
Studies in Particle Swarm
Optimization Technique for Global

Optimization

by

ARASOMWAN Akugbe Martins

Student No. 211560835

Submitted in fulfilment of the requirements
for the degree of Doctor of Philosophy in Computer Science

at the

School of Mathematics, Statistics and Computer Science
University of KwaZulu-Natal

Durban, South Africa

December, 2013

ii

UNIVERSITY OF KWAZULU-NATAL

COLLEGE OF AGRICULTURE, ENGINEERING AND SCIENCE

DECLARATION

The research described in this thesis was performed at the University of KwaZulu-

Natal under the supervision of Dr. A. O. Adewumi. I hereby declare that all materials

incorporated in this thesis are my own original work except where acknowledgement

is made by name or in the form of a reference. The work contained herein has not

been submitted in part or whole for a degree at any other university.

Signed:

Arasomwan Akugbe Martins

Date: December 2013

As the candidate’s supervisor, I have approved the Thesis for submission

Signed:

Dr. A. O. Adewumi

Date: December 2013

iii

UNIVERSITY OF KWAZULU-NATAL

COLLEGE OF AGRICULTURE, ENGINEERING AND SCIENCE

DECLARATION - PLAGIARISM

I, __declare that

1. The research reported in this thesis, except where otherwise indicated, is my

original research.

2. This thesis has not been submitted for any degree or examination at any other

University.

3. This thesis does not contain other persons’ data, pictures, graphs or other

information, unless specifically acknowledged as being sourced from other

persons.

4. This thesis does not contain other persons’ writing, unless specifically

acknowledged as being sourced from other researchers. Where other written

sources have been quoted, then:

a. Their words have been re-written but the general information attributed to

them has been referenced

b. Where their exact words have been used, then their writing has been

placed in italics and inside quotation marks, and referenced.

5. This thesis does not contain text, graphics or tables copied and pasted from the

Internet, unless specifically acknowledged, and the source being detailed in the

thesis and in the References sections.

Signed:

Arasomwan Akugbe Martins

iv

Dedication

This Thesis is dedicated to my darling wife, Mrs. Deborah A. Arasomwan,

Finally, it is dedicated to the Most High God, my Source, Salvation, Success,

Sustainer and Security.

v

Acknowledgement

Firstly, I would like to appreciate my darling wife, Mrs. Arasomwan, A. Deborah for

her prayers, patience, support and understanding all through the period of my studies,

most especially because I have been far away from home.

My profound and sincere gratitude goes to my supervisor, Prof. A.O. Adewumi for

making every effort to see to the successful completion of my Doctoral programme.

Thank you for always doing your best and encouraging me to be my very best

especially in mentoring me to a be a self-confident researcher. The exposure provided

to optimization research and training on how to improve my research output is much

appreciated.

Many thanks to Prof. M. M. Ali of the School of Computational and Applied

Mathematics, University of Witwatersrand, Johannesburg, meeting you was a great

privilege and added to my research potential in diverse ways.

My sincere appreciation also goes to the entire Optimization and Modelling Group,

School of Mathematics, Statistics and Computer Science at UKZN, it was wonderful

having those seminars together as a team as this provided the needed motivation to

improve the quality of research work being done.

I am deeply grateful to the College of Engineering, Agriculture and Science,

University of KwaZulu-Natal for being awarded research grants and for the conducive

environment available for research. My gratitude goes to the management of the

Federal College of Education, Okene Nigeria for granting me the permission to

embark on my PhD study.

I would also like to thank Bro. Ikharo A. Briamoh and Bro. Olusanya, O. Micheal for

the various contributions they have made to my Doctoral programme. To all brethren

in the faith both in Okene, Kogi State, Nigeria and KwaZulu-Natal Province, South

vi

Africa: Pastor and Mrs. A. O. Adewumi, Pastor Adesina Joseph, Pastor and Mrs.

Omeiza, to mention a few, I say thank you for your prayers.

In addition, I would like to express my gratitude to all those who have in one way or

the other contributed to this research work. To my dear sisters and brother, Adesuwa,

Osareniye, Iziegbe, Uyinmwen and to your respective families; may God bless and

keep you all.

Lastly, I am highly indebted to God Almighty for the ideas, help, mercy, preservation

and favour which He has provided and that I have enjoyed throughout the course of

this research.

Arasomwan A. Martins

December, 2013.

vii

Abstract

This thesis presents a series of studies conducted on particle swarm optimization

(PSO) technique for global optimization inspired by the drawbacks identified in the

technique with respect to premature convergence, weak local search ability and the

desire to make the technique simpler and more effective, efficient and robust when

handling optimization problems with many local optima. Generally, PSO is widely

applied by individuals, enterprises and researchers to seek best possible solutions to

varieties of problems amidst limited resources hence the need to better efficiency in

its implementation. Many variants of PSO have been proposed to address its

drawbacks with varying successes and failures stories. Many of these variants have

introduced several other parameters, complexities and more computational efforts into

the technique, yet its drawbacks are not sufficiently addressed. Besides, there exist

some areas, like particle velocity limits and search space limits of the PSO technique

that remain static throughout its lifetime of execution in many existing variants.

Introducing dynamism could make the algorithm perform better and obtain better

quality solutions to optimization problems. Besides, the pure greedy method of

obtaining the swarm global best among the personal bests of all the particles in the

swarm is a common attribute of very many PSO variants. These form part of the

things addressed in the studies carried out in this thesis.

In this study, selected existing PSO variants were improved upon and additional

variants were proposed which greatly improved the efficiency and performance of the

PSO technique. These proposed variants include Swarm Success Rate Decreasing

Inertia Weight PSO (SSRDIWPSO) and Swarm Success Rate Random Inertia Weight

PSO (SSRRIWPSO) which use swarm success rate as the feedback parameter for their

inertia weight strategies to enhance the explorative and exploitative power of the PSO

technique. The Modified Basic PSO (M-BPSO) with seven versions, which use

dynamic velocity limits to control the global and local search activities of the PSO;

Improved Original PSO (IOPSO) which does not use the inertia weight parameter but

has dynamic search space and velocity limits; PSOCLUS in which the PSO technique

was hybridized with a novel local search technique called Collective Local Unimodal

search (CLUS) and GRA-PSO which diversified the operations of the PSO by

viii

incorporating randomness and adaptivity to complement the greedy method PSO,

chooses the global best from among the personal bests of particles in the swarm.

Through numerical experiments, several test problems from literature were used to

validate the proposed variants. The results obtained were compared with their original

counterparts and with various efficient PSO variants that exist in literature. The

results reveal that substantial evidence exist that prove that the new variants are better

than their original counterparts and several of the PSO variants in literature in terms

of reliability, robustness, convergence speed, solution quality, search ability and

efficiency. As a result, the new variants proposed in this thesis offer an alternative to

many currently available algorithms for solving global optimization problems in

which the gradient information is not readily available. These variants can be applied

to solve various global optimization problems and are available for optimization

researchers. The results can also serve as a benchmark on which future researches

could be based.

ix

Table of Contents
DECLARATION .. ii

DECLARATION - PLAGIARISM ... iii

Acknowledgement .. v

Abstract ... vii

Table of Contents ... ix

List of Tables ... xi

List of Included Articles ... xii

Chapter 1 ... 14

Introduction ... 14

1.1 Background to the Study ... 15

1.2 Motivation.. 17

1.3 Aim and Objectives .. 20

1.4 Scope of the Thesis .. 20

1.5 Methodology .. 21

1.6 Contributions ... 21

1.7 Thesis Outline... 22

Chapter 2 ... 24

Literature Review.. 24

2.1. Optimization .. 24

2.2. Metaheuristics ... 26

2.2.1 Characteristics and Classification of Metaheuristics 27

2.3. Swarm Intelligence (SI) .. 28

2.3.1 Properties of Swarm Intelligence Paradigm .. 29

2.4. Particle Swarm Optimization ... 31

2.4.1 The original PSO framework .. 32

2.4.2 Strengths and weaknesses of the PSO ... 33

2.4.3 Developments and improvements on OPSO ... 35

Chapter 3 ... 45

Studies based on Dynamic Velocity and Search Space Limits 45

3.1 Paper 1: On the Performance of Linear Decreasing Inertia Weight Particle Swarm

Optimization for Global optimization .. 45

x

3.2 Paper 2: Improved Particle Swarm Optimizer with Dynamically Adjusted Search

Space and Velocity Limits for Global Optimization .. 46

3.3 Particle Swarm Optimizer based on greedy and adaptive methods 47

3.3.1 Motivation .. 47

3.3.2 Experimental settings ... 50

3.3.3 Experimental results and discussions ... 51

Chapter 4 ... 86

Studies based on Swarm Success Rate and Chaotic Maps ... 86

4.1 Paper 3: On Adaptive Chaotic Inertia Weight in Particle Swarm Optimization 87

4.2 Paper 4: An Improved Particle Swarm Optimizer based on Swarm Success Rate for

Global optimization Problems ... 87

4.3 Paper 5: An Investigation into the Performance of Particle Swarm Optimization

with Various Chaotic Maps .. 91

Chapter 5 ... 146

Simplified Particle Swarm Optimization .. 146

5.1. Paper 6: On the Performance of Particle Swarm Optimization with(out) some

Control Parameters for Global Optimization ... 146

Submitted to the International Journal of Bio-Inspired Computation 149

Chapter 6 ... 180

Particle Swarm Optimization Hybrid with Local Search ... 180

6.1. Paper 7: Improved Particle Swarm Optimization with a Collective Local Unimodal

Search for Continuous Optimization Problems ... 180

Chapter 7 ... 205

Solving High Dimensional Problems with Particle Swarm Optimization 205

7.1 Paper 8: An Adaptive Velocity Particle Swarm Optimization for High-Dimensional

Function Optimization ... 205

Chapter 8.. 217

Conclusion, Summary and Future Research .. 217

8.1 Conclusions .. 217

8.2 Summary of contributions .. 218

8.3 Future research ... 219

References ... 220

Appendix ... 232

Test Problems [8] .. 232

xi

List of Tables
Table 2.1 Classification of optimization algorithms 26

Table 2.2 List of Swarm Intelligence Algorithms and their motivations 30

Table 3.1 Success criteria for some of the test problems 50

Table 3.2 Results obtained for the test problems using LDIW-PSO and

GAPSO

51

Table 4.1 Mean Best Fitness (MBF) and Standard Deviation (SD) for the

three PSO variants

88

Table 4.2 Success Rate (SR), Average Function Evaluation (AFE) and

Average Computer Time (ACT in minutes for all the runs) for the

three PSO variants

89

Table 4.3 Mean error (MEANERR), least error (LEASTERR) and median

error (MEDIANERR) for the three PSO variants

90

xii

List of Included Articles

1. Article in Peer-reviewed Journal (ISI)

i. Arasomwan A. M. and Adewumi A.O. (2013), On the Performance of Linear

Decreasing Inertia Weight Particle Swarm Optimization for Global

optimization, The Scientific World Journal, Vol. 2013, 12 pages. DOI:

http://dx.doi.org/10.1155/2013/860289

ii. Arasomwan, M.A. and Adewumi, A.O. (2014). An Investigation into the

Performance of Particle Swarm Optimization with Various Chaotic Maps.

Mathematical Problems in Engineering, vol. 2014, Article ID 178959, 17

pages, 2014. doi:10.1155/2014/178959.

iii. Arasomwan, M.A. and Adewumi, A.O. (2014). Improved Particle Swarm

Optimization with a Collective Local Unimodal Search for Continuous

Optimization Problems. Special Issue on Bioinspired Computation and Its

Applications in Operation Management (BIC), The Scientific World Journal,

vol. 2014, Article ID 798129, 23 pages, 2014. doi:10.1155/2014/798129

2. Articles under Review for Peer-reviewed Journals (ISI)

i. Arasomwan A. M. and Adewumi A. O. (2013), An Improved Particle Swarm

Optimizer based on Swarm Success Rate for Global Optimization Problems.

Submitted to The Journal of Theoretical and Experimental Artificial

Intelligence.

ii. Arasomwan A. M. and Adewumi A. O. (2013), Improved Particle Swarm

Optimizer with Dynamically Adjusted Search Space and Velocity Limits for

Global Optimization. Submitted to Journal of Artificial Intelligence Tools.

iii. Arasomwan A. M. and Adewumi A. O. (2013), Improved Particle Swarm

Optimization for Global Optimization with(out) some Control Parameters.

Submitted to International Journal of Bio-inspired Computing.

3. Articles in Peer-reviewed Conference Proceedings

i. Arasomwan A. M. and Adewumi A. O. (2013), On Adaptive Chaotic Inertia

Weights in Particle Swarm Optimization, in Proceedings of the IEEE

http://dx.doi.org/10.1155/2013/860289

xiii

Symposium on Swarm Intelligence (SIS), 2013, Singapore, April 2013, pp.72-

79.

ii. Arasomwan A. M. and Adewumi A. O. (2013), An Adaptive Velocity Particle

Swarm Optimization for High-Dimensional Function Optimization, in

Proceedings of the IEEE Congress on Evolutionary Computation (CEC ’13),

Mexico City, Mexico, June 2013, pp. 2352–2359.

14

Chapter 1

Introduction

Since its inception [35, 36], the Particle Swarm Optimization (PSO) technique has

experienced tremendous improvements, which has fostered its wide application to

optimization problems in different fields of study. The diverse trends accompanying

researches in PSO include its hybridization with other optimizers, addressing the

problem of premature convergence as well as the adaptation of its control parameters

during optimization.

Control parameters like inertia weight, acceleration coefficients and random factors

are widely acknowledged to play important roles in the performance of PSO and

different mathematical analysis have been done relative to how these parameters

influence the diversity of the particles, with the belief that population diversity

influences optimization effectiveness. One of the utmost goals of the authors who

introduced the PSO technique was to make it as simple as possible. Contrary to this,

many existing PSO variants have introduced some computational complexities to this

technique. However, there are some studies on simplified variants of PSO in

literature. One of the objectives of this research work is to provide answers to the

following questions:

i. Are there other ways, different from the existing methods, that the operations of

the original PSO and the basic PSO can be altered without affecting the velocity

and position updating formulas of particles for increased performance compared

to the existing PSO variants?

ii. Can the exploration and exploitation activities of the PSO technique be

successfully and efficiently achieved without using the widely accepted inertia

weight parameter? In reality, is it possible to implement the PSO technique

without any of the three control parameters (inertia weight, acceleration

coefficients and random factors) in the velocity updating formula without

15

additional complex computational efforts being exerted elsewhere in the

algorithm?

iii. Can the existing simplified PSO variants be made simpler without compromising

the efficiency, accuracy, reliability and robustness needed in the discovery of the

global minimum compared with existing variants? In this context, efficiency

refers to the amount of efforts (CPU time or number of function evaluations)

required to obtain a solution. Accuracy describes how close the final solution

obtained by a global optimization algorithm is to the known global minimum of a

problem while reliability explains how successful the method is in finding the

global minimum.

This thesis reports series of studies carried out on basic PSO and different existing

PSO variants to improve on their identified weaknesses in order to target better global

optimal results. As a result, new hybrids and promising variants of the PSO technique,

including derived simplifications, were proposed which greatly improved on the

efficiency of existing PSO techniques. These variants can be applied to solve various

global optimization problems and are available for optimization researchers. Several

problems were used to validate the proposed variants and their results were compared

with various efficient PSO variants that exist in literature.

1.1 Background to the Study
Inherent in the human nature is the quest for the best possible in almost all endeavours

of life. Driven by this kind of nature, individuals, enterprises and governments daily

seek optimal solutions, amidst limited resources, to different problems encountered.

Many of these problems can be formulated as optimization problems, thus

optimization plays an increasingly significant role in daily management and technical

decision making. Examples in science would include varying some decision

parameters to maximize profit (e.g. investment portfolios, supply chains, etc.); in

engineering, choosing design parameters to improve some objective and in data

analysis, extracting some model parameters from data while minimizing error

measures (e.g. fitting).

Global optimization is an inherently difficult problem because no general criterion

exists for determining when the global optimum is reached. This type of optimization

16

seeks to provide solutions to optimization problems which are often multi-modal and

non-convex. These solutions may be good globally or may be a mix of globally and

locally good solutions. Generally, optimization problems entail how to select the best

course of action given some restrictions.

A large number of optimization methods for solving various optimization problems

exist in literature. Broadly, these methods can be categorized into either local or

global optimization search techniques. A local search method iteratively improves its

estimate of the optimum by searching for better solutions within the local

neighborhood of the current solution while a global search method searches

complicated landscapes of multiple local minima. Nature always finds the optimal

solution to solve its problem maintaining perfect balance among its components and is

thus equipping man to discover various inspired solutions for problem-solving and

adaption to the ever-changing environment. For researchers, inspirations from natural

systems that display problem-solving capabilities have been received to develop

algorithms for solving complex and challenging optimization problems. Nature-

inspired techniques have been evolving in recent years, exhibiting extremely diverse,

dynamic, robust, complex and fascinating phenomenon.

Since the inspiration for each nature-inspired technique are unrelated to a particular

class of optimization problems, it becomes easier to modify them substantially

especially when applied in practice. With amazing results being obtained by

researchers, the scope and viability of nature-inspired algorithms has been broadened

opening up the possibilities for exploring new areas of application and providing more

opportunities in computing. A major reason why these sets of algorithms have

become popular is because they are easy to code in relatively few lines. They have

become an important part of contemporary research in global optimization algorithms,

computational intelligence and soft computing

Swarm intelligence (SI) is one of the classes of nature-inspired metaheuristics that has

been used to provide (near) optimal solutions to many complex optimization problems

in recent years. The goal of SI is to design intelligent multi-agent systems by taking

inspiration from the collective behavior of social organisms. Amongst the first set of

(and most popular) SI metaheuristics is the PSO. PSO [35,36] is a technique that

17

displays problem-solving capabilities that enables researchers solve complex and

challenging optimization problems. It is an evolutionary computation technique

inspired by the social behaviour of birds and schools of fish.

The basic idea of the PSO stems from biology where a swarm of birds are able to

coordinate themselves, with some degree of randomness, in order to achieve a goal.

Each particle (bird) uses the local information regarding the displacement of its

reachable close neighbours to decide on its own displacement, resulting in complex

and adaptive collective behaviours. The concept was introduced to the field of

optimization in 1995 [35, 36]. PSO can be used to provide solutions to optimization

problems with multimodal or unimodal landscapes.

When PSO was initially proposed, swarm size, particle velocity, acceleration

coefficients and random coefficients, were the associated parameters that controlled

its operations and efficiency. However, it exhibited the problem of premature

convergence. In ridding the PSO of this problem and make it more efficient, many

variants have been developed and these are detailed in literature [41, 55]. These

variants have additional parameter(s) and require extra (complex) computational

effort(s), which give them an edge over the Original OPSO (OPSO).

