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ABSTRACT 

 

 

 

 

Automated analysis of brain activity from electroencephalogram (EEG) has 

indispensable applications in many fields such as epilepsy research.  This research 

has studied the abilities of negative selection and clonal selection in artificial 

immune system (AIS) and particle swarm optimization (PSO) to produce different 

reliable and efficient methods for EEG-based epileptic seizure recognition which 

have not yet been explored.  Initially, an optimization-based classification model was 

proposed to describe an individual use of clonal selection and PSO to build nearest 

centroid classifier for EEG signals.  Next, two hybrid optimization-based negative 

selection models were developed to investigate the integration of the AIS-based 

techniques and negative selection with PSO from the perspective of classification 

and detection.  In these models, a set of detectors was created by negative selection 

as self-tolerant and their quality was improved towards non-self using clonal 

selection or PSO.  The models included a mechanism to maintain the diversity and 

generality among the detectors.  The detectors were produced in the classification 

model for each class, while the detection model generated the detectors only for the 

abnormal class.  These hybrid models differ from each other in hybridization 

configuration, solution representation and objective function.  The three proposed 

models were abstracted into innovative methods by applying clonal selection and 

PSO for optimization, namely clonal selection classification algorithm (CSCA), 

particle swarm classification algorithm (PSCA), clonal negative selection 

classification algorithm (CNSCA), swarm negative selection classification algorithm 

(SNSCA), clonal negative selection detection algorithm (CNSDA) and swarm 

negative selection detection algorithm (SNSDA).  These methods were evaluated on 

EEG data using common measures in medical diagnosis.  The findings demonstrated 

that the methods can efficiently achieve a reliable recognition of epileptic activity in 

EEG signals.  Although CNSCA gave the best performance, CNSDA and SNSDA 

are preferred due to their efficiency in time and space.  A comparison with other 

methods in the literature showed the competitiveness of the proposed methods. 
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ABSTRAK 

 

 

 

 

Analisis automatik aktiviti otak daripada elektroensefalogram (EEG) 

mempunyai aplikasi yang ketara dalam pelbagai bidang seperti penyelidikan epilepsi.  

Kajian ini telah mengkaji keupayaan pilihan negatif dan pilihan klonal dalam sistem 

imun tiruan (AIS) dan pengoptimuman kumpulan zarah (PSO) untuk menghasilkan 

pelbagai kaedah yang boleh dipercayai dan cekap untuk pengecaman serangan 

epilepsi berdasarkan EEG dimana ia masih belum diterokai.  Pada awalnya, model 

pengelasan berasaskan pengoptimuman telah dicadangkan untuk menggambarkan 

penggunaan secara tunggal bagi pilihan klonal dan PSO untuk membina pengelas 

terpusat terhampir bagi isyarat EEG.  Setelah itu, dua model hibrid bersandarkan 

pengoptimuman pilihan negatif telah dibangunkan untuk mengkaji gabungan teknik 

berdasarkan AIS dan pilihan negatif dengan PSO dari perspektif pengelasan dan 

pengesanan.  Dalam model ini, satu set pengesan telah dicipta menggunakan pilihan 

negatif sebagai toleran-kendiri dan kualiti kedua-duanya bertambah baik terhadap tak 

kendiri menggunakan pilihan klonal atau PSO.  Model-model ini mengandungi 

mekanisma untuk mengekalkan kepelbagaian dan pengitlakan dalam kalangan 

pengesan.  Pengesan telah dihasilkan dalam model pengelasan bagi setiap kelas, 

manakala model pengesanan menjana pengesan hanya untuk kelas tidak normal.  

