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ABSTRACT 

 
 
 

TO DEVELOP AN EFFICIENT VARIABLE SPEED COMPRESSOR 
MOTOR SYSTEM 

 
(Keywords: Variable speed drive, induction motor, compressor, efficiency optimization, neural network 

controller) 
 

 

This research presents a proposed new method of improving the energy 
efficiency of a Variable Speed Drive (VSD) for induction motors. The principles of 
VSD are reviewed with emphasis on the efficiency and power losses associated with the 
operation of the variable speed compressor motor drive, particularly at low speed 
operation. 

The efficiency of induction motor when operated at rated speed and load torque 
is high. However at low load operation, application of the induction motor at rated flux 
will cause the iron losses to increase excessively, hence its efficiency will reduce 
dramatically. To improve this efficiency, it is essential to obtain the flux level that 
minimizes the total motor losses. This technique is known as an efficiency or energy 
optimization control method. In practice, typical of the compressor load does not 
require high dynamic response, therefore improvement of the efficiency optimization 
control that is proposed in this research is based on scalar control model. 

In this research, development of a new neural network controller for efficiency 
optimization control is proposed. The controller is designed to generate both voltage 
and frequency reference signals simultaneously. To achieve a robust controller from 
variation of motor parameters, a real-time or on-line learning algorithm based on a 
second order optimization Levenberg-Marquardt is employed. The simulation of the 
proposed controller for variable speed compressor is presented. The results obtained 
clearly show that the efficiency at low speed is significant increased. Besides that the 
speed of the motor can be maintained. Furthermore, the controller is also robust to the 
motor parameters variation. The simulation results are also verified by experiment. 
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ABSTRAK 
 
 
 
PENGEMBANGAN KECEKAPAN PADA SISTEM MOTOR KOMPRESSOR 

KELAJUAN BOLEHUBAH 
 

(Keywords: Sistem pemacu kelajuan bolehubah, motor aruhan, kompesor, optimisasi kecekapan, 
kendali neural network) 

 

 

 

Kajian ini membentangkan implementasi serta mencadangkan kaedah 
memperbaiki kecekapan untuk Sistem Pemacu Kelajuan Bolehubah (VSD). Perinsip 
berhubung VSD  diulang kaji dengan penekanan terhadap permasalahan kecekapan dan 
pembaziran kuasa yang timbul bagi implementasi pemacu kelajuan bolehubah untuk 
motor kompresor, terutamanya untuk tindakan laju rendah.  

Kecekapan motor aruhan untuk tindakan kelajuan dan muatan daya kilas 
nominal adalah tinggi. Namun untuk tindakan  dengan muatan daya kilas rendah, 
kecekapannya turun. Untuk memperbaiki kecekapan, ialah penting untuk menentukan 
tingkatan fluks motor yang dapat menghasilkan rugi-rugi motor paling sedikit. Cara ini 
dikenali sebagai pengawal kecekapan atau kuasa secara optimal. Pada amalannya, jenis 
muatan daya kilas kompressor tidak memerlukan tanggapan dinamik yang tinggi, 
karenanya kaedah memperbaiki kecekapan yang dicadangkan ialah didasarkan pada 
metode scalar control. 

Kajian ini mencadangkan pengawalan kelajuan yang baru menggunakan 
kecerdasan buatan,untuk menghasilkan kecekapan yang optimal dalam tindakan 
perubahan kelajuan. Pengawal kelajuan ini menghasilkan dua tahap pengeluaran, iaitu 
acuan voltan dan frekuensi dikira secara bersama-sama. Untuk meningkatkan kekokohan 
pengawal ini terhadap perubahan parameter motor, sebuah pembelajaran neural network 
secara terus, menggunakan optimisasi tingkat ke dua Levenberg-Marquardt adalah di 
gunakan. Simulasi untuk pengawal kecekapan yang  yang digunakan pada pemacu 
kelajuan bolehubah motor kompressor dibentangkan. Keputusan yang diperoleh jelas 
menunjukkan efficiency pada laju rendah adalah ditingkatkan. Selain itu kelajuan pada 
motor juga dapat di kawal dan stabil terhadap perubahan parameter motor. Keputusan 
simulasi ini disahkan dengan keputusan ujikaji. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1 Background  

 

Electricity today is mostly generated from non-renewable or fossil fuel 

resources such as oil, natural gas and coal. During the energy crisis of the early 

1970’s, that cause increasing energy costs and the impact of greenhouse gases on 

world climate are among the key forces that encourage efforts and progress for 

electrical energy efficiency or saving (Bose, 2000).  

 

World wide, approximately around 70% of total electrical energy is 

consumed by electric motor (Sen et al., 1996). In 1994 the production of the electric 

motor used as a driver accounts over 4 billion motors (Valentine, 1998). This is an 

equivalent manufacturing rate of nearly 11 million motors per day. With an expected 

8.5% combined average growth rate, the number will increase to 29 million motors 

per day before the end of this year 2006. In additions, around 96% of the total 

electric motors are consumed by the induction motor (Abrahamsen et al., 1998).  

 

Induction motors have many advantages compared to DC motors. Therefore, 

today induction motors are used in various appliances including households, 

industrial, commerce, public service, traction and agriculture. These motors have 

direct impact on the quality of life and providing essentials such as heating, cooling 

and work machines driver. Because of high energy consumption and the very large 



 

 

2

number of installed units, even a small increase in efficiency improvement can have 

major impact on the total electrical energy consumptions (Callcut et al., 1997).  

 

The important segment to save the energy consumed by induction motors is 

heating ventilating and air conditioning system (HVAC) application (Domijan et al., 

1992; Stebbins, 1994 and Abrahamsen et al., 2001). This segment constitutes a high 

percentage of electrical energy consumption and spends considerable time running at 

low loading.  

 

In developed country such as the USA, based on Energy Information 

Administration (EIA) survey, it is estimate that the energy used to operate the HVAC 

can represent over half of the total electrical energy use in a typical commercial 

building (Johnson et al., 1994). In Malaysia electrical consumption for cooling 

system, refer to previous works on energy audit and surveys of official building by 

ASEAN USAID was reported that the energy consumed to cooling the building is 

about 68% of the total electrical energy consumptions (Loewen et al., 1992).  

 

In cooling systems such as air conditioning or refrigerator-freezers system, 

electric motors are used for inlet fan drive, outlet blower and compressor. The main 

consumption of electric energy in air conditioning is consumed by the compressor 

motor drive which is about 80% (Domijan et al, 1992). In most existing air-

conditioning systems the compressor is driven by an induction motor and set at 

constant speed or control by thermostat technique. 

 

 Usually, motor drives in the cooling system is designed for nominal capacity, 

although historically its fully loaded occurs only for a few times per day (Domijan et 

al, 1992 and Stebbins, 1994). Therefore without prejudice to occupant thermal 

comfort filling, implementation of variable speed drives in air conditioner to avoid 

the wasteful use of energy associated with its overuse can result in substantial saving 

of energy. Besides that, it has the potential to increase the energy saving because the 

typical load torque profile of the compressor is proportional to the square of the 

speed, hence the input power profile is proportional to cubic speed (Bose, 2000).  

 

 



 

 

3

 

Furthermore, replacing the fixed speed motor compressor driver with variable 

speed drive also can be used to increase the lifespan of the air conditioner (Chen and 

Tsay, 2004). The reason is with the thermostat technique, the switching on-off of the 

compressor at high speed and high torque suddenly will produce the huge starting 

current and cause stress on the compressor bearings. 

 

 

 

1.2 Energy Saving of a Variable Speed Induction Motor Drive 

 

Variable speed electrical drives have facilitated the revolution of industrial 

automation leading to better quality and higher productivity in various industries and 

home appliances. Over the past decades, DC motors have been used extensively in 

variable speed drive systems. This is because; DC motors offer simple control 

structure. In addition, the speed and armature voltage are always linear.  

 

Despite their simple control structure, there are some major limitations 

associated with the DC motor. For instance, they require regular maintenance and 

cannot be operated in explosive environment, their speed is limited by the 

mechanical commutator and they are heavy and also expensive. Although, the 

induction motor is more rugged and reliable, however its control is very complex and 

needs intricate signal processing to obtain the comparable performance of the DC 

motor drive (Bose, 1982). 

 

Not until a decade later, when semiconductor and fast microprocessors or 

digital signal processor become available, the implementation of a variable speed 

induction motor drive system becomes popular and widely employed (Sen, 1990). In 

addition, due to the superiority of the induction motor drive, for the next decade it 

will encourage to replace the application of the DC motor drives in many industrial 

and home appliances.  
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In terms of the efficiency, operation of the induction motor at rated flux 

results in good utilization of the motor iron hence high efficiency and torque per 

stator ampere can be achieved. At rated flux the nominal electromagnetic torque can 

be developed at all frequencies. However, at light load the motor flux may be greater 

than necessary for development of required load torque. In this condition the iron and 

stator copper losses increase excessively hence the total losses become high and the 

efficiency drops dramatically (Domijan et al., 1992; Abrahamen et al., 1998 and 

Bose, 1997).  

 

According to the load condition, the induction motor drive efficiency can be 

obtained by reducing the motor air gap flux. In scalar control method, the flux can be 

indirectly controlled by adjusting both stator voltage and frequency (Ohnishi et al, 

1988; Couto and Martin, 1994; Cleland et al., 1995 and Zidani et al., 2002). 

 

The main problem of the efficiency optimization control of the induction motor 

drive system at variable load operation is to obtain the optimum motor flux level that 

minimizes the total motor losses and the maximum efficiency is achieved (Abrahamen 

et al., 2001; Kioskederis and Margaris, 1996 and Ohnishi et al., 1988). At the same 

time it is also important to ascertain that the rotor speed of the motor is still stable. In 

addition, the nonlinearities of the induction motor characteristic and the varying of the 

motor variable parameters due to the temperature variations and magnetic saturation 

need to be considered when designing a robust efficient optimization control.  

 

 

 

1.3 Research Objectives and Contributions 

 

The objective of this research is to investigate, implement and improve 

efficiency of the variable speed compressor motor drive, particularly at low speed 

and load operation. The controller is based on the implementation of a scalar control 

model of the induction motor drive system.  
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This research proposes an improvement of efficiency optimization control of 

the variable speed induction motor for driving compressor by developing the neural 

network with on-line/real-time learning algorithm of a second order Levenberg-

Marquardt optimization. The controller is designed to generate both voltage and 

frequency reference signals simultaneously. The design of the controller is verified 

by simulation and laboratory experiment. While performing the study, the significant 

contributions are listed as follows: 

 

1. A new efficiency optimization control scheme for the variable speed 

compressor motor drive using neural network control is developed, in which 

the technique does not require knowledge of the motor parameters. 

  

2. A new structure neural networks controller as a combination between 

recurrent and feed forward networks with multiple outputs is developed. This 

controller generates voltage and frequency reference signals simultaneously. 

By this approach both of the speed and efficiency of the motor can be control 

simultaneously too.    

 

3. A new neural network controller scheme with real-time/on-line learning 

algorithm with the second order Levenberg-Marquardt optimization method 

is developed. By this technique the controller becomes adaptive hence 

completely insensitive to motor parameters variation and more robust. 

 

4. The simulation and experimental set-up to verify the proposed neural network 

efficiency optimization control for the variable speed compressor motor drive 

was developed. The simulation is conducted using S-Function on 

MATLAB/SIMULINK. from the Borland C++, Inc. and the experimental set-

up is centered on TMS320C31 Texas Instruments DSP.    
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1.4 Project Report Organizations 

 

The broad outline of this report is as follows: 

 

 Chapter 2 describes the basic principles of the efficiency optimization control 

of the induction motors drive. Various aspects and problems associated with the 

efficiency optimization control are discussed. The losses of the induction motor drive 

system and various methods for minimizing the motor losses are explained. Besides 

that, reviews of previous and current research conducted in efficiency optimization 

control of the induction motor drive system are described.  

 

 Chapter 3 presents the development of the proposed method. The prospective 

of the neural network control on the efficiency optimization control is discussed. The 

design of the neural network efficiency optimization control is described in detail.  

 

Chapter 4 provides an explanation on the hardware and experimental setup 

used in this research. The major components of the experimental set-up, which 

centered on the TMS320C31 Digital Signal Processor are presented and described.  

 

Chapter 5 verifies the proposed controller. To show the feasibility of the 

proposed controller scheme, the simulation studies by using Simulink-Matlab are 

presented with the results verified by relevant experimental results. 

 

 Finally, main conclusions of the research and recommendation for future 

research directions are presented in Chapter 6. 



 

 

 

 

CHAPTER 2 

 

 

 

OVERVIEW AND PREVIOUS WORK OF EFFICIENCY OPTIMIZATION 

CONTROL OF VARIABLE SPEED INDUCTION MOTOR DRIVE 

SYSTEMS 

 

 

 

2.1 Introduction 

 

This chapter presents an overview of efficiency optimization control of 

variable speed induction motor drive, followed by its theoretical background. The 

equivalent circuit and related equations of the induction motor drive is first 

described. Then the concept of efficiency optimization control is described.  Some 

control strategies which have been implemented in the induction motor drive system 

are discussed. Advantages and disadvantages of previous work are also discussed.  

 

 

 

2.2 Variable Speed Induction Motor Drive System 

 

Variable speed electrical motor drive technology has advanced dramatically 

in the last two decades with the advent of new power semiconductor devices and 

magnetic materials (Sen, 1990 and Shepherd et al., 1995). This technique provides 

continuous wide ranges speed compared to the mechanical variable speed drive. 

Therefore, compared to the mechanical variable speed drive, the electrical variable 

speed drives have potential for energy savings (Rice, 1988). 
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Before the emergence of Power Electronic, the DC motor with its mechanical 

commutator and brushes was the undisputed choice for variable speed drive 

application. The DC motor provide inherent decouple of torque and flux and hence is 

simple to control (Sen et al., 1996). In that time, the induction motors were 

commonly applied as fixed speed machines due to their connection to a fixed voltage 

and frequency supply.  

 

Recent advantages in power electronic, microelectronic and microcomputer 

technologies have made it possible to implement variable speed induction motor in 

many applications (Sen, 1990 and Bose, 1997).  

 

Induction motor was first developed by Galileo Ferraris in 1885   and   Nicola 

Tesla in 1886 (Boldea and Nasar, 2002). They were rugged and easier to construct 

and have many advantages compared to the DC motor. However, its motor has a 

highly coupled, multivariable structure and nonlinear characteristic. By these 

reasons, control performance of the induction motor drive generally requires more 

complicated control algorithms implemented by fast real-time signal processing unit 

(Sen, 1990; Bose, 1997 and Cirstea et al., 2002).  

 

Basically, the variable speed induction motor drive is composed of some 

distinguish elements such as a controllable power converter, an electric motor which 

drives a mechanical load at an adjustable speed and also driver controller (Murphy 

and Turnbull, 1988 and Shepherd et al., 1995). The main elements of the Variable 

Speed Drive (VSD) system are shown in Figure 2.1. 
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Figure 2.1: Block diagram of a variable speed induction motor drive  

 

The power converter receives ac or dc supply voltages from the main power 

supply and feeds the motor with appropriately condition voltage, current and 

frequency. In close loop the controller receives command from reference signal and 

actual speed information from the load. The actual speed should follow the reference 

signal command value as accurately as possible in a short time without ripple and 

overshoot. The mechanical load has a torque-speed characteristic representing the 

counter torque which must be overcomed by the drive motor.  

 

 

 

2.3 Power Losses of  A Variable Speed Induction Motor Drive 

 

The output power developed by the motor is proportional to the product of 

the shaft torque and the shaft rotational speed. The value of the development torque 

usually varies automatically to satisfy the demand of the load torque plus any torque 

associated with friction and windage. Any significant change in motor speed, 

however must be obtained in a controlled manner by making some adjustment to its 

electrical supply. 

  

Associated to the power flow of the motor drive system, the input power of 

the system generates mechanical output and power losses. The power losses occur in 

components of the VSD which includes the power converter and the induction motor 

losses. Correlation between input, losses and output power of the VSD is given by 

following equation: 

Main power 
supply 

Reference 
Signal 

IM
Mechanical 

Load 

Power 
converter

 
Controller 
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lossesmechlossesimlossesinvin PPPP ,,, ++=  (2.1)

 

where:  Pin       : the input power 

 Pinv,losses    : the inverter power losses 

 Pim,losses     : the induction motor power losses 

 Pmech,losses  : the mechanical power losses 

 

 

 

2.3.1 Inverter Losses 

 

Nowadays, the Pulse Width Modulation Voltage Source Inverter (PWM-VSI) 

converter topology is used as a standard power converter for variable speed induction 

motor drive system (Cirstea et al., 2002). Configuration of the three phases Voltage 

Source Inverter (VSI) using Insulated Gate Bipolar Transistors (IGBT) and diode for 

the induction motor drive system is shown in Figure 2.2.  

 

  

 

 

  

 

 

Figure 2.2: Circuit of a three phase IGBT inverter 
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The inverter is used to convert the DC supply (fixed) to variable 

frequency/voltage AC supply. The losses powers of the inverter occur in the power 

semiconductor devices such as IGBTs and diodes. These losses compose of 

conduction and switching losses (Rashid, 1993 and Mohan et al., 1995). 

 

Conduction losses are due to the fact that the voltage across the switch in the 

on state is not zero, but typically in the range of 1 to 2 V for IGBTs (Skvarenina, 

2002). In addition, a resistive element of the semiconductor device will generate 

power dissipation. 

