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ABSTRACT OF THE DISSERTATION

CONNECTIVITY ANALYSIS OF ELECTROENCEPHALOGRAMS IN

EPILEPSY

by

Panuwat Janwattanapong

Florida International University, 2018

Miami, Florida

Professor Mercedes Cabrerizo, Major Professor

This dissertation introduces a novel approach at gauging patterns of informa-

tion flow using brain connectivity analysis and partial directed coherence (PDC) in

epilepsy. The main objective of this dissertation is to assess the key characteristics

that delineate neural activities obtained from patients with epilepsy, considering

both focal and generalized seizures. The use of PDC analysis is noteworthy as it es-

timates the intensity and direction of propagation from neural activities generated

in the cerebral cortex, and it ascertains the coefficients as weighted measures in

formulating the multivariate autoregressive model (MVAR). The PDC is used here

as a feature extraction method for recorded scalp electroencephalograms (EEG) as

means to examine the interictal epileptiform discharges (IEDs) and reflect the phys-

iological changes of brain activity during interictal periods. Two experiments were

set up to investigate the epileptic data by using the PDC concept.

For the investigation of IEDs data (interictal spike (IS), spike and slow wave com-

plex (SSC), and repetitive spikes and slow wave complex (RSS)), the PDC analysis

estimates the intensity and direction of propagation from neural activities gener-

ated in the cerebral cortex, and analyzes the coefficients obtained from employing

MVAR. Features extracted by using PDC were transformed into adjacency matrices

using surrogate data analysis and were classified by using the multilayer Percep-
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tron (MLP) neural network. The classification results yielded a high accuracy and

precision number.

The second experiment introduces the investigation of intensity (or strength)

of information flow. The inflow activity deemed significant and flowing from other

regions into a specific region together with the outflow activity emanating from one

region and spreading into other regions were calculated based on the PDC results

and were quantified by the defined regions of interest. Three groups were considered

for this study, the control population, patients with focal epilepsy, and patients with

generalized epilepsy. A significant difference in inflow and outflow validated by the

nonparametric Kruskal-Wallis test was observed for these groups.

By taking advantage of directionality of brain connectivity and by extracting the

intensity of information flow, specific patterns in different brain regions of interest

between each data group can be revealed. This is rather important as researchers

could then associate such patterns in context to the 3D source localization where

seizures are thought to emanate in focal epilepsy. This research endeavor, given its

generalized construct, can extend for the study of other neurological and neurode-

generative disorders such as Parkinson, depression, Alzheimers disease, and mental

illness.
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CHAPTER 1

INTRODUCTION

1.1 Problem Statement

Epilepsy is a chronic disorder and is one of the most common neurological disorders

affecting approximately 0.5 - 1% of the world population [21]. In the United States

alone, 1.8% of adults (18 years and older) and 1% of children (aged 0-17), are

reported to have epilepsy by the Center for Disease Control and Prevention [21]. The

major characteristic which defines the disorder is recurrent and unprovoked seizures.

During an episode of seizures, groups of neurons located in the cerebral cortex are

being excessively triggered at the same time, resulting in symptoms such as muscle

spasms and impaired consciousness [20]. Although the symptoms mentioned above

are general symptoms, the location, duration and propagation of the seizure vary

depending on the individual. Due to the unpredictable occurrence of seizures, the

quality of life of epileptic patients might be greatly impacted by this uncertainty.

Epilepsy is a complex disease with many ambiguous phases. The diagnosis is

divided into two major types, focal and generalized epilepsy. In focal or partial

epilepsy, seizures are initiated from a specific part of the brain, known as an epilep-

tic focus, while in generalized epilepsy, seizures involve wider areas of the brain

propagating from multiple sources [20]. Having seizures is an indication of epilepsy

but does not always result in the correct epilepsy diagnosis. In order to provide

an accurate and precise result, the process of epilepsy detection and diagnosis is

considered to be very subjective and time-consuming.

Among the neurophysiological techniques used to diagnose epilepsy, electroen-

cephalograms (EEG) still remains the most prevalent and reliable modality to ex-

amine brain activities, as well as being the main diagnosis assessment tool [70].
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EEG recording is simple and inexpensive compared to other neuroimaging tech-

niques. EEG captures the electrical activities produced by the neurons in the brain

including the interictal epileptiform discharges (IEDs). Due to its high temporal

resolution, EEG is considered a suitable tool for identifying synchronization be-

tween a pair of signals [59]. A Substantial amount of epilepsy diagnoses are done

by recording and visualizing EEG during seizures and closely monitoring IEDs in

long interictal recordings. Extracting epileptic characteristics of EEG in interictal

periods plays a key role in the disease detection. Consequently, extracting the hid-

den patterns of EEG in the interictal phase may be a beneficial tool to alleviate this

complex process of epilepsy diagnosis.

With all the available tools and theories, the knowledge of how the human brain

functions remains limited. There are different approaches to explore the function-

ality of the brain, where brain connectivity analysis has received great attention in

the field of neuroscience and has yielded promising results in diverse research en-

deavors [70]. Brain connectivity analysis is defined as a study of the correlation of

the events occurring in the different regions of the cortex. The value of connectivity

depends on the level of synchronization between groups of neurons. The study of

different features, such as brain connectivity features, can be used as a key parame-

ter for classification of patients with epilepsy vs. a healthy control group. Therefore,

enhancing epilepsy diagnosis or even predicting the occurrence of seizures through

EEG recordings could lead to better planning and therapeutic protocols, which will

greatly benefit epileptic patients and society at large.
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1.2 Objective of Study

This research aims to utilize brain connectivity analysis to reveal and extract hidden

features that could be associated with the neurological disorder under consideration.

The study as planned could potentially improve the fundamental understanding of

the disease and would consequently enhance the diagnosis significantly. Important

connectivity features extracted from epileptic patients will be explored by multiple

approaches and compared with the control population to generate distinct patterns

that can be used for classification algorithms. By exploring the features extracted

from the brain connectivity analysis, a machine learning algorithm, such as the

multilayer Perceptron neural network can be used to perform optimal classification

of epilepsy patients from healthy controls and to delineate those patients with focal

epilepsy from patients who experience generalized epilepsy.

1.3 Significance of Study

Brain connectivity analysis of epileptic patients is a method that could yield more

understanding of complex neurological disorders, specifically epilepsy as it pertains

to this research endeavor. The analysis would constitute a platform to study com-

mon disease attributes as well as highlight hidden characteristics and features of

the disease that would add to our understanding of the disease. EEG-based source

localization can be integrated with connectivity analysis, resulting in a better per-

formance with high classification accuracy and precision. Patterns extracted from

connectivity analysis could be the key to identify types of epilepsy by minimizing the

time and the cost for the patients. The study can also provide significant support to

the diagnoses of doctors. Using brain connectivity analysis can reveal characteristics

of multiple brain disorders.
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1.4 Literature Review

Humans have started to explore the structural network of the brain since the nine-

teenth century to develop the understanding of the complex systems [14]. The

studies have led to the increase in popularity of brain network science, including

the effort to extract the information from the network structure [58]. In the present

time, the increase of availability of high quality data sets of complex systems, such

as data from EEG) or intracranial EEG (iEEG), has led to fundamental insight

into such complex systems [4]. With the higher computational power and higher

amount of data, the results obtained from the analyses are gaining more attention

and becoming more reliable [58].

The analysis of EEG signals with the purpose of helping patients suffering from

neurological disorders has been one of the most prominent research fields [62]. Vari-

ous techniques of computational analysis have been performed to enhance the detec-

tion of the key characteristics associated with the disease [33, 34, 51]. However, the

characteristics of epilepsy still require an extensive exploration and investigation in

order to improve our understanding of this challenging disease [62, 20]. The majority

of epilepsy diagnostics are based on EEG, where epileptic patients will undergo the

procedure of EEG recordings for a period of time while being observed by clinicians

and doctors [56]. There have been successful methods utilizing time-domain EEG

features for epilepsy detection. Time-domain analyses, such as linear prediction, are

utilized for seizure prediction [71]. However, investigating only time-domain features

often provides insufficient interpretation of the disease and can be misleading. EEG

signals can provide enormous information in the frequency domain. Every EEG

frequency band carries specific information that could be analyzed for a purpose of

feature extraction purposes [34]. Features extracted from each of these frequency
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bands can be interpreted differently and are expected to provide augmented infor-

mation on the disease.

The study and exploration of EEG lead to an investigation of interaction between

brain regions called brain connectivity analysis. The human brain is considered a

complex system with over 10 billions of neurons providing a high computational

power with complex networks and pathways [27]. Within the cortical grey matter of

the human brain, the neurons are processing information simultaneously while their

axons comprising the white matter provide networks of communication between

subregions of the cortex. The study of brain connectivity aims to understand the

structural segregation and functional relationships of the elements in this complex

system, where the study of brain connectivity reveals useful information of activities

of the brain in both its healthy and disease states [73]. The studies of structural

segregation and functional connectivity in the human brain have been explored and

well-established for many years [23]. Clusters of neurons distributed throughout the

cortex serve different functions and are specialized in processing variety of neuronal

computations [65]. To understand the clinical consequences of the brain disorders

such as epilepsy, analyzing and quantifying the interactions between distinct clusters

of neurons can prove very useful, and can lead to important insights brain activity

[26].

Two types of brain connectivity are defined in the context of brain connectivity

analysis, structural connectivity and functional connectivity [11], where the process

of mapping the human brain networks can also be referred to as human connectomics

[57]. Several data-driven methods (time and frequency domains) are used to extract

the brain attributes as connectivity networks from EEG signals [70]. Even though

EEG signals recorded from the brain contain nonlinearity and semi-random features,

linear models are the best option to describe and capture the information presented
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in the system [9]. Fundamental concepts of connectivity extracted from correlation

and coherence have been used widely in the neuroscience fields, where the results

are promising [36, 51]. The functional connectivity map of an interictal EEG data

is calculated and graph theory features of the network are used for differentiation

of epileptic children [33].

In the domain of epilepsy research, applying brain connectivity analysis by using

EEG data has become a more preferred approach [18]. By utilizing a high-quality

EEG data and appropriated computational power, the newer approaches for epilepsy

diagnosis, prediction of seizures, and epileptic focus localization have become more

accurate and precise in the modern era [31]. Interesting features and characteristics

derived from brain connectivity analysis have shown to improve the accuracy of

diagnoses of children with epilepsy significantly [69]. In addition, by analyzing

the overall connectivity structure of the brain networks from epileptic patients with

temporal lobe epilepsy, the obtained results seem to have significant differences when

compared to a control population [49]. For a localization of the epileptic focus, more

research is being focused on the behavior of the seizure onset zone. A research from

[74] found a high correlation between the seizure onset zone and the increase of

information flow within higher brain frequency ranges. The dynamic characteristic

of the brain connectivity network during ictal events has also been investigated in

the study of partial epilepsy, where patterns of brain connectivity are revealed to be

associated with finite brain states where the seizure onset zones are more isolated

from the rest of the network during the initial state of seizures [12]. More in-depth

reviews of brain connectivity analysis techniques can be found in [70].
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1.5 Dissertation Structure

This dissertation is structured and organized in a series of chapters, including back-

ground, methodology of connectivity extraction, experiments (two chapters), and

conclusion.

Chapter 2 presents the background research, concepts, and terminology related

to this dissertation. This chapter includes the introduction of the structure of the

human brain, and the common and accepted definition of epilepsy. In order to

understand the methodologies used in this dissertation, brain connectivity analysis

and surrogate data analysis are introduced.

Chapter 3 introduces a prior experiment implementing coherence analysis to

epileptic data. This experiment displays a simple concept of functional connectivity

that leads to the study of effective connectivity in this dissertation.

Chapter 4 describes the concept of partial directed coherence (PDC) including

the steps to compute PDC and an overview of PDC concept using simulated data.

The mathematical framework, aspects of modeling and empirical evaluations using

simulated data are presented in this chapter. The intent in this chapter is in gauging

the merits of PDC as a measure of effective connectivity.

Chapter 5 introduces an initial experiment deploying the PDC method of Partial

Directed Coherence (experiments using the concept of PDC with electroencephalo-

gram data. To the best of our knowledge, this is perhaps the first experimental study

to incorporate the propagation of information flow for classifying the common types

of IEDs by utilizing machine learning on the propagation patterns extracted from

the EEG data segments and using the PDC methodology.

Chapter 6 introduces an approach for quantifying information flow using brain

connectivity analysis and partial directed coherence (PDC). The thrust of this chap-
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ter is in determining key characteristics that delineate normal controls from patients

with epilepsy considering both types of seizures: focal and generalized seizures. The

PDC is used in this case as a feature extraction method for scalp electroencephalo-

grams (EEG) recordings as means to reflect the physiological changes of brain activ-

ity during interictal periods (these are periods in between seizures). The intensity

(or strength) of information flow, including (a) inflow or information from distant

region reaching a specific region, and (b) outflow or the flow of information spreading

from a specific region of interest into other regions.

Finally, Chapter 7 provides the conclusion with a retrospective on the main find-

ings of this dissertation. This chapter also outlines the advantages such a research

endeavor provides the research community and also highlights limitations that still

need to be overcome as we inch forward towards a more enhanced understanding of

such complex neurological disorder.
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CHAPTER 2

BACKGROUND

2.1 Complexity of The Human Brain

The human brain is one of the largest and most complex organs in the human

body. It is considered to be the “controller unit” of the human body, where the

brain is involved in producing our every thought, memory, feeling, and experience

of the world. This approximately 1.4 kilograms mass of tissue contains enormous

amount of neurons, which it is approximated to be around 86 to 100 billion neurons

[5]. Each neuron is interconnected and communicates with other neurons by using

synapses, where a single neuron can have numerous connections with thousands of

synapses that are connected to other neurons. Even by a low estimation of thousand

connections per neuron, this would mean that a single human brain is consisted of at

least 100 trillions synaptic connections resulting in 100 trillions different pathways

that brain signals can travel through [75]. To mimic this processing power of a

human brain, more than 82,000 processors are required to perform a 1-second of

a normal brain activity. Furthermore, the synapses are not static but dynamic,

creating a high levels of plasticity, an elusive concept in the realm of computing.