1.2 Motivation
Optimization problems are wide in range and numerous, hence methods required to

solve them require active and dynamic researches. These include data mining,

engineering, and bio-computing problems which are large-scale in terms of the

decision variables that need to be handled in trying to solve them. As a result, the

performance of most available optimization algorithms deteriorate very quickly as the

the problem dimension increases. This is because complex problems has large

solution space which increases exponentially with the problem size. A current trend

is to develop scalable algorithms with efficient search strategies to explore all the

promising regions in the solution space within given constraint. Nature-inspired

optimization techniques are prominent among these algorithms. They are presently

more frequently studied and utilized for solving optimization problems in academia

and industry than mathematical optimization techniques such as convex

18

programming, linear programming and other metaheuristics [79, 123] due to the

increased complexities of many real-world problems.

It is a general knowledge that nature-inspired metaheuristic algorithms are prominent

in tackling challenging highly nonlinear optimization problems with evidence of

efficiency. As a result, researches are expanding towards this direction in different

fields. However, till date, researchers have only utilised very limited characteristics

inspired by nature; thus, other properties of natural environments are worth

investigating for the development of novel nature-inspired algorithms. Moreover,

there are still lots of opportunities to improve existing nature-inspired techniques

hence the thrust of this paper.

The nonlinearity of several optimization problems often results in multiple local

optima that pose substantial challenges in obtaining the global optimality of interest.

Therefore, the need for efficient techniques and improvement on existing ones to

solve complex global optimization problems in the continuous space is evident. PSO

being one of the popular techniques used to solve both simple and complex

optimization problems has undergone countless modifications and improvements

since when it was introduced; hence, many of its variants exist. These modifications

and improvements are done either on the parameters that control the operations of

PSO, the addition of new parameters or both, the resulting variants that have been

useful in solving many global optimization problems.

Diverse variants of the PSO have been proposed with varying level of improved

performances [93,133]. However, many of these variants are characterized by: static

particle search space and velocity limits, which limit their flexibilities in obtaining

optimal solutions for many of the optimization problems. Furthermore, in spite of

some extra computations inherent in these variants and additional parameters like

inertia weight incorporated, premature convergence, which is the major challenge

associated with the OPSO technique, remains a problem that many of the variants

have not been able to handle successfully [29, 39, 41, 46]. In cases where (near)

optimal solutions are obtained, they are with low precision [53, 132].

19

In many of the PSO variants, solution search space and velocity threshold are static

throughout the execution of the algorithm [4, 5, 37, 41, 77]. This characteristic

somewhat limits the flexibility of these variants in obtaining optimal solutions for

many of optimization problems. Also, there is the challenge of selection of velocity

threshold especially when dealing with some practical problems. Trial-and-error

approach which can be computationally intensive and time consuming may be

required to make the selection. . There is need for more dynamic way of varying the

solution space and velocity threshold in order to obtain optimal results with higher

precision for optimization problems when using PSO and its variants. This can be

done based on the state of the particles' dimensions so as to enable the algorithm

concentrate its search on the sub-range defined during its execution instead of the

entire search space all the time. In addition, this could also enable the algorithm

escape premature convergence so as to obtain better quality solutions to given

optimization problems.

The inertia weight parameter [96] was introduced into PSO to enable it obtain better

results to optimization problems by balancing the algorithm’s exploration and

exploitation activities. Many Inertia Weight Strategies (IWS) have the initial and final

values of the inertia weight fixed, thereby ruling out the flexibility of obtaining lower

or higher values for the inertia weight that could help the algorithm obtain good

optimal results. Also, many of the IWS do not have access to information about the

state of the swarm in the solution search space; this could influence the nature of the

search for optimal solutions by the swarm. Therefore, it is of utmost importance that a

means of realising the state of the swarm in the search space is devised, in addition to

creating some flexibility in either of the limits of the IWS with the belief that this

could help the algorithm obtain better results.

To further enhance the performance of the PSO algorithm in this work, randomness

was introduced into its IWS. Since chaotic activities can play the role of

randomization, this has been brought into the IWS with the logistic chaotic map being

more prominently used [69]. This feature has improved the optimizing capability of

PSO by introducing better global search mobility. However, there are several chaotic

maps in literature that have the possibility of enhancing the performance of PSO even

more than the logistic map. Therefore, the effects of other chaotic maps on the

20

performance of PSO algorithms need further investigation. The outcomes obtained

could provide some useful information to optimization practitioners in choosing

chaotic maps to apply in the various IWS hence another focus of this work

1.3 Aim and Objectives
The primary aim of this thesis is to simplify the basic PSO technique and enhance

selected existing PSO variants so as to improve their performances and extend their

scope of applicability to optimization problems. The objectives summarized below

provide guidance in achieving this aim.

i. To study the parameters of the PSO technique to better understand their

individual contributions to the algorithm’s operations and efficiency and to

device means of adjusting these parameters to further enhance the efficiency of

the PSO. Some of these will be achieved by introducing dynamism into some

static aspect of the current PSO algorithm and implementations.

ii. To develop PSO variants with enhanced parameter selection and combination

techniques.

iii. To introduce adaptivity and randomness into the method of selecting the swarm

global best from among the personal bests of particles, instead of the commonly

used greedy method.

iv. To develop PSO variants that could efficiently handle high dimensional global

optimization problems.

v. To develop an improved PSO hybrid with local search that compete

significantly well with current variants.

1.4 Scope of the Thesis

This thesis considered the PSO technique for solving both simple and complex

optimization problems in the continuous space. Much attention was given to the

parameters of the technique because of the vital roles they play in the operations of

the technique. The target is to develop means of making the PSO technique simpler

and more efficient than existing variants in handling optimization problems.

Conclusions and remarks are based on extensive simulation studies of the proposed

variants which are compared with that in literature. The set of benchmark problems

21

used in all the studies are with diverse characteristics and complexities as found in

literature and real world problems.

1.5 Methodology

In this work, different variants of the PSO algorithms were developed. Numerical

simulations were carried out on these variants using various benchmark test problems.

Empirical results obtained from the studies were analyzed using statistical techniques

to demonstrate the superiority of the new variants in terms of their performances

compared to the performance of existing PSO variants in literature.

1.6 Contributions
This research study carried out series of investigations on the different parameters and

their contributing effect to the PSO technique for global optimization with the aim of

addressing its major drawback and to improve its efficiency. Some of the parameters

are inertia weight, particle velocity limits and acceleration coefficients, which play

prominent roles in optimizing the power and efficiency of the PSO in the course of

obtaining (near) optimal solutions for global optimization problems.

During the research process, some existing PSO variants were improved upon and

new hybrids and promising variants of the PSO were proposed which greatly

improved the efficiency of the PSO technique. Some of the research contributions in

the work are highlighted below:

1. The exploratory and exploitative powers of selected existing PSO variants were

improved upon by introducing the swarm success rate as the feedback parameter

for their inertia weight strategies.

2. Some PSO variants without the inertia weight parameter were proposed. These

variants implemented dynamic velocity clamping of particles and dynamic

solution search space.

3. A variant which diversified the operations of the PSO by incorporating

randomness and adaptivity to complement the greedy way PSO chooses the

personal and global best of particles was proposed.

22

Several problems were used to validate the proposed variants and their results were

compared with various efficient PSO variants that exist in literature. From the results

obtained from this research study, there are indication of significant success with

proposed variant which we hope would be useful for both researchers and

practitioners in the field of global optimization. These variants can be applied to solve

various global optimization problems and are available for optimization researchers.

Finally, results obtained in this study further provided higher benchmarks on which

further work on PSO can be based.

1.7 Thesis Outline

The rest of the thesis is organized as follows:

Chapter 2 provides an introduction to the theory of optimization and metaheuristics,

followed by a review of the existing swarm intelligence (SI) techniques with emphasis

on the PSO technique.

Chapter 3 presents the PSO based on dynamic velocity and search space limits.

Several experiments were conducted using these limits to improve the performance of

the PSO. Two papers developed from the results of the experiments are also

presented.

Chapter 4 examines the effect of the swarm success rate feedback parameter and the

chaotic maps on the performance of the PSO algorithms. Numerical simulations were

performed to obtain results used for analyzing the effect of the feedback parameter as

well as the chaotic maps. The results obtained are compared with those of selected

existing PSO variants. To conclude this chapter, three papers which are products of

the research study are included.

Chapter 5 presents certain simplifications of the PSO technique. These are done

without compromising the performance of the PSO. Experimental results and

comparisons with existing PSO variants are presented. One research paper developed

is included in this chapter.

23

In chapter 6, a new local search technique was proposed and used to improve the PSO

algorithm. The technique was applied to existing PSO variants and results obtained

were compared with those of the prevailing variants to verify the suitability of

applying the local search. In addition, a different method for updating the positions of

particles was devised and implemented. One research paper is included in this

chapter.

Chapter 7 presents a simple PSO variant that is able to handle high dimensional

problems. The variant adaptively adjusts the velocity of particles based on Euclidean

distance between the position of each particle and the position of the global best

particle and applied to continuous optimization problems with low (10 – 30) and high

(50 – 4,000) dimensions.

Finally, Chapter 8 presents a summary and conclusion of this thesis. Major

contributions are highlighted in addition to suggestions for future research.

24

Chapter 2
Literature Review

2.1. Optimization
Optimization encompasses selecting the best course of action(s) among several

alternative while considering given restrictions. Examples of practical optimization

problems includes: production of fuel efficient car, selecting portfolio that minimizes

risks while maximizing returns, deciding the shortest route among several

alternatives, to mention a few. These problems typically have three fundamental

components namely, the objective function, decision variables, and constraints. The

objective function is the numerical quantity to be optimized (maximized or

minimized), that is, for which we seek the best possible value. Example may include

maximizing expected return on a stock portfolio, minimizing production cost of an

item, minimizing cost of travel through a given number of cities, and so on. The

decision variables are quantities whose values can be manipulated in order to fulfill

the objective function. Examples include quantities of stock to purchase and

production schedule to optimize. Finally, constraints are simply restrictions that are

placed on the possible values that decision variables can take. For instance, individual

cannot invest more than s/he has into stock, a lecturer cannot teach more than one

modules simultaneously. Within this broad framework, the complexity of

optimization problems depends on many other factors that characterize the problems

including type of decision variable and the nature of the objectives functions and/or

constraints.

Generally, an optimization problem can be represented as follows:

Optimize ⃗
subject to

 ⃗

where ⃗ is the decision variable in , f: is the objective

function and gj:
 , are the constraint functions, j =1, 2, …, m.

25

The goal is to maximize or minimize the objective function. Solution ⃗ is a global

minimizer of ⃗ if and only if ⃗ ⃗ for all ⃗ in the domain of ⃗ . It is a

global maximizer of ⃗ if and only if ⃗ ⃗ for all ⃗ in the domain of

 ⃗ . Optimization problems are often multi-modal due to having multiple good

solutions, which could all be globally good or a mix of globally good and locally good

solutions.

Researchers are often faced with numerous nonlinear multimodal optimization

problems such as parameter optimization. Global optimization seeks to find the

globally best solution for nonlinear models among multiple local optima. To

formulate global optimization problems, it is assumed that, (i) objective function and

constraints are continuous functions, (ii) the component-wise bounds related to the

decision variable vector are finite, and (iii) the feasible solution set is not empty. Such

problems require global search technique to solve them. The different approaches to

solving global optimization problems can be broadly grouped into exact and heuristics

methods. However, exact methods often fail to obtain the global optima in the face of

complex optimization problems while the heuristics seek to compare accuracy slightly

for speed in order to obtain a near-optima solution to such problems. An example of

heuristic methods is the evolutionary algorithms which mimic the principle of

biological evolution like natural selection and the "survival of the fittest". The

different types of evolutionary search methods are made up of approaches that are

aimed at continuous global optimization problems, and others that are targeted

towards solving combinatorial problems.

Local optimization, on the other hand, involves finding an optimum solution within

a neighbourhood set of candidate solutions as against all set of possible solutions.

This involves the use of local search methods which apply a local perturbation within

the neighbourhood in search of the optimum solution. These techniques are widely

used to provide solutions to many NP-hard problems in various fields and are also

useful in improving the search trajectories of global search techniques for better

results, in most cases as hybrids. We explore this hybrid approach for PSO in this

work. Examples of local search techniques include hill climbing, tabu search,

simulated annealing, 2-opt algorithm for traveling salesman problem and the

26

collective local unimodal search (CLUS) which is explored in this work. Local

optimization algorithms generally depend on the derivatives of the cost function and

constraints to aid in the search. It also depends on an initial point which determines

the result obtained.

Generally, there are many optimization algorithms which can be classified based on

various factors and depending on the focus and characteristics of such algorithms. A

typical classification [121] is presented in Table 2.1. A general term used for most

heuristic-based search algorithms is metaheuristics among which is the focus of this

work. We shall give a brief overview of these in the next session.

Table 2.1: Classification of optimization algorithms [121]
S/N Focus/Characteristics Class of Algorithms

1 Derivative or gradient of a function
i. Gradient-based

ii. Derivative-free

2 Number of agents
i. Trajectory-based

ii. Population-based

3 Search procedure/Movement
i. Deterministic

ii. Stochastic

4 Search capability/space
i. Local

ii. Global

2.2. Metaheuristics
Metaheuristics, a term coined by Glover in 1986 [49], are higher level black boxes

designed to select, generate or find lower level heuristics that can provide good

solutions to optimization problems. They do not guarantee that a global optimum

point will be found but seek a reasonable trade-off between solution quality and

computing time. Metaheuristics seek to maintain an intelligent balance between

exploration and exploitation capabilities of the underlying heuristics while navigating

the search space in search of near-optimal solutions.

27

Metaheuristic techniques are well-known global optimization methods which attempt

to mimic some characteristics of natural phenomena or social behaviour and

sometimes incorporate complex learning processes. The algorithms are approximate

and usually non-deterministic. Several of these non-problem specific techniques have

been proposed for global optimization and have helped to increase the overall

computational efficiency for some large-scale problems [79]. Generally, most

research on metaheuristics are based on empirical studies (as in this work) with a few

exploring formal theoretical issues such as convergence.

2.2.1 Characteristics and Classification of Metaheuristics
As mentioned earlier, metaheuristics have many characteristics features [121]. As

they guide and/or modify other lower level heuristics to produce solutions,

metaheuristic algorithms often use some tradeoff between randomization and local

search. While they are good in finding near-optimal solution within reasonable time,

they do not guarantee that optimal solutions can be reached. Often, metaheuristics

incorporate strategies to assist underlying heuristics escape from local optimum

through proper combination of intensification (exploitation) and diversification

(exploration) [121]. The latter helps the algorithm to explore the entire global search

space in search of optimal solution while the former helps to concentrate on a local

region of the search space in search of solution better than the current local optimum.

A good metaheuristic aims to seek a good balance between intensification and

diversification during search in order to improve convergence of the algorithm. This

is to ensure that global optimality is achievable [121].

Metaheuristic algorithms including SI algorithms are optimization methods designed

in accordance with the strategies laid out in the metaheuristic framework. They form

essential part of contemporary global optimization algorithms and have been shown to

be efficient with many advantages over traditional, deterministic methods [120].

These algorithms can be categorized as a constructive approach or a local search

method [100]. A constructive algorithm builds solutions from scratch by gradually

adding solutions’ components to the initially empty solutions whereas on the other

hand, local search algorithms start from a known solution and try to improve on it

over time. Similarly, metaheuristic algorithms can be classified as single solution

28

based or population based depending on the number of solutions the algorithm act

upon at each iteration. Evolutionary algorithms are population-based algorithms.

Metaheuristic frameworks are usually defined in general terms without dependence on

problem specific characteristics such as requiring constraints or objective functions to

be defined in certain form. This makes them fit into most real-life optimization

problems with varying requirements, constraints or formulation. These features make

metaheuristic algorithms more flexible compared to exact methods but they have to be

adapted to problem-specific domain sometimes to achieve good performance [120].

2.3. Swarm Intelligence (SI)

This is a class of nature-inspired algorithms with potency for handling complex

optimization problems. These algorithms currently have great impact in contemporary

computing and this will continue even for future generation computing. A swarm is a

collection of large number of homogenous, simple agents that interact locally with

and their environment with no central control. SI is a research field that studies the

emergent collective intelligence of self-organized and decentralized simple agents.

The inspiration often comes from the social behaviours that are observed in nature,

especially in social animals such as flocks of birds, fish schools and swarm bees. The

social interactions among swarm individuals can either be direct or indirect. Examples

of direct interactions are through visual or audio contacts, such as the waggle dance of

honey bees. Indirect interactions occur when one individual changes the environment

for others to respond to, for example, the pheromone trails of ants which they deposit

as they search for food sources [48].

SI algorithms seek to mimic the natural or artificial collective

behaviour of decentralized, self-organized systems. They are population-based

techniques based on agents that interacts locally and with their environment. This

local behaviour with some level of randomness of interacting agents often leads to an

intelligent emerging behaviour that tends towards a global optimum. A concise

introductory overview of the successes of some nature-inspired metaheuristics can be

found in [125].

29

2.3.1 Properties of Swarm Intelligence Paradigm
Researchers have long realized the importance of emergent behaviour for complex

problem solving especially in search of intelligent solutions to real-world problems.

However, some recent advances in SI, comprising new swarm-based optimization

methods, hybrid algorithms and innovative applications can be found in [82]. The

major concepts underlying the SI research field are decentralization, stigmergy, self-

organization, emergence, feedbacks (positive and negative), fluctuations and

bifurcations. Furthermore, division of labor, morphogenesis and collective decisions

are essential concept to the SI paradigm [48]. SI algorithms are population-based but

not population-based techniques are swarm-based [120].

A typical SI system has the following properties [33,120]:

i. It is based on population of individuals which are relatively homogeneous (i.e.

they are either all identical or they belong to a few typologies).

ii. Individuals interact based on simple behavioral rules that exploit local information

they exchange directly or via the environment (stigmergy).

iii. Information exchange is through models of well-known behavior of the

underlying agents such as chemical secretion, dance, or broadcasting ability

depending on the nature of the agents.

iv. The overall emerging (global) behaviour of the system results from the self-

organizing ability through the local interaction with each other and the

environment.

v. There is no central control among the self-interested agents.

