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Abstract

For over 50 years, researchers have been trying to teach computers to read music notation, referred to as
Optical Music Recognition (OMR). However, this field is still difficult to access for new researchers, especially
those without a significant musical background: few introductory materials are available, and furthermore the field
has struggled with defining itself and building a shared terminology. In this tutorial, we address these shortcomings
by (1) providing a robust definition of OMR and its relationship to related fields, (2) analyzing how OMR inverts the
music encoding process to recover the musical notation and the musical semantics from documents, (3) proposing
a taxonomy of OMR, with most notably a novel taxonomy of applications. Additionally, we discuss how deep
learning affects modern OMR research, as opposed to the traditional pipeline. Based on this work, the reader
should be able to attain a basic understanding of OMR: its objectives, its inherent structure, its relationship to other
fields, the state of the art, and the research opportunities it affords.

Index Terms
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I. INTRODUCTION

Music notation refers to a group of writing systems with which a wide range of music can be visually
encoded so that musicians can later perform it. In this way, it is an essential tool for preserving a
musical composition, facilitating permanence of the otherwise ephemeral phenomenon of music. In a
broad, intuitive sense, it works in the same way that written text may serve as a precursor for speech. In
the same way that Optical Character Recognition (OCR) technology has enabled the automatic processing
of written texts, reading music notation also invites automation. In an analogy to OCR, the field of
Optical Music Recognition (OMR) covers the automation of this task of “reading” in the context of
music. However, while musicians can read and interpret very complex music scores even in real time,
there is still no computer system that is capable of doing so with success.

We argue that besides the technical challenges, one reason for this state of affairs is also that OMR
has not defined its goals with sufficient rigor to formulate its motivating applications clearly, in terms
of inputs and outputs. Work on OMR is thus fragmented, and it is difficult for a would-be researcher,
and even harder for external stakeholders such as librarians, musicologists, composers, and musicians, to
understand and follow up on the aggregated state of the art. The individual contributions are formulated
with relatively little regard to each other, although less than 500 works on OMR have been published
to date. This makes it hard to combine the numerous contributions and use previous work from other
researchers, leading to frequent “reinventions of the wheel.” The field, therefore, has been relatively opaque
for newcomers, despite its clear, intuitive appeal.

One reason for the unsatisfactory state of affairs was a lack of practical OMR solutions: when one is
hard-pressed to solve basic subproblems like staff detection or symbol classification, it seems far-fetched
to define applications and chain subsystems. However, some of these traditional OMR sub-steps, which
do have a clear definition and evaluation methodologies, have recently seen great progress, moving from
the category of “hard” problems to “close to solved,” or at least clearly solvable [129], [219]. Therefore,
the breadth of OMR applications that have long populated merely the introductory sections of articles
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now comes within practical reach. As the field garners more interest within the document recognition and
music information retrieval communities [18], [57], [165], [214], [1], [93], [256], [142], [148], we see
further need to clarify how OMR talks about itself.

The primary contributions of this paper are to clearly define what OMR is, what problems it seeks to
solve and why. Readers should be able to fully understand what OMR is, even without prior knowledge
of music notation. OMR is, unfortunately, a somewhat opaque field due to the fusion of the music-centric
and document-centric perspectives. Even for researchers, it is difficult to clearly relate their work to the
field, as illustrated in Section II.

Many authors also think of OMR as notoriously difficult to evaluate [149]. However, we show that this
clarity also disentangles OMR tasks which are genuinely hard to evaluate, such as full re-typesetting of
the score, from those where established methodologies can be applied straightforwardly, such as searching
scenarios.

Furthermore, the separation between music notation as a visual language and music as the information
it encodes is sometimes not made clear, which leads to a confusing terminology. The way we formulate
OMR should provide a framework of thought in which this distinction becomes obvious.

In order to be a proper tutorial on OMR, this paper addresses certain shortcomings in the current
literature, specifically by providing:

• A robust definition of what OMR is, and a thorough analysis of its inherent structure;
• Terminological clarifications that should make the field more accessible and easier to survey;
• A review of OMR uses and applications; well-defined in terms of inputs and outputs, and—as much

as possible—recommended evaluation methodologies;
• A brief discussion of how OMR was traditionally approached and how modern machine learning

techniques (namely deep learning) affects current and future research;
• As supplementary material, an extensive, extensible, accessible and up-to-date bibliography of OMR

(see VIII-A).1

The novelty of this paper thus lies in collecting and systematizing the fragments found in the existing
literature, all in order to make OMR more approachable, easier to collaborate on, and—hopefully—
progress faster.

II. WHAT IS OPTICAL MUSIC RECOGNITION?
So far, the literature on OMR does not really share a common definition of what OMR is. Most authors

agree on some intuitive understanding, which can be sketched out as “computers reading music.” But
until now, no rigorous analysis of this question has been carried out, as most of the literature on the field
focuses on providing solutions—or, more accurately, solutions to certain subproblems. These solutions
are usually justified by a certain envisioned application or by referencing a review paper that elaborates
on common motivations, with [247] being the most prominent one. However, even these review papers
[33], [10], [247], [211] focus almost exclusively on technical OMR solutions and avoid elaborating the
scope of the research.

A critical review of the scientific literature reveals a wide variety of definitions for OMR (see VIII-A)
with two extremes: On one end, the proposed definitions are clearly motivated by the (sub)problem which
the authors sought to solve (e.g., “transforming images of music scores into MIDI files”) which leads
to a definition that is too narrow and does not capture the full spectrum of OMR. On the other end,
there are some definitions that are so generic that they fail to outline what OMR actually is and what
it tries to achieve. An obvious example would be to define OMR as “OCR for music.” This definition
is overly vague, and the authors are—as likewise in many other papers—particularly unspecific when it
comes to clarifying what it actually includes and what not. We have observed that the problem statements
and definitions in these papers are commonly adapted to fit the provided solution or to demonstrate the

1https://github.com/OMR-Research/omr-research.github.io
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relevance to a particular target audience, e.g., computer vision, music information retrieval, document
analysis, digital humanities, or artificial intelligence.

While people rely on their intuition to compensate for this lack of accuracy, we would rather prefer to
put an umbrella over OMR and name its essence by proposing the following definition.

Definition 1. Optical Music Recognition is a field of research that investigates how to computationally
read music notation in documents.

The first claim of this definition is that OMR is a research field. In the published literature, many authors
refer to OMR as “task” or “process,” which is insufficient, as OMR cannot be properly formalized in
terms of unique inputs and outputs (as discussed in Section VI). OMR must, therefore, be considered
something bigger, like the embracing research field, which investigates how to provide a computer with
the ability to read music notation. Within this research field, several tasks can be formulated with specific,
unambiguous input/output pairs.

The term “computationally” distinguishes OMR from the musicological and paleographic studies of
how to decode a particular notation system. It also excludes studying how humans read music. OMR does
not study the music notation systems themselves—rather, it builds upon this knowledge, with the goal
that a computer should be able to read the music notation as well.

The last part of the definition “reading music notation in documents” tries to define OMR in a concise,
clear, specific, and inclusive way. To fully understand this part of the definition, the next section clarifies
what kind of information is captured in a music notation document and outlines the process by which it
gets generated. The subsequent section then elaborates on how OMR attempts to invert this process to
read and recover the encoded information.

It should be noted that the output of OMR is omitted intentionally from its definition, as different tasks
require different outputs (see Section VI) and specifying any particular output representation would make
the definition unnecessarily restrictive.

To conclude this section, Fig. 1 illustrates how various definitions of OMR in the literature relate to
our proposed definition and are captured by it. A full list of the formulations that have appeared in OMR
papers so far can be found in VIII-A.

III. FROM “MUSIC” TO A DOCUMENT

Music can be conceptualized as a structure of notes in time. This is not necessarily the only way to
conceptualize music,2 but it is the only one that has a consistent, broadly accepted visual language used
to transmit it in writing, so it is the conceptualization we consider for the purposes of OMR. A note is
a musical object that is defined by four parameters: pitch, duration, loudness, and timbre. Additionally,
it has an onset: a placement onto the axis of time, which in music does not mean wall-clock time, but
is measured in relative units called beats.3 Periods of musical time during which no note is supposed to
be played are marked by rests, which only have an onset and a duration. Notes and rests are grouped
hierarchically into phrases, voices, and other musical units that can have logical relationships to one
another. This structure is a vital part of music—it is essential to work it out for making a composition
comprehensible.

In order to record this “conceptualization of music” visually, for it to be performed over and over in
(roughly) the same way, at least at the relatively coarse level of notes, multiple music notation systems
have evolved. A music notation system is a visual language that encodes music into a graphical form and
enriches it with information on how to perform it (e.g., bowing marks, fingerings or articulations).4 To

2As evidenced by either very early music (plainchant) or some later twentieth century compositional styles (mostly spectralism).
3Musical time is projected onto wall-clock time with an underlying tempo, which can further be stretched and compressed by the performer.

Strictly speaking, the notion of beats might not be entirely applicable to some very early music and some contemporary music, where the
rhythmic pulse is not clearly defined. However, the notation used to express such music usually does have beats.

4Feist [109] refers to notation whimsically as a “haphazard Frankenstein soup of tangentially related alphabets and hieroglyphics via which
music is occasionally discussed amongst its wonkier creators.”
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Fig. 1: How OMR tends to be defined or described and how our proposed definition relates to them.
For example: “OMR is the challenge of (automatically) converting (handwritten) scores into a digital
representation.”

do that, it defines a set of symbols as its alphabet and specific rules for how to position these symbols to
capture a musical idea. Note that all music notation systems entail a certain loss of information as they are
designed to preserve the most relevant properties of the composition very accurately, especially the pitches,
durations, and onsets of notes, while under-specifying or even intentionally omitting other aspects. Tempo
could be one of these aspects, where the composer might have expressed precise metronomic indication,
given a verbal hint, or stated nothing at all. It is therefore considered the responsibility of the performer
to fill those gaps appropriately. We consider this as a natural boundary of OMR: it ends where musicians
start to disagree over the same piece of music.

Arguably the most frequently used notation system is Common Western Music Notation (CWMN, also
known as modern staff notation), which has evolved during the seventeenth century from its mensural
notation predecessors and stabilized at the beginning of the nineteenth century. There have been attempts to
supersede it in the avant-garde and postmodern movements, but so far, these have not produced workable
alternatives. Apart from CWMN, there exist a wealth of modern tablature scores for guitar, used i.e. to
write down popular music as well as a significant body of historical musical manuscripts that are using
earlier notation systems (e.g., mensural notations, quadratic notation for plainchant, early organum, or a
wealth of tablature notations for lutes).