Model-model hibrid ini berbeza antara satu sama lain dalam konfigurasi 

penghibridan, perwakilan penyelesaian dan fungsi objektif.  Ketiga-tiga model 

cadangan disarikan kepada beberapa kaedah inovatif dengan mengaplikasikan 

pilihan klonal dan PSO untuk pengoptimuman, iaitu algoritma pengelasan pilihan 

klonal (CSCA), algoritma pengelasan zarah kumpulan (PSCA), algoritma pengelasan 

pilihan klonal negatif (CNSCA), algoritma pengelasan pilihan kumpulan negatif 

(SNSCA), algoritma pengesanan pilihan klonal negatif (CNSDA) dan algoritma 

pengesanan pilihan kumpulan negatif (SNSDA).  Kaedah-kaedah ini telah dinilai ke 

atas data EEG menggunakan pengukuran lazim dalam diagnosis perubatan.  Hasil 

kajian menunjukkan bahawa kaedah cadangan telah mencapai pengecaman yang 

cekap dan boleh dipercayai bagi aktiviti epileptik dalam isyarat EEG.  Walaupun 

CNSCA memberikan pencapaian yang terbaik, namun CNSDA dan SNSDA menjadi 

pilihan kerana kecekapan mereka dari aspek masa dan ruang.  Perbandingan dengan 

kaedah-kaedah lain dalam literatur menunjukkan kebolehsaingan pada kaedah yang 

dicadangkan. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Introduction  

 

 

The human brain is a highly complex organ representing the center of the 

nervous system.  It contains about 100 billion of interconnected neurons.  A neuron 

is a cell that uses biochemical reactions to receive, process, and transmit information 

and commands (Aziz, 2007; Rabbi, 2013).  

 

 

Activity of brain describes a wide range of different states which are normal 

and abnormal.  Normal states consist of physical states such as sleep, wakefulness, 

and exertion; as well as mental states such as calmness, happiness, and anger.  

Abnormal states are primarily noted in neurological disorders such as schizophrenia, 

insomnia, and epilepsy (Ghosh Dastidar, 2007; Polat and Güneş, 2008).  However, 

there is significant overlap in the activation patterns of brain states.  Therefore, it is 

very difficult to use these patterns to conclusively identify the state. 

 

 

The techniques that are used to measure the activities of the brain can be 

broadly classified into two categories: hemodynamic/metabolic and electromagnetic 

(Scanziani and Häusser, 2009).  The functional neuroimaging techniques based on 

principles of  hemodynamic such as Functional Magnetic Resonance Imaging (fMRI) 

or metabolic such as Positron Emission Tomography (PET) infer functional activity 

through measuring local changes in blood oxygenation levels or glucose metabolism 

respectively (Ermer, 2001).  Conversely, electromagnetic techniques describe 



 

 

 

2 

electrical properties of biological cells and tissues.  Magnetoencephalogram (MEG) 

and electroencephalogram (EEG) are the electromagnetic techniques widely 

employed to measure the electrical activities of neurons from the magnetic fields and 

the fluctuations in potential respectively (Ermer, 2001; Rabbi, 2013). 

 

 

Among these techniques, EEG is favorable due to several advantages: the 

electrical activity of the brain is recorded directly, it is less cumbersome and very 

inexpensive, and its high temporal resolutions (milliseconds, mS) which allow direct 

observation of the dynamic brain activity.  With EEG, it is possible to follow the 

rapid changes in cortical activity that reflect neural processing functions, where the 

electrical events of single neurons typically last from one to several tens of mS 

(Ermer, 2001; Majumdar, 2011; Stam et al., 1999; Wong, 2004). 

 

 

The EEG records electric potentials that are generated by neurons in the 

brain.  The brain activity in different areas over a time period is measured, using 

many electrodes in order to characterize the spatio-temporal dynamics of neuronal 

activity in the brain.  This result in multi-channel EEG signals, each represents an 

EEG signal at different positions (Ghosh Dastidar, 2007; Madan, 2005).  The EEG 

can be a non-invasive or invasive with respect to electrode location.  In non-invasive 

technique, the EEG signals are recorded from the surface of the head based on the 

International 10-20 system (Homan et al., 1987; Jasper, 1958; Shibasaki, 2008).  The 

EEG in this case is referred to as the scalp EEG.  The invasive electrodes consist of 

three types: electrocorticogram (ECoG), intracranial EEG (IEEG), and depth EEG.  

The ECoG is measured from the cortex directly using subdural electrodes strip/grid; 

whereas the IEEG is measured from inside the skull; and finally the depth EEG is 

measured from inside the brain (Gardner, 2004). 

