30 research outputs found

    Particle Swarm Optimization

    Get PDF
    Particle swarm optimization (PSO) is a population based stochastic optimization technique influenced by the social behavior of bird flocking or fish schooling.PSO shares many similarities with evolutionary computation techniques such as Genetic Algorithms (GA). The system is initialized with a population of random solutions and searches for optima by updating generations. However, unlike GA, PSO has no evolution operators such as crossover and mutation. In PSO, the potential solutions, called particles, fly through the problem space by following the current optimum particles. This book represents the contributions of the top researchers in this field and will serve as a valuable tool for professionals in this interdisciplinary field

    Studies in particle swarm optimization technique for global optimization.

    Get PDF
    Ph. D. University of KwaZulu-Natal, Durban 2013.Abstract available in the digital copy.Articles found within the main body of the thesis in the print version is found at the end of the thesis in the digital version

    Speech Enhancement Based on Adaptive Noise Cancellation and Particle Swarm Optimization

    Get PDF
    Speech enhancement is used in almost all modern communication systems. This is due to the quality of speech being degraded by environmental interference factors, such as: Acoustic additive noise, acoustic reverberation or white Gaussian noise. This paper, explores the potential of different benchmark optimization techniques for enhancing the speech signal. This is accomplished by fine tuning filter coefficients using a diverse set of adaptive filters for noise suppression in speech signals. We consider the Particle Swarm Optimization (PSO) and its variants in conjunction with the Adaptive Noise Cancellation (ANC) approach, for delivering dual speech enhancement. Comparative simulation results demonstrate the potential of an optimized coefficient ANC over a fixed one. Experiments are performed at different signal to noise ratios (SNRs), using two benchmark datasets: the NOIZEUS and Arabic dataset. The performance of the proposed algorithms is evaluated by maximising the perceptual evaluation of speech quality (PESQ) and comparing to the audio-only Wiener Filter (AW) and the Adaptive PSO for dual channel (APSOforDual) algorithms

    Dual-Stage Hybrid Learning Particle Swarm Optimization Algorithm for Global Optimization Problems

    Get PDF
    Particle swarm optimization (PSO) is a type of swarm intelligence algorithm that is frequently used to resolve specific global optimization problems due to its rapid convergence and ease of operation. However, PSO still has certain deficiencies, such as a poor trade-off between exploration and exploitation and premature convergence. Hence, this paper proposes a dual-stage hybrid learning particle swarm optimization (DHLPSO). In the algorithm, the iterative process is partitioned into two stages. The learning strategy used at each stage emphasizes exploration and exploitation, respectively. In the first stage, to increase population variety, a Manhattan distance based learning strategy is proposed. In this strategy, each particle chooses the furthest Manhattan distance particle and a better particle for learning. In the second stage, an excellent example learning strategy is adopted to perform local optimization operations on the population, in which each particle learns from the global optimal particle and a better particle. Utilizing the Gaussian mutation strategy, the algorithm’s searchability in particular multimodal functions is significantly enhanced. On benchmark functions from CEC 2013, DHLPSO is evaluated alongside other PSO variants already in existence. The comparison results clearly demonstrate that, compared to other cutting-edge PSO variations, DHLPSO implements highly competitive performance in handling global optimization problems

    Soft computing applied to optimization, computer vision and medicine

    Get PDF
    Artificial intelligence has permeated almost every area of life in modern society, and its significance continues to grow. As a result, in recent years, Soft Computing has emerged as a powerful set of methodologies that propose innovative and robust solutions to a variety of complex problems. Soft Computing methods, because of their broad range of application, have the potential to significantly improve human living conditions. The motivation for the present research emerged from this background and possibility. This research aims to accomplish two main objectives: On the one hand, it endeavors to bridge the gap between Soft Computing techniques and their application to intricate problems. On the other hand, it explores the hypothetical benefits of Soft Computing methodologies as novel effective tools for such problems. This thesis synthesizes the results of extensive research on Soft Computing methods and their applications to optimization, Computer Vision, and medicine. This work is composed of several individual projects, which employ classical and new optimization algorithms. The manuscript presented here intends to provide an overview of the different aspects of Soft Computing methods in order to enable the reader to reach a global understanding of the field. Therefore, this document is assembled as a monograph that summarizes the outcomes of these projects across 12 chapters. The chapters are structured so that they can be read independently. The key focus of this work is the application and design of Soft Computing approaches for solving problems in the following: Block Matching, Pattern Detection, Thresholding, Corner Detection, Template Matching, Circle Detection, Color Segmentation, Leukocyte Detection, and Breast Thermogram Analysis. One of the outcomes presented in this thesis involves the development of two evolutionary approaches for global optimization. These were tested over complex benchmark datasets and showed promising results, thus opening the debate for future applications. Moreover, the applications for Computer Vision and medicine presented in this work have highlighted the utility of different Soft Computing methodologies in the solution of problems in such subjects. A milestone in this area is the translation of the Computer Vision and medical issues into optimization problems. Additionally, this work also strives to provide tools for combating public health issues by expanding the concepts to automated detection and diagnosis aid for pathologies such as Leukemia and breast cancer. The application of Soft Computing techniques in this field has attracted great interest worldwide due to the exponential growth of these diseases. Lastly, the use of Fuzzy Logic, Artificial Neural Networks, and Expert Systems in many everyday domestic appliances, such as washing machines, cookers, and refrigerators is now a reality. Many other industrial and commercial applications of Soft Computing have also been integrated into everyday use, and this is expected to increase within the next decade. Therefore, the research conducted here contributes an important piece for expanding these developments. The applications presented in this work are intended to serve as technological tools that can then be used in the development of new devices