Once a music notation system is selected for writing down a piece of music, it is still a challenging
task to engrave5 the music because a single set of notes can be expressed in many ways. For example,
one must make sure that the stem directions mark voices consistently and appropriate clefs are used, in

5Normally, music engraving is defined as the process of drawing or typesetting music notation with a high quality for mechanical
reproduction. However, we use the term to refer to “planning the page”: selecting music notation elements and planning their layout to most
appropriately capture the music, before it is physically (or digitally) written on the page. This is a loose analogy to the actual engraving
process, where the publisher would carefully prepare the printing plates from soft metal, and use them to produce many copies of the music;
in our case, this “printing process” might not be very accurate, e.g., in manuscripts. The engraving process involves complex decisions [35]
that can affect only a local area, like spacings between objects but can also have global effects, like where to insert a page break to make
it convenient for the musician to turn the page.
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(a)

(b)

Fig. 2: Excerpt of Robert Schumann’s “Von fremden Ländern und Menschen” (Engl. “Of foreign countries
and people”), Op. 15 for piano. Properly engraved (a), it has two staffs for the left and the right hand with
three visible voices, a key signature and phrase markings to assist the musician. In a poor engraving of
the same music (b), that logical structure is lost, and it becomes painfully hard to read and comprehend
the music, although these two versions contain the same notes.

"The music" Conceptualized
with notes

Engraved using 
music notation

Embodied in 
a document

Fig. 3: How music is typically expressed and embodied (written down).

order to make the music as readable as possible [159], [270], [143], [109]. These decisions not only affect
the visual appearance but also help to preserve the logical structure (see Fig. 2). Afterwards, it can be
embodied in a document, whether physically or digitally.

To summarize, music can be formalized as a structured assembly of notes, enriched through additional
instructions for the performer that are encoded visually using a music notational language and embodied
in a medium such as paper (see Fig. 3). Once this embodiment is digitized, OMR can be understood in
terms of inverting this process.

IV. INVERTING THE MUSIC ENCODING PROCESS

OMR starts after a musical composition has been expressed visually with music notation in a document.6

The music notation document serves as a medium, designed to encode and transmit a musical idea from the
composer to the performer, enabling the recovery and interpretation of that envisioned music by reading
through it. The performer would:

6While OMR mainly works with a complete image or document, it is also possible to perform online OMR with the temporal signal as
it is being generated, e.g., by capturing the stylus input on an electronic tablet device, which also results in a document.
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"The music" Conceptualized
with notes

Engraved using 
music notation

Embodied in 
a document

Recover musical semantics

Recover music notation

Fig. 4: How “reading” music can be interpreted as the operations of inverting the encoding process.

1) Read the visual signal to determine what symbols are present and what is their configuration,
2) Use this information to parse and decode the notes and their accompanying instructions (e.g.,

indications of which technique to use), and
3) Apply musical intuition, prior knowledge, and taste to interpret the music and fill in the remaining

parameters which music notation did not capture.
Note that step (3) is clearly outside of OMR since it needs to deal with information that is not written

into the music document—and where human performers start to disagree, although they are reading the
very same piece of music [180].7 Coming back to our definition of OMR, based on the stages of the
writing/reading process we outlined above, there are two fundamental ways to interpret the term “read”
in reading music notation as illustrated in Fig. 4. We may wish to:
(A) Recover music notation and information from the engraving process, i.e. what elements were selected

to express the given piece of music and how were they laid out? This corresponds to stage (1) in
the analysis above and does not necessarily require specific musical knowledge, but it does require
an output representation that is capable of storing music notation, e.g., MusicXML or MEI, which
can be quite complex.

(B) Recover musical semantics, which we define as the notes, represented by their pitches, velocities,
onsets, and durations. This corresponds to stage (2)—we use the term “semantics” to refer only to
the information that can be unambiguously inferred from the music notation document. In practical
terms, MIDI would be an appropriate output representation for this goal.

This is a fundamental distinction that dictates further system choices, as we discuss in the next sections.
Note that counter-intuitively, going backwards through this process just one step (A - recover music
notation) might be in fact more difficult than going back two steps (B - recover musical semantics)
directly. This is because music notation contains a logical structure and more information than simply the
notes. Skipping the explicit description of music notation allows bypassing this complexity.

There is, of course, a close relationship between recovering music notation and musical semantics. A
single system may even attempt to solve both at the same time because once the full score with all its
notational details is recovered, the musical semantics can be inferred unambiguously. Keep in mind that
the other direction does not necessarily work: if only the musical semantics are restored from a document
without the engraving information that describes how the notes were arranged, those notes may still be

7Analogously, speech synthesis is not considered a part of optical character recognition. However, there exists expressive performance
rendering software that attempts to simulate more authentic playback, addressing step (3) in our analysis. More information can be found in
[66].



7

typeset using meaningful engraving defaults, but the result is probably much harder to comprehend (see
Fig. 2b for such an example).

A. Alternative Names
Optical Music Recognition is a well-established term, and we do not seek to establish a new one. We just

notice a lack of precision in its definition. Therefore, it is no wonder that people have been interpreting it in
many different ways to the extent that even the optical detection of lip motion for identifying the musical
genre of a singer [99] has been called OMR. Alternative names that might not exhibit this vagueness are
Optical Music Notation Recognition, Optical Score Recognition8, or Optical Music Score Recognition.
While the prefix “Optical” is not compulsory, it could still prove beneficial in highlighting the visual
characteristics and help distinguish it from techniques that work on audio recordings.

V. RELATION TO OTHER FIELDS

Now that we have thoroughly described what Optical Music Recognition is, we briefly set it in context
of other disciplines, both scientific and general fields of human endeavors.

Fig. 5: Optical Music Recognition with its most important related fields, methods, and applications.

Figure 5 lays out the various key areas that are relevant for OMR, both as its tools and the “consumers”
of its outputs. From a technical point of view, OMR can be considered a subfield of computer vision
and document analysis, with deep learning acting as a catalyst that opens up promising novel approaches.
Within the context of Music Information Retrieval (MIR), OMR should enable the application of MIR
algorithms that rely on symbolic data and audio inputs (through rendering the recognized scores). It
furthermore can enrich digital music score libraries and make them much more searchable and accessible,
which broadens the scope of digital musicology to compositions for which we only have the written score
(which is probably the majority of Western musical heritage). Finally, OMR has practical implications
for composers, conductors, and the performers themselves, as it cuts down the costs of digitizing scores,
and therefore bring the benefits of digital formats to their everyday practice.

8which is similar to the German equivalent “Optische Notenerkennung”
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Fig. 6: How the translation of the graphical concept of a note into a pitch is affected by the clef and
accidentals. The effective pitch is written above each note. Accidentals immediately before a note propagate
to other notes within the same measure, but not to the next measure. Accidentals at the beginning of a
measure indicate a new key signature that affects all subsequent notes.

A. Optical Music Recognition vs. Text Recognition
One must also address the obvious question: why should OMR be singled out besides Optical Character

Recognition (OCR) and Handwritten Text Recognition (HTR), given that they are tightly linked [26], and
OMR has frequently been called “OCR for music” [236], [39], [170], [169], [144], [237], [208], [126],
[40], [277]?9 What is the justification of talking specifically about music notation and what differentiates
it from other graphics recognition challenges? What are the special considerations in OMR that one does
not encounter in other writing systems?

A part of the justification lies in the properties of music notation as a featural writing system. While its
alphabet consists of well-defined primitives (e.g., stems, noteheads, or flags) that have a clear interpretation,
it is only in their configuration—how they are placed and arranged on the staffs, and with respect to each
other—that specifies what notes should be played. The properties of music notation that make it a challenge
for computational reading have been discussed exhaustively by Byrd and Simonsen [44]; we hypothesize
that these difficulties are ultimately caused by this featural nature of music notation.

Another major reason for considering the field of OMR distinct from text recognition is the application
domain itself—music. When processing a document of music notation, there is a natural requirement to
recover its musical semantics (see Section IV, setting B) as well, as opposed to text recognition, which
typically does not have to go beyond recognizing letters or words and ordering them correctly. There is no
proper equivalent of this interpretation step in text recognition since there is no definite answer to how a
symbol configuration (=words) should be further interpreted; therefore, one generally leaves interpretation
to humans or to other well-defined tasks from the Natural Language Processing field. However, given that
music is overwhelmingly often conceptualized as notes, and notes are well-defined objects that can be
inferred from the score, OMR is, not unreasonably, asked to produce this additional level of outputs
that text recognition does not. Perhaps the simplest example to illustrate this difference is given by the
concept of the pitch of the notes (see Fig. 6). While graphically a note lies on a specific vertical position
of the staff, other objects, such as the clefs and accidentals determine its musical pitch. It is therefore
insufficient for the OMR to provide just the results in terms of positions, but it also has to take the
context into account, in order to convert positions (graphical concept) into pitches (musical concept). In
this regard, OMR is more ambitious than text recognition, since there is an additional interpretation step
specifically for music that has no good analogy in other natural languages.

The character set poses another significant challenge, compared to text recognition. Although writing
systems like Chinese have extraordinarily complex character sets, the set of primitives for OMR spans a
much greater range of sizes, ranging from small elements like a dot to big elements spanning an entire
page like the brace. Many of the primitives may appear at various scales and rotations like beams or
have a nearly unrestricted appearance like slurs that are only defined as more-or-less smooth curves that
may be interrupted anywhere. Finally, in contrast to text recognition, music notation involves ubiquitous
two-dimensional spatial relationships, which are salient for the symbols’ interpretation. Some of these
properties are illustrated in Fig. 7.

9Even the English Wikipedia article on OMR has been calling it “Music OCR” for over 13 years.
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Fig. 7: This excerpt by Ludwig van Beethoven, Piano Sonata op. 2 no. 2, Largo appassionato, m. 31
illustrates some properties of the music notation that distinguish it from other types of writing systems:
a wide range of primitive sizes, the same primitives appearing at different scales and rotations, and the
ubiquitous two-dimensional spatial relationships.

Furthermore, Byrd and Simonsen [44] argue that because of the vague limits of what one may want
to express using music notation, its syntactic rules can be expected to be bent accordingly; this happens
to such an extent that Homenda et al. [160] argued that there is no universal definition of music notation
at all. Figure 7 actually contains an instance of such rule-breaking: while one would expect all notes in
one chord to share the same duration, the chord on the bottom left contains a mix of white and black
noteheads, corresponding to half- and quarter-notes. At the same time, however, the musical intent is yet
another: the two quarter-notes in the middle of the chord are actually played as eighth notes, to add to
the rich sonority of the fortissimo chord on the first beat.10 We believe this example succinctly illustrates
the intricacies of the relationship between musical comprehension and music notation. This last difference
between a written quarter and interpreted eighth note is, however, beyond what one may expect OMR to
do, but it serves as further evidence that the domain of music presents its own difficulties, compared to
the domains where text recognition normally operates.