This allows the brain to learn, process, and memorize stimuli and information and

use such stimuli and information as context and help for understanding future events

and for resolving future tasks.

Though there are about 20 different types of neurons, their structures are ba-

sically the same. A neuron is composed of its cell body called soma, its dendrites

with a treelike structure and its axon. Information produced in other neurons are

transferred to the neuron by the synapses that are located on the dendrites and

also on the cell body. Electrical charges produced at the synapses propagate to
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the soma and produce a net postsynaptic potential. If the postsynaptic potential

is large enough to exceed the threshold (a depolarization of 10 − 15mV ), the neu-

ron will trigger a spike of electrical pulse or action potential at the axon hillock,

where the axon hillock is the point of connection between the soma and the axon.

The produced action potential will be propagated through the axon and reach the

synapses resulting in transferring the information to another neuron.

2.2 Electroencephalograms

With 100 billions of neurons communicating via action potential, these electrical

activities can be captured by using an electrophysiology technique called Electroen-

cephalograms (EEG). The first known neurophysiology was recorded on animals was

performed by Richard Caton in 1875 and later was done on human beings in 1924

performed by Hans Berger [10]. Given its high temporal sensitivity, EEG is a great

instrument to capture the dynamic cerebral functional. Thus, EEG is particularly

useful for evaluating patients with suspected epilepsy.

EEG is one of the methods used to record electrical activity generated by the

brain with the utilization of specific sensors called electrodes. EEG captures the in-

ternal field potential differences created by ionic currents generated from the commu-

nication between neurons. Before the action potential is generated, the differences

of ions concentrations between inside and outside of the cell produce a membrane

potential. When the potential is depolarized, the rapid movement of ions between

inside and outside of the neuron generates the action potential. EEG captures this

phenomena in a large scale and records the electrical activity across the cortex with

millions of neurons communicating simultaneously. Though EEG seems to be a

perfect instrument, an unfortunate reality of EEG is that the cerebral activities
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generated by neurons may be contaminated by the electrical activities generated by

the body or the environment. Given that for the electrodes to capture the electrical

activities, the signals generated by neurons have to pass through multiple biological

filters including cerebrospinal fluid (CSF), meninges, the skull and the skin, which

in different ways attenuate the signals’ amplitudes prior to reaching the electrodes.

Additionally, other bio-generated electrical activities such as eye movement, muscle

movement, or even pulses from the heart can create a high voltage potential which

could interfere with the desired signals. Fortunately, there are methods of removing

artifacts making EEG data more reliable and useful for interpretation.

The EEG signals are recorded by measuring the difference of voltage potential

between a pair of electrodes. Figure 2.1 provides an example of a multichannel

scalp EEG recording. A typical EEG display multiple channels with voltages on the

y-axis and the time on the x-axis providing an ongoing cerebral activity. The data

shown in figure 2.1 covers a period of 20 seconds with 19 channels and 10-20 montage

placement. The “10-20” represents the intervals of measurement in percentage of

positioning electrodes over the anterior-posterior between the nasion and inion. Each

of the electrodes is labeled with a letter and a number. The letter represents the

location of the brain where the electrode site is located and the number represents

the side of the cortex. Odd-numbered electrode sites are located on the left side of

the cortex and the even-numbered ones are on the right side.

The letters used for the different brain areas are as follows:

• F: Frontal lobe

• T: Temporal lobe

• P: Parietal lobe

• O: Occipital lobe
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• A: Auricular sites are on the mastoid processes/ears

Figure 2.1: 20 seconds of 19-channel EEG with 10-20 montage placement and ref-
erential montage.

Among the neurophysiological techniques, EEG still remains the most prevalent

modality used for examining brain activities as well as for carrying out the main

diagnosis assessment. EEG captures the electrical activities produced by the neurons

in the brain including important biomarkers. Due to its high temporal resolution,

EEG is considered a suitable tool for identifying synchronization between a pair of

signals, which makes EEG an important tool to extract specific activity patterns in

relation to the brain dysfunction.
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2.3 Epilepsy

Epilepsy is a class of neurological disorders characterized by the recurrent unpro-

voked interruption of brain function, called epileptic seizures. The definition of

epileptic seizure is defined by the international league against epilepsy (ILAE) as “a

transient occurrence of signs and/or symptoms due to abnormal excessive or syn-

chronous neuronal activity in the brain” [19]. During epileptic seizures, groups of

neurons in the cerebral cortex are being excessively triggered simultaneously result-

ing in symptoms such as muscle stiffness, muscle spasms and impaired consciousness.

Clinical symptoms can vary widely as well, ranging from a brief loss of awareness

(absence seizures) to a complete loss of consciousness with loss of bodily control

(tonic-clonic seizures). Furthermore, epilepsy can be classified into different clinical

manifestations depending on the behavior of the seizures. If the seizures initiate in

a particular location of the brain, epilepsy is deemed as partial or focal epilepsy. On

the hand, if the seizures initiate from multiple sites across the cortex simultaneously,

the type of epilepsy is diagnosed as generalized epilepsy.

In the United States alone, 1.8% of adults (18 years and older) and 1% of children

(aged 0-17), are reported to have epilepsy by the Center for Disease Control and

Prevention [21]. Approximately 2.2 million Americans have been diagnosed with

epilepsy and the number of new cases are still increasing [29]. With an estimation

of 1% of the global population suffering from epilepsy, this makes epilepsy the fourth

most common neurological disorder [29]. The recurrence of epileptic seizure events

has great impact on the cognitive, psychological, and social aspects of the patients

suffering from epilepsy.

Epilepsy affects persons of various ages and can develop at any stage of life, but

the highest incidence of epilepsy is found to be in the first year of life and after the
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age of 65 [53]. In many cases, the precise causes are still unknown. Nonetheless,

many factors including genetic factors, head trauma, tumors, and many more can

cause epilepsy. Therefore, the study of epilepsy will help reveal the cause of the

disorder and provide more precise results.

Diagnosing a person with the condition of epilepsy requires experienced doctors

and physicians to observe the electrophysiology of the brain during ictal periods.

This is the most common test to diagnose epilepsy, where the aforementioned uti-

lization of EEG is used as the main tool. During the test, doctors or physicians will

attach electrodes to the scalp of a patient and record the electrical activity of the

brain. If the patient is diagnosed with epilepsy, it is common to observe changes in

the normal pattern of brain waves, even when the patient is not currently having

a seizure. Currently epilepsy is not curable and patients with epilepsy are treated

with antiepileptic drugs (AEDs). However, the occurrence of seizures of approxi-

mately 70% of people diagnosed with epilepsy can be controlled by using AEDs ,

unfortunately the remaining of patients do not benefit from such AEDs [54]. Among

the subset of these patients where AEDs have no effect, if the patients are diagnosed

with focal epilepsy, a viable option may be surgical intervention.

As previously mentioned, the types of epilepsy can be determined through classi-

fication of seizures. Seizure classification is a way of naming the many different types

of epileptic seizures and classifying these types of seizures into predefined groups.

In 2017, the ILAE redefined the classification of seizures to improve the process of

diagnosing epilepsy to be more efficient. In the long run, researchers are hoping that

this way of classifying epilepsy will be easier. Three important factors are required

to be observed by the doctors when classifying the types of epilepsy:

1. The location of the cortex where the seizure initially propagates, referred to

as the seizure onset zone.
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2. During the period of seizure, determine the state of awareness of the person.

3. Movements of the body involved during the seizure period.

All types of epilepsy have symptoms related to seizures. If a person has seizures

which is suspected to be caused by epilepsy, the diagnosis from the doctors will

follow three general steps in order to provide a correct assessment.

1. Identify the type of seizure a person is having.

2. Based on the identified type of seizure, identify the type of epilepsy.

3. Decide on specific treatments based on the type of epilepsy.

To be able to identify the type of epilepsy, tests involve EEG recordings are

required. Experts now divide the types of epilepsy into four basic types depending

on the types of seizures patients are having:

• Focal epilepsy

• Generalized epilepsy

• Generalized and focal Epilepsy

• Unknown

For patients in the generalized and focal epilepsy group, as the name of the

group suggests, this is the type where patients are having both generalized and

focal seizures. For the unknown group, doctors are not able to identify the types

of seizures that patients experience. This can happen for various reasons, including

the case where a person might have an episode of seizure alone where no one can

observe the characteristics displayed. Generalized epilepsy and focal epilepsy groups

will be further explained in the next sections.
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2.3.1 Focal Epilepsy

People with focal epilepsy type, the seizures initiate in a particular location of the

cortex in one of the hemispheres of the brain. Previously, this type of seizure is

called “partial seizures”. Focal epilepsy seizures can be further classified into four

different categories.

• Focal aware seizures

During an episode of epileptic seizure, if a person has an awareness of the

surrounding, then it is classified to be focal aware seizures. This type of

seizure used to be called “simple partial seizures”.

• Focal impaired awareness seizures

Contrary to the focal aware seizures, a person with this type of seizure will be

confused and will not able to remember anything during an episode of seizure.

This type of seizure used to be called “complex partial seizures”.

• Focal motor seizures

In this type of seizure, during an episode of seizure, a person will experi-

ence body movement to some extent from anything between twitching, muscle

spasms to rubbing hands and walking around.

• Focal non-motor seizures

For this type of seizure, having a seizure does not lead to any movement, but

rather changes in feeling and thinking abilities of a person. Symptoms such as

racing heart, intense emotions, or waves of heat or cold spells will be observed.
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2.3.2 Generalized Epilepsy

For this type of epilepsy, seizures are initiated on both hemispheres of the brain si-

multaneously and could quickly affect networks of the brain on both side. Typically,

this type of epilepsy has two different kind of seizures.

• Generalized motor seizures

Generalized motor seizures or once used to be called “grand mal” seizures,

cause a body to move in an uncontrollable manner. An example of this type

of seizure is tonic (stiffness)-clonic (muscle twitch) seizure, also called a con-

vulsion. When such an episode of epilepsy is presented, a person might lose

consciousness and control of the entire body.

• Generalized non-motor (or absence) seizures

This type of seizures used to be called “petit mal” seizure. More specific

types associated with generalized non-motor seizures are typical, atypical, and

myoclonic seizures. During an episode of such a seizure, a person may stop

any activity and stare into space. Other repetitive activities might occur such

as repetitive movement or smacking lips.

2.4 Brain Connectivity

Brain connectivity analysis has been a fast-growing field that has received great at-

tention in the field of neuroscience. Brain connectivity analysis has yielded promising

results in diverse brain research endeavors. The study is focused on studying the

complex network structure of a human brain where it is characterized by segregation

and integration in the processing of information. Brain connectivity analysis can be

divided into three different but related forms of connectivity [57].
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• Structural Connectivity:

Structural connectivity provides an insight into the physical pathways or con-

nections within brain regions. The connection is formed through synaptic con-

tacts between neighboring neurons linked by the axonal pathways connecting

different brain regions. The characterization of the links can be determined by

statistical measures of pathways or cross-correlation in gray matter thickness,

volume, and surface area [11]. The structural connectivity can be obtained

by examining neuroimaging data such as magnetic resonance imaging (MRI),

Computed Tomography (CT) and diffusion tensor imaging (DTI) [28], where

the different determined structural measurements are assessed in context to

the brain connectivity networks that define them.

• Functional Connectivity:

Functional connectivity is defined as a temporal or biomarker dependency of

the neuronal communication patterns between predefined brain regions, these

include functional MRI and positron emission tomography (PET). Functional

connectivity can be estimated by using statistical approaches, which reflects

statistical dependencies between the neuronal populations at the different

brain regions. By applying simple statistic concepts such as cross-correlation,

spectral coherence or phase locking, functional connectivity can be extracted

from the EEG recordings as well.

• Effective Connectivity:

Effective connectivity shares a similar concept to that of functional connectiv-

ity. However, it describes the information flow or the influence of a neuronal

system exerts upon another reflecting causal interactions between brain re-

gions. The connectivity is combined with a structural connectivity into a
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“wiring diagram” reflecting directional effects between neuronal populations.

This research will focus only on the concept of effective connectivity where

Partial Directed Coherence as described in Chapter 4 will be used to extract

these effective connectivity networks or patterns.

Thus, only the concept of effective connectivity will be explored further in this

research. Effective connectivity estimates a cause and effect relationship between

neuronal systems. By using time dependent data, we can infer the causal relationship

between neural systems by exploring the temporal structure in the time series data

expressed through the EEG recordings.

Figure 2.2 describes an overall process of performing a brain connectivity analy-

sis. First of all, the data in the form of time series are collected from EEG recordings,

which capture the neuronal characteristic or behavior of interest. The obtained data

are preprocessed by performing artifact rejection techniques such as filtering, prin-

ciple component analysis (PCA), and independent component analysis (ICA). The

cleaned data are then processed to extract the relationships between brain regions

and modeled into networks. Figure 2.3 shows an example of a network of connection

displayed as a connectivity head map plot. The vertices of the plots represent the

positions of the EEG electrodes where the edges represent the connection between

each brain region. Then at the last step, interesting features such as intensity of

information flow and graph theory features are extracted and analyzed in order to

obtain meaningful results.

