35,389 research outputs found

    New Modulation Technique to Mitigate Common Mode Voltage Effects in Star-Connected Five-Phase AC Drives

    Get PDF
    Star-connected multiphase AC drives are being considered for electromovility applications such as electromechanical actuators (EMA), where high power density and fault tolerance is demanded. As for three-phase systems, common-mode voltage (CMV) is an issue for multiphase drives. CMV leads to shaft voltages between rotor and stator windings, generating bearing currents which accelerate bearing degradation and produce high electromagnetic interferences (EMI). CMV effects can be mitigated by using appropriate modulation techniques. Thus, this work proposes a new Hybrid PWM algorithm that effectively reduces CMV in five-phase AC electric drives, improving their reliability. All the mathematical background required to understand the proposal, i.e., vector transformations, vector sequences and calculation of analytical expressions for duty cycle determination are detailed. Additionally, practical details that simplify the implementation of the proposal in an FPGA are also included. This technique, HAZSL5M5-PWM, extends the linear range of the AZSL5M5-PWM modulation, providing a full linear range. Simulation results obtained in an accurate multiphase EMA model are provided, showing the validity of the proposed modulation approach.This work has been supported in part by the Government of the Basque Country within the fund for research groups of the Basque University system IT978-16 and in part by the Government of the Basque Country within the research program ELKARTEK as the project ENSOL (KK-2018/00040)

    To develop an efficient variable speed compressor motor system

    Get PDF
    This research presents a proposed new method of improving the energy efficiency of a Variable Speed Drive (VSD) for induction motors. The principles of VSD are reviewed with emphasis on the efficiency and power losses associated with the operation of the variable speed compressor motor drive, particularly at low speed operation.The efficiency of induction motor when operated at rated speed and load torque is high. However at low load operation, application of the induction motor at rated flux will cause the iron losses to increase excessively, hence its efficiency will reduce dramatically. To improve this efficiency, it is essential to obtain the flux level that minimizes the total motor losses. This technique is known as an efficiency or energy optimization control method. In practice, typical of the compressor load does not require high dynamic response, therefore improvement of the efficiency optimization control that is proposed in this research is based on scalar control model.In this research, development of a new neural network controller for efficiency optimization control is proposed. The controller is designed to generate both voltage and frequency reference signals imultaneously. To achieve a robust controller from variation of motor parameters, a real-time or on-line learning algorithm based on a second order optimization Levenberg-Marquardt is employed. The simulation of the proposed controller for variable speed compressor is presented. The results obtained clearly show that the efficiency at low speed is significant increased. Besides that the speed of the motor can be maintained. Furthermore, the controller is also robust to the motor parameters variation. The simulation results are also verified by experiment

    Multiphase induction motor drives - a technology status review

    Get PDF
    The area of multiphase variable-speed motor drives in general and multiphase induction motor drives in particular has experienced a substantial growth since the beginning of this century. Research has been conducted worldwide and numerous interesting developments have been reported in the literature. An attempt is made to provide a detailed overview of the current state-of-the-art in this area. The elaborated aspects include advantages of multiphase induction machines, modelling of multiphase induction machines, basic vector control and direct torque control schemes and PWM control of multiphase voltage source inverters. The authors also provide a detailed survey of the control strategies for five-phase and asymmetrical six-phase induction motor drives, as well as an overview of the approaches to the design of fault tolerant strategies for post-fault drive operation, and a discussion of multiphase multi-motor drives with single inverter supply. Experimental results, collected from various multiphase induction motor drive laboratory rigs, are also included to facilitate the understanding of the drive operatio

    Modeling and simulation enabled UAV electrical power system design

    Get PDF
    With the diversity of mission capability and the associated requirement for more advanced technologies, designing modern unmanned aerial vehicle (UAV) systems is an especially challenging task. In particular, the increasing reliance on the electrical power system for delivering key aircraft functions, both electrical and mechanical, requires that a systems-approach be employed in their development. A key factor in this process is the use of modeling and simulation to inform upon critical design choices made. However, effective systems-level simulation of complex UAV power systems presents many challenges, which must be addressed to maximize the value of such methods. This paper presents the initial stages of a power system design process for a medium altitude long endurance (MALE) UAV focusing particularly on the development of three full candidate architecture models and associated technologies. The unique challenges faced in developing such a suite of models and their ultimate role in the design process is explored, with case studies presented to reinforce key points. The role of the developed models in supporting the design process is then discussed