 

In the ideal case of a switching event, there would be no power loss in the 

switch since either the current in the switch is zero (switch open) or the voltage 

across the switch is zero (switch closed). In reality, the switching losses are the 

second major loss mechanism and are due to the fact that, during the turn-on and 

turn-off transition, current is flowing while voltage is present across the device. Also 

the losses will generate in the dc-link capacitor and the filter components. However 

the losses in the dc-link capacitor are disregarded (Grigsby, 2001). 

 

In order to avoid audible noise being radiated from motor windings or 

transformers, most modern inverters operate at switching frequencies substantially 

above 10 kHz (Bose, 2001). The maximum switching frequency needs to be 

carefully considered due to Electromagnetic Interference (EMI) factor.  

 

The inverter losses are also influence by the inverter modulation strategy 

(Trzynadlowski and Legowski, 1994 and Emadi, 2005). For drives with the size of 

some kilowatts, the inverter losses only constitute a small fraction of the total motor 

drive losses (Abrahamsen et al., 1998). By this reason, it is not commented further in 

this thesis. 
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2.3.2  Induction Motor Losses 

 

Power losses in the induction motor are portions of the input power that 

eventually transform to heat rather than driving the load. Losses in induction motor 

occur in windings, magnetic cores, besides mechanical friction and windage losses 

(Boldea and Nasar, 2002). These losses can be classified as follows (Garcia et al., 

1994): 

 

1. Stator Resistance - current losses in the windings. 

2. Rotor Resistance - current losses in the rotor bars and end rings. 

3. Iron Core Losses - magnetic losses in laminations, inductance and eddy 

current losses. 

4. Stray Losses - magnetic transfer loss in the air gap between stator and rotor. 

5. Windage and Friction - mechanical drag in bearings and cooling fan. 

 

Losses in the induction motor also can be classified based on their electrical 

frequency such as: fundamental and harmonic losses. Frequency harmonics are to be 

considered only when the induction motor is static converter fed, and thus the 

voltage time harmonics content depends on the type of the converter and the pulse 

width modulation used with it (Boldea and Nasar, 2002).  

 

 

 

2.3.2.1 Stator Resistance Losses  

 

It is known that resistor components in the stator winding will generate heat 

proportional to the square of the current. The stator power losses are a function of the 

current flowing in the stator winding as defined by: 

 

 
ssscu RIP 2

, =  (2.2)
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where: Pcu,s  : stator copper losses per phase. 

Is  : stator current. 

Rs  : stator resistance. 

 

The stator resistance will vary in accordance to the temperature, correction 

for the resistance of the stator winding is given by (IEEE standard-112, 2004): 

 

 
tT
TT

RR stsT +
+

=
0

0  
(2.3)

 

where: RsT and  Rst  : stator resistance at temperature T and t . 

T0   : 234.5 for cooper and 212.9 for aluminium. 

 

High frequency time harmonics in the supply voltage of IMs may occur either 

because the induction motor itself is fed from a PWM static power converter for 

variable speed or because, in the local power grid, some other power electronic 

devices produce voltage time harmonics at the induction motor terminals. For 

voltage-source static power converters, the time harmonics frequency content and 

distribution depends on the PWM strategy and the switching period (Boldea and 

Nasar, 2002).  

 

The variation of resistance R and leakage inductance Ll for conductors in 

slots with frequency is at first rapid, being proportional to f 2. As the frequency 

increases further, the field penetration depth gets smaller than the conductor height 

and the rate of change of R and Ll decreases to become proportional to f½ as shown 

in Figure 2.3 (Boldea and Nasar, 2002). 
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Figure 2.3: R and L1 variation with frequency 

 

For high frequencies, the equivalent circuit of the induction motor can be 

simplified by eliminating the magnetization branch as given in Figure 2.4. 

 

 

 

 

 

 

 

Figure 2.4: Equivalent circuit for voltage time harmonic 

 

In general, the reactance prevails at high frequencies and a value of the 

current harmonic is defined: 
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 )()()( nrlnsln fLfLfL +=σ  (2.5)

 

 

 

 

nXr1(nf1) nXs1(nf1)Rs(nf1)

Vn 

Rr(nf1)In 

R,Ll 

R 
Ll 

f 



 

 

15

where: In  : harmonic current.  

Lσ  : leakage inductance.  

Vn  : harmonic voltage.  

f1  : fundamental frequency.  

fn  : harmonics frequency.  

n  : harmonic number.  

 

The frequency harmonic loss in the stator winding time harmonic losses is 

given by:  

 

 ( )nsnsncu fRIP 2
, 3=  (2.6)

 

where: Pcu,sn : harmonic stator winding power loss.  

 

 

 

2.3.2.2 Rotor Resistance Losses  

 

The rotor copper loss is a function of the current flowing in the rotor winding 

or rotor bar as defined by: 

 

 
rrrcu RIP 2

, =  (2.7)

 

where:  Pcu,r  : rotor copper losses.  

Ir  : rotor current. 

Rr  : rotor resistance. 
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The rotor resistance will vary accordance to the temperature, correction for 

the resistance of the rotor winding is given by (IEEE standard-112, 2004): 

 

 
tT
TT

RR rtrT +
+

=
0

0  
(2.8)

 

where:  RrT and  Rrt : rotor resistance at temperature T and t. 

 

The most common rotor bar is developed by aluminium, although copper may also 

be used.  

 

The frequency harmonic loss in the rotor winding time harmonic losses is 

given by: 

  

 ( )nrnrncu fRIP 2
, 3=  (2.9)

 

where: Pcu,rn : harmonic rotor winding power loss.  

 

 

 

2.3.2.3 Core Losses  

 

The core losses in the induction motor comprise the hysteresis and eddy 

current power losses. The losses occur in both the stator and rotor core. There are 

several variant of the calculation core losses, the core loss due to fundamental 

frequency mutual flux in the stator can be approached by (Sousa et al., 1992): 

 

 2Φ= fkP hhs  (2.10)

 

 22Φ= fkP ees  (2.11)
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 eshscs PPP +=  (2.12)

 

 222 Φ+Φ= fkfk eh  (2.13)

 

where: Pcs   : stator core power loss.  

Ph  : hysteresis power loss.  

Pe  : eddy power loss.  

kh  : hysteresis coefficient.  

ke  : eddy current coefficient.  

Φ : air gap flux/motor flux.  

f  : stator voltage frequency. 

   

Corresponding rotor core losses is approached as: 

 

 ( ) 222 Φ+Φ= sfksfkP ehcr  (2.14)

 

where:  Pcr  : rotor core power loss.  

s : slip.  

 

The total core losses can be rearranged as follows: 

 

 crcsc PPP +=  (2.15)

 

 
    ( ) ( ) 22211

Φ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

+
= fsk

f
sk eh  

(2.16)

 

As the air gap flux is related to air-gap voltage as given by: 

 

 
f

V
k m

c=Φ  
(2.17)

 

where: kc   : core coefficient.  

Vm : air-gap voltage.  
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The total power losses can be rewritten as: 

 

 ( ) ( ) 2211
mehcc Vsk

f
skkP ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++

+
=  

(2.18)

 

The equivalent core loss resistance can be derived as: 

 

 
( ) ( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++

+
=

211
1

sk
f

skk
R

ehc

m  
(2.19)

 

Assuming that the coefficients of hysteresis and eddy current losses remain 

the same at harmonic frequency and since the harmonic slip is unity, the equivalent 

core losses resistance at harmonic frequency can be obtained from the fundamental 

core resistance as: 

 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=

e
n

h
c

nm

k
f
kk

R 5.0
,  

(2.20)

 

 

 

  

2.3.2.4 Stray Load Losses  

 

The stray load losses are additional core and eddy current losses caused by 

the increase in air-gap leakage flux with load and losses caused by high frequency 

pulsation fluxes. These losses can be divided into six components as follows (Sen 

and Landa, 1990): 

 

1)  The eddy current loss in the stator copper due to slot leakage flux. 

2)  The losses in the motor end structure due to end leakage flux. 

3)  The high-frequency rotor and stator surface losses due to zig-zag leakage flux. 
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4)  The high-frequency tooth pulsation and rotor I2R losses also due to the zig-

zag leakage flux. 

5)  The six-times-frequency (for three-phase machines) rotor I2R losses due to 

circulating currents induced by the stator belt leakage flux. 

6)  The extra iron losses in motors with skewed slots due to skew leakage flux. 

 

For the fundamental current, the stray losses essentially concentrate at the 

stator, this losses can be approached by (Sousa et al., 1992): 

 

 22
1, Sehsstray IfkfkkP ⎥

⎦

⎤
⎢
⎣

⎡
+=  

(2.21)

 

where: Pstray,1 : stray load power losses at fundamental frequency.  

ks  : stray load coefficient.  

 

The equivalent resistance Rstray can be represented in series with the stator 

leakage reactance as given by: 

 

 [ ]2
1, fkfkkR ehsstray +=  (2.22)

  
 

The stator per phase stray loss at harmonic frequency fn is given by (Sousa et 

al., 1992): 

 

 
2
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(2.23)

 

where: Pstray,n  : stray load power losses at harmonic frequency.  

ks,n  : stray load coefficient.  

Vstray,n  : stray leakage voltage at harmonic frequency.  
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The loss can be represented by an equivalent resistance Rstray,n in parallel with 

the leakage inductance as: 
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(2.24)

 

 

Kioskeridis and Margaris (1996) approach the stray loss arise on the copper 

and iron of the induction motor as: 

  

 2222
sessszbstray aIcIcIcP +Φ+=  (2.25)

 

where: Pstray  : total stray load power losses.  

Czb , Cs  and Ce: constantans.  

a : per-unit frequency.  

 

Sen and Landa (1990) described that the value of the Czb , Cs  and Ce 

are dependent on the skin effect, flux density, no-load current, stator current and 

other empirical factors.  

 

 

 

2.3.2.5 Mechanical Loss  

  

The mechanical loss which consists of friction and windage power losses is 

due to friction of the bearing and air friction caused by the motion of the moving part 

through the surrounding medium. These losses are relatively fixed and a small 

percentage of the total motor losses, which can be broken down by the following 

equations (Dabala, 2001): 

 

 

 



 

 

21

1. Friction power loss in bearing is approximated by: 

 

 5105.1 −=
be

mbe
mbembe d

v
FP  

(2.26)

 

where: Pmbe : friction loss in bearing.  

Fmbe : radial force in the bearing.  

dbe : average diameter on the roller elements.  

Vmbe : perimeter speed on the bearing race surface.  

 

2.  Windage power loss of outside fan is approximated by: 

 

 

e

mw
mw

QH
P

η
=  

(2.27)

 

where: Pmw : windage power loss.  

Hmw : fan pressure.  

Q : coolant output volume.  

ηe : fan energetic efficiency.  

 

3.  Friction air power losses of rotor and windage losses of two internal fans are 

approximated by: 

 

 mwmwin pPP 2=  (2.28)

 

where: Pmwin : friction air power loss.  

p : pole pairs number.  
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4. Friction power loss of V-ring seals is approximated by: 

 

 31033.52 −= smsmsms NdFP µ  (2.29)

 

where: Pms : friction power loss of V-ring seals.  

µms : coefficient of friction.  

Fms : force between rubber V-ring seal and end-shield.  

N : rotor speed (rpm).  

ds : diameter of seal.  

 

In simple calculation, Sen and Landa (1990) described that the total 

friction and windage losses are approximately proportional to the square of 

the speed and to the contact surface area. The total mechanical induction 

motor losses can be approximated by: 

 

 2
, NcP fwlossesmech =  (2.30)

 

where: Pmech,losses: mechanical power losses. 

cfw     : mechanical losses coefficient.  

 

Sen and Landa (1990) assumed that the mechanical induction motor 

losses to be unaffected by voltage harmonic distortion. 
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2.4  Efficiency Optimization of an Induction Motor Drive System 

 

The efficiency of the induction motor is determined by the relationship 

between input power, power losses and output power as given by: 

 

 

in

out

P
P

=η  
(2.31)

 

 

lossout

out

PP
P
+

=η  
(2.32)

 

where:  Ploss : power losses. 

Pout : mechanical output power. 

  

Equation 3.32 shows that the only way to increase the efficiency of an 

induction motor operating at a given level of output power is to reduce the losses 

within the motor (Umans, 2004).  

 

To optimize the efficiency of induction motor drive by means of power losses 

reduction reports that, Kusko and Galler in 1983 suggest three categories of 

efficiency optimization motor drive (Ta and Hori, 2001) i.e.: 

 

1. Motor selection and design improvement. 

2. Improvement of the waveforms supplied by power inverter. 

3. Utilizing a suitable control method. 

 

In the case of the motor drive duty cycle operating less than the rated torque 

and speed condition most of the time, it is not possible to improve the efficiency by 

machine design or by waveform shaping techniques. Utilizing of the suitable control 

flux method that optimized the motor efficiency is more flexible.  
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2.4.1. Relationship of Induction Motor Variables 

 

The three phase induction motor with balance input voltage can be analysed 

by single phase equivalent circuit. In steady state mode, the per-phase equivalent 

circuit of the induction motor in fundamental frequency is given in Figure 2.5.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5: Per-phase induction motor equivalent circuit 

 

In the equivalent circuit of Figure 2.5, the stray losses are represented by 

equivalent resistance Rstr in the stator branch. The stray losses are mainly attributed 

to the rotor current, since the rotor current in the squirrel cage induction motor is not 

measurable, the stray losses are expressed as a function of the stator current 

(Kioskeridis and Margaris, 1996). 
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Referring to the Figure 2.5, in the per-unit system, the induction motor 

equation   will be determined. The per-unit frequency is given by: 

 

 

b

ea
ω
ω

=  
(2.33)

  

 
s−

=
1
ω

 
(2.34)

 

Where: ωe : supply frequency(r/s).  

ωb  : base speed(r/s).  

ω  : motor speed (r/s).  

 

The magnetizing current is determined by: 

 

 

m
m X

aEI =  
(2.35)

 

 

mX
Φ

=  
(2.36)

 

where: Im : magnetizing current.  

E  : the air-gap emf.  

Xm : mutual reactance.  

 

The rotor current is determined by: 

 

 

( ) 2'2'

'

lrr

r
XasR

I
+

Φ
=  

(2.37)

 

where: Ir
’ : rotor current referred to the stator.  

Rr
’  : rotor resistance referred to the stator.   

Xlr
’  : rotor leakage reactance referred to the stator.   
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From Equation (2.37) the air-gap flux can be obtained by: 

 

 ( ) 2'2''
lrrr XasRI +=Φ  (2.38)

 

The electromagnetic torque is given by: 
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R
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'
2'=  

(2.39)

 

Substitution Equation (2.36) into (2.38) the electromagnetic torque can be obtained 

by:  

    

 

( ) 2'2'
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T
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(2.40)

 

Usually, the induction motor operates with a small slip and the condition 

saRr
' >> '

lraX  holds. By this assumption, the air-gap flux and torque electromagnetic 

can be approached by: 
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The stator current of the induction motor can be determined by (Kioskeridis 

and Margaris, 1996): 

 

 2'22
rLms IcII +=  (2.44)

 

where:  

 

 

m
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L X

Xc
'

21+=  
(2.45)

 

The magnetization current curve can be approximated by (Kioskeridis and 

Margaris, 1996): 

 

 5
3

3
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Hence the magnetizing reactance is given by: 
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where: s1 , s2 and s3 : constantans.  
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2.4.2. Efficiency Control of an Induction Motor 

 

The efficiency of the induction motor is high when it is operated at the rated 

flux, load and speed. However, at light loads the flux at rated operation causes 

excessive core loss, thus impairing the efficiency of the induction motor drive (Sousa 

et al., 1995 and Bose et al., 1997). In this condition the motor flux is more than the 

necessary for the development of the required torque. Therefore to improve the 

induction motor efficiency, the motor air gap flux must be reduced.  

 

The technique to minimise the motor drive by adjusting the motor flux level 

according to the motor load is called energy optimal control (Abrahamsen et al., 

1998). This technique is also known as efficiency optimization control (Garcia el al., 

1994 and Sousa et al., 1995) or loss minimization control (Vukosavic and Levi, 

2003) 

 

The optimal operating point is achieved when the sum of the induction motor 

losses components is minimum (Abrahamsen et al., 1998; Kioskeridis and Margaris, 

1996; Moreno et al., 1997; Sousa et al., 1995 and Bose et al., 1997).  

 

 The basic principle of the efficiency optimization control is hereafter 

described with the main focus on the motor losses minimization. The 

electromagnetic torque of the induction motor can be approximated by (Bose, 2001):  

 

 rmtee IIkT =  (2.49)

 

where: Te : electromagnetic torque.  

Im  : magnetizing current.  

Ir  : rotor current.  

kte  : constantan.  
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From Equation (2.49), the electromagnetic torque of the induction motor can 

be generated by the numbers of combinations of magnetizing and torque producing 

rotor current. It is thus possible to obtain the same torque with different combination 

of flux and current value. For every load and speed condition, there exists a 

magnetizing current where the motor losses are minimal (Abrahamsen et al., 1998)   

 

Illustration of its combination associated to the phasor diagram of the voltage 

and current of the motor is as shown in Figure 2.6 (Murphy and Turnbull, 1988).  

 

 

 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.6: Phasor diagram of the induction motor voltage and current at light load 

operation: (a) at rated stator voltage and (b) at half rated stator voltage. 

 

From Figure 2.6 the influence of the stator voltage to the motor losses can be 

described as follows. At light load operation and at rated stator voltage, the rotor 

current Ir is quite small, but the stator current Is and magnetic current Im are high as 

shown in Figure 2.6(a).  If the voltage E is reduced by half, as shown in Figure 

2.6(b), the rotor current Ir must double in order to develop the same electromagnetic 

E Ir 
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Im 
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torque as before. The motor flux and magnetizing current Im are also halved and the 

total stator current Is is reduced.   