 

 

The EEG signals (EEGs) conveys valuable information about the states of the 

brain.  Therefore, EEGs analysis has important applications in brain computer 

interface (BCI), psychotropic drug research, monitoring patients in critical condition 

in the ICUs, sleep studies, and epilepsy research (Majumdar, 2011). 
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Epilepsy is characterized by recurrent seizures due to temporary electrical 

disturbance of the brain (Acharya et al., 2012b).  The occurrence of a seizure seems 

unpredictable and its course of action is still largely unknown to date.  Research is 

therefore needed to gain a better understanding of the mechanisms generating 

epileptic seizures.  Careful analysis of EEGs could provide valuable insight into this 

widespread brain disorder (Adeli et al., 2003; Subasi, 2007). 

 

 

Monitoring of epilepsy requires a continuous EEG recording for durations 

extending usually days. The recorded data is intensively used to study the epileptic 

seizures for pre-surgical evaluation.  It provides essential information for locating the 

brain regions that generate epileptic activity (Jordan, 1993; Ocak, 2008).  In some 

cases, epilepsy patients have seizures that are uncontrollable.  Recently, methods 

have started being developed to treat medically resistant epilepsy.  In those methods, 

implantable medical devices monitor the electrical activities of the brain and deliver 

a local therapy; such as chemical infusions or electrical stimulation; to the affected 

regions of the brain in order to reduce the frequency of seizures (Alam and Bhuiyan, 

2013; Patnaik and Manyam, 2008; Tang and Durand, 2012). 

 

 

 

 

1.2 Problem Background  

 

 

Epileptic activity is typically studied using continuous long-term EEG 

monitoring systems.  As a result, large amounts of EEGs are recorded (Madan, 

2005).  Nature of the signals is dynamic with high temporal resolutions (Majumdar, 

2011).  Visual analysis of the EEG recordings by a reviewer is clearly a very time 

consuming and costly task.  Moreover, the analysis depends on expertise and 

experience of the reviewer, and therefore it is subjective (Alam and Bhuiyan, 2013).  

These challenges are further augmented in cases of the scalp EEGs where the number 

of channels is increased to more than 300 channels (Liu et al., 2012; Oostenveld and 

Praamstra, 2001) and overlapping symptomatology epileptic seizures with other 

neurological disorders (Song and Zhang, 2013).  Hence, automating the process of 

epileptic seizures recognition in EEGs is of great importance.  The development in 

studies of signal processing and data mining has provided a great possibility to 
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manipulate this problem through identifying associations or hidden patterns in EEGs 

(Song and Zhang, 2013). 

 

 

Although there are a large amount of information in EEGs, but some contents 

of EEG are not useful.  Lower frequency oscillations are characterized as artifacts, 

and include electrocardiograms, eye blinks, and muscle movements, to name a few.  

On the other hand, very high frequency oscillations may be recorded due to 

electromagnetic interference.  All these contents of EEGs can be categorized as 

noises and need to be removed (Ghosh Dastidar, 2007; Song and Zhang, 2013).  

Therefore, various techniques of signal processing theory have been employed to 

extract the features of relevant information in EEGs.  These techniques include the 

Fast Fourier transform (FFT) (Polat and Güneş, 2007; Polat and Güneş, 2008; Tezel 

and özbay, 2009), autoregressive (AR) (Alkan et al., 2005; Übeyli, 2010), and 

wavelet transform (WT) (Orhan et al., 2011; Song and Zhang, 2013; Subasi, 2007; 

Übeyli, 2009c). 

 

 

Signal processing based on FFT retains only the frequencies information 

whereas the information of the time is lost (Amirmazlaghani and Amindavar, 2009).  

Furthermore, the FFT suffers from large noise sensitivity (Subasi, 2005b).  The 

short-time Fourier transform can localise information of frequency and time using a 

uniform time window.  Therefore, it has limited precision where all frequencies have 

constant resolution (Xu et al., 2009).  AR method reduces the problem of spectral 

loss and provides better resolution of frequency, but it is good only for stationary 

signals.  Since the EEGs are non-stationary, the AR is not suitable to analyze 

frequency of such signals (Subasi, 2005a).  In contrast, the WT has ability for 

localizing frequency and time components of signal with a variable window size that 

is adapted based on the frequency.  Hence, the WT has become an efficient method 

for feature extraction of non-stationary signals (Ocak, 2009).  In this work, EEG 

dataset used in the current study has been analyzed using WT for feature extraction. 

