 
These frequency and amplitude value of the EEG signal are influenced by a series of 
characteristics, such as: location in the cerebral cortex from where recording was acquired, 
age of the subject, physical (sleep, wake, coma, etc.) and behavioral (depression, excitement, 
euphoria, stress, etc.) state of the subject. Furthermore, the signal can also be distorted by 
artifacts interference from many sources, for example, extra cerebral electrical potentials 
from the patient, the electrodes, the signal acquisition system and external electromagnetic 
interferences. This means that the recordings may have variability among patients under 
identical circumstances and in the same patient over time. The presence of this variability 
contributes to the great difficulty presented in attempts to mathematically model the 
electrographic patterns commonly present in the EEG signal. Nevertheless these patterns 
have a relative regularity in frequency, morphology and amplitude – whichever they are – 
i.e. the frequency spectrum of the EEG is usually divided into frequency bands that may be 
related to different physical states and behavior (Sanei & Chambers, 2007): 

• alpha band – 8 to 13 Hz – common rhythm in normal patients and more easily 
observable while the subject is awake, relaxed and with its eyes closed; 

• beta band – 13 to 22 Hz – common rhythm in normal adult patients during 
wakefulness. Dominant in the pre-central region of the brain but also occurs in 
other brain regions. Subdivided into: beta I, 13 to 17 Hz - present during intense 

www.intechopen.com



 Biomedical Engineering Trends in Electronics, Communications and Software 

 

388 

activation of central nervous system (CNS) - and beta II, 18 to 22 Hz - decreases 
during intense activation of the CNS; 

• theta band – 4 to 8 Hz – rhythm frequent in children, in central and temporal 
region of the brain. Typical of early stages of sleep. Some transient components of 
this rhythm have been found in normal adult patients; 

• delta band – 0,5 to 4 Hz – common rhythm in children, especially infants, in a state 
of deep sleep. The presence of this wave in adults under a state of alert may 
indicate abnormalities. 

 

 
(Sanei & Chambers, 2007) 

Fig. 1. Examples of common electrographic patterns present in the EEG signal 

The EEG recording has applicability on, among others: monitoring alertness, coma and 
brain death; locating damaged areas after head injury, stroke and tumor; testing afferent 
pathways; monitoring anesthesia depth; researching physiology and sleep disorders; 
researching epilepsy and localizing the seizure focus (Sanei & Chambers, 2007). 
Epilepsy is a disorder of the brain characterized by an enduring predisposition to generate 
epileptic seizures and by the neurobiological, cognitive, psychological and social 
consequences of this condition. The definition of epilepsy requires the occurrence of at least 
one epileptic seizure, which is a transient occurrence of signs and/or symptoms due to 
abnormal excessive or synchronous neuronal activity in the brain (Fisher et al., 2005). 
Neurologists can make a diagnosis of epilepsy simply through anamneses however EEG 
signal analysis is a commonly used and important tool to: clinical diagnosis, support in 
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defining the type of epilepsy syndrome, provide information for planning drug therapy and 
also help in deciding the feasibility of surgical intervention. 
The occurrence of certain electrographic events, called epileptiform events, in EEG signal is 
a strong indicator of this pathology presence. An expert in reading these records (EEGer) 
spends a considerable amount of time reviewing each record, especially when they are 
acquired for long term monitoring (more than 24 hours) and with many channels – between 
24 and 128 leads (Pillay & Sperling, 2006). 
In attempt to facilitate the analysis of EEG recordings by neurologists (or other experts) 
many studies have proposed automated systems for this analysis. Unfortunately few of 
them are actually being used worldwide mainly because the available systems for automatic 
detection of epileptiform events have a relative high number of false identifications (false 
positives), resulting in little or no effective time save for the process (Wilson & Emerson, 
2002). This means that the low specificity of the systems still discourages EEGers to delegate 
the task of thorough analysis of the thousands of EEG screens (each with up to 128 
continuous signals) in the search for events whose maximum length is 200ms and the 
amplitude values are in the range of microvolts (μV). 

2. Automatic detection of paroxysms 

The Biomedical Engineering Institute (IEB-UFSC) of the Federal University of Santa 
Catarina (UFSC) has as one of their areas of expertise and interest the acquisition, analysis 
and processing of bioelectrical signals, with emphasis in electroencephalogram (EEG), 
electrocardiogram (ECG), electromyogram (EMG) and electrooculogram (EOG) signals. 
Currently within this area there are two research lines, both using neural networks, for 
automatic detection of epileptiform events: one applies methodologies based on Wavelet 
Transform and the other one uses a parameterization1 of the EEG signal. 