B. Optical Music Recognition vs. Other Graphics Recognition Challenges
Apart from text, documents can contain a wide range of other graphical information, such as engineering

drawings, floor plans, mathematical expressions, comics, maps, patents, diagrams, charts or tables [83],
[113]. Recognizing any of these comes with its own set of challenges, e.g., comics combine text and other
visual information in order to narrate a story, which makes recovering the correct reading order a non-
trivial endeavor. Similarly, the arrangement of symbols in engineering drawing and floor plans can be very
complex with rather arbitrary shapes. Even tasks that are seemingly easy, such as the recognition of tables,
must not be underestimated and are still subject to ongoing research [271], [242]. The hardest aspects
of OMR are much closer to these challenges than to text recognition: the ubiquitous two-dimensionality,
long-distance spatial relationships, and the permissive way of how individual elements can be arranged
and appear at different scales and rotations.

One thing that makes CWMN more complex than many graphics recognition challenges like mathemat-
ical formulae recognition is the complex typographical alignment of objects [10], [44] that is dictated by
the content, e.g., each space between multiple notes of the same length should be equal. This complexity is
often driven by interactions between individual objects that force other elements to move around, breaking
the principal horizontal alignment of simultaneous events (see Fig. 8, 9 and 10).

Apart from the typographical challenges, OMR also has an extremely complex semantic, with many
implicit rules. To handle this complexity, researchers have started a long time ago to leverage the rules
that govern music notation and formulate them into grammars [229], [4]. For instance, the fact that the

10This effect would be especially prominent on the Hammerklavier instruments prevalent around the time Beethoven was composing this
sonata.
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Fig. 8: Brahms Intermezzo, Op. 117 no. 1. Adjacent notes of the chords in the first bar in the top staff
are shifted to the right to avoid overlappings (yellow dotted boxes). The moving eighths in the second
bar are forced even further to the right, although being played simultaneously with the chord (red dashed
boxes).

Fig. 9: Sample from the CVC-MUSCIMA dataset [115] with the same bar transcribed by two different
writers. The first three notes and the second three notes form a chord and should be played simultaneously
(as in the right figure) but are sometimes horizontally spelled out for typographic reasons (as in the left
figure).

Fig. 10: Sample from the Songbook of Romeo & Julia by Gerard Presgurvic [230] with uneven spacing
between multiple sixteenth notes in the middle voice to align them with the lyrics.
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note durations (in each notated voice) have to sum up to the length of a measure has been integrated into
OMR as a post-processing step [222]. Fujinaga [124] even states that music notation can be recognized
by an LL(k) grammar. Nevertheless, the following citation from Blostein and Baird [33] (p.425) is still
mostly true:

“Various methods have been suggested for extending grammatical methods which were devel-
oped for one-dimensional languages. While many authors suggest using grammars for music
notation, their ideas are only illustrated by small grammars that capture a tiny subset of music
notation.” [33] (p.425; sec. 7 - Syntactic Methods).

There has been progress on enlarging the subset of music notation captured by these grammars, most
notably in the DMOS system [91], but there are still no tractable 2-D parsing algorithms that are powerful
enough for recognizing music notation without relying on fragile segmentation heuristics. It is not clear
whether current parsers used to recognize mathematical expressions [3] are applicable to music notation
or simply have not been applied yet—at least we are not aware of any such works.

VI. A TAXONOMY OF OMR
Now that we have progressed in our effort to define Optical Music Recognition, we can turn our

attention to systematizing the field with respect to motivating applications, subtasks, and their interfaces.
We reiterate that our objective is not to review the methods by which others have attempted to reach
the goals of their OMR work; rather, we are proposing a taxonomy of the field’s goals themselves. Our
motivation is to find natural groups of OMR applications and tasks for which we can expect, among other
things, shared evaluation protocols. The need for such systematization has long been felt [34], [49], but
subsequent reviews [247], [211] have focused almost entirely on technical solutions.

A. OMR Inputs
The taxonomy of inputs of OMR systems is generally established. The first fundamental difference can

be drawn between offline and online11 OMR: offline OMR operates on a static image, while online OMR
operates on a time series of user-interactions, typically pen positions that were captured from a touch
interface [132], [135], [286], [51]. Online OMR is generally considered easier since the decomposition
into strokes provides a high-quality over-segmentation essentially for free. Offline OMR can be further
subdivided by the engraving mechanism that has been used, which can be either typeset by a machine,
often inaccurately referred to as printed12, or handwritten by a human, with an intermediate, yet common
scenario of handwritten notation on pre-printed staff paper.

Importantly, music can be written down in many different notation systems that can be seen as different
languages to express musical concepts (see Fig. 11). CWMN is probably the most prominent one. Before
CWMN was established, other notations such as mensural or neumes preceded it, so we refer to them as
early notations. Although this may seem like a tangential issue, the recognition of manuscripts in ancient
notations has motivated a large number of works in OMR that facilitate the preservation and analysis of
the cultural heritage as well as enabling digital musicological research of early music at scale [94], [297],
[127], [93]. Another category of notations that are still being actively used today are instrument-specific
notations, such as tablature for string instruments or percussion notation. The final category captures all
other notations including, e.g., modern graphic notation, braille music or numbered notation that are only
rarely used and for which the existing body of music is much smaller than for the other notations.

To get an idea of how versatile music can be expressed visually, the Standard Music Font Layout [278]
currently lists over 2440 recommended characters, plus several hundred optional glyphs.

Byrd and Simonsen [44] further characterize OMR inputs by the complexity of the notated music itself,
ranging from simple monophonic music to “pianoform.” They use both the presence of multiple staffs

11Although it might sound ambiguous, the term online recognition has been used systematically in the handwritten recognition community.
Sometimes, this scenario is also referred to as pen-based recognition.

12Handwritten manuscripts can also be printed out, if they were scanned previously, therefore we prefer the word typeset.
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(a) (b)

(c) (d)

Fig. 11: Examples of scores written in various notations: (a) Common Western Music Notation (Dvorak
Symphony No.9, IV), (b) White Mensural Notation (Belli [223]), (c) Tabulature (Regondi, Etude No.10)
and (d) Braille (Beethoven, Sonata No.14 Op.27 No.2).

as well as the number of notated voices inside a single staff as a dimension of notational complexity. In
contrast, we do not see the number of staffs as a driver of complexity since a page typically contains
many staffs and a decision on how to group them into systems has to be made anyway. Additionally, we
explicitly add a category for homophonic music that only has a single logical voice, even though that
voice may contain chords with multiple notes being played simultaneously. The reason for singling out
homophonic music is that inferring onsets becomes trivial once notes are grouped into chords, as opposed
to polyphonic music with multiple logical voices: one can simply read them left-to-right without having
to do a voice assignment.

Therefore, we propose the following four categories (see Fig. 12):
(a) Monophonic: only one note (per staff) is played at a time.
(b) Homophonic: multiple notes can occur at the same time to build up a chord, but only as a single

voice.
(c) Polyphonic: multiple voices can appear in a single staff.
(d) Pianoform: scores with multiple staffs and multiple voices that exhibit significant structural inter-

actions. They can be much more complex than polyphonic scores and cannot be disassembled into
a series of monophonic scores, such as in polyphonic renaissance vocal part books. This term was
coined by Byrd and Simonsen [44].

This complexity of the encoded music has significant implications on the model design since the various
levels translate into different sets of constraints on the output. It cannot simply be adjusted or simulated
like the visual complexity by applying an image operation on a perfect image [171] because it represents
an intrinsic property of the music.

Finally, as with other digital document processing, OMR inputs can be classified according to their
image quality which is determined by two independent factors: the underlying document quality, and the
digital imaging acquisition mode. The underlying document quality is a continuum on a scale from perfect
or nearly flawless (e.g., if the document was born-digital and printed) to heavily degraded or defaced
documents (e.g., ancient manuscripts that deteriorated over time and exhibit faded ink, ink blots, stains,
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(a) Monophonic

(b) Homophonic

(c) Polyphonic

(d) Pianoform

Fig. 12: Examples of the four categories of music notation complexity.

or bleedthrough) [44]. The image acquisition mode is also a continuum that can reach from born-digital
images, over scans of varying quality to low-quality, distorted photos that originate from camera-based
scenarios with handheld cameras, such as smartphones [2], [300].

B. OMR Outputs
The taxonomy of OMR outputs, on the other hand, has not been treated as systematically in the OMR

literature. Lists of potential or hypothetical applications are typically given in introductory sections [124],
[33], [71], [211]. While this may not seem like a serious issue, it makes it hard to categorize different
works and compare their results with each other because one often ends up comparing apples to oranges
[10].

The need for a more principled treatment is probably best illustrated by the unsatisfactory state of
OMR evaluation. As pointed out by [44], [149], [145], there is still no good way at the moment of how
to measure and compare the performance of OMR systems. The lack of such evaluation methods is best
illustrated by the way how OMR literature presents the state of the field: Some consider it a mature area
that works well (at least for typeset music) [117], [118], [6], [19], [253]. Others describe their systems
with reports of very high accuracies of up to nearly 100% [272], [181], [305], [164], [193], [209], [224],
[300], [55], giving an impression of success; however, many of these numbers are symbol detection scores
on a small corpus with a limited vocabulary that are not straightforward to interpret in terms of actual
usefulness, since they do not generalize [28], [44]13. The existence of commercial applications [200], [203],

13The problem of incomparable results has already been noted in the very first review of OMR in 1972 by Kassler [172] when he reviewed
the first two OMR theses by Pruslin [232] and Prerau [229].



14

[202], [279], [212], [130], [239] is also sometimes used to support the claim that OMR “works” [20]. On
the other hand, many researchers think otherwise [43], [28], [247], [208], [74], [85], [219], [252], [148],
[147], emphasizing that OMR does not provide satisfactory solutions in general—not even for typeset
music. Some indirect evidence of this can be gleaned from the fact that even for high-quality scans of
typeset music, only a few projects rely on OMR,14 while other projects still prefer to crowdsource the
manual transcription instead of using systems for the automatic recognition [142], or at least crowdsource
the correction of the errors produced by OMR systems [267]. Given the long-standing absence of OMR
evaluation standards, this ambivalence is not surprising. However, a scientific field should be able to
communicate its results in comprehensible terms to external stakeholders—something OMR is currently
unable to do.