2.3.2 Swarm Intelligence Models
SI models are computational models inspired by natural swarm systems. Many SI

models have been proposed and successfully applied in literature based on the

characteristics of different natural swarm systems [33]. These include Altruism

algorithm [115], Ant Colony Optimization [34], Artificial Immune System [33, 65,

112], Artificial Bee Colony [60], Bacterial Foraging [32, 83], Bat Echolocation [126],

Cat Swarm Optimization [26], Charged System Search [61, 62, 109], Cuckoo Search

[119], Firefly Algorithm [123, 124], Glowworm Swarm Optimization [66], Intelligent

30

Water Drops [78, 80, 98, 99], Mosquito Host-seeking [42], Particle Swarm

Optimization [36, 63], River Formation Dynamics [87-89], Roach Infestation

optimization [52], Slime Mould Optimization [75] and Stochastic Diffusion Search

[17, 18, 74].

Table 2.2 provides, in alphabetical order, a list of well-known SI algorithms as well as

motivation that lead to their derivations including their originators.

Table 2.2: List of Swarm Intelligence Algorithms and their motivations

S/N ALGORITHM MOTIVATION RESEARCHER(S) YEAR

1 Altruism Algorithm
[115]

Hamilton's rule of kin selection Waibe M., Floreans
D & Keller L.

2011

2 Ant Colony
Optimization [34]

The foraging behaviour of social
ants

Dorigo, M 1992

3 Artificial Immune
Systems [65]

The characteristics of the immune
system of mammals

Kephart J. O. 1994

4 Artificial Bee Colony
[60]

The foraging behaviour of bees Karaboga, D. 2005

5 Bacterial Foraging [83] The social foraging behaviour of
bacteria such as Escherichia coli

Passino, K. M. 2002

6 Bat Echolocation [126] Based on the echolocation behaviour
of bats

Yang, X.-S. 2010

7 Cat Swarm
Optimization [26]

Based on two of the major
behavioral traits of cats termed
”seeking mode” and ”tracing mode”

Chu, S.-C. & Tsai,
P.-W.

2006

8 Charged System
Search [61]

Some principles from physics (laws
of Coulomb and Gauss from
electrostatics) and mechanics
(Newtonian laws)

Kaveh, A. &
Talatahari, S.

2010

9 Cuckoo Search [119] The brooding behaviour of some
cuckoo species, which use host birds
to hatch their eggs and raise their
chicks

Yang , X.-S. &
Deb, S

2009

10 Firefly Algorithm
[123]

The flashing patterns and behaviour
of fireflies.

Yang, X.-S. 2008

11 Glowworm Swarm
Optimization [66]

The behaviour of glowworms Krishnanand, K. N.
& Ghose, D.

2006

31

12 Intelligent Water Drops
[98]

Natural rivers and how they find
almost optimal paths to their
destination.

Shah-Hosseini, H. 2007

13 Mosquito Host-seeking
[42]

The host-seeking behaviour of
mosquitoes

Feng, X., Lau, F. C.
M. & Yu, H.

2013

14 River Formation
Dynamics [87]

The way water forms rivers by
eroding the ground and depositing
sediments; similar to ant colony
optimization.

Rabanal, P.,
Rodriguez, I, &
Rubio, F.

2007

15 Roach Infestation
Optimization [52]

Social behaviour of cockroaches Havens, T. C.
Spain, C. J.,
Salmon, N. G. &
Keller, J. M.

2008

16 Particle Swarm
Optimization [63]

Social behaviour of flock of bird and
school of fishes

Kennedy, J. and
Eberhart, R.. C.

1995

17 Slime Mould
Optimization [75]

The lifecycle of amoeba Monismith, D. R. &
Mayfield, B. E.

2008

18 Stochastic Diffusion
Search [15]

The restaurant game Bishop, J. M. 1989

The swarm-based algorithms can be classified into three: microscopic agents-based

SI, inanimate agents-based SI metaheuristics and others. Those based on microscopic

agents are the Artificial Immune System, Bacterial Foraging, Slime-Mould while

those based on inanimate agents are Charged System Search, River Formation

Dynamics and Stochastic Diffusion Search. They are so named because they are

unlike other SI metaheuristics like Ant colony Optimization, Artificial Bee Colony,

Bat Echolocation, Cat Swam, Cuckoo Search, etc. stated in Table 2.2 which are based

on animate agents individually visible to the human eyes.

2.4. Particle Swarm Optimization
PSO is one of the two fundamental mainstreams of SI developed in 1995 by James

Kennedy and Russell Eberhart [36, 63]. It is a robust population-based stochastic

optimization technique based on the social behavior, movement and intelligence of

flocks of birds or schools of fish. It applies the concept of social interaction of a

number of agents (particles) that constitute a swarm moving around, with a certain

velocity, in an n-dimensional search space in search of the best solution to an

optimization problem. Each particle resides at a position in the search space with the

32

fitness value (evaluated by the fitness function to be optimized) of each particle

representing the quality of its position.

2.4.1 The original PSO framework
PSO involves a swarm of particles (agents) randomly initialized as points in the n-

dimensional Euclidean space in search of optima solution to an optimization problem.

Each particle i is characterized by a position vector ⃗ , a velocity

vector ⃗ , and another position vector ⃗ , which is the

best position the particle has been able to find. The position of each particle is

evaluated using the problem-specific objective function to determine their quality

(fitness). As the particles move in the search space, their position and velocity vectors

are updated as shown in equations (2.1) and (2.2) respectively in the OPSO algorithm.

 ⃗
 ⃗

 ⃗ ⃗ ⃗
 ⃗ (⃗ ⃗

) (2.1)

 ⃗
 ⃗

 ⃗
 (2.2)

where i = 1, 2, …, S and t = 1, 2, …, T; S represents the swarm size while T represents

the maximum number of iteration allowed for the algorithm to run.

The velocity updating formula

Equation (2.1) known as the velocity updating formula is an integral part of the OPSO

algorithm. This formula determines the flying speed of particles in the search space

and is made up of the past velocity (⃗
), cognitive (⃗ ⃗ ⃗

) and social

(⃗ (⃗ ⃗
)) components. These three components play vital and different roles

for PSO in demonstrating efficient optimizing power in providing (near) optimal

solutions to various optimization problems, therefore making the algorithm sensitive

to these parameters. The random coefficients ⃗ and ⃗ are n-dimensional vectors of

uniform random numbers between 0 and 1, which introduce randomness to the

searching strategy and enable the algorithm escape from local optima. The

acceleration coefficients c1 and c2, also known as the cognitive and social scaling

parameters respectively, determine the magnitude of the random forces on particles in

the direction of ⃗ (the best position particle i has been able to find till the tth iteration)

and ⃗ (the overall best position the whole particles has been able to find till the tth

iteration). They play active roles in the convergence of the algorithm. The combined

effort of these control parameters grants the velocity of each particle its value which

33

in turn determines the exploratory power of the algorithm. Getting appropriate values

for particles' velocities demand additional computational efforts and time. An

example can be found in [4].

It is very rare to find any PSO variants in literature that does not utilize the velocity

updating formula, whether in its simplified form or otherwise. This confirms the

implicit belief that PSO algorithms cannot be separated from the velocity updating

formula for a successful optimization process.

The position updating formula

The position updating formula of each particle is made up of two components,

namely: (i) previous position of each particle, (ii) current velocity of each particle.

Depending on the value if its current velocity, each particle moves from its current

position to another position in the solution space. The solution space is bounded by

the upper and lower limits of the decision variables. During execution of the PSO

technique, there is the possibility that values of the design variables extend beyond

their lower (Xmin) and upper (Xmax) boundaries values which could lead to divergence.

In such situations, the common practice is to artificially bring the affected particle

back to the search space boundary as shown in Equation (2.3).

 {

(2.3)

PSO technique has a wide range of applications in different fields including

economics, engineering, industry, biology and many other complex real world

optimization problems [3, 56, 73, 76].

2.4.2 Strengths and weaknesses of the PSO
The good attributes of the PSO technique has been a major attraction for numerous

researchers. However, there are some challenges associated with its usage which have

caused some alternative optimization techniques to be sought for in solving certain

complex optimization problems. We present a few of the strengths and weaknesses of

the OPSO in the following sub-sections.

34

2.4.2.1 Strengths of the PSO technique
PSO is self-adaptive, not problem-dependent and easy to implement with few

parameters to adjust and/or optimize. It can be applied to solve both simple and

complex optimization problems with less computational burden. As an intelligent

technique, it does not need major adjustments to adapt it to new problems.

The technique does not need the gradient, continuity or differentiability of the

problem to work with. It is also insensitive to problem dimensionality as well as

initial solutions and can easily be parallelized for concurrent processing.

PSO has good global search ability with high accuracy and fast searching speed.

Besides, it adopts real number representation which is decided directly by the

solution.

2.4.2.2 Weaknesses of the PSO technique
In spite of the attractive features of the PSO as a potential global optimizer, some

weaknesses associated with it have been identified by various researchers. These

include:

i. Lack of PSO variants that perform well in optimizing diverse set of problems. As

identified by [119], some variants of the PSO have high quality performance in

solving complex multimodal functions but demonstrate unsatisfactory

convergence rates in unimodal functions.

ii. Victim of premature convergence (easily trapped in local optima) when solving

complex multimodal problems. This area of the PSO has received much attention

in literature [4, 28, 43, 53, 54, 106, 131] and is a situation where the particles

converge to the existing global best in the search space rather than the global

optimum. This comes about because the more the particles communicate

information to one another, the more similar they become especially when other

particles follow are in line with the global best particle. A primary reason

advanced by [106] that could also cause premature convergence is that, all

particles have very similar behaviours because they have the same acceleration

coefficients and inertia weight values leading to poor population diversity among

the particles.

35

iii. Profoundly dependence on the settings of cognitive and social learning constants

as well as inertia weight [53]. The cognitive and social learning constants (c1 and

c2) were part of the OPSO [36, 63] while the inertia weight parameter became part

of the technique in 1998 [104]. In [63], the stochastic factors of both the cognitive

and social components were multiplied by c1 and c2 respectively and both

constants were set to the value of 2.0, to give each factor a mean of 1.0. The

inclusion of c1 and c2 in the PSO, their settings and contributions to accelerating

convergence as well as enabling PSO to avoid local minimum [43, 63] has made

these parameters fundamental to the operations of PSO. Also, the general belief

that the inertia weight parameter is vital in balancing the exploration and

exploitation activities of the PSO has equally made it an indispensable parameter.

iv. Possible computational inefficiency as measured by function evaluations [131].

v. Blindness and computational inefficiency in the search process. The cognitive and

social components in the velocity update formula are weighted by c1 and c2 having

values of 2.0 and r1 and r2 which take random values in the range [0,1]; this means

that, these two weighting factors arbitrarily take values in the range [0,2]. This

constrains the search covering the surrounding regions [0,2] to be centered on ⃗

and ⃗
 . Thus, while the search is approximating the global optimal solution, large

weighting factors generated randomly could make the particles blindly jump over

the optimal solution. On the other hand, small weighting factors generated

randomly could result in an increase in the number of iterations needed to reach

the global optimal solution especially if the search initially began far from the

global optimal solution [63, 68]

vi. Slow convergence [7]

2.4.3 Developments and improvements on OPSO
The OPSO opened a new world of opportunity in the field of optimization. Over the

years, many researchers in the field of optimization have made tremendous efforts to

address the weaknesses of the PSO technique by developing different strategies to

improve on its effectiveness, efficiency and robustness in handling optimization

problems. These developments can be grouped into five areas, namely:

(i) Modification and selection of parameters,

36

(ii) Mutations of particles' positions,

(iii) Swarm initialization,

(iv) Hybridization with other techniques, and

(v) Topological structure.

Brief overviews of these are provided below.

2.4.3.1 PSO Parameters
Optimization techniques often have parameters that guide its behaviour as is the case

with PSO. These parameters have to be set by the user to achieve good performance.

The implication is that different choices of these parameters can cause the technique

to perform badly or very well in solving particular problems. Thus, the PSO is a

parameter-sensitive technique and selecting good parameters is significant and very

challenging [21, 84, 103, 132].

The researches that fall into this category relate to the inertia weight parameter,

maximum velocity, constriction factor, acceleration coefficients, random factors and

swarm size. These are briefly reviewed below:

(a) Inertia weight parameter and its variants

To further enhance the performance of the PSO, the Inertia Weight Strategy (IWS)

was introduced with the aim of enhancing its exploitation and exploration

characteristics. This parameter, commonly represented as ω, was originally

introduced into the PSO by [104] as a static (constant) factor with a fixed value

throughout the execution of the algorithm. It was introduced to balance the scope of

local and global searches of PSO and reduce the importance of (or eliminate) velocity

clamping during the optimization process [30, 38, 108]. This parameter was added to

the velocity updating formula to modify equation (2.1) resulting in equation (2.4).

 ⃗
 ⃗

 ⃗ ⃗ ⃗
 ⃗ (⃗ ⃗

) (2.4)

The inertia weight parameter added to the first term at the right hand side of equation

(2.4) determines the proportion of the previous velocity that is contributed to the

current particles’ velocity. This implies that, if the value is high, the velocity is

increased and if the value is low the velocity decreases thus a determinant of the

speed of the particles.

37

Over the years several inertia weight strategies have been proposed to dynamically

adjust its value at each iteration (see for example [4, 41, 55, 64, 69, 72, 102, 118]).

These strategies include random, time varying, chaotic and adaptive inertia weight

strategies. These inertia weight strategies have been experimentally proven to enhance

the performance of the PSO with varying degrees of success. These variants are

briefly discussed below.

i. Random inertia weight strategies

Diversification (exploration) is vital in locating the area of global solution to an

optimization problem. This activity can be facilitated mostly by means of

randomization. As a result, randomness has been introduced to the IWS by different

researchers [36, 47]. This strategy does not have any feedback parameter. The inertia

weight thus takes different values randomly assigned at each iteration from a specified

interval. In [37] it was empirically discovered that random inertia weight strategy

increases convergence in the PSO and could find good solutions to most functions.

ii. Time varying inertia weight strategies

In this category, the value of the inertia weight is computed based on the iteration

number. Variants in this category can be broadly divided into two classes namely,

linear and nonlinear. The linear time-varying strategies can be further categorized into

linear time decreasing and linear time increasing strategies. The linear time

decreasing strategy uses an initially large inertia weight (usually 0.9) which is

linearly decreased to a small value (usually 0.4) [29, 41, 71, 72, 113, 129]. There are

cases where values other than 0.9 or 0.4 are used [39, 64, 68, 101]. The linear time

increasing strategy increases the inertia weight linearly from a specified small value to

a final large value [128, 129].

Similarly, the nonlinear time-varying strategies can be categorized into nonlinear time

decreasing and nonlinear time increasing strategies. The nonlinear time decreasing

strategy decreases an initially large value nonlinearly to a small value [6, 56, 67, 116].

This allows shorter time for exploration than the linear decreasing methods which

spend more time on refining solutions (i.e. exploitation) [29, 67]. These methods seem

more appropriate for smoother search spaces [29]. Conversely, the nonlinear time

increasing strategy works in the reverse order of the nonlinear time decreasing

strategy [88].

38

A common characteristic of these inertia weight strategies is that the inertia weight

computed is bounded by two values which are always pre-defined by the user. These

values are the initial value (ωmin) and final value (ωmax) for the increasing strategies.

However, for the decreasing strategies, the initial value is ωmax while the final value is

ωmin. With these static values, no room for flexibility is created for the inertia weight

computed values.

iii. Chaotic inertia weight strategies

Chaos optimizations have been applied to different aspects of PSO by various

researchers over time [31, 27, 46, 45, 70]. The important role of randomization can be

understood using the chaos theory. Chaos is mathematically defined as randomness

generated by a simple deterministic system [110]. It is generally characterised by

three dynamic properties namely, ergodicity, stochastic and sensitivity to its initial

conditions [27, 110] which is believe to enhance the search ability of PSO. This seems

to be the motivation behind the introduction of chaos feature into IWS by [41] which

led to improved optimizing capabilities of the Chaotic Descending Inertia Weight

PSO (CDIW-PSO) and Chaotic Random Inertia Weight PSO (CRIW-PSO) due to

better global search mobility, convergence speed and convergence precision

compared to the Linear Decreasing Inertia Weight PSO (LDIW-PSO) and Random

Inertia Weight PSO (RIW-PSO) respectively. There are several other chaotic maps

such as the logistic chaotic map which can be used in conjunction with the IWSs to

improve the performance of PSO.

iv. Adaptive inertia weight strategies

The adaptive IWSs were also introduced to improve the performance of PSO. These

can be grouped into two namely, the fuzzy adaptive inertia weight, which is

dynamically adjusted based on fuzzy sets and rules in each iteration [77, 105] and

non-fuzzy adaptive inertia weights, which are dynamically adjusted based on some

feedback parameters like swarm particle fitness, particle rank, distance to particle,

global best positions, and particle success rate [77].

(b) Introduction of maximum velocity

The velocity of a particle as given in equation (2.1), without restriction, can grow

unbounded while the particle oscillates around an optimum, increasing its distance to

the optimum in each iteration. This initiated the introduction of the velocity clamping

effect (or maximum velocity, Vmax) to avoid velocity divergence. This idea was

39

introduced by Eberhart and Kennedy in 1995 [36, 103]. It improves the performance

of the PSO as it helps particles take reasonably sized steps raking through the search

space rather than bouncing and continuously searching outside the solution space.

Velocity limits has been widely used in experimental studies [102]. However, efforts

have been made to eliminate the use of Vmax although, researches have shown that

velocity clamping has become a standard feature of the PSO [40].

The maximum velocity bounds for particles could negatively affect the performance

of the PSO algorithm if it is not properly set. As a result, various works have sought

to determine the velocity limits of particles that help to improve the performance of

PSO [102, 132]. The three major methods for computing the velocity clamping (Vmin

and Vmax) in literature are: (i) multiplying the search space range with a certain

percentage (), i.e. Vmax = (Xmax – Xmin) and Vmin = -Vmax [40], (ii) multiplying both

the minimum and maximum limits of the search space separately with a certain

percentage (), i.e. Vmax = (Xmax) and Vmin = (Xmin) [132], and (iii) assigning the

search space upper limit to Vmax, (), i.e. Vmax = Xmax [38, 122]. It can be seen from (i)

and (ii) that the parameter is very important. As a result, different values have been

used by different authors [40, 68, 101] for (0,1] to determine velocity clamping

for particles. In literature, irrespective any of the three methods used, the velocity

limits remain constant throughout the lifetime of the algorithm.

From equation (2.2), it is obvious that the velocity of a particle dictates the particle's

trajectory and is the direct determinant of its step sizes. Thus, the velocity limit plays

important roles in the exploration and exploitation ability of the PSO algorithm,

though its selections may be problem-dependent [103]. There exists the possibility of

encountering certain practical problems as a result of lack of knowledge regarding the

selection of Vmax leading to the use of a trial-and-error approach in order to make a

selection which could be very arduous and time consuming. Allowing the velocity

threshold to remain static, either by assigning to it a predefined constant value or a

search space threshold, throughout the lifetime of the algorithms, can make the

particles have some step size causing them to do more than enough exploration or

insufficient exploitation.

