18,700 research outputs found

    Real world music object recognition

    Get PDF
    We present solutions to two of the most pressing issues in contemporary optical music recognition (OMR).We improve recognition accuracy on low-quality, real-world (i.e. containing ageing, lighting, or dirt artefacts among others) input data and provide confidence-rated model outputs to enable efficient human post-processing. Specifically, we present (i) a sophisticated input augmentation scheme that can reduce the gap between sanitised benchmarks and realistic tasks through a combination of synthetic data and noisy perturbations of real-world documents; (ii) an adversarial discriminative domain adaptation method that can be employed to improve the performance of OMR systems on low-quality data; (iii) a combination of model ensembles and prediction fusion, which generates trustworthy confidence ratings for each prediction. We evaluate our contributions on a newly created test set consisting of manually annotated pages of varying real-world quality, sourced from International Music Score Library Project (IMSLP) / the Petrucci Music Library. With the presented data augmentation scheme, we achieve a doubling in detection performance from 36.0% to 73.3% on noisy real-world data compared to state-of-the-art training. This result is then combined with robust confidence ratings paving the way forOMR to be deployed in the realworld. Additionally, we showthe merits of unsupervised adversarial domain adaptation for OMR raising the 36.0% baseline to 48.9%. All our code and data are freely available at: https://github.com/raember/s2anet/tree/TISMIR_publication

    Big data optical music recognition with multi images and multi recognisers

    Get PDF
    In this paper we describe work in progress towards Multi-OMR, an approach to Optical Music Recognition (OMR) which aims to significantly improve the accuracy of musical score digitisation. There are a large number of scores available in public databases, as well as a range of different commercial and open source OMR tools. Using these resources, we are exploring a Big Data approach to harnessing datasets by aligning and combining the results of multiple versions of the same score, processed with multiple technologies. It is anticipated that this approach will yield high quality results, opening up large datasets to researchers in the field of digital musicology

    Linking Sheet Music and Audio - Challenges and New Approaches

    Get PDF
    Score and audio files are the two most important ways to represent, convey, record, store, and experience music. While score describes a piece of music on an abstract level using symbols such as notes, keys, and measures, audio files allow for reproducing a specific acoustic realization of the piece. Each of these representations reflects different facets of music yielding insights into aspects ranging from structural elements (e.g., motives, themes, musical form) to specific performance aspects (e.g., artistic shaping, sound). Therefore, the simultaneous access to score and audio representations is of great importance. In this paper, we address the problem of automatically generating musically relevant linking structures between the various data sources that are available for a given piece of music. In particular, we discuss the task of sheet music-audio synchronization with the aim to link regions in images of scanned scores to musically corresponding sections in an audio recording of the same piece. Such linking structures form the basis for novel interfaces that allow users to access and explore multimodal sources of music within a single framework. As our main contributions, we give an overview of the state-of-the-art for this kind of synchronization task, we present some novel approaches, and indicate future research directions. In particular, we address problems that arise in the presence of structural differences and discuss challenges when applying optical music recognition to complex orchestral scores. Finally, potential applications of the synchronization results are presented

    Understanding Optical Music Recognition

    Get PDF
    For over 50 years, researchers have been trying to teach computers to read music notation, referred to as Optical Music Recognition (OMR). However, this field is still difficult to access for new researchers, especially those without a significant musical background: Few introductory materials are available, and, furthermore, the field has struggled with defining itself and building a shared terminology. In this work, we address these shortcomings by (1) providing a robust definition of OMR and its relationship to related fields, (2) analyzing how OMR inverts the music encoding process to recover the musical notation and the musical semantics from documents, and (3) proposing a taxonomy of OMR, with most notably a novel taxonomy of applications. Additionally, we discuss how deep learning affects modern OMR research, as opposed to the traditional pipeline. Based on this work, the reader should be able to attain a basic understanding of OMR: its objectives, its inherent structure, its relationship to other fields, the state of the art, and the research opportunities it affords

    Improving optical music recognition by combining outputs from multiple sources

    Get PDF
    Current software for Optical Music Recognition (OMR) produces outputs with too many errors that render it an unrealistic option for the production of a large corpus of symbolic music files. In this paper, we propose a system which applies image pre-processing techniques to scans of scores and combines the outputs of different commercial OMR programs when applied to images of different scores of the same piece of music. As a result of this procedure, the combined output has around 50% fewer errors when compared to the output of any one OMR program. Image pre-processing splits scores into separate movements and sections and removes ossia staves which confuse OMR software. Post-processing aligns the outputs from different OMR programs and from different sources, rejecting outputs with the most errors and using majority voting to determine the likely correct details. Our software produces output in MusicXML, concentrating on accurate pitch and rhythm and ignoring grace notes. Results of tests on the six string quartets by Mozart dedicated to Joseph Haydn and the first six piano sonatas by Mozart are presented, showing an average recognition rate of around 95%

    Towards Bridging the Gap between Sheet Music and Audio

    Get PDF
    Sheet music and audio recordings represent and describe music on different semantic levels. Sheet music describes abstract high-level parameters such as notes, keys, measures, or repeats in a visual form. Because of its explicitness and compactness, most musicologists discuss and analyze the meaning of music on the basis of sheet music. On the contrary, most people enjoy music by listening to audio recordings, which represent music in an acoustic form. In particular, the nuances and subtleties of musical performances, which are generally not written down in the score, make the music come alive. In this paper, we address the problem of bridging the gap between the sheet music domain and the audio domain. In particular, we discuss aspects on music representations, music synchronization, and optical music recognition, while indicating various strategies and open research problems

    Digitizing musical scores : challenges and opportunities for libraries

    Full text link
    Musical scores and manuscripts are essential resources for music theory research. Although many libraries are such documents from their collections, these online resources are dispersed and the functionalities for exploiting their content remain limited. In this paper, we present a qualitative study based on interviews with librarians on the challenges libraries of all types face when they wish to digitize musical scores. In the light of a literature review on the role libraries can play in supporting digital humanities research, we conclude by briefly discussing the opportunities new technologies for optical music recognition and computer-aided music analysis could create for libraries

    Staffline detection and removal in the grayscale domain

    Get PDF
    Tese de mestrado integrado. Engenharia Electrotécnica e de Computadores. Faculdade de Engenharia. Universidade do Porto. 201
    corecore