 

 

Feature extraction is the preliminary stage in which highly informative 

measures are produced as representative features for EEGs.  The main stage of an 

automated system for epileptic seizures recognition in EEGs is EEG patterns 
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classification.  In this stage, the machine learns to mine the EEGs to differentiate 

between EEG patterns in epileptic state and other brain states in order to make 

rational decisions on the classes of the patterns (Li, 2010; Majumdar, 2011).  Thus, 

applications of machine learning techniques in analyzing EEGs have an increasing 

interest in recent years.  In biomedical research, it is essential to understand and 

develop advanced signal classification techniques for the recognition of EEG 

changes (Siuly et al., 2011).  In this regard, soft computing is the most promising 

approaches among many techniques of machine learning.  The soft computing strives 

to achieve robust and practical solutions at reasonable cost by tolerating uncertainty, 

imprecision and approximation to be part of the computational model (Goel et al., 

2013; Majumdar, 2011). 

 

 

In this context, tremendous efforts have long been made by researchers trying 

to solve the problem of automatic diagnosis of epilepsy from EEGs, and thus several 

methods have been presented in the literature.  Many of these approaches include 

techniques that belong to the area of soft computing such as different types of 

artificial neural networks (ANN) (Kumar et al., 2010; Orhan et al., 2011; Song and 

Zhang, 2013; Subasi, 2007; Übeyli, 2008b; Übeyli, 2009c), adaptive neuro-fuzzy 

inference system (ANFIS) (Güler and Übeyli, 2005; Kannathal et al., 2005; Übeyli, 

2009b), support vector machine (SVM) (Chandaka et al., 2009; Joshi et al., 2014; 

Nicolaou and Georgiou, 2012; Subasi and Gursoy, 2010; Übeyli, 2008a), and 

artificial immune system (AIS) (Polat and Güneş, 2008). 

 

 

Artificial immune system (AIS) emerged in the 1990s as a flourishing field of 

soft computing (de Castro and Timmis, 2002b; de Castro and Timmis, 2003; Gao et 

al., 2009b).  The AIS can exhibit robust and powerful capabilities in information 

processing to solve complex problems.  From the perspective of computational, it has 

important characteristics such as maintenance, diversity, learning, and memory.  

Moreover, the AIS shows fast convergence speed with ability to avoid the 

immaturity and degeneration of the searching (Aydin et al., 2010; Guo, Lei et al., 

2011; Leung et al., 2007).  To date, research primarily has focused on three main 

components within AIS which include the theories of negative selection, clonal 

selection and immune network (Smith and Timmis, 2008). 
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The algorithms of AIS have not been widely explored in the field of EEG-

based diagnosis.  Actually, there are very few studies in which AIS models have 

been employed to recognize epileptic seizures in EEGs.  Polat and Güneş (2008) 

used an algorithm belongs to immune network theory called artificial immune 

recognition system (AIRS) to propose a system with three stages: feature extraction 

using FFT, dimensionality reduction based on PCA, and EEG classification using 

AIRS with fuzzy resource allocation.  However, there are also a few studies that have 

applied AIS methods in other fields related to EEG.  Guo, Lei et al. (2011) 

introduced immune algorithm for feature weights and parameters selection of SVM 

which was used to classify different mental tasks for EEG-based BCI.  Artificial 

immune network (cob-aiNet) was used by Coelho et al. (2012) to optimize the 

feature of EEGs based on Davies-Bouldin index and extreme learning machine ANN 

classifier for BCI system in motor imagery paradigms. 

 

 

The negative selection algorithm (NSA) is more appropriate for application in 

anomaly and fault detection compared to other AIS theories (Amaral, 2011; Aydin et 

al., 2010).  It has been proven to be an efficient algorithm for solving such problems 

(Garrett, 2005; Ji and Dasgupta, 2007).  The NSA was firstly proposed for the real-

time detection of computer virus (Forrest et al., 1994).  Since then, it has been used 

widely in such domains as diagnosis of motor fault (Aydin et al., 2008; Gao et al., 

2009a; Laurentys et al., 2010; Xinmin et al., 2007), detection of aircraft fault 

(Dasgupta et al., 2004), and security of communication network (Dasgupta and 

Gonzalez, 2002; Hoffmeyr and Forrest, 1999).  Nevertheless, the NSA has not been 

investigated in the area of EEGs applications so far. 