 

By a proper adjustment of the magnetic flux, an appropriate balance between 

copper and iron losses can be achieved to minimize the total motor drive losses. 

Beside that, from Equation (2.25), the stray loss reduces while the motor flux 

decreases.  

 

However, the motor speed decrease while the magnetizing current decrease 

and in order to maintain the speed, the speed component of supply such as stator 

current for vector control and the stator frequency for scalar control must be 

increased.  

 

A number of methods have been published on efficiency optimization control 

of the induction motor drive system.  The technique allowing the efficiency 

improvement can be divided into two categories (Kioskeridis and Margaris, 1996; 

Moreno et al., 1997; Bernal et al., 2000; Ta and Hori, 2001 and Chakraborty et al., 

2002): 

 

1. A Loss-model-based controller (LMC). 

2. A search controller (SC). 

 

The following section shows that by controlling the motor flux level or its 

equivalent variable command, the required speed and electromagnetic torque can be 

established.  
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2.4.3. Loss-Model-Based Controller Method 

 

The loss-model-based approach consisting of computing the losses by using 

the machine model and selecting the flux level that minimizes these losses. In the 

literatures, different LMC approach model can be found.  

 

 

 

2.4.3.1. Principle of Loss-Model-Based Controller Method 

 

Basically, the LMC method determines the optimum flux function by deriving 

the equation of the power losses of the motor drive.  If rotor iron and inverter losses 

are neglected and expressing stray and mechanical losses using a simple assumption, 

the total power losses in the induction motor drive are given by (Kioskeridis and 

Margaris, 1996): 
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where: 22
rstr Ic ω  : stray power loss.  

2ωfwc   : mechanical power loss. 

 

Eliminating the stator and rotor current in Equation (2.50) by substituting 

Equations (2.36) and (2.44) yield: 
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The sensitivity function of input power motor drive with respect to the air gap 

flux at steady state is determined as follows: 
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The second derivative of the function in Equation (2.51) is given by: 
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At any motor flux value, the Equation (2.54) is: 
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Based on Equation (2.55) it can be concluded that function of Equation (2.51) 

is concave and it means that there is a value of flux that will generate minimum power 

losses (Blanusa and Vukasovic, 2003).  

 

The losses minimization condition with respect to air-gap flux of the induction 

motor can be determined by the sensitivity power losses Equation (2.53) equal to 

zero. Substitution of the Equation (2.43) for the loss minimization condition is given 

by: 
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Condition of the Equation (2.56) can be used in the wound-rotor induction 

motor, but in the squirrel cage induction motor, the rotor current must be substituted 

by the stator current, since the former cannot be measured. Solving for optimum air- 

gap flux by substituting Equation (2.40) and (2.48) in Equation (2.56) yields: 
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where: 
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where: Φopt : optimal air-gap flux.  
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An example of a block diagram of the LMC of the induction motor drive that 

had been proposed by Kioskeridis and Margaris (1996) is given in Figure 2.7. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7: Block diagram of the LMC of the induction motor drive 

 

 

 

2.4.3.2. Previous Work on the Loss-Model-Based Controller Method  

 

Under specific speed and torque, Chen and Yeh (1992) derive the induction 

mathematic model for efficiency optimization. Without harmonic frequency effect 

consideration, the optimum voltage and slip frequency to achieve the minimum power 

losses are obtained by: 
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s

Rr
sl rωω =  

(2.63)

 

where: Vs,opt : the optimal stator voltage.  

TL  : the load torque.  

Rth  : the Thevenin equivalent resistance.  

Xth  : the Thevenin equivalent reactance.  

 

Wasynczuk et al. (1998) described efficiency optimization in vector control of 

induction motor drives. They suggested that in order to maintain maximum efficiency, 

the induction motor should operate at a constant slip. The function of the efficiency in 

terms of slip frequency is derived after considerable algebraic expression is given by:  
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The slip frequency that result the maximum efficiency is determined by:  
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Garcia et al. (1994) and Leindhold and Garcia (1998) described efficiency 

optimization in vector control induction motor drive. The focus of these papers is the 

minimization of the copper and core losses at steady state. The optimum torque 

current (Id) for maximizing the efficiency is determined by differentiating the power 

losses function with respect to the torque current (Id) and equalling it to zero. With Md 

the mutual inductance between the stator and rotor of the induction motor equivalent 

circuit, the optimal torque current (Id) for maximum efficiency is given by:  
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Bernal et al. (2000) proposed loss minimising control scheme for induction 

motors in vector control. With neglecting saturation and Ld is d-axis inductance, the 

optimal torque current (Id) to achieve the minimum losses is given by:  
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2.4.4 Search Controller Method 

 

Search controller (SC) method also known as on-line efficiency optimization 

controller is a control technique based on the minimum input power tracking 

approach. The operation principle of the search controller is that the input power is 

first measured and then the motor flux function is gradually decreased to achieve the 

minimum input power associated to the minimum power losses or maximum 

efficiency.  

 

 

 

2.4.4.1 Principle of a Search Controller Method 

 

The philosophy of search controller is to minimize the motor drive input 

power by iterative adjustment of the motor flux or its equivalent variable command. 

The input power of the motor drive is a parabolic function of the flux, that has 

strictly positive second derivative with regime-dependent minimum that can be 

found by various search procedures (Sousa et al., 1995; Kioskeridis and Margaris, 

1996; Moreno et al., 1997; Hasan et al., 1997;  Bose et al., 1997; Vukosavic and 

Levi, 2003; Abdin et al., 2003; Chakraborti  and Hori, 2003 and Pryymak et al., 

2005). 
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Assume that the machine operates initially at rated flux in steady state with 

low load torque at a certain speed as indicated in Figure 2.8 (Cleland et al., 1995).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8: On-line search method of flux programming efficiency 

optimization control. 

 

 

The motor flux is decreased gradually by reducing the stator voltage of the 

supply. As the core losses decrease with a decrease of flux, the copper losses 

increase but the total losses on the system decrease, hence the overall efficiency is 

improved. This is reflected in the decrease of the dc link power, as shown for the 

same output power.  
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Decreasing the stator voltage is continued until the system settled at the 

minimum input power, which means that the power losses become minimum and the 

efficiency become maximum. Any search attempt beyond minimum point adversely 

affects efficiency and forces the search direction such that operation always settles at 

minimum point.  

 

This method has the advantage of the control not requiring knowledge of the 

motor parameters and it is universally applicable to any arbitrary machine. 

 

An example of a block diagram of the search controller method of the 

induction motor drive that had been proposed by Kioskeridis and Margaris (1996) is 

given in Figure 2.9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9: Block diagram of the search controller method of the induction motor 

drive 
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2.4.4.2 Previous Work on the Search Controller  Method  

 

Sul and Park (1988) proposed a technique that maximizes the efficiency by 

means of optimal slip in scalar control model. To find the optimal slip, a given 

torque-speed curve is automatically sectioned by the microprocessor according to the 

torque and speed. The optimal slip is first searched hence the minimum input power 

is achieved, and stored in the microprocessor memory as a lookup table. The 

controlled system is then forced to track the optimal slip given in the lookup table. 

The technique can be considered as an indirect way to minimize the input power.  

 

Famouri and Cathey (1991) proposed an adaptive perturbing controller that 

minimizes the input power of a variable speed motor drive system on the scalar 

control model. A proportional-integral controller is developed to regulate the value 

of the stator voltage that adjusts the volt per hertz ratio. The subcontroller also added 

to control the inverter output frequency that obtains the motor speed. 

 

Sousa et al. (1995) proposed the search controller on the vector control model 

by adaptively reducing the flux current reference compensator by the fuzzy logic 

controller. Input of the fuzzy logic controller is stator current and the output is the 

flux current reference compensator. The block diagram of the proposed fuzzy logic 

control is given in Figure 2.10. 

 

 

 

 

 

 

Figure 2.10: The block diagram of the fuzzy logic control scheme proposed 

by Sousa et al. 
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Huang and El-Sharkawi (1996) proposed the search controller in the scalar 

control model by adaptively obtaining the stator voltage per hertz ratio use fuzzy 

logic controller. Input of the fuzzy logic controller is the change of input power and 

volt per hertz ratio. The output is the new change of volt per hertz ratio. The block 

diagram of the fuzzy logic control of the proposed model is given in Figure 2.11. 

 

 

 

 

 

 

Figure 2.11: The block diagram of the fuzzy logic control scheme proposed by 

Huang and El-Sharkawi. 

 

Cleland and Turner, (1996) proposed the search controller in the scalar 

control model by adaptively reducing the stator voltage reference with the use of a 

fuzzy logic controller. The torque pulsation problem is overcome with the help of 

feed-forward pulsating torque compensation. Input of the fuzzy logic controller is 

stator voltage and input power and the output is the voltage reference compensator. 

The block diagram of the fuzzy logic control of the proposed model is given in 

Figure 2.12. 

 

 

 

 

 

Figure 2.12: The block diagram of the fuzzy logic control scheme proposed by 

Cleland and Turner 
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Choy et al. in 1996 used a neural network to perform the search control. 

Based on the steady state induction motor model calculation, the neural network 

controller is trained in different operating points. The back propagation learning 

algorithm is employed. The neural controller consists of three layers, two neurons in 

the input layer and the output layer is slip speed reference. Input of the proposed 

controller consists of torque and speed of the motor. The network structure of the 

proposed efficiency optimization is given in Figure 2.13. 

 

 

 

 

 

 

 

 

 

 

Figure 2.13: The structure of neural network-based efficency optimization 

control scheme proposed by Choy et al. 

 

 

Hasan et al. in 1997 and Zang and Hasan (1999) used a neural network to 

perform the search controller function in the vector control induction motor drive 

system. Based on the steady state induction motor model, the motor power losses are 

calculated as a training data. The back propagation learning algorithm is employed to 

train the neural network controller in different operating point.  

 

Their proposed neural control model has one input layer, two hidden layer 

and one output layer. The input layer consists of speed and load torque reference 

signals. The output layer has only one neuron for the magnetizing current. The first 

hidden layer has ten neurons and the second hidden layer has five neurons. The 

proposed network structure model is given in Figure 2.14. 
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Figure 2.14: The structure of neural network-based efficency optimization 

control scheme proposed by Hasan et al . 

 

Moreno et al. (1997) compare the different flux optimization algorithms to 

improve efficiency at steady state in a vector controlled induction motor drive. In this 

paper the conventional numeric search algorithm such a Rosenbrock, proportional, 

gradient, Fibonacci method and intelligent search fuzzy logic control is reviewed. 

The fuzzy logic control employed 14 rule based, with the error speed signal as an 

input. The block diagram of the proposed fuzzy logic control is given in Figure 2.15. 

 

 

 

 

 

 

Figure 2.15: The block diagram of the fuzzy logic control scheme proposed by 

Moreno et al. 
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Bose et al. (1997) stated that the main advantage of using fuzzy control 

instead of classical search control scheme. The controller was implemented in a 

sensorless stator flux oriented vector control motor drive. However, it was the first 

time that search control was realized in sensorless drive. He proposed the input 

power and flux current error as an input of the controller. The block diagram of the 

fuzzy logic control is given in Figure 2.16. 

 

 

 

 

 

 

 

Figure 2.16: The block diagram of the fuzzy logic control scheme proposed by Bose 

et al.  

 

 

Ta and Hori (2001) proposed a technique that maximizes the efficiency 

model in vector control for electrical vehicle load model. The optimal torque current 

reference is searched by golden section scheme. To limit torque pulsation by the 

stepwise decrease in the flux current, the low pass filter is added in the controller.  

 

Chakraborty et al., (2002) and Chakraborty and Hori (2003) proposed a 

technique that maximizes the efficiency model in vector control by two steps. The 

optimal flux current reference is calculated based on the steady state loss model. The 

optimal flux current estimation employed is the same as that had been developed by 

Garcia et al. (1994) and Leindhold and Garcia (1998). In real-time application the 

optimal current flux reference is searched around the optimal current that has been 

determined by the LMC method. They claim that the convergence time can be 

reduced. 
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Pryymak et al. in 2005 used a neural network to perform the search controller 

in the vector control induction motor drive system. The difference to Hassan et al., 

(1997) paper is that the changes of the resistance value due to temperature variation 

and the change of the inductances due to core saturation curves are considered in the 

power losses calculation.  

 

Pryymak et al., use the Levenberg-Marquardt learning algorithm, the neural 

network was trained with an off-line scheme. The neural controller consists of three 

layers, three neurons in the input layer and the output layer is the current flux 

reference. Input of the proposed controller consists of electromagnetic torque, rotor 

resistor and speed of the motor. However, they did not perform an experimental 

validation. The structure of the proposed controller is given in Figure 2.17.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.17: The structure of neural network-based efficiency optimization 

control scheme proposed by Pryymak et al. 
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2.5 Summary 

 

The principle of the efficiency on the VSD mainly on the induction motor has 

been described. The review of the efficiency optimization control on VSD also has 

been reported. It is clear that the implementation of the efficiency optimization 

control is focused on minimizing the losses of the induction motor drive by 

controlling the motor flux function. The concept of efficiency optimization control 

has been described and shown that maintaining the flux of a motor is ideal to 

optimize the efficiency during speed and load variation.  

 

The previous work on LMC method shows that the main advantage is 

simplificity of this method i.e. does not require extra hardware. However, it is 

mandatory that an accurate knowledge of motor parameters is known, which change 

considerably with temperature, saturation and skin effect. In real-time application, 

the difficulty in measuring the motor parameters of the loss model does not permit 

the implementation of the LMC (Sul and Park, 1988; Kioskeridis and Margaris, 

1996; and Famouri and Cathey, 1991). 

 

The previous works on the SC method show that to achieve optimal 

efficiency, the flux is decremented in steps until the measured input power for a 

certain load torque and speed condition settles down to the lowest value. This 

method does not require any knowledge of the motor parameters, is completely 

insensitive to motor parameter variation and the algorithm is applicable universally 

to any arbitrary drive (Bose et al., 1997).  

 

 

 

 

 

 



 

 

 

 

CHAPTER 3 

 

 

 
DEVELOPMENT OF A NEURAL NETWORK EFFICIENCY FOR 

EFFICIENCY OPTIMIZATION  

 
 

 

3.1 Introduction 

 

This chapter discusses the development of an efficiency optimization control 

technique of a variable speed compressor motor drive system. The prospective of 

adaptive neural-network on the search control method of the efficiency optimization 

control will be described first. Before proceeding to the detail of development of the 

adaptive neural network efficiency optimization controller scheme, it is essential to 

understand the concept of the on-line learning neural network controller strategy 

itself. Finally, the function of the proposed adaptive neural network controller for 

efficiency optimization of variable speed compressor motor drive is presented. 

 

 

 

3.2 The Neural Network Perspective on the Efficiency Optimization Control 

Method 

 

A linear control system with invariant plant parameters can be designed 

easily with classical design techniques, such as Nyquist and Bode plots. However in 

induction motor drive applications, where the parameters of the drive hardly remain 

constant, the performance of a conventional feedback controller is difficult to 

maintain. The effect of the parameters variations can be compensated to some extent 
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by a high-gain negative feedback loop, but excessive gain may cause an under-

damping or instability problem (Bose, 2001).  

 

The plant parameters variation require adaptation of the controller parameters 

in real-time known as adaptive control technique (Astrom and Wittenmark, 1995; 

Narendra and  Annaswami, 1989; Mills et al., 1996; Gupta and Sinha, 1996 and Lu, 

1996). Generally, the adaptive control system can be thought of as having two loops. 

The first loop is a normal feedback based on the process and the other loop is the 

parameter or mechanism adjustment loop. 

 

Referring to the previous works that have been described in the Chapter 2, 

Choy et al., (1996); Hasan et al., (1997); Zang and Hasan (1999) and Pryymak et al., 

(2005) employees Neural Network Controller (NNC) to perform the search 

efficiency optimization control function. In these cases the neural network controller 

is trained off-line or through a batch learning algorithm. Initially, in training mode a 

model of the induction motor drive is developed to train the neural network in 

different operating points. In running mode, the controller is performed by the neural 

network alone. 

  

The development of the neural network controller for the efficiency 

optimization control produce good results, however these developments are still 

limited to simulation work or off-line learning experimental work. Therefore its real-

time application, with the induction motor parameters not constant, the performance 

of the off-line learning neural network controller is doubted (Abrahamsen, 2000).  

 

Based on the reason mentioned, to successfully implement neural network 

controller of the efficiency optimization control of a variable speed compressor 

motor drive, a real-time or on-line learning algorithm of the neural network 

controller known as adaptive neural network control is proposed.   
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3.3  Concept of a Neural Network Control 

 

Inspired by the successful function of the human brains, the Artificial Neural 

Network (ANN) was developed for solving many large scale and complex problems. 

The need to meet demanding control requirements in increasingly complex 

dynamical control systems under significant uncertainty makes the use of Neural 

Networks in control systems very attractive (Widrow and Lehr, 1990).  

 

The main reasons behind this are their ability to learn to approximate 

functions and classify patterns and their potential for massively parallel hardware 

implementation. Beside that, development of on-line/real-time learning technique, 

makes the controller become adaptive and robust to the dynamic plant system or 

known as adaptive neural network controller (Narendra and  Annaswami, 1989; 

Mills et la., 1996 and Gupta and Sinha, 1996).  