We feel that to a great extent this confusion stems from the fact that the question “Does OMR work?”
is an overly vague question. As our analysis in Section II shows, OMR is not a monolithic problem—
therefore, asking about the “state of OMR” is under-specified. “Does OMR work?” must be followed by
“... as a tool for X,” where X is some application, in order for such questions to be answerable. There is,
again, evidence for this in the OMR literature. OMR systems have been properly evaluated in retrieval
scenarios [16], [123], [1] or in the context of digitally replicating a musicological study [148]. It has, in
fact, been explicitly asserted [145] that evaluation methodologies are only missing for a limited subset of
OMR applications. Specifically, there is no known meaningful edit distance between two scores (whatever
their underlying representation).

At the same time, the granularity at which we define the various tasks should not be too fine, otherwise
one risks entering a different swamp: instead of no evaluation at all, each individual work is evaluated on
the merits of a narrowly defined (and often merely hypothetical) application scenario, which also leads
to incomparable contributions. In fact, this risk has already been illustrated on the subtask of symbol
detection, which seems like a well-defined problem where the comparison should be trivial. In 2018,
multiple music notation object detection papers have been published [218], [217], [147], [289], but each
reported results in a different way while presenting a good argument for choosing that kind of evaluation,
so significant effort was necessary in order to make these contributions directly comparable [221]. A
compromise is therefore necessary between fully specifying the question of whether OMR “works” by
asking for a specific application scenario, and on the other hand retaining sufficiently general categories
of such tasks.

Having put forward the reasoning for why systematizing the field of OMR with respect to its outputs is
desirable, we proceed to do so. For defining meaningful categories of outputs for OMR, we come back to
the fundamentals of how OMR inverts the music encoding process to recover the musical semantics and
musical notation (see Section II). These two prongs of reading musical documents roughly correspond to
two broad areas of OMR applications [196] that overlap to a certain extent:

• Replayability: recovering the encoded music itself in terms of pitch, velocity, onset, and duration. This
application area sees OMR as a component inside a bigger music processing pipeline that enables
the system to operate on music notation documents as just another input. Notice that readability by
humans is not required for these applications, as long as the computer can process and “play” the
symbolic data.

• Structured Encoding: recovering the music along with the information on how it was encoded
using elements of music notation. This avenue is oriented towards providing the score for music
performance, which requires a (lossless) re-encoding of the score and assumes that humans read the
OMR output directly. Recovering the musical semantics might not in fact be strictly necessary, but
in practice, one often wishes to obtain that information too, in order to enable digitally manipulating
the music in a way that would be easiest done with the semantics being recovered (e.g., transposing
a part to make it suitable for another instrument).

14Some users of the Choral Public Domain Library (CPDL) project use commercial applications such as SharpEye or PhotoScore Ultimate:
http://forums.cpdl.org/phpBB3/viewtopic.php?f=9&t=9392

http://forums.cpdl.org/phpBB3/viewtopic.php?f=9&t=9392
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In other words, the output of an application that targets replayability is typically processed by a machine,
whereas humans usually demand the complete recognition of the structured encoding to allow for a
readable output (see Fig. 2).

While the distinction between replayability and structured encoding is already useful, there are other
reasons that make it interesting to read musical notation from a document. For example, to search for
specific content or to draw paleographic conclusions about the document itself. Therefore, we need to
broaden the scope of OMR to actually capture these applications. We realized that some use-cases require
much less comprehension of the input and music notation than others. To account for this, we propose
the following four categories that demand an increasing level of comprehension: Document Metadata
Extraction, Search, Replayability, and Structured Encoding (see Fig. 13).

Level of Comprehension

Search Replayability
Encoding
StructuredDocument Metadata

Extraction

CompletePartial

Fig. 13: Taxonomy of four categories of OMR applications that require an increasing level of comprehen-
sion, starting with metadata extraction where a minimal understanding might be sufficient, up to structured
encoding that requires a complete understanding of music notation with all its intricacies.

Depending on the goal, applications differ quite drastically in terms of requirements—foremost in the
choice of output representation. Furthermore, this taxonomy allows us to use different evaluation strategies.

1) Document Metadata Extraction: The first application area requires only a partial understanding of
the entire document and attempts to answer specific questions about it. These can be very primitive ones,
like whether a document contains music scores or not, but the questions can also be more elaborate, for
example:

• In which period was the piece written in?
• What notation was used?
• How many instruments are depicted?
• Are two segments written by the same copyist?
All of the aforementioned tasks entail a different level of underlying computational complexity. However,

we are not organizing applications according to their difficulty but instead by the type of answer they
provide. In that sense, all of these tasks can be formulated as classification or regression problems, for
which the output is either a discrete category or a continuous value, respectively.

Definition 2. Document metadata extraction refers to a class of Optical Music Recognition applications
that answer questions about the music notation document.

The output representation for document metadata extraction tasks are scalar values or category labels,
and if not, its structure is determined by the user, not by the properties of the domain. Again, this does
not imply that extracting the target values is necessarily easy, but that the difficulties are not related to
the output representation, as is the case for other uses.

Although this type of application has not been very popular in the OMR literature, there are some works
that approach this scenario. In [12] and [219] the authors describe systems that classify images whether
they depict music scores or not. While the former one used a basic computer vision approach with a
Hough transform and run-length ratios, the latter uses a deep convolutional neural network. Such systems
can come in handy if one has to automatically classify a very large number of documents [214]. Perhaps
the most prominent application is identifying the writer of a document [119], [120], [141], [264] (which
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can be different from the composer). This task was one of the main motivations behind the construction
of the CVC-MUSCIMA dataset [115] and was featured in the ICDAR 2011 Music Score Competition
[114].

The document metadata extraction scenario has the advantage of its unequivocal evaluation protocols.
Tasks are formulated regarding either classification or regression, and these have well-defined metrics
such as accuracy, f-measure, or mean squared error.

2) Search: Nowadays we have access to a vast amount of musical documents. Libraries and commu-
nities have taken considerable efforts to catalog and digitize music scores, by scanning them and freely
providing users access to them, e.g., IMSLP [231], SLUB [266], DIAMM [30] or CPDL [213], to name
a few. Here is a fast growing interest in automated methods which would allow users to search for
relevant musical content inside these sources systematically. Unfortunately, searching for specific content
often remains elusive because many projects only provide the images and manually entered metadata. We
capture all applications that enable such lookups under the category Search. Examples of search questions
could be:

• Do I have this piece of music in my library?
• On which page can I find this melody?
• Where does this sequence of notes (e.g., a theme) repeat itself?
• Was a melody copied from another composition?
• Find the same measure in different editions for comparing them.

Definition 3. Search refers to a class of Optical Music Recognition applications that, given a collection of
sheet music and a musical query, compute the relevance of individual items of the collection with respect
to the given query.

Applications from this class share a direct analogy with keyword spotting (KWS) in the text domain
[137] and a common formulation: the input is a query as well as the collection of documents where to
look for it; the output is the selection of elements from that collection that match the query. However,
“where” is a loose concept and can refer to a complete music piece, a page, or in the most specific
cases, a particular bounding-box or even a pixel-level location. In the context of OMR, the musical query
must convey musical semantics (as opposed to general search queries, e.g., by title or composer; hence
the term “musical” query in Definition 3). The musical query is typically represented in a symbolic
way, interpretable unambiguously by the computer (similar to query-by-string in KWS), yet it is also
interesting to consider queries that involve other modalities, such as image queries (query-by-example in
KWS) or audio queries (query-by-humming in audio information retrieval or query-by-speech in KWS).
Additionally, it makes sense to establish different domain-specific types of matching, as it is useful to
perform searches restricted to specific music concepts such as melodies, sequences of intervals, or contours,
in addition to exact matching.

A direct approach for search within music collections is to use OMR technology to transform the
documents into symbolic pieces of information, over which classical content-based or symbolic retrieval
methods can be used [87], [22], [104], [287], [157], [173], [1], [97]. The problem is that these transforma-
tions require a more comprehensive understanding of the processed documents (see Sections VI-B3 and
VI-B4 below). To avoid the need for an accurate symbol-by-symbol transcription, search applications can
resort to other methods to determine whether (or how likely) a given query is in a document or not. For
instance, in cross-modal settings, where one searches a database of sheet music using a MIDI file [123],
[16] or a melodic fragment that is given by the user on the fly [1], OMR can be used as a hash function.
When the queries and documents are both projected into the search space by the same OMR system, some
limitations of the system may even cancel out (e.g., ignoring key signatures), so that retrieval performance
might deteriorate less than one would expect. Unfortunately, if either the query or the database contains
the true musical semantics, such errors do become critical [148].

A few more works have also approached the direct search of music content without the need to convert
the documents into a symbolic format first. Examples comprise the works by [183] dealing with a query-



17

by-example task in the CVC-MUSCIMA dataset, and by [59], considering a classical query-by-string
formulation over early handwritten scores. In the cross-modal setting, the audio-sheet music retrieval
contributions of [102] are an example of a system that explicitly attempts to gain only the minimum level
of comprehension of music notation necessary for performing its retrieval job.

Search systems usually retrieve not just a single result but all those that match the input query, typically
sorted by confidence. This setting can re-use general information retrieval methodologies for evaluating
performance [184], [156], such as precision and recall as well as encompassing metrics like average
precision and mean average precision.

3) Replayability: Replayability applications are concerned with reconstructing the notes encoded in the
music notation document. Notice that producing an actual audio file is not considered to be part of OMR,
despite being one of the most frequent use-cases of OMR. In any case, OMR can enable these applications
by recovering the pitches, velocities, onsets, and durations of notes. This symbolic representation, usually
stored as a MIDI file, is already a very useful abstraction of the music itself and allows for plugging in
a vast range of computational tools such as:

• synthesis software to produce an audio representation of the composition
• music information retrieval tools that operate on symbolic data
• tools that perform large-scale music-theoretical analysis
• creativity-focused applications [311]

Definition 4. Replayability refers to a class of Optical Music Recognition applications that recover
sufficient information to create an audible version of the written music.

Producing a MIDI (or an equivalent) representation is one key goal for OMR—at least for the foreseeable
future since MIDI is a representation of music that has a long tradition of computational processing for
a vast variety of purposes. Many applications have been envisioned that only require replayability. For
example applications that can sight-read the scores to assist practicing musicians or provide missing
accompaniment.

Replayability is also a major concern for digital musicology. Historically, the majority of compositions
has probably never been recorded, and therefore is only available in written form as scores; of these, most
compositions have also never been typeset, since typesetting has been a very expensive endeavor, reserved
essentially either for works with assured commercial success, or composers with substantial backing by
wealthy patrons. Given the price of manual transcription, it is prohibitive to transcribe large historical
archives. OMR that produces MIDI, especially if it can do so for manuscripts, is probably the only tool
that could open up the vast amount of compositions to quantitative musicological research, which, in turn,
could perhaps finally start answering broad questions about the evolutions of the average musical styles,
instead of just relying on the works of the relatively few well-known composers.