For both functional connectivity and effective connectivity, multiple techniques

of electrophysiology and neuroimaging have been widely used by many researchers,

where each the technique by itself has different pros and cons in terms of acquiring

and processing data. On the spectrum of high spatial resolution, functional magnetic

resonance imaging (fMRI) uses the blood oxygen level dependent (BOLD) signals to
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Figure 2.2: Overall process of brain connectivity analysis

Figure 2.3: Example of a connectivity head map plot
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estimate the connectivity between voxels of brain tissues. Figure 2.4 Though we can

see that fMRI data provides a high spatial resolution, fMRI can only perform with

a low sampling frequency resulting in a low temporal resolution. To compensate for

the low temporal resolution, advanced analytical techniques are required to extract

connectivity from the fMRI data. On the other hand, techniques such as EEG

can collect data with a high sampling frequency. Furthermore, The high temporal

resolution from EEG recording allows researchers to study the dynamics of brain

function in both its healthy and disease states. In contrast to magnetic resonance

imaging, EEG recordings lack the high spatial resolution offered through MRI and

fMRI modalities.

Figure 2.4: Example of a fMRI data

The ultimate recourse is to consolidate the individual strengths each modal-

ity brings in order to accomplish both high temporal resolution and high spatial

resolution. These multiple datatypes and imaging modalities can be used in con-

cert for brain connectivity to quantify the activation of the different cortex regions.

Typically for the extraction of connectivity from the EEG data, the pairwise re-

lationship between neuronal elements is defined by the measurement generated by
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signal processing techniques such as cross-correlation and coherence, among others.

The definition of pairwise relationship is that, given an EEG recording with 19 chan-

nels of electrodes, each pair of the channel is being compared one at a time. For

cross-correlation, the extraction is performed by calculating the cross-correlation of

every pairwise electrodes creating what we term in this dissertation as connectivity

matrices. If 19 electrodes are used, then a 19 × 19 connectivity matrix will be ob-

tained where the eye of the matrix is the autocorrelation of the individual montage

itself. The cross-correlation is performed accordingly to the following equations:

Cxy =
1

N

N−τ∑
t=0

(xt − x̄)(yt+τ − ȳ)

Cxx =
1

N

N−τ∑
t=0

(xt − x̄)(xt+τ − x̄)

Cyy =
1

N

N−τ∑
t=0

(yt − ȳ)(yt+τ − ȳ)

(2.1)

The cross-correlation coefficient is as defined below:

rxy =
Cxy√
CxxCyy

(2.2)

The value of the cross-correlation coefficient ranges from −1 to 1 where 0 is an

indication that there is no connection between the pair of signals and where a value

of 1 indicates the strongest connection. In the negative range, a value of −1 also

indicates the strongest connection when the one of the signal is completely inverted

in the opposite direction. Therefore in terms of connectivity, the absolute value of

cross-correlation coefficients are taken into considered. The cross-correlation is the

simplest algorithm that can be used to extract the connectivity. patterns It measures

the similarity between the signals point by point where the amplitude of the signal
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is taken into account. The drawback of the algorithm is that, cross-correlation could

introduce some errors and non-precise connectivity values due to various problems

due to such things such as volume conduction.

To determine brain connectivity by using coherence, interactions between neural

activities in different frequencies across brain regions are extracted using the coher-

ence equation rather than using cross-correlation. Coherence between two signals

x(t) and y(t), which represent a vector of the data from the EEG measurements,

is defined as the magnitude squared of the cross-spectral density between 2 desig-

nated signals divided by the product of power spectral densities (PSD) of each of

the signals as shown in equation 2.3, where f is the selected frequency.

Cxy(f) =
|Gxy(f)|2√
Gxx(f)Gyy(f)

(2.3)

Gxx(f) and Gyy(f) denote the calculated PSD of signal x and y respectively.

Gxy(f) represents the cross-spectral density of signals x and y. To improve the

estimation, Welchs average periodogram can be implemented to calculate the co-

herence [16]. The method computes the modified periodogram for the segments and

averages the output to estimate the PSD of the time series. The computed coher-

ence coefficient varies in the range between 0 and 1, where 0 indicates that there is

no connection between the pair of electrodes and where 1 indicates that there is a

strong connection similar to the interpretation for the cross-correlation coefficient.

However, more advanced connectivity measurements such as Directed Transfer

Function (DTF) [37] and Partial Directed Coherence (PDC) [7] can be used to ob-

serve the interaction between brain regions while avoiding the volume conduction

problem. These measurements also account for the effect of contributions from all

other region by using a multivariate analysis. The difference between a multivariate
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analysis and a pair-wise analysis is that, all of the interested signals, in this case are

the 19 EEG channels, are compared simultaneously resulting in more a more accu-

rate representation of a human brain. Both DTF and PDC measures can provide

directional information, where we can infer the causal relationship between brain

regions.

These techniques for connectivity extraction can restrict the type of network

that can be constructed. For both cross-correlation and coherence measures, these

types of estimation can only provide undirected networks, where DTF and PDC

methods can provide directed networks. Another parameter to consider is the edge

weights of the network. If edge weights are required to construct a network, direct

coefficients computed from these extraction techniques can be used. On the other

hand, to create unweighted networks, thresholds can be applied on the coefficients,

where the coefficients under the specified threshold are considered insignificant, and

will not be included in the connectivity networks.

2.5 Surrogate Data Analysis

This section introduces the concept of surrogate data analysis. Surrogate data anal-

ysis is one of the statistical approaches used to determine whether the connectivity

extracted from the given data using partial directed coherence (PDC) is considered

statistically significant or not. The concept of surrogate data analysis is to measure

the difference between measured PDC values and simulated PDC values. In order to

simulate the PDC values with the same distribution of the real values, Monte Carlo

simulation method will be used on the time series data to generate M surrogate

time series for each of the PDC values [40].
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The formal application of the method of surrogate data testing can be explained

by using statistical hypothesis testing. The test is conducted with the null hypothesis

H0 and alternative hypotheses Ha shown in equation 2.4.

H0 : PDCj→i = 0

Ha : PDCj→i 6= 0

(2.4)

The notation PDC represents the value of PDC ranging from 0 to 1, where

j → i represents the information flow from channel j to channel i. To generate

M surrogate time series data, the improved amplitude-adjusted Fourier Transform

(iAAFT) algorithm is used [64]. The iAAFT algorithm provides a randomized

data of a time series that still maintain the same distribution of amplitude and

power spectrum of the original time series data. By using iAAFT algorithm, each

time series is being performed iteratively and individually in a multivariate process.

Because the estimation is done independently, no causal relationship between the

time series should remain since the phase relationship should be attenuated by the

randomized process. Thus, the computed PDC values of the surrogate time series

data will be estimated corresponding to the unrelated parts of the signals.
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CHAPTER 3

CONNECTIVITY PATTERNS OF INTERICTAL EPILEPTIFORM

DISCHARGES USING COHERENCE ANALYSIS

3.1 Introduction

This chapter introduces an analysis of functional connectivity patterns extracted

from the EEG data containing interictal epileptiform discharges (IEDs) by using

coherence method mentioned in section 2.4. Prior to exploring the effective con-

nectivity, functional connectivity was used to obtained the preliminary results. The

analysis was done in each of the frequency bands (Delta, Theta, Alpha, and Beta).

EEG contains a specific clinical and physiological range of frequency components

of interest, which is between 0.5 - 30 Hz, where frequency components higher than

30 Hz (Gamma) are usually found not to be related to IEDs [2]. In this chapter,

we want to limit the search to this frequency range since scalp EEG data is usu-

ally manually screened using a band pass filter with cut-off frequencies from 0.5 to

30Hz. Coherence of all the pair-wise electrodes are calculated creating connectivity

matrices base on the placement of the electrodes. High value of coherence indicates

the strong connection between the selected pair of electrodes and low values infer

otherwise. After thresholds are applied, the connectivity matrices are quantified

and validated by performing analysis of variance (ANOVA) to generate patterns of

each type of IEDs.

The overall structure of the algorithm, together with its main steps, is shown

as a flow diagram in figure 3.1. After the functional connectivity extraction, the

number of connections in the regions of interest (ROI) was collected. A statistical

analysis was applied to analyze the pattern of different type of IEDs.
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Figure 3.1: Flow diagram of the process
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3.2 Data Acquisition

n this study, only interictal epileptiform discharges were used to extract the different

characteristics of the 3 types of epileptic biomarkers, which are: interictal spike

(IS), spike with slow wave complex (SSC), and repetitive spikes and slow wave

complex (RSS). In order to explore synchronization between brain regions in focal

and generalized cases, a total of 30 EEG segments from a male patient diagnosed

with generalized epilepsy and a female patient diagnosed with focal epilepsy having

partial complex seizures were obtained. The data were recorded with the 10-20

electrode placement protocol containing 3 types of IEDs. Recordings are performed

containing 19 electrodes (Fp1, F7, T3, T5, O1, F3, C3, P3, Fz, Cz, Pz, Fp2, F8, T4,

T6, O2, F4, C4, and P4) using referential montage. The data was collected with a

sampling rate of 200 Hz.

3.3 Preprocessing

The EEG data was divided into 3 separated groups according to the types of IEDs.

They were segmented into 1-second window containing a single occurrence of IED

in the center of the segment. IEDs of IS type were arranged at the 0.5 s of the

segment, where SSC and RSS were arranged at the 0.2 s of the segment due to its

longer extent. In total, 10 segments of each type of IEDs were extracted from the

original EEG data.

The data were converted from a referential montage to an average montage in

order to reduce the effect of volume conduction [47]. A zero-phase finite impulse

response (FIR) bandpass filter (0.5 - 30 Hz) from EEGLAB [16] was implemented

to filter the frequency bands of interest and to remove the artifacts. The focus was
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placed on the four following frequency bands, Delta band [0.1 - 4 Hz], Theta band

[5 - 8 Hz], Alpha band [9 - 13 Hz], and Beta band [14 - 25 Hz].

3.4 Functional Connectivity with Coherence

Functional connectivity was extracted by performing a computation of coherence

between all pairwise 19 multichannel EEG electrodes. Coherence between two sig-

nals x(t) and y(t), where x(t) and y(t) each represents a vector of the data of an

electrode measurement with each containing 200 data points. Coherence is defined

as the magnitude squared of the cross-spectral density between 2 designated signals

divided by the product of power spectral densities (PSD) of each of the signals as

shown in equation 3.1 where f is the selected frequency.

Cxy(f) =
|Gxy(f)|2√
Gxx(f)Gyy(f)

(3.1)

Gxx(f) and Gyy(f) denote the calculated PSD of signal x and y respectively.

Gxy(f) represents the cross-spectral density of signal x and y. In this experiment,

Welchs average periodogram [72] has been implemented to calculate the coherence.

The method computes the modified periodogram for the segments and averages the

output to estimate the PSD of the time series. In this research, 0.5s hamming

windows with 50% overlap had been used to calculate the PSD of the 1s epoch,

where the overlap protects the loss of information caused by windowing. The re-

sults obtained from this method provided a better performance compared to other

estimation algorithm [36] in terms of signal to noise ratio. The computed coherences

were then examined within the frequency bands of interest by obtaining the average

coherence value for each of the 4 frequency bands as shown in equation 3.2.
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Axy(f) =

∫ U
L
Cxy(f)df

U − L
(3.2)

U is the upper bound and L is the lower bound of the selected frequency. For

example, if the Delta band is selected, the lower bound and the upper bound that

will be used are [0.1, 4 Hz] respectively. The computed average coherence coefficients

vary in a range of 0 to 1, where 0 indicates that there is no connection between the

pair of electrodes where 1 indicates that there is a strong connection. The values

of average coherence extracted from each pair of electrodes together form a matrix

called connectivity matrix. After the connectivity matrices for every frequency band

of interest and each type of IEDs were obtained, the connectivity matrices were

then applied with different thresholds (50%, 70%, 80%, 90%, and 95%). The head

map connectivity plots, which are shown in the results section, were analyzed and

validated by statistical tests.

3.5 Quantification of Functional Connectivity

The brain cortex was subdivided into different regions based on two specific cases.

The subdivision of the first case was done by dividing the cortex based on the left

and right hemispheres (LR region). The activities on the left hemispheric region

included Fp1, F7, T3, T5, O1, F3, C3, and P3 electrodes and the right hemispheric

region contained Fp2, F8, T4, T6, O2, F4, C4, and P4 electrodes. The LR region was

separated by the central line, which is a longitudinal fissure that contains Fz, Cz, and

Pz electrodes. Connections between a pair of electrodes occurring within the right

hemispheric region were labeled as the right “intra-connection”. The same concept

was applied to the left hemispheric region as well, where the labeled connection
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was identified as “left intra-connection”. If the connection occurs between the two

hemispheres, the connection was labeled as “LR interconnection”.

The subdivision of the second case was done base on the anterior-posterior re-

gions (AP region), where the anterior region contained Fp1, Fp2, F7, F3, Fz, F4,

and F8 electrodes and the posterior region contained T5, P3, Pz, P4, T6, O1, and O2

electrodes. These regions were separated by the electrodes located along the central

sulcus line, which contains T3, C3, Cz, C4, and T4 electrodes. The same principle

of identifying these connections were applied to this case with the labels anterior

“intra-connection”, “posterior-intra-connection”, and “AP interconnection”.

Figure 3.2 illustrates the specified regions of interest that was used in the quan-

tification process. The number of connections obtained was used as one of the

features to be analyzed using variance (ANOVA) statistical test. Each type of IEDs

are expected to carry different characteristics which varies in different frequency

bands and thresholds used.

(a) (b)

Figure 3.2: Regions of interest, group (a) left-right hemisphere (Left - red, Right -
Blue), and (b) anterior-posterior region (Anterior - red, Posterior - blue)
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3.6 Results

The connectivity results from the feature extraction are displayed separately by the

specific frequency bands. The head map average connectivity plots were obtained

by taking an average of the connectivity matrices from the extracted 10 segments.

The color indicates the strength of the connection, where dark red indicates strong

connections and dark blue indicates weaker connections.