    Computational Optimizations for Machine Learning

    Get PDF
    The present book contains the 10 articles finally accepted for publication in the Special Issue “Computational Optimizations for Machine Learning” of the MDPI journal Mathematics, which cover a wide range of topics connected to the theory and applications of machine learning, neural networks and artificial intelligence. These topics include, among others, various types of machine learning classes, such as supervised, unsupervised and reinforcement learning, deep neural networks, convolutional neural networks, GANs, decision trees, linear regression, SVM, K-means clustering, Q-learning, temporal difference, deep adversarial networks and more. It is hoped that the book will be interesting and useful to those developing mathematical algorithms and applications in the domain of artificial intelligence and machine learning as well as for those having the appropriate mathematical background and willing to become familiar with recent advances of machine learning computational optimization mathematics, which has nowadays permeated into almost all sectors of human life and activity

    Multiple sequence alignment using particle swarm optimization

    Get PDF
    The recent advent of bioinformatics has given rise to the central and recurrent problem of optimally aligning biological sequences. Many techniques have been proposed in an attempt to solve this complex problem with varying degrees of success. This thesis investigates the application of a computational intelligence technique known as particle swarm optimization (PSO) to the multiple sequence alignment (MSA) problem. Firstly, the performance of the standard PSO (S-PSO) and its characteristics are fully analyzed. Secondly, a scalability study is conducted that aims at expanding the S-PSO’s application to complex MSAs, as well as studying the behaviour of three other kinds of PSOs on the same problems. Experimental results show that the PSO is efficient in solving the MSA problem and compares positively with well-known CLUSTAL X and T-COFFEE.Dissertation (MSc)--University of Pretoria, 2009.Computer ScienceUnrestricte

    Enhanced Harris's Hawk algorithm for continuous multi-objective optimization problems

    Get PDF
    Multi-objective swarm intelligence-based (MOSI-based) metaheuristics were proposed to solve multi-objective optimization problems (MOPs) with conflicting objectives. Harris’s hawk multi-objective optimizer (HHMO) algorithm is a MOSIbased algorithm that was developed based on the reference point approach. The reference point is determined by the decision maker to guide the search process to a particular region in the true Pareto front. However, HHMO algorithm produces a poor approximation to the Pareto front because lack of information sharing in its population update strategy, equal division of convergence parameter and randomly generated initial population. A two-step enhanced non-dominated sorting HHMO (2SENDSHHMO) algorithm has been proposed to solve this problem. The algorithm includes (i) a population update strategy which improves the movement of hawks in the search space, (ii) a parameter adjusting strategy to control the transition between exploration and exploitation, and (iii) a population generating method in producing the initial candidate solutions. The population update strategy calculates a new position of hawks based on the flush-and-ambush technique of Harris’s hawks, and selects the best hawks based on the non-dominated sorting approach. The adjustment strategy enables the parameter to adaptively changed based on the state of the search space. The initial population is produced by generating quasi-random numbers using Rsequence followed by adapting the partial opposition-based learning concept to improve the diversity of the worst half in the population of hawks. The performance of the 2S-ENDSHHMO has been evaluated using 12 MOPs and three engineering MOPs. The obtained results were compared with the results of eight state-of-the-art multi-objective optimization algorithms. The 2S-ENDSHHMO algorithm was able to generate non-dominated solutions with greater convergence and diversity in solving most MOPs and showed a great ability in jumping out of local optima. This indicates the capability of the algorithm in exploring the search space. The 2S-ENDSHHMO algorithm can be used to improve the search process of other MOSI-based algorithms and can be applied to solve MOPs in applications such as structural design and signal processing