Systems designed for the goal of replayability traditionally seek first to obtain the structured encoding of
the score (see Section VI-B4), from which the sequences of notes can be straightforwardly retrieved [147].
However, if the specific goal is to obtain something equivalent to a MIDI representation, it is possible
to simplify the recognition and ignore many of the elements of musical notation, as demonstrated by
numerous research projects [186], [24], [160], [121], [260], [164], [217]. An even clearer example of this
distinction can be observed in the works of Shi et al. [273] as well as van der Wel and Ullrich [295];
both focus only on obtaining the sequence of note pairs (duration, pitch) that are depicted in single-staff
images, regardless of how these notes were actually expressed in the document. Another instance of a
replay-oriented application is the Gocen system [6] that reads handwritten notes with a specially designed
device with the goal of producing a musical performance while ignoring the majority of music notation
syntax.

Once a system is able to arrive at a MIDI-like representation, evaluating the results is a matter of
comparing sets of pitch-onset-duration-triplets. Velocities may optionally be compared too, once the
note-by-note correspondence has been established, but can be seen as secondary for many applications.
Note, however, that even on the level of describing music as configurations of pitch-velocity-onset-
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duration-quadruples, MIDI is a further simplification that is heavily influenced by its origin as a digital
representation of performance, rather than of a composition: the most obvious inadequacy of MIDI is its
inability to distinguish pitches that sound equivalent but are named differently, e.g., F-sharp and G-flat.15

Multiple similarity metrics for comparing MIDI files have been proposed during the Symbolic Melodic
Similarity track of the Music Information Retrieval Evaluation eXchange (MIREX),16 e.g., by determining
the local alignment between the geometric representations of the melodies [292], [293], [294], [291]. Other
options could be multi-pitch estimation evaluation metrics [25], Dynamic Time Warping [102], or edit
distances between two time-ordered sequences of pitch-duration pairs [314], [55].

4) Structured Encoding: It can be reasonably stated that digitizing music scores for “human consump-
tion” and score manipulation tasks that a vollkommener Capellmeister17 [187] routinely performs, such
as part exporting, merging, or transposing for available instruments is the original motivation of OMR
ever since it started [232], [229], [124], [9] and the one that appeals to the widest audience. Given that
typesetting music is troublesome and time-consuming, OMR technology represents an attractive alternative
to obtain a digital version of music scores on which these operations can be performed efficiently with
the assistance of the computer.

This brings us to our last category that requires the highest level of comprehension, called structured
encoding. Structured encoding aims to recognize the entire music score while retaining all the engraving
information available to a human reader. Since there is no viable alternative to music notation, the system
has to fully transcribe the document into a structured digital format with the ultimate goal of keeping the
same musical information that could be retrieved from the physical score itself.

Definition 5. Structured Encoding refers to a class of Optical Music Recognition applications that fully
decode the musical content, along with the information of ’how’ it was encoded by means of music
notation.

Note that the difference between replayability and structured encoding can seem vague: for instance,
imagine a system that detects all notes and all other symbols and exports them into a MusicXML file. The
result, however, is not the structured encoding unless the system also attempts to preserve the information
on how the scores were laid out. That does not mean it has to store the bounding box and exact location
of every single symbol, but the engraving information that conveys musical semantics, like whether the
stem of a note went up or down. To illustrate this, consider the following musical snippet in Fig. 14.
If a system like the one described in [55] recognized this, it would remain restricted to replayability.
Not because of the current limitations to monophonic, single-staff music, but due to the selected output
representation, which does not store engraving information such as the simplifications that start in the
second measure of the top staff (the grayed out 3s that would be omitted in the printing) or the stem
directions of the notes in the bottom staff (green and blue) that depict two different voices. In summary,
any system discarding engraving information that conveys musical semantics cannot reach, by definition,
the structured encoding goal.

To help understand, why structured encoding poses such a difficult challenge, we would like to avail
ourselves of the intuitive comparison given by Donald Byrd:18 representing music as time-stamped events
(e.g., with MIDI) is similar to storing a piece of writing in a plain text file; whereas representing music
with music notation (e.g., with MusicXML) is similar to a structured description like an HTML website.
By analogy, obtaining the structured encoding from the image of a music score can be as challenging as
recovering the HTML source code from the screenshot of a website.

Since this use-case appeals to the widest audience, it has seen development both from the scientific
research community and commercial vendors. Notable products that attempt full structured encoding

15This is the combined heritage of equal temperament, where these two pitches do correspond to the same fundamental frequency, and of
the origins of MIDI in genres dominated by fretted and keyboard instruments.

16 https://www.music-ir.org/mirex/wiki/MIREX_HOME
17roughly translated from German as “ideal conductor”
18http://music.informatics.indiana.edu/don_notation.html

https://www.music-ir.org/mirex/wiki/MIREX_HOME
http://music.informatics.indiana.edu/don_notation.html
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Fig. 14: Beginning of Franz Schubert, Impromptu D.899 No. 2 with omitted thirds starting in the second
measure of the top staff (gray) and a color-coding of the two distinct voices in the second staff (green
and blue).

include SmartScore [200], Capella Scan [69], PhotoScore [203] as well as the open-source application
Audiveris [32]. While the projects described in many scientific publications seem to be striving for
structured encoding to enable interesting applications such as the preservation of the cultural heritage
[73], music renotation [76], or transcriptions between different music notation languages [256], we are
not aware of any systems in academia that would actually produce structured encoding.

A major stumbling block for structured encoding applications has for a long time been the lack of
practical formats for representing music notation that would be powerful enough to retain the information
from the input score, and at the same time be a natural endpoint for OMR. This is illustrated by papers that
propose OMR-specific representations, both before the emergence of MusicXML [139], [140] as a viable
interchange format [196] and after [153]. At the same time, however, even without regard for OMR, there
are ongoing efforts to improve music notation file formats: further development of MusicXML has moved
into the W3C Music Notation Community Group,19 and there is an ongoing effort in the development of
the Music Encoding Initiative format [258], best illustrated by the annual Music Encoding Conference.20

Supporting the whole spectrum of music notation situations that arise in a reasonably-sized archive is
already a difficult task. This can be evidenced by the extensive catalog of requirements for music notation
formats that Byrd and Isaacson [42] list for a multi-purpose digital archive of music scores. Incidentally,
the same paper also mentions support for syntactically incorrect scores among the requirements, which
is one of the major problems that OMR has with outputting to existing formats directly. Although these
formats are becoming more precise and descriptive, they are not designed to store information about how
the content was automatically recognized from the document. This kind of information is actually relevant
for systems’ evaluation, as it allows, for example, determining if a pitch was misclassified because of
either a wrongly detected position in the staff or a wrongly detected clef.

The imperfections of representation standards for music notation is also reflected in a lack of evaluation
standards for structured encoding. Given the ground truth representation of a score and the output of a
recognition system, there is currently no automatic method that is capable of reliably computing how well
the recognition system performed. Ideally, such a method would be rigorously described and evaluated,
have a public implementation, and give meaningful results. Within the traditional OMR pipeline, the partial
steps (such as symbol detection) can use rather general evaluation metrics. However, when OMR is applied
for getting the structured encoding of the score, no evaluation metric is available, or at least generally
accepted, partially because of the lack of a standard representation for OMR output, as mentioned earlier.
The notion of “edit cost” or “recognition gain” that defines success in terms of how much time a human
editor saves by using an OMR system is yet more problematic, as it depends on the editor and on the
specific toolchain [28].

There is no reason why a proper evaluation should not be possible since there is only a finite amount
of information that a music document retains, which can be exhaustively enumerated. It follows that

19https://www.w3.org/community/music-notation/
20https://music-encoding.org/conference/past.html

https://www.w3.org/community/music-notation/
https://music-encoding.org/conference/past.html
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we should be able to measure what proportion of this information our systems recovered correctly. The
rationale why this is still such a hard problem is because there is no underlying formal model of music
notation. Such a model could support structured encoding evaluation by being:

• Comprehensive: integrating naturally both the “reprintability” and “replayability” level (also called
graphical and semantical level in the literature), by being capable of describing the various corner
cases (which implies extensibility);

• Useful: enabling tractable inference (at least approximate) and an adequate distance function; and
• Sufficiently supported through open-source software.
The existing XML formats for encoding music notation are inadequate representations for OMR. For

example, the XML tree structure is unsuitable, as evidenced by the frequent need for referencing the
XML elements across arbitrarily distant subtrees. Historically, context-free grammars have been the most
explored avenue for a unified formal description of music notation, both with an explicit grammar [4],
[91] and implicitly using a modified stack automaton [11]: this feels natural, given that music notation
has strict syntactic rules and hierarchical structures that invite such descriptions. The 2-D nature of music
notation also inspired graph grammars [107] and attributed graph grammars [23]. Recently, modeling
music notation as a directed acyclic graph has been proposed as an alternative [153], [147]. However,
none of these formalisms has yet been adopted: the notation graph is too recent and does not have
sufficient software and community support, and the older grammar-based approaches lack up-to-date
open-source implementations altogether (and are insufficiently detailed in the respective publications for
re-implementation). Without an appropriate formalism and the corresponding tooling, the evaluation of
structured encoding can hardly hope to move beyond ad-hoc methods.

Hajič [145] argues that a good OMR evaluation metric should be intrinsic21 and independent of a certain
use-case. The benefits would be the independence from the selected score editing toolchain as well as
the music notation format and a clearly interpretable automatic metric for guiding OMR development
(which could ideally be used as a differentiable loss function for training full-pipeline end-to-end machine
learning-based systems). This question is still one of the major issues in the field.

VII. APPROACHES TO OMR
In order to complete our journey through the landscape of Optical Music Recognition, we yet have

to visit the arena of OMR techniques. These have recently undergone a paradigm shift towards machine
learning that has brought about a need to revisit the way that OMR methods have traditionally been
systematized. As opposed to OMR applications, the vocabulary of OMR methods and subtasks already
exists [247] and only needs to be updated to reflect the new reality of the field.

As mentioned before, obtaining the structured encoding of the scores has been the main motivation to
develop the OMR field. Given the difficulty of such objective, the process was usually approached by
dividing it into smaller stages that could represent challenges within reach with the available technologies
and resources. Over the years, the pipeline described by Bainbridge and Bell [10], refined by Rebelo et
al. in 2012 [247] became the de-facto standard. That pipeline is traditionally organized into the following
four blocks, sometimes with slightly varying names and scopes of the individual stages:

1) Preprocessing: Standard techniques to ease further steps, e.g., contrast enhancement, binarization,
skew-correction or noise removal. Additionally, the layout should be analyzed to allow subsequent
steps to focus on actual content and ignore the background.