3.6.1 Delta Band Connectivity

The results of the head map average connectivity plots of the Delta frequency band

shown in figure 3.3 reveal some differences in the number and strength of connections

between each type of IEDs. The connectivity map of IS shows a significantly less

propagation between AP and LR regions and the strong connection is displayed only

in the temporal lobe region between F7 and T3 electrodes. The observation obtained

infers that these characteristic are related to focal epilepsy. On the contrary, the

connections of SSC and RSS propagate throughout the entire cortex including AP

and LR regions with very strong connections, inferring that these features fall into

a generalized type of epilepsy.

Figure 3.4 shows the means and standard deviations of the strongest connections

(Average coherence value greater than 0.80) for each type of IEDs in the different

ROIs within the Delta band. The ANOVA was calculated for each type of IEDs with

the null hypothesis that, the number of strong connections of the different ROIs is the

same within each type of IEDs. The analysis for IS type is not significant with (F (5,

54) = 1.2142, p− value > 0.31), resulting in accepting the null hypothesis; whereas

the analyses for SSC and RSS are significant with (F (5, 54) = 114.98, p− value <

0.00) and (F (5, 54) = 5.6458, p − value < 0.00) respectively. By analyzing 3
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different types of IED, it was noted that the number of stronger connections of SSC

and RSS differed from IS significantly with (F (2,177) = 175.13, p− value < 0.00),

whereas the post-hoc analysis indicated that the IED types with the highest number

of stronger connections are SSC and RSS respectively.

(a) (b) (c)

Figure 3.3: Head map average connectivity plots for (a) interictal spike (b) spike
with slow wave complex (c) repetitive spikes and slow wave complex from Delta
Band

3.6.2 Theta Band Connectivity

The obtained average connectivity head map plots in Theta band shown in figure

3.5 illustrate similar result as Delta band. The IS stronger connections between LR

region increased when compared to the previous frequency band, but in general, the

pattern of IS still shows characteristics presented in a focal epileptic behavior.

The null hypotheses have not been rejected. The IS type provides (F (5, 54) =

0.453, p − value > 0.80), SSC type provides (F (5, 54) = 1.739, p − value > 0.14)

and RSS type provides (F (5, 54) = 1.985, p−value > 0.09). In general, the analysis

showed that the number of connections in every type of IED is not different across

the ROIs.
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Figure 3.4: Means and standard deviations of number of connections with 80%
threshold in the Delta band

(a) (b) (c)

Figure 3.5: Head map average connectivity plots for (a) interictal spike (b) spike
with slow wave complex (c) repetitive spikes and slow wave complex from Theta
Band
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Figure 3.6: Means and standard deviations of number of connections with 80%
threshold in the Theta band

35



3.6.3 Alpha Band Connectivity

The strongest connections obtained in Alpha band from SSC and RSS showed a de-

crease in the propagation when compared to Delta and Theta band results, whereas

the activities obtained for IS are not significant different from the previous frequency

bands outcome. By comparing within Alpha band, SSC and RSS still provide a

higher propagation, which indicate the generalized type of epilepsy.

Same statistical analysis has been applied to the mean and standard deviation

of the Alpha band results shown in figure 3.8. Similar results were obtained from

the calculations. The difference is not significant, whereas the null hypothesis for IS

type was accepted with (F (5, 54) = 0.897, p− value > 0.48). The analyses for SSC

and RSS still exhibited similar results with the rejection of the null hypotheses, (F

(5, 54) = 3.561, p− value < 0.00) and (F (5, 54) = 8.9211, p− value < 0.00). SSC

and RSS also contained a significant amount of stronger connections when compared

to IS.

(a) (b) (c)

Figure 3.7: Head map average connectivity plots for (a) interictal spike (b) spike
with slow wave complex (c) repetitive spikes and slow wave complex from Alpha
Band
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Figure 3.8: Means and standard deviations of number of connections with 80%
threshold in the Alpha band
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3.6.4 Beta Band Connectivity

The patterns extracted from Beta band as shown in figure 3.9 delineated different

structures for SSC and RSS from other frequency bands. The average connectivity

head map plots show less stronger connections including a weaker propagation. For

IS type, the same area of cortex between (F7T3) and (F8T4) electrodes still contain

the strongest connection indicating a focalized type of epilepsy.

The null hypotheses have not been rejected. The IS type provides (F (5, 54) =

0.453, p − value > 0.80), SSC type provides (F (5, 54) = 1.739, p − value > 0.14)

and RSS type provides (F (5, 54) = 1.985, p−value > 0.09). In general, the analysis

showed that the number of connections in every type of is not different across the

ROIs.

(a) (b) (c)

Figure 3.9: Head map average connectivity plots for (a) interictal spike (b) spike
with slow wave complex (c) repetitive spikes and slow wave complex from Beta Band

3.7 Discussion

The presented chapter focused on examining the patterns generated from the extrac-

tion of EEG functional connectivity patterns during the occurrence of IEDs. With

the quantification of the strongest connections presented in each of the frequency
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Figure 3.10: Means and standard deviations of number of connections with 80%
threshold in the Beta band
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bands and in the different ROIs, the characteristics of each type of IED show signif-

icance differences that can be used for a classification approved method. A similar

approach to the previous analysis [36] was performed on the data, but the functional

connectivity extraction was done by using cross-correlation method, which is prone

to the error induced by volume conduction. The same work was performed in [55]

and [17] using similar approaches, but without examining the occurrence of IEDs

in the different frequency bands. It is interesting to apply different generative and

discriminative classification approaches to the information selected frequency bands

and compare the results for practical applications [60, 46, 43].

3.8 Conclusion

The quantification and extraction of functional connectivity patterns using scalp

EEG can generate important features that can be used to classify the type of

epilepsy. The patterns extracted by performing coherence analysis revealed dif-

ferent characteristics of each type of IEDs exhibited in different frequency bands.

Specific patterns of connectivity along the cortex are obtained as a function of the

neurological disorder (epilepsy) using coherence analysis. This method measures the

consistency of the relative amplitude and phase between a pair of signals, which de-

fines the strength of the connectivity between all pair-wise electrodes. Whether the

seizure event will be focalized or generalized type of epilepsy, these distinct features

and characteristics of the connectivity maps in each frequency band can be used for

classification, which in turn will lead to enhanced diagnosis of the disorder.

However, the outcome of the connectivity analysis by using coherence has to be

interpreted with care. This method does not provide causality assessment, where

the flow of information cannot be determined. The aforementioned case leads to
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the limitation of the interpretation of the results. Even though the origin of certain

synchronizations cannot be determined, the actual connections between and within

brain regions will help in the assessment and diagnosis of epileptic patients. The

study presented in this chapter has led to the study of effective connectivity by

exploring the direction of information flow, which will be explored further in this

dissertation.
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CHAPTER 4

PARTIAL DIRECTED COHERENCE: A MEASURE OF EFFECTIVE

CONNECTIVITY

4.1 Introduction

After Clive Granger proposed his theory of causality in 1969 [25], it had a great

impact on the idea of causal relationship between time series analysis. The theory

of causality was first applied in economics. The concept of “Granger Causality” is

rather simple. As shown in figure 4.1, an example of two time series are introduced

as X1 and X2 signals. This concept is based on whether the knowledge of the past

of a signal allows for a better prediction of the behavior of another signal. In this, if

the knowledge of the past of signal X1 provides a better understanding of the future

behavior of X2, one can assume that signal X1 Granger causes signal X2, where

signal X2 does not necessarily Granger cause signal X1. Although the concept

of Granger causality was formulated to solve economics problems, the theory was

widely accepted by the engineering and computing community in the field of signal

processing.

Granger causality can be formulated into an equation as shown in 4.1. With the

assumption that signal X1 Granger causes signal X2, a model can be constructed

with annotations of X−1 and X−2 represent the past information of signal X1 and

X2 respectively, with the signal X2 represented as X2 = f(X−2 , X
−
1 ). By adequately

estimating the parameters of the model f(X−2 , X
−
1 ), the causality can be estimated

by the prediction of signal X2 based on X−2 alone versus the prediction based on

X−2 and X−1 .
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Figure 4.1: Example of two time series

GX1→X2 = ln
var(X2|X−2 )

var(X2|X−2 , X−1 )
(4.1)

Also, to simply calculate the Granger causality of signal X2 to X1, the variables

are interchanged in equation 4.1. Thus, the values of GX1→X2 and GX2→X1 are

different resulting in a bi-directional causality between two signals. However, the

performance of the model depends heavily on the parameters estimation accuracy.

Among these bivariate and time domain approaches, the contributions of Caines

and Chan in 1975 [13] and Geweke in 1982 [24] focused at multivariate time series

generalization. Although methods of computing Granger causality was mentioned

earlier, a more robust method would be more ideal to deal with the dynamical

properties of electrophysiology. A research study conducted by Saito et al. was

implemented using the concept of Granger causality to the EEG data [52]. The

method as introduced was known as Directed Coherence (DC) with a decompo-

sition of coherence function into bi-directional coherences. The limitation of the

algorithm is that the results would be unstable as the number of EEG channels
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is increased beyond two channels. In the work of Kaminski and Blinowska [37],

Directed Transfer Function (DTF) was formulated in an attempt to measure the

effective connectivity of the brain structure with decent results obtained. However,

the DTF would rank the interaction among the EEG channels with respect to the

total inflow of information only.

After the tests for DC and Granger causality as performed by Baccal et al. in [6],

one could see the need for using Partial Directed Coherence (PDC) as formulated.

PDC calculation offers the representation of connectivity as a matrix of information

flow between every connection and between all EEG channels [7]. The use of PDC

would thus provide a useful tool for estimating the effective connectivity and extract

the underlying features of epilepsy from EEG recordings.

4.2 Computing PDC

Partial directed coherence (PDC) is a well-established method that calculates the

effective connectivity from the estimated coefficients of the multivariate autoregres-

sive (MVAR) model. PDC provides an approximation of causality between a pair

of EEG channels creating a directed graph, which reflects the inter-dependence and

information flow between distinct EEG channels. The segmented scalp EEG data

was fitted into the MVAR model as expressed in 4.2.



x1(t)

x2(t)

...

xk(t)


=

p∑
i=1

A(i)



x1(t− i)

x2(t− i)
...

xk(t− i)


+



e1(t)

e2(t)

...

ek(t)


X(t) =

p∑
i=1

A(i)X(t− i) + E(t)

(4.2)
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In terms of the model, a k-channel process can be represented as a vector X

of k EEG signals recorded in time, where the signal matrix can be expressed as

X(t) = [x1(t)x2(t)...xk(t)]
T , and the matrix containing the uncorrelated white noise

at time t can be expressed as as E(t) = [e1(t)e2(t)...ek(t)]
T , where the p term in

the summation is the model order, and A(i) is the k × k coefficient matrix of the

model. The MVAR coefficients are estimated by using the method of Vierra-Morf

[44]. The model order defines the number of past data points that are included

in the estimation of a current MVAR model. The estimation of an element Aij

from the coefficient matrix describes the influence of the data from channel xj(t− i)

on the selected channel xi, thus providing knowledge of the directed information

flow between all signals. In this case, 19 scalp EEG channels were used, therefore,

the value of k is 19. The model order p of the MVAR model was determined by

using Akaike Information Criterion (AIC) [3], which can be calculated as shown in

equation 4.3.

AIC(p) = ln|
∑
e

(p)|+ 2pK2

N
(4.3)

Element
∑

e(p) represents the covariance matrix of the residuals, N is the total

number of time points, p is the model order, and K is the number of signals con-

sidered, which in this case is the number of EEG recordings. The fitting results of

the MVAR model is related to the model order p. However, the previous work from

Franaszczuk has found that small changes to the model order did not influence the

results significantly [22].

Then, to obtain the coefficient of MVAR model in the frequency domain A(f),

the Fourier transformation is applied to the MVAR coefficient as shown in equation
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4.4.

A(f) =

p∑
r=0

A(i)e−2πirf (4.4)

where the transfer function of the EEG signals can be quantified by the equation:

Ā(f) = I−A(f) =

[
ā1(f) ā2(f) . . . āk(f)

]
(4.5)

and where the elements contained in Ā(f) are defined as:

Āij(f) =


1−

∑p
i=1 aij(r)e

−2πirf if i = j

−
∑p

i=1 aij(r)e
−2πirf otherwise

(4.6)

The PDC value πij(f) can be calculated as in equation 4.7.

πij(f) =
Āij(f)√
āHj (f)āj(f)

(4.7)

āj(f) is the jth column j = 1, 2, ..., k of the matrix Ā(f) and the value of πij(f),

ranging from 0 to 1, represents the intensity and direction of information flow from

channel i to channel j at frequency f .

PDC thus measures the strength of the relative signal exerting from one structure

to another, where the measurement is considered as a spectral aspect of the Granger

causality. Comparing to other connectivity extraction techniques, PDC has an ad-

vantage of providing partialized coupling strengths between neuronal populations,

where it measures the direct connectivity while excluding the volume conduction

effects.
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4.3 Overview of PDC using Simulated Data

To evaluate the performance of the PDC, the simulated data was formulated based

on the equations 4.8. The parameters of the equations were taken from [7].

x1(i) = 0.95
√

2x1(i− 1)− 0.9025x1(i− 2) + e1(i)

x2(i) = −0.5x1(i− 1) + e2(i)

x3(i) = 0.4x2(i− 2) + e3(i)

x4(i) = −0.5x3(i− 1) + 0.25
√

2x4(i− 1) + 0.25
√

2x5(i− 1) + e4(i)

x5(i) = −0.25
√

2x4(i− 1) + 0.25
√

2x5(i− 1) + e5(i)

(4.8)

To generate the simulated MVAR model using Python programming language,

code listing 4.1 allows us to specify the MVAR coefficients according to the equations

presented in 4.8.

