
DOI: 10.1007/s00453-005-1157-y

Algorithmica (2005) 43: 43–61 Algorithmica
© 2005 Springer Science+Business Media, Inc.

Wavelength Conversion in All-Optical Networks
with Shortest-Path Routing1

Thomas Erlebach2 and Stamatis Stefanakos3

Abstract. We consider all-optical networks with shortest-path routing that use wavelength-division multi-
plexing and employ wavelength conversion at specific nodes in order to maximize their capacity usage. We
present efficient algorithms for deciding whether a placement of wavelength converters allows the network to
run at maximum capacity, and for finding an optimal wavelength assignment when such a placement of con-
verters is known. Our algorithms apply to both undirected and directed networks. Furthermore, we show that
the problem of designing such networks, i.e., finding an optimal placement of converters, is MAX SNP-hard
in both the undirected and the directed case. Finally, we give a linear-time algorithm for finding an optimal
placement of converters in undirected triangle-free networks, and show that the problem remainsNP-hard in
bidirected triangle-free planar networks.

Key Words. Wavelength assignment, Wavelength converter placement, Graph algorithm, Edge coloring,
Bipartization, Sufficient set, L-reduction.

1. Introduction. All-optical networks are emerging as a promising solution for meet-
ing the rapidly increasing bandwidth demand. In these networks optical switches are em-
ployed to avoid the bottleneck of opto-electronic conversions, and wavelength-division
multiplexing is used to partition the optical bandwidth into channels that carry data at
rates manageable by electronic network elements. A connection between two nodes must
be carried through a single channel that operates on a different wavelength than any other
channel with which it shares a fiber. Wavelength converters are being used to exploit
fully the available capacity of the network. A converter, when placed at some node of
the network, has the ability of altering the operating wavelength of any channel that goes
through that node.

Several interesting algorithmic problems arise in such networks. The wavelength
assignment problem asks for an assignment of a minimum number of wavelengths to a
given set of connections such that no conflicts occur. If wavelength converters are used,
the wavelength of a connection can change whenever its route goes through a converter,

1 This research was partially supported by the Swiss National Science Foundation under Contract No. 21-
63563.00 (Project AAPCN) and the EU Thematic Network APPOL II (IST-2001-32007), with funding provided
by the Swiss Federal Office for Education and Science (BBW). An extended abstract of this paper has appeared
in the Proceedings of the 14th International Symposium on Algorithms and Computation (ISAAC 2003),
pp. 595–604, LNCS 2906, Springer-Verlag, Berlin, 2003.
2 Department of Computer Science, University of Leicester, Leicester LE1 7RH, England.
t.erlebach@mcs.le.ac.uk.
3 Computer Engineering and Networks Laboratory (TIK), ETH Zürich, CH-8092 Zürich, Switzerland.
stefanak@tik.ee.ethz.ch.

Received January 2004; revised August 2004. Communicated by L. Zhang.
Online publication June 14, 2005.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/159155418?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

44 T. Erlebach and S. Stefanakos

otherwise each connection must be carried through the same wavelength all the way
from sender to receiver. The use of wavelength converters can decrease the number of
necessary wavelengths for routing a given set of connections. Ideally, one should be able
to route any set of connections that induce congestion L (i.e., at most L connections
share a common fiber) with L wavelengths. This is the case when all the nodes of the
network are equipped with converters. Due to the high cost of such devices, however,
one is faced with a network design problem, namely, to achieve the optimal capacity
usage by placing a minimum number of converters on the network.

In this paper we study issues related to the design of networks with wavelength
converters, and to the problem of wavelength assignment in networks that already have
conversion capabilities. We restrict ourselves to the practical scenario where shortest-
path routing is used in the network; if one does not take into account the specific routing
algorithm that will be used and allows arbitrary routings, the requirements of converters
turn out to be unduly pessimistic. We address the following questions:

(i) Can we efficiently decide whether a given placement of wavelength converters
results in optimal capacity usage?

(ii) Can we efficiently find an optimal wavelength assignment when such a placement
of converters is known?

(iii) Can we efficiently find a placement of a minimum number of converters that results
in optimal capacity usage?

We answer the first two questions in the affirmative. For the third question we are able
to do so only for a special case; for arbitrary networks we show that the problem is
MAX SNP-hard, while for a different special case we show that it remains NP-hard.

Preliminaries. We model the network by a graph G = (V, E). Throughout the paper,
G is assumed to be connected. We consider both undirected and directed graph models
since both are of interest for optical networks. If the fiber allows two-way communication
then we model the network as an undirected graph, while if the fiber allows one-way
communication, we model the network as a directed graph. A special case of directed
graphs that are of particular interest are bidirected graphs: in these graphs, for every
directed edge the oppositely directed edge also exists. Connections in the network can
be seen as paths in G, and wavelengths can be regarded as colors. If the network does
not employ wavelength conversion then a wavelength assignment or coloring for a set
P of paths is an assignment of a color to each path in P . A valid coloring is one in
which no two paths that use the same edge get assigned the same color. In the presence
of wavelength converters, a coloring is an assignment of a color to every edge of each
path. In that case we say that a coloring is valid with respect to a vertex-set S (on
which the converters are placed) if it satisfies the additional constraint that the color
assignments to two consecutive edges of a path differ only if their incident vertex is in S.
We denote the load or congestion of the network that is induced by a set of paths P by
L(P) = maxe∈E Le(P), where Le(P) is the number of paths in P that use edge e. We
denote the degree of a vertex v by deg(v) and the maximum degree of G by �(G) (in a
directed graph, the degree of a vertex is its degree in the underlying simple undirected
graph). The diameter of a graph is the number of edges on the longest shortest path. For
any graph-theoretic terms or notation not defined here we refer the reader to [4].

Wavelength Conversion in All-Optical Networks 45

Most networks that do not employ wavelength conversion are destined to waste ca-
pacity. Consider an undirected graph with a vertex v of degree at least 3 and assume
that only two wavelengths are available. The paths between three neighbors of v that go
through v have load 2, but require three colors for a valid coloring if v is not equipped
with a converter. Therefore, not all three paths can be simultaneously routed, and, further-
more, two of the edges incident to v will only use one of the two available wavelengths
resulting in a 50% waste of capacity. To avoid this, for a graph G = (V, E) we need a
placement of wavelength converters on a subset of its vertices S ⊆ V such that any set
of paths P in G can be colored with L(P) colors with respect to S. A set of vertices S
that has this property is called a sufficient set. If the network uses shortest-path routing,
we require that any set P of shortest paths can be colored with L(P) colors with respect
to S. We refer to this kind of sufficient sets for shortest-path routings as SP-sufficient
sets. Note that an SP-sufficient set might be substantially smaller than a sufficient set. A
vertex of degree greater than or equal to 3, for example, might not require a converter if
its neighborhood does not contain an independent set of size 3. We say that an induced
K1,3 is a claw; the vertex adjacent to the independent set of size 3 is its center.

