3,878 research outputs found

    Routing and wavelength assignment in WDM optical networks

    Get PDF
    In this thesis, we focus on the routing and wavelength assignment problems in WDM all-optical networks. Since the general problem is difficult (NP-complete), we classify the problem into several models with different formulations. Our objectives are to analyze some subclasses of routing and wavelength assignment problems; to understand their special properties; to estimate algorithm bounds and performance; and, to design efficient heuristic algorithms. These goals are important because results that follow can help engineers design efficient network topologies and protocols, and eventually provide end-users with cost-effective high bandwidth.;We first study the off-line wavelength assignment problem in single fiber ring and tree networks: an optimal algorithm and an exact characterization of the optimal solution is given for binary and ternary tree topologies; an open problem based on path length restriction on trees, mentioned in the literature, is solved; and bounds are given for path-length and covering restrictions of the problem on ring networks. Then we consider multifiber optical networks, in which each link has several parallel fibers. We extend a stochastic model from the single-fiber case to the multifiber case and show that multifiber links can improve performance significantly. For some specific networks, such as ring and tree networks, we obtain some performance bounds. The bounds support our multifiber stochastic model conclusion. For practical importance, we also consider a WDM optical ring network architecture configuration problem as well as cost-effectiveness. We propose several WDM ring networks with limited fiber switching and limited wavelength conversion and these networks achieve almost optimal wavelength utilization. Attacking resource allocation within an WDM optical ring network to reduce overall equipment cost, we design a new algorithm and our simulation results indicate improvement of about 25%. This thesis also includes a new coloring problem partition-coloring and its applications.;In summary, the contributions in this thesis include several heuristic algorithms and theoretical tight upper bounds for both single fiber and multifiber all-optical networks. In particular, for ring networks we have proposed several network architectures to improve wavelength utilization and devised a new algorithm that combines routing and wavelength assignment to reduce hardware costs

    Wavelength Conversion in All-Optical Networks with Shortest-Path Routing

    Get PDF
    We consider all-optical networks with shortest-path routing that use wavelength-division multiplexing and employ wavelength conversion at specific nodes in order to maximize their capacity usage. We present efficient algorithms for deciding whether a placement of wavelength converters allows the network to run at maximum capacity, and for finding an optimal wavelength assignment when such a placement of converters is known. Our algorithms apply to both undirected and directed networks. Furthermore, we show that the problem of designing such networks, i.e., finding an optimal placement of converters, is MAX SNP-hard in both the undirected and the directed case. Finally, we give a linear-time algorithm for finding an optimal placement of converters in undirected triangle-free networks, and show that the problem remains NP-hard in bidirected triangle-free planar network

    Study of Routing and Wavelength Assignment problem and Performance Analysis of Genetic Algorithm for All-Optical Networks

    Get PDF
    All-optical networks uses the concept of wavelength division multiplexing (WDM). The problem of routing and wavelength assignment (RWA) is critically important for increasing the efficiency of wavelength routed All-optical networks. For the given set of connections, the task of setting up lightpaths by routing and assigning a wavelength to each connection is called routing and wavelength allocation problem. In work to date, the problem has been formulated as integer linear programming problem. There are two variations of the problem: static and dynamic, in the static case, the traffic is known where as in dynamic case, connection request arrive in some random fashion. Here we adopt the static view of the problem. We have studied the Genetic Algorithm to solve the RWA problem and also we studied a modified Genetic Algorithm with reference to the basic model. We studied a novel opimization problem formulations that offer the promise of radical improvements over the existing methods. We adopt a static view of the problem and saw new integer- linear programming formulations, which can be addressed with highly efficient linear programming methods and yield optimal or near-optimal RWA policies. All-optical WDM networks are chracterized by multiple metrics (hop-count, cost, delay), but generally routing protocols only optimize one metric, using some variant shortest path algorithm (e.g., the Dijkstra, all-pairs and Bellman-ford algorithms). The multicriteria RWA problem has been solved combining the relevant metrics or objective functions. The performance of RWA algorithms have been studied across the different standard networks. The performance of both the algorithms are studied with respect to the time taken for making routing decision, number of wavelengths required and cost of the requested lightpaths. It has been observed that the modified genetic algorithm performed better than the existing algorithm with respect to the time and cost parameters