1 import numpy as np

2 import connec t iv ipy as cp

3 from connec t iv ipy import mvar gen

4 import matp lo t l i b . pyplot as p l t

5

6 # Spec i f y i ng A c o e f f i c i e n t s

7 A = np . z e ro s ( ( 2 , 5 , 5 ) )

8 A[ 0 , 0 , 0 ] = 0 .95 ∗ 2∗∗0 .5
9 A[ 1 , 0 , 0 ] = −0.9025

10 A[ 0 , 1 , 0 ] = −0.5
11 A[ 1 , 2 , 1 ] = 0 .4

12 A[ 0 , 3 , 2 ] = −0.5
13 A[ 0 , 3 , 3 ] = 0 .25 ∗ 2∗∗0 .5
14 A[ 0 , 3 , 4 ] = 0 .25 ∗ 2∗∗0 .5
15 A[ 0 , 4 , 3 ] = −0.25 ∗ 2∗∗0 .5
16 A[ 0 , 4 , 4 ] = 0 .25 ∗ 2∗∗0 .5

Listing 4.1: Configuration of MVAR coefficients

From the simulated MVAR coefficients, we can generate the MVAR model by

using code listing 4.2.
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1 # generate 5−channel s i g n a l with 1000 data po in t s

2 y s i g = np . z e ro s ( ( 5 , 1000 , 5 ) )

3 y s i g [ : , : , 0 ] = mvar gen (A, 1000)

4 y s i g [ : , : , 1 ] = mvar gen (A, 1000)

5 y s i g [ : , : , 2 ] = mvar gen (A, 1000)

6 y s i g [ : , : , 3 ] = mvar gen (A, 1000)

7 y s i g [ : , : , 4 ] = mvar gen (A, 1000)

Listing 4.2: Generating MVAR data using the simulated coefficients

From the equations given in 4.8, xk(i) represents the channel kth of the EEG data

and ek(i) is the white noise in the corresponding channel. The data from equations

4.8 with 1000 data points are generated by using code listing 4.3. The simulated

data are shown in figure 4.3 and the interconnection structure is summarized in

figure 4.2.

1 data = cp . Data ( ys ig , 128 , [ ”Channel1” ,

2 ”Channel2” , ”Channel3” , ”Channel4” , ”Channel5” ] )

3

4 # Plot data

5 %matp lo t l i b i n l i n e

6 p l t . rcParams [ ’ f i g u r e . f i g s i z e ’ ] = (10 , 8)

7 data . p l o t da ta ( )

Listing 4.3: Plotting MVAR data

Figure 4.2: Flow of information based on simulated data

Figure 4.4 shows the PDC computed from the simulated data, which can be

generated by using code listing 4.4. From the result, if there is no direct connection

between channels, |π̄ij(f)| will be equal to 0. From the results, the signal propagates

from the source x1(i) sequentially to x2(i) and x3(i). The the signal then propagates

from x3(i) into another structure comprises of x4(i) and x5(i). This interpretation
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Figure 4.3: Simulated data with 5 channels

of PDC values validates the condition of the network structure based on the defined

equations in 4.8.

1 # F i t t i n g MVAR model

2 data . f i t mvar (2 , ’vm ’ )

3 ar , vr = data . mva r c o e f f i c i e n t s

4

5 # Ca lcau la t ing PDC va lues

6 pdc va lues = data . conn ( ’ pdc ’ )

7 p l t . rcParams [ ’ f i g u r e . f i g s i z e ’ ] = (10 , 8)

8 data . p lo t conn ( ’PDC’ , s i g n i=Fal se )

Listing 4.4: Calculating PDC values from the simulated signals

4.4 Intensity of Information Flow

The neuron connections in the brain cortex can be represented as a network of

directionally connected nodes, where the connectivity can be estimated by using
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Figure 4.4: PDC calculation of the simulated data

PDC as presented in the previous section. This study proposes using the concept

of intensity of information flow, which can be divided into two parts, Inflow and

Outflow. The inflow is a measurement that represents the intensity of information

flow from all other nodes to a specific node, while outflow represents an intensity

emanating from a given node and spreading onto all other nodes. The intensity of

PDC value of channel i to channel j within a given frequency range of (f1, f2) in

Hz can be defined as:

ePDCji(f1, f2) =

∫ f2

f1

π2
ji(f)df (4.9)

Inflow can be calculated by adding all the total incoming information intensities

from other channels. The inflow at channel i is the sum of the intensities of infor-
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mation flow from the rest of the channels j = 1, 2, ..., k where j 6= i can be defined

as shown:

flowin =
k∑

j=1,j 6=i

ePDCji(f1, f2) (4.10)

Similarly, Outflow from channel i represents the sum of all intensities of infor-

mation flow from channel i to the rest of the channels and it is defined as in:

flowout =
k∑

j=1,j 6=i

ePDCij(f1, f2) (4.11)

The information inflow and outflow, as defined can thus be used to quantify

and assess the process of exchanging information from different regions inside the

brain. Therefore, by calculating the inflow and outflow of the EEG channels, the

underlying patterns of brain activity during the interictal period can be used as

essential features for classification, and subsequently could be extended in the case

of focal epilepsy as to how such activity patterns are disrupted in the context of a

determined 3-D source localization of a seizure onset.
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CHAPTER 5

CLASSIFICATION OF INTERICTAL EPILEPTIFORM

DISCHARGES USING PARTIAL DIRECTED COHERENCE

5.1 Introduction

This chapter introduces the classification of patterns extracted from different types

of interictal epileptiform discharges (IEDs) that includes interictal spike (IS), spike

and slow wave complex (SSC), and repetitive spikes and slow wave complex (RSS)),

using the partial directed coherence (PDC) analysis. The PDC analysis estimates

the intensity and direction of propagation from neural activities generated in the

cerebral cortex, and analyzes the coefficients obtained from employing multivariate

autoregressive model (MVAR). Features extracted by using PDC are transformed

into adjacency matrices by using surrogate data testing with a 0.05 significance

level. The significant propagations are represented as 1 in the adjacency matrix and

0 otherwise. Binary matrices are converted into binary vectors. These vectors are

then selected as the inputs of a multilayer Perceptron (MLP) neural network. The

trained classifiers were able to detect and classify different types of IEDs when using

the features extracted from PDC with a very high performance.

During the epileptic seizures, groups of neurons in the cerebral cortex are being

excessively triggered simultaneously resulting in symptoms such as muscle stiffness,

muscle spasms and impaired consciousness [20]. The disease is considered a chronic

disorder affecting 0.5 - 1% of the entire population. In the United States alone,

1.8% of adults (18 years and older) and 1% of children (aged 0-17), are reported

to have epilepsy by the Center for Disease Control and Prevention [21]. Although

the symptoms mentioned above are general symptoms, the location, duration and

propagation of the seizures vary depending on the individual. Enhancing epilepsy

52



diagnosis or predicting the occurrence of seizures through recordings, the planning

of therapeutic protocols will be improved and lead through the benefits of epileptic

patients and society at large.

Among the neurophysiological techniques, electroencephalogram (EEG) remains

the most prevalent and reliable modality to examine brain activities as well as using

it as the main diagnosis assessment [70]. EEG recording is simple and inexpensive

compared to other neuroimaging studies. EEG captures the electrical activities pro-

duced by the neurons in the brain including the interictal epileptiform discharges

(IEDs). Due to its high temporal resolution, EEG is considered a suitable tool for

identifying synchronization between a pair of signals [59]. Substantial amount of

epilepsy diagnosis is done by recording and visualizing EEG during seizures and

closely monitoring IED in long interictal recordings. Extracting epileptic character-

istics of EEG in interictal periods plays a key role in the disease detection. Con-

sequently, extracting the hidden patterns of EEG in the interictal phase may be a

beneficial tool to alleviate this complex process of the epilepsy diagnosis.

The analysis of EEG signals with the purpose of helping patients suffering from

neurological disorders have been one of the most prominent research fields. Various

techniques of computational analysis have been performed to enhance the detection

of neurological disease characteristics [62, 33, 34]. However, the characteristics of

epilepsy still require an extensive exploration and investigation in order to improve

the understanding of the disease [62]. The majority of epilepsy diagnostics are

based on the EEG, where epileptic patients will undergo the procedure of EEG

recordings for a length of period with an observation from technicians or doctors

[56]. One of the key features that can be analyzed by utilizing EEG recordings is

the extracted IEDs. IEDs from scalp EEG recording provide important information

of lateralization and localization of epileptogenic foci [63] and are the key feature
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for classifying types of epilepsy [38].

To extract underlying features of the IEDs, the study of propagation of EEG is

introduced where it provides promising results as in [33], and [34]. More recently,

the concept of Granger-causality was applied to determine the propagation of EEG

activity [25]. The concept of Granger-causality determines the causal influences of

variable to another where it is based on the idea that causes precede their effects

in time. Granger-causality is evaluated by fitting vector autoregressive models. A

method based on the Granger-causality concept, called the partial directed coher-

ence (PDC), is proposed to extract the propagation of the EEG activity [7] where

the approach is based on a multivariate autoregressive model (MVAR). Unlike con-

ventional methods such as correlation or coherence, the utilization of MVAR model

allows us to examine the interaction between multichannel instead of pair-wise chan-

nel resulting in better and more precise results [41].

To the best of our knowledge, this is the first experimental study to incorporate

the propagation of information flow to classify the types of IEDs by utilizing machine

learning. This study proposes an analysis of classification of IEDs by using the

propagation patterns extracted from the EEG data segments and using the PDC

methodology. Results obtained from PDC method will be transformed, by using

surrogate data testing, into adjacency matrices. The obtained adjacency matrices

extracted from each type of IED are used as the main feature in the neural network

classifier, where the system will use the tenfold cross validation method to evaluate

the performance of the classifier.

5.2 Data Acquisition

In this study, only interictal epileptiform discharges (IED) were used to extract the

different characteristics of the 3 types of epileptic biomarkers. To explore synchro-
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Figure 5.1: Types of interictal epileptiform discharges.(From left to right) interictal
spike, spike and slow wave complex, and repetitive spikes and slow wave complex

nization between brain regions in focal and generalized cases, a total of 30 EEG

segments from a male patient diagnosed with generalized epilepsy and a female pa-

tient diagnosed with focal epilepsy having partial complex seizures were obtained.

The research procedure was approved by the Institutional Review Board of Florida

International University and received the consents from all subjects. The data were

recorded with the 10-20 electrode placement protocol containing the 3 types of IED

(IS, SSC, and RSS). An example of these biomarkers is shown in figure 5.1. Record-

ings are performed containing 19 electrodes (Fp1, F7, T3, T5, O1, F3, C3, P3, Fz,

Cz, Pz, Fp2, F8, T4, T6, O2, F4, C4, and P4) using Cz channel as the reference

electrode. The data was collected with a sampling rate of 200 Hz.

5.3 Preprocessing

To minimize the effect of undesired noise, The EEG data was preprocessed prior

to segmentation. Principle component analysis (PCA) and independent component

analysis (ICA) were applied to the data and manually performed an artifact rejec-

tion. Eye blinks and muscle movements were removed using ICA components and
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the EEG data was reconstructed. The EEG data was divided into 3 groups accord-

ing to the types of IED. They were segmented into 3-second windows containing a

single occurrence of IED in the center of the segment. To focus on the character-

istics of IEDs, the peak of the ISs were arranged at the 1.5s of the segment, where

the first peak of SSC and RSS were arranged at the 1.2s of the segment due to its

longer extent [34]. In total, 10 segments of each type of IEDs were extracted from

the original EEG data.

5.4 Feature Extraction

The Partial Directed Coherence (PDC) method based on an estimation of coefficients

of a multivariate auto-regressive model (MVAR) would provide a directed network,

which reflects the inter-dependence and information flow between EEG channels. By

using the PDC concept as explained in chapter 4, the effective connectivity values

of the preprocessed EEG segments were extracted. The value of πij(f) ranging from

0 to 1 represents the intensity and direction of information flow from channel j to

channel i at frequency f . The significance of every directed connection is evaluated

by a statistical test using surrogate data explained in section 2.5. The method is

based on the creation of surrogates with basic resemblance to the original data using

causal Fourier transform. The procedure includes calculation of a testing matrix

(PDC), for both original and surrogate data in order to test the null hypothesis

of similarity. Rejection of the null hypothesis results in significance of the causal

coupling under test. If the null hypothesis is rejected in more than 95% of tests, the

calculated PDC is significant with 95% confidence level. To test the causal coupling

between every pairwise electrodes, the multichannel surrogate data is created by

preserving all connections except the one currently under test.
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Figures 5.2, 5.3, and 5.4 are the samples of PDC values extracted from the IS,

SSC, and RSS respectively.

5.5 Feature Transformation

Because the sampling frequency of the EEG data is 200 Hz, the PDC values of

every pair-wise channel will fall within the range of 0-100 Hz. After the PDC values

were extracted from every EEG segment containing IEDs, the values of the PDC

were compared to the significance threshold computed by utilizing surrogate data

testing. Figure 5.5 shows the result of PDC extraction from the EEG data. Each

of the plots show the values of PDC between the selected channels ranging between

0-100 Hz. The blue area indicates the PDC values within each frequency, where the

horizontal red line indicates the values generated from the surrogate data testing.

The PDC values at the given frequency are considered significant when the PDC

values exceed the red line. The surrogate data testing was set to have a 100 number

of repetitions with the level of significance of α = 0.05.