2) Music Object Detection: Finding and classifying all relevant symbols or glyphs in the image.
3) Notation Assembly: Recovering the music notation semantics from the detected and classified symbols.

The output is a symbolic representation of the symbols and their relationships, typically as a graph.

21Extrinsic evaluation means evaluating the system in an application context: “How good is this system for purpose X?.” Intrinsic evaluation
attempts to evaluate a system without reference to a specific use-case, asking how much of the encoded information has been recovered. In
the case of OMR, this essentially reduces evaluation to error counting.
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4) Encoding: Encoding the music into any output format unambiguously, e.g., into MIDI for playback
or MusicXML/MEI for further editing in a music notation program.

With the appearance of deep learning in OMR, many steps that traditionally produced suboptimal
results, such as the staff-line removal or symbol classification have seen drastic improvements [129],
[219] and are nowadays considered solved or at least clearly solvable. This caused some steps to become
obsolete or collapse into a single (bigger) stage. For instance, the music object detection stage was
traditionally separated into a segmentation stage and classification stage. Since staff lines make it hard to
separate isolated symbols through connected component analysis, they typically were removed first, using
a separate method. However, deep learning models with convolutional neural networks have been shown
to be able to deal with the music object detection stage holistically without having to remove staff lines
at all. In addition to the performance gains, a compelling advantage is the capability of these models to
train them in a single step by merely providing pairs of images and positions of the music objects to
be found, eliminating the preprocessing step altogether. A baseline of competing approaches on several
datasets containing both handwritten and typeset music can be found in the work of Pacha et al. [221].

The recent advances also diversified the way of how OMR is approached altogether: there are alternative
pipelines with their own ongoing research that attempt to face the whole process in a single step. This
holistic paradigm, also referred to as end-to-end systems, has been dominating the current state of the
art in other tasks such as text, speech, or mathematical formula recognition [88], [84], [314]. However,
due to the complexity of how musical semantics are inferred from the image, it is difficult (for now) to
formulate it as a learnable optimization problem. While end-to-end systems for OMR do exist, they are
still limited to a subset of music notation, at best. Pugin pioneered this approach utilizing hidden Markov
models for the recognition of typeset mensural notation [233], and some recent works have considered
deep recurrent neural networks for monophonic music written in both typeset [273], [295], [55], [54]
and handwritten [20] modern notation. Unfortunately, polyphonic and pianoform scores are currently out
of reach for end-to-end models—not just that the results would be disappointing, there is simply no
appropriate model formulation. Therefore, even when only trying to produce the “notes” (semantics), one
may choose to recover some of the engraving decisions explicitly as well, relying on the rules of inferring
musical semantics as in the last stages of the traditional pipeline.

Along with the paradigm shift towards machine learning—which nowadays can be considered widely
established—several public datasets have emerged, such as MUSCIMA++ [153], DeepScores [289] or
Camera-PrIMuS [54].22 There are also significant efforts to develop tools by which training data for
OMR systems can be obtained including MUSCIMarker [151], Pixel.js [268], and MuRET [256].

On the other hand, while the machine learning paradigm has undeniably brought significant progress,
it has shifted the costs onto data acquisition. This means that while the machine learning paradigm is
more general and delivers state-of-the-art results when appropriate data is available, it does not necessarily
drive down the costs of applying OMR. Still, we would say—tentatively—that once these resources are
spent, the chances of OMR yielding useful results for the specific use-case are higher compared to earlier
paradigms.

Tangentially to the way of dealing with the process itself, there has been continuous research on
interactive systems for years. The idea behind such systems is based on the insight that OMR systems
might always make some errors, and if no errors can be tolerated, the user is essential to correct the
output. These systems attempt to incorporate user feedback into the OMR process in a more efficient
way than just post-processing system output. Most notably is the interactive system developed by Chen
et al. [77], [80], where the user directly interacts with the OMR system by specifying which constraints
to take into account while visually recognizing the scores. The user can then iteratively add or remove
constraints before re-recognizing individual measures until he is satisfied. The most powerful feature of
interactive systems is probably the displaying of recognition results, superimposed on top of the original
image, which allows to quickly spot errors [69], [32], [299], [256].

22A full list of all available datasets can be found at https://apacha.github.io/OMR-Datasets/

https://apacha.github.io/OMR-Datasets/
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VIII. CONCLUSIONS

In this article, we have first addressed what Optical Music Recognition is and proposed to define it as
research field that investigates how to computationally read music notation in documents—a definition
that should adequately delimit the field, and set it in relation to other fields such as OCR, graphics
recognition, computer vision, and fields that await OMR results. We furthermore analyzed in depth the
inverse relation of OMR to the process of writing down a musical composition and highlighted the
relevance of engraving music properly—something that must also be recognized to ensure readability
for humans. The investigation of what OMR is, revealed why this seemingly easy task of reading music
notation has turned out to be such a hard problem: besides the technical difficulties associated with
document analysis, many fundamental challenges arise from the way how music is expressed and captured
in music notation. By providing a sound, concise and inclusive definition, we capture how the field sees
and talks about itself.

We have then reviewed and improved the taxonomy of OMR, which should help systematize the current
and future contributions to the field. While the inputs of OMR systems have been described systematically
and established throughout the field, a taxonomy of OMR outputs and applications has not been proposed
before. An overview of this taxonomy is given in Fig. 15.

Finally, we have also updated the general breakdown of OMR systems into separate subtasks in order
to reflect the paradigm shift towards machine learning methods and discussed alternative paradigms such
as end-to-end systems and interactive scenarios.

One of the key points we wanted to stress is the internal diversity of the field: OMR is not a monolithic
task. As analyzed in Section IV, it enables various use-cases that require fundamentally different system
designs, as discussed in Section VI-B. So before creating an OMR system, one should be clear about the
goals and the associated challenges.

The sensitivity to errors is another relevant issue that needs to be taken into account. As long as errors
are inevitable [80], [93], it is important to consider the impact of those errors to the envisioned application.
If someone wants to transcribe a score with an OMR system, but the effort needed for correcting the
errors is greater than the effort for directly entering the notes into a music notation program, such an OMR
system would obviously be useless [28]. Existing literature on error-tolerance is inconclusive: while we
tend to believe that users—especially practicing musicians—would not tolerate false recognitions [257],
we also see systems that can handle a substantial amount of OMR errors [93], [1], [148] and still produce
meaningful results, e.g., when searching in a large database of scores. Therefore, it cannot be decided in
advance how severe errors are, as it is always the end user who sets the extent of tolerable errors.

The reader should now comprehend the spectrum of what OMR might do, understand the challenges
that reading music notation entails, and have a solid basis for further exploring the field on his own—in
other words, be equipped to address the issues described in the next section.

A. Open Issues and Perspectives for Future Research
We conclude this paper by listing major open problems in Optical Music Recognition that significantly

impede its progress and usefulness. While some of them are technical challenges, there are also many
non-technical issues:

• Legal aspects: Written music is the intellectual property of the composer and its allowed uses are
defined by the respective publisher. Recognizing and sharing music scores can be seen as copyright
infringement, like digitizing books without permission. To avoid this dispute, many databases such as
IMSLP only store music scores whose copyright protection has expired. So an OMR dataset is either
limited to old scores or one enters a legal gray area if not paying close attention to the respective
license of every piece stored therein.

• Stable community: For decades, OMR research was conducted by just a few individuals that worked
distributedly and mostly uncoordinated. Most OMR researchers joined the field with minor contribu-
tions but left again soon afterward. Furthermore, due to a lack of dedicated venues, researchers rarely
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Fig. 15: An overview of the taxonomy of OMR inputs, architectures, and outputs. A fairly simple OMR
system could, for example, read high-quality scans (offline) of well-preserved documents that contain
typeset, monophonic, mensural notation, process it in a tradition pipeline and output the results in a
MIDI file to achieve replayability. An extremely complex system, on the other hand, would allow images
(offline) of handwritten music in common western notation from degraded documents as input and strive
to recognize the full structured encoding in an end-to-end system.
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met in person [49]. This unstable setting and researchers that were not paying sufficient attention to
reproducibility led to the same problems being solved over and over again [215].

• Lack of standards representations: There exist no standard representation formats for OMR outputs,
especially not for structured encoding, and virtually every system comes with its own internal
representation and output format, even for intermediate steps. This causes incompatibilities between
different systems and makes it very hard to replace subcomponents. Work on underlying formalisms
for describing music notation can also potentially have a wide impact, especially if done in collabo-
ration with the relevant communities (W3C Community Group on Music Notation, Music Encoding
Initiative).

• Evaluation: Due to the lack of standards for outputting OMR results, evaluating them is currently
in an equally unsatisfactory state. An ideal evaluation method would be rigorously described and
verified, have a public implementation, give meaningful results, and not rely on a particular use-case,
thus only intrinsically evaluating the system [145].

On the technical side, there are also many interesting avenues, where future research is needed,
including:

• Music Object Detection: recent work has shown that the music object detection stage can be addressed
in one step with deep neural networks. However, the accuracy is still far from optimal, which is
especially detrimental to the following stages of the pipeline that are based on these results. In order
to improve the detection performance, it might be interesting to develop models that are specific to
the type of inputs that OMR works on: large images with a high quantity of densely packed objects
of various sizes from a vast vocabulary.

• Semantical reconstruction: merely detecting the music objects in the document does not represent
a complete music notation recognition system, and so the music object detection stage must be
complemented with the semantical reconstruction. Traditionally, this stage is addressed by hand-
crafted heuristics that either hardly generalize or do not cover the full spectrum of music notation.
Machine learning-based semantical reconstruction represents an unexplored line of research that
deserves further consideration.

• Structured encoding research: despite being the main motivation for OMR in many cases, there is a
lack of scientific research and open systems that actually pursue the objective of retrieving the full
structure encoding of the input.

• Full end-to-end systems: end-to-end systems are accountable for major advances in machine learning
tasks such as text recognition, speech recognition, or machine translation. The state of the art of these
fields is based on recurrent neural networks. For design reasons, these networks currently deal only
with one-dimensional output sequences. This fits the aforementioned tasks quite naturally since their
outputs are mainly composed of word sequences. However, its application for music notation—except
for simple monophonic scores—is not so straightforward, and it is unknown how to formulate an
end-to-end learning process for the recognition of fully-fledged music notation in documents.