2.1 Approaches based on wavelet transform 

The Wavelet Transform is a tool that allows you to make a more comprehensive analysis of 
the signal due to the fact that it is possible to obtain information in both time and frequency 
domains simultaneously. This Transform is a powerful tool for the analysis of non-
stationary signals (Wilson et al., 2004) making it ideal for EEG signal analysis. Its basic 
principle of operation is extract approximation and detail coefficients of the signal at each 
decomposition carried out, i.e., get high and low frequencies features of the signal for each 
level of decomposition. Wavelet Transform can be used for the parameterization, filtering 
and/or feature extraction of the EEG signals and also be very involved in the construction of 
hybrid intelligent systems for the automatic detection of epileptiform events, providing 
relatively good results when applied as a preprocessor for Artificial Neural Networks 
(Kalayci & Özdamar, 1995; Hoffmann et al., 1996; Oweiss & Anderson, 2001; Quiroga et al . 
2001; Adeli et al., 2003; Khan & Gotman, 2003; Argoud et al., 2006, Pang et al., 2003, Liu et 
al., 2006; Argoud et al., 2006; Mohamed et al., 2006; Subasi, 2007; Indiradevi et al., 2008; 
Ocak, 2008; Abibullaev et al., 2009th, 2009b; Ocak, 2009; Scolaro & Azevedo, 2010). 

                                                 
1 In this study, the term parameterization refers to the representation of an EEG signal by means of 
parameters related to morphological characteristics of this signal and these parameters will be called 
morphological descriptors. 
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2.2 Approaches based on parameterization of the signal 

A comparative study of various algorithms used in automatic detection methods, conducted 
by Wilson and Emerson in 2002, showed that the methods use some form of 
parameterization of the EEG signal usually get good results. 
The first studies involving the parameterization as a tool for the detection of epileptiform 
events in EEG recording were published by Gotman and Gloor (Gotman, 1976; Gotman & 
Gloor, 1982) followed by the research of Webber (1994), Walckzak & Nowack (2001), Litt 
(2001) and Tzallas et al. (2006) among others that have obtained promising results. 
However with the advances in mathematical methods and the increasing capacity of 
computer processing the investigations were directed to other approaches (Halford, 2009), 
for example, the Wavelet Transform, entropy, statistical methods and/or a combination of 
these and other methods (Kaneko et al. 1999; Diambra, 1999, Liu et al., 2002; Saab & Gotman, 
2005; Tzallas et al., 2006; Übeyli, 2009; Kumar, 2010). Nevertheless we did not abandon the 
parameterization approach (Guedes et al., 2002, Pereira 2003, Pereira et al., 2003; 
Sovierzoski, 2009, Boos et al., 2010a, 2010b). 
According to the literature, so far one of the most used and successful methods applied in 
systems for automatic detection of paroxysms is Gotman’s (Hoef et al., 2010). This method 
performs spike modeling through parameters, that in this work will be called morphological 
descriptors2, before detection. Gotman’s method deals with the EEG signal by dividing it 
into segments and sequences, both ascending and descending, which are categorized by 
duration, absolute amplitude and length variation coefficient (which gives information on 
the cadency of the EEG). In this system, the detection of a paroxysm occurs when the 
descriptors’ values for each epoch exceeds a pre-determined threshold. 
Although the literature allows access to various studies that use morphological descriptors 
to characterize the EEG signal, it is necessary a detailed analysis of the applicability, 
relevance and effectiveness of each descriptor that will be used. 
Therefore our objective is to discuss a methodology for the preparation and evaluation of a 
set of descriptors for modeling paroxysms through the use of descriptors that are already 
available in the literature as well as others proposed by us in attempt to improve the 
differentiation between epileptiform events and other electrographic manifestations that 
occur in the signal. 

3. Methodology 

This section will present the recordings and methodologies used for both the development 
of the descriptors’ ensemble and the experiments used as an evaluation tool for the 
proposed set. 