40

(c) Introduction of the constriction factor

 To ensure convergence, a PSO with constriction coefficient was proposed by [30]

which help transform the velocity update formula in equation (2.1) to that of equation

(2.5) below. The introduction of this parameter was to eliminate the need for velocity

limit as it is believed to limit the exploration of PSO [38]. However, empirical studies

in [38] shows that the constriction factor performed better when used with velocity

limit parameter. A mathematical argument presented in [15] revealed that the inertia

weight model is equivalent to the constriction factor. Earlier on in [38], the two

parameters were observed to be the same and the PSO with the constriction factor was

considered to be a special case of an algorithm with inertia weight. Another study

reported in [132] shows that the constriction factor PSO has varied efficiencies

relative to unimodal and multimodal problems being solved. However, based on the

findings of [15], it is not necessary to compute the constriction factor using equation

(2.5) because the sum of the learning coefficients which is required to be greater than

4 produces an unnecessary oscillation of the particles.

 (

 ⃗
 (⃗

)) (2.5)

where,

| √ |

with

and

The parameters ⃗ ⃗ are as defined in Section 2.4.1. Parameter

 is known as the constriction factor which is a function of ; is an

arbitrary constant that is used to adjust the value of .

(d) Acceleration coefficients

These parameters are positive values that are commonly represented as c1 (cognitive

scaling parameter) and c2 (social scaling parameter). They regulate the relative

velocity of each particle towards the local and global best respectively. The values of

2.0 as originally assigned to these parameters in the OPSO [63] have been adopted by

many researchers over the years [4, 29, 39, 41]. As a result of the sensitive roles of

41

these parameters in the performance of PSO, other researchers have attempted to

adjust them through empirical studies [50, 95-107]. In [50], the role of the

acceleration coefficients on the performance of PSO was investigated by using

unsymmetrical transfer range of acceleration coefficients. Simulation studies

exhibited an improved optimum solution for most of the benchmarks used especially

when changing c1 from 2.75 to 1.25 and c2 from 0.5 to 2.25, over the full range of the

search [50].

Furthermore, in [95], the New PSO (NPSO) was proposed. Here, the cognitive

acceleration coefficient c1 was split into good experience component c1g and bad

experience component c1b to help the particles move towards their previous best

positions and away from their previous worst positions in order to facilitate

exploration capability. Similarly, the Anti-Predatory PSO (APSO) was proposed by

[96], where the cognitive acceleration coefficient c1 was split into good experience

component c1g and bad experience component c1b. c2 was also split into the good

experience component c2g and the bad experience component c2b. The bad experiences

help particles to by-pass their previous worst positions while good experiences help

particles move towards their previous best positions. Likewise in [107], the Time-

Varying Acceleration Coefficients PSO (PSO-TVAC) was introduced to enhance the

global search in the early part of the optimization and to encourage particles’

convergence towards the global optimum at the end of the search. This was achieved

by linearly decreasing the cognitive parameter c1 from a high value c1max to a low

value c1min while the social parameter, c2, was linearly increased from a low value

c2min to a high value of c2max. Discussions on other strategies for determining these

acceleration coefficients can be found in [57].

From the preceding information regarding acceleration coefficients, it is clear that in a

bid to make the PSO technique perform better, some complexities and extra

computational efforts have been added to or introduced to the technique. If the

activities of these parameters could be compensated for, with less effort and

complexities, in other parts of the PSO technique, then the parameters could be

removed from the velocity updating formula to avert the extra computational

complications.

42

(e) Random factor

A closer look at the PSO algorithm reveals that randomness plays a very useful role in

making the algorithm while seeking effective solution to optimization problems.

Randomness comes into play at the point of initializing the particles in the solution

space and in updating the velocities of particles at each iteration of the algorithm. The

presence of random factors in the velocity formula enhances stochastic tendency and

slows down convergence in order to promote the state space exploration and prevent

premature convergence to non-optimal points [116]. This random feature has

contributed immensely to the performance of PSO [41, 46].

(f) Swarm size

This is often set relative to the dimensionality and perceived complexity of a problem.

Values in the range 20-50 are common [20, 63, 86, 117, 122], depending on the

problem being solved. The convergence of PSO can also be influenced by the swarm

size. Small size of swarm results in fewer numbers of function evaluations and

consequently faster clock time, but in most cases, a large number of algorithm

iterations is needed while large swarm size requires more function evaluations and

fewer numbers of iterations [113, 132]. Tuning this parameter is seen to be of minor

importance [98], thus, there appears to be no generally defined swarm size in the

literature.

2.4.3.2 Mutation operators
In order to increase the diversity of the swarm and to prevent premature convergence

to local optimal, various mutation operators have been introduced to the PSO [5, 31,

46, 68, 69]. Chaos mutation operator based on logistic map was used by [27, 46] and

another based on Zaslavskii was used by [31]. In [45], twelve different chaos maps

were implemented to tune the attraction parameter of an accelerated PSO algorithm.

2.4.3.3 Swarm initialization
Swarm initialization involves the way particles are randomly distributed in the search

space at the initial stage relative to their positions and velocities, before the algorithm

starts execution. There are two sides to this, i.e. the random number generator used

and the way particles are distributed, both of which could enhance the computational

behaviour of PSO technique during the search process.

43

Random number generators: These are systems with the ability to generate sequences

of random numbers according to a probability function [16]. Different types of

random number generators have been experimentally implemented to initialize

particles in the search space [16, 57, 81] but their efficiency seems to be problem

specific, as a certain initialization technique may lead to desirable behaviour in one

problem and undesirable in another [57].

Distribution of particles: During initialization, particles could be distributed

symmetrically or asymmetrically. When particles are distributed within the entire

feasible search space, with the global optimum lying within the space, most especially

when it is at the centre of distribution, it is said to be symmetrical; this is common

among the PSO variants relative to the benchmarking problems [81]. The

initialization is asymmetric when the particles are distributed within a subspace of the

entire feasible search space that does not contain the global optimum. The latter

method is referred to as region scaling and is most applicable as a research standard

for performance testing and comparison of algorithms when both the problem and its

optimum are known [20].

Most PSO variants use uniformly distributed random numbers for the initialization of

particles [81]. However, the random number generator used to initialize swarm in

PSO is not commonly specified by researchers in literature. This is not an

encouraging practice because it makes performance comparisons of PSO variants

difficult.

2.4.3.4 Swarm topological structure
This is the communication structure by which all the particles in the swarm are

organized to share information with each other when they are searching for solution in

the search space. It typically consists of bidirectional links connecting pairs of

particles and the best point found by any particle affects its neighbourhood. For

further information on swarm topological structure and the various ways they are

categorized can be found in [20, 57, 86, 94]. The type of topology used to implement

PSO can affect its efficiency and could be problem dependent.

44

2.4.3.5 Hybridization with other techniques
Hybridization is the combination of two or more techniques, taking advantage of their

strengths, to build up a better technique that will be of more benefit compared with

the original individual techniques. Two popular ways of hybridization are sequential

and parallel hybridizations [44, 111]. Using these methods, the PSO has been

hybridized with different population-based techniques over the years. In the research

carried out by [111], hybridization with the Genetic Algorithm is the most popular

choice among researchers followed by Differential Evolution and Ant Colony

Optimization algorithms. Other techniques that have been combined with the PSO are

bacterial foraging optimization [14, 71] and simulated annealing [6, 51, 58, 106]. In

[70], PSO was hybridized with a chaotic local search procedure based on logistic

map. The logistic and tent chaotic maps were respectively used as inertia weights by

[27] in binary PSO to handle the feature selection problem.

PSO has also been hybridized with other local search techniques to help strengthen its

local search ability. Among these are Hill Climbing [59], Golden ratio method [127],

Local interpolation search [114], Adaptive local search [58] and the Quasi-Newton

method [130]. Some other local search techniques hybridized with the PSO are

reviewed in [94, 111].

45

Chapter 3
Studies based on Dynamic Velocity and
Search Space Limits

The velocity limits (threshold) as well as the search space limits play important roles

in the efficiency of the PSO technique. They are used to control the extent of the

movements of particles when searching for (near) optimal solutions to optimization

problems within the search space. This control helps particles not to move out of the

search space of the problem, thereby forcing them to concentrate on the environment

where solutions to the problems can be found. The velocity limits are generally

represented by Vmin and Vmax to form an interval [Vmin, Vmax], where Vmin is the

minimum velocity and Vmax is the maximum velocity of particles in the search space.

These parameters are often pre-set by users when implementing PSO. The search

space limits define the boundaries for the decision variables of the problems being

optimized and the dimensions of the variables are expected to take values from within

this space defined by the boundaries. The search space limits are generally

represented by Xmin and Xmax to form an interval [Xmin, Xmax], where Xmin is the

minimum value and Xmax is the maximum value the decision variables can obtain

relative to the search space. These parameters are also often pre-set by users when

implementing the PSO and they vary with the type of optimization problems. This

chapter presents two research articles (Paper 1 and Paper 2) based on studies on the

velocity and search space limits of PSO. Furthermore, the chapter reports results

another PSO variant based on greedy and adaptive methods of obtaining the global

swarm best.

3.1 Paper 1: On the Performance of Linear Decreasing
Inertia Weight Particle Swarm Optimization for
Global optimization

In Paper 1, the effects of different velocity limits on the performance of PSO were

studied and some of the values obtained for the limits were used to improve the

46

performance of one of the PSO variants in literature, that is, the LDIW-PSO. This

variant has been considered by some researchers to be less effective compared to their

respective proposed PSO variants with numerical evidences recorded in literature. In

trying to validate these claims, several numerical simulations were performed using

the improved LDIW-PSO. Empirical results obtained showed that LDIW-PSO

performed better than these variants. Compared to other recent PSO variants with

different inertia weight strategies on the same test problems, it was also discovered

that LDIW-PSO had a competitive advantage. The findings in Paper 1 revealed that

previous claims of its inferior performance might have been due to some unfavourable

experimental settings. With good experimental settings, LDIW-PSO will perform

competitively well compared to many PSO variants. Further simulation results that

can provide useful hints for deciding the setting velocity limits for particles for

LDIW-PSO were provided in the paper.

3.2 Paper 2: Improved Particle Swarm Optimizer with
Dynamically Adjusted Search Space and Velocity
Limits for Global Optimization

Based on the positive effects of velocity limits on the performance of the PSO

technique in Paper 1, it became necessary for further studies on velocity and search

space limits. This is the focus of Paper 2. This further study was motivated by the

original goal of PSO of finding solutions to optimization problems much faster than

traditional methods. Also, spending time to find optimal settings for the velocity

limits parameters could count against any superiority claim over competing methods.

Another motivation for further studies hinges on two major features that characterize

many of the PSO variants in literature namely, the static particle search space and

velocity limits. That is, once values for these parameters are set, they remain the same

throughout the lifetime of the algorithm. This has limited the flexibilities of these

variants in obtaining optimal solutions for many of optimization problems. Paper 2

therefore studied the OPSO with the aims of improving its performance and compare

results thereof with some efficient PSO variants recorded in literature.

Instead of using the inertia weight parameter, which is the common tool being used to

address the problem of premature convergence associated with PSO, Paper 2 worked

directly with the velocities of the particles. This is because the velocities of particles

47

are the direct determinants of the particles' step sizes. The velocity limits were made

to vary throughout the lifetime of the algorithm to create opportunities for the

algorithm to obtain better quality solutions to optimization problems. Also, the

solution search spaces were made to vary to prevent particles from spending

unnecessary time searching areas that may not be necessary in finding good solutions.

Numerical simulation results show that the improved OPSO is very consistent in

convergence velocity, convergence accuracy, global search ability and robustness

than all the PSO variants adopted for comparisons. The findings in Paper 2 further

revealed that if the velocity limits and solution search space of particles are allowed to

vary dynamically relative to the values of particles' dimension, there is likelihood of

great improvement in the performance of the algorithm. This results from the better

exploration and exploitation activities of the algorithm with added flexibility in

concentrating on the promising areas in the solution search space for further search by

the particles instead of the entire space all the time.

3.3 Particle Swarm Optimizer based on greedy and
adaptive methods

This is an additional work, not yet reported or submitted as an article to any journal or

conference as at the time of this thesis. The study attempt to further improve the way

global best is obtained from the personal bests of all the particles in the PSO

technique. In this variant, adaptive feature was introduced in the process of obtaining

the global best. Also, the way velocity limits and search space limits were obtained is

different from the methods mentioned in section 3.2 and reported in Paper 2. This

variant is named PSO based on greedy and adaptive methods (GAPSO).

3.3.1 Motivation
This study was motivated by the fact that:

i. PSO uses pure greedy method in searching for (near) optimal solution. We seek

ways to complement this with an adaptive strategy for better efficiency.

ii. We also observed that premature convergence to a non-global local minimum is

more likely to occur with a greedy strategy in handling multimodal problems

which might not be of much problem if an adaptive approach is adopted.

48

In GAPSO, four phases are involved in the determination of the global best position

from the personal bests of particles as well as in the calculation of the search space

and the velocity limits.

Phase 1: Personal best construction

In this phase, the personal best of each particle is obtained in the normal way as in the

OPSO by using greedy method. That is, if the current position of a particle is better

than the best it last visited, it is retained otherwise it is replaced with the best last

visited position. With this, a vector of personal bests ⃗⃗ is created for

all the particles, where n is the swarm size.

Phase 2: Swarm splitting phase

After obtaining personal bests (⃗⃗) for all the particles, a threshold is defined using a

value-based method. In the value-based method, the parameter [0,1] is used in

defining the threshold. Assume g is the candidate evaluation function which maps

every elements ci of the set of yet to be added particles C to a real value, gmin =

min{g(ci)}, ci C and gmax = max{g(ci)}, ci C. Since minimization problems are

considered, all particles which have objective function value smaller than the

threshold μ = gmin + (gmax - gmin) are included in group 1 while the other particles are

included in group 2. Thus, the objective function value of each particle must be in the

interval g(ci) [gmin,μ] to be included in group 1. If = 0 the selection is greedy, but

purely random if = 1.

Listed below are three different approaches of choosing ,

i. Choosing randomly from a uniform discrete probability,

ii. Choosing from a non-uniform decreasing discrete probability, and

iii. Fixing to a value close to the purely greedy choice.

Approach (i) is currently used in the implementation of GAPSO.

This process of obtaining the personal bests involves using a greedy method whereas

an adaptive method is used in the algorithm to update the particles in group1. As long

as this phase continues, the solution found gradually improves.

49

Phase 3: Obtaining global best position

Instead of obtaining the global best by picking the best of all personal bests, it is

obtained by collecting the least value in each dimension across all particles in group

1. Thus, the global best position (⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗) for entire swarm is obtained using equation

(3.1).

(

) (3.1)

where, i = 1,2 ,…, n, is particle’s index, j = 1,2 ,…, d, is the index of particle’s

dimension, n is the swarm size and d is the dimension size.

Phase 4: Obtaining velocity and search space limits for particles

The velocity and search space limits are obtained using group 2 of particles as

follows:

(i) During each iteration, the largest dimensions value (Ld) and the smallest

dimension value (Sd) among the dimensions of all the particles, are obtained

according to equations (2) and (3), where,
 is the ith particle with jth

 dimension.

(

(

)) (3.2)

(

(

)) (3.3)

(ii) The upper limit xmax and lower limit xmin of the solution search space for the

particles were obtained according to equations (3.4) and (3.5), where | . | means

absolute value.

 | | | | (3.4)

 (3.5)

(iii)After obtaining xmax and xmin, they are used to compute the upper (vmax) and lower

(vmin) particle velocity limits as defined in equations (3.6) and (3.7).

 (3.6)

50

 (3.7)

where, is a velocity clamping percentage which is used to scale the upper and

lower solution space limits to help reduce the velocity range for particles.

Equation (3.8) was used to update the positions of particles at each iteration.

 {

 (3.8)

Simulation experiments were conducted to implement this new algorithm (GAPSO) in

order to determine its weakness and strength, to guide the direction for its further

improvement(s).

3.3.2 Experimental settings
Since PSO is a stochastic algorithm, all experiments were repeated 50 times with

different random seeds. The performance of each approach takes into account the

Mean Best Fitness (MBF), Standard Deviation (SD), Success Rate (SR), number of

Function Evaluations (FE) to satisfy the success criteria and Average Computer Time

(ACT) in minutes for all the 50 runs. The proposed PSO variant was applied to 31

benchmark test problems in Appendix A as obtained from literature [8, 22, 60, 91,

92].

The number of variables (dimensions) for all functions in the experiments ranges from

2 to 30. Swarm size was set to 30; maximum number of iteration was set to 5,000 for

dimensions of 30 and 2,000 for others. The stopping criterion is to allow algorithms

run for the maximum number of iterations. For the test problems that have their global

minimum as zero (0.0), a run was considered successful if at the end of maximum

iteration the algorithm obtains a result less than 10−5. For other test problems, a run

was considered successful if at the end of maximum iteration the algorithm obtains a

result less than the success criteria stated in Table 3.1. The parameters c1 and c2 were

set to 2.0. For LDIW-PSO, Vmax was set relative to the search space of each problem,

using maxmax 05.0 XV , where Xmax is the maximum value of the domain of x. This

Vmax setting was used because it greatly increased the efficiency of LDIW-PSO. For

GAPSO, at the beginning maxmax XV , but Vmax was subsequently adjusted using

Equations (3.6) and (3.7).

51

Table 3.1: Success criteria for some of the test problems

Test Problem ALFP CML6 CSM1 EXPN ESOM HTMF MCLZ ROSB

Success criteria -0.3520 -1.0315 -2.9999 -0.9999 -0.9999 -3.85 -1.8012 30.0

3.3.3 Experimental results and discussions
Presented in Table 3.2 are the results obtained from the experiments when LDIW-

PSO and GAPSO were used on the benchmarked test functions. The bold values show

better optimal results. From the results, it is clear that LDIW-PSO generally

performed better in low dimension problems while GAPSO generally performed

better in high dimension problems. However, the two algorithms performed equally in

BKY2 and EXPN problems. In these two problems, GAPSO executed fewer number

of FEs with slightly higher ACT. The higher ACT is perhaps as a result of the time

used by GAPSO to compute Equations (3.1) – (3.7). A general observation is that,

GAPSO has the ability to escape local optima than LDIW-PSO in complex search

spaces.

Observations from the performance of the two algorithms might suggest the need to

hybridize them with other technique for improved overall performance. GAPSO

needs further improvements to make it perform well on low-dimensional problems.