Previous Work. Wilfong and Winkler [17] showed that the only bidirected graphs that
admit the empty sufficient set are spiders, i.e., trees with at most one vertex of degree
greater than 2, and that rings (cycles) admit a sufficient set of size 1. They provided
an efficient way of determining whether a set S is sufficient for a bidirected graph G:
One modifies G by “exploding” each node s ∈ S into degree-of-s-many copies, each of
which is made adjacent to one of the old neighbors of s. The set S is sufficient for G
if and only if every component of the graph obtained after this modification is a spider.
Concerning the problem of finding a minimum sufficient set (MIN SUFFICIENT SET), they
showed that it isNP-hard even for planar bidirected graphs. Kleinberg and Kumar [12]
gave a 2-approximation algorithm for arbitrary directed graphs and a polynomial-time
approximation scheme for directed planar graphs. Their approach can be extended to
give a linear-time algorithm for MIN SUFFICIENT SET in directed graphs of bounded
treewidth [5]. Sufficient sets in undirected graphs were studied in [5]. Therein, it was
shown that lines (paths) are the only undirected graphs that do not need converters, and
an optimal polynomial-time algorithm for finding a minimum sufficient set was given.
Networks with shortest-path routings were considered in [6]. A complete characterization
of the undirected graphs which admit the empty SP-sufficient set, as well as efficient
optimal coloring algorithms for this class of graphs, were given.

Wavelength converters of bounded degree have also been studied in the literature. A
converter of bounded degree does not have full conversion capabilities (as in the case we
study here), but it can transform wavelength i to only a few other specified wavelengths.
We do not discuss these results here, but refer the reader to [1] and the references therein
for more details.

Motivation. The characterization of the undirected graphs which admit the empty SP-
sufficient set given in [6] implies that the restriction to shortest-path routings can reduce
the converter requirements of a given network significantly. Furthermore, the known
algorithms for MIN SUFFICIENT SET from [5] and [12] indicate that by allowing arbitrary
routings we end up with unduly pessimistic placements of converters since they can
result in picking half or even all vertices of degree greater than 2. Because of the high

46 T. Erlebach and S. Stefanakos

cost of wavelength converters, and since optical networks typically employ simple fixed-
routing strategies (i.e., for every pair of nodes there is a prespecified path through which
all traffic between these nodes will be carried; see [18]), it is important to consider the
problem of converter placement under such practical scenarios and avoid the traditional
worst-case analysis for arbitrary paths. In this paper we mainly consider networks with
shortest-path routing, but as we will see the algorithms we propose can be adapted to
work for other fixed routings as well. From a theoretical point of view, it is interesting to
observe how the restriction to shortest-path routings changes the nature of the problem,
thus requiring completely different methods for tackling it than the ones used for MIN

SUFFICIENT SET in [5], [12], and [17]. For example, the “exploding” technique from [17]
cannot be used in our setting, since it modifies the distances of the vertices.

Our Results. In Section 2 we give a polynomial-time algorithm for deciding whether
for a given graph G = (V, E), a subset S ⊆ V is SP-sufficient, and we give a polynomial-
time algorithm for optimally coloring any set of shortest paths in G with respect to a valid
SP-sufficient set. Both results apply to directed and undirected graphs. This generalizes
the result of [6], which only allows us to decide whether the empty set is SP-sufficient
for a given undirected graph, and also extends it to the directed case. We note that
the proof given here, although for a much more general result, is substantially simpler
and more elegant than the one given in [6]. In their most general form, our algorithms
apply to networks with other routings as well (for example, arbitrary routings). The only
restriction is that the set of allowed paths in the network must be closed under taking
subpaths of length 2 and 3. We are thus able to unify the results for identifying sufficient
sets in undirected and directed graphs from [5], [12], and [17].

In Section 3 we turn to the problem of finding a minimum SP-sufficient set (MIN

SP-SUFFICIENT SET). We show that the problem is MAX SNP-hard for undirected and
directed graphs by providing L-reductions from EDGE-DELETION BIPARTIZATION (EBIP)
and VERTEX-DELETION BIPARTIZATION (VBIP), respectively, i.e., the problems of delet-
ing a minimum set of edges or vertices in order to make a given graph bipartite. We also
show that MIN SP-SUFFICIENT SET can be solved optimally in linear time in undirected
triangle-free graphs, but remains NP-hard for bidirected triangle-free planar graphs.

We conclude in Section 4 with a discussion on possible directions for future research.

2. Networks with Given Placements of Converters. In this section we consider
(undirected and directed) networks that are equipped with wavelength converters. We
present algorithms for deciding whether the given placement is SP-sufficient, and for
optimally assigning wavelengths when such a placement is known. The main idea behind
our proposed algorithms is to employ an auxiliary graph that captures the structure of
the existing shortest paths in the given network.

Before we begin, we give some definitions and notation that we need to present our
results. For a graph G = (V, E), let PG be the set of all shortest paths of length 2 in
G. For a set P of paths in G and a set S ⊆ V , let P(S) be the set of paths obtained
from P after cutting every path at the vertices of S that it contains. (Cutting a path p at
an internal vertex v means replacing the path by two new paths, one consisting of the
first part of p ending at v and the other consisting of the second part of p starting at v.)

Wavelength Conversion in All-Optical Networks 47

a
a

b

b

c

c

dd

e e

ff

g g

h

h

G T (PG(∅))

Fig. 1. An example of a graph G along with T (PG(S)) for S = ∅. Notice that both conditions of Theorem 1
are violated: the graph T (PG(∅)) is not bipartite, and both edges corresponding to the subpaths of a shortest
path of length 3 (e.g., the path using edges a, c, e) lie consecutively on the same cycle. If we let S consist of
the two black vertices then T (PG(S)) is obtained from T (PG(∅)) by removing the bold edges and S is indeed
an SP-sufficient set.

Clearly, coloring a set P of paths with respect to S ⊆ V is equivalent to coloring P(S).
For a set P of shortest paths in G, let T (P) be the multigraph on E with an edge-set
containing for every path p ∈ P an edge for each of the subpaths of length 2 of p.

2.1. Identifying Valid Placements of Converters. The following theorem characterizes
valid SP-sufficient sets.

THEOREM 1. Let G = (V, E) be a (possibly directed) graph. A set S ⊆ V is SP-
sufficient for G if and only if the following two conditions hold:

(i) T (PG(S)) is bipartite, and
(ii) not both edges corresponding to the two subpaths of length 2 of a shortest path of

length 3 in G lie consecutively on the same cycle in T (PG(S)).

An example of the construction of T (PG(S)) is shown in Figure 1. Before we proceed
to the proof of Theorem 1, we show how a polynomial-time algorithm for deciding
whether a given subset S ⊆ V is SP-sufficient can be derived from it.

THEOREM 2. There exists an algorithm for deciding whether a given subset S ⊆ V is
SP-sufficient for a (possibly directed) graph G = (V, E) in O(|V |2 · |E |) time.