3.1 EEG recordings 

All of the EEG signals used in this study belong to a database with nine records acquired 
from seven adult patients with confirmed diagnosis of epilepsy. They have a sampling 
frequency of 100Hz and were acquired through 24 (1 record) and 32 channels (8 records). 
A bipolar montage (Fig. 2.) type zygomatic-temporal (Zygo-Db-Temp) was used, with 25 
electrodes in positions Zy1, Zy2, Fp1, Fp2, F3, F4, F7, F8, F9, F10, CZ, C3, C4, T3, T4, T5, T6, 

                                                 
2 The use of the term morphological descriptor is because we believe that this term is more appropriate 
within the context of parameters referring to morphological characteristics of a signal. 
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T9, T10, P3, P4, P9, P10, O1, O2 of the 10/20 system and two electrodes positioned for 
acquisition of electrooculogram (EOG). 
For the acquisition process the signals went through analog filtering to isolate the range of 
0,5 to 40Hz. We also observed the need to perform additional filtering to remove the 
baseline wandering effect (DC frequency - 0Hz) and eliminate noise caused by power line 
interference (60Hz), and it was necessary to perform interpolation of the signal to a 
sampling frequency of 200Hz. 
 

 
(Malmivuo & Plonsey, 1995) 

Fig. 2. EEG signal differences presented when a bipolar (A) and unipolar or referential (B) 
montage is used. In the bipolar montage the signal is a result of potential difference between 
pairs of electrodes while for the unipolar montage the signal is obtained by the difference in 
potential between an electrode and a reference point (equal for the whole montage) 

3.2 Morphological descriptors 

The literature on the automatic detection of epileptiform events contains a considerable 
amount of morphological descriptors used in different methodologies and/or developed 
systems. For our experiments we selected the descriptors most reported in literature: the 
maximum amplitude of the event, event duration, the length variation coefficient, crest 
factor and entropy. 
The maximum amplitude and duration of the event are self-explanatory. The length 
variation coefficient – used to measure the regularity of the signal – is the ratio of standard 
deviation and the mean value of the signal. The crest factor is the difference between the 
maximum and minimum amplitudes, divided by the standard deviation (Webber et al., 
1994). The entropy, reported in several studies – e.g. Quiroga (1998), Esteller (2000), 
Srinivasan et al. (2007) and Naghsh-Nilchi & Aghashahi (2010) - provides a value for the 
complexity of the signal under analysis. 
These descriptors are widely used, however they may not guarantee the complete 
differentiation between the events presented by the recordings and also because of this the 
existing systems for automatic detection have only a moderate performance. Thus, through 
a detailed analysis of the EEG signals that are being used, new descriptors based on the 
physical and/or morphological signal can be developed in attempt to improve the 
performance of the automatic detection process. 
The main focus for the development of new descriptors was to find characteristics in the EEG 
signals that further highlighted the epileptiform events from other types of events. The latter 
are called non-epileptiform events (Fig. 3.) and for our database they are represented by: 
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a. normal background EEG activity; 
b. alpha waves; 
c. blinks; 
d. artifacts originated from EMG (muscle activity), external electromagnetic interference, 

among others. 
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Fig. 3. Morphology of the main non-epileptiform events found in our EEG signals database 

 

0 10 20 30 40 50 60 70 80 90 100
-80

-40

0

40

80

120

A
m

p
li
tu

d
e

 (
μV

)

0 10 20 30 40 50 60 70 80 90 100
-60

-40

-20

0

20

40

60

0 10 20 30 40 50 60 70 80 90 100

-80

-60

-40

-20

0

20

40

Time (10
-2

s)

A
m

p
li
tu

d
e

 (
μV

)

0 10 20 30 40 50 60 70 80 90 100
-100

-50

0

50

100

Time (10
-2

s)  
Fig. 4. Morphology presented by the epileptiform events in the recordings under analysis 

Looking at the obtained records we realized that due to the use of a bipolar montage (Fig.2) 
the epileptiform events can appear in four different ways (Fig. 4.). In other words, because 
of the type of montage the spikes and sharp waves may appear with both electronegative 
and electropositives amplitude peaks, however to be considered a paroxysm they still have 
to be followed by a slow wave. 
The basic morphological characteristics of an epileptic event are related to their amplitude 
and duration. The spikes have duration of 20 to 70ms, while a sharp wave has duration of 70 
to 200ms. Since both events can be a paroxysm and making a distinction between them 
makes little sense from a clinical point of view, we can consider that the duration 
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epileptiform events varies from 20 to 200ms. The amplitudes values of both spikes and 
sharp waves are also varied but when considering them epileptiform events the amplitude 
(module value) usually lies between 20μV and 200μV (Niedermeyer, 2005). Examples of 
morphological descriptors related to the amplitude and duration of a typical epileptiform 
event are (Fig. 5.): 