    Pattern Recognition

    Get PDF
    A wealth of advanced pattern recognition algorithms are emerging from the interdiscipline between technologies of effective visual features and the human-brain cognition process. Effective visual features are made possible through the rapid developments in appropriate sensor equipments, novel filter designs, and viable information processing architectures. While the understanding of human-brain cognition process broadens the way in which the computer can perform pattern recognition tasks. The present book is intended to collect representative researches around the globe focusing on low-level vision, filter design, features and image descriptors, data mining and analysis, and biologically inspired algorithms. The 27 chapters coved in this book disclose recent advances and new ideas in promoting the techniques, technology and applications of pattern recognition

    Conception des réseaux maillés sans fil à multiples-radios multiples-canaux

    Full text link
    Généralement, les problèmes de conception de réseaux consistent à sélectionner les arcs et les sommets d’un graphe G de sorte que la fonction coût est optimisée et l’ensemble de contraintes impliquant les liens et les sommets dans G sont respectées. Une modification dans le critère d’optimisation et/ou dans l’ensemble de contraintes mène à une nouvelle représentation d’un problème différent. Dans cette thèse, nous nous intéressons au problème de conception d’infrastructure de réseaux maillés sans fil (WMN- Wireless Mesh Network en Anglais) où nous montrons que la conception de tels réseaux se transforme d’un problème d’optimisation standard (la fonction coût est optimisée) à un problème d’optimisation à plusieurs objectifs, pour tenir en compte de nombreux aspects, souvent contradictoires, mais néanmoins incontournables dans la réalité. Cette thèse, composée de trois volets, propose de nouveaux modèles et algorithmes pour la conception de WMNs où rien n’est connu à l’ avance. Le premiervolet est consacré à l’optimisation simultanée de deux objectifs équitablement importants : le coût et la performance du réseau en termes de débit. Trois modèles bi-objectifs qui se différent principalement par l’approche utilisée pour maximiser la performance du réseau sont proposés, résolus et comparés. Le deuxième volet traite le problème de placement de passerelles vu son impact sur la performance et l’extensibilité du réseau. La notion de contraintes de sauts (hop constraints) est introduite dans la conception du réseau pour limiter le délai de transmission. Un nouvel algorithme basé sur une approche de groupage est proposé afin de trouver les positions stratégiques des passerelles qui favorisent l’extensibilité du réseau et augmentent sa performance sans augmenter considérablement le coût total de son installation. Le dernier volet adresse le problème de fiabilité du réseau dans la présence de pannes simples. Prévoir l’installation des composants redondants lors de la phase de conception peut garantir des communications fiables, mais au détriment du coût et de la performance du réseau. Un nouvel algorithme, basé sur l’approche théorique de décomposition en oreilles afin d’installer le minimum nombre de routeurs additionnels pour tolérer les pannes simples, est développé. Afin de résoudre les modèles proposés pour des réseaux de taille réelle, un algorithme évolutionnaire (méta-heuristique), inspiré de la nature, est développé. Finalement, les méthodes et modèles proposés on été évalués par des simulations empiriques et d’événements discrets.Generally, network design problems consist of selecting links and vertices of a graph G so that a cost function is optimized and all constraints involving links and the vertices in G are met. A change in the criterion of optimization and/or the set of constraints leads to a new representation of a different problem. In this thesis, we consider the problem of designing infrastructure Wireless Mesh Networks (WMNs) where we show that the design of such networks becomes an optimization problem with multiple objectives instead of a standard optimization problem (a cost function is optimized) to take into account many aspects, often contradictory, but nevertheless essential in the reality. This thesis, composed of three parts, introduces new models and algorithms for designing WMNs from scratch. The first part is devoted to the simultaneous optimization of two equally important objectives: cost and network performance in terms of throughput. Three bi-objective models which differ mainly by the approach used to maximize network performance are proposed, solved and compared. The second part deals with the problem of gateways placement, given its impact on network performance and scalability. The concept of hop constraints is introduced into the network design to reduce the transmission delay. A novel algorithm based on a clustering approach is also proposed to find the strategic positions of gateways that support network scalability and increase its performance without significantly increasing the cost of installation. The final section addresses the problem of reliability in the presence of single failures. Allowing the installation of redundant components in the design phase can ensure reliable communications, but at the expense of cost and network performance. A new algorithm is developed based on the theoretical approach of "ear decomposition" to install the minimum number of additional routers to tolerate single failures. In order to solve the proposed models for real-size networks, an evolutionary algorithm (meta-heuristics), inspired from nature, is developed. Finally, the proposed models and methods have been evaluated through empirical and discrete events based simulations
    corecore