 

Neural networks consist of many simple computational elements called nodes 

or neurons each of which collects the signals from other nodes which are connected 

to it directionally. Among the neurons are connected by weighted links passing 

signals from one neuron to another.  The architecture of these models is specified by: 

 

1.   Neuron/node characteristics, 

2.   Network topology and 

3.   Learning algorithm.  

 

 

 

3.3.1 Structure of the Neuron 

 

The basic processing element of the connectionist architecture is often called 

neuron by analogy with neurophysiology. Other names such as Perceptron by 

Rosenblatt in 1958 or Adaline by Widrow and Hoff in 1960 are also used. Neurons 

in artificial neural networks are very simple processors inspired by their biological 

counterparts.  
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 The basic model of a neuron is illustrated in Figure 3.1 (Haykin, 1994). The 

neuron is composed of three components: 

 

1. A set of synapses or connecting links, each of which is characterized by a 

weight or strength of its own. 

2. A weight summer or an adder for summing the input signals, weighed by the 

respective synapses of the neuron. The operations could constitute a linear 

combiner. 

3.  A non dynamical, nonlinear function which is also called activation function, 

use for limiting the amplitude of the output of a neuron 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Basic model of neuron 

 

From a functional point of view, a unit is simply an active element with some 

number of inputs and only one output. Equation of the weighted summer is given by: 
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where: nj : neuron transfer function 

 xi : the neuron inputs  

wi : the weight connection 

t  : the time variable. 
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The matrix form of the Equation (3.1) can be written as follow: 

 

 )()( tWXtn j =  (3.2)

 

 

According to Figure 3.1, after the input mapping, the neuron produces an 

output using an activation function. This activation function transforms the value 

produced by the input mapping to a value which is suitable for another neuron. The 

nonlinear function factv is an activation function gives the signal ai in the term of the 

output nj(t) is given by: 

 

 ))(( tnfa jactvi =  (3.3)

 

where: factv : the activation function  

ai : the neuron output.  

 

The activation function of a bipolar neuron generates both positive and 

negative output, while the unipolar ones generate only positive values (Cirstea et al., 

2002). Depending on the type of the neuron, the activation function has several forms 

as given in the following function. 

 

1. Linear:  

the simplest of the activation functions is a linear mapping from input to 

output defined by: 

 

 jjactv nnf =)(  (3.4)

 

The gradient of the linear activation function is given by: 
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2.  Sigmoid:  

the sigmoid activation function is a bipolar function and defined as: 

 

 )()( jjactv nsignf =  

 

 

jn−
+

=

exp1

1  
(3.6)

 

Derivative of the sigmoid activation function is given by (Spooner et al., 

2002): 
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3. Hyperbolic Tangent:  

the hyperbolic tangent activation function is a unipolar function and defined 

as: 

 

 )tanh()( jjactv nnf =  
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(3.8)

 

Derivative of the hyperbolic tangent activation function is given by (Spooner 

et al., 2002): 
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3.3.2  The Network Architecture 

 

The neural network also can be viewed as a weighted directed graph in which 

artificial neurons are nodes and directed weighted edges represent connections 

between neurons. Local groups of neuron can be connected in either (Leondes, 2003): 

 

1. A feed-forward architecture and 

2. A recurrent architecture. 

 

 

 

3.3.2.1 Feed-Forward Neural Network Architecture 

 

Architecture of the feed-forward can be represented by a direct acycli graf  as 

given in Figure 3.2. Each neuron is connected only to neurons in the next layer and 

there is no connection between neurons in the same layer. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2:  A single layer feed-forward neural network 
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3.3.2.2 Recurrent Neural Network Architecture 

 

 The recurrent neural network distinguishes itself from a feedforward neural 

networks in that it has at least one feedback loop. It so that the output of the neuron 

can be fed back to the inputs of other neurons in the same or previous layers as 

shown in Figure 3.3.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: A single layer recurrent neural network 

 

 The feedback loop presents involve the use of particular braches composed of 

unit-delay elements denoted by Z-1, which causing the network to display a non-

linear dynamic behaviour (Haykin, 1994). 

 

 

 

3.3.3 Learning in the Neural Networks 

 

 A neural network has to be configured such that the application of a set of 

inputs produces the desired set of outputs. Various methods to set the strengths of the 

connections exist. One way is to set the weights explicitly, using by knowledge. 

Another way is to train the neural network by feeding it teaching patterns and letting 

it change its weights according to some learning rule. There are two kinds of well 

known learning rules in neural network training, i.e. supervised learning rule and 

unsupervised learning rule. 

ai 
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Principle of the supervised neural network system is given in the following 

section.  

 

 

 

3.3.3.1 Supervised Learning Model 

 

An essential ingredient of supervised learning is the availability of an external 

teacher, as indicated in the arrangement of Figure 3.4 (Haykin, 1994).  

 

 

 

 

 

 

 

 

Figure 3.4: Block diagram of supervised learning  

 

The learning feedback or driving force in supervised learning is the error (e) 

between the model’s output (Yc) and the system teaching patterns (Ytc). Training 

consists of presenting input and output data to the network. This data is often referred 

to as the training set. During the training of a network the same set of data is 

processed many times as the connection weights are ever refined. Then the network 

parameters are modified according to the particular correction method depending on 

the learning low algorithm.  
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Supervised learning can be performed in an off-line or on-line scheme. The 

function of learning in the neural controller is to automatically adjust the parameters 

of the controller to provide a satisfactory or desired control response (Lu, 1996, 

Omatu et al., 1996 and Vas, 1999). As a result of learning, the system response or 

behaviors can be consistently improved even when the system environment is 

significantly disturbed. 

 

The off-line learning scheme is also called batch learning. In this scheme, a 

separate computational facility is used to design the supervised learning system. 

Once the desired performance is accomplished, the design is frozen, which means 

that the neural network operates in a static operation.  

 

The on-line learning scheme also called as real-time learning. In the on-line 

learning the learning procedure is implemented solely within the system itself, not 

requiring a separate computational facility. During the running process the network 

parameters of the controller are updated continuously. This mode the updating is 

performed successively on each partial error function associated with one given 

pattern in the training data. 

 

 

 

3.3.3.2 Neural Networks Performance index 

 

The ultimate propose of the training process in the neural network controller 

is to minimize the performance index of the network. A criterion commonly used for 

the performance index is the Mean-Square Error (MSE) criterion. For single data pair 

that be used in the on-line learning, the performance index function is defined by: 

 

 
eTexF

2
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where: F() : the neural network performance index function 

e : controller error signal  
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The error signal of the controller is given by: 

 

 cYcDe −=  (3.11)

 

where: Yc : actual response signal  

Dc : desire response signal  

 

The function of the performance index is also known as error surface neural 

network function or neural network cost function. 

 

In a linear function model, the general error surface function is given in 

parabolic function, which means that it is smooth bowl-shape with single minimum 

value. However in the neural network, the error surface function is much more 

complex. It is characterized by an unhelpful feature such as local minima point. The 

local minima point is lower than the surrounding terrain, but above the minimum 

global.  

 

 

 

3.3.3.3 Neural Network Learning Laws 

 

In the learning process there are several schemes that can be used to update 

the network parameters. The back propagation algorithm developed by Rumelhart et 

al in 1985, is a first order iterative gradient search algorithm designed to minimize 

the mean square error between the actual output a multilayer feedforward network 

and the desired output (Leondes, 2003). This scheme is based on a linear 

approximation of the neural network performance index given by: 

 

 ( ) xTxFxFxxF ∆∇+=∆+ )()()(  (3.12)
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The weight update is given by: 

 

 
x
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∂
∂
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(3.13)

 

Where: α : the learning rate or step size. 

  

The second order learning algorithm is motivated by the desire to accelerate 

the typical slow convergence associated with the back propagation method (Hagan 

and Menhaj, 1994). The neural network performance index of the basic second order  

learning algorithm approximation is given by: 

 

 ( ) xxFTxxTxFxFxxF ∆∇∆+∆∇+=∆+ )(
2
1)()()( 2  

(3.14)

 

The weight update is given by: 
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3.3.4 Multi Layer Perceptron 

 

The Multilayer Perceptron (MLP) is a network model in which the neurons 

are configured in layers, whereby the neurons of a layer are generally all connected 

with the neurons of the following layer. This network is able to process analogue 

input patterns and learns in supervised mode, employing the back-propagation 

algorithm.  

  

 In a multilayered neural network, the zero or lower is called input layer 

consists of input neurons. The last or upper is called output layer which is composed 
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of output neurons. The remaining, so called hidden or intermediate layers contain 

hidden neurons.  

According to Haykin (1994), a multilayer perceptron has three distinctive 

characteristics: 

 

- The model of each neuron in the network includes a non-linearity at the output 

end. 

- The network contains one or more layers of hidden neurons that are not part of 

the input or output of the network. 

- The network exhibits a high degree of connectivity, determined by the 

synapses of the networks. 

 

The Multilayered Perceptron is a natural extension to the single layer 

perceptrons that were very popular in the 1960’s. These multi-layered perceptrons 

are able to overcome the severe limitation of its single layer predecessor. This plus 

the availability of several learning algorithms for finding suitable weights and 

thresholds or biases have made multilayered perceptrons widely popular.  

 

 Figure 3.5 shows the multilayer neural network with single hidden layer. The  

notation employed in the figure can be described which includes: Xi , aj , Yk , Wi,j and  

Wj,k representing the input unit vector, hidden unit vector, output unit vector, weights 

(including bias) between input layer and hidden layer, and weights (including bias) 

between hidden layer and input layer  respectively.  
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Figure 3.5: Architecture of multi layer perceptron with one hidden layer 

 

 The input layer has l neurons that receive real valued in the form of an l-

dimensional vector in Xl. This layer also includes an additional bias neuron. 

Similarly, the hidden layer has p neurons that receive signal from the input layer. A 

bias neuron has been additionally included in the hidden layer to generate a +1 signal 

for bias connections of the output layer neurons. The output layer comprises m 

neurons.  

 

 Finally, the network signals that emanate from the last layer of neurons 

comprise a m-dimensional vector of real numbers. The neural network thus maps a 

point in Xl (the input) to a point in Ym (the output). 

 

 According to Haykin (1994), a single hidden layer is optimum in the sense of 

learning time and ease of implementation.  

 

 

 

3.3.5 Neural Network Control Scheme 

 

In comparison with other control paradigms, the neural controllers have 

certain advantages such as they are able to learn in real-time and able to represent 

almost any nonlinear relationship between control variables and system output 

(Narendra and Parthasarathy, 1990; Cabrera and Narendra, 1999; Vas, 1999 and 

Leondes, 2003).  

 

Architecture of the neural controller can be classified into several types such 

as direct inverse neural network control, direct adaptive neural network control 

reference model and indirect neural network control reference model (Omatu et al., 

1996, Vas, 1999 and Bose, 2001). Figure 3.6 shows the schematic of the direct 

inverse neural network controller. 
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Figure 3.6: Block diagram of the direct inverse neural network control. 

 

The direct inverse neural network controller utilizes the plant inverse model. 

Initially, the inverse model of the plant is obtained by using an Artificial Neural 

Network Identifier (ANN-I) and this is simply cascaded with the controller plant. 

The input of the artificial neural network controller (ANN-C) is the reference signal 

Xd and also the actual output plant Yp and the output of the ANN-C is the control 

action Yc.  

 

In the direct adaptive neural network control model, the parameters of the 

controller are directly synthesized from the error between the desired and actual 

output plant responses. In this model the adaptation mechanism is designed to adjust 

the approximator causing it to match some unknown nonlinear controller that make 

the closed-loop system achieve its performance objective. Configuration of the direct 

adaptive neural control reference model is shown in Figure 3.7. 
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Figure 3.7: Block diagram of the direct adaptive neural control reference model. 

 

The indirect direct adaptive neural control reference model, first an 

identification scheme is employed to estimate a parametric model of the plant from 

input-output data, and then the controller parameter are adjusted by assuming that the 

identified model represents the true pant parameters. Figure 3.8 shows the schematic 

of the indirect adaptive neural control reference model. 
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Figure 3.8: Block diagram of the indirect adaptive neural control reference model. 

3.4  Development of the Proposed Neural Network Efficiency Optimization 

Control 

 

Before proceeding to the detail development of the proposed neural network 

efficiency optimization controller, the practical issues of design and implementation 

of the ANN controller is described. 

 

 

 

3.4.1  Neural Network Controller Design Issue 

 

They are several types of important and practical issues in the design and 

implementation of the ANN controller. Basically these issues can be grouped in to 

two categories (Omatu et al., 1996 and Leondes, 2003) i.e.: appropriate design of 

neural network architecture and the other is related to the improvement of learning 

efficiency.  

 

 

 

3.4.1.1 Appropriate Design of Neural Network Architecture. 

  

 Determining the number of neurons in each hidden layer and the number of 

hidden layers is a critical decision in the design of neural network. As mentioned 

earlier, the ANN is essentially a nonlinear mapping function f(x,w) with x as input 

and  w as parameter set.  

 

Increasing the number of hidden neurons enhances its ability to approximate 

input-output data patters, but also increase the number of free parameters. This 

increases model complexity. In fact a basic issue in designing ANN is proper balance 

of model complexity and approximation ability.  
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 Unfortunately there is no clear guideline for determining the number of 

neurons in the hidden layers. However, enough neurons must be provided to enable 

the network to perform the required mapping function satisfactorily (Haykin,1994).  

Haykin (1994) proposed heuristic rule for characterizing the relationship 

between the number of structural parameters of a neural network, the size of training 

or validation data set, and desired error goal call as resampling approach. With this 

approach, several networks of different number of hidden neurons and or different 

number of hidden layers are created, and trained with same set of data points. The 

approximation errors are collected. The networks are then tested with a different set 

of data through cross-validation to obtain generalization error. The best network 

architecture is determined by comparing and making trade-off between the 

approximation error and the validation error. 

 

 

 

3.4.1.2 Improvement of Learning Efficiency. 

  

 For many practical problems, simple backpropagation training takes a very 

long time due to the nature of gradient descent (Hagan et al., 1995) and (Haykin, 

1994). This algorithm is insensitive to the local shape of performance function (error 

surface) due to a fixed learning rate.  

 

Determination of the learning rate coefficient is a difficult task. A large 

learning rate often causes the learning steps bouncing between the opposite sides of a 

deep valley instead of following the contour to reach the bottom (a local minimum). 

On other hand, a small learning rate results in a very slow convergence on a 

relatively flat surface.  

 

 A nonlinear network usually has many local minima on its error surface. Pure 

gradient descent search is easily trapped by these local minima. The convergence to a 

global minimum is not guaranteed. To address these issues and improve the simple 

backpropagation algorithm, several techniques can be used such as:  

 

-   Adaptive learning rate (Bahera at al., 2006) 
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-  Second order optimization method (Hagan and Menhaj, 1994; Wilamowski et 

al., 1999; Wilamowski et al., 2001; Ampazis and Perantonis, 2002  and 

Wilamowski, 2003).  

3.4.2  The Proposed Neural Network Controller Design  

 

Figure 3.9 shows a block diagram of the conventional scalar control model 

constant volt per hertz (V/f). In this scheme, the controller generates the slip 

frequency reference signal ωsl
*. The voltage reference signal is generated from a look 

up table voltage reference signal generator block (Murphy and Turnbull, 1988). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9: The block diagram of scalar constant volt/hertz with slip regulation 

 

In this thesis, a direct feedback adaptive neural network controller for 

efficiency optimization of the variable speed compressor motor drive is proposed. In 

this scheme the controller receives the system observed output variables and then 

provides its control action to the controlled system environment to optimize the 

control criterion through real-time information processing. The block diagram of the 

proposed method is shown in figure 3.10.  
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Figure 3.10: The block diagram of the proposed neural network efficiency 

optimization control 

 

The proposed controller generates both of the voltage and frequency 

reference signal simultaneously. The difference of this with the methods discussed in 

chapter 2 is that they only generate the voltage reference signal and the frequency 

reference signal is generated by the other controller which is assumed ideal. By this 

strategy the efficiency of the motor drive can be increased and the performance of the 

speed also can be maintained simultaneously.  

 

To control both of the reference signals simultaneously, a neural network 

control with multi output and learning algorithm is developed. The controller will 

receive three input signal i.e. the speed reference signal (w*), error speed signal (w* - 

w) and error input power signal (Pref
* - Pin). The output of the controller that consist 

of stator voltage reference signal or modulation index (Vs
* = mi) and frequency 
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reference signal or modulation frequency (f* = mf) is fed to the space vector PWM 

modulator.  

 

In this scheme the input power reference model (Pref
*) block is determined as 

follows. With the load torque characteristic of the compressor assumed proportional 

to the square of the speed as given by: 

  
2NkT

Lload =       (3.16)

         

Where: Tload  : compressor load torque 

kL  : load torque coefficient 

N  : motor speed=compressor speed   

 

The power of the compressor as a mechanical motor load with friction and 

windage are not considered can be defined as (Shepherd et al., 1995) : 

 

NTP loadload =       (3.17)

       

NNkP Lload )( 2=  

 

        3NkL=       (3.18)

 

where: Pload  : compressor load power 

 

If efficiency of the motor drive is targeted with the efficiency at nominal speed (ηnom) 

for all speed operation, the input power reference model can be defined as: 
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P
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nom

L
ref

NkP
η

3
* =  

     (3.20)

 

Where: P*
ref  : the input power motor reference. 

ηnom  : the nominal motor efficient. 

3.4.2.1 Neural Network Efficiency Optimization Control Structure 

 

In the present research, a new structure of neural-network efficiency 

optimization control is developed. The idea is based on the theory of a scalar control 

constant volt per hertz, where the frequency reference signal output is feedforward to 

the voltage reference signal generator block that have been described in chapter 2. 

Referring to this concept, in this network structure one of the output neuron in the 

last layer will be set as the frequency reference signal and fed back to the network to 

generate the voltage reference signal.  