These might include:

i. Introduction of randomness into equation (3.1). This will involve a random

selection of some personal bests of particles in group 1 to obtain the global

best.

ii. Implementing other approaches of choosing

iii. Introduction some mutations to the positions of particles.

52

Table 3.2: Results obtained for the test problems using LDIW-PSO and GAPSO

Test
Prob.

LDIW-PSO GAPSO

MBF SD midERR SR AFE ACT MBF SD midERR SR AFE ACT

ACKL 1.6289e-14 4.6707e-15 1.4655e-14 100 105595 1.43 8.7574e-15 2.6213e-15 7.5495e-15 100 32101 2.04

ALFP -3.5239e-01 3.3307e-16 8.6074e-05 100 603 0.04 -3.5131e-01 1.8381e-03 3.8840e-04 42 87820 0.05

BEAL 3.0483e-02 1.4933e-01 0.0000e+00 96 4728 0.05 8.2188e-01 4.2357e-01 9.3484e-01 0 62000 0.05

BELA 0.0000e+00 0.0000e+00 0.0000e+00 100 3287 0.03 5.4024e-02 1.5026e-01 1.8151e-02 0 62000 0.04

BKY1 0.0000e+00 0.0000e+00 0.0000e+00 100 8909 0.03 1.5543e-16 8.5998e-17 2.2204e-16 100 1882 0.05

BKY2 0.0000e+00 0.0000e+00 0.0000e+00 100 8546 0.04 0.0000e+00 0.0000e+00 0.0000e+00 100 1923 0.03

BOOT 0.0000e+00 0.0000e+00 0.0000e+00 100 4063 0.03 7.3119e-01 7.1674e-01 4.9647e-01 0 62000 0.04

BRWN 1.3800e+01 2.0778e+01 1.9478e-34 62 168093 4.56 6.8330e-48 3.5987e-47 2.2084e-51 100 20259 4.45

CML3 2.2116e-148 1.3789e-147 2.99172-152 100 1516 0.05 4.9407e-324 0.0000e+00 0.0000e+00 100 3354 0.07

CML6 -1.0316e+00 2.2204e-16 1.0316e+00 100 58 0.05 -1.0250e+00 8.1582e-03 4.1526e-03 6 948720 0.06

CIGR 4.8951e-29 1.2908e-28 1.7227e-30 100 100744 1.24 7.6967e-46 4.0746e-45 7.0415e-49 100 30658 1.39

CSM1 -2.6158e+00 2.2510e-01 4.4335e-01 6 2425340 1.38 -3.0000e+00 0.0000e+00 0.0000e+00 100 20957 1.49

CVLE 2.4795e-01 1.2575e+00 7.0065e-04 4 1483260 0.08 9.2771e+00 4.9589e+00 9.0742e+00 0 62000 0.10

DEJ4 1.6220e-42 5.5364e-42 2.5449e-44 100 69724 1.21 9.8669-62 5.2637e-61 2.6681e-66 100 20242 1.40

DIXP 6.6667e-01 3.0927e-16 6.6667e-01 0 150000 2.03 9.5727e-01 1.2447e-02 9.5819e-01 0 155000 2.25

EXPN -1.0000e+00 4.7103e-17 1.1102e-16 100 58001 1.27 -1.0000e+00 8.7419e-17 1.1102e-16 100 10670 1.42

ESOM -1.0000e+00 0.0000e+00 0.0000e+00 100 1543 0.03 -9.7990e-01 6.6969e-02 3.9320e-03 4 1457015 0.05

GWNK 1.5137e-02 1.8336e-02 9.8610e-03 32 415785 1.52 0.0000e+00 0.0000e+00 0.0000e+00 100 30870 1.54

LVM1 1.4514e-02 3.5972e-02 1.6995e-32 86 95692 2.23 1.3511e-02 6.5184e-02 2.2328e-04 0 155000 2.32

LVM2 6.5924e-04 2.6094e-03 3.0753e-32 94 85950 2.16 9.8279e-03 1.7673e-02 6.7619e-03 0 155000 2.36

HTMF -3.7746e+00 6.6502e-02 7.4606e-02 4 1440360 0.23 -3.7898e+00 1.1711e-01 3.1946e-02 30 144474 0.21

MTYS 6.1019e-117 3.8018e-116 3.2015e-120 100 1166 0.03 1.4880e-247 0.0000e+00 2.6758e-272 100 3262 0.03

MCLZ -1.7415e+00 3.8134e-02 5.2467e-02 0 60000 0.05 -1.6893e+00 1.6901e-01 3.8400e-02 0 62000 0.07

NQTC 1.4648e-03 5.2335e-04 1.4087e-03 0 150000 1.28 4.4310e-04 3.4823e-04 3.8526e-04 2 7423760 1.41

NCRA 3.6641e+01 1.1758e+01 3.6501e+01 0 150000 1.49 6.0002e-01 4.2001e+00 0.0000e+00 98 66826 2.14

PLZ1 4.8012e-32 2.1277e-31 6.7335e-33 100 80986 2.32 8.9313e-05 4.3428e-05 8.8466e-05 0 155000 2.30

PLZ2 8.7899e-04 2.9808e-03 4.8010e-32 92 101760 2.39 4.7446e-03 2.2900e-03 4.3059e-03 0 155000 2.49

PRDC 9.1600e-01 3.6661e-02 9.0000e-01 0 60000 0.05 9.0000e-01 8.8818e-16 9.0000e-01 0 60175 0.07

RAS1 3.1873e+01 1.1360e+01 2.8831e+01 0 150000 1.47 8.9601e-07 6.2721e-06 0.0000e+00 98 83736 1.55

RAS2 3.0505e+01 1.0002e+01 3.0844e+01 0 150000 1.37 1.2574e-03 8.8017e-03 0.0000e+00 98 88057 1.59

ROSB 3.1898e+01 2.1961e+01 2.3236e+01 86 102257 2.43 2.8696e+01 9.2685e-04 2.8696e+01 100 19495 2.56

53

INCLUDED ARTICLES

54

PAPER 1

ON THE PERFORMANCE OF LINEAR DECREASING INERTIA WEIGHT
PARTICLE SWARM OPTIMIZATION FOR GLOBAL OPTIMIZATION [11]

M. A. ARASOMWAN AND A. O. ADEWUMI

The Scientific World Journal, Volume 2013, Article ID 860289, 12 pages

http://dx.doi.org/10.1155/2013/860289

http://dx.doi.org/10.1155/2013/860289

68

PAPER 2

IMPROVED PARTICLE SWARM OPTIMIZER WITH DYNAMICALLY ADJUSTED
SEARCH SPACE AND VELOCITY LIMIT FOR GLOBAL OPTIMIZATION

M. A. ARASOMWAN AND A.O. ADEWUMI

Submitted to International Journal of Artificial Intelligence Tool

86

Chapter 4
Studies based on Swarm Success Rate and
Chaotic Maps
The drive to further enhance the performance of the PSO technique led to the

introduction of the inertia weight parameter into the PSO in 1998 [104] to balance its

intensification and diversification activities. Intensification (exploitation) searches for

the current best solutions and selects the best candidate; while diversification

(exploration) allows the algorithm explore the search space more efficiently mostly by

means of randomization to locate promising regions that would proffer better

solutions. Motivated by the possibility of increasing the search ability of PSO with

chaotic optimization, the Chaotic Descending Inertia Weight PSO (CDIW-PSO) and

Chaotic Random Inertia Weight PSO (CRIW-PSO) were introduced in [41]. These

variants used logistic chaotic map, to improve the performances of the two PSO

variants that implemented two pioneering inertia weight strategies: linear decreasing

and random inertia weight strategies.

Chaos is mathematically defined as randomness generated by a simple deterministic

system. Also, the swarm success rate was embedded in the inertia weight strategy as a

feedback parameter in [77] to enhance the performance of the PSO technique. Other

chaotic maps different from the existing ones but relative to the inertia weight

strategies, were utilised in this chapter. Moreover, the swarm success rate was applied

in a different way to that employed in [77].

In the three papers (Paper 3, Paper 4 and Paper 5) included in this chapter, three

different types of studies were carried out with three major goals as follows:

i. To investigate the effects of various chaotic maps in comparison with the logistic

map when used in the inertia weight strategy,

ii. To propose new inertia weight strategies based on swarm success rate combined

with the logistic map on one hand and based on only swarm success rate on the

other hand.

87

iii. To use the proposed variants to further improve the effectiveness of the PSO

algorithms in terms of convergence speed, global search ability, robustness and

increased solution accuracy.

4.1 Paper 3: On Adaptive Chaotic Inertia Weight in
Particle Swarm Optimization

In Paper 3, two adaptive chaotic inertia weights which combine the swarm success

rate feedback parameter with the logistic chaotic mapping to harness the adaptive and

chaotic characteristics of the individual techniques are proposed.

4.2 Paper 4: An Improved Particle Swarm Optimizer
based on Swarm Success Rate for Global optimization
Problems

Based on the findings in Paper 3, the swarm success rate was found to be a very

useful tool for enhancing the performance of PSO. Paper 4 further explored the

potentiality of inertia weight combined with the swarm success rate as the latter

provide useful information about the particles in the search space. It was ascertained

from literature that many of the inertia weight strategies which originated from the

LDIW strategies always have fixed initial and final values of inertia weight with the

exception of CDIW-PSO and CRIW-PSO which utilize chaotic values to adjust part

of the boundaries.

Paper 4 proposes two new PSO variants namely, the Swarm Success Rate Decreasing

Inertia Weight PSO (SSRDIWPSO) and Swarm Success Rate Random Inertia Weight

PSO (SSRRIWPSO). It is believed that these variants performed better because the

swarm success rate which served as a feedback parameter helped in realizing the state

of the swarm in the search space and hence, adjusted the value of the inertia weight in

each iteration appropriately for better results compared with when chaotic value

which has no information about the state of the swarm is used.

More experiments were conducted using 31 test problems (see Appendix A) to further

test the performance of SSDIWPSO compared to LDIW-PSO and CDIW-PSO. The

dimension of the test problems ranges from 2 to 30. Other experimental settings used

88

in Paper 4 were used. Presented in Tables 4.1 – 4.3 are the results obtained

implementing the three variants. Best results obtained among the three variants are

indicated in bold. In all the results, the average performance of SSRDIWPSO in all the

performance measurements is better than the competing variants.

Table 4.1: Mean Best Fitness (MBF) and Standard Deviation (SD) for the three PSO variants

Test
Problems

MBF SD

LDIW-PSO CDIW-PSO SSRDIWPSO LDIW-PSO CDIW-PSO SSRDIWPSO

ACKL 1.5323e-10 1.6573e-14 1.3944E-14 1.6311e-10 1.2494e-14 3.0972E-15

ALFP -3.5239e-01 -3.5239e-01 -3.5239e-01 3.3307e-16 3.3307e-16 3.3307e-16

BEAL 4.5724e-02 6.0966e-02 7.6207e-02 1.8098e-01 2.0674e-01 2.2862e-01

BELA 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00

BKY1 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00

BKY2 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00

BOOT 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00

BRWN 4.0640e+01 1.4720e+01 3.8080e+01 3.4792e+01 2.1188e+01 3.4597e+01

CML3 3.6188e-148 1.6838e-303 0.0000e+00 1.4715e-147 0.0000e+00 0.0000e+00

CML6 -1.0316e+00 -1.0316e+00 -1.0316e+00 2.2204e-16 2.2204e-16 2.2204e-16

CIGR 8.2652e-29 3.3044e-38 1.8190e-68 3.7258e-28 2.3131e-37 1.1950e-67

CSM1 -2.5862e+00 -2.6305e+00 -2.5951e+00 2.6928e-01 2.1568e-01 2.4518e-01

CVLE 8.7573e-04 1.5782e-01 6.2974e-04 1.0333e-03 1.1006e+00 9.6451e-04

DEJ4 1.3210e-40 8.2972e-83 2.0480e-120 9.1181e-40 3.0762e-82 1.2303e-119

DIXP 6.6667e-01 6.6667e-01 6.6667e-01 3.2101e-16 3.5388e-16 3.3233e-16

EXPN -1.0000e+00 -1.0000e+00 -1.0000e+00 2.7195e-17 1.5701e-17 3.5108e-17

ESOM -1.0000e+00 -1.0000e+00 -1.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00

GWNK 1.6122e-02 1.3480e-02 9.9941e-03 1.6529e-02 1.4403e-02 9.3724e-03

LVM1 1.2440e-02 1.0367e-02 8.2935e-03 3.3688e-02 3.1101e-02 2.8125e-02

LVM2 2.6235e-31 8.7899e-04 4.1449e-03 1.0428e-30 2.9808e-03 1.4021e-02

HTMF -3.7768e+00 -3.7753e+00 -3.7500e+00 5.5431e-02 5.9576e-02 1.5927e-01

MTYS 8.2243e-116 1.9156e-213 8.0597e-274 5.3343e-115 0.0000e+00 0.0000e+00

MCLZ -1.7576e+00 -1.7654e+00 -1.7675e+00 3.6620e-02 2.3939e-02 1.5048e-02

NQTC 1.4412e-03 2.3647e-03 3.6301e-03 6.0783e-04 7.8462e-04 1.3296e-03

NCRA 3.9561e-01 3.9921e+01 4.0406e+01 1.0911e+01 1.1701e+01 1.1733e+01

PLZ1 1.8548e-32 9.4183e-33 1.4329e-02 4.9741e-32 1.5041e-31 1.0031e-01

PLZ2 1.0987e-03 8.7899e-04 3.0765e-03 3.2962e-03 2.9808e-03 4.9333e-03

PRDC 9.1400e-01 9.2000e-01 9.0800e-01 3.4699e-02 4.0000e-02 2.7129e-02

RAS1 3.1495e+01 3.1396e+01 3.2390e+01 9.1559e+00 1.0665e+01 9.0203e+00

RAS2 3.3948e+01 3.2814e+01 3.4306e+01 1.0491e+01 9.2322e+00 1.0594e+01

ROSB 2.9097e+01 2.5845e+01 2.9072e+01 1.6590e+01 1.4162e+01 2.0483e+01

89

Table 4.2: Success Rate (SR), Average Function Evaluation (AFE) and Average Computer Time (ACT in minutes for
all the runs) for the three PSO variants

Test
Prob.

SR (%) AFE ACT (min)

LDIW-PSO CDIW-PSO SSRDIWPSO LDIW-PSO CDIW-PSO SSRDIWPSO LDIW-PSO CDIW-PSO SSRDIWPSO

ACKL 100 100 100 71937 41092 24071 1.06 1.07 1.09

ALFP 100 100 100 391 345 389 0.04 0.03 0.04

BEAL 94 92 90 5929 6281 7664 0.05 0.05 0.04

BELA 100 100 100 3220 1108 852 0.04 0.03 0.03

BKY1 100 100 100 8868 1934 1558 0.03 0.04 0.03

BKY2 100 100 100 8915 1979 1550 0.04 0.03 0.03

BOOT 100 100 100 3458 1206 1084 0.03 0.02 0.03

BRWN 28 64 28 461863 112559 400440 5.01 5.07 5.02

CML3 100 100 100 1705 807 803 0.05 0.05 0.06

CML6 100 100 100 1385 745 695 0.05 0.05 0.04

CIGR 100 100 100 100362 46835 22705 1.3 1.29 1.32

CSM1 4 10 6 3674550 1369698 2358920 1.48 1.49 1.53

CVLE 6 2 14 997040 2970360 403037 0.07 0.08 0.06

DEJ4 100 100 100 69273 18272 7420 1.34 1.37 1.30

DIXP 0 0 0 150000 150000 150000 2.17 2.24 2.17

EXPN 100 100 100 56761 11175 5107 1.33 1.27 1.31

ESOM 100 100 100 1407 819 720 0.03 0.04 0.04

GWNK 36 30 32 362598 395244 337328 1.53 2.01 2.01

LVM1 88 90 92 92961 37551 22215 2.32 2.25 2.3

LVM2 100 92 78 79616 42177 56291 2.4 2.34 2.25

HTMF 4 6 6 1440195 940110 940170 0.19 0.21 0.20

MTYS 100 100 100 1117 704 740 0.03 0.03 0.03

MCLZ 0 0 0 60000 60000 60000 0.06 0.05 0.05

NQTC 0 0 0 150000 150000 150000 1.31 1.36 1.37

NCRA 78 80 84 46263 39569 30292 2.03 1.50 1.58

PLZ1 100 100 98 81662 31735 20038 2.38 2.37 2.21

PLZ2 90 92 72 105741 49135 73847 5.30 2.40 2.31

PRDC 0 0 0 60000 60000 60000 0.05 0.05 0.04

RAS1 96 94 96 24691 12599 8379 1.54 1.5 1.53

RAS2 90 92 94 37342 15856 11955 2.10 2.09 2.05

ROSB 90 94 86 90851 30902 34723 3.30 3.30 3.28

90

Table 4.3: Mean error (MEANERR), least error (LEASTERR) and median error (MEDIANERR) for the three PSO variants

Test
Prob.