To reduce the dimensionality and prepare the data for the neural network classi-

fier, the PDC values of every EEG segment were applied with the threshold obtained

from the surrogate data testing. If the value of the PDC surpasses the significance

line, the entire segment is represented as 1 and 0 otherwise, creating a 19× 19 ad-

jacency matrix as shown in figure 5.6. The eye of the matrix containing the values

between the channel and itself will be removed and converted into a vector con-

taining (19 × 19 − 19) = 342 elements. These binary vectors extracted from every

EEG segment containing 3 types of IEDs will be used as inputs for the classifier to

discriminate between different types of IEDs.
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(a)

(b)

Figure 5.2: Random samples of PDC values extracted from interictal spike
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(a)

(b)

Figure 5.3: Random samples of PDC values extracted from spike and slow wave
complex
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(a)

(b)

Figure 5.4: Random samples of PDC values extracted from repetitive spikes and
slow wave complex
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Figure 5.5: Computed partial directed coherence

5.6 Multilayer Perceptron Neural Network

After the feature transformation process, the 3 types of IEDs (IS, SSC, and RSS),

were classified using the aforementioned 19×19 adjacency matrices (or 1×342 binary

vectors) as inputs for a multilayer Perceptron (MLP) neural network that uses the

back-propagation algorithm. To improve the speed of learning, the Nguyen-Widrow

initialization method was performed for generating the initial weights. One hidden

layer was applied to implement non-linear decision boundaries, where the size of the

hidden layer was the same as the number of inputs, i.e., 342, and a bias unit was

added to both: input layer and hidden layer. A momentum term was included into

the weight upgrade, which could minimize the disruption of convergence caused by

some abnormal patterns. These patterns can usually set the convergence towards

the minimum, defined by the majority of the patterns. The flowchart of the MLP
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Figure 5.6: Adjacency matrix from the computed PDC

algorithm used in this study is presented in Figure 5.7 After obtaining the final

weights and biases of the MLP, then given a new EEG segment, the MLP was able

to classify it to a certain type of IEDs precisely.

5.7 Classification Experiment: Tenfold Cross Validation

The classification performance of the MLP was measured by using the F1 score,

accuracy, sensitivity, specificity, and precision based on tenfold cross validation pro-

cess. Both binary classifications (i.e., IS vs. SSC, IS vs. RSS, and SSC vs. RSS)

and 3-types classification (i.e., IS vs. SSC vs. RSS) experiments were carried out

for estimating our proposed method. In the tenfold cross validation process, the

segments were randomly assigned to 10 sets d0, d1, ..., d9, so that all sets were equal

size. Therefore, the data used in the binary classification experiment should include

20 binary vectors transformed from the corresponding EEG segments, and all 30

62



Figure 5.7: Flowchart of the multilayer Perceptron algorithm
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vectors need to be involved in the 3-types classification experiment. Then each one

of the 10 sets were retained as the validation data while the remaining 9 sets were

used for training, thus, every data point was used for both training and validation on

each fold. In every single validation performed, the MLP neural network was trained

separately and started with a new set of initial weights to ensure the reliability of

the experiment results.

5.8 Results

The EEG data was separated by the types of IEDs contained in the data including

interictal spike (IS), spike and slow wave complex (SSC), and repetitive spike and

slow wave complex (RSS). Each of the IEDs was selected and verified manually by

clinical experts. After the artifacts rejection was performed, the data was segmented

into 3-s windows containing only a single occurrence of IED and labeled with its

type accordingly. adjacency matrices were implemented from the extracted and

transformed features.

Figure 5.8, figure 5.9, and figure 5.10 show the sample of adjacency matrices

extracted from 3 different types of IEDs. The plot of adjacency matrix contains

2 values representing the significance of propagation between a pair of electrodes.

Black color-coded pixel represents the propagation that passes through the threshold

generated by using surrogate data testing, where white color-coded pixel represents

otherwise. From the figures, the adjacency matrices of different types of IEDs show

different patterns of significance propagation. IS type shows a lack of significance

propagation in the upper-right quadrant of the adjacency matrix, where SSC and

RSS types show denser patterns of significance propagation. The patterns observed

from these adjacency matrices between SSC and RSS are more difficult to distinguish

visually.
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Figure 5.8: Sample of adjacency matrix obtained from interictal spike

Figure 5.9: Sample of adjacency matrix obtained from spike and slow wave complex
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Figure 5.10: Sample of adjacency matrix obtained from repetitive spike and slow
wave complex

To perform a classification task, neural network was implemented as a classifier.

The obtained adjacency matrices were converted into binary vectors and used as the

input, where the results of the classification are divided into two subcategories: 1)

a fitted classifier that compares between two types of IEDs and 2) a classifier with

all types of IEDs.

5.8.1 Classification between two types of IEDs

Results obtained from the MLP classifier trained to perform a binary classification

are summarized in table 5.1. Five indicators were used to evaluate the performance

of the classifier namely, F1 score, Accuracy, Sensitivity, Specificity, and Precision by

utilizing the tenfold cross validation. Pairwise comparison between types of IEDs

(IS vs. SSC, IS vs. RSS, and SSC vs. RSS) was performed. The classifier overall

score of 100.00% across every indicator was obtained when classifying between IS
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Classifica-
tion

F1
(%)

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

Precision
(%)

IS vs. SSC 96.67 95.00 100.00 90.00 95.00
IS vs. RSS 100.00 100.00 100.00 100.00 100.00

SSC vs.
RSS

76.67 85.00 80.00 90.00 75.00

Average 91.11 93.33 93.33 93.33 90.00

Table 5.1: Performance results of binary classification based on neural network
classifier with adjacency matrices

vs. RSS. The F1 scores drop when performed on IS vs. SSC with 96.67%, but still

provided 100.00% sensitivity. The classifier on SSC vs. RSS performed an F1 score

of 76.67%. Overall, the classifier provides a high performance with an average F1

score of 91.11% and 93.33% for all accuracy, sensitivity and specificity.

5.8.2 Classification between all types of IEDs

Types of
IEDs

F1
(%)

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

Precision
(%)

IS 90.00 96.67 90.00 100.00 90.00
SSC 86.67 86.67 100.00 80.00 80.00
RSS 70.00 90.00 70.00 100.00 70.00

Overall
Accuracy

86.67

Table 5.2: Performance results of 3-types classification based on neural network
classifier with adjacency matrices

Table 5.2 provides a summarization of the performance of the MLP classifier

trained to classify between all types of IEDs. Same measurements were obtained

to evaluate the performance of the classifier. The results of the classification for

IS, SSC, and RSS are 90.00%, 86.67% and 70.00% for F1 scores respectively. The

classifier had a drop in performance when used to detect RSS types, but still provides

high scores of specificity at 100.00%. The overall accuracy of the classifier was
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computed by dividing the total number of correct predictions by the number of

data points. The classifier provides a high overall accuracy of 86.87%.

5.9 Discussion

The presented work focused on examining the patterns generated from the extrac-

tion of EEG data with the occurrence of IEDs by using PDC analysis. Similar

approaches were performed in [36] and [50] by using cross-correlation analysis and a

nonlinear analysis, where cross cross-correlation is prone to error induced by volume

conduction and the nonlinear analysis is very dependent of the parameters selection.

Both [36] and [50] utilized analysis of variance (ANOVA) to analyze the characteris-

tics presented in each IED without implementing any classification algorithm. Our

study evaluates the performance of classification by using feature extracted from

PDC and by implementing multilayer perceptron neural network to perform IEDs

classification. One of the limitations presented in the analysis was the effect of the

background activity of the selected segments, where preprocessing had to be done

manually to minimize the effect from the artifacts.

5.10 Conclusion

The extraction of propagation information from neural activities by using PDC

can generate important features that can be used to distinguish between types of

IEDs (interictal spike, spike and slow wave complex, and repetitive spikes and slow

wave complex). These features can help characterized the type of epilepsy (focal or

generalized) and can provide the information flow between multivariate systems (19

EEG electrodes). By applying surrogate data testing, the significant propagations

can be evaluated and transformed into a adjacency matrix. Classification results

are promising when implementing a machine learning algorithm (neural network
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classifier) that uses features extracted from PDC. Whether the seizure event will be

focal or generalized, these distinct features can help to enhanced diagnosis of the

disorder.
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CHAPTER 6

PARTIAL DIRECTED COHERENCE WITH CONCEPT OF

INFORMATION FLOW

6.1 Introduction

This chapter introduces an approach for the quantification of information flow using

brain connectivity analysis and partial directed coherence (PDC). The main objec-

tive is to assess the key characteristics that delineate normal controls from patients

with epilepsy considering both focal and generalized seizures. The PDC is used here

as a feature extraction method for scalp EEG recordings as means to reflect the

physiological changes of brain activity during interictal periods. The intensity (or

strength) of information flow, including inflow (activity deemed significantly flowing

from other regions into a specific region) and outflow (activity emanating from one

region and spreading into other regions), were calculated based on the PDC results

and are quantified with respect to the defined regions of interest. Three groups were

considered for this study, the control population, patients with focalized epilepsy,

and patients with generalized epilepsy. A significant difference in inflow and outflow

validated by the nonparametric Kruskal-Wallis test was observed for these groups.

It is observed that during the interictal phase, with the results obtained, it becomes

possible to delineate the distinctive patterns that can be used to classify the two

types of epilepsy, focal and generalized. The differences were further examined by

applying multiple comparison post-hoc analyses using the same level of significance

at 0.05 with multiple comparison corrections.

As mentioned in section 2.3, epilepsy is characterized by the recurrent unpro-

voked interruption of brain functions, called epileptic seizures. During epileptic

seizures, groups of neurons in the cerebral cortex are being excessively triggered
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simultaneously resulting in symptoms such as muscle stiffness, muscle spasms and

impaired consciousness [20]. Although the symptoms of epileptic seizures are gen-

eral, the location, duration and propagation of the seizures differ depending on

the individual. By enhancing epilepsy diagnosis or predicting the occurrence of

seizures through EEG recordings, early intervention and therapeutic protocols could

be planned more effectively.

Scalp EEG recording is a noninvasive and highly effective method that is widely

used to study and analyze epileptic seizures with high temporal resolution. It is

one of the prevalent modalities to examine brain activities[70]. Obtaining EEG

recordings is considered a simple procedure and inexpensive compared to other neu-

roimaging modalities such as MRI, fMRI and PET imaging. Although a multimodal

imaging platform is often desired to consolidate temporal and spatial resolutions and

to be to validate the onset of a 3D source, EEG on its own captures the electrical

activity produced by the neurons in the brain with a high temporal resolution, which

makes it a highly suitable tool for identifying such things as synchronization between

pairs of signals [1]. A substantial amount of epilepsy diagnosis is performed by vi-

sualizing EEG during seizures and long interictal recordings. Extracting epileptic

biomarkers of EEG in interictal periods plays a key role for the diagnosis of epilepsy

and the planning of clinical treatment. However, the diagnosis from EEG record-

ings relies heavily on the visual inspection of experienced experts, and the outcome

may vary depending on their subjective judgments. Hence, extracting subtle or

hidden patterns of EEG in the interictal phase could elicit new findings and new

understanding on the complex process of epilepsy diagnosis.

The analysis of EEG signals with the purpose of helping patients suffering from

neurological disorders have been one of the most prominent research fields [59]. Sev-

eral techniques of computational analysis have been performed to enhance the de-
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tection of neurological disorders[76, 62, 33]. However, the characteristics of epilepsy

still require extensive exploration and investigation in order to improve our under-

standing of the disease and the myriad of brain activity patterns that characterize

the varied manifestations of this neurological disorder [59]. The majority of epilepsy

diagnostics are based on the EEG, where epileptic patients will undergo the proce-

dure of EEG recordings with the help of specialized technicians or doctors [34]. One

of the key features that can be analyzed by utilizing EEG recordings is to observe

the synchronization of neural activities and resulting brain connectivity patterns.

The patterns extracted from brain connectivity of scalp EEG recordings can provide

important information of lateralization and localization of the epileptogenic foci [51]

and could also serve as key features for classifying the different types of epilepsy,

namely partial and these could be simple or complex in nature, and generalized

where the seizure activity involves the entire brain [56].

Many studies have shown that effective EEG signal analysis can provide key

information for effectual diagnosis and classification of epilepsy [63, 38, 73, 35].

To extract underlying features of the interictal period, the propagation of EEG is

introduced in several studies where the results seem promising [76, 71]. The concept

of extracting brain connectivity information from EEG recordings is not new but

it is still relevant as more definite answers are sought [66]. Several connectivity

extraction methods are continuously reported and developed [63]. Quantification

and assessment of interactions between brain regions can be used to delineate their

characteristics and related interactions [42, 66].

Thus, effective connectivity maps on the basis of inflow and outflow information

between brain regions will be examined and are the main focus of this study. Ef-

fective connectivity refers to the reliable assessment of the intensity measure and

direction of information flow between the different neural regions using EEG data.
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The aim here is to combine the use of the partial directed coherence (PDC) on the

basis of a multivariate autoregressive model (MVAR) model that is designed to ex-

tract the needed features that define the propagation flow of interictal EEG activity

[7]. Unlike conventional methods, such as correlation or coherence, the utilization of

an MVAR model allows us to examine the multichannel interaction instead of lim-

iting the analysis into the pairwise channels, resulting in painting a more cohesive

and generalized picture of brain activities, providing as a consequence better and

more precise results [41].

To the best of our knowledge, this is the first experimental study that incorpo-

rates information flow to extract propagation during interictal periods in epilepsy.

This study proposes an analysis of the propagation patterns extracted from ran-

domly selected EEG data segments, and through the use of the PDC methodology

combined with the intensity of information flow. Both the inflow and outflow pat-

terns are scrutinized for the different regions of interests..

The flowchart describing the overall structure of the intensity of information

flow analysis during a given interictal period is as illustrated in figure 6.1. After the

extraction of the partial directed coherence, the intensity of information flow with

inflow and outflow directions were quantified by the predefined regions of inter-

est. Statistical analysis was applied to quantify the differences among the 3 groups

considered.

6.2 Data Acquisition

With the approval of the Institutional Review Board of Florida International Univer-

sity (protocol number: IRB-150247), 22 subjects (14 epilepsy patients and 8 healthy

normal controls) were considered in this study Of the 14 patients with epilepsy, 8
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Figure 6.1: Diagram outlining the PDC-based inflow and outflow method of the
study
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have focal epilepsy and the other 6 patients have generalized epilepsy. The diagnosis

of the patients were provided by an expert in the field.