PROOF. The graph T (PG(S)) can be constructed in O(|V | · |E |) time by examining
for each edge uv the edges incident to u, if u /∈ S, and the edges incident to v, if v /∈ S,
and using the adjacency matrix to check in constant time if there is a triangle. This
is optimal since there can exist �(|V |3) shortest paths of length 2 in G: consider, for
example, a graph consisting of three independent sets of vertices A, B, and C of the
same cardinality, where G[A ∪ B] and G[B ∪ C] form complete bipartite graphs, and
A ∪ C is an independent set. It follows that we can list all shortest paths of length 3 in G
in O(|V |2 · |E |) time: we first compute all distances in G in O(|V | · |E |) time, and then
check for each shortest path of length 2 whether it can be extended into a shortest path
of length 3. This is also optimal since we can have�(|V |4) shortest paths of length 3 in
G as in the case of a graph consisting of four independent sets of vertices A, B, C , and
D of the same cardinality, where G[A ∪ B], G[B ∪ C], and G[C ∪ D] form complete
bipartite graphs, and A ∪ C , A ∪ D, B ∪ D are independent sets.

48 T. Erlebach and S. Stefanakos

The two conditions of Theorem 1 can, therefore, be checked as follows. Since
T (PG(S)) has size O(|V | · |E |), we can check bipartiteness in O(|V | · |E |) time. To
verify the second condition, we first compute the biconnected components of T (PG(S))
in time O(|V | · |E |) using Tarjan’s algorithm [16], and then check for each shortest
path p of length 3 that does not go over a vertex in S, whether the edges correspond-
ing to the two subpaths of length 2 of p lie in different biconnected components of
T (PG(S)). If this is not the case then the two edges lie consecutively on some cycle.
Since there are O(|V |2 · |E |) shortest paths of length 3 in G, we have an overall running
time O(|V |2 · |E |).

We proceed to prove Theorem 1. It is easy to see that the conditions of the statement are
indeed necessary. First assume that T (PG(S)) is not bipartite. Then T (PG(S)) contains
an odd cycle whose edges correspond to a set of shortest paths in G with load 2 that require
three colors for a valid coloring. To see that (ii) is necessary, assume that T (PG(S)) is
bipartite and that there is a shortest path p of length 3 in G containing two paths of
length 2 whose corresponding edges lie on the same (even) cycle C in T (PG(S)). Let
e be the middle edge of p in G. The paths corresponding to the edges of C that are not
incident to e, along with p, form a set of paths of load 2 that require three colors for a
valid coloring. Sufficiency will follow from the wavelength-assignment algorithm given
in the following section.

2.2. Wavelength Assignment in Networks with Converters. The following theorem
shows that the conditions of Theorem 1 are indeed sufficient.

THEOREM 3. Let G = (V, E) be a (possibly directed) graph and let S ⊆ V be such
that the conditions of Theorem 1 are satisfied. Any set P of shortest paths on G can be
colored with L(P) colors with respect to S.

PROOF. Let G = (V, E) be a (possibly directed) graph, and let S ⊆ V be such
that conditions (i) and (ii) hold. Let P be a set of shortest paths in G. To simplify
notation we let P be equal to P(S). Also, we remove all paths of length one from P
since these can be colored greedily afterwards. The coloring of P will be obtained by
edge-coloring T (P). The edge-coloring of T (P) will be done by computing many local
edge-colorings and then merging them in order to obtain a coloring for T (P)with L(P)
colors such that edges in T (P) that correspond to the same path in P get the same
color.

Two edges in T (P) that originate from the same path in P are said to be relatives. An
edge-coloring of T (P) is valid if all edges incident to the same vertex get different colors,
except for relative edges which are required to have the same color. Let B1, . . . , Bk be the
blocks (biconnected components) of T (P) ordered according to a breadth-first search
traversal of the block graph of T (P), i.e., the bipartite graph on C ∪ B and edges cB
for c ∈ C , B ∈ B if c ∈ B, where C is the set of cut-vertices of T (P) and B is the set
of blocks of T (P). Let Pi ⊆ P be the set of paths that correspond to an edge in Bi .
Since condition (i) of Theorem 1 is satisfied, Bi is bipartite and can be edge-colored with
�(Bi) colors in polynomial time [13]. Since condition (ii) is satisfied, Bi may contain

Wavelength Conversion in All-Optical Networks 49

only one edge from each path and hence the edge-coloring is valid for Bi . Furthermore,
the degree of every vertex of Bi is equal to the load of the corresponding edge in G that
is induced by Pi .

Let Ai be a valid edge-coloring for Bi that uses L(Pi) colors. We will show how
we can merge colorings A1, . . . , Ak into a valid coloring for

⋃
1≤i≤k Bi that uses L(P)

colors. We begin by merging A1 with A2. After the merging, A2 is the new coloring we
obtain. After having merged colorings A1, . . . , Ai−1 we proceed to the merging of Ai−1

with Ai . Define B ′i := B1 ∪ · · · ∪ Bi . Let P ′i ⊆ P be the set of paths that correspond
to edges in B ′i . During the whole merging process we maintain the following invariants
for Ai : (a) Ai uses no more than L(P ′i) colors, and (b) Ai is valid for B ′i . After k − 1
mergings, B ′k = T (P) and hence we will have obtained a valid coloring of P with L(P)
colors.

Assume we have merged the first i − 1 colorings and the invariants (a) and (b) hold
for Ai−1. We show how to merge Ai−1 with Ai such that (a) and (b) are maintained. Let
x be the common cut-vertex of Bi with a block whose coloring has already been merged.
In order to merge the two colorings and maintain the invariants we have to ensure that
(1) relative edges incident to x get the same color in Ai−1 and Ai , and (2) non-relative
edges incident to x get different colors in Ai−1 and Ai . In order to ensure (1) we permute
Ai so that every edge incident to x that is colored in Ai and is relative to an edge f
colored in Ai−1, gets the color that f has in Ai−1. In order to ensure (2) we need to
introduce new colors. Assume there are two edges e, colored in Ai−1, and f , colored in
Ai , that are incident to x , have the same color, and correspond to different paths. In B ′i
these edges contribute 2 to the degree of x (and their corresponding paths contribute 2 to
the load of edge x in G); however, in each of B ′i−1, Bi only one of these edges is present.
Therefore, there is at least one color among 1, . . . , L(P ′i) that is not used by the edges
incident to x in B ′i . Let c be such a color. We permute coloring Ai so that all edges that
were previously assigned color c get the color that f had and vice versa. Examples of
the necessary modifications are shown in Figure 2.

Since both colorings were valid, they remain valid after these modifications. After
permuting Ai , the two colorings become compatible and can be merged in the ob-
vious way. After k − 1 such mergings, Ak is a valid coloring for P that uses L(P)
colors.

The next theorem shows how an algorithm for computing such a coloring can be
implemented efficiently.

(1) (2)

3
2

❙❙1

❙❙1

❙❙1 ❙❙2

❙❙4

❙❙4

1

1
1

2

2 4
2 1

xx

BiBi

color assigned in Ai−1 color assigned in Ai

relative
edges

non-relative edges

Fig. 2. Example of the two types of permutations needed to merge local colorings in the proof of Theorem 3.
Colors assigned in Ai that change are crossed out and the new ones appear in bold.

50 T. Erlebach and S. Stefanakos

THEOREM 4. Let G = (V, E) be a (possibly directed) graph and let S ⊆ V be such
that the conditions of Theorem 1 are satisfied. There exists an algorithm for coloring any
setP of shortest paths with L(P) colors with respect to S in O(|E |+|V | · |P| · log L(P))
time.