MEANERR LEASTERR MEDIANERR

LDIW-PSO CDIW-PSO SSRDIWPSO LDIW-PSO CDIW-PSO SSRDIWPSO LDIW-PSO CDIW-PSO SSRDIWPSO

ACKL 1.5323e-10 1.6573e-14 1.3944E-14 8.1681e-12 7.5495e-15 7.5495E-15 1.1020e-10 1.4655e-14 1.4655E-14

ALFP 8.6074e-05 8.6074e-05 8.6074e-05 8.6074e-05 8.6074e-05 8.6074e-05 8.6074e-05 8.6074e-05 8.6074e-05

BEAL 4.5724e-02 6.0966e-02 7.6207e-02 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00

BELA 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00

BKY1 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00

BKY2 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00

BOOT 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00

BRWN 4.0640e+01 1.4720e+01 3.8080e+01 2.0057e-37 1.8120e-67 1.9220e-91 3.2000e+01 1.5906e-54 3.2000e+01

CML3 3.6188e-148 1.6838e-303 0.0000e+00 2.8046e-157 0.0000e+00 0.0000e+00 1.3218e-150 6.9811e-313 0.0000e+00

CML6 2.8453e-05 2.8453e-05 2.8453e-05 2.8453e-05 2.8453e-05 2.8453e-05 2.8453e-05 2.8453e-05 2.8453e-05

CIGR 8.2652e-29 3.3044e-38 1.8190e-68 5.4450e-33 1.0222e-65 2.9552e-89 4.7527e-30 1.0087e-52 1.6144e-78

CSM1 4.1380e-01 3.6946e-01 4.0493e-01 0.0000e+00 0.0000e+00 0.0000e+00 4.4335e-01 4.4335e-01 4.4335e-01

CVLE 8.7573e-04 1.5782e-01 6.2974e-04 3.4675e-07 1.7165e-06 1.1562e-08 6.1549e-04 5.4307e-04 3.4693e-04

DEJ4 1.3210e-40 8.2972e-83 2.0480e-120 1.5984e-48 2.7001e-92 3.5283e-131 2.4644e-44 1.4147e-86 4.4213e-125

DIXP 6.6667e-01 6.6667e-01 6.6667e-01 6.6667e-01 6.6667e-01 6.6667e-01 6.6667e-01 6.6667e-01 6.6667e-01

EXPN 1.1768e-16 1.1324e-16 1.2212e-16 1.1102e-16 1.1102e-16 1.1102e-16 1.1102e-16 1.1102e-16 1.1102e-16

ESOM 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00

GWNK 1.6122e-02 1.3480e-02 9.9941e-03 0.0000e+00 0.0000e+00 0.0000e+00 1.3544e-02 9.8573e-03 9.8573e-03

LVM1 1.2440e-02 1.0367e-02 8.2935e-03 1.5704e-32 1.5704e-32 1.5704e-32 2.0867e-32 1.8931e-32 2.0867e-32

LVM2 2.6235e-31 8.7899e-04 4.1449e-03 1.3497e-32 1.4730e-32 1.4730e-32 3.8765e-32 7.9441e-32 1.5771e-31

HTMF 8.3254e-02 8.4687e-02 1.1010e-01 3.5640e-04 1.1193e-03 1.4795e-03 7.4288e-02 7.2117e-02 8.5187e-02

MTYS 8.2243e-116 1.9156e-213 8.0597-274 2.5760e-127 8.5756e-232 6.2555e-295 8.2894e-120 2.6983e-220 9.5689e-281

MCLZ 4.3705e-02 3.5938e-02 3.3756e-02 1.8403e-02 1.8207e-02 1.8479e-02 3.5420e-02 2.8134e-02 2.9801e-02

NQTC 1.4412e-03 2.3647e-03 3.6301e-03 5.6536e-04 6.6833e-04 1.3726e-03 1.4087e-03 2.3879e-03 3.5082e-03

NCRA 3.9561e+01 3.9921e+01 4.0406e+01 1.7001e+01 1.6001e+01 2.2001e+01 3.9001+01 3.9001e+01 3.0501e+01

PLZ1 1.8548e-32 9.4183e-33 1.4392e-02 1.5704e-33 1.5704e-33 1.5704e-33 6.7335e-33 6.7335e-33 6.7335e-33

PLZ2 1.0987e-03 8.7899e-04 3.0765e-03 1.5962e-32 1.4730e-32 1.5962e-32 6.7115e-32 7.2662e-32 1.4169e-31

PRDC 9.14000e-01 9.2000e-01 9.0800e-01 9.0000e-01 9.0000e-01 9.0000e-01 9.0000e-01 9.0000e-01 9.0000e-01

RAS1 3.1495e+01 3.1396e+01 3.2390e+01 1.1930e+01 1.3918e+01 2.0877e+01 3.0819e+01 2.9825e+01 3.0819e+01

RAS2 3.3948e+01 3.2814e+01 3.4306e+01 1.4924e+01 1.4924e+01 1.4924e+01 3.3331e+01 3.1839e+01 3.2834e+01

ROSB 2.9097e+01 2.5845e+01 2.9072e+01 1.7107e+01 7.8878e+00 2.5413e+00 2.3134e+01 2.2516e+01 2.1972e+01

91

4.3 Paper 5: An Investigation into the Performance of
Particle Swarm Optimization with Various Chaotic
Maps

Paper 5 empirically investigated further the performances of two PSO variants,

LDIW-PSO and RIW-PSO algorithms. Various chaotic maps were incorporated into

their respective IWSs to provide chaotic features that will enable the particles move to

new search regions in the search space. These investigations reveal that many of the

chaotic maps improved the performance of the algorithms at a higher level than the

commonly used logistic map. In terms of the number of FEs, the two PSO variants

generally performed best with the intermittency chaotic map. However, considering

other performance measurement, none of the chaotic maps, when used with the two

variants, could enable the algorithms perform well in all test problems compared to

other maps.

Based on the experimental findings, it is clear that though the logistic map could

make LDIW-PSO and RIW-PSO have good performances, there exist chaotic maps

that can make them perform even better in terms of convergence speed, accuracy,

stability and global search ability. The findings in this paper provide some useful

information regarding the usage of these maps in the inertia weight strategies of PSO

variants especially LDIW-PSO and RIW-PSO.

92

INCLUDED ARTICLES

93

PAPER 3

ON ADAPTIVE CHAOTIC INERTIA WEIGHTS IN PARTICLE SWARM
OPTIMIZATION [9]

M. A. ARASOMWAN AND A. O. ADEWUMI

Proceedings of the 4th IEEE Symposium Series on Computational Intelligence (SSCI

'13), pp. 72-79, Singapore, 2013

Doi: 10.1109/SIS.2013.6615161

http://dx.doi.org/10.1109/SIS.2013.6615161

102

PAPER 4

AN IMPROVED PARTICLE SWARM OPTIMIZER BASED ON SWARM SUCCESS
RATE FOR GLOBAL OPTIMIZATION PROBLEMS

M. A. ARASOMWAN AND A. O. ADEWUMI

Submitted to Journal of Experimental & Theoretical Artificial Intelligence.

Manuscript Number: TETA-2013-0192

132

PAPER 5

AN INVESTIGATION INTO THE PERFORMANCE OF PARTICLE SWARM
OPTIMIZATION WITH VARIOUS CHAOTIC MAPS [12]

M. A. ARASOMWAN AND A. O. ADEWUMI

Mathematical Problems in Engineering, vol. 2014, Article ID 178959, 17 pages,

2014. doi:10.1155/2014/178959

146

Chapter 5
Simplified Particle Swarm Optimization

5.1. Paper 6: On the Performance of Particle Swarm
Optimization with(out) some Control Parameters
for Global Optimization

The efficient optimizing power of the PSO algorithm lies in the balancing of

exploration and exploitation activities. Meanwhile, inertia weight, acceleration

constants, random factors and velocity threshold play important roles in the

exploration and exploitation ability of the PSO algorithm. Their selections could be

problem-dependent, labour intensive and time consuming with the exception of

random factors. Several PSO variants depend on these parameters.

Two major goals were achieved in Paper 6. Firstly, the paper experimentally

demonstrated that the basic PSO (BPSO) technique can perform efficiently without

using some (or any) of the control parameters in the particle velocity update formula.

Secondly, the problem of premature convergence associated with the PSO technique

when optimizing high dimensional multi-modal optimization problems was

addressed. In achieving these goals, some modifications were made to the BPSO to

make it simpler but more effective without additional complex computational efforts,

to form another PSO variant branded as the modified BPSO (M-BPSO).

The modifications were inspired by the drawbacks of the BPSO with respect to

premature convergence, weak local search ability and the desire to make the

algorithm simpler but more efficient. Some of the modifications involved making the

velocity limits of the particles decrease dynamically depending on the progressive

minimum and maximum dimensional values of the entire swarm. The decreasing

nature of the velocity limits was used to control the exploration and exploitation

activities of M-BPSO.

147

Results obtained from the numerical simulations confirm that the inertia weight

parameter may not always be necessary for PSO algorithms to work effectively. Also,

it was discovered from the experiments that with proper modifications to some other

parts of PSO algorithms, the acceleration coefficients and random factors may not be

necessary in the particle velocity updating equation to obtain global optimal solutions

to optimization problems.

148

INCLUDED ARTICLES

149

PAPER 6

ON THE PERFORMANCE OF PARTICLE SWARM
OPTIMIZATION WITH(OUT) SOME CONTROL PARAMETERS

FOR GLOBAL OPTIMIZATION

M. A. ARASOMWAN AND A. O. ADEWUMI

Submitted to the International Journal of Bio-Inspired Computation

Manuscript ID: IJBIC_73503

180

Chapter 6
Particle Swarm Optimization Hybrid with
Local Search
6.1. Paper 7: Improved Particle Swarm Optimization with

a Collective Local Unimodal Search for Continuous
Optimization Problems

Naturally, the PSO technique combines local search idea (through self-experience)

with global search method (through neighbouring experience), in an attempt to

balance exploration and exploitation activities. However, it is widely accepted that the

PSO technique has good global search ability but weak local search ability because it

can easily locate areas in the solution space where good solutions can be discovered.

However, finding the best solution is a challenge. This difficulty often traps the PSO

in local optimum leading to premature convergence.

The optimizing strategy of the PSO hinges on the sharing of new discoveries by each

particle in the swarm with neighbours, while the particle with the best discovery

attracts others. Though, this strategy seems to be very promising, there is the risk that

the particles would be susceptible to premature convergence, especially when the

problem to be optimized is multi-modal and has high dimensionality. This is due to

the fact that, the more particles share their discoveries among themselves, the more

likely they are to have identical behaviours, until they converge to the same area in

the solution search space. If none of the particles could discover the global best, then,

at some point, all the particles will converge about the existing global best and this

may in turn not be the global minimizer.

For the PSO technique to leave up to expectation, it must possess a major feature that

characterizes an efficient optimization algorithm, which is the ability to strike a

balance between local and global searches. As a result, one of the possible ways to

prevent this premature convergence is to embed a local search technique into the PSO

181

algorithm to help improve the quality of each solution by searching its

neighbourhood. Once this is accomplished, better information is communicated

among the particles thereby increasing the algorithm's ability to locate better global

solutions during the course of optimization.

Paper 7 was motivated by the possibility of premature convergence associated with

the idea of other particles following the best particle among them in search for a

global solution within the search space relative to the optimization problem being

solved. In the paper, a different local search technique was proposed to harness the

global search ability of PSO and improve on its local search efforts. The local search

technique is based on the collective efforts of randomly selected (with replacement)

particles, which are chosen a number of times equal to the size of the problem

dimension. Each particle selected is made to contribute the value in the position of its

randomly selected dimension from the personal best. The contributed values are then

used to form a potential global best solution which is further refined to locate a better

solution in comparison to the current global solution. Two PSO variants, LDIW-PSO

and RIW-PSO, which have been claimed to be less efficient in optimizing many

continuous optimization problems, were used to validate the proposed improvement

of the performance of the PSO technique.

Another achievement made in the paper is the improvement of the decision making

strategy by the swarm in obtaining potential global solutions in the search space.

182

INCLUDED ARTICLES

183

PAPER 7

IMPROVED PARTICLE SWARM OPTIMIZATION WITH A COLLECTIVE LOCAL
UNIMODAL SEARCH FOR CONTINUOUS OPTIMIZATION PROBLEMS [13]

M. A. ARASOMWAN AND A. O. ADEWUMI

Special Issue on Bioinspired Computation and Its Applications in Operation

Management (BIC), The Scientific World Journal, vol. 2014, Article ID 798129, 23
pages, 2014. doi:10.1155/2014/798129

Manuscript ID: 798129

205

Chapter 7
Solving High Dimensional Problems with
Particle Swarm Optimization
7.1 Paper 8: An Adaptive Velocity Particle Swarm

Optimization for High-Dimensional Function
Optimization

PSO variants that have been used to solve optimization problems up to 2,000

dimensions without losing superiority to its competitor(s) are not common in

literature. There are possibilities of encountering high-dimensional real-world

optimization problems. Therefore, PSO algorithm needs to be improved to enhance it

for better performance in handling such problems.

Presented in Paper 8 is a simple PSO variant, Adaptive Velocity PSO (AV-PSO)

which adaptively adjusts the velocity of particles based on Euclidean distance

between the position of each particle and the position of the global best particle. The

variant was implemented without using the inertia weight, acceleration coefficients

and random coefficients parameters in the velocity formula for particle in the swarm.

A chaotic feature was introduced into the particle's position formula to promote some

stochasticity in order to facilitate good exploitation. Numerical simulations were

conducted to compare the performance of AV-PSO with Adaptive Inertial weight

PSO (AIWPSO), Rank based PSO (PSOrank), Chaotic Random Inertia Weight PSO

(CRIW-PSO), Decreasing exponential function PSO (def-PSO), Natural Exponential

inertia weight PSO (e1-PSO) and Adaptive PSO (APSO). It was also compared with

Line Search Restart (LSRS) optimization technique.

Continuous optimization problems with low (10 – 30) and high (50 – 4,000)

dimensions were used in the experiments. In all the experiments AV-PSO

outperformed all its competitors showing that PSO is very much suitable for large-

scale global optimization problems involving very high dimensions, with very good

206

performance in locating quality global optimal solutions with few numbers of

iterations without easily getting stuck in local optimal.

207

INCLUDED ARTICLES

208

PAPER 8

AN ADAPTIVE VELOCITY PARTICLE SWARM OPTIMIZATION
FOR HIGH-DIMENSIONAL FUNCTION OPTIMIZATION [10]

M. A. ARASOMWAN AND A. O. ADEWUMI

Proceedings of the IEEE Congress on Evolutionary Computation (CEC), 2013.

Mexico City, June 20-23 pp. 2352 - 2359

DOI: http://dx.doi.org/10.1109/CEC.2013.6557850

http://dx.doi.org/10.1109/CEC.2013.6557850

217

Chapter 8

Conclusion, Summary and Future Research

Motivated by the drawbacks of the PSO technique viz-a-viz premature convergence,

weak local search ability as well as the desire to make the technique simpler, more

effective, efficient and robust than existing variants in handling both simple and

complex optimization problems, a series of studies were conducted with promising

results that are reported in this thesis.

8.1 Conclusions

A number of new PSO variants are proposed in this thesis that effectively addressed

the drawbacks of PSO technique namely, premature convergence and weak local

search ability. Efforts were made to make the technique simpler and more effective,

efficient and robust in handling problems with many local optima. Results obtained

from these variants were compared among themselves and with available ones in

literature in order to show their superiority.

The variants introduced in this thesis tried to avoid the introduction of additional

parameters, complexities or more computational efforts unlike several other PSO

variants in literature. We also introduced some dynamics into the control of the

particle velocity limits and search space limits during execution of PSO as opposed to

many other existing variants. Moreover, the pure greedy method of obtaining the

swarm global best among the personal bests of all the particles in the swarm which is

a common attribute of very many of the existing PSO variants was complemented

with random and adaptive features. Some of the variants were implemented without

the inertia weight, acceleration constants, random factors and the cognitive

component of the velocity formula. All these clearly provide expected answers to the

research questions raised in Chapter 1.

218

The new variants were validated with several test problems of diverse complexities

and dimensionality. Experimental results obtained show substantial evidences that the

variants are much better than their original counterparts and many variants in the

literature in terms of reliability, robustness, convergence speed, solution quality,

search ability and efficiency. Since the trends in global optimization focus nowadays

on the application of metaheuristics to practical problems arising from the industries

[1, 2, 23-25, 85], this thesis offers researchers with efficient variants of PSO that we

believe will be of great help in solving industrial problems. These variants offer

alternatives to many currently available algorithms for solving global optimization

problems in which the gradient information is not readily available. They are

available for optimization researchers and the results can also serve as benchmark on

which further research could be based.

8.2 Summary of contributions

We provide a summary of the contributions made through the series of studies carried

out as highlight over this thesis below:

i. New variants of PSO which use swarm success rate as feedback parameter

into their inertia weight strategies are proposed to enhance the explorative and

exploitative power of the PSO technique.

ii. The basic PSO was modified to propose another variant with seven versions,

which use dynamic velocity limits instead of inertia weight to control its

global and local search activities.

iii. This work also introduced a new improved PSO with dynamic search space

and velocity limits.

iv. Another novel variant was proposed which diversified the operations of PSO

by incorporating randomness and adaptivity to complement the greedy method

PSO normally use to choose the global best among the personal bests of

particles among the swarm.

v. A new local search technique was proposed to address the weak local search

ability of PSO technique. Promising results from this local search technique

show that it can also be used with any other population-based optimization

219

algorithms to obtain quality solutions to simple and complex optimization

problem.

vi. The results obtained from the experiments with various chaotic maps provide

a platform for informative decision making by practitioners in the process of

selecting chaotic maps to be used in the inertia weight formula of LDIW-PSO

and RIW-PSO.

8.3 Future research

Despite the depth of experimental study conducted in this thesis, there is still room for

improvement and future study. Two major areas stand out clearly for future research

study namely,

i. The application of the proposed variants to real-world problems with diverse

complexities especially combinatorial optimization problems and adaptation

of the variants to handling constrained global optimization problems.

ii. Further study on the tuning of the parameters that makes up the proposed local

search technique.

iii. Study on the parameters and behaviour of other SI techniques especially more

recent ones, in search of improved techniques that can handle increasingly

complex real-world optimization problems.

iv. Finally, since PSO exhibits an implicit parallelism as a multi-agent based

technique, it would be worthwhile to explore a multi-agent-based framework

(see [19, 97]) in the implementation of the variants which perhaps might

further improve their efficiency and convergence.

220

References
[1] Adewumi, A.O., Sawyerr, B.A, Ali, M.M. (2009). A heuristic solution to the

university timetabling problem, Engineering Computations, Emerald Group,
Vol. 26, Issue 8, pp. 972-984.

[2] Adewumi, A.O. and Ali, M.M. (2010). A multi-level genetic algorithm for a
multi-stage space allocation problem. Mathematical and Computer Modelling,
Vol 51, no. 1, pp. 109-126.

[3] Afaq, H. and Saini, S. (2011), On the Solutions to the Travelling Salesman
Problem using Nature Inspired Computing Techniques, International Journal
of Computer Science Issues, Vol. 8, Issue 4, No. 2, pp. 326-334.

[4] Akbari, R., and Ziarati, K. (2011), A rank based particle swarm optimization

algorithm with dynamic adaptation, Journal of Computational and Applied
Mathematics, Elsevier, Vol. 235, pp. 2694–2714.

[5] Alfi, A. (2011), PSO with adaptive mutation and inertia weight and its application

in parameter estimation of dynamic systems, ACTA, Automatic Sinica, Vol. 37,
No. 5, pp. 541-549.

[6] Al-Hassan, W., Fayek, M. B. and Shaheen, S. I. (2006), PSOSA: An

optimized particle swarm technique for solving the urban planning problem,
The 2006 International Conference on Computer Engineering and Systems,
pp. 401-405.

[7] Ali, M. M. and Kaelo, P. (2008), Improved particle swarm algorithms for

global optimization, Applied Mathematics and Computation, Vol. 196, Iss. 2,
pp. 578-593.