    Urban and extra-urban hybrid vehicles: a technological review

    Get PDF
    Pollution derived from transportation systems is a worldwide, timelier issue than ever. The abatement actions of harmful substances in the air are on the agenda and they are necessary today to safeguard our welfare and that of the planet. Environmental pollution in large cities is approximately 20% due to the transportation system. In addition, private traffic contributes greatly to city pollution. Further, “vehicle operating life” is most often exceeded and vehicle emissions do not comply with European antipollution standards. It becomes mandatory to find a solution that respects the environment and, realize an appropriate transportation service to the customers. New technologies related to hybrid –electric engines are making great strides in reducing emissions, and the funds allocated by public authorities should be addressed. In addition, the use (implementation) of new technologies is also convenient from an economic point of view. In fact, by implementing the use of hybrid vehicles, fuel consumption can be reduced. The different hybrid configurations presented refer to such a series architecture, developed by the researchers and Research and Development groups. Regarding energy flows, different strategy logic or vehicle management units have been illustrated. Various configurations and vehicles were studied by simulating different driving cycles, both European approval and homologation and customer ones (typically municipal and university). The simulations have provided guidance on the optimal proposed configuration and information on the component to be used

    A new sensorless method for switched reluctance motor drives

    Get PDF
    This paper describes a new method for indirect sensing of the rotor position in switched reluctance motors (SRMs) using pulse width modulation voltage control. The detection method uses the change of the derivative of the phase current to detect the position where a rotor pole and stator pole start to overlap, giving one position update per energy conversion. As no a priori knowledge of motor parameters is required (except for the numbers of stator and rotor poles), the method is applicable to most SRM topologies in a wide power and speed range and for several inverter topologies. The method allows modest closed-loop dynamic performance. To start up the motor, a feedforward stepping method is used which assures robust startup (even under load) from standstill to a predefined speed at which closed-loop sensorless operation can be applied. Experimental results demonstrate the robust functionality of the method with just one current sensor in the inverter, even with excitation overlap, and the sensorless operation improves with speed. The method is comparable to the back-EMF position estimation for brushless DC motors in principle, performance and cost. A detailed operation and implementation of this scheme is shown, together with steady-state and dynamic transient test results

    Power Quality Enhancement in Electricity Grids with Wind Energy Using Multicell Converters and Energy Storage

    Get PDF
    In recent years, the wind power industry is experiencing a rapid growth and more wind farms with larger size wind turbines are being connected to the power system. While this contributes to the overall security of electricity supply, large-scale deployment of wind energy into the grid also presents many technical challenges. Most of these challenges are one way or another, related to the variability and intermittent nature of wind and affect the power quality of the distribution grid. Power quality relates to factors that cause variations in the voltage level and frequency as well as distortion in the voltage and current waveforms due to wind variability which produces both harmonics and inter-harmonics. The main motivation behind work is to propose a new topology of the static AC/DC/AC multicell converter to improve the power quality in grid-connected wind energy conversion systems. Serial switching cells have the ability to achieve a high power with lower-size components and improve the voltage waveforms at the input and output of the converter by increasing the number of cells. Furthermore, a battery energy storage system is included and a power management strategy is designed to ensure the continuity of power supply and consequently the autonomy of the proposed system. The simulation results are presented for a 149.2 kW wind turbine induction generator system and the results obtained demonstrate the reduced harmonics, improved transient response, and reference tracking of the voltage output of the wind energy conversion system.Peer reviewedFinal Accepted Versio

    Comparison of Induction and PM Synchronous motor drives for EV application including design examples

    Get PDF
    Three different motor drives for electric traction are compared, in terms of output power and efficiency at the same stack dimensions and inverter size. Induction motor (IM), surface-mounted permanent-magnet (PM) (SPM), and interior PM (IPM) synchronous motor drives are investigated, with reference to a common vehicle specification. The IM is penalized by the cage loss, but it is less expensive and inherently safe in case of inverter unwilled turnoff due to natural de-excitation. The SPM motor has a simple construction and shorter end connections, but it is penalized by eddy-current loss at high speed, has a very limited transient overload power, and has a high uncontrolled generator voltage. The IPM motor shows the better performance compromise, but it might be more complicated to be manufactured. Analytical relationships are first introduced and then validated on three example designs and finite element calculated, accounting for core saturation, harmonic losses, the effects of skewing, and operating temperature. The merits and limitations of the three solutions are quantified comprehensively and summarized by the calculation of the energy consumption over the standard New European Driving Cycl

    Incremental learning for large-scale stream data and its application to cybersecurity