PROOF. The proof of Theorem 3 provides explicitly such a coloring algorithm. We
argue that this algorithm can be implemented to run in O(|E | + |V | · |P| · log L(P))
time.

We assume that each path p ∈ P is given as a list of edges e1, e2, . . . , e|p|, ordered so
that ei and ei−1 are incident to the same vertex. We can construct T (P) in O(|E |+|V |·|P|)
time since the length of a path is bounded by |V |. The biconnected components (blocks)
of T (P) can be computed in O(|V | · |P|) time using Tarjan’s algorithm [16]. A block B
with edge-set EB can be edge-colored in time O(|EB | · log L(P)) using the algorithm
of Cole et al. [3], since L(P) is an upper bound on the maximum degree of any block
of T (P). Since T (P) has O(|V | · |P|) edges and the edge-sets of different blocks are
disjoint, all edge-colorings can be performed in total time O(|V | · |P| · log L(P)). In
the remainder of the proof we argue that the merging of the colorings can be done in
O(|V | · |P|) time.

Before we begin the merging process we initialize some necessary data-structures.
We maintain two arrays π, π−1 of size L(P) which are initialized by setting π(j) := j
and π−1(j) := j for all 1 ≤ j ≤ L(P). At each merging, π holds a permutation to be
applied to the coloring of the next block, while π−1 holds its inverse (where we need it).
Only after the correct π is computed, we traverse all edges of the next block and rename
their colors according to π . Furthermore, we use a binary array U of size L(P)which we
initialize by U (j) := 0 for all 1 ≤ j ≤ L(P); at a merging of two colorings, U indicates
which colors are used by the edges that are incident to the cut-vertex “connecting” the
two colorings and that belong to the previously merged coloring.

We also use a set F which at each merging holds all free colors at the edges incident
to the “connecting” cut-vertex. The set F initially contains all colors 1, . . . , L(P). We
store F using a set data-structure that can maintain arbitrary subsets of {1, . . . , L(P)}
and that supports insertion, deletion, membership checking, and returning an arbitrary
element in constant time. Such a data-structure can be implemented using a combination
of a doubly linked list of elements and an array of size L(P); the j th element in the
array is a pointer to the corresponding list element, if j is in the set, and a NIL pointer
otherwise.

The data-structures for π , π−1, U , and F can be initialized in time O(L(P)) =
O(|V | · |P|). Note that in order to save time, after each merging we do not re-initialize
these data-structures from scratch but re-set only the values that have changed in the
merging.

In addition, for each edge incident to a cut-vertex we store a pointer to its relative
incident to the same cut-vertex, if there is any. These pointers can be computed in
O(|V | · |P|) time.

Let B1, . . . , Bk be the blocks of T (P) and let x1, . . . , xk ′ be the cut-vertices of T (P),
ordered according to a breadth-first search traversal of the block-graph of T (P) starting
at an arbitrary block. For 1 ≤ i ≤ k, let Ai denote the computed initial edge-coloring
of Bi . To perform the merging we proceed through the cut-vertices in the order x1, . . . , xk ′ .

Wavelength Conversion in All-Optical Networks 51

Consider cut-vertex xj . Assume that the parent of xj in the breadth-first search tree of the
block graph of T (P) is Bi ′ , where i ′ ≤ i − 1, and its children are blocks Bi , . . . , Bl . At
the time when we process xj , we have already merged the colorings A1, . . . , Ai−1, and
Ai−1 holds the merged coloring. While processing xj , we are going to merge colorings
Ai , . . . , Al one by one with Ai−1, and then we proceed to the next cut-vertex xj+1. While
π andπ−1 will be re-set after each individual merging, U and F will be maintained during
all the mergings of Ai , . . . , Al and re-set only when we proceed to the next cut-vertex.

Before we begin with the merging of Ai , . . . , Al , we examine the colors on the edges
incident to xj . For each such edge that is in Bi ′ , we remove its color from F and mark it
in U . In order to determine how the colors in Ai must be renamed to make Ai compatible
with Ai−1, we make two passes over the edges incident to xj contained in Bi . Note that
we do not need to go through all edges incident to xj in T (P) for implementing such a
pass, since we have computed the blocks of T (P) beforehand. In each pass, we compute
a permutation and apply it to the colors of the edges in Bi .

In the first pass we deal with edges that have relatives in Bi ′ . We process an edge e in
Bi that is incident to xj and has received color a in Ai as follows:

• If e does not have a relative in Bi ′ , we proceed to the next edge incident to xj in Bi .
• If e has a relative in Bi ′ that has received color b in Ai−1, we need to ensure that
π(a) = b. If this is already satisfied, we do nothing. Otherwise, i.e., if π(a) �= b,
let z := π(a) and y := π−1(b). We set π(a) := b, π(y) := z, π−1(b) := a, and
π−1(z) := y. Intuitively, the effect of this operation is the same as applying the
original permutation π to the colors on the edges of Bi , exchanging the color of e, i.e.,
color z, with color b on all edges in Bi , and letting the new π represent the resulting
permutation.

At the end of the first pass, we traverse all edges of Bi and apply the permutation π to
their colors. The resulting coloring of Bi , which we denote again by Ai , has the property
that edges incident to xj with a relative in Bi ′ have the same color as that relative has in
Ai−1. Now we re-set π and π−1 to the initial status by taking back all changes that we
have made to these arrays in the first pass. Then we go once again through all edges of
Bi that are incident to xj and, for each such edge e that has color a in the new coloring
Ai , we remove a from F (if it is still in F). Note that now the status of U and F is such
that the colors marked in U are those that are used by Ai−1 on edges incident to xj in
Bi ′ , while the set F contains all colors except those that are used by Ai−1 or Ai on edges
incident to xj in Bi ′ or Bi . This completes the first pass.

In the second pass over the edges of Bi incident to xj , we deal with edges that have
no relative in Bi ′ but use the same color as an edge incident to xj in Bi ′ . We process an
edge e in Bi that is incident to xj and has received color a in the new Ai as follows:

• If e has a relative colored in Ai−1, we do nothing.
• If e does not have a relative colored in Ai−1, we check whether a is marked in U . If

U (a) = 0, we do nothing. If U (a) = 1, we pick a new color y from F (note that
F must be non-empty in this case) and exchange colors a and y in a similar way as
above: we set π(a) := y and π(y) := a. Note that we do not need to use π−1 here
since the pairs of colors that are exchanged are disjoint from each other. Furthermore,
we delete y from F , as y is now no longer a free color.

52 T. Erlebach and S. Stefanakos

At the end of the second pass, we go through all edges of Bi and apply π to their colors.
The resulting coloring of Bi is compatible with Ai−1 and can be merged with Ai−1

without further modifications. Let Ai denote the merged coloring. To update U , we go
through the edges incident to xj in Bi and mark the colors that they receive in the new
Ai in U . Finally, we re-set π by taking back all changes we made to this array in the
second pass. This completes the second pass and also the merging of Ai−1 with Ai .