[8] Ali, M.M, Khompatraporn, C. and Zabinsky, Z.B. (2005). A Numerical
Evaluation of Several Stochastic Algorithms on Selected Continuous Global
Optimization Test Problems. Journal of Global Optimization, Vol., Issue 4, pp
635-672

[9] Arasomwan, M.A. and Adewumi, A.O. (2013). On Adaptive Chaotic Inertia
Weight for Particle Swarm Optimization. IEEE Symposium on Swarm
Intelligence (SIS), In the Proceedings of the IEEE Symposium Series on
Computational Intelligence (SSCI 2013), SS-0392, April 15-19, 2013,
Singapore.

[10] Arasomwan, M.A. and Adewumi, A.O. (2013). An Adaptive Velocity Particle
Swarm Optimization for High-Dimensional Function Optimization.
Proceedings of the Congress on Evolutionary Computation (CEC 2013)
Conference, June 20-23, Mexico (To appear).

221

[11] Arasomwan, M.A. and Adewumi, A.O. (2013). On the Performance of Linear
Decreasing Inertia Weight Particle Swarm Optimization for Global
Optimization. The Scientific World Journal, vol. 2013, Article ID 860289, 12
pages, 2013. doi:10.1155/2013/860289.

[12] Arasomwan, M.A. and Adewumi, A.O. (2014). An Investigation into the
Performance of Particle Swarm Optimization with Various Chaotic Maps.
Mathematical Problems in Engineering, vol. 2014, Article ID 178959, 17
pages, 2014. doi:10.1155/2014/178959

[13] Arasomwan, M.A. and Adewumi, A.O. (2014). Improved Particle Swarm

Optimization with a Collective Local Unimodal Search for Continuous
Optimization Problems. Special Issue on Bioinspired Computation and Its
Applications in Operation Management (BIC), The Scientific World Journal,
vol. 2014, Article ID 798129, 23 pages, 2014. doi:10.1155/2014/798129

[14] Bakwad, K. M., Pattnaik, S. S., Sohi, B. S., Devi, S., Panigrahi, K. B., Das, S.,

et al.(2009), Hybrid bacterial foraging with parameter free PSO, World
Congress on Nature & Biologically Inspired Computing, pp. 1077-1081.

[15] Barrera, J. and Flores, J. J. (2008), Equivalence of the Constriction Factor and

Inertia Weight Models in Particle Swarm Optimization: A Geometric Series
Analysis, Seventh Mexican International Conference on Artificial Intelligence,
pp. 188-191.

[16] Bastos-Filho, C. J. A., Oliveira, M. A. C., Nascimento, D. N. O. and Ramos,

A. D. (2010), Impact of the Random Number generator quality on particle
swarm optimization algorithm running on graphic processor units, 10th
International Conference on Hybrid Intelligent Systems (HIS), Atlanta GA,
23-25 Aug. pp. 85-90.

[17] Bishop, J. M. (1989), Stochastic Searching Networks, Proceedings 1st IEEE

Int. Conf. on Artificial Neural Networks, pp. 329-331, London, UK.

[18] Bishop, J. (1989), Anarchic Techniques for Pattern Classification, PhD Thesis,

University of Reading.

[19] Blamah, N.V, Adewumi, A.O. Wajiga, G.M. and Baha, B.Y. An Intelligent

Particle Swarm Optimization Model based on Multi. Agent System. African
Journal of Computing & ICTs. Vol 6, no. 3. Pp1-8.

[20] Bratton, D. and Kennedy, J. (2007), Defining a Standard for Particle Swarm
Optimization, IEEE Swarm Intelligence Symposium, SIS 2007, pp. 120-127.

[21] Cai, X., Cui, Z., Zeng, J. and Tan, Y. (2009), Individual parameter selection

strategy for particle swarm optimization, Particle Swarm Optimization,
Aleksandar Lazinica (Ed.), InTech, pp. 89-112

222

[22] Chetty, S. and Adewumi, A.O. (2013). Three new stochastic local search
algorithms for continuous optimization problems. Computational Optimization
and Applications Journal. Springer Publishing, vol. 56, no. 3, pp. 675–721.

[23] Chetty, S. and Adewumi, A.O. (2013). Three New Stochastic Local Search
Metaheuristics for the Annual Crop Planning Problem based on a New
Irrigation Scheme. Journal of Applied Mathematics, vol. 2013, Article ID
158538, 14 pages, 2013. doi:10.1155/2013/158538

[24] Chetty, S. and Adewumi, A.O. (2013). Comparison of Swarm Intelligence
Meta-heuristics for the Annual Crop Planning Problem. Accepted for IEEE
Transactions on Evolutionary computations. DOI:
10.1109/TEVC.2013.2256427. In Press.

[25] Chetty, S. and Adewumi, A.O. (2013). Studies in swarm intelligence

techniques for annual crop planning problem in a new irrigation scheme. South
African Journal of Industrial Engineering, vol. 24, no. 3, pp. 205–226, 2013.

[26] Chu, S.-C., Tsai, P.-W. and Pan, J.-S. (2006), Cat Swarm Optimization,

PRICAI 2006: Trends in Artificial Intelligence, Vol. 4099, Q. Yang and G.
Webb, Eds., ed: Springer Berlin Heidelberg, pp. 854-858.

[27] Chuang, L-Y., Yang, C-H., and Li, J-C. (2011). Chaotic maps based on binary

particle swarm optimization for feature selection, Applied Soft Computing Vol.
11, pp. 239–248.

[28] Chauhan, P., Deep, K. and Pant, M. (2013), Novel inertia weight strategies for

particle swarm optimization, Memetic Computing, Vol. 5, Issue. 3, pp. 229–
251.

[29] Chen, G. H., Jia, X. J. and Min, Z. (2006), Natural exponential Inertia Weight

strategy in particle swarm optimization, Sixth World Congress on Intelligent
Control and Automation, WCICA, June 21 - 23, Dalian, China, Vol. 1, pp.
3672–3675.

[30] Clerc, M. and Kennedy, J. (2002), “The particle swarm - explosion, stability,

and convergence in multidimensional complex space", IEEE Transactions on
Evolutionary Computation, Vol. 6, pp. 58-73.

[31] Coelho, L. D. S. (2008), A quantum particle swarm optimizer with chaotic

mutation operator, Chaos, Solutions and Fractals, Elsevier, Vol. 37, pp. 1409-
1418.

[32] Das, S., Biswas, A., Dasgupta, S. and Abraham, A. (2009), Bacterial Foraging

Optimization Algorithm: Theoretical Foundations, Analysis, and Applications,
in Foundations of Computational Intelligence Volume 3. vol. 203, A.
Abraham, A.-E. Hassanien, P. Siarry, and A. Engelbrecht, (Eds.), Springer
Berlin Heidelberg, pp. 23-55.

223

[33] De Castro, L. N. and Timmis, J. (2002), Artificial Immune Systems: A New
Computational Intelligence Approach, Springer, pp. 57–58.

[34] Dorigo, M. (1992), Optimization, Learning and Natural Algorithms, PhD

thesis, Politecnico di Milano, Italie.

[35] Dorigo, M. and Birattari, M. (2007), Swarm intelligence, Scholarpedia, Vol.

2, Issue. 9, pp. 1462.

[36] Eberhart, R. C. and Kennedy, J. (1995), A new optimizer using particle swarm

theory, Proceedings of the Sixth International Symposium on Micro Machine
and Human Science, MHS '95, Nagoya, Japan, pp. 39-43.

[37] Eberhart, R. C. and Shi, Y. (2002), Tracking and optimizing dynamic systems

with particle swarms, Proceedings of the 2001 Congress on Evolutionary
Computation, Vol. 1, pp. 94–100.

[38] Eberhart, R. C. and Shi, Y. (2000), Comparing inertia weights and constriction

factors in particle swarm optimization, Proceedings of the 2000 Congress on
Evolutionary Computation, Vol. 1, pp. 84-88

[39] Ememipour, J., Nejad, M. M. S., Ebadzadeh, M. M., and Rezanejad, J. (2009),

Introduce a new inertia weight for particle swarm optimization, The Fourth
International Conference on Computer Sciences and Convergence
Information Technology, pp. 1650-1653.

[40] Evers, G. I. (2009). An automatic regrouping mechanism to deal with

stagnation in particle swarm optimization. MSc. Thesis. University of Texas-
Pan American.

[41] Feng, Y., Teng, G.F., Wang, A.X., and Yao, Y.M., (2008), Chaotic Inertia

Weight in Particle Swarm Optimization, Second International Conference on
Innovative Computing, Information and Control, pp. 475.

[42] Feng, X., Lau, F. C. M. and Yu, H. (2013), A novel bio-inspired approach

based on the behavior of mosquitoes, Inf. Sci., vol. 233, pp. 87-108.

[43] Feng, C., Xinxin, S. and Dali, W. (2011), Inertia Weight Particle Swarm

Optimization with Boltzmann Exploration, Seventh International Conference
on Computational Intelligence and Security (CIS), pp. 90-95.

[44] Gabere, M. N. (2007), Simulated Annealing Driven Pattern Search Algorithms
for Global Optimization, MSc. Thesis, School of Computational and Applied
Mathematics, University of the Witwatersrand, South Africa.

[45] Gandomi, A. H., Yun, G. J., Yang, X-S., Talatahari, S. (2013), Chaos-

enhanced accelerated particle swarm optimization, Commu Nonlinear Sci
Numer Simulat. Vol. 18, pp. 327-340.

224

[46] Gao, Y., An, X. and Liu, J. (2008), A Particle Swarm Optimization Algorithm
with Logarithm Decreasing Inertia Weight and Chaos Mutation, International
Conference on Computational Intelligence and Security, Vol. 1, pp. 61–65.

[47] Gao, Y.-L. and Duan, Y.-H. (2007), A New Particle Swarm Optimization

Algorithm with Random Inertia Weight and Evolution Strategy, International
Conference on Computational Intelligence and Security Workshops, CISW
2007, pp. 199-203.

[48] Garnier, S., Gautrais, J. and Theraulaz, G. (2007), The biological principles of

swarm intelligence, Swarm Intell, Vol. 1, pp. 3–31.

[49] Glover, F. (1986), Future paths for integer programming and links to artificial

intelligence, Computers and Operations Research, Vol. 13, No. 5, pp. 533-
549.

[50] Guo, W. Chen, G. and Feng, X. (2006), A new strategy of acceleration

coefficients for particle swarm optimization, Proceedings of the 10th IEEE
International Conference on Computer Supported Cooperative Work in
Design, pp. 1-5.

[51] Hao, P., Ming, Z. and Xiaolei, H. (2008), Particle swarm-simulated annealing

fusion algorithm and its application in function optimization, 2008
International Conference on Computer Science and Software Engineering, pp.
78-81.

[52] Havens, T. C., Spain, C. J., Salmon, N. G. and Keller, J. M. (2008), Roach

Infestation Optimization, IEEE Swarm Intelligence Symposium, SIS 2008, St.
Louis, MO, 21-23 Sept., pp. 1-7.

[53] Hu, M., Wu, T. and Weir, J. D. (2013), An Adaptive Particle Swarm

Optimization With Multiple Adaptive Methods, IEEE Transactions on
Evolutionary Computation, Vol. 17, No. 5, pp. 705-720.

[54] Jiang, Y., Hu, T., Huang, C. and Wu, X. (2007), An improved particle swarm

optimization algorithm, Applied Mathematics and Computation, Vol. 193, Iss.
1, pp. 231-239.

[55] Jiao, B., Lian, Z. and Gu, X. (2006), A dynamic inertia weight particle swarm

optimization algorithm, Chaos, solutions and fractals, Elsevier, No. 37, pp.
698-705.

[56] Jing, B., Xueying, Z. and Yueling, G. (2009), Different inertia weight PSO

algorithm optimizing SVM kernel parameters applied in a speech recognition
system, in Mechatronics and Automation, ICMA 2009, International
Conference on, pp. 4754-4759.

[57] Jordehi, A. R. and Jasni, J. (2013), Parameter selection in particle swarm

optimisation: a survey, Journal of Experimental & Theoretical Artificial
Intelligence, Vol. 25, No. 4, pp. 527-542

225

[58] Jun, T. and Xiaojuan, Z. (2009), Particle swarm optimization using adaptive

local search, International Conference on Future BioMedical Information
Engineering, pp. 300-303.

[59] Junying, C., Zheng, Q., Yu, L. and Jiang, L. (2005), Particle swarm

optimization with local search, International Conference on Neural Networks
and Brain, ICNN&B '05., 2005, pp. 481-484.

[60] Karaboga, D. (2005), An Idea Based On Honey Bee Swarm for Numerical

Optimization, Technical Report-TR06, Erciyes University, Engineering
Faculty, Computer Engineering Department.

[61] Kaveh, A. and Talatahari, S. (2010), A novel heuristic optimization method:

charged system search, Acta Mechanica, Vol. 213, pp. 267-289.

[62] Kaveh, A. and Talatahari, S. (2011), An enhanced charged system search for

configuration optimization using the concept of fields of forces, Struct
Multidiscip Optim, Vol. 43, No. 3, pp. 339-351.

[63] Kennedy, J. and Eberhart, R. C. (1995), Particle swarm optimization, In

Proceedings of IEEE international conference on neural networks, Vol. 4, pp.
1942–1948. Perth, Australia.

[64] Kentzoglanakis, K. and Poole, M. (2009), Particle swarm optimization with an

oscillating Inertia Weight, Proceedings of the 11th Annual conference on
Genetic and evolutionary computation, pp. 1749–1750.

[65] Kephart, J. O. (1994), A biologically inspired immune system for computers

Proceedings of Artificial Life IV: The Fourth International Workshop on the
Synthesis and Simulation of Living Systems, MIT Press, pp. 130–139.

[66] Krishnanand, K. N. and Ghose, D. (2006), Glowworm swarm based

optimization algorithm for multimodal functions with collective robotics
applications, Multi-agent and Grid Systems, Vol. 2, No. 3, pp. 209–222.

[67] Lei, W. and Zhaocai, X. (2008), The research of PSO algorithms with non-

linear time-decreasing inertia weight, 7th World Congress on Intelligent
Control and Automation, pp. 4002-4005.

[68] Li, H. R., and Gao, Y. L. (2009), Particle Swarm Optimization Algorithm with

Exponent Decreasing Inertia Weight and Stochastic Mutation, Second
International Conference on Information and Computing Science, pp. 66–69.

[69] Lili-Li and Xingshi-He. (2009), Gaussian mutation Particle Swarm

Optimization with dynamic adaptation inertia weight, In World Congress on
Software Engineering, IEEE, pp. 454-459.

226

[70] Liu, B., Wang, L., Jin, Y-H., Tang, F. and Huang D-X. (2005), Improved
particle swarm optimization combined with chaos, Chaos, Solutions and
fractals, Vol. 25, pp. 1261-1271.

[71] Mai, X.-F. and Li, L. (2012), Bacterial foraging algorithm based on gradient

particle swarm optimization algorithm, Eighth International Conference on
Natural Computation (ICNC), pp. 1026-1030.

[72] Malik, R. F., Rahman, T. A., Hashim, S. Z. M. and Ngah, R. (2007), New

Particle Swarm Optimizer with Sigmoid Increasing Inertia Weight,
International Journal of Computer Science and Security (IJCSS), Vol. 1, No.
2, pp. 35.

[73] Mansour, M. M., Mekhamer, S. F. and El-Kharbawe, N. E. S. (2007), A

Modified Particle Swarm Optimizer for the Coordination of Directional
Overcurrent Relays, Power Delivery, IEEE Transactions, Vol. 22, pp. 1400-
1410.

[74] Meyer, K. D, (2004), Foundations of Stochastic Diffusion Search, PhD Thesis,

The University of Reading.

[75] Monismith, D. R. and Mayfield, B. E. (2008), Slime Mold as a model for

numerical optimization, IEEE Swarm Intelligence Symposium, SIS 2008, pp.
1-8.

[76] Ngoc, D. V., Schegner, P., and Ongsakul, W. (2011), A newly improved

particle swarm optimization for economic dispatch with valve point loading
effects, in Power and Energy Society General Meeting, 2011 IEEE, pp. 1-8.

[77] Nickabadi, A., Ebadzadeh, M. M. and Safabakhsh, R. (2011), A novel particle

swarm optimization algorithm with adaptive inertia weight, Applied soft
computing, Vol. 11, pp. 3658-3670.

[78] Niu, S. H., Ong, S. K. and Nee, A. Y. C. (2012), An improved Intelligent

Water Drops algorithm for achieving optimal job-shop scheduling solutions,
International Journal of Production Research, Vol. 50, No. 15, pp. 4192–
4205.

[79] Ólafsson, S. (2006), Metaheuristics, Nelson and Henderson (eds.), Handbook

on Simulation, Handbooks in Operations Research and Management Science
VII, Elsevier, pp. 633-654.

[80] Palanikkumar, D., Gowsalya, E., Rithu, B. and Anbuselven, P. (2012), An

intelligent water drops algorithm based service selection and composition in
service oriented architecture, Journal of Theoretical and Applied Information
Technology, Vol. 39, No.1, pp.45-51.

[81] Pant, M., Radha, T. and Singh, V. P. (2007), Particle Swarm Optimization

Using Gaussian Inertia Weight, International Conference on Computational

227

Intelligence and Multimedia Applications, Sivakasi, Tamil Nadu, 13-15 Dec,
Vol. 1, pp. 97-102.

[82] Parpinelli, R. and Lopes, H. S. (2012), Theory and New applications of swarm

intelligence, InTech, Croatia, Edited.

[83] Passino, K. M. (2002), Biomimicry of Bacterial Foraging for Distributed

Optimization and Control, IEEE Control Systems Magazine, pp. 52–67.

[84] Pedersen, M. E. H. (2010), Good parameters for particle swarm optimization,

Technical report, Hvass laboratories, number HL1001.

[85] Phillips, R., Woolway, M., Fanucchi, D. and Ali, M.M. (2014). Mathematical

Modeling and Optimal Blank Generation in Glass Manufacturing, Special
issue on Mathematical Modeling and Optimization of Industrial Problems,
Journal of Applied Mathematics, to appear in 2014.

[86] Poli, R., Kennedy, J. and Blackwell, T. (2007), Particle swarm optimization,
Swarm Intelligence, Vol. 1, pp. 33-57.

[87] Rabanal, P., Rodríguez, I., and Rubio, F. (2007), Using river formation

dynamics to design heuristic algorithms, Unconventional Computation,
UC’07, LNCS 4618, pp. 163–177.

[88] Rabanal, P., Rodríguez, I., and Rubio, F. (2010), Applying RFD to Construct

Optimal Quality-Investment Trees, Journal of Universal Computer Science,
Vol. 16, No. 14, pp.1882-1901.

[89] Rabanal, P., Rodríguez, I. and Rubio, F. (2011), Studying the application of

ant colony optimization and river formation dynamics to the Steiner tree
problem, Evol. Intel., Vol. 4, pp. 51–65.