 

Basically, to design the neural network controller, the number of inputs and 

outputs neuron at each layer are equal to the number of input and output signals of 

the system respectively. Further the number of hidden layers and the total neurons is 

depended on the complexity of the system and the required training accuracy. Based 

on the type of the task to be performed, the structure of the proposed neural network 

controller is shown in Figure 3.11. 
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Figure 3.11: Architecture of the neural network efficiency optimization control 

The structure of the neural network controller consists of three layers. Based 

on the neuron number in each layer this structure is known as 2-6-2 network 

structure. The first layer is the input, which consists of two input signals X1  and  X2. 

X1 received signal from the speed reference or speed command w*, while X2 received 

signal from the output layer Y1 as a feed back loop or recurrent structure model.  

 

In order to let the neural network interface with the real-world environment, a 

normalization of the input value is required. With the min-max approach the input 

signal of the controller is normalized by equation: 
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Where: Xnor  : normalized input value 

Xin  : input value 

Xnor
max

  : maximal normalized input value 

Xnor
min

  : minimal normalized input value 

X in 
max

  : maximal input value 

X in 
min

  : manimal input value 

 

By using in-start model, each of the neuron signals in the input layer is 

feedforward to all neurons in the hidden layer via the weight connections between 

the input and the hidden layers. The connections weight between neuron i and j in the 

jth neuron at mth layer respectively are represented by wm
ji.  

 

The second layer also known as hidden layer consists of six neurons a1
1 , a1

2 , 

.. a1
6 respectively. Besides receiving signal from input layer, it also receives the bias 

signal. A transfer function of the neuron in the hidden layer at the jth neuron is 

defined by: 



 

 

69

 

 

 

 

∑
=

+=
n

i
jiijj bXwn

1

11
,

1  
     (3.22) 

 

Where: nj
1

   : neuron transfer function in hidden layer 

X i  : input value that has been normalized 

w1
j,i

    : weight connection parameter value between input layer to hidden 

layer 

bj
1

   : bias parameter value in hidden layer 

 

At the hidden layer the tangent hyperbolic activation function (Equation 3.8) 

are employed. The neuron output function in this layer is given by: 
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 The output layer consist of two neurons, the first neuron is used as a reference 

signal frequency (Y1 =f *) and the second neuron is used as a reference signal voltage 

(Y2=Vs
*). The activation function employed in this layer is known as the linear 

activation function (Equation 3.4). The neuron output function in this layer is used as 

an output variable as given by: 
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In order to let the neural network interface with the real-word environment, a 

denormalization of the output controller value is required. With the min-max 

approach the output signal of the controller is denormalized by: 
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where: Yden  : normalized output value 

Yout  : output value 

Yden
max

  : maximal normalized output value 

Yden
min

  : minimal normalized output value 

Yout
max

  : maximal output value 

Yout
min

  : manimal output value 

 

 

 

3.4.2.2 Levenberg-Marquardt Optimization 

 

After the neural network architecture is developed, the next stage of the 

neural network control design is to determine the learning algorithm for updating the 

network parameters. The learning process will update the network parameter to 

optimize performance of the network. Generally, to define the network parameters, a 

sufficient training of the input-output mapping data of the plant is required. By this 

technique, the neural network controller is able to know the characteristics of the 

plant, hence the control signal can be defined accurately.  

 

The learning algorithm of the Levenberg-Marquardt for the multilayer 

network is described as follows.  
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If the performance index of the network is represented by F(x), where x is the 

scalar parameter of the network, the second order Taylor series expansion at nominal 

point x* is given by: 
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Because the network parameters consist of many variables, it is more 

convenient to write in matrix form as given. 
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where )(xF∇  is the gradient of the performance index, and is defined: 
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and )(2 xF∇  is the Hessian, and is defined as: 
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To analyze the gradient and Hessian matrixes of the performance index, the 

general form of the quadratic function is given: 

 

cxdAxxxF TT ++=
2
1)(  

     (3.31) 

 

Based on the properties of gradient matrix equation as given by: 

 

hhxxh TT =∇=∇ )()(       (3.32) 

 

QxxQQxQxx TT 2=+=∇       (3.33) 

 

where: h  : a constant vector. 

 

The gradient of Equation (3.31) can be written as follow: 

 

dAxxF +=∇ )(       (3.34) 

 

where A is the Hessian of the F(x) given by: 

 

)(2 xFA ∇=       (3.35) 

 

 Therefore for the quadratic function, the Taylor series expansion for xk+1 can 

be defined by: 
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where gk is the gradient of F(xk) and can be defined as: 

  

kxxk xFg =∇≡ )(       (3.37) 
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The gradient of this quadratic function with respect to ∆xk and setting it to zero is 

given by: 

 

0=∆+ kkk xAg       (3.38) 

 

 

The equation (3.38) can be solved as follows: 
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If the F(x) in a sum of squares function given by: 
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The gradient for jth element is given by: 
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In matrix form the gradient can be rewritten as follows: 

 

)()(2)( xvxJxF T=∇       (3.43) 

 

where: 
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The Hessian for jth element is given by: 
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In matrix form, the Equation (3.45) can be expressed by: 

 

)(2)()(2)(2 xSxJxJxF T +=∇       (3.46) 

 

where:  
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For small value of S(x), the approximation of the Hessian matrix is given by: 

  

)()(2)(2 xJxJxF T≅∇       (3.48) 
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From the gradient and Hessian equations, iteration of each element is given by: 

 

[ ] )()()()( 1
1 kk

T
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T
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kk xvxJxJxJxx −

+ −=       (3.49) 

 

Therefore it does not require calculation of the second derivative, however 

the matrix H=JTJ may not be invertible. However this can be overcomed by using 

the following modification to approximate the Hessian matrix (Hagan et al., 1995): 

 

IHG µ+=       (3.50) 

 

 

Suppose that the eigenvalues and the eigenvector of the Hessian are (λ1, λ2, . . 

. λn) and (z1, z2, . . . zn), then 

 

ii zIHGz )( µ+=        

izHz µ+=   

iii zz µλ +=   

ii z)( µλ +=  (3.51)

  

 

Therefore the eigenvector of G are the same as the eigenvector of the H and 

the eigenvalues of G is given by: 

 

µλλ += ii G)(  (3.52)

 

By this reason matrix G can be made positive definite by increasing µ until  

(λi + µ)>0 for all i, and therefore the matrix will be invertible. Then the Equation 

(3.49) can be rewritten as: 
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3.4.2.3 Levenberg-Marquardt Neural Network Optimization 

 

 The important step in Levenberg-Marquardt neural network algorithm is the 

computation of the Jacobian matrix. For two output neuron, the Jacobian matrix J of 

the neural network is given by: 
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Back propagation derivation of Jacobian matrix weight parameters is 

described by the following function. 
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Where the first term on the right hand side is defined as the Marquardt sensitivity is 

given by: 
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Derivative of the neuron output function against to the weight parameter is given by: 
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Substitution Equations (3.56) and (3.57) into Equation (6.55) is result in: 
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With same procedure, the back propagation derivation of Jacobian matrix 

bias parameters is described by the following function. 
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The updating neural network parameters can be written by: 
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3.4.2.4 Direct Adaptive Neural Network Control Reference Model Algorithm 

 

The algorithm of the proposed on-line learning neural network as direct 

adaptive neural network control reference model algorithm is given in the following 

steps: 

 

Step 1: -     Initialization of network parameters i.e.: bias and weight. 

 

Step 2: -     Measured of input data i.e.: input power and rotor speed.   

- Normalization input data i.e.: input power and rotor speed by using 

Equation (3.21). 

 

Step 3: -    Calculation of error and incremental error input power and rotor speed  

- While stopping update condition is true: error fall into the given 

acceptable error range or error change very little, then go to step 5. 
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Step 4: -   Calculation of updating neural network parameters by using Equations: 

(3.54) up to (3.61). 

 

Step 5: -     Calculation of output of the neural network by using Equations: 

(3.22) up to (3.25). 

- Denormalization output neuron in the output layer using Equation 

(3.26). 

 

Step 6: -     Repeat by going to step 2. 

 

 

 

 

3.5 Summary 

 

In this chapter, the proposed neural network efficiency optimization control 

of a variable speed compressor motor drive has been introduced. The basic operation 

of the neural network control has been described. Development of the proposed 

controller has been presented. The neural network architecture of a direct feedback 

neural network controller has been developed. Derivation of the second order 

Levenberg-Marquardt neural network optimization also has been explained. Finally, 

the algorithm of the proposed real-time/on-line learning neural network efficiency 

optimization control has been presented. 



 

 

 

 

CHAPTER 4 

 

 

 

EXPERIMENTAL SET-UP OF THE NNEOC VARIABLE SPEED 

COMPRESSOR MOTOR DRIVE 

 

 

 

4.1 Introduction 

 

The set-up and implementation of the proposed neural network efficiency 

optimization control for variable speed compressor motor drive system is presented 

in this chapter. The proposed drive system consists of major components namely a 

DSP-based controller board, gate drive, inverter circuit, sensor and a standard 

squirrel-cage induction motor along with a dynamometer acting as the compressor 

load. Figure 4.1 shows the components used in the proposed system. 
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Figure 4.1: Block diagram of the experimental set-up 

 

 

 The neural network model and its controls are implemented through the DSP 

controller board. In the prototype of the drive system, the rotor mechanical speed is 

sensed by DC generator speed sensor and the torque by the torque sensor fitted to the 

dynamometer, while the input power is sensed by current and voltage sensor fitted to 

the universal power analyser.   

 

In the following sections, each hardware components are described in more 

detail. Figure 4.2 shows a photograph of the experimental set-up of the proposed 

controller of the variable speed compressor motor drive system. 
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Figure 4.2: The experimental set-up 

 

 

 

4.2 DS1102 Controller Board 

 

The single board system of the DS1102 DSP controller board is shown in 

Figure 4.3 (dSPACE GmbH, 1996). As the term reveal, this board is designed to 

build a complete real-time control system with just one board. The controller board 

includes a fast digital signal processor and I/O components for a variety of 

applications in the rapid control prototyping, development of digital high-speed 

multivariable controlling and real-time simulations.  
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The DS1102 board is a standard 16-bit PC/AT card that can be slotted 

straight in to the PC using ISA bus. The DS1102 controller board consists of a 

TMS320C31 floating point digital signal processor as a main processor and a 

TMS320C14 as a co-processor. The board is manufactured by dSPACE digital 

processing and control engineering, GmbH, Germany.  

 

The board provides a fast instruction cycle time for numeric intensive 

algorithms. The board interfaces to the host (a standard PC) via a standard PC AT 

interface bus. The block diagram and the data sheet of the DS1102 controller are 

given in Appendix A. Some of the features contained on the board are: 

 

- TMS320C31 floating-point DSP  

- Slave-DSP TMS320P14 

- Four 12-bit Digital to Analogue Converter (DAC) 

- Two 16-bit Analogue to Digital Converter (ADC) 

- Two 12-bit ADC 

- Twenty six digital input-output (I/O) 

 

Some of the major tasks performed by the DS1102 controller board are to 

develop the proposed controller which includes: 

 

- Signal normalization : 

 

 To interface the input signals from the output device such as the speed and 

input power sensor to the neural network controller program, it is required to 

normalize the entire input signal.  

 

- Neural network controller: 

 

 In this program the input voltages from the speed and power sensors that fed 

to the ADC channel on the controller board are processed to obtain the speed and 

input power of the motor.  
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- Real-time learning neural network algorithm: 

 

 To update the neural network parameters, the real-time learning technique is 

performed entirely in software.  

 

- Space Vector PWM:  

 

Computed results of the controller are then employed to determine the IGBT 

switching state using the Space Vector PWM (SVPWM) signal generator 

technique.  

 

Implementation of the reference speed using analog signal method is however 

easily subjected to disturbance from noise. Thus, to avoid this problem the reference 

speed of the drive system is developed in the Control Desk instrument panel program 

Release 3.3, which is included with DS1102 controller board. This program provides 

graphical output and interactive modification of variables on the DS1102 board. 

Layout of the proposed controller is shown in Figure 4.3. 

 

 

 
 

Figure 4.3: Layout of the proposed controller in the Control Desk program 
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4.3 Power Analyser  

 

The power analyser is used to measure and record the input power of the 

induction motor drive via analog output connector. It is manufactured by Voltech 

with part number PM3000ACE (Voltech, 1996). The block diagram of the 

PM300ACE is given in Appendix B.  

 

 

 

4.4 Power Circuit and Gate Driver  

 

The power supply module for the drive system is made up of three units of 

SEMITRANS IGBT modules rated at 1200V and 50A. It is manufactured by 

Semikron with part number SKM 50 GB 123 D. The datasheet of this IGBT is given 

in APPENDIX C. Each module consists of top and bottom IGBT for one leg or arm 

of inverter. The schematic of the VSI module is shown in Figure 4.4.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4:  Schematic of the IGBT module 
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The VSI module receives DC link voltage from a DC power supply unit. To 

protect the IGBT module, a RCD snubber is installed for each the IGBT device. The 

circuit of the RCD snubber is shown in Figure 4.5. 

 

 

 

 

 

 

 

 

Figure 4.5: RCD snubber circuit 

 

The gate drives receive the signal from DS1102 controller board and amplify 

them to the correct level to drive the IGBT devices. The power supply gate drivers 

are generated from the low-side power supply and transferred and isolated through 

power transformers. Beside that the gate drivers also isolate the signal controller 

using optocoupler HCPL-A3120 from the DS1102 controller board to the IGBT 

module. Figure 4.6 shows the schematic of DC-DC isolation and signal isolation of 

the gate driver circuit.  
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Figure 4.6 (a): Schematic of DC-DC isolation of the gate driver circuit 
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Figure 4.6 (b): Schematic of signal isolation of the gate driver circuit 
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Figure 4.7 shows the gate drivers, snubber and voltage source inverter. 

 

 

 

 

 
 

 

 

Figure 4.7: Gate driver and voltage source inverter 
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4.5 Induction Motor 

 

The induction motor used in the experiment is manufactured by Feedback 

Inc. It has stator windings in which are connected in delta and a squirrel cage rotor. It 

is rated at 120V, 0.25hp, 50 Hz and with rated speed of 1400 rpm. Block rotor and no 

load test are performed to determine the motor’s parameters. The parameters of the 

induction motor used in the experiments are given in Tabel 4.1. 

 

Table 4.1: Induction motor parameters 

Stator resistance, Rs 5.2 Ω 

Rotor resistance, Rr 4.0 Ω 

Stator self inductance, Ls 0.347 H 

Rotor self inductance, Lr 0.347 H 

Mutual inductance, Lm 0.336 H 

Combined inertia, J 0.000153 kg-m2 

 

Figure 4.8 show the photograph of the three phase induction motor. 

 

 
Figure 4.8: Induction motor 0.25 hp 
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4.6 Dynamometer 

 

The dynamometer used as the load is manufactured by Feedback Inc. model 

ETL-174N. The dynamometer is operated through a controller model ELT-174 R.  

 

The tachogenerator as a speed sensor is fitted to the dynamometer. Output 

voltage of the tachogenerator is fedback to the dynamometer controller to adjust the 

torque of the dynamometer. This dynamometer controller provides two types of load 

function i.e. constant torque and torque that is proportional to speed. Photograph of 

the dynamometer and dynamometer controller are shown in Figure 4.9. 

 

 

 
 

Figure 4.9: Dynamometer and the dynamometer controller 
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4.7 Summary 

 

This chapter has presented the major components used in the experimental 

set-up. These include: 

 

- The controller board DS1102 

- 3-phase VSI and gate drivers 

- Induction motor and dynamometer 

 

The tasks performed by the controller board have been discussed. The parameters 

and specifications of the VSI, gate drivers and the induction motor have also been 

explained. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

CHAPTER V 

 

 

 

SIMULATION AND EXPERIMENTAL RESULTS AND DISCUSSION 

 
 
 

5.1 Introduction 

  

 This chapter presents the simulation and experimental results and discuss on 

the proposed method towards the achievement of the research objective. The chapter 

begins by looking at the simulation results of the proposed controller. In the 

simulation, the effect of on-line/real-time learning control scheme to the robustness 

of the neural networks controller against the motor parameter variation is 

investigated.  

 

In order to verify the efficiency improvement of the neural network efficiency 

optimization control, the developed controller is compared with the neural network 

constant volt per hertz method. The proposed Neural Network Efficiency 

Optimization Controller (NNEOC) is then applied to the experimental set-up. In this 

set-up, the comparison between the proposed controller and Neural Network 

Constant Volt per Hertz (NNV/f) is verified. This chapter also presents the 

advantages of the proposed controller in efficiency optimization control area, and 

some of its limitations. The chapter ends by presenting a summary of the results.   
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5.2 Simulation Results 

Simulation of the efficiency optimization of the proposed control scheme is 

carried out using various block developed to represent the actual system using the 

MATLAB/SIMULINK program. The Simulink block consists of three major blocks, 

i.e. the three phase induction motor and compressor load block, three phase space 

vector PWM inverter block and the controller block. These blocks are designed in 

the S-function block by employing Borland C++ program. 

Based on the proposed control scheme as shown in Figure 3.10, development 

of the Simulink blocks of a variable speed compressor motor drive system is shown 

in Figure 5.1.  
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Based on the neural network and learning algorithm equations that have been 

described in the section 3.4, a detail Simulink block of the proposed neural network 

efficiency controller is shown in Figure 5.2.  

 

 

Figure 5.2: Simulink block of the neural network efficiency optimization 

controller 

 

Detail simulation blocks and S-function program of the induction motor, 

compressor load and space vector PWM are given in APPENDIX D. 