Now we proceed to the merging of Ai with Ai+1. This merging is done in the same way
as the merging of Ai−1 with Ai (i.e., we use two passes over the edges in Bi+1 incident
to xj in order to compute two permutations, and we apply each of these permutations
to the colors on the edges of Bi+1). This is repeated for colorings Ai+2, . . . , Al . After
we finish with the merging of these colorings we re-set F and U by going through the
colors on all edges incident to xj : we insert all colors on these edges into F and unmark
them in U . Then we proceed to the next cut-vertex xj+1.

At each cut-vertex x we traverse each edge incident to x a constant number of times.
When merging a new block, we traverse its edge-set a constant number of times. There-
fore, altogether we have a running time of O(|V | · |P|) for the merging process.

We remark that the term |V | · |P| in the running-time given in Theorem 4 can actually
be replaced by the sum of the lengths of all paths in P . In the proof of the theorem we
have simply used |V | · |P| as an upper bound on the value of this sum.

2.3. Generalizations to Other Routings. We now discuss how our algorithms can be
adapted to work on networks with other routings as well. Notice that the fact that we are
dealing with shortest paths does not play a role in the proof of Theorem 3. What we need
is that the set of all admissible paths is closed under taking subpaths of length 2 and 3:
these are the paths needed for the necessity of the conditions in Theorem 1, since they
provide the routings that witness the non-existence of a coloring with L(P) colors. It is
also interesting to observe that we can always find such a witness routing that has load 2
and requires three colors for a valid coloring, and that if no such routing exists then we can
find a “good” coloring of any set of paths just by merging colorings of paths of length 2.

Therefore, our results can be applied to any network that uses a routing closed under
taking subpaths of length 2 and 3. If, for example, we allow arbitrary routings, we choose
PG as the set of all simple paths of length 2, thus providing an algorithm to unify the results
in [5], [12], and [17] for identifying sufficient sets and finding an optimal wavelength
assignment with respect to a valid sufficient set in both undirected and directed networks.
Observe that in this case T (PG) is simply the line graph of G.

We also give an alternative formulation of Theorems 1 and 3 that might find applica-
tions in other areas as well.

COROLLARY 5. There exists a polynomial-time algorithm to decide whether for a given
multiset P of paths, that is closed under taking subpaths of length 2 and 3, all subsets
P ′ ⊆ P can be colored with L(P ′) colors, and, if the answer is yes, a polynomial-time
algorithm to find such a color assignment for any given P ′ ⊆ P .

That is, given a set P of paths, with the property that for every path p ∈ P all its
subpaths of length 2 and 3 are also in P , we construct T (P) and check whether the

Wavelength Conversion in All-Optical Networks 53

conditions of Theorem 1 are satisfied. If not then there exists some P ′ ⊆ P that cannot
be colored with L(P ′) colors. If the conditions are satisfied, any P ′ ⊆ P can be colored
with L(P ′) colors using the algorithm described in the proof of Theorem 3.

3. Complexity and Hardness of Placing Converters. We now consider the problem
of placing as few converters as possible on a given network in order to optimize its
capacity usage. In order to show that this problem is hard, even to approximate, we
provide L-reductions (see [15]) from already known hard problems. (Recall that we will
use the EDGE-DELETION BIPARTIZATION (EBIP) and VERTEX-DELETION BIPARTIZATION

(VBIP) problems, i.e., the problems of deleting a minimum set of edges or vertices in
order to make a given graph bipartite.) For completeness we give here the definition of
an L-reduction.

DEFINITION 1 (L-reducibility). An optimization problem
 L-reduces to an optimiza-
tion problem
′ if there are polynomial-time algorithms f, g, and positive constants
c1, c2 such that for each instance I of
 the following properties hold:

(i) Algorithm f produces an instance I ′ = f (I) of
′, such that the cost of the
optimal solutions of I and I ′, OPT(I) and OPT(I ′), respectively, satisfy OPT(I ′) ≤
c1OPT(I).

(ii) Given any solution of I ′ with cost SOL(I ′), algorithm g produces a solution of I
with cost SOL(I) such that |SOL(I)− OPT(I)| ≤ c2|SOL(I ′)− OPT(I ′)|.

3.1. The Undirected Case

THEOREM 6. There exists an L-reduction from EDGE-DELETION BIPARTIZATION to the
undirected MIN SP-SUFFICIENT SET problem.

PROOF. Let G = (V, E) be an instance of EBIP, and assume, without loss of generality,
that G does not contain any vertices of degree 1. We first show how to construct an
undirected instance G ′ = (V ′, E ′) of MIN SP-SUFFICIENT SET. The idea behind the
construction is to map odd cycles of G onto “bad” induced odd cycles in G ′, i.e., cycles
on which the set of all shortest paths of length 2 corresponds to an odd cycle in T (PG(∅)).
Since single triangles do not allow the construction of such a set of shortest paths, but
have to be hit by any solution of EBIP, we replace each edge with a longer path in order
to “blow up” the length of the cycles of G. Moreover, in order to avoid claws in G ′ we
use a special gadget for every vertex of G. Finally, we eliminate all shortest paths of
length 3 from G ′ so that no other configuration apart from odd induced cycles of length
greater than 3 will need to be hit by a solution for MIN SP-SUFFICIENT SET.

We construct G ′ as follows. For each vertex v of degree deg(v) in G, we have a clique
on deg(v) vertices. For each edge uv in G, we have a simple path on three vertices.
The endpoints of the path are identified with two distinct vertices in the cliques that
correspond to u and v. The construction of G ′ is completed by adding a claw with center
x and making x adjacent to all other vertices. Observe that the parity of each cycle in

54 T. Erlebach and S. Stefanakos

G G′

x

Fig. 3. The transformation used in the reduction in the proof of Theorem 6. Bold edges are in cliques that
correspond to vertices of G.

G is preserved in G ′: a cycle on m edges in G is mapped onto an induced cycle on 3m
edges in G ′. An example is shown in Figure 3.

Consider an optimal solution to the instance of EBIP, namely a set of edges F ⊆ E of
minimum cardinality OPTBIP such that G− F is bipartite. We construct an SP-sufficient
set S of size OPTBIP + 1 for G ′ as follows. For every edge e ∈ F , we take in S one of
the endpoints of its corresponding path in G ′. Furthermore, we take x into S since it is
the center of a claw. We will show that S is indeed an SP-sufficient set. Since G ′ has
diameter 2, according to Theorem 1 we only need to show that T (PG ′(S)) is bipartite,
or equivalently that the edges of G ′ can be 2-colored such that no shortest path of length
2 that does not go through a converter uses edges of the same color. We exhibit such
a coloring. Consider a bipartition of G − F . For every vertex that is in the first side
of the partition, we color the edges of its corresponding clique in G ′ with color α. All
edges in cliques corresponding to vertices in the other side of the partition are colored
with color β. We extend this coloring to paths corresponding to edges in E\F . Such
paths connect cliques whose edges get different colors. Therefore, we can assign to each
of the two edges of such a path a different color than the one that its incident clique
already has. Paths corresponding to edges in F connect cliques assigned the same color.
Consider a path connecting two cliques with the same color, say α. Since one of the
endpoints of the path is in S, we assign color α to the edge of the path incident to the
converter and color β to the other edge. Finally, we assign the same color, say α, to all
edges incident to x . It is easy to see that the only shortest paths of length 2 that use
edges of the same color are the ones that go over converters. The set S is, therefore,
SP-sufficient.