The scalp EEG of all patients were recorded at Baptist Hospital of Miami by

using standard international 10-20 electrode placement protocol with 19 electrodes

(Fp1, F7, T3, T5, O1, F3, C3, P3, Fz, Cz, Pz, Fp2, F8, T4, T6, O2, F4, C4, and

P4). The record of the EEG was done by using a referential montage. During the

recording, all patients were asked to relax and minimize any body movement. The

EEG signals were digitized by using a sampling frequency of 200 Hz. Interictal

and ictal events were both included in all epileptic recordings, but only interictal

periods were considered in this study. Table 6.1 summarizes the information of all

22 subjects.

6.3 Preprocessing and Segmentation

To reduce the effect of noise and hence maximize the brain-related activities, the

obtained EEG data were inspected by a qualified doctor and only a cleaned portion

of EEG data. The EEG data included in this study were cleaned of interictal

epileptiform discharge and artifacts such as eye blinks and muscle movements.

In this study, the EEG data was segmented into 3-second windows with 600

data points for each segment. The segments duration ensured that the MVAR

model captured important brain-related activities because it was properly fitted [41].

The 3-second non-overlapping windows were randomly selected from the interictal

EEG data of epileptic groups and normal EEG data from the control population.

Afterwards, the segmented data were normalized by removing the mean waveform

across the segment. The total number of segments extracted from different groups

are summarized in 6.2.

75



Patient Gender Condition Epilepsy Type Focal Location
Pat 1 M Normal - -
Pat 2 F Normal - -
Pat 16 F Epileptic Focal Right T
Pat 17 M Epileptic Generalized -
Pat 19 M Normal - -
Pat 21 F Normal - -
Pat 22 M Epileptic Generalized -
Pat 23 F Normal - -
Pat 25 F Epileptic Focal Bilateral R-Prominence
Pat 26 M Epileptic Focal Bilateral R-Prominence
Pat 27 F Normal - -
Pat 28 F Normal - -
Pat 32 F Epileptic Generalized -
Pat 35 F Epileptic Focal LFT
Pat 36 F Epileptic Focal LT
Pat 40 F Epileptic Focal RCT
Pat 42 F Epileptic Focal LT
Pat 44 M Epileptic Generalized -
Pat 46 F Epileptic Generalized -
Pat 47 F Epileptic Focal LA/FC
Pat 48 M Epileptic Generalized -
Pat 49 F Normal - -

Table 6.1: Patients information
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Control
Population

Focal
Epilepsy

Generalized
Epilepsy

To-
tal

Number of
Segments

105 118 145 368

Table 6.2: Total number of EEG segmentations per group.

6.4 Connectivity Extraction

The Partial Directed Coherence (PDC) method based on an estimation of coefficients

of a multivariate auto-regressive model (MVAR) provides a directed network, which

reflects the inter-dependence and information flow between EEG channels. By using

the PDC concept explained in chapter 4, the effective connectivity values of the

preprocessed EEG segments were extracted. The value of πij(f) ranging from 0 to 1

represents the intensity and direction of information flow from channel j to channel

i at frequency f . The same concept of connectivity extraction from chapter 5 was

applied to this experiment. However, instead of applying surrogate data analysis,

concept of intensity of information flow was used to analyze the PDC values.

Figures 6.2, 6.3, and 6.4 are the samples of PDC values extracted from the EEG

segments of control population, focal epilepsy group, and generalized epilepsy group

respectively.

After the data from the PDC extraction were obtained, the concept of intensity

of information flow introduced in section 4.4 was applied to the data. The values

of inflow and outflow were computed and tabulated to be further quantified and

analyzed.

6.5 Quantification of Information Flow by Cortex Regions

In this study, the brain cortex was divided into four different regions of interest.

Figure 6.5 illustrates the specified regions that were included in the quantification

77



(a)

(b)

Figure 6.2: Random samples of PDC values extracted from the EEG segments of
control population
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(a)

(b)

Figure 6.3: Random samples of PDC values extracted from the EEG segments of
focal epilepsy group
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(a)

(b)

Figure 6.4: Random samples of PDC values extracted from the EEG segments of
generalized epilepsy group
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process. The subdivision of the first and second region was done by dividing the

cortex based on the left and right hemispheres (LR region). The activities on the

left hemispheric region included Fp1, F7, T3, T5, O1, F3, C3, and P3 electrodes

and the right hemispheric region contained Fp2, F8, T4, T6, O2, F4, C4, and P4

electrodes. The LR region was separated by the central line, which is a longitudinal

fissure that contains Fz, Cz, and Pz electrodes. The subdivision of the third and

fourth regions was done based on the anterior-posterior regions (AP region), where

the anterior region contained Fp1, Fp2, F7, F3, Fz, F4, and F8 electrodes and

the posterior region contained T5, P3, Pz, P4, T6, O1, and O2 electrodes. These

regions were separated by the electrodes located along the central sulcus line, which

contains T3, C3, Cz, C4, and T4 electrodes.

For each of these regions, the mean value of inflow and outflow was calculated for

every 3-second window segment of EEG data. Statistical evaluations were performed

to analyze the characteristics of the features for each group of patients.

(a) (b)

Figure 6.5: Regions of interest, group (a) left-right hemisphere (Left - red, Right -
Blue), and (b) anterior-posterior region (Anterior - red, Posterior - blue)
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6.6 Exploratory Statistical Analysis

We applied a nonparametric Kruskal-Wallis test to identify the possible differences

between the intensity of information flow of control population and epilepsy pa-

tients [39]. The multiple comparison post-hoc analysis Conover-Iman [15]. with

Holm multiple comparison corrections was applied to further investigate the ob-

tained differences.

6.7 Results

Once the data were preprocessed, three-second window segments of EEG were ran-

domly selected from the interictal data and sorted according to their diagnosis. The

effective connectivity of every segment was calculated by utilizing PDC method and

the model selection of MVAR was performed individually to obtain the optimized

model order. The PDC values within the frequency range of [0.5 - 30] Hz were in-

cluded in this study, where the frequency above 30 Hz was found to have a minimal

relationship to epilepsy during the interictal periods [2].

The calculated PDC values of the 368 segments of EEG were averaged according

to the groups as shown in figure 6.6. The nodes on the outer layer of the circular

connectivity plot are labeled with the 19 channels used in the EEG recordings. The

Edges connected to the nodes represent the connection between a particular pair of

channels, where the values of the PDC between two channels are represented by color

codes. The darker color codes indicate connections with higher PDC values and the

lighter color codes indicate connections with lower PDC values. The patterns from

Fig. 6.6a show an average connectivity obtained from a control population group.

The connections from this group exhibited stronger connections across the cortex,

especially between channels T3 T5, which are not observed in the other two groups.
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(a) (b)

(c)

Figure 6.6: Average circular connectivity of (a) control population (b) focal epilepsy
(c) generalized epilepsy group.
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The connections obtained from the control population group displayed a distinctive

pattern compared to the rest of the groups, where the stronger connections are more

gathered in the regions between channels T3 T5, and there are fewer connections in

channels F8 and T4. For the connections obtained from the epilepsy groups shown

in Fig. 6.6b and 6.6c, the overall patterns exhibited a different pattern compared

to the control population group, where multiple strong connections occurred across

the cortex with less grouped patterns.

6.7.1 Information Inflow and Outflow

To be able to quantify and extract meaningful measurements, the intensity of in-

formation flow with inflow and outflow direction for every EEG segment was cal-

culated and separated into the defined regions, which included the left hemisphere,

right hemisphere, anterior region, and posterior region. The medians and standard

deviations of the inflow and outflow were sorted according to the data groups and

categorized into cortex regions as shown in figure 6.7 and figure 6.8. The inflow and

outflow calculations can be used to visualize the information flow between different

brain regions in the epileptic brain. The outflow patterns in particular are found to

be related to the epileptogenic foci.

The summarized distributions of the intensity of information flow with the inflow

direction are shown in figure 6.7. The values are separated by the defined regions

and categorized by the types of data, which are denoted by color coding. By com-

paring the data visually, the inflow intensity medians of the control population are

higher than the epilepsy group in Left, Anterior, and Posterior regions and lower

in the Right region. On the contrary, the inflow intensity extracted from both fo-

cal and generalized groups display a similar pattern and behavior. To validate the

results, the nonparametric Kruskal-Wallis test was applied with the null hypothesis
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indicating that the distribution of differences in intensity flow between the three

groups are identical. The statistical analysis results per region are summarized and

displayed in table 6.3 and table 6.4 for both inflow and outflow direction.

The asterisk (*) denotes the region with the significant differences with the re-

jection of the null hypothesis.

Test-Statistics p-value Significance Level of 0.05
Left Hemisphere 25.744 <0.00 *

Right Hemisphere 31.392 <0.00 *
Anterior Region 10.844 0.004 *
Posterior Region 8.591 0.013 *

Table 6.3: Kruskal-Wallis test of intensity of information flow with inflow direction.

Test-Statistics p-value Significance Level of 0.05
Left Hemisphere 15.800 0.0003 *

Right Hemisphere 14.640 0.0001 *
Anterior Region 4.003 0.135
Posterior Region 3.294 0.192

Table 6.4: Kruskal-Wallis test of intensity of information flow with outflow direction.

6.7.2 Statistical Differences in Information Inflow and Out-

flow Directions

From the statistical analysis viewpoint, the null hypothesis of all regions was rejected

at the significance level of 0.05. Accordingly, the differences found between the

groups are significantly different in every region.

The differences were further examined by applying Conover-Iman multiple com-

parison post-hoc analysis. The same level of significance at 0.05 with Holm multiple

comparison corrections was applied as well. From the post-hoc analysis with the

null hypothesis, the differences between the inflow intensity obtained from control

population compare to both types of epilepsy (focal and generalized) of Left, Right,
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and Posterior regions, were rejected with a p− value < 0.05. Thus, the observation

was statistically significant. However, the differences of intensity flow between focal

and generalized groups were not statistically significant in the Anterior and Poste-

rior regions (p − value > 0.05).The results from the multiple comparison analysis

are summarized as shown from table 6.5 to table 6.8.

Group 1 Group 2 p-value Reject H0

Control Focal 8.289e-5 True
Control Generalized 1.727e-6 True
Focal Generalized 3.325e-1 True

Table 6.5: Multiple comparison of inflow means within the right hemisphere using
Conover-Iman test with level of significance = 0.05

Group 1 Group 2 p-value Reject H0

Control Focal 5.58e-7 True
Control Generalized 7.656e-6 True
Focal Generalized 3.325e-1 True

Table 6.6: Multiple comparison of inflow means within the left hemisphere using
Conover-Iman test with level of significance = 0.05

Group 1 Group 2 p-value Reject H0

Control Focal 0.004 True
Control Generalized 0.933 False
Focal Generalized 4.890e-1 True

Table 6.7: Multiple comparison of inflow means within the anterior region using
Conover-Iman test with level of significance = 0.05

Group 1 Group 2 p-value Reject H0

Control Focal 0.061 False
Control Generalized 0.263 False
Focal Generalized 0.328 False

Table 6.8: Multiple comparison of inflow means within the posterior region using
Conover-Iman test with level of significance = 0.05
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Same method of analysis was applied to the intensity of information flow with

the outflow direction. Figure 6.8 summarizes the medians and standard deviations

of the outflow intensity by the defined regions and the data groups. The patterns

extracted from the control population, focal and generalized epilepsy groups show a

similar trend. The differences of outflow intensity between all the groups seem to be

minimal and do not show a significant pattern. By applying Kruskal-Wallis test to

the results, only two regions showed significant differences in the outflow intensity.

The null hypothesis was rejected for the left hemisphere with a p − value < 0.05

and right hemisphere with a p − value < 0.05. Thus, the differences found in

these regions are significantly different. However, the null hypothesis of anterior

and posterior regions was accepted showing no significant difference.

Same multiple comparison post-hoc analysis with the level of significance at 0.05

was applied to the significant regions, left and right hemispheres. In the left hemi-

sphere, the difference between outflow intensity obtained from control population

as compared to focal epilepsy group was significant, whereas, the difference found

between control population and generalized epilepsy group was found not to be

significant. Opposite statistical results were found in the Right region, where the

outflow intensity obtained from the control population as compared to the focal

epilepsy group was found to be not significant, whereas the difference between the

control population and the generalized epilepsy groups was found to be significant.

The results from the multiple comparison analysis are summarized as shown from

table 6.9 to table 6.12.

6.7.3 Focal Epilepsy and Control Population

To further examine the difference between focal epilepsy group and control popula-

tion, patients in the focal epilepsy group were divided into two groups according to

89



Group 1 Group 2 p-value Reject H0

Control Focal 7.962e-4 True
Control Generalized 0.001 True
Focal Generalized 4.378e-2 True

Table 6.9: Multiple comparison of outflow means within the right hemisphere using
Conover-Iman test with level of significance = 0.05

Group 1 Group 2 p-value Reject H0

Control Focal 0.009 True
Control Generalized 2.798e-4 True
Focal Generalized 0.011 True

Table 6.10: Multiple comparison of outflow means within the left hemisphere using
Conover-Iman test with level of significance = 0.05

Group 1 Group 2 p-value Reject H0

Control Focal 0.486 False
Control Generalized 0.149 False
Focal Generalized 0.534 False

Table 6.11: Multiple comparison of outflow means within the anterior region using
Conover-Iman test with level of significance = 0.05

Group 1 Group 2 p-value Reject H0

Control Focal 0.405 False
Control Generalized 0.738 False
Focal Generalized 0.261 False

Table 6.12: Multiple comparison of outflow means within the posterior region using
Conover-Iman test with level of significance = 0.05
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their epileptic focus location. As shown in table 6.13, four patients, Pat 16, Pat 25,

Pat 26, and Pat40 were considered to be in the focal right group and patients, Pat

35, Pat 36, Pat 42, and Pat 47, were in the focal left group. The same concept of

information flow was applied to find the difference of the patterns extracted between

these groups and the control population.