    Get PDF
    As many human currently depend on technologies to assist with daily tasks, there are more and more applications which have been developed to be fit in one small gadget such as smart phone and tablet. Thus, by carrying this small gadget alone, most of our tasks are able to be settled efficiently and fast. Until the end of 20th century, mobile phones are only used to call and to send short message service (sms). However, in early 21st century, a rapid revolution of communi�cation technology from mobile phone into smart phone has been seen in which the smart phone is equipped by 4G Internet line along with the telephone service provider line. Thus, the users are able to make a phone call, send messages using variety of application such as Whatsapp and Line, send email, serving websites, accessing maps and handling some daily tasks via online using online banking, online shopping and online meetings via video conferences. In previous years, if there are cases of missing children or missing cars, the victims would rely on the police investigation. But now, as easy as uploading a notification about the loss on Facebook and spread the news among Facebook users, there are more people are able to help in the search. Despite the advantages that can be obtained using these technologies, there are a group of irresponsible people who take advan�tage of current technologies for their own self-interest. Among the applications that are usually being used by almost Internet users and also are often misused by cyber criminals are email and websites. Therefore, we take this initiative to make enhancement in cyber security application to avoid the Internet users from being trapped and deceived by the trick of cyber criminals by developing detec�tion system of malicious spam email and Distributed Denial of Services (DDoS) 3773(53867 3(53867.1781.8781$0,1$+ iii backscatter. Imagine that a notice with a logo of Mobile Phone company is received by an email informing that the customer had recently run up a large mobile phone bill. A link regarding the bill is attached for him/her to find out the details. Since, the customer thinks that the billing might be wrong, thus the link is clicked. However, the link is directed to a webpage which displays a status that currently the webpage is under construction. Then the customer closes the page and thinking of to visit the website again at other time. Unfortunately, after a single click actually a malicious file is downloaded and installed without the customer aware of it. That malicious file most probably is a Trojan that capable to steal confidential information from victim’s computer. On the next day, when the same person is using the same computer to log in the online banking, all of a sudden find out that his/her money is lost totally. This is one of a worst case scenario of malicious spam email which is usually handled by cybersecurity field. Another different case of cybersecurity is the Distributed Denial of Services (DDoS) attack. Let say, Company X is selling flowers via online in which the market is from the local and international customer. The online business of Company X is running normally as usual, until a day before mother’s day, the webpage of Company X is totally down and the prospective customers could not open the webpage to make order to be sent specially for their beloved mother. Thus, the customers would search another company that sells the same item. The Company X server is down, most probably because of the DDoS attack where a junk traffic is sent to that company server which makes that server could not serve the request by the legitimate customers. This attack effect not only the profit of the company, but also reputation damage, regular customer turnover and productivity decline. Unfortunately, it is difficult for a normal user like us to detect malicious spam 377$ 3(53867$.1781.87810,10,1+ email or DDoS attack with naked eyes. It is because recently the spammers and attacker had improved their strategy so that the malicious email and the DDoS packets are hardly able to be differentiated with the normal email and data packets. Once the Social Engineering is used by the spammers to create relevant email content in the malicious spam email and when a new campaign of DDoS attack is launched by the attacker, no normal users are capable to distinguish the benign and malicious email or data packets. This is where my Ph.D project comes in handy. My Ph.d is focusing on constructing a detection system of malicious spam email and DDoS attack using a large number of dataset which are obtained by a server that collect double-bounce email and darknet for malicious spam email detection system and DDoS backscatter detection system, respectively. As many up-to-date data are used during the learning, the detection system would become more robust to the latest strategy of the cybercriminal. Therefore, the scenario mentioned above can be avoided by assisting the user with important information at the user-end such as malicious spam email filter or at the server firewall. First of all, the method to learn large-scale stream data must be solved before implementing it in the detection system. Therefore, in Chapter 2, the general learning strategy of large-scale data is introduced to be used in the cybersecurity applications which are discussed in Chapter 3 and Chapter 4, respectively. One of a critical criterion of the detection system is capable to learn fast because after the learning, the updated information needs to be passed to user to avoid the user from being deceived by the cybercriminal. To process large-scale data sequences, it is important to choose a suitable learning algorithm that is capable to learn in real time. Incremental learning has an ability to process large data in chunk and update the parameters after learning each chunk. Such type of learning keep and update only the minimum information on a classifier model. 