• Statistical modeling: most machine learning algorithms are based on statistical models that are able
to provide a probability distribution over the set of possible recognition hypotheses. When it comes
to recognizing, we are typically interested in the best hypothesis—the one that is proposed as an
answer—forgetting the probability given to such hypothesis by the model. However, it could be
interesting to be able to exploit this uncertainty. For example, in the standard decomposition of stages
in OMR systems, the semantic reconstruction stage could benefit from having a set of hypotheses
about the objects detected in the previous stage, instead of single proposals. Then, the semantic
reconstruction algorithm could establish relationships that are more logical a priori, although the
objects involved have a lower probability according to the object detector. These types of approaches
have not been deeply explored in the OMR field. Statistical modeling could also be useful so that
the system provides its certainty about the output. Then, the end user might have a certain notion
about the accuracy that has been obtained for the given input.
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• Generalizing systems: A pressing issue is generalizing from training datasets to various real-world
collections because the costs for data acquisition are still significant and currently represent a
bottleneck for applying state-of-the-art machine learning models in stakeholders’ workflows. How-
ever, music notation follows the same underlying rules, regardless of graphical differences such as
whether it is typeset or handwritten. Can one leverage a typeset sheet music dataset to train for
handwritten notation? Given that typeset notation can be synthetically generated, this would open
several opportunities to train handwritten systems without the effort of getting labeled data manually.
Although it seems more difficult to transfer knowledge across different kinds of music notation, a
system that recognizes some specific music notation could be somehow useful for the recognition of
shared elements in other styles as well, e.g., across the various mensural notation systems.

• Interactive systems: Interactive systems are based on the idea of including users in the recognition
process, given that they are necessary if there is no tolerance for errors—something that at the
moment can only be ensured by human verification. This paradigm reformulates the objective of the
system, which is no longer improving accuracy but reducing the effort—usually measured as time—
that the users invest in aiding the machine to achieve that perfect result. This aid can be provided
in many different ways: error corrections that then feed back into the system, or manually activating
and deactivating constraints on the content to be recognized. However, since user effort is the most
valuable resource, there is still a need to reformulate the problem based on this concept, which also
includes aspects related to human-computer interfaces. The conventional interfaces of computers are
designed to enter text (keyboard) or perform very specific actions (mouse); therefore, it would be
interesting to study the use of more ergonomic interfaces to work with musical notation, such as an
electronic pen or a MIDI piano, in the context of interactive OMR systems.

We hope that these lists demonstrate that OMR still provides many interesting challenges that await
future research.
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[146] Jan Hajič jr. and Matthias Dorfer. Prototyping full-pipeline optical music recognition with MUSCIMarker. In Extended abstracts for

the Late-Breaking Demo Session of the 18th International Society for Music Information Retrieval Conference, Suzhou, China, 2017.
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APPENDIX A: OMR BIBLIOGRAPHY

Along with this paper, we are also publishing the most comprehensive and complete bibliography
on OMR that we were able to compile at https://omr-research.github.io/. It is a curated list of verified
publications in an open-source Github repository (https://github.com/OMR-Research/omr-research.github.
io) that is open for submissions both via pull requests and via templated issues. The website is automatically
generated from the underlying BibTeX files using the BibTex2HTML library, available at https://www.lri.
fr/~filliatr/bibtex2html/.

The repository contains three distinct bibliographic files that are rendered into separate pages:
1) OMR Research Bibliography: A collection of scientific and technical publications, that were manually

verified for correctness from a trustworthy source (see below). Most of these entries have either a
Digital Object Identifier (DOI) or a link to the website, where the publication can be found.

2) OMR Related Bibliography: A collection of scientific and technical publications, that were manually
verified for correctness from a trustworthy source but are not primarily directed towards OMR, such
as musicological research or general computer vision papers.

3) Unverified OMR Bibliography: A collection of scientific and technical publications, that are related
to Optical Music Recognition, but they could not be verified from a trustworthy source and might
contain incorrect information. Many publications from this collection were authored before 1990
and are often not indexed by the search engines, or the respective proceedings could no longer be
accessed and verified by us.

Acquisition and Verification Process
The bibliography was acquired and merged from multiple sources, such as the public and private

collections from multiple researchers that have historically grown, including a recent one by Andrew
Hankinson, who provided us with an extensive BibTeX library. Additionally, we have a Google Scholar
Alert on [247] as it currently represents the latest survey and is cited by almost every publication.

To verify the information of each entry in the bibliography, we proceeded with the following steps:
1) Search on Google Scholar for the title of the work, if necessary with the authors last name and the

year of publication.
2) Find a trustworthy source such as the original publisher, the authors’ website, the website of the venue

(that lists the article in the program) or indexing services including IEEE Xplore Digital Library,
ACM Digital Library, Springer Link, Elsevier ScienceDirect, arXiv.org, dblp.org or ResearchGate.
Information from the last three services are used with caution and if possible backed up with
information from other sources.

3) Manually verify the correctness of the metadata by inspecting and correct it by obtaining the necessary
information from another source, e.g., the conference website or the information state in the document.

https://omr-research.github.io/
https://github.com/OMR-Research/omr-research.github.io
https://github.com/OMR-Research/omr-research.github.io
https://www.lri.fr/~filliatr/bibtex2html/
https://www.lri.fr/~filliatr/bibtex2html/
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Suspicious information could be if the author’s name is missing letters because of special characters
or if the year of publication is before that of cited references.

Once we verified the entry, we add it to the respective bibliography with JabRef (http://www.jabref.org/)
and link the original PDF file or at least the DOI. Articles that were only found as PDF without the
associated venue of publication were classified as technical reports. Bachelor theses and online sources
such as websites of commercial applications were classified as ’Misc’ because of the lack of an appropriate
category in BibTex.

APPENDIX B: LIST OF OMR DEFINITIONS AND DESCRIPTIONS FROM PUBLISHED WORKS

To demonstrate how versatile OMR was referred to in the literature, we collected a list of definitions
and descriptions (alphabetically ordered by the first author name). While most of these are direct citations
(we omitted quotation marks for better readability), some were shortened or slightly rephrased to unify
their structure and make them comparable.

Optical Music Recognition has been defined or described as:
• technology which transforms sheet music or printed scores into a machine readable format [1]
• automatic recognition and classification of symbolic music notation [2]
• system that aims to minimise human involvement in music input. The musical score is scanned to a

bitmap image, and the computer attempts to parse the bitmap [5]
• form of structured document analysis where symbols overlaid on the conventional five-line stave are

isolated and identified so that the music can be played through a MIDI system, or edited in a music
publishing system [8]

• identifying musical symbols on a scanned sheet of music, and interpreting them so that the music
can either be played by the computer, or put into a music editor [9]

• system to convert optically scanned pages of music into a versatile machine-readable format [7]
• system that aims at converting optically scanned pages of music into a versatile machine-readable

format [13]
• system that aims at converting the vast repositories of sheet music in the world into an on-line digital

format [15]
• computer system that can ’read’ printed music [10]
• system that can be used to convert music scanned from paper into a format suitable for playing or

editing on a computer [11]
• technique that makes it possible to automatically build indexes on the actual content of sheet music

[14]
• process to automatically extract symbolic note information from scanned pages [16]
• system to convert sheet music images to symbolic music representations [17]
• the recognition of music scores [19]
• field devoted to transcribe sheet music into some machine-readable format [18]
• the process to convert a music score image into a machine-readable format [20]
• task of transcribing a music score into a machine readable format [21]
• task of recognizing and interpreting printed music and its transformation into MIDI [24]
• research directed towards the recognition of printed scores as well as handwritten music notation

[23] (Actually referred to as Optical Music Reading)
• systems for music score recognition [26]
• software that recognises music notation and produces a symbolic representation of music [27]
• key problem for coding western music sheets in the digital world [29]
• system that aims at saving time in converting hardcopy of the music score into an electronic version

[31]
• task devoted to convert an image of a music score into a machine-readable format, such as MIDI,

MEI or MusicXML [253]

http://www.jabref.org/
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• systems that consist of three main steps, namely image pre-processing, symbol recognition and
musical reconstruction [36]

• software unit called Computerized Note Recognition, whose function is to interpret and recognize
handwritten musical notes [38]

• musical analog to optical character recognition [39]
• musical analogue to optical character recognition [41]
• converting images of musical scores into faithful symbolic representations of the same score [40]
• electronic conversion of scanned or photographed images of handwritten or printed sheet music into

symbolic and therefore editable form [44]
• automatic score transcription tool [51]
• task of automatically extracting the musical information from an image of a score in order to export

it to some digital format [46]
• offline music score recognition systems [52]
• field (of computer science) devoted to providing computers (with) the ability to extract the musical

content of a score from the optical scanning of its source [61], [56], [58], [63]
• ability of a computer to understand the musical information contained in the image of a music score

[50]
• field of computer science devoted to understanding the musical information contained in the image

of a music score [53]
• research field that consists in [sic] extracting the musical content of a given score image in a structured,

symbolic format [57]
• field devoted to the automatic transcription of sheet music into some machine-readable format [60]
• branch of artificial intelligence, focused on automatically recognizing the content of a musical score

from the optical scan of its source [62]
• systems to import a scanned version of the music sheet and try to automatically export the information

into some type of structured format such as MusicXML, MIDI or MEI [48]
• systems, whose objective is to automatically extract the information contained in the image of a

musical score [65]
• system to automatic transcription of musical documents into a structured digital format [64]
• field of research that investigates how to computationally decode music notation from images [55]
• research field that focuses on the automatic detection and encoding of musical content from scanned

images [47]
• research field that investigates how to make computers be capable of reading music [45]
• technology for automatically transcribing musical documents [37]
• digitization of music works [67], [68]
• computational process that reads musical notation from images, with the aim of automatically ex-

porting the content to a structured format [72]
• technique that converts (or interprets) printed musical documents into computer readable/editable

formats [82]
• automatic processing and analysis of images of musical notation [73]
• musical cousin of Optical Character Recognition, (which) seeks to convert score images into symbolic

(music) representations [75], [81]
• system to transform score images into symbolic music libraries [79]
• key technology in Music Information Retrieval by mining symbolic knowledge directly from images

of scores [78]
• seeking to convert music score images into symbolic representations [77], [80]
• software to convert scanned sheets of music into computer readable formats [87]
• software to generate a logical representation of the score [86]
• software to transform an image of a score into symbolic format [89]
• field of document analysis [91], [90], [92]
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• automatic transcription of scores [93]
• process similar to the well-known optical character recognition to extract score data such as note

events, the key and time signatures and other musical symbols [95]
• process of recognising a printed music score and converting it to a format that is understood by

computers [96]
• program to automatically recognize music scores (translated from German “Ein Programm zur

automatischen Erkennung von Musiknoten”) [98]
• the study of automatic techniques in information engineering, which can be used to determine the

musical style of the singer [99]
• field to recognize and play live the notes in images captured from sheet music [100]
• process of automatically (re-)setting the score to create a symbolic, computer-readable representation

of sheet music, such as MusicXML or MIDI [101], [103]
• technology that promises to accelerate the process of entering music scores in a machine-readable

format by automatically interpreting the musical content from (the digitized image of) the printed
score [105], [106]