Now, assume we are given an SP-sufficient set S′ and consider a 2-coloring of the
edges of G ′, with colors α and β, such that no shortest path of length 2 that does not
go over a converter uses edges of the same color. We can assume that in each clique,
all edges corresponding to a vertex in G have the same color. If this is not the case we
can transform the coloring into one that has this property as follows. Consider a clique
K in G ′, corresponding to some vertex in G, whose edges are not monochromatic.
If all the vertices of the clique are in S′ then we can simply modify the coloring of
the edges of K so that they all have the same color. The resulting coloring still has
the property that no shortest path of length 2 that does not go over a converter uses
edges of the same color. Otherwise, there is some vertex v ∈ K without a converter.
Say that its incident edge outside K has color α. Then all its incident edges in K
must have color β. Consider now some edge uw in K that has color α. Let u′, w′ be

Wavelength Conversion in All-Optical Networks 55

the neighbors of u and w, respectively, outside K . The paths vuu′, u′uw are shortest
and whatever the color assigned to edge uu′, one of the two paths will use two edges
of the same color. The vertex u is, therefore, in S′. Similarly, because of the paths
vww′, w′wu, w is also in S′. Hence, if we change the color of uw to β the coloring
still has the desired property. By repeating this modification we can obtain a coloring
such that all cliques are monochromatic, and thus our assumption is without loss of
generality.

Construct a solution F ′ to EBIP by taking all the edges whose corresponding path in
G ′ contains a vertex in S′. We show that G−F ′ is indeed bipartite. Construct a bipartition
by taking in one side vertices corresponding to cliques in G ′ whose edges are colored
with color α. The other side contains the remaining vertices. Assume for a contradiction
that there is an edge e ∈ E\F ′ whose endpoints are in the same side. Then there cannot
exist a valid 2-coloring of the edges of the path corresponding to e, a contradiction. Note
that |F ′| ≤ |S′| − 1, since x ∈ S′ but no edge in G has a corresponding path in G ′

containing x .
Let OPTSPSS denote the size of an optimal SP-sufficient set for G ′. Since from a given

SP-sufficient set S′ we can obtain a solution F ′ to EBIP of size at most |S′| − 1, and
from an optimal solution to EBIP we can obtain an SP-sufficient set of size OPTBIP + 1,
it follows that OPTSPSS = OPTBIP + 1. Furthermore, |F ′| − OPTBIP ≤ |S′| − OPTSPSS

and therefore the transformation is an L-reduction.

Since EBIP is known to be MAX SNP-hard [15], and since the constructed instance
of MIN SP-SUFFICIENT SET has diameter 2, we obtain the following corollary.

COROLLARY 7. The undirected MIN SP-SUFFICIENT SET problem is MAX SNP-hard
even when restricted to graphs of diameter 2.

Observe that the presence of triangles in the proof of Theorem 6 is essential in order
to avoid claws. In fact, if we restrict to triangle-free graphs then the problem can be
solved optimally in polynomial time as the following theorem illustrates.

THEOREM 8. There exists a linear-time algorithm for finding a minimum SP-sufficient
set in undirected triangle-free graphs.

PROOF. Consider an undirected triangle-free graph G = (V, E), and assume, without
loss of generality, that G is connected and is not a cycle (in the latter case, a single
converter at an arbitrary node of the cycle is SP-sufficient except for a cycle on four
vertices where the empty set suffices, see [5]). Denote by N (v) the subgraph induced
by the vertices adjacent to v. Since G is triangle-free, N (v) is an independent set for
all v ∈ V . Furthermore, any SP-sufficient set must contain all vertices v ∈ V with
deg(v) ≥ 3 since otherwise there would be a claw without a converter. Thus, S = {v ∈
V | deg(v) ≥ 3} is a minimum SP-sufficient set: V \S contains vertices of degree at most
2, hence if we explode all vertices in S, as described in Section 1, the exploded graph
is a collection of lines. By [5], S is a sufficient set, therefore also SP-sufficient and the
statement is proved.

56 T. Erlebach and S. Stefanakos

3.2. The Directed Case. The directed MIN SP-SUFFICIENT SET problem gives us more
freedom in designing a reduction since claws do not necessarily require a converter. This
is in accord with our expectation that the directed case is more difficult (recall that MIN

SUFFICIENT SET is NP-hard in directed graphs but polynomial in undirected). In this
case we are able to give a simple approximation preserving reduction from VBIP. In
[14] Lund and Yannakakis note that edge-deletion problems tend to be computationally
easier than vertex-deletion problems.

THEOREM 9. There exists an L-reduction from VERTEX-DELETION BIPARTIZATION to
the directed MIN SP-SUFFICIENT SET problem.

PROOF. The idea behind the reduction is the same as in the undirected case. The main
difference, which simplifies the construction and allows us to reduce a vertex-deletion
problem to MIN SP-SUFFICIENT SET, is that claws do not necessarily require a converter
in the directed case; hence, we do not need to use a special gadget for every vertex.

Let G = (V, E) be an instance of VBIP. The directed instance G ′ = (V ′, E ′) of MIN

SP-SUFFICIENT SET is constructed as follows. For every vertex v in G, we have a vertex
v′ in G ′; the vertex v′ corresponds to v. For every edge uv in G we have a bidirected
path of length 3 between u′ and v′ corresponding to edge uv; each of the two directed
paths (i.e., from u′ to v′ and from v′ to u′) will be called a blow-up path. Finally, we add
a new vertex x which is made adjacent to all other vertices via two oppositely directed
edges.

Consider an optimal solution to the instance of VBIP, namely a set of vertices U ⊆ V
of minimum cardinality OPTBIP such that G − U is bipartite. We construct an SP-
sufficient set S of size |U | for G ′ by taking all vertices corresponding to vertices in U .
We show that S is indeed an SP-sufficient set by exhibiting a 2-coloring of the edges
of G ′, as in the proof of Theorem 6. Consider a bipartition of G − U into a left and
a right part. Vertices in G ′ that correspond to vertices in the left side of the partition
are called left vertices. Vertices in G ′ that correspond to vertices in the right side of the
partition are called right vertices. Vertices in G ′ that correspond to vertices in U are
called deleted vertices. Assign color α to edges directed out of left vertices and color
β to edges directed out of right vertices. Now, simply extend this coloring by assigning
alternating colors to the edges of all blow-up paths that have one edge already colored.
The only edges remaining uncolored are edges incident to x and edges in blow-up paths
directed out of deleted vertices. We color all edges directed into x with color α and all
edges directed out of x with color β. All edges directed out of deleted vertices which
are in blow-up paths that end up at a left vertex are colored with color β. The remaining
edges directed out of deleted vertices are colored with color α. The remaining blow-up
paths that have uncolored edges (these are paths directed out of some deleted vertex)
can be colored by assigning alternating colors to the uncolored edges depending on the
color assigned to the edge incident to the deleted vertex. It is easy to see that the only
shortest paths of length 2 that use edges of the same color are paths that go over vertices
which correspond to vertices in U . Since these vertices are equipped with converters, it
follows that S is SP-sufficient.