 

 

On the other hand, the random search of the traditional NSA cannot be 

guaranteed to generate detectors in the most efficient way.  That is to say, 

distribution of the detectors is unbalanced in the problem space.  As a result, some 

regions of abnormal (non-self) space are uncovered, whereas other regions are re-

covered by redundant detectors (Aydin et al., 2010; Gao et al., 2007; Wen et al., 

2014).  Many methods have been introduced in the literature to overcome this 

drawback (Amaral et al., 2007; Aydin et al., 2008; Aydin et al., 2010; Dasgupta and 

Gonzalez, 2002; Gao et al., 2006; Gao et al., 2007; Gao et al., 2008; Gao et al., 
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2009a; Graaff and Engelbrecht, 2006; Igawa and Ohashi, 2009).  Most of these 

methods use optimization techniques, i.e., particle swarm optimization (PSO), 

genetic algorithm (GA), and clonal selection algorithms (CSAs), to guide the search 

in NSA and generate detectors with optimal distribution. 

 

 

Gao et al. (2007) used a multi-phase PSO to optimize NSA detectors.  It was 

integrated with anti-collision technique to increase diversity of detectors.  However, 

fixed radius for the detectors is used.  A classification algorithm based on NSA has 

been proposed by Igawa and Ohashi (2009).  They applied a clonal selection 

algorithm named CLONALG in order to generate efficient detectors.  In testing stage 

when a pattern cannot be detected, the radius of each detector is enlarged.  However, 

many detectors in this case may overlap the others and normal (self) space.  Aydin et 

al. (2010) proposed a negative selection method using chaotic maps and a CSA.  In 

their algorithm, the chaotic maps are used to initialize the detectors and in mutation 

operator, whereas the CSA is employed to optimize the coverage and diversity of the 

detectors.  The quality of each detector is evaluated based on the number of data 

samples recognized by (1) only current detector, (2) current detector and other 

detectors.  The downside is that some parts of problem space may be searched many 

times.  Furthermore, domination of second factor can result in poor coverage and 

redundant detectors. 

 

 

Principles of clonal selection have been used to introduce various algorithms 

that are employed for tasks such as data mining, clustering and optimization.  

However, clonal selection algorithms (CSAs) are more suitable to deal with 

optimization problems and have found widespread use in such applications (Aydin et 

al., 2010; Shojaie and Moradi, 2008).  Clonal selection has excellent search abilities 

with an important mechanism to guarantee diversity of individuals in new 

generations.  Hence, CSAs can avoid the local convergent effectively (Trojanowski 

and Wierzchoń, 2009; Wang et al., 2008). 

 

 

In literature, a few studies applied CSAs to solve some optimization or 

clustering problems in applications of EEGs.  Shojaie and Moradi (2008) presented a 

clonal selection algorithm for features selection and parameters optimization of 
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SVM.  The SVM was used to assess event-related potentials (ERP) in EEGs of guilty 

knowledge test (GKT) based on the P300 waves.  Dursun et al. (2012) proposed 

artificial immune clustering based on clonal selection for data reduction in order to 

solve class imbalance problem in training data.  It was applied for sleep stage 

classification in EEG, Electrooculogram (EOG), and Electromyogram (EMG) signals 

using ANN.  Their results confirmed superiority of artificial immune method 

compared to fuzzy C-means clustering.  Feature selection also considered using 

immune clonal algorithm (ICA) to improve detecting epileptic EEGs (Peng and Lu, 

2012).  It was compared with PSO using four classifiers.  The finding showed in 

general that the ICA slightly outperformed the PSO in classification accuracies. 