• transformation of digital music score images to computer readable format symbols [108]
• automatic recognition of a scanned page of printed music [110], [111]
• research area that consists in [sic] the identification of music information from images of scores and

their conversion into a machine readable format [112]
• process of identifying music information from images of scores and converting them into machine

legible format [117]
• classical area of interest of Document Image Analysis and Recognition that combines textual and

graphical information [119]
• classical application area of interest, whose aim is the identification of music information from images

of scores and their conversion into a machine readable format [118]
• research field that consists in [sic] the understanding of information from music scores and its

conversion into a machine readable format [120], [115]
• recognition of handwritten music scores [114], [116]
• automatic recognition of music notation by the computer [121]
• task of converting scanned sheet music into a computer readable symbolic music format such as

MIDI or MusicXML [123]
• process of extracting musical note parameters (onset times, pitches, durations) along with 2D position

parameters from the scanned image [122]
• task of converting scores into a machine-readable format [124]
• program for recognition of musical notation [125]
• technology which transforms digital images of music into searchable representations of music notation

[127], [126]
• process of automatically transcribing music notation from a digital image [128]
• research field, which focuses on detecting and storing the musical content of a score from a scanned

image. The objective is to import a scanned musical score and export its musical content to a
machine-readable format, typically MusicXML or MEI [129]

• technique to transform paper musical scores into musical acoustic, and it is a basic way to apply
to digital medium music data, large digital music library, robot reading musical score and perform,
computer music education, Chinese tradition music digitalization [sic][131]

• technique to convert scanned pages of music into a machine-readable format [132]
• problem of recognising and interpreting the symbols of printed music notation from a scanned image

[134]
• systems designed to perform recognition of music notation, chiefly from a scanned image of music

notation [133]
• process that aims to “recognize” images of music notation and capture the “meaning” of the music
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[135]
• system for recognizing music notation [136]
• systems, designed to recognise printed sheet music scores [138]
• branch of OCR oriented to musical documents [144]
• field of document analysis that aims to automatically read musical scores [152]
• process that attempts to extract musical information from its written representation, the musical score

[150]
• task of recovering symbolic musical information such as MIDI from the image of the written score

[146]
• field of graphics recognition that aims to automatically read music [151]
• field of document analysis that aims to automatically read music [153]
• field of computationally reading music notation in documents [148]
• field of automatically reading music notation from images [147]
• tool for document transcription that tries to extract symbolic music from page images for use in an

editor [155]
• technology that can transform large quantities of music document page images into searchable and

retrievable document entities [154]
• field of research that attempts to transcribe musical symbols into digital format [158]
• process of structured data processing applied to music notation [161]
• research and technological field aimed on recognizing and representing music notation [163]
• technology to automatically recognize music notation [162]
• technique for processing music notes in old manuscripts and books [164]
• form of optical character recognition that use different method and algorithms to convert printed

music into its digital form [sic] [166]
• direct path to create rich and extensive symbolic databases for music in machine-generated common

Western notation [168]
• process that automatically converts the image of a music score into symbolic data [167]
• systems that convert music scores into a computer-readable format, similar to Optical Character

Recognition (OCR) except that it is used to recognize musical symbols instead of letters [169]
• OCR for music [170]
• system that can play printed or handwritten music score images without any knowledge of music

primitives or musical instruments [174]
• system to transform a sheet music into a format readable by a machine [175]
• case of optical character recognition for the automatic recognition and classification of music notation

[176]
• system that can convert digital image data into digital semantic data [177]
• system that addresses the problem of musical data acquisition, with the aim of converting optically

scanned music scores into a versatile machine-readable format [178], [179]
• subcategory of optical character recognition that recognizes an image of printed sheet music and

interprets it to a machine-readable document [181]
• technology that is a rewarding subject for pattern recognition researches [182]
• system for music score recognition [185]
• technology that makes it possible to extract symbolic representations from scores or microfilms of

scores [188]
• technique that involves interpreting the symbols in a picture, such as a scanned image of sheet music,

and recreating the information in a format that encapsulates the implied audio content [189]
• process of converting a graphical representation of music (such as sheet music) into a symbolic

format [190]
• process of automatically extracting musical meaning from a printed music score. It is sometimes also

called musical score recognition or simply score recognition [192]
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• process of automatically processing and understanding an image of a music score [191]
• process that recognized music from any form of score sheet and makes sheet readable and editable

for computer [sic] [193]
• automatic conversion of scanned music scores into computer readable data in variable formats, e.g.,

MusicXML, or MEI [194]
• technique that achieves the automatic recognition of music notation with high-speed and further plays

music automatically, which is an important topics [sic] in the process [195]
• process to convert handwritten music symbols on sheets of paper into computer readable data [197]
• systems that analyze and convert digitized music scores to machine readable formats [198]
• process of automatically recovering the information present on music scores based on scanned data

[201]
• input technique to obtain a machine representation of music [206]
• efficient and automatic method to transform paper-based music scores into a machine representation

[207]
• system that can provide an automated and time-saving input method to transform paper-based music

scores into a machine readable representation, for a wide range of music software, in the same way
as Optical Character Recognition is useful for the processing applications [204]

• system to transform paper-based music scores and manuscripts into a machine-readable symbolic
format [205]

• equivalent task for music, that is OCR for digital images of words [208]
• system that can automatically interpret the images and automatically create new scores that can be

understood by the computer [210]
• discipline that investigates music score recognition systems [211]
• area of document analysis that aims to automatically understand written music scores. Given an

image of musical scores, an OMR system attempts to recognize the content and translate it into a
machine-readable format such as MusicXML [219]

• branch of artificial intelligence that aims at automatically recognizing and understanding the content
of music scores [220]

• challenge of understanding the content of musical scores [218]
• research field that investigates how to automatically decode written music into a machine-readable

format [216]
• field of research that investigates how to build systems that decode music notation from images [217]
• field of research that investigates how to computationally read music notation in documents [221]
• task of recognizing all music symbols in a score sheet [224]
• system to convert music scores into a machine-readable data that could be reproduced in computer

and stored as compact digitalised data [sic] [225]
• process of identifying music from an image of a music score [226]
• system to transform paper-based music scores and manuscripts into a machine-readable symbolic

format [227], [228]
• tools for the creation of searchable digital music libraries [234]
• systems that create encodings of the musical content in digital images automatically [235]
• musical analogue to optical character recognition (OCR) [236]
• applications that enable document images to be encoded into digital symbolic music representations

[238]
• the equivalent of OCR for music [237]
• pathway to a large set of symbolic scores [240]
• analogous to optical character recognition to convert music score images into symbolic form [241]
• form of structured document image analysis where music symbols are isolated and identified so that

the music can be conveniently processed [245]
• system to transform paper-based music scores and manuscripts into a machine-readable (symbolic)
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format [243], [246], [70]
• system with three main objectives: the recognition, the representation and the storage of musical

scores in a machine-readable format [250]
• tool for the automatic recognition of digitized music scores [249]
• computer system that can automatically decode and create new scores [247]
• research field, that deals with the recognition, the representation and the storage of musical scores

in a machine-readable format [244]
• tool to transform pen-based music scores and manuscripts into a machine-readable symbolic format

[248]
• system capable of recognizing printed music of reasonable quality [251]
• task of recognizing images of musical scores [254]
• recognition of images of musical scores [255]
• key tools for publication of music score collections that are currently found only on paper [256]
• system that can automatically recognize the main musical symbols of a scanned paper-based music

score [259]
• field of research that aims at reading automatically scanned scores in order to convert them in an

electronic format, such as a midi file [260]
• method that aims at automatically reading scanned scores [261]
• method that aims at automatically reading scanned scores in order to convert them into an electronic

format, such as MIDI file, or an audio waveform [262]
• automatic recognition of a scanned page of printed music notation by a computer program [263]
• translation of a digitized image of a music score into a representation more amenable to computer

manipulation of the musical content [265]
• systems that analyse images of music scores to convert their content to machine readable formats

[199]
• problem of obtaining a complete representation of a musical document given only a digital image

[269]
• problem of recognizing musical scores in images [273]
• application of optical character recognition to interpret sheet music or printed scores into editable or

playable form [274]
• systems that play a very important role in the process of creating the digital libraries of musical

documents [275]
• tools for automatic sheet music transcription [276]
• system for extracting musical symbols from images similar to the Optical Character Recognition

[277]
• method that involves identifying musical symbols on a scanned sheet of music and transforming

them into a computer readable format [280]
• process of converting digitized sheets of music into an electronic form that is suitable for further

processing such as editing and performing by computer [281]
• efficient and automatic method for transforming paper-based music scores into a machine represen-

tation [282]
• algorithm for processing images of musical scores [283]
• work for automatically recognizing music expressions for printed and handwritten music [284]
• program to convert scanned score into an electronic format and even recognize and understand the

contents of the score [285]
• application to automatically transcribe digitized page images of music [287]
• automatic recognition of a scanned music score [288]
• system to input music by detecting musical symbols, based on strokes drawn by the user [286]
• automatic recognition of scanned music scores [288]
• area of document recognition and computer vision that aims at converting scans of written music to
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machine-readable form, much like optical character recognition [289]
• area within music information retrieval with the goal of transforming images of printed or handwritten

music scores into machine readable form, thereby understanding the semantic meaning of music
notation [290]

• process of identifying music from an image of a music score [296]
• process of turning musical notation represented in a digital image into a computer-manipulable

symbolic notation format [297]
• process of converting a scanned image of pages of music into computer readable and manipulable

symbols using a variety of image processing techniques [298]
• process that reads and extracts the content from digitized images of music documents [299]
• a computer system for automatically storing and interpreting musical information (of music scores)

[301]
• system that can automatically interpret images of music scores and create new scores that the computer

could understand [300]
• particular case of high-level document analysis [304], [303]
• task of interpreting the content of the bitmap image of a musical score and reformulating it with a

high-level symbolic structure [302]
• way to convert music notation into a digital representation, and its acoustic rendition [305]
• systems whose main purpose is to convert images of paper-based music scores into digitised formats

[306]
• application of recognition algorithms to musical scores, to encode the musical content to some kind

of digital format [295]
• tool to recognize a scanned page of music scores automatically [307], [308]
• conversion of scanned pages of music into a musical database [309]
• process of a computer reading sheet music [310]
• process of converting paper sheets of music score into an electronic format which can be “read” by

computer [312]
• tool that takes a score that is likely to be correct, scans it and tries to recreate what it scans in a

digital notation format [313]
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