 

 

 

5.2.1 Control Performance Against Motor Parameter Variations 

 

It has been described in the Chapter 2 that, the induction motor parameters 

value is not constant, but these parameters vary with temperature and magnetic 

saturation. To simulate the induction motor with parameter variation, particularly on 

the resistance variation due to temperature variation, a temperature Simulink block is 

added and fed into the induction motor block. The stator and rotor resistances 

variation on this simulation are determined by equation 2.3 and 2.7. 
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To illustrate the robustness of the proposed motor drive controller against the 

parameter deviation, a parallel block of the proposed controller with on-line and off-

line learning scheme at same reference speed command and same load condition was 

developed.  Figure 5.3 show the development of the Simulink block with parallel 

controller. 
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For this purpose the stator and rotor resistance of the motor are changed with 

the increase in temperature from the ambient (200C) to a maximum (1050C) for A 

class isolation (Boldea and Nasar, 1997). At the start of the plot, the motor was 

operated under ambient temperature and after that at 5 second the temperature is 

increased up to the maximum value. 

 

Response of the rotor speed when temperature is changed to maximum value 

at reference speed 1000, 800 and 600 rpm are shown in Figure 5.4a, 5.4b and 5.4c 

respectively.  

 

 

 
(a) 

 
Figure 5.4: Simulation results, response of the rotor speed when the temperature is 
switched from 200C to maximum 1050C at (a) a speed reference command of 1000 

rpm, (b) a speed reference command of 800 rpm and (c) a speed reference command 
of 600 rpm. 

 

on-line NNEOC

off-line NNEOC 
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(b) 

 
(c) 

Figure 5.4: (continued). 
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The simulations results in Figure 5.4 (a), (b) and (c) show that, increasing the 

resistances due to the temperature variation causes disturbance to the rotor speed. 

However by using the proposed on-line learning scheme, the deviation of the rotor 

speed can be compensated and return to the original speed reference command. 

 

It should be emphasized that, by using the proposed on-line learning scheme, 

the controller is more robust against the resistance parameters variation. 

 

 

 

5.2.2 Efficiency Improvement of the Neural Network Efficiency Controller 

  

To investigate the efficiency improvement of the proposed controller, two 

Simulink controller blocks of the proposed controller and neural network constant 

volt per hertz are developed in parallel. In order to switch the controller from the 

proposed controller to neural network constant volt per hertz or vice versa, a switch 

selector block is added and fed to the controller.  Simulink block of the parallel 

controller is shown in Figure 5.5.  
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At the start of the plot, the variable speed compressor motor drive system was 

operated by neural network constant volt per hertz, after the system is stable at 3 

second the controller is switched to the proposed controller. Figure 5.6 shows the 

response of the input power, rotor speed and stator voltage of the motor when the 

control is switched from the neural network constant volt per hertz to the proposed 

controller at speed reference command of 500 rpm. 

 

 
 

(a) 

Figure 5.6: Simulation results (a) input power consumption of the motor (b) speed 

of the motor (c) stator voltage of the motor when the controller is switched from 

NNV/f to proposed method at t=3 second for the same speed (500 rpm) and load 

(0.163 Nm) condition 
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(b) 

 
(c) 

Figure 5.6: (continued) 
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Other simulation result for the same test at a speed reference command of 600 

rpm is shown in Figure 5.7. 

 
 

(a) 

 

Figure 5.7: Simulation results (a) input power consumption of the motor (b) speed 

of the motor (c) stator voltage of the motor when the controller is switched from the 

neural network constant volt per hertz  to proposed method at t=3 second for the 

same speed (600 rpm) and load (0.235Nm) condition 
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(b) 

 
(c) 

Figure 5.7: (continued) 
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5.3 Experimental Results 

 

Based on the experimental set-up that has been described in the chapter 4, 

both of the on-line learning schemes proposed controller and neural network constant 

volt per hertz control are developed in the DSP controller board. The speed reference 

command and switching selector command to choose between the proposed 

controller and neural network constant volt per hertz are developed as an interactive 

variable via Dspace Control Desk program.  The source codes of the developed 

programs of the DSP are given in APPENDIX E. 

 

  

 In this experiment, to verify the efficiency improvement of the proposed 

controller, the same procedures that have been done in the simulation test in section 

5.2.2 is developed. Initially, the motor is run at reference speed command by using 

neural network constant volt per hertz, and maintaining the same load condition the 

controller was changed to the proposed controller.  

 

Figure 5.8 show responses of the rotor speed, electromagnetic torque, stator 

voltage and input power motor when the controller is switched from the neural 

network constant volt per hertz to the proposed controller at a speed reference 

command of 500 rpm. 
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(a) 

 

Figure 5.8: Experimental results (a) input power consumption of the motor (b) speed 

of the motor (c) stator voltage of the motor when the controller is switched from the 

neural network constant volt per hertz  to proposed method at t=3 second for the 

same speed (500 rpm) and load (0.163 Nm) condition 
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(b) 

 
(c) 

Figure 5.8: (continued) 
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Other experimental result for the same test at a speed reference command of 

600 rpm is shown in Figure 5.9. 

 

 
(a) 

 

Figure 5.9: Experimental results (a) input power consumption of the motor (b) speed 

of the motor (c) stator voltage of the motor when the controller is switched from the 

neural network constant volt per hertz  to proposed method at t=3 second for the 

same speed (600 rpm) and load (0.235Nm) condition 
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(b) 

 
(c) 

Figure 5.9: (continued) 
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The experimental results show that, by using the proposed controller, the 

input power consumption and stator voltage reduce, and the speed of the motor can 

be maintained constant in accordance to the speed reference command. Comparison 

of the efficiency between proposed controller and neural network constant volt per 

hertz is for several speed operations is given in Figure 5.10. 
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Figure 5.10: Comparison of the efficiency between the proposed controller and 

neural network constant volt per hertz 
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5.4 Summary 

 

 In this Chapter, verification of the proposed efficiency optimization control 

for variable speed compressor motor drive has been presented. The robustness of the 

on-line learning scheme neural network efficiency optimization against motor 

parameters variation has been tested by simulation, particularly based on the 

temperature variation. It was found that the proposed on-line learning scheme is 

more robust to the stator and rotor resistance deviation.  

 

Comparison of the efficiency between the proposed controller and the neural 

network constant volt per hertz has been verified by using simulation and 

experimental set-up. It was found that, by using the proposed controller the 

efficiency of the motor can be increased.  In addition, at the same time the rotor 

speed can be maintained constant according to the speed reference command. 

 



 

 

 

 

CHAPTER VI 

 

 

CONCLUSSION AND FUTURE WORK 

 
 
 

6.1 Conclusions 

  

 

 This report has presented the theoretical and practical improvement on 

efficiency optimization of variable speed compressor motor drives. The major issue 

related to the basic methods of the efficiency optimization control which is based on 

mathematic derivation and power input measurement have been discussed. 

 

Previous research works conducted in these areas were briefly reviewed. This 

includes the model loss control and search control methods control scheme to 

optimize the motor flux as well as to increase the efficiency. The various artificial 

intelligent techniques for efficiency optimizations were briefly reviewed. 

 

 Improvement on efficiency optimization control on the scalar control method 

of a variable speed compressor motor drive has been proposed in this thesis. 

Development of the neural network control to optimize the efficiency of the 

compressor motor at low speed operation has been presented.  

 

The adaptive neural network controller has been proposed by on-line learning 

scheme. Simulations on the neural network efficiency controller with on-line and 

without on-line learning scheme have been conducted to investigate the robustness of 

the proposed controller.  It is shown that the on-line learning technique improves the 

robustness of the controller. 
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 To increase the efficiency of the compressor motor drive particularly at low 

speed and load operation, a neural network efficiency optimization control to 

optimize stator voltage and frequency has been proposed.  

 

Simulation and experiments on the variable speed compressor motor drive 

system with neural network efficiency optimization control and neural network 

constant volt per hertz scheme have been conducted to verify the efficiency 

improvement of the proposed controller. The results obtained clearly show that the 

efficiency at low speed is significantly increased.   

 

 

 

6.2  Future Work 

 

Several recommendations of future work are listed as follows: 

 

a. Currently the proposed controller intended to improve the efficiency 

optimization of the compressor motor drive load model, of which the 

typical load does not require high dynamic response. Therefore for other 

types of load that need high dynamic response, the vector control of 

neural network efficiency control can be considered.  

 

b. In this proposed efficiency optimization, the development was based on 

the motor flux level optimization. Currently in this thesis three phase 

sinwave generator symmetric space vector PWM was employed. 

Incorporating to the overall losses on the motor drive system, it is also 

important to minimize the losses of drive system by development of the 

optimal space vector PWM technique. 
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APPENDIX A 

 

 

DS1102 CONTROLLER BOARD 

 
 
 

A.1 DS1102 Block Diagram  

  

 

 
Figure A.1 Block diagram of DS1102 controller board 
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APPENDIX B 

 

 

IGBT DATA SHEETS 

 
 
 

B. Data sheet of IGBT 
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APPENDIX C 

 

 

PM3000ACE POWER ANALYSER 

 
C.  Block diagram of PM3000ACE 
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APPENDIX D 

 

 

SIMULATION OF NEURAL NETWORK EFFICENCY OPTIMIZATION 

CONTROL 

 
 
 

Equations of the induction motor, space vector PWM –voltage source 

inverter and neural network controller models are represented using the S-function 

and SIMULINK blocks. The S-function is written using C language and compiled as 

a MEX-file using mex utility (Mathwork, 1997). 

 

 

D.1 Simulink Block of Induction Motor 

  

 The induction machine model used for the simulation is developed by 

equations (Wade et al., 1994 and Nik-Idris, 2000): 
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The inputs to the induction motor Simulink block are the stator voltage and 

the rotor speed. The outputs are the stator rotor currents and electromagnetic torque. 

In this simulation the input power, mechanical power and efficiency also be 

calculated. The Simulink block of the induction motor is given in Figure D.1. 

 

 

 
Figure D.1: Induction motor Simulink block 
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D.2 Simulink Block of Space Vector PWM 

  

The representation of rotating vector in complex plane is shown in Figure 

D.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D.2: Inverter state and switching plane 

 

The required time duration can be calculated by following equation (Zhou 

and Wang, 2002): 
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Sector 2: 
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Sector 3: 
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Sector 4: 

 

 
)

6
7cos(

2
3 πα += sa mTt  

(D.13)

 

 

 
)

2
cos(

2
3 πα += sb mTt  

(D.14)

 

Sector 5: 
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Sector 6: 
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The construction of the symmetrical pulse pattern for each switching period is shown 

in Figure D.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure D.3: Symmetrical switching state period for sector 1. 
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The switching sequence in Figure D.3 related to equations D.7-D.19 is given by: 
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The inputs to the space vector PWM Simulink block are the modulation index 

(voltage reference) and modulation frequency (frequency reference) signals. The 

outputs are the IGBT switching signal state. Then these signals are fed to voltage 

source inverter. The Simulink block of the space vector PWM and VSI are given in 

Figure D.4. 

 

 
 

Figure D.4: Space Vector PWM and VSI Simulink block 
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 Line to line fundamental voltage in rms is given by: 
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D.3 Simulink Block of Neural Network Controller 

  

 The neural network efficiency optimization controller used for the simulation 

is based on equations (2.22) - (2.60). Figure D.5 shows the Simulink block of the 

controller. 

 

 

 
 

Figure D.5: Neural network controller Simulink block 
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APPENDIX E 

 

 

SOURCE CODE LISTINGS 

 
 
 

 DSP source code listing for space vector pulse width modulation of the 

inverter 

 

/*=====NNEOC.c =====================================/ 

* 1.  Space Vector PWM and                                             * 

* 2.  Neural Network Efficiency Controller                                             * 

*     Using Levenberg Marquardt Algorithm                              * 

* Writen by Wahyu Mulyo Utomo                               * 

*==================================================*/ 

 

#include <brtenv.h> 

#include <math.h> 

#define pi 3.141592654 

#define DT 0.000150 

#define DT2 0.01 

#define input(u)  \ 

 ds1102_ad_start(); \ 

 in1=ds1102_ad(1);  \ 

 in2=ds1102_ad(2); \ 

 in3=ds1102_ad(3); 
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#define output(y)  \ 

 ds1102_da(1,ou1);  \ 

 ds1102_da(2,ou2);  \ 

 ds1102_da(3,ou3); 

 

float exec_time; 

 

int dcamin3a=0; 

float dcamin3=0; 

 

int spin1a=0; 

float spin1=0; 

float in1=5; 

float in2=0; 

float in3=0; 

float ou1=0; 

float ou2=0; 

float ou3=0; 

 

/* ---------------------------------------------------- */ 

/* 1.  Softstart and Reference Variable --------------- */ 

 

int power_input(); 

 int signal_port=0; 

 int on=2; 

 int start=2; 

 int control=0; 

 float sp_on=300; 

 int time_on=1; 

 float sp_off=1450; 

 int time_off=1; 

 

int speed_ref(); 

   int sp_ref=1450; 
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   int sp_runref=145; 

   float sp_nom=1450; 

   float sp_min=500; 

 int five=0; 

 int six=0; 

 int sev=0; 

 int eig=0; 

 int nine=0; 

 int ten=0; 

 int fteen=0; 

   float sp_in=500; 

 int up=0; 

 int dw=0; 

 

float inisnn(); 

float softst(); 

float run(); 

float svpwm(); 

float run_pin(); 

 

float softst() 

{ 

if (sp_on<sp_nom){ 

 sp_on=sp_on+0.15;} 

 

else {sp_on=sp_on;} 

    mf=sp_on/sp_nom; 

    mi=mf; 

    annmf=mf; 

    pinann=mi; 

    sp_ref=sp_on; 

    if (sp_ref>=sp_nom) { 

     sp_ref=sp_nom;} 
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return; 

} 

 

 

int power_input() 

{ 

   if (on==1){ 

   start=1; 

   time_off=1; 

   sp_off=sp_on; } 

 

   if (on==0){ 

   start=0; 

 time_on=1; 

   sp_on=300;   } 

return; 

} 

 

float run() 

{ 

    sp_ref=sp_runref*10; 

  xin=sp_ref/30; 

    mtrsp=rpm_rotor/30; 

    errsp=(xin-mtrsp); 

 

      if (annmf>0.25){ 

   if (annmf>=1){ 

    if (errsp<0){ 

       learning();  } 

       } 

       else { 

      learning();} 

         } 

      else { 
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   if (errsp>0){ 

      learning();  } 

  } 

  neural_net(); 

return; 

} 

 

float run_pin() 

{ 

    pin_ref(); 

    pin_sensor(); 

      scale_pin(); 

 

      if (pinann>0.25){ 

   if (pinann>=1){ 

    if (pinerr<0){ 

            learn_pin();  }} 

       else { 

      learn_pin();}} 

      else { 

   if (pinerr>0){ 

      learn_pin(); }} 

 

  nn_pin(); 

return; 

} 

 

float speed_sensor() 

{ 

 rpm_rotor=rpminc; 

 

return; 

} 
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float speed_sensor(); 

 int rpm_rotor=1000; 

 float mtrsp=0; 

   int rpminc=0; 

   int spinc1=0; 

   float spinc2=0; 

   int vinc=0; 

   float rpmincft=0; 

   int soinc=0; 

 

 

/* ---------------------------------------------------- */ 

/* 2. Space Vector - PWM  ----------------------------- */ 

 

 float mi=0; 

 float mf=0; 

   float freq=0; 

   float period=0; 

 

int counter(); 

 int q=0; 

 

float sin_waves(); 

 int n=0; 

 float w=0; 

 float va=0; 

 float vb=0; 

   float vc=0; 

 float vd=0; 

   float vq=0; 

 

float ampl_theta (); 

 float amp=0; 

   float ang=0; 



 143

 

int sector (); 

 int sec=0; 

 

float time_abnul(); 

 float ta=0; 

   float tb=0; 

   float tnul=0; 

 float tcycle=0; 

 float dtcycle=0; 

 float tmax=0.0; 

 float tabgain=0.7846; 

 

int gate_abc (); 

 float t_one=0; 

 float t_two=0; 

   float t_three=0; 

 float t_four=0; 

 float t_five=0; 

   float t_six=0; 

 float t_mdl1=0; 

 float t_mdl2=0; 

 float t_mdl3=0; 

 int ga=0; 

 int gb=0; 

 int gc=0; 

 int swA=0; 

 int swB=0; 

 int swC=0; 

 

int enabl=0; 

float vab=0; 

float vbc=0; 

float vca=0; 
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int out; 

int emergency=0; 

int reset=0; 

 

/* ---------------------------------------------------- */ 

int counter() 

{ 

 static int q=0; 

   q++; 

    if (q>(1/(mf*DT*50))) 

      {q=0;} 

   return(q); 

} 

 

/* ----------- Sine Wave Generations ------------------ */ 

float sine_waves () 

{ 

   freq=mf*50; 

   period=1/freq; 

   w=2*pi*mf*50; 

   n=counter(); 

   va=mi*sin(n*w*DT); 

   vb=mi*sin(n*w*DT-(120*pi/180)); 

   vc=mi*sin(n*w*DT+(120*pi/180)); 

   vd=(va-0.5*vb-0.5*vc)*2/3; 

   vq=(vb-vc)/sqrt(3); 

 

return; 

} 
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/* ----------- Amplitude & Angle References ---------- */ 

 

float ampl_theta () { 

amp=sqrt(vd*vd+vq*vq); 

 

   if (vd>=0 && vq>=0){ 

    ang=atan(vq/vd);   } 

   else if (vd<0 && vq>=0){ 

      ang=pi+atan(vq/vd);  } 

   else if (vd<0 && vq<=0){ 

    ang=-pi+atan(vq/vd);  } 

   else{ 

    ang=atan(vq/vd);    } 

 

return; 