• maximum amplitude (Amax); 
• minimum amplitude (Bmin); 
• difference between the points of occurrence of extreme amplitude (Tdif); 
• difference between the maximum and minimum amplitudes (DifAB). 
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Fig. 5. Morphological descriptors related to the amplitude and duration of paroxysms 
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Fig. 6. EEG signal presenting maximum amplitude corresponding to an epileptiform event 
and minimum amplitude corresponding to another (different) event 

Also regarding the amplitudes within the epoch under review (in this case 1 second of the 
signal) the points of maximum and minimum amplitude may not belong to the same event 
(Fig. 6.). Analyzing this fact, we could see that to be a paroxysm (event we want to correctly 
identify) the event should have a time difference between maximum and minimum 
amplitudes in the range of 35 to 100ms (half duration the slowest event). For this, as 
illustrated in Fig 7, we determined a 300ms segment centered at the event appearing in the 
epoch under review and within this segment we calculated the following descriptors: 
maximum amplitude (Amax_pts); minimum amplitude (Bmin_pts); distance between 
extreme amplitudes (DifAB_pts) and time difference (Tdif_pts) between the maximum and 
minimum amplitudes. 
Another feature that can be observed is that an epileptiform event, particularly the spike, 
has more acute peaks when compared to the obtuse peaks of alpha waves or blinks (Fif. 3b 
and Fig. 3c). This fact allows another opportunity to discriminate between events since the 
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Fig. 7. Maximum amplitude (Amax_pts), minimum amplitude (Bmin_pts), distance between 
extreme amplitudes (Tdif_pts) and time difference between amplitudes (DifAB_pts), all 
within the 300ms segment centered on the event under analysis 

process of automatic detection can confused them, which is a detrimental factor to the 
system performance. Based on these observations we analyzed the vertex angle of the peaks 
through the extreme amplitudes and zero crossing points adjacent to the beginning and the 
end of the event. 
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Fig. 8. Vertex angle of positive and negative epileptiform event, calculated from the 
maximum and minimum amplitude, respectively 

The calculated angles (Fig. 8.), taking an epileptiform event as example, refer to the angle 
influenced by the peak’s initial inclination and the angle that suffers influence of beginning 
slope of the slow wave. Based on the calculation of these angles (θp and θn) we determined 
other descriptors: 
• base of the peaks directly adjacent to the beginning and the end of the event (dpos and 

dneg, depending in order of appearance of the peaks); 
• angle of the analyzed event apex (θ); 
• tangents of the angles of peak apex (tgp and tgn); 
• tilt of the slopes directly adjacent to the beginning and the end of the event (trp and 

trn); 
• event basis (dbase). 
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The morphology of a paroxysm can also often be confused with the morphology of artifacts 
(from various sources) present in the EEG signal. However, as can be seen in Fig. 9. the 
typical waveforms of these noises usually have a relative high frequency. This means that 
the high amplitudes appear with minimum time differences between them, which are the 
opposite of paroxysms that usually have more widely spaced peaks because they are always 
followed by a slow wave. 
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Fig. 9. Example of typical morphology of an artifact (noise) present in the EEG signal 
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Fig. 10. Descriptors for the differentiation between epileptiform events and artifacts, 
considering distances (time) between the points of maximum and minimum amplitude 

The descriptors proposed to make the distinction between noise and epileptiform events can 
be based on relations of time and amplitude differences in the epoch when dividing it in two 
regions (initial and final) adjacent to the event. Experiments were performed and from them 
we projected the following descriptors: 

• amplitude and time difference between maximum amplitudes of the event (Amax), 
initial (Amax_i) and final regions (Amax_f): DifA_i, tA_i, DifA_f and tA_f; 

• amplitude and time difference between minimum amplitudes of the event (Bmin), 
initial (Bmin_i) and final regions (Bmin_f): DifB_i, tB_i, DifB_f, tB_f. 