 

 

The clonal selection-inspired algorithms have not been applied previously for 

EEGs classification.  However, the optimization techniques can be employed for 

classification by representing each class with a centroid (class center) (De Falco et 

al., 2007; Mohemmed and Zhang, 2008; Omran et al., 2005).  The goal is to optimize 

the positions of all centroids to build nearest centroid classifier (NCC).  It is clear 

that CSAs and PSO can be effectively faced such problem.  The PSO is a global 

optimization algorithm, simple in concept, easy to implement, robust to control 

parameters and computationally efficient (Eberhart and Shi, 1998; Wang et al., 

2007). 

 

 

To the best of our knowledge, the PSO has not been used for classification of 

EEGs.  However in many works, the classifier of EEGs is trained and/or its 

parameters are optimized by PSO (Chai et al., 2013 In Press; Cinar and Sahin, 2013; 

Firpi et al., 2007; Hema et al., 2008; Lin and Hsieh, 2009; Nguyen et al., 2012).  

Also, it was employed to estimate the locations of sources of electrical activity, e.g. 

epileptic, in the brain based on the scalp EEGs (Escalona-Vargas et al., 2013; Qiu et 

al., 2005; Shirvany et al., 2012; Shirvany et al., 2013; Shirvany et al., 2014; Xu et 

al., 2010).  Other EEGs issues have been addressed by PSO such as feature selection 

(Nakamura et al., 2009; Zhiping et al., 2010) and optimal selection of Electrode 

Channels (Jin et al., 2008; Kim et al., 2012; Meng et al., 2011).  In this context, it 

was used by Atyabi et al. (2013) for dimensions reduction of both electrode and 

feature.  Furthermore, Xu et al. (2014) considered simultaneously finding of the 
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optimal frequency band and time interval of EEG signals using PSO.  Finally, the 

adaptive noise canceller (ANC) was implemented with the PSO to detect hand 

movement based ERP from the EEGs by Ahirwal et al. (2014). 

 

 

 

 

1.3 Problem Statement 

 

 

Brain activities analysis from EEGs is indispensable in the study of epilepsy.  

An automatic computational model which is able to recognize epileptic EEGs is 

valuable for assisting the experts to analyze information of patients in the EEG 

recordings and for diagnosing and treatment epilepsy (Adeli et al., 2003).  Also, such 

methods form an integral part of closed-loop therapeutic systems that depend on 

implantable devices. 

 

 

Automatic diagnosis of epilepsy is generally modeled as an abnormal EEGs 

recognition problem (Majumdar, 2011; Song and Zhang, 2013).  As discussed in 

previous section, the AIS and PSO seem very promising fields for dealing with such 

problem.  Therefore, these computational techniques have been considered to be 

widely studied in the area of EEG-based epileptic seizure recognition.  Accordingly, 

the main question which must be answered is as follows: 

 

 

How can the techniques of AIS and PSO produce different methods that 

perform efficiently and provide reliable recognition for epileptic activity in 

EEGs? 

 

 

To study the main question of this research stated above, the following sub-

research questions need to be addressed: 

 

 

 What are the abilities of individual algorithms of AIS and PSO in 

classifying EEGs? 

 

 



 

 

 

10 

 Can hybridization of AIS-based techniques with each other or with PSO 

improve the EEGs-based epileptic seizures recognition? 

 

 

 Can modification of hybridization configuration enhance the performance 

of the proposed methods in recognizing epileptic EEGs? 

 

 

 

 

1.4 Objectives of Study 

 

 

The main goal of this study is to investigate the capabilities of AIS and PSO 

in classifying EEGs to recognize the epileptic seizure in brain activities for purposes 

of epilepsy diagnosis.  Therefore, the following specific objectives of the study have 

been stated: 

 

 

1) To propose classification methods based on clonal selection and PSO for 

building nearest centroid classifier for EEGs.  

 

 

2) To develop hybrid negative selection classification methods using the 

techniques of clonal selection and PSO for recognition of epileptic EEGs. 

 

 

3) To further improve the efficiency of the hybrid methods proposed by 

configuring the hybridization on the basis of detection. 

 

 

4) To evaluate the performance of the different proposed methods in 

diagnosing the epilepsy using EEG signals. 
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1.5 Scope of Study 

 

 

This research studies the recognition of epileptic activity in human brain from 

EEGs by soft computing techniques.  Hence, its scope limits to the following points. 