Now, assume we are given an SP-sufficient set S′ for G ′. We can assume that S′

consists only of vertices corresponding to vertices in G (i.e., not x and not any internal

Wavelength Conversion in All-Optical Networks 57

vertex of a blow-up path). Construct a solution U ′ to VBIP by taking all vertices that
correspond to vertices in S′. To see that G −U ′ is bipartite, assume for a contradiction
that it contains an odd cycle. Consider the blow-up paths in G ′ that correspond to the
edges of the cycle: they form two oppositely directed odd cycles in G ′ which can be
used for a construction of a set of paths with load 2 that requires three colors for a
valid coloring. Hence, at least one of the vertices of the cycle is in S′, and therefore its
corresponding vertex in G is deleted, a contradiction.

Let OPTSPSS denote the size of an optimal SP-sufficient set for G ′. Since from a given
SP-sufficient set for G ′ we can construct a valid solution to VBIP of the same size it
follows that OPTSPSS ≥ OPTBIP and hence |S| = OPTSPSS = OPTBIP. Furthermore,
|U ′| − OPTBIP ≤ |S′| − OPTSPSS and hence the transformation is an L-reduction.

Since VBIP is known to be MAX SNP-hard [14], and our constructed instance of MIN

SP-SUFFICIENT SET is bidirected and has diameter 2, Theorem 9 implies the following.

COROLLARY 10. The directed MIN SP-SUFFICIENT SET problem is MAX SNP-hard even
when restricted to bidirected graphs of diameter 2.

The following theorem shows that MIN SP-SUFFICIENT SET is NP-hard even on
bidirected triangle-free planar graphs. The reduction is from PLANAR 3-SAT (see [8])
and is similar to the one given in [17] for showing the hardness of MIN SUFFICIENT SET.
Our reduction shows that, in contrast to the undirected case, MIN SP-SUFFICIENT SET

remains NP-hard even on triangle-free bidirected graphs.

THEOREM 11. The problem of determining whether for a given directed graph G and
an integer k there exists an SP-sufficient set for G of size k is NP-complete even when
restricted to bidirected triangle-free planar graphs.

PROOF. We refer to the decision version of MIN SP-SUFFICIENT SET as SP-SUFFICIENT

SET. For a directed graph G = (V, E) it is easy to check in polynomial time if S ⊆ V is
SP-sufficient as is shown in Theorem 1. Therefore, SP-SUFFICIENT SET is in NP . The
NP-hardness of SP-SUFFICIENT SET follows by a reduction from the PLANAR 3SAT
problem [8]. An instance of PLANAR 3SAT is a set of clauses {C1, . . . ,Cm}, each with
exactly three literals, with the additional property that the bipartite graph with one vertex
for each variable, one vertex for each clause, and with an edge between a variable vertex
x and a clause vertex C when x or x̄ is in the clause C is planar. Given an instance I of
PLANAR 3SAT, we show how to construct an instance I ′ of SP-SUFFICIENT SET that is
a YES instance if and only if I is satisfiable. We assume that the literals in each clause
of I correspond to different variables. The construction of I ′ will be polynomial in the
size of I . The construction is similar to the one used for SUFFICIENT SET in bidirected
graphs [17]; the only difference is that we use a cycle of length 5 instead of a triangle
for each clause because of the restriction to shortest paths.

Let I be an instance of PLANAR 3SAT with m clauses on n variables, each clause
containing exactly three literals. Construct a bidirected graph G as follows. For ease
of presentation the construction will be given for the skeleton of G, i.e., when we say

58 T. Erlebach and S. Stefanakos

u1
1 u2

1 u3
1

x1 x2 x3x̄1 x̄2 x̄3

Fig. 4. The construction used in the hardness proof for the directed case.

“edge” (or “adjacent”) we actually mean “(connected with) two oppositely directed
edges.” For each variable xi , G contains two vertices xi , x̄i adjacent to each other. We
refer to these vertices as variable vertices. For each variable vertex x , we have two new
vertices adjacent to x . For each clause, G contains a cycle of length 5. Let u1

j , u2
j , u3

j be
three consecutive vertices of the cycle corresponding to clause Cj . These three vertices
correspond to the literal occurrences in Cj and are called literal vertices. If xi occurs in Cj

then an edge is added between xi and the vertex corresponding to this literal occurrence;
if x̄i occurs then an edge is added between x̄i and the corresponding vertex. These edges
are called the connecting edges. An example of the construction for C1 = x1 ∨ x̄2 ∨ x̄3

is shown in Figure 4. Clearly, G is planar since I is an instance of PLANAR 3SAT, and
does not contain any triangles.

We claim that there is an SP-sufficient set S for G of 2m + n vertices if and only if I
is satisfiable.

Suppose that I is satisfiable and let T be a satisfying truth assignment. We call a
variable vertex true (resp. false) if its corresponding literal evaluates to true (resp. false)
according to T . Let S contain all true variable vertices and two out of the three literal
vertices of each clause such that the literal vertex that is not taken in S corresponds to a true
literal occurrence (such a vertex exists since T is satisfying). Notice that |S| = 2m+n. It
is easy to see that after exploding all vertices in S, as described in Section 1, the resulting
graph consists of spiders. Thus, by the result of Wilfong and Winkler [17], it follows
that S is a sufficient set and thus also an SP-sufficient set.

For the other direction we first need to show that any SP-sufficient set needs to contain
at least one vertex from each gadget that was used to represent a variable. Let x, y be two
adjacent vertices and let a, b be adjacent to x and c, d be adjacent to y. Consider the set
of directed paths P = {axb, axyc, dyc, dyx , yxb}. These paths have load 2 but require
three colors for a valid coloring. Hence, if all paths in P are shortest, any SP-sufficient
set will contain at least one of x or y. Therefore, any SP-sufficient set must contain vertex
xi or x̄i for every variable xi . In fact this argument can be generalized to the case where
x and y are connected with a bidirected path; in this case any SP-sufficient set must
contain a vertex of the bidirected path from x to y. We call this generalized configuration
anH-graph on x and y.

Wavelength Conversion in All-Optical Networks 59

Now, assume that S is an SP-sufficient set of size 2m + n. The set S must contain
at least one variable vertex from each variable gadget. Also, because of the connecting
edges, S should contain at least two of the literal vertices of each clause gadget; otherwise
there is an H-graph without a converter. This is easy to see if only u1

j or u3
j is in S. If

only u2
j is in S, notice that there is a generalizedH-graph on u1

j and u3
j (with u2

j adjacent
to both u1

j and u3
j) with nine shortest paths on it with load 2 that require three colors

for a valid coloring. Furthermore, we can assume, without loss of generality, that S
contains u1

j or u3
j ; otherwise we move the converter from the vertex of the bidirected

path between u1
j and u3

j to one of its endpoints, and the H-graph is still hit. Therefore,
since |S| = 2m + n, S contains exactly one variable vertex from each variable gadget
and exactly two literal vertices from each clause gadget. Define a truth assignment for I
by setting xi = 1 if xi ∈ S and xi = 0 otherwise. Consider a clause Cj . There is exactly
one literal vertex in G corresponding to a literal occurrence in Cj that is not in S. The
variable of this occurrence, however, must be in S since otherwise there is an H-graph
without a converter. Therefore, there is at least one true literal in each clause and T is a
satisfying assignment.