} 

 

 

/* ----------- Sector References ---------------------- */ 

 

int sector () { 

   if (ang>=0 && ang<=1.047){ 

   sec=3; 

   ta=tabgain*mi*tmax*cos((3*pi/2)+ang); 

   tb=tabgain*mi*tmax*cos((5*pi/6)+ang);   } 

   else if (ang>1.047 && ang<=2.0944){ 

   sec=1; 

   tb=tabgain*mi*tmax*cos((pi/6)+ang); 

   ta=tabgain*mi*tmax*cos((3*pi/2)+ang); } 

   else if (ang>2.0944 && ang<=3.1416){ 

   sec=5; 

   ta=tabgain*mi*tmax*cos((5*pi/6)+ang); 

   tb=tabgain*mi*tmax*cos((pi/6)+ang);  } 

   else if (ang>-3.1416 && ang<=-2.0944){ 
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   sec=4; 

   tb=tabgain*mi*tmax*cos((7*pi/6)+ang); 

   ta=tabgain*mi*tmax*cos((pi/2)+ang);    } 

   else if (ang>-2.0944 && ang<=-1.047){ 

   sec=6; 

   ta=tabgain*mi*tmax*cos((pi/2)+ang); 

   tb=tabgain*mi*tmax*cos((11*pi/6)+ang);    } 

   else{ 

   sec=2; 

 tb=tabgain*mi*tmax*cos((11*pi/6)+ang); 

   ta=tabgain*mi*tmax*cos((7*pi/2)+ang); 

   } 

return; 

} 

 

 

/* ----------- ta-tb-tnul generation ------------------ */ 

 

float time_abnul () 

{   tmax=1; 

   dtcycle=0.102; 

   tcycle=tcycle+dtcycle; 

   if (tcycle>=tmax){ 

   tcycle=0;   } 

 

   tnul=(tmax-ta-tb); 

   if (tnul<0){ 

   tnul=0;} 

 

return; 

} 
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/* ----------- Gate generation ------------------------ */ 

 

int gate_abc () { 

t_one=tnul/4; 

t_two=(tnul/4)+(ta/2); 

t_three=(tnul/4)+((ta+tb)/2); 

t_four=(3*tnul/4)+((ta+tb)/2); 

t_five=(3*tnul/4)+tb+((ta)/2); 

t_six=(3*tnul/4)+ta+tb ; 

 

if (tcycle<t_one || tcycle>t_six ){ 

   ga=0; 

   gb=0; 

   gc=0;   } 

 

else { 

 

if (sec==3){ 

   if (tcycle<t_two){ 

   ga=1; 

   gb=0; 

   gc=0;   } 

   else if (tcycle<t_three){ 

   ga=1; 

   gb=1; 

   gc=0;   } 

   else if (tcycle<t_four){ 

   ga=1; 

   gb=1; 

   gc=1;   } 

   else if (tcycle<t_five){ 

   ga=1; 

   gb=1; 

   gc=0;   } 
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   else { 

   ga=1; 

   gb=0; 

   gc=0;   } 

} 

 

if (sec==1){ 

 if (tcycle<t_two){ 

   ga=0; 

   gb=1; 

   gc=0;   } 

   else if (tcycle<t_three){ 

   ga=1; 

   gb=1; 

   gc=0;   } 

   else if (tcycle<t_four){ 

   ga=1; 

   gb=1; 

   gc=1;   } 

   else if (tcycle<t_five){ 

   ga=1; 

   gb=1; 

   gc=0;   } 

   else  { 

   ga=0; 

   gb=1; 

   gc=0;   } 

} 

if (sec==5){ 

 if (tcycle<t_two){ 

   ga=0; 

   gb=1; 

   gc=0;   } 

   else if (tcycle<t_three){ 
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   ga=0; 

   gb=1; 

   gc=1;   } 

   else if (tcycle<t_four){ 

   ga=1; 

   gb=1; 

   gc=1;   } 

   else if (tcycle<t_five){ 

   ga=0; 

   gb=1; 

   gc=1;   } 

   else { 

   ga=0; 

   gb=1; 

   gc=0;   } 

} 

if (sec==4){ 

 if (tcycle<t_two){ 

   ga=0; 

   gb=0; 

   gc=1;   } 

   else if (tcycle<t_three){ 

   ga=0; 

   gb=1; 

   gc=1;   } 

   else if (tcycle<t_four){ 

   ga=1; 

   gb=1; 

   gc=1;   } 

   else if (tcycle<t_five){ 

   ga=0; 

   gb=1; 

   gc=1;   } 

   else { 
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   ga=0; 

   gb=0; 

   gc=1;   } 

} 

if (sec==6){ 

   if (tcycle<t_two){ 

   ga=0; 

   gb=0; 

   gc=1;   } 

   else if (tcycle<t_three){ 

   ga=1; 

   gb=0; 

   gc=1;   } 

   else if (tcycle<t_four){ 

   ga=1; 

   gb=1; 

   gc=1;   } 

   else if (tcycle<t_five){ 

   ga=1; 

   gb=0; 

   gc=1;   } 

   else { 

   ga=0; 

   gb=0; 

   gc=1;   } 

} 

 

if (sec==2){ 

   if (tcycle<t_two){ 

   ga=1; 

   gb=0; 

   gc=0;   } 

   else if (tcycle<t_three){ 

   ga=1; 
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   gb=0; 

   gc=1;   } 

   else if (tcycle<t_four){ 

   ga=1; 

   gb=1; 

   gc=1;   } 

   else if (tcycle<t_five){ 

   ga=1; 

   gb=0; 

   gc=1;   } 

   else { 

   ga=1; 

   gb=0; 

   gc=0;   } 

} 

} 

return; 

} 

 

 

/* ---------------------------------------------------- */ 

/* 3. Neural Network Controller ----------------------- */ 

 

float learning(); 

 float errsp=0; 

 

 float dwasi=0; 

 float dwbsi=0; 

 float dwcsi=0; 

 float dbasi=0; 

 float dbbsi=0; 

 float dbcsi=0; 
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 float dwasiold=0; 

 float dwbsiold=0; 

 float dwcsiold=0; 

 

 float dbasiold=0; 

 float dbbsiold=0; 

 float dbcsiold=0; 

 

 float erdwasi=0; 

 float erdwbsi=0; 

 float erdwcsi=0; 

 float erdbsi=0; 

 

float neural_net(); 

 float xin=0; 

 float annmf=0.25; 

 

 float wasi=0.0066; 

 float wbsi=0.0044; 

 float wcsi=0.0055; 

 float walo=0.4043; 

 float wblo=0.302; 

 float wclo=0.353; 

 float wate=0.384; 

 float wbte=0.293; 

 float wcte=0.34; 

 

 float ba=0.0958; 

 float bb=0.0958; 

 float bc=0.0958; 

 

float pin_ref(); 

   float pinrunref=250; 

   float pinref=250; 
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float pin_sensor(); 

   float pinin=0; 

   float pinflt=0; 

   int   pinint=0; 

   float pinin2=0; 

 

float scale_pin(); 

   float refpin=0; 

   float pin=0; 

   float pinerr=0; 

 

float learn_pin(); 

  float efdwa=0; 

 float efdwb=0; 

 float efdwc=0; 

 float efdba=0; 

 float efdbb=0; 

 float efdbc=0; 

 

 float efdwao=0; 

 float efdwbo=0; 

 float efdwco=0; 

 float efdbao=0; 

 float efdbbo=0; 

 float efdbco=0; 

 

 float eferdwa=0; 

 float eferdwb=0; 

 float eferdwc=0; 

 float eferdb=0; 
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float nn_pin(); 

 float pinann=0.25; 

 

 float efwa1=0.4591; 

 float efwb1=0.3682; 

 float efwc1=0.2982; 

 float efwa2=0; 

 float efwb2=0; 

 float efwc2=0; 

 float efwa3=0; 

 float efwb3=0; 

 float efwc3=0; 

 

 float efba=-0.08276; 

 float efbb=-0.07485; 

 float efbc=-0.06485; 

 

 float inisnn () { 

 wasi=0.266;     

 wbsi=0.2666; 

 wcsi=0.2676; 

 walo=0;     

 wblo=0; 

 wclo=0; 

 wate=0;     

 wbte=0; 

 wcte=0; 

 

 ba=0.07934;     

 bb=0.08899; 

 bc=0.09897; 
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 dwasi=0;     

 dwbsi=0; 

 dwcsi=0; 

 dbasi=0; 

 dbbsi=0; 

 dbcsi=0; 

 

   dwasiold=0;  // delta wa_old 

 dwbsiold=0; 

 dwcsiold=0; 

 

 dbasiold=0; 

 dbbsiold=0; 

 dbcsiold=0; 

 

   erdwasi=0;   // error delta (dwa-dwaol) 

 erdwbsi=0; 

 erdwcsi=0; 

 erdbsi=0; 

 

return; 

} 

 

 

float pin_sensor() 

{ 

 pinin2=pinin; 

return; 

} 
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float pin_ref() 

{ 

  pinrunref=(0.000215*sp_ref-0.18)*sp_ref+57; 

  pinref=pinrunref; 

 

return; 

} 

 

float scale_pin() 

{ 

    refpin=pinref*0.0054; 

    pin=pinin2*0.0054; 

      efxin=pin 

    pinerr=(refpin-pin); 

return; 

} 

 

 

float learning() 

{ 

 dwasi=(-errsp*(1-mtrsp*mtrsp)*wasi*alfa); 

 dwbsi=(-errsp*(1-mtrsp*mtrsp)*wbsi*alfa); 

 dwcsi=(-errsp*(1-mtrsp*mtrsp)*wcsi*alfa); 

 

   dbsi=(-errsp*(1-mtrsp*mtrsp)*alfa); 

 

   erdwasi=dwasi-dwasiold; 

   erdwbsi=dwbsi-dwbsiold; 

   erdwcsi=dwcsi-dwcsiold; 

 

   dwasiold=dwasi; 

   dwbsiold=dwbsi; 

   dwcsiold=dwcsi; 

   wasi=wasi+dwasi; 
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   wbsi=wbsi+dwbsi; 

   wcsi=wcsi+dwcsi; 

 

   ba=ba+dbsi; 

   bb=bb+dbsi; 

   bc=bc+dbsi; 

return; 

} 

 

 

/* ---------------------------------------------------- */ 

/* 4. Levenberg Marquardt Learning  ------------------- */ 

 

float neural_net() 

{ 

   walo=xin*wasi+ba;   

   wblo=xin*wbsi+bb; 

   wclo=xin*wcsi+bc; 

 

   wate=(1-exp(-2*walo)/ (1+exp(-2*walo);  

   wbte=(1-exp(-2*wblo)/ (1+exp(-2*wblo);  

   wcte=(1-exp(-2*wclo)/ (1+exp(-2*wclo);  

 

   annmf=wate+wbte+wcte; 

 

   if (annmf<=0.25){ 

    annmf=0.25; 

      } 

   if (annmf>=1){ 

    annmf=1.0; 

      } 

return; 

} 
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float learn_pin() 

{ 

 ej1=(1-efwa3*efwa3)*efxin;         

 ej2=(1-efwb3*efwb3)*efxin;        

 ej3=(1-efwc3*efwc3)*efxin;         

 ej4=(1-efwa3*efwa3);               

 ej5=(1-efwb3*efwb3);               

 ej6=(1-efwc3*efwc3);               

 

 eujjt=efalf+ej1*ej1+ej2*ej2+ej3*ej3+ej4*ej4+ej5*ej5+ej6*ej6; 

 

 ejtj1=((eujjt-ej1*ej1)+ej2*ej2+ej3*ej3+ej4*ej4+ej5*ej5+ej6*ej6)*ej1; 

 ejtj2=(ej1*ej1+(eujjt-ej2*ej2)+ej3*ej3+ej4*ej4+ej5*ej5+ej6*ej6)*ej2; 

 ejtj3=(ej1*ej1+ej2*ej2+(eujjt-ej3*ej3)+ej4*ej4+ej5*ej5+ej6*ej6)*ej3; 

 ejtj4=(ej1*ej1+ej2*ej2+ej3*ej3+(eujjt-ej4*ej4)+ej5*ej5+ej6*ej6)*ej4; 

 ejtj5=(ej1*ej1+ej2*ej2+ej3*ej3+ej4*ej4+(eujjt-ej5*ej5)+ej6*ej6)*ej5; 

 ejtj6=(ej1*ej1+ej2*ej2+ej3*ej3+ej4*ej4+ej5*ej5+(eujjt-ej6*ej6))*ej6; 

 

 efdwa=(ejtj1*pinerr)/(efalf*eujjt); 

 efdwb=(ejtj2*pinerr)/(efalf*eujjt); 

 efdwc=(ejtj3*pinerr)/(efalf*eujjt); 

 

 efdba=(ejtj1*pinerr)/(efalf*eujjt); 

 efdbb=(ejtj2*pinerr)/(efalf*eujjt); 

 efdbc=(ejtj3*pinerr)/(efalf*eujjt); 

 

   efwa1=efwa1+efdwa; 

   efwb1=efwb1+efdwb; 

   efwc1=efwc1+efdwc; 

 

   efba=efba+efdba; 

   efbb=efbb+efdbb; 

   efbc=efbc+efdbc; 
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   eferdwa=efdwa-efdwao; 

   eferdwb=efdwb-efdwbo; 

   eferdwc=efdwc-efdwco; 

 

   efdwao=efdwa; 

   efdwbo=efdwb; 

   efdwco=efdwc; 

 

return; 

} 

 

 

float nn_pin() 

{ 

   efwa2=efxin*efwa1+efba; 

   efwb2=efxin*efwb1+efbb; 

   efwc2=efxin*efwc1+efbc; 

 

   efwa3=(1-exp(-efwa2)/ (1+exp(-efwa2); 

   efwb3=(1-exp(-efwb2)/ (1+exp(-efwb2); 

   efwc3=(1-exp(-efwc2)/ (1+exp(-efwc2); 

 

 

   pinann=efwa3+efwb3+efwc3; 

 

   if (pinann<=0.25){ 

    pinann=0.25; 

      } 

   if (pinann>=1){ 

    pinann=1.0; 

      } 

return; 

} 

 



 160

 

/* ---------------------------------------------------- */ 

/* --- Sub-Main_t1 Program ---------------------------- */ 

 

void sv_gen1 () 

{ 

power_input(); 

speed_sensor(); 

pin_sensor(); 

 

if (start==1){ 

 if (control==0){ 

    softst(); 

      sp_runref=145; 

      pinrunref=250; 

      pinref=250;    } 

 

 if (control==1){ 

      run(); 

      run_pin(); 

  mf=annmf; 

    mi=pinann; 

   } 

 

 if (control==2){ 

      run(); 

  mf=annmf; 

    mi=mf; 

   } 

 

} 
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if (start==0){ 

    sp_on=300; 

    control=0; 

  sp_runref=145; 

  sp_off=sp_ref; 

  sp_ref=sp_nom; 

    mf=0.24; 

  mi=0.24; 

  inisnn ();} 

return; 

} 

 

 

/* ---------------------------------------------------- */ 

/* --- Sub-Main_t0 Program ---------------------------- */ 

 

float svpwm() 

{ 

 sine_waves (); 

 ampl_theta(); 

   sector(); 

 time_abnul(); 

   gate_abc (); 

 enabl=1; 

 

return; 

} 

 

void sv_gen () 

{ 

 if ((mf>=0.25)&&(mi>=0.25)) 

   { 

   svpwm (); 

   } 
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else { 

   ga=0; 

   gb=0; 

   gc=0; 

 enabl=0;} 

 

   vab=ga-gb; 

   vbc=gc-gb; 

   vca=gc-ga; 

 

return; 

} 

 

/* ---------------------------------------------------- */ 

/* --- Main_t0 Program -------------------------------- */ 

 

void isr_t0()        /*timer0 interrupt service routine*/ 

{ 

   out=(ga*1)+(gb*2)+(gc*4);    /*output switching gates*/ 

   ds1102_p14_pin_io_write(out); 

 

 

 isr_t0_begin();   /*overload check*/ 

   host_service(1,0);   /*call TRACE service*/ 

   tic0_start();   /*start execution time measurement*/ 

 

 sv_gen(); 

 

   exec_time=tic0_read();  /*calculate execution time*/ 

   isr_t0_end();   /*end of interrupt service routine*/ 

} 
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/* ---------------------------------------------------- */ 

/* --- Main_t1 Program -------------------------------- */ 

 

void isr_t1()        /*timer1 interrupt service routine*/ 

{ 

 isr_t1_begin();   /*overload check*/ 

   host_service(1,0);   /*call TRACE service*/ 

 

   input(u); 

   pinflt=12.35*in3; 

 pinint=pinflt*100; 

   pinin=pinint; 

 

   rpmincft=15.81*in1; 

   rpminc=rpmincft*1000; 

 

   output(ou1); 

   output(ou2); 

 

   ou1=mf/2;      /*output NN Speed controller*/ 

   ou2=mi/2; 

 

 sv_gen1(); 

 

   isr_t1_end();    /*end of interrupt service routine*/ 

} 

 

void main () 

{ 

 init(); 

   ds1102_p14_pin_io_init(0xffff); 

   msg_info_set(MSG_SM_RTLIB, 0, "System started."); 

 

   isr_t0_start(DT); 
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   isr_t1_start(DT2); 

 

   while (1) 

   { 

    while (msg_last_error_number()==DS1102_NO_ERROR) 

      { 

      host_service (0,0); 

      } 

      isr_t0_disable(); 

      isr_t1_disable(); 

 

      while (msg_last_error_number()!=DS1102_NO_ERROR) 

     { 

     host_service (0,0); 

      } 

      isr_t0_enable(); 

   } 

} 
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the project objectives, significant results achieved, research approach and team strucure) 
 
 

This project includes the modelling, simulation and development of a variable 

speed compressor motor drive. This project proposes a method that improves the 

efficiency of the variable speed induction motor for driving compressor load by 

controlling the motor flux. A digital signal processor (DSP) based on online learning 

neural network efficiency optimization control is developed. The controller is designed to 

generate optimum flux by controlling both the stator voltage and frequency. The 

simulation is verified by experimental test. The results obtained clearly show that the 

efficiency at low speed is significantly increased.  The project has also produced 1 PhD 

graduate and also involved a number of final year undergraduate students. 
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C. Objectives achievement 
 

• Original project objectives (Please state the specific project objectives as described in Section ll of 
the Application Form) 

 
To develop an efficient variable speed compressor motor drive. 