 

 

1) The current work focuses on AIS and PSO to introduce hybrid and 

individual algorithms for automatic recognition of epileptic EEGs.  In 

AIS, the theories of negative selection and clonal selection are studied. 

 

 

2) In the preliminary stage, discrete wavelet transform (DWT) is applied for 

feature extraction of EEGs.  The focus is on classification stage due to its 

importance in forming model discriminates between EEGs patterns. 

 

 

3) The epilepsy diagnosis application using EEGs is considered in this study. 

Therefore, the publicly-available EEG data described in Andrzejak et al. 

(2001) is used to test the proposed methods.  This dataset describes 

different cases for epilepsy diagnosis.  

 

 

4) The performance of the proposed methods is evaluated using correct 

classification rate (CCR), true positive rate (TPR) or sensitivity, and true 

negative rate (TNR) or specificity which are the common measures in 

medical diagnosis tasks.  Also, the algorithms are compared to one 

another and with other studies in literature. 

 

 

 

 

1.6 Significance of Study 

 

 

In this study, the abilities of the AIS and PSO techniques are widely explored 

in the field of EEG-based epileptic seizure recognition for diagnosis and treatment of 

epilepsy.  More significantly, different methods are proposed which have not been 
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introduced yet for classification of EEGs in order to test the individual and hybrid 

capabilities of AIS and PSO.  

 

 

In this regard, the performance of clonal selection and PSO for classifying 

EEGs is studied individually through building NCC.  Also, two hybrid negative 

selection models are developed in which clonal selection or PSO can be used to 

optimize the coverage of problem space.  The first model is designed on the basis of 

classification where a set of detectors are produced for each class, while the second 

one takes into account the concept of detection and therefore the detectors are 

generated for only the abnormal class.  The hybridization configuration and the 

solution structure of clonal selection (antibody) and PSO (particle) are different of 

each other for these two models.   

 

 

Obviously, six algorithms are proposed in this research based on AIS and 

PSO for recognizing epileptic activities from EEGs: clonal selection classification 

algorithm (CSCA), particle swarm classification algorithm (PSCA), clonal negative 

selection classification algorithm (CNSCA), swarm negative selection classification 

algorithm (SNSCA), clonal negative selection detection algorithm (CNSDA), and 

swarm negative selection detection algorithm (SNSDA). 

 

 

 

 

1.7 Thesis Organization 

 

 

This thesis is organized into six major chapters and an introductory chapter.  

The second Chapter shows a review covering explanation of human brain activity 

and its recording techniques such as electroencephalogram (EEG).  The EEG pattern 

recognition methodology and its applications in automated diagnosis of epilepsy are 

detailed in the chapter.  Broad overviews on the fundamental methods which are 

used in this study are given.  The use of these methods in EEG-based applications is 

also presented. 
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Chapter 3 describes the overall methodology followed to achieve the research 

objectives.  It is introduced in a general operational framework that contains all 

phases and steps needed to be conducted in this work. 

 

 

Chapter 4 presents an optimization based classification model to build nearest 

centroid classifier (NCC) for EEGs.  The solution encoding and fitness function in 

this model are explained.  The chapter describes in details two methods abstracted 

from the model by employing the clonal selection and particle swarm optimization 

(PSO) for optimization process.  The experimental results of these algorithms are 

presented and their performances are discussed. 

 

 

Chapter 5 introduces a classification model based on negative selection and 

optimization.  The hybridization schema of the model to represent each class of the 

problem by a set of detectors is presented.  The two versions of this model based on 

the use of clonal selection and PSO for optimization are developed and their 

performance for epileptic seizures recognition in EEGs is studied. 

 

 

Chapter 6 illustrates an optimization based negative selection detection model 

for epilepsy diagnosis in EEGs.  The chapter explains the schematic representation of 

the model and broadly discusses how a set of detectors is generated using negative 

selection algorithm (NSA) and optimized by clonal selection and PSO to recognize 

the epileptic activity in brain.  At the end of the chapter, the results of all experiments 

conducted on different methods of this model are described accompanied with 

overall discussion. 

 

 

Finally, Chapter 7 draws overall conclusions of the thesis, and highlights the 

contributions of this research.  Recommendations and suggestions for possible future 

work are also discussed in the chapter.   
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