Further analysis of the morphology and other characteristics of events that occur in the EEG 
recordings can be performed. In this research it is proposed only the addition of descriptors 
based on the classical statistical indices of average, standard deviation and variance. These 
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descriptors, were calculated for both the epoch under analysis (one second) and the 300ms 
segment. Thus, considering the descriptors selected from the literature and those we 
developed after a review of the recordings, we obtained a final set of 45 morphological 
descriptors (Table 1). 
 

Origin if the descriptors Descriptors identifications 

Amplitude Amax, Bmin, DifAB, Amax_pts, Bmin_pts, DifAB_pts 

Duration Tdif, Tdif_pts, T 

Vertex angle of the peaks θ, θp, θn, dbase, dpos, dneg, trp, trn, tgp, tgn 

Initial region of the epoch Amax_i, Bmin_i, DifA_i, tA_i, DifB_i, tB_i 

Final region of the epoch Amax_f, Bmin_f, DifA_f, tA_f, DifB_f, tB_f 

Statistical indexes1 
desvio, media, var, coef, CF, desvioC, mediaC, varC, coefC, 

CFC 

Entropy1,2 entrop_log, entrop_norm, entrop_logC, entrop_normC 
1 The letter ‘C’ at the end of the identification means that the descriptor was calculated for the 
segment of 300ms. 
2 We calculated two types of entropy: normalized (norm) and logarithm of "energy". 

Table 1. Summary of the elements that compose the final set of 45 morphological descriptors 
selected and developed for this research 

3.3 Morphological descriptors evaluation 

In the previous item (3.2) 45 morphological descriptors were presented. Some of them were 
chosen among those universally used and others were defined in our previous work. 
After the creation of the descriptors’ set it is necessary to analyze this ensemble in order to 
verify the significance of each element of the group in the differentiation of events. For this 
research we chose to use correlation analysis and application of Hotelling’s T² test (Härdle & 
Simar, 2007) for individual assessment and Artificial Neural Networks (Eberhart & Dobbins, 
1990; Zurada, 1992; Haykin, 1994 ) to verify the complete set performance. 
The correlation analysis was made evaluating the correlation matrices of descriptors for 
pairs of events. We examined the correlation between morphological descriptors calculated 
from epochs containing paroxysm and epochs with non-epileptiform (blinks, artifacts, alpha 
waves and background EEG activity). The criterion for possible exclusion of any element 
(descriptor) of the designed set was the existence of high correlation values (above 50%) for 
all pairs of events considered. 
The Hotelling’s T² test consisted in calculating the difference between the values of each 
descriptor in epochs with epileptiform transients and epochs with non-epileptiform events. 
The assessment of this test was made comparing the results of these differences with a 
predetermined T² critical value (a threshold). Based on this test a descriptor is considered 
relevant when its T² result is greater than the pre-determined critical value. 
Some descriptors such as the tangents of the positive (θp) and negative (θn) angles, length 
variation coefficient (coef) and crest factor (CF) had T² test result relatively close to the 
critical value and thus these elements could have been removed from the set. However as 
the correlation value achieved by these same descriptors was not high and their exclusion 
did not affect significantly the sensitivity and specificity of the neural networks 
implemented in this study. We chose to not exclude them from the final set. 
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For the verification that the descriptors can indeed provide sufficient information so a 
classifier can make the discrimination between events the set was arranged at the input of 
several Artificial Neural Networks. 
The networks used are all Feedforward Multilayer Perceptron with Backpropagation 
algorithm and supervised learning. The basic architecture of each network was of an input 
layer with 45 neurons and output layer with only one neuron. The number of neurons in the 
hidden layer and the application of input stimuli normalization3 were varied in each of the 
networks so we could find the best configuration and analyze the effect of this 
normalization. Some other features of neural networks implemented are: 

• activation function of output and hidden layers: hyperbolic tangent; 
• number of neurons in the hidden layer (N): 7 to 11 neurons; 
• batch update of the synaptic weights (after every training epoch); 
• learning rate and momentum were respectively: 0,01 and 0,9. 

Finally, the training and test of networks were made with two different compositions of files 
(Table. 2.): a set of files classified only by the presence or absence of paroxysms and another 
set where the files were classified by type of event (sharp waves, spikes, blinks, normal 
background EEG activity, alpha waves and artifacts). 
 