    A multipopulation parallel genetic simulated annealing based QoS routing and wavelength assignment integration algorithm for multicast in optical networks

    Get PDF
    Copyright @ 2008 Elsevier B.V. All rights reserved.In this paper, we propose an integrated Quality of Service (QoS) routing algorithm for optical networks. Given a QoS multicast request and the delay interval specified by users, the proposed algorithm can find a flexible-QoS-based cost suboptimal routing tree. The algorithm first constructs the multicast tree based on the multipopulation parallel genetic simulated annealing algorithm, and then assigns wavelengths to the tree based on the wavelength graph. In the algorithm, routing and wavelength assignment are integrated into a single process. For routing, the objective is to find a cost suboptimal multicast tree. For wavelength assignment, the objective is to minimize the delay of the multicast tree, which is achieved by minimizing the number of wavelength conversion. Thus both the cost of multicast tree and the user QoS satisfaction degree can approach the optimal. Our algorithm also considers load balance. Simulation results show that the proposed algorithm is feasible and effective. We also discuss the practical realization mechanisms of the algorithm.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/1, the National Natural Science Foundation of China under Grant nos. 60673159 and 70671020, the National High-Tech Research and Development Plan of China under Grant no. 2006AA01Z214, Program for New Century Excellent Talents in University, and the Key Project of Chinese Ministry of Education under Grant no. 108040

    QoS multicast tree construction in IP/DWDM optical internet by bio-inspired algorithms

    Get PDF
    Copyright @ Elsevier Ltd. All rights reserved.In this paper, two bio-inspired Quality of Service (QoS) multicast algorithms are proposed in IP over dense wavelength division multiplexing (DWDM) optical Internet. Given a QoS multicast request and the delay interval required by the application, both algorithms are able to find a flexible QoS-based cost suboptimal routing tree. They first construct the multicast trees based on ant colony optimization and artificial immune algorithm, respectively. Then a dedicated wavelength assignment algorithm is proposed to assign wavelengths to the trees aiming to minimize the delay of the wavelength conversion. In both algorithms, multicast routing and wavelength assignment are integrated into a single process. Therefore, they can find the multicast trees on which the least wavelength conversion delay is achieved. Load balance is also considered in both algorithms. Simulation results show that these two bio-inspired algorithms can construct high performance QoS routing trees for multicast applications in IP/DWDM optical Internet.This work was supported in part ny the Program for New Century Excellent Talents in University, the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/1, the National Natural Science Foundation of China under Grant no. 60673159 and 70671020, the National High-Tech Reasearch and Development Plan of China under Grant no. 2007AA041201, and the Specialized Research Fund for the Doctoral Program of Higher Education under Grant no. 20070145017

    Ant-based Survivable Routing in Dynamic WDM Networks with Shared Backup Paths

    Get PDF

    A Novel Solution to the Dynamic Routing and Wavelength Assignment Problem in Transparent Optical Networks

    Full text link
    We present an evolutionary programming algorithm for solving the dynamic routing and wavelength assignment (DRWA) problem in optical wavelength-division multiplexing (WDM) networks under wavelength continuity constraint. We assume an ideal physical channel and therefore neglect the blocking of connection requests due to the physical impairments. The problem formulation includes suitable constraints that enable the algorithm to balance the load among the individuals and thus results in a lower blocking probability and lower mean execution time than the existing bio-inspired algorithms available in the literature for the DRWA problems. Three types of wavelength assignment techniques, such as First fit, Random, and Round Robin wavelength assignment techniques have been investigated here. The ability to guarantee both low blocking probability without any wavelength converters and small delay makes the improved algorithm very attractive for current optical switching networks.Comment: 12 Pages, IJCNC Journal 201
    corecore