Patient Group Condition Epilepsy Type Focal Location
Pat 16 Right Epileptic Focal Right T
Pat 25 Right Epileptic Focal Bilateral R-Prominence
Pat 26 Right Epileptic Focal Bilateral R-Prominence
Pat 35 Left Epileptic Focal LFT
Pat 36 Left Epileptic Focal LT
Pat 40 Right Epileptic Focal RCT
Pat 42 Left Epileptic Focal LT
Pat 47 Left Epileptic Focal LA/FC

Table 6.13: Focal epilepsy patients information

The summarized distributions of the intensity of information flow between the

focal left group and control population are shown in Figure 6.9 and Figure 6.10.

The results as shown in Figure 6.9 provide the medians and interquartile ranges

of inflow direction in each of the defined regions and Figure 6.10 shows the outflow

direction. To validate the results, the nonparametric Kruskal-Wallis test was applied

with the null hypothesis stating that the distribution of differences in intensity flow

between the two groups are identical. The statistical analysis results per region are

summarized and displayed in table 6.14 and table 6.15 for both inflow and outflow

direction respectively.

From the statistical analysis viewpoint, the null hypotheses for the left hemi-

sphere, right hemisphere, and anterior region were rejected at the p− value of 0.05.

The inflow values in the left hemisphere appeared to be significantly lower com-

pared to the control population, while the inflow values were higher in the right

hemisphere. From the summarized statistics of outflow values shown in table 6.15,
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Test-Statistics p-value Significance Level of 0.05
Left Hemisphere 6.3795 0.0115 *

Right Hemisphere 28.4675 9.5e-8 *
Anterior Region 14.2070 0.0001 *
Posterior Region 0.1878 0.6647

Table 6.14: Kruskal-Wallis test of intensity of information flow with inflow direction
between focal left group and control population.

Test-Statistics p-value Significance Level of 0.05
Left Hemisphere 13.187 0.00002 *

Right Hemisphere 1.7469 0.1862
Anterior Region 20.056 7.5e-6 *
Posterior Region 0.0871 0.767

Table 6.15: Kruskal-Wallis test of intensity of information flow with outflow direction
between focal left group and control population.

the null hypotheses for left hemisphere and anterior region were rejected. The out-

flow values computed in the left hemisphere were found to be significantly higher

than those of the control population.

The results of the inflow and outflow for the focal right group comparison are

summarized as shown in figure 6.11 and figure 6.12. To validate the results, same

Kruskal-Wallis test was applied to the results, where table 6.16 and table 6.17 show

the statistical analyses of between the focal right group and the control population.

Test-Statistics p-value Significance Level of 0.05
Left Hemisphere 13.397 0.0002 *

Right Hemisphere 0.04388 0.834
Anterior Region 0.51231 0.4741
Posterior Region 9.6924 0.0018 *

Table 6.16: Kruskal-Wallis test of intensity of information flow with inflow direction
between focal right group and control population.

The results obtained from the comparison between the focal right group and the

control population displays a similar pattern to the results obtained from the focal

left group. For the intensity of information flow with inflow direction, the inflow
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Test-Statistics p-value Significance Level of 0.05
Left Hemisphere 1.667 0.1966

Right Hemisphere 8.9611 0.002 *
Anterior Region 9.8537 0.0016 *
Posterior Region 2.2687 0.132

Table 6.17: Kruskal-Wallis test of intensity of information flow with outflow direction
between focal right group and control population.

values in the left hemisphere and the posterior region were significantly different at

p − value < 0.05. For the outflow direction, both right hemisphere and anterior

region showed lower outflow values compared to the control population.

6.8 Discussion

To explore the patterns of the cerebral information flow generated during the in-

terictal phase, the intensity of information flow with inflow and outflow directions

was extracted from 3-second segments of the EEG data. A total of 22 patients was

included in this study, where the obtained EEG data was classified as control pop-

ulation, focal epilepsy, and generalized epilepsy group. Segments of the EEG data

were randomly selected. From the epilepsy groups, only the segments extracted from

within the interictal phases were included. The concept of partial directed coher-

ence was used to extract meaningful connectivity patterns of each segment, and from

them inflow and outflow intensity measures were calculated. From the results of the

inflow intensity direction, the average values of inflow intensity across all groups

delineated a similar trend, whereas the highest inflow intensity was generated from

the anterior region and the lowest inflow intensity was found in the posterior region.

Within the epilepsy group, focal and generalized epilepsy, the inflow patterns were

observed to be similar in most of the regions indicating that epilepsy group exhibited

the same behavior during the interictal phrases, which can be distinguished from the
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control population. From the statistical analysis, the differences in inflow intensity

found between control population and epilepsy groups were significant, while within

the epilepsy groups, the differences were not. By comparing the obtained results

between inflow and outflow intensity, we observed that the patterns extracted using

inflow intensity provided more significant information. Post-hoc analysis indicated

that we could distinguish between controls and epilepsy groups by using inflow in-

tensity, but we were unable to classify these groups by using outflow intensity. In

general, focal outflow is larger in the Left region (Focal vs. Control) and anterior

regions. These results are in concordance with the epileptic foci locations since most

of them are found to be situated to the left temporal and frontal regions. Also, in-

flow is lower in the left and anterior regions. This is an indication that the left and

anterior regions discharged abruptly and the activation propagated from the areas

near the epileptic source to other brain regions.

The concept of brain connectivity has been widely used to analyze the patterns

generated in the cerebral cortex in multiple neurological diseases. Many studies

attempted to investigate the alteration of neural synchrony between epileptic brains

and healthy brains [66]. Studies of epilepsy using EEG, intracranial EEG, and MEG

recordings revealed an increase of brain connectivity and significant differences in

graph theory features [8, 30, 32]. However, conflicting results were reported when

features such as raw brain connectivity values, clustering coefficient, average short-

est path length were investigated. Some studies reported a decrease in clustering

coefficient and average path length of the network [8, 67] where others discovered

an increase in clustering coefficient and average path length in patients with focal

epilepsy [30]. The contradiction found in these studies could reflect in differences in

methodology and the types of disease itself [68]. In addition, these network features

might not be sufficient to fully understand the underlying patterns between brain
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connectivity and epilepsy. Thus, we propose an alternative approach to investigate

the patterns by utilizing intensity of information flow concept. Similar approaches

were performed in studies [36] and [50] by using cross-correlation analysis and non-

linear analysis, where cross cross-correlation is prone to error induced by volume

conduction and the nonlinear analysis is very dependent on the parameters selec-

tion. Also, by utilizing functional connectivity only provide structural connectivity

without providing direction of information flow. Using PDC to extract brain con-

nectivity not only provides directional information, but also minimizes the effect of

volume conduction on the results as well.

The present study has several limitations. First of all, the limitations presented

in the analysis was the effect of the background activity of the selected segments,

where preprocessing had to be done manually to minimize the effect of the artifacts.

The segments with any artifacts or interictal discharges presented were excluded

from the study. Thus, the amount of segments included in this study decreases dra-

matically. Secondly, the focal epilepsy group in this study is not representative for

focal epilepsy in general, where we attempted to generalize the finding by grouping

patients in a broader group. However, depending on the foci of epileptic seizures,

the patterns of intensity of information flow might vary. This study compensates the

following pitfall by including only interictal data without any interictal discharge

presented [48]. For further improvement, an increase number of sample and patients

in the group of focal epilepsy should be further classified into different group de-

pending on the foci of epileptic seizures. Lastly, we used EEG recordings with 19

electrodes, which provides a low spatial resolution. Thus, the regions of interest are

coarsely defined to compensate the low spatial resolution of the recording.
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6.9 Conclusion

The extraction of the intensity of information flow of effective connectivity maps

from neural activities by using PDC can generate important features that can be

used to delineate between the control population and patients with both focal and

generalized epilepsy. These features can help in characterizing the underlying pat-

terns that define these two types of epilepsy and can provide the information flow

between multivariate systems (which in this case uses 19 EEG electrodes but could

be extended to other systems with additional electrodes). By taking advantage of

directionality of brain connectivity and extracting the intensity of information flow,

it is observed that specific patterns in different regions of interest between each data

group can be revealed. This is rather important as researchers could then associate

such patterns in context to the 3D source localization where seizures are thought to

emanate from for the case of focal epilepsy. This can also serve to identify, on the

basis of randomly selected EEG records, other types of neurological and neurode-

generative disorders such as Parkinson, depression, Alzheimers disease, and mental

illness.

The obtained results showed that in the absence of ictal events, patterns between

control population and patients with epilepsy groups (focal and generalized) exhib-

ited distinct characteristics that were deemed statistically significant. These features

of brain connectivity can also be used as key parameters for pattern classification

and for enhanced diagnosis on the basis of EEG recordings alone.
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CHAPTER 7

CONCLUDING REMARKS AND FUTURE WORK

7.1 Concluding Remarks

This dissertation presented a novel approach for extracting and analyzing patterns

of information flow using brain connectivity analysis and partial directed coherence

(PDC) in epilepsy. The PDC concept was implemented to measure the effective con-

nectivity or the strength of directional interactions between different cortex regions

of patients with epilepsy. The results obtained from the connectivity extraction

were quantified by utilizing different approaches, such as surrogate data analysis,

intensity of information flow, and graph theory. EEG data of more than 25 pa-

tients with epilepsy considering both focal and generalized seizures were included

in this unique study. The obtained results showed multiple distinct characteristics

presented in different groups of epilepsy, which can be used as key parameters to

improve the diagnosis and classification of the disease.

In terms of brain connectivity extraction, the method of PDC is considered as

a powerful tool to extract patterns of neural activity. In comparison with conven-

tional methods such as cross-correlation or coherence, PDC provides significantly

more accurate and more revealing results. Both cross-correlation and coherence

utilize a bivariate approach, which tend to overestimate the strength of the con-

nectivity and are found to be prone to volume conduction problem. On the other

hand, PDC utilizes a multivariate approach where the model takes the whole sys-

tem in consideration producing more accurate and more reliable results. PDC also

provides directional information, which leads to multiple approaches of connectivity

quantification that reveals more precise neural patterns.
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The first experiment, detailed in chapter 5, was performed by using the con-

cept of PDC to analyze the characteristics of interictal epileptiform discharges data,

which included the presence of interictal spike (IS), spike and slow wave complex

(SSC), and repetitive spikes and slow wave complex (RSS). Adjacency matrices were

constructed by applying surrogate data analysis to the extracted connectivity ma-

trices obtained. These adjacency matrices of each IEDs group are found to contain

distinct patterns, which were then classified by using the multilayer Perceptron neu-

ral network. The results obtained from the classification process are promising and

provide high accuracy results. These extracted features can also help characterized

the type of epilepsy (focal or generalized) and can provide the information flow

between multivariate systems.

The Second experiment, detailed in chapter 6, proposed an approach to the inves-

tigation of intensity (or strength) of information flow. The inflow, which measures

the significant activity flowing from other regions into a specific region, and outflow,

which measures the significant activity emanating from one region and spreading

into other regions, were calculated based on the PDC results and are quantified for

all the defined regions of interest. Three groups including the control population,

patients with focal epilepsy, and patients with generalized epilepsy were included

in this experiment. By applying the concept of intensity of information flow to the

extracted PDC values, the obtained patterns were used to delineate between the con-

trol population and patients with both focal and generalized epilepsy. The results

are statistically significant and were validated by applying analysis of variance and

multiple comparison tests. The results show that by using only interictal EEG data,

patterns of neural activity between control population and patients with epilepsy

groups (focal and generalized) exhibited distinct characteristics that were deemed

statistically significant, which hence can be used in the classification algorithm.
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7.2 Further Research

The interesting construct regarding the concept of brain connectivity relates to the

versatility of the concept in extending its use to other neurological and neurode-

generative diseases. Applying changes to a small part of the process will have the

potential to produce new results with different application domains. For instance,

the selection of the data will change both the focus and interpretation of the analysis.

For instance, by applying brain connectivity analysis to ictal periods or interictal

periods will provide different features which can be applied in unique classifica-

tion processes and in direct relation to the patient itself and in the context of the

brain dysfunction under consideration. There are thus many key parts that can be

explored further in this research.

This research only incorporates EEG data obtained from epileptic patients. To

further explore the characteristics presented in epilepsy, combining MRI data with

EEG data would provide more insights into the epileptogenic focus and would con-

solidate the high temporal resolution of EEG with the high spatial resolution of

MRI. With these two data combined, the quality of the obtained results will most

certainly improve. This method which reveals unique brain connectivity patterns

as defined by their inflow and outflow dynamics could lead to new findings and to

a better understanding of epilepsy.

We also see the potential of this method, given its generalized construct, that

it could extend for the analysis of brain activity patterns in other brain disorders.

However, for this EEG-based study, the limitations are seen to be tied to access to

data, and where the lack of epileptic EEG data is seen to limit the analysis to a cer-

tain degree. To improve this aspect, creating an organized database of epileptic EEG

data will bring statistical meaningfulness in analyzing the different types of epilepsy
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and their different manifestations. Our research group is beginning to address the

data access issue through our collaboration with Nicklaus Children’s Hospital and

Oregon Health and Science University with whom we just signed memorandum of

agreement for consolidating data acquisition form these different institutions to in-

clude both EEG and MRI data.

Another aspect that can be further investigated is the incorporation of deep

learning techniques such as basic convolution neural network (CNN) [61] or recurrent

neural network (RNN) [45]. By combining these techniques into this research, the

improvement of application such as epileptic focus localization or seizure prediction

could be improved significantly.
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APPENDIX A

This appendix contains the list of source code. For the list of tables and figures,

please refer to the beginning of the document.
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APPENDIX B

This appendix provides a memorandum from the Office of Research Integrity,

sent to the principal investigator, Dr. Malek Adjouadi. For more information,

use the IRB protocol approval number (IRB-15-0247) or Topaz reference number

(103743). This appendix includes the memorandum issued on August 1,2016.
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