 
 
 
• Objectives Achieved (Please state the extent to which the project objectives were achieved) 
 

The project objectives have been met whereby a small scale laboratory working 
prototype was tested and working satisfactorily. 

 
 
 
• Objectives not achieved (Please identify the objectives that were not achieved and give reasons) 
 
       None 
 
 
 
 

D. Technology Transfer/Commercialisation Approach (Please describe the approach planned to 
transfer/commercialise the results of the project) 

 
 

Technology and expertise obtained from the outputs of the project can be 

transferred through collaboration work with the variable speed compressor motor drive 

industries. Such industries in Malaysia should take this opportunity as part of their 

strategies in facing future energy saving product competition. Thus collaboration is also 

needed with other organizations or industries that are focus on the application of variable 

speed compressor drive such as air conditioning or refrigeration manufacturing. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

E. Benefits of the Project (Please identify the actual benefits arising from the project as defined in Section lll of 
the Application Form. For examples of outputs, organisational outcomes and sectoral/national impacts, please refer 
to Section lll of the Guidelines for the Application of R&D Funding under IRPA) 

 
• Outputs of the project and potential beneficiaries (Please describe as specifically as possible 

the outputs achieved and provide an assessment of their significance to users) 
 
The following outputs should be achieved by the project: 
• A new conceptual design of a variable speed compressor motor drive with high 

efficiency for low speed operation.  
 
• A New control technique that improve the efficiency of the variable speed compressor 

motor drive and maintain the speed output of the motors according to the speed 
reference command. 

 
• The direct beneficiaries of the project are the efficient variable speed compressor motor 

drive system.  
  

 
 
• Organisational Outcomes (Please describe as specifically as possible the organisational benefits 

arising from the project and provide an assessment of their significance) 
 
Contributions of the project on the level of the research organization are highlighted as 
follows: 
• 1 PhD degree and 1 research staff with new specialization 
• Royalties from consultation work that can be offered by the researchers based on the 

technology, experience and expertise obtained from the project. 
• Better facilities which include new equipments and staffs with practical expertise and 

experience in Energy Conversion Department, UTM as a result of the hardware 
development of the controller. 
The Energy Conversion Department, UTM get recognition as a local center with 
expertise and experience in the development of efficient variable speed compressor 
motor drive, where the variable speed compressor industries can opt to refer to, instead 
of depending on foreign expertise. 

 
 
• National Impacts (If known at this point in time, please describes specifically as possible the potential 

sectoral/national benefits arising from the project and provide an assessment of their significance) 
 
Contribution of the project on the national level: 
 
• In modern countries like Japan, U.S.A and Europe active moving towards 

commercialization of efficient variable speed compressor motor drive, output of the 
project can definitely be a stepping stone for Malaysia towards linkages with these 
foreign research institutions as a platform in exchanging ideas and experience.  

 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

F. Assessment of project structure 
 

• Project Team (Please provide an assessment of how the project team performed and highlight any 
significant departures from plan in either structure or actual man-days utilised) 

 
There is no problem of manpower as the researcher is a PhD candidate.  
 
 
 
 
• Collaborations (Please describe the nature of collaborations with other research organisations and/or 

industry) 
 
 
Technical drive was also granted from Compressor Laboratory of Mechanical Faculty, UTM 
in term of ideas and suggestions 
 
 
 
 

G. Assessment of Research Approach (Please highlight the main steps actually performed and indicate 
any major departure from the planned approach or any major difficulty encountered) 
 
Research approach follows as planned 
 
 
 
 
 
 
 
 
 

 
H. Assessment of the Project Schedule (Please make any relevant comment regarding the actual duration 

of the project and highlight any significant variation from plan) 
 
The project schedule duration was extended due to the long process of purchasing of 
components and equipment especially from overseas whereby approval was need from the 
relevant authorities. 

 



 
 
 
 
 

I. Assessment of Project Costs (Please comment on the appropriateness of the original budget and 
highlight any major departure from the planned budget) 

 
No departure from planned budget 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

J. Additional Project Funding Obtained (In case of involvement of other funding sources, please 
indicate the source and total funding provided) 
 
 
Nil 
 
 
 
 
 
 
 
 
 

 
K. Other Remarks (Please include any other comment which you feel is relevant for the evaluation of this 

project) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Date :       Signature : 



Benefit Report 
 
1. Description of the Project 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A. Project identification 

1. Project number : 03-02-06-0031-PR0023/11-02 

2. Project title : To Develop An Efficient Variable Speed Compressor Motor System  

3. Project leader : Prof. Dr. Abdul Halim Mohd Yatim  
 

B. Type of research 
 
Indicate the type of research of the project (Please see definitions in the Guidelines for 
completing the Application Form) 
 

Scientific research (fundamental research) 

Technology development (applied research) 

Product/process development (design and engineering) 

Social/policy research 

C. Objectives of the project 
 
1. Socio-economic objectives 
 

Which socio-economic objectives are adressed by the project? (Please indentify the sector, 
SEO Category and SEO Group under which the project falls. Refer to the Malaysian R&D 
Classification System brochure for the SEO Group code) 
 
Sector:      Energy, Mineral and Geo Science 

SEO Category:    Energy Resources (S 20400) 

 SEO Group and Code:   Preparation and supply of Energy Source Materials (S 20403)     
 

2. Fields of research 
 

Which are the two main FOR Categories, FOR Groups, and FOR Areas of your project? 
(Please refer to the Malaysia R&D Classification System brochure for the FOR Group Code) 

 
a. Primary field of research 
 

FOR Category:    F10700 Engineering Sciences 

FOR Group and Code:   F10710 Mechanisation and Design Engineering 

FOR Area:     Other Mechanisation and Design Engineering 

b. Secondary field of research 
 

FOR Category:    F10600 Applied Sciences and Technologies 

FOR Group and Code:   F10602 Manufacturing and Process Technologies and Engineering 

FOR Area:     Other Manufacturing and Process Technologies and Engineering 
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D. Project duration 
 

What was the duration of the project? 
 

        60 Months 
 

 
 
E. Project manpower 
 

How many man-months did the project involve? 
 
        27 Man-months 
 
 
 
 

F. Project costs 
 

What were the total project expenses of the project? 
 
RM 400,000 
 
 
 

G. Project funding 
 

Which were the funding sources for the project? 
 
Funding sources     Total Allocation (RM) 
 
IRPA        RM400,000 

______________________________   _____________________________ 

______________________________   _____________________________ 

______________________________   _____________________________ 



 
ll. Direct Outputs of the Project 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A. Technical contribution of the project 
 
1. What was the achieved direct output of the project : 
 

For scientific (fundamental) research projects? 
 

Algorithm 

Structure 

Data 

Other, please specify : ______________________________________________ 

For technology development (applied research) projects : 
 

Method/technique 

Demonstrator/prototype 

Other, please specify : _______________________________________________ 

For product/process development (design and engineering) projects: 
 

Product/component 

Process 

Software 

Other, please specify : _______________________________________________ 

 
2. How would you characterise the quality of this output? 
 

Significant breakthrough 

Major improvement 

Minor improvement 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

B. Contribution of the project to knowledge 
 
1. How has the output of the project been documented? 
 

Detailed project report 

Product/process specification documents 

Other, please specify : _______________________________________________ 

2. Did the project create an intellectual property stock? 
 

Patent obtained 

Patent pending 

Patent application will be filed 

Copyright 

3. What publications are available? 
 

Articles (s) in scientific publications  How Many:  6  

Papers(s) delivered at conferences/seminars How Many:  6 

Book 

Other, please specify : _______________________________________________ 

4. How significant are citations of the results? 
 

Citations in national publications   How Many:  

Citations in international publications  How Many:  2 

None yet 

Not known 



 
 

lll. Organisational Outcomes of the Project 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A. Contribution of the project to expertise development 
 
1. How did the project contribute to expertise? 

 
PhD degrees     How Many:  1 

MSc degrees     How Many: ________________ 

Research staff with new specialty   How Many:  1 

Other, please specify: ________________________________________________ 

2. How significant is this expertise? 

One of the key areas of priority for Malaysia 

An important area, but not a priority one 

 
B. Economic contribution of the project? 
 
1. How has the economic contribution of the project materialised? 

Sales of manufactured product/equipment 

Royalties from licensing 

Cost savings 

Time savings 

Other, please specify : _______________________________________________ 
 

2. How important is this economic contribution ? 

High economic contribution  Value:  RM________________ 

Medium economic contribution  Value:  RM________________ 

Low economic contribution  Value:  RM________________ 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3. When has this economic contribution materialised? 

Already materialised 

Within months of project completion 

Within three years of project completion 

Expected in three years or more 

Unknown 

 
C Infrastructural contribution of the project 

1. What infrastructural contribution has the project had? 

New equipment    Value:  RM 194,880 

New/improved facility  Investment : RM __________________ 

New information networks 

Other, please specify: ____________________________________________ 

2. How significant is this infrastructural contribution for the organisation? 

Not significant/does not leverage other projects 

Moderately significant 

Very significant/significantly leverages other projects 

D. Contribution of the project to the organisation’s reputation 

1. How has the project contributed to increasing the reputation of the organisation 

Recognition as a Centre of Excellence 

National award 

International award 

Demand for advisory services 

Invitations to give speeches on conferences 

Visits from other organisations 

Other, please specify: ______________________________________________ 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2. How important is the project’s contribution to the organisation’s reputation ? 

Not significant 

Moderately significant 

Very significant 



 
1V. National Impacts of the Project 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A. Contribution of the project to organisational linkages 

1. Which kinds of linkages did the project create? 

Domestic industry linkages 

International industry linkages 

Linkages with domestic research institutions, universities 

Linkages with international research institutions, universities 

2. What is the nature of the linkages? 

Staff exchanges 

Inter-organisational project team 

Research contract with a commercial client 

Informal consultation 

Other, please specify: ________________________________________________ 

B. Social-economic contribution of the project 

1. Who are the direct customer/beneficiaries of the project output? 

Customers/beneficiaries:    Number: 
________________________________  ________________________________ 

________________________________  ________________________________ 

________________________________  ________________________________ 

2. How has/will the socio-economic contribution of the project materialised ? 

Improvements in health 

Improvements in safety 

Improvements in the environment 

Improvements in energy consumption/supply 

Improvements in international relations 

Other, please specify: ________________________________________________ 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3. How important is this socio-economic contribution? 

High social contribution 

Medium social contribution 

Low social contribution 

4. When has/will this social contribution materialised? 

Already materialised 

Within three years of project completion 

Expected in three years or more 

Unknown 

 

 

 

Date:       Signature: 
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UNIVERSITI TEKNOLOGI MALAYSIA 
Invention Disclosure 

 
 
This form contains disclosure of invention or copyrightable material and should be submitted in 
confidence to The Secretariat, Intellectual Property Committee, Research Management Centre 
(RMC), Universiti Teknologi Malaysia, 81310 UTM Skudai. 
 
1. Type of Material :  Invention  Copyright 
 
2. Title of Invention or Copyright :  
 

AN EFFICIENT VARIABLE SPEED COMPRESSOR MOTOR DRIVE. 
 
3. Inventor(s) Full Name Department/Institute/   

Approximate  Centre/Unit % Contribution 
 

3.1 Principal Prof. Dr. Abdul Halim  ENCON/FKE 70% 
                                   Mohd Yatim 
3.2 Associates         Wahyu Mulyo Utomo ENCON/FKE 30% 

 
3.3 Others ___________________ 

 
 

4. Identify sources and estimate % of support (materials, facilities, salaries) contributing to the 
development of the invention : 

 
Government Funds ( IRPA, grants and /or contract) 100  % 
UTM-RMC Funds 0 % 
Other Institution (s) : 
 Name :  _____________________________ % 

 Other source :  _____________________________ % 

 
5. If developed with Government Funds : 
 

Has invention been reported to granting agency ?  Yes     No 

Agency Name :  IRPA      Report Date:  ________ 

Grant Number : 74535 
 
Has notification been made to the relevant Government Agency for retention of rights 
to invention ?  

     Yes    No 
 
Please attach copies of any correspondence with any Government agency related to 
disclosure of invention or rights to invention. 

 
6. If developed with other funds (industry sponsor, foundation grant, etc.) : 
 

Has the invention been reported to the sponsor?  Yes    No 
 

Source name : __________________________  Report Date : _________ 
Please attach copies of relevant correspondence with the sponsor. 
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7. Record of Invention : 
 

7.1 Invention was first conceived on or about  (Date) : 12/01/2004 
7.2 An oral disclosure has been made : 
 

(Name) Wahyu Mulyo Utomo ______________________  on  (Date) 01 / 11 / 2005 
 
(Name) _________________________________________  on (Date) _ / __ / ____ 

 
7.3 First sketch or drawing was made on (Date) :  ____ / ____ / _____ disclosed to and 

understood by (Name ) : Wahyu Mulyo Utomo _________ on (Date) : 12 / 01/ 2004 

That document is now located at:  P07-112-01_______________________________ 
 

7.4 First written description was completed on (Date) : ____ / ____ / ____ and that 

document is now located at : ______________________________________________ 
 
7.5 First reduction to practice was successfully tested on (Date) : ____ / ____ / ____ and 

the records of that test are now located at ____________________________________ 
 

7.6 First publication disclosing the invention was dated (Date ) : ____ / ____ / ____ 
 
 

8. List companies or individuals with whom you may have discussed this project and append 
copies, showing dates, of all correspondence relating to their interest. 

 
(Name) ________________________________ (Correspondence Date) : ___ / ___/ ____ 
 
(Name) ________________________________ (Correspondence Date) : ___ / ___/ ____ 
 
If you have communicated, via telephone, with any additional companies, please list the 
company names, giving dates, and append a brief summary of your conversations. 
 
(Name) ________________________________ (Communication Date ) : ___ / ___/ ___ 

Summary of conversation:        _______________________________________________ 

 
 (Note : Valuable rights to inventions may be lost if disclosed to outside parties unless signed 

Confidentiality Agreement is obtained) 
 
9. Has invention or components thereof been described in a draft of an article or lecture ? If so, 

please attach copies of drafts of abstracts, manuscripts, or reprints and give proposed 
presentation and/or publication dates. 

 
(Type & Title of Draft) : ____________________________________________________ 

(Proposed Presentation Date) : ____ / ____ / ____ 
(Note : Premature disclosure of invention in lectures, articles, etc. may result in loss of all 
right to obtain patent) 

 
10. Briefly outline your views regarding potential commercial application of your invention : 
 

10.1 List potential licensees or manufacturers or companies active in this field. 
 

Name : Focus Dynamic Technology Bhd.     

Name : Schneider Scott & English Electric Sdn Bhd. 

Name : Advance Control Engineering Sdn Bhd.     
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10.2 What is potential market ? 
 

Focus Dynamic Technology Bhd     

________________________________________________________________________

________________________________________________________________________

_________________________________________ 

________________________________________________________________________ 

 
10.3 Estimate commercial market in RM and USD :        RM 5,000   USD _______ 

 
 

11. List independent referees with expertise in the area of the invention with whom we may 
communicate for additional information (with your approval) : 

 
(Name, address, contact nos. ) :  Sio Kee Hong,  03-78450896 
 
 
(Name, address, contact nos.) :  Nik Rumzi Nik Idris, 019-7205854 
 

 
12. Please append a full description of the invention which should include the following : 
 

12.1 Drawings, diagrams, figures, flowcharts, sketches etc. which illustrate the invention. 
12.2 Chemical structural form (if the invention is a new chemical compound). 
12.3 List of equivalents which can be substituted for the invention or for components of 

the invention. 
12.4 Reprints of articles or patents describing inventions, methods etc. similar to the one 

described in this disclosure. 
12.5 Describe why your product or process is sufficiently novel compared to those already 

available to warrant patentability. 
 
 
 
 
Principal Inventor : __________________ Dean/Director : ______________________ 
 (Signature) of Faculty/Centre/Institute     (Signature) 
 
Name : Prof. Dr. Abdul Halim                        Name :   
                 Mohd Yatim  
 
Address : ENCON, FKE, UTM Address :  
 
 
 
Telephone / Fax : 5535860/5578150 Telephone / Fax : 
 
Date :  12 / 01 / 2006      Date : ____ / ____ / ____ 
 
 
UNIVERSITI TEKNOLOGI MALAYSIA RETAINS TITLE TO ALL INVENTIONS AND 
PATENTS AS PROVIDED FOR IN THE INTELLECTUAL PROPERTY POLICY. 
If you have any enquiry about this set of forms, or intellectual property protection in general, 
please contact Deputy Director (IP Secretariat), Research Management Centre, UTM 81310 
Skudai at 07-5502382 or e-mail td2@rmc.utm.my. 