Composition Process Signal classification used 
No. of 
files 

Epileptiform event 47 
Training 

Non-epileptiform event 73 
Epileptiform event 30 

Composition I 
Test 

Non-epileptiform event 23 
Sharp wave 10 

Epileptiform event 
Spike 10 
EEG background 
activity 

5 

Alpha waves 10 
Artifacts 5 

Composition II 
Training 
and testª 

Non-epileptiform event

Blinks 5 

Table 2. Composition of files according to different classifications of EEG signals events, 
used for training and tests of the neural networks created 

4. Results 

Several networks with the same basic architecture and features showed in the previous 
section were trained and tested using both types of file composition (Table 2.). The 
normalization of input stimuli was tested in all implemented networks. 
The set of descriptors (computed for each file) were attributed directly to the networks’ 
input and the stopping criteria for training, used in our experiments, was the minimum 
error (1%) and the maximum number of iterations allowed (100.000 epochs). 

                                                 
3 The term normalization refers to the operation of correcting the amplitude of EEG recordings in which 
the maximum amplitude is greater than the one of a paroxysm (± 200μV). The applied correction is  the 
ratio between the signal and its mean value. 
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The best results obtained after the simulations with all these networks are presented in 
Table 3, where the following statistical indices can be observed: 

• Success rate (SR); 
• True positive (TP), true negative (TN), false positive (FP) and false negative (FN); 
• Sensibility (SE) e specificity (SP); 
• Positive predictive value (PPV) and negative predictive value (NPV). 

 

ANN specifications SR TP TN FP FN SE SP PPV NPV 

8N hidden / 105 epochsa 81% 27 19 4 3 0,90 0,83 0,87 0,86 

9N hidden / 105 epochsa 79% 27 20 3 3 0,90 0,87 0,90 0,87 

8N hidden / 105 epochsa,c 79% 27 16 7 3 0,90 0,70 0,79 0,84 

8N hidden / 105 epochsb 80% 18 24 1 2 0,90 0,96 0,95 0,92 

9N hidden / 11863 epochsb 89% 17 24 1 3 0,85 0,96 0,94 0,89 

9N hidden / 12026 epochsb,c 68% 19 19 6 1 0,95 0,76 0,76 0,95 
a Training and test with files from composition I. 
b Training and test with files from composition II. 
c The input stimuli was normalized. 

Table 3. Best results achieved with the Artificial Neural Networks created 

According to results presented in Table 3 the use of files with signals classified by the 
occurrence of paroxysms showed success rate (the correct identification of test signals) of 
79% whereas with the files of the composition II this rate was around 90%. The best network 
implementations for each type of files showed sensitivity of 90% and 85% and specificity of 
87% and 96%. 
The effect of normalizing the network’s input stimuli that we observed during the 
simulations was a reduction in the specificity values due to the number of false positives 
generated (for example, for the network with nine hidden neurons the false positives 
increased from one to six). 

5. Conclusions 

The use and determination of morphological descriptors seems to be simple because it is a 
direct data collection with relatively basic calculations such as, for example, calculating the 
dimensions of amplitude and duration of the event. However, this process requires a priori 
knowledge of information about the system or entity which characteristics will be cataloged. In 
other words, for the case of automatic detection of epileptiform events in EEG recordings is 
necessary to carry out preliminary studies about the morphology of the signals to be analyzed. 
Another significant aspect when using morphological descriptors is the assessment of the 
selected descriptors as input of the classifier used. It is important to perform an evaluation 
to demonstrate the contribution of each descriptor for the capability of the ensemble in 
making the distinction between events of interest. In this study we used correlation analysis 
and Hotelling’s T² test to identify which descriptors could be excluded from the created set 
in order to provide a performance improvement of the automatic detection process. The 
methods applied for this assessment did not result in significantly high improvements in the 
automatic detection, but this does not invalidate its use because the classifier (neural 
network) used on the experiments showed promising results. 
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Thus, it becomes necessary to study other advanced and robust analysis tools that can 
within a tolerance (error) threshold, provide more consistent results. Therefore we are using 
multivariate analysis (Principal Component Analysis, Independent Component Analysis) 
alone or in combination with other statistical techniques for assessing the relevance of the 
descriptors in attempt to optimize the size of the set needed to perform automatic detection 
through neural networks (or other classifier) without causing significant performance loss 
for the system in which the descriptors are inserted. 
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