4. Discussion. We have presented a polynomial-time algorithm for deciding whether
for a given graph G = (V, E) a subset S ⊆ V is SP-sufficient, and a polynomial-time
algorithm for optimally coloring any set of shortest paths in G with respect to an SP-
sufficient set. These algorithms can be extended to address sufficient sets for arbitrary
routings in both undirected and directed graphs. We also showed that MIN SP-SUFFI-
CIENT SET is at least as hard to approximate as EBIP in undirected graphs, and at least
as hard to approximate as VBIP in directed graphs (and hence is MAX SNP-hard in
both cases). Finally, we gave a linear-time algorithm that solves MIN SP-SUFFICIENT

SET optimally in undirected triangle-free graphs and showed that the problem remains
NP-hard even for bidirected triangle-free planar graphs.

A challenging remaining open problem is that of designing good approximation
algorithms for MIN SP-SUFFICIENT SET. Although we are able to prove only MAX SNP-
hardness of MIN SP-SUFFICIENT SET, our results indicate that it is unlikely or at least
highly non-trivial to obtain a constant factor approximation algorithm. Indeed, that would
imply a constant approximation for EBIP or VBIP whose approximability status has had
a gap of O(log n) for the last 10 years (an O(log n) approximation for both problems
follows from the multicut algorithm of Garg et al. [9], [10]; see also an older poly-
logarithmic approximation given in [11]). In [14] Lund and Yannakakis conjecture that
for every non-trivial, hereditary property π with an infinite number of minimal forbid-
den subgraphs the node-deletion problem cannot be approximated with constant ratio.
Although the conjecture has been disproved for π = “acyclic” (by a constant approx-
imation for the undirected feedback vertex set problem [2]) and for properties derived
from matroids definable on the edge-set of any graph [7], it still remains likely that this
is the case for VBIP.

Therefore, the design of a logarithmic approximation or of a reduction that places
MIN SP-SUFFICIENT SET in some higher inapproximability class appears to be the most
promising direction for future research. From the algorithmic point of view, MIN SP-

60 T. Erlebach and S. Stefanakos

SUFFICIENT SET seems similar to EBIP since by placing converters in G we delete certain
edges in T (PG(∅)). Nevertheless, we believe that MIN SP-SUFFICIENT SET is actually
harder than EBIP: the reason is that a single converter on some vertex v does not only
delete one edge from T (PG(∅)) but all the edges that correspond to the shortest paths
of length 2 that go through v in G. If the edge-sets in T (PG(∅)) that correspond to
single vertices in G are connected subgraphs then a logarithmic approximation, at least
for bipartizing T (PG(∅)), can be obtained by a simple adaptation of the multicut-based
algorithm given in [10]. Unfortunately, this is not the case in general, in both undirected
and directed graphs. Furthermore, solving MIN SP-SUFFICIENT SET requires not only
bipartizing T (PG(∅)), but also hitting all cycles with a “bad” path of length 3 on it.
In all our reductions we explicitly forced the diameter of the constructed graph to be
less than 3 in order to focus on the bipartization aspect of the problem and ignored the
second condition of Theorem 1. We believe that these additional degrees of complexity
that MIN SP-SUFFICIENT SET has, could be exploited in order to place it in some higher
inapproximability class. We note finally that an n/k-approximation for any constant k
follows trivially from Theorem 1: we search for a valid SP-sufficient set in all subsets
up to k vertices; if none is found we place a converter at every vertex.

References

[1] V. Auletta, I. Caragiannis, L. Gargano, C. Kaklamanis, and P. Persiano. Sparse and limited wavelength
conversion in all-optical tree networks. Theoretical Computer Science, 266(1–2):887–934, 2001.

[2] V. Bafna, P. Berman, and T. Fujito. A 2-approximation algorithm for the undirected feedback vertex set
problem. SIAM Journal on Discrete Mathematics, 12(3):289–297, 1999.

[3] R. Cole, K. Ost, and S. Schirra. Edge-coloring bipartite multigraphs in O(E log D) time. Combinatorica,
21(1):5–12, 2001.

[4] R. Diestel. Graph Theory, 2nd edition. Springer-Verlag, New York, 2000.
[5] T. Erlebach and S. Stefanakos. Wavelength conversion in networks of bounded treewidth. TIK-Report

132, ETH Zurich, April 2002.
[6] T. Erlebach and S. Stefanakos. On shortest-path all-optical networks without wavelength conversion

requirements. In Proceedings of the 20th International Symposium on Theoretical Aspects of Computer
Science (STACS ’03), pages 133–144. LNCS 2607. Springer-Verlag, Berlin, 2003.

[7] T. Fujito. Approximating node-deletion problems for matroidal properties. Journal of Algorithms,
31:211–227, 1999.

[8] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-
Completeness. Freeman, San Francisco, CA, 1979.

[9] N. Garg, V. V. Vazirani, and M. Yannakakis. Multiway cuts in directed and node weighted graphs. In
Proceedings of the 21st International Colloquium on Automata, Languages, and Programming (ICALP
’94), pages 487–498. LNCS 820. Springer-Verlag, Berlin, 1994.

[10] N. Garg, V. V. Vazirani, and M. Yannakakis. Approximate max-flow min-(multi)cut theorems and their
applications. SIAM Journal on Computing, 25(2):235–251, 1996.

[11] P. N. Klein, S. Rao, A. Agrawal, and R. Ravi. An approximate max-flow min-cut relation for unidirected
multicommodity flow, with applications. Combinatorica, 15(2):187–202, 1995.

[12] J. Kleinberg and A. Kumar. Wavelength conversion in optical networks. Journal of Algorithms,
38(1):25–50, 2001.

[13] D. König. Über Graphen und ihre Anwendung auf Determinantentheorie und Mengenlehre. Mathema-
tische Annalen, 77:453–465, 1916.

[14] C. Lund and M. Yannakakis. The approximation of maximum subgraph problems. In Proceedings
of the 20th International Colloquium on Automata, Languages, and Programming (ICALP ’93), pages
40–51. LNCS 700. Springer-Verlag, Berlin, 1993.

Wavelength Conversion in All-Optical Networks 61

[15] C. Papadimitriou and M. Yannakakis. Optimization, approximation, and complexity classes. Journal
of Computer and System Sciences, 43:425–440, 1991.

[16] R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Computing, 1:146–160,
1972.

[17] G. Wilfong and P. Winkler. Ring routing and wavelength translation. In Proceedings of the 9th Annual
ACM–SIAM Symposium on Discrete Algorithms (SODA ’98), pages 333–341, 1998.

[18] H. Zang, J. P. Jue, and B. Mukherjee. A review of routing and wavelength assignment approaches for
wavelength-routed optical WDM networks. Optical Networks Magazine, 1(1):47–60, 2000.