3773(53867 3(53867.1781.8781$0,1$+ Therefore, it requires relatively small memory and short learning time. On the other hand, batch learning is not suitable because it needs to store all training data, which consume a large memory capacity. Due to the limited memory, it is certainly impossible to process online large-scale data sequences using the batch learning. Therefore, the learning of large-scale stream data should be conducted incrementally. This dissertation contains of five chapters. In Chapter 1, the concept of in�cremental learning is briefly described and basic theories on Resource Allocating Network (RAN) and conventional data selection method are discussed in this chapter. Besides that, the overview of this dissertation is also elaborated in this chapter. In Chapter 2, we propose a new algorithm based on incremental Radial Basis Function Network (RBFN) to accelerate the learning in stream data. The data sequences are represented as a large chunk size of data given continuously within a short time. In order to learn such data, the learning should be carried out incrementally. Since it is certainly impossible to learn all data in a short pe�riod, selecting essential data from a given chunk can shorten the learning time. In our method, we select data that are located in untrained or “not well-learned” region and discard data at trained or “well-learned” region. These regions are represented by margin flag. Each region is consisted of similar data which are near to each other. To search the similar data, the well-known LSH method pro�posed by Andoni et al. is used. The LSH method indeed has proven be able to quickly find similar objects in a large database. Moreover, we utilize the LSH ʼs properties; hash value and Hash Table to further reduced the processing time. A flag as a criterion to decide whether to choose or not the training data is added in the Hash Table and is updated in each chunk sequence. Whereas, the hash value of RBF bases that is identical with the hash value of the training data is used to select the RBF bases that is near to the training data. The performance results of 377$ 3(53867$.1781.87810,10,1+ vi the numerical simulation on nine UC Irvine (UCI) Machine Learning Repository datasets indicate that the proposed method can reduce the learning time, while keeping the similar accuracy rate to the conventional method. These results indi�cate that the proposed method can improve the RAN learning algorithm towards the large-scale stream data processing. In Chapter 3, we propose a new online system to detect malicious spam emails and to adapt to the changes of malicious URLs in the body of spam emails by updating the system daily. For this purpose, we develop an autonomous system that learns from double-bounce emails collected at a mail server. To adapt to new malicious campaigns, only new types of spam emails are learned by introducing an active learning scheme into a classifier model. Here, we adopt Resource Allocating Network with Locality Sensitive Hashing (RAN-LSH) as a classifier model with data selection. In this data selection, the same or similar spam emails that have already been learned are quickly searched for a hash table using Locally Sensitive Hashing, and such spam emails are discarded without learning. On the other hand, malicious spam emails are sometimes drastically changed along with a new arrival of malicious campaign. In this case, it is not appropriate to classify such spam emails into malicious or benign by a classifier. It should be analyzed by using a more reliable method such as a malware analyzer. In order to find new types of spam emails, an outlier detection mechanism is implemented in RAN-LSH. To analyze email contents, we adopt the Bag-of-Words (BoW) approach and generate feature vectors whose attributes are transformed based on the normalized term frequency-inverse document frequency. To evaluate the developed system, we use a dataset of double-bounce spam emails which are collected from March 1, 2013 to May 10, 2013. In the experiment, we study the effect of introducing the outlier detection in RAN-LSH. As a result, by introducing the outlier detection, we confirm that the detection accuracy is enhanced on 3773(53867 3(53867.1781.87810,10,1+ average over the testing period. In Chapter 4, we propose a fast Distributed Denial of Service (DDoS) backscat�ter detection system to detect DDoS backscatter from a combination of protocols and ports other than the following two labeled packets: Transmission Control Protocol (TCP) Port 80 (80/TCP) and User datagram Protocol (UDP) Port 53 (53/UDP). Usually, it is hard to detect DDoS backscatter from the unlabeled packets, where an expert is needed to analyze every packet manually. Since it is a costly approach, we propose a detection system using Resource Allocating Network (RAN) with data selection to select essential data. Using this method, the learning time is shorten, and thus, the DDoS backscatter can be detected fast. This detection system consists of two modules which are pre-processing and classifier. With the former module, the packets information are transformed into 17 feature-vectors. With the latter module, the RAN-LSH classifier is used, where only data located at untrained region are selected. The performance of the proposed detection system is evaluated using 9,968 training data from 80/TCP and 53/UDP, whereas 5,933 test data are from unlabeled packets which are col�lected from January 1st, 2013 until January 20th, 2014 at National Institute of Information and Communications Technology (NICT), Japan. The results indi�cate that detection system can detect the DDoS backscatter from both labeled and unlabeled packets with high recall and precision rate within a short time. Finally, in Chapter 5, we discussed the conclusions and the future work of our study: RAN-LSH classifier, malicious spam email detection system and DDoS backscatter detection system
    corecore