[90] Saffarzadeh, V. M., Jafarzadeh, P. and Mazloom, M. (2010), A hybrid

approach using particle swarm optimization and simulated annealing for n-
queen problem, World academy of science, engineering and technology, Vol.
67, pp. 517-521.

[91] Sawyerr, B. A., Adewumi, A.O. and Ali, M.M. (2013). Benchmarking
Projection-Based Real Coded Genetic Algorithms on BBOB-2012 Noiseless
Function Testbed, Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO 2013), pp. 1193–1200

[92] Sawyerr, B. A., Adewumi, A.O. and Ali, M.M (2014). Real-coded genetic
algorithm with uniform random local search, Applied Mathematics and
Computation, vol. 228, 589--597, 2014.

[93] Schutte, J. F., Reinbolt, J. A., Fregly, B. J., Haftka, R. T. and George, A. D.

(2004), Parallel global optimization with the particle swarm algorithm,
International Journal for numerical methods and engineering, Vol. 61, pp.
2296–2315.

228

[94] Sedighizadeh, D., and Masehian, E. (2009), Particle swarm optimization

methods, taxonomy and applications, International Journal of computer
theory and engineering, Vol. 1, No. 5, pp. 486-502.

[95] Selvakumar, A. I. and Thanushkodi, K. (2007), A new particle swarm

optimization solution to nonconvex economic dispatch Problems. IEEE Trans.
on Power Systems, Vol. 22, No. 1, pp. 42-51.

[96] Selvakumar, A. I. and Thanushkodi, K. (2008), Anti-predatory particle swarm

optimization: Solution to nonconvex economic dispatch problems, Electric
Power Systems Research, Vol. 78, pp. 2-10.

[97] Shangxiong S. (2008). A Particle Swarm Optimization (PSO) Algorithm
Based on Multi-agent System. Proceedings of the 2008 International
Conference on Intelligent Computation Technology and Automation (ICICTA
'08), Vol. 2, pp 802-805.

[98] Shah-Hosseini, H. (2007), Problem solving by intelligent water drops,
Proceedings of IEEE Congress on Evolutionary Computation, CEC 2007,
Singapore, pp. 3226–3231.

[99] Shah-Hosseini, H., (2009), The intelligent water drops algorithm: A nature-

inspired swarm-based optimization algorithm, International Journal of Bio-
Inspired Computation, Vol. 1 (1–2), pp.71–79.

[100] Shah-Hosseini, H., (2008), Intelligent water drops algorithm: A new

optimization method for solving the multiple knapsack problem, International
Journal of Intelligent Computing and Cybernetics, Vol. 1, No. 2, pp. 193 –
212.

[101] Shen, X., Chi, Z., Yang, J., Chen, C. and Chi, Z. (2010), Particle swarm

optimization with dynamic adaptive inertia weight. IEEE International
Conference on Challenges in Environmental Science and Computer
Engineering, pp. 287-290.

[102] Shen, X., Chi, Z., Yang, J., Chen, C. and Chi, Z. (2010), Particle swarm

optimization with dynamic adaptive inertia weight, IEEE International
Conference on Challenges in Environmental Science and Computer
Engineering, pp. 287-290.

[103] Shi, Y. and Eberhart, R. (1998), Parameter selection in particle swarm

optimization, in Evolutionary Programming VII. V. W. Porto, N. Saravanan,
D. Waagen, and A. E. Eiben, Eds., ed: Springer Berlin Heidelberg, Vol. 1447,
pp. 591-600.

[104] Shi, Y. and Eberhart, R. C. (1998), A modified particle swarm optimizer,

Proceedings of the IEEE international conference on evolutionary
computation, pp. 69–73.

229

[105] Shi, Y. H. and Eberhart, R. C. (2001), Fuzzy adaptive particle swarm
optimization, Congress on evolutionary computation, Korea.

[106] Shu, J. and Li, J. (2009), An improved self-adaptive particle swarm

optimization algorithm with simulated annealing, Third International
Symposium on Intelligent Information Technology Application, pp. 396-399.

[107] Su, T-J., Cheng, J-C. and Sun, Y-D. (2011), Particle swarm optimization with

time-varying acceleration coefficients based on cellular neural network for
colour image noise cancellation, Sixth international conference on digital
telecommunications, ICDT, pp. 109-115.

[108] Sun. J., Lai, C-H., and Wu, X-J. (2011), Particle swarm optimization: classical

and quantum perspectives, CRC press, New York.

[109] Talatahari, S., Kaveh, A. and Sheikholeslami, R. (2011), An efficient charged

system search using chaos for global optimization problems, International
Journal of Optimization in Civil Engineering, Vol. 2, pp. 305-325.

[110] Tavazoei, M. S. and Haeri, M. (2007), Comparison of different one-dimension

maps as chaotic search pattern in chaos optimization algorithms, Applied
Mathematics and Computation, Vol. 187, pp.1076-1085.

[111] Thangaraj, R., Pant, M., Abraham, A. and Bouvry, P. (2011), Particle swarm

optimization: Hybridization perspectives and experimental illustrations,
Applied Mathematics and Computation, Vol. 217, No. 12, pp. 5208-5226.

[112] Timmis, J., Neal, M. and Hunt, J. (2000), An artificial immune system for data

analysis, BioSystems, Vol. 55, No. 1, pp. 143–150.

[113] Trelea, C. I. (2003), The particle swarm optimization algorithm: convergence

analysis and parameter selection, Information Processing Letter, Vol. 85, pp.
317-325.

[114] Wei-Bo, Z., Jin-You, C. and Ya-Qiang, Y. (2010), Study on particle swarm

optimization algorithm with local interpolation search, 2nd International Asia
Conference on Informatics in Control, Automation and Robotics (CAR), pp.
345-348.

[115] Waibel, M., Floreano, D. and Keller, L. (2011), A quantitative test of

Hamilton's rule for the evolution of altruism, PLoS Biology, Vol. 9, No. 5, pp.
1-7.

[116] Wenhua, H., Ping, Y., Haixia, R. and Jianpeng, S. (2010), Comparison study

of several kinds of inertia weights for PSO, IEEE International Conference on
Progress in Informatics and Computing (PIC), pp. 280-284.

[117] Xiaohui, H., Yuhui, S. and Eberhart, R. (2004), Recent advances in particle

swarm, in Congress on Evolutionary Computation, Vol. 1, pp. 90-97.

230

[118] Xin, J., Chen, G. and Hai, Y. (2009), A Particle Swarm Optimizer with Multi-
Stage Linearly-Decreasing Inertia Weight, International Joint Conference on
Computational Sciences and Optimization.

[119] Xin-She, Y. and Deb, S. (2009), Cuckoo Search via Lévy flights, World

Congress on Nature & Biologically Inspired Computing, NaBIC 2009, pp.
210-214.

[120] Xin-She, Y. (2012). Swarm-Based Metaheuristic Algorithms and No-Free-

Lunch Theorems, Theory and New applications of swarm intelligence,
Parpinelli, R. and Lopes, H. S. (Eds.), InTech, Croatia.

[121] Xin-She, Y. (2011), Metaheuristic Optimization, Scholarpedia, Vol. 6, No, 8,

pp. 11472.

[122] Yan, C-M., Guo, B-L. and Wu, X-X. (2012), Empirical study of the inertia

weight particle swarm optimization with constraint factor, International
Journal of Soft Computing and Software Engineering, Vol. 2, No. 2, pp. 1-8.

[123] Yang, X. S. (2008), Nature-Inspired Metaheuristic Algorithms, Frome:

Luniver Press.

[124] Yang, X. S. (2009), Firefly algorithms for multimodal optimization, Stochastic

Algorithms: Foundations and Applications, SAGA 2009, Lecture Notes in
Computer Science 5792, pp. 169–178.

[125] Yang, X-S. (2012), Nature-Inspired Mateheuristic Algorithms: Success and

New Challenges, Journal of Computer Engineering & Information
Technology, Vol. 1, No. 1.

[126] Yang, X. S. (2010), A New Metaheuristic Bat-Inspired Algorithm, Nature

Inspired Cooperative Strategies for Optimization (NISCO 2010) (Eds. J. R.
Gonzalez et al.), Studies in Computational Intelligence, Springer Berlin, 284,
Springer, pp. 65-74.

[127] Yanxia, S., Wyk, B. J. V. and Zenghui, W. (2012), A new golden ratio local

search based particle swarm optimization, International Conference on
Systems and Informatics (ICSAI), pp. 754-757.

[128] Yong-ling, Z., Long-hua, M., Li-yan, Z. and Ji-xin, Q. (2003), Empirical study

of particle swarm optimizer with an increasing inertia weight, The 2003
Congress on Evolutionary Computation, CEC '03, Vol. 1, pp. 221-226.

[129] Yong-ling, Z., Long-Hua, M., Li-yan, Z. and Ji-xin, Q. (2003), On the

convergence analysis and parameter selection in particle swarm optimization,
International Conference on Machine Learning and Cybernetics, Vol. 3, pp.
1802-1807.

[130] Zhao, S. Z., Liang, J. J., Suganthan, P. N. and Tasgetiren, M. F. (2008),

Dynamic multi-swarm particle swarm optimizer with local search for Large

231

Scale Global Optimization, in IEEE Congress on Evolutionary Computation,
(IEEE World Congress on Computational Intelligence), pp. 3845-3852.

[131] Zhan, Z-H., Zhang, J., Li, Y. and Chung, H.S.-H. (2009), Adaptive Particle

Swarm Optimization, IEEE Transactions on Systems, Man, and Cybernetics,
Part B: Cybernetics, Vol. 39, No. 6, pp. 1362-1381.

[132] Zhang, L-P., Yu, H-J. and Hu, S-X. (2005), Optimal choice of parameters for

particle swarm optimization, Journal of Zhejiang University SCIENCE, Vol.
6A, No. 6, pp. 528-534.

[133] Zhang, L., Yu, H. and Hu, S. (2003), A New Approach to Improve Particle
Swarm Optimization, Genetic and Evolutionary Computation — GECCO,
Cantú-Paz, E. J. Foster, K. Deb, L. Davis, R. Roy, U.-M. O’Reilly, et al.,
(Eds.), Springer Berlin Heidelberg, Vol. 2723, pp. 134-139.

232

Appendix

Test Problems [8]
ACKL: Ackley Function

Model: ⃗ (√

∑

) (

∑

)

Feature: Multimodal and Non-separable
Search space:
Global minimum:

ALFP: Aluffi Pentini's Function

Model:

Feature: Multimodal and Separable
Search space:
Global minimum:

BEAL: Beale Function
Model: ⃗

Feature: Unimodal and Non-separable
Search space:
Global minimum:

BELA: Becker & Lago Function

Model: ⃗ | | | |
Feature: Multimodal and Separable
Search space:
Global minimum:

BKY1: Bohachevsky-1 Function

Model: ⃗

Feature: Multimodal and Separable
Search space:
Global minimum:

BKY2: Bohachevsky-2 Function

Model: ⃗

Feature: Multimodal and Non-separable
Search space:

233

Global minimum:

BOOT: Booth Function
Model: ⃗
Feature: Multimodal and Non-separable
Search space:
Global minimum:

BRWN: Brown-3 Function

Model: ⃗ ∑ (
 (

)

 (
)

)

Feature: Multimodal and Non-separable
Search space:
Global minimum:

CML3: Camel-3 Function

Model: ⃗

Feature: Multimodal and Non-separable
Search space:
Global minimum:

CML6: Camel-6 Function

Model: ⃗

Feature: Multimodal and Non-separable
Search space:
Global minimum:

CIGR: Cigar Function

Model: ⃗
 ∑

Feature: Unimodal and Non-separable
Search space:
Global minimum:

CSM: Cosine Mixture Function

Model: ⃗ ∑

 ∑

Feature: Unimodal and Non-separable
Search space:
Global minimum:

CVLE: Colville Function

Model: ⃗ (
)

 (

)

234

 ()
Feature: Multimodal and Non-separable
Search space:
Global minimum:

DEJ4: De Jong's Function

Model: ⃗ ∑

Feature: Unimodal and separable
Search space:
Global minimum:

DIXP: Dixon Price Function

Model: ⃗ ∑ (
)

Feature: Unimodal and Non-separable
Search space:
Global minimum:

EXPN: Exponential Function

Model: ⃗ ∑

Feature: Unimodal and Separable
Search space:
Global minimum:

ESOM: Easom Function
Model: ⃗
Feature: Unimodal and Non-separable
Search space:
Global minimum:

GWNK: Griewank Function

Model: ⃗

(∑

) (∏ (

√
)

)
Feature: Multimodal and Non-separable
Search space:
Global minimum:

LVM1: Levy & Mantalvo-1 Function

Model: ⃗ (

)(∑

)

Feature: Multimodal and Non-separable
Search space:
Global minimum:

235

LVM2: Levy & Mantalvo-2 Function

Model: ⃗ ∑

Feature: Multimodal and Non-separable
Search space:
Global minimum:

HTMF: Hartman-3 Function

Model: ⃗ ∑ (∑ ()

)

Feature: Multimodal and Non-separable
Search space:
Global minimum:

MTYS: Matyas Function

Model: ⃗

Feature: Unimodal and Non-separable
Search space:
Global minimum:

MCLZ: Michalewicz Function

Model: ⃗ ∑ [(

)]

Feature: Multimodal and Separable
Search space:
Global minimum:

NQTC: Noisy Quatic Function

Model: ⃗ ∑

Feature: Unimaodal and Separable
Search space:
Global minimum:

NCRA: Non-Continuous Rastrigin Function

Model: ⃗ ∑ (
)

 {
 | |

 | |

}

Feature: Multimodal and Separable
Search space:
Global minimum:

PLZ1: Penalized Function-1

Model: ⃗

(∑ ()

) ∑
 ; where

236

{

; and

Feature: Multimodal and Non-separable
Search space:
Global minimum:

PLZ2: Penalized Function-2

Model: ⃗ (∑ ()

 ()) ∑
 ; where

 {

Feature: Multimodal and Non-separable
Search space:
Global minimum:

PRDC: Periodic Function

Model: ⃗

Feature: Multimodal and Non-separable
Search space:
Global minimum:

RAS1: Rastrigin Function-1

Model: ⃗ ∑

Feature: Multimodal and Separable
Search space:
Global minimum:

RAS2: Rastrigin Function-2

Model: ⃗ ∑

Feature: Multimodal and Separable
Search space:
Global minimum:

ROSB: Rosenbrock Function

Model: ⃗ ∑

Feature: Unimodal and Non-separable
Search space:
Global minimum:

Hindawi Publishing Corporation
The Scientific World Journal
Volume 2013, Article ID 860289, 12 pages
http://dx.doi.org/10.1155/2013/860289

Research Article
On the Performance of Linear Decreasing Inertia Weight
Particle Swarm Optimization for Global Optimization

Martins Akugbe Arasomwan and Aderemi Oluyinka Adewumi

School ofMathematics, Statistics, andComputer Science, University of Kwazulu-Natal, Private BagX54001, Durban 4000, SouthAfrica

Correspondence should be addressed to Aderemi Oluyinka Adewumi; laremtj@gmail.com

Received 9 July 2013; Accepted 4 September 2013

Academic Editors: P. Melin, G. Terracina, and G. Wei

Copyright © 2013 M. A. Arasomwan and A. O. Adewumi. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Linear decreasing inertia weight (LDIW) strategy was introduced to improve on the performance of the original particle swarm
optimization (PSO). However, linear decreasing inertia weight PSO (LDIW-PSO) algorithm is known to have the shortcoming of
premature convergence in solving complex (multipeak) optimization problems due to lack of enough momentum for particles to
do exploitation as the algorithm approaches its terminal point. Researchers have tried to address this shortcoming by modifying
LDIW-PSO or proposing new PSO variants. Some of these variants have been claimed to outperform LDIW-PSO. The major goal
of this paper is to experimentally establish the fact that LDIW-PSO is very much efficient if its parameters are properly set. First,
an experiment was conducted to acquire a percentage value of the search space limits to compute the particle velocity limits in
LDIW-PSO based on commonly used benchmark global optimization problems. Second, using the experimentally obtained values,
five well-known benchmark optimization problems were used to show the outstanding performance of LDIW-PSO over some of its
competitors which have in the past claimed superiority over it. Two other recent PSO variants with different inertia weight strategies
were also compared with LDIW-PSO with the latter outperforming both in the simulation experiments conducted.

1. Introduction

The idea of Particle Swarm Optimization (PSO) stems from
biology where a swarm of birds coordinates itself in order
to achieve a goal. When a swarm of birds looks for food,
its individuals will spread in the environment and move
around independently with some degree of randomness
which enables it to discover food accumulations. After a
while, one of them will find something digestible and, being
social, communicates this to its neighbors. These can then
approach the source of food, thus leading to the convergence
of the swarm to the source of food. Following this analogy,
PSO was largely derived from sociopsychology concept and
transferred to optimization [1], where each particle (bird)
uses the local information regarding the displacement of its
reachable closer neighbors to decide on its own displacement,
resulting to complex and adaptive collective behaviors.

Since the inception of PSO technique, a lot of work has
been done by researchers to enhance its efficiency in handling

optimization problems. One such work is the introduction
of linear decreasing inertia weight (LDIW) strategy into the
original PSO to control its exploration and exploitation for
better performance [2–4]. However, LDIW-PSO algorithm
from the literature is known to have the shortcoming of
premature convergence in solving complex (multipeak) prob-
lems due to lack of enough momentum for particles to do
exploitation as the algorithm approaches its terminal point.
The challenge of addressing this shortcoming has been on for
a long time and has attracted much attention of researchers
in the field of global optimization. Consequently upon this,
many other inertia weight PSO variants have been proposed
[2, 5–16], with different levels of successes. Some of these
variants have claimed better performances over LDIW-PSO,
therebymaking it lookweak or inferior. Also, since improving
on the performance of PSO is an area which still attractsmore
researchers, this paper strives to experimentally establish the
fact that LDIW-PSO is very much efficient if its parameters,
like velocity limits for the particles, are properly set. Using

2 The Scientific World Journal

the experimentally obtained values for particle velocity limits
in LDIW-PSO, results show that LDIW-PSO outperformed
other PSO variants adopted for comparison.

In the sections that follow, inertia weight PSO technique
is described in Section 2, LDIW-PSO and the PSO variants
adopted for comparison are reviewed in Section 3, parameter
settings were experimentally conducted in Section 4, presen-
tations and discussions of the experimental results of LDIW-
PSO and its competing variants are made in Section 5, while
Section 6 concludes the paper.

2. Particle Swarm Optimization

This technique is a simple but efficient population-based,
adaptive, and stochastic technique for solving simple and
complex optimization problems [17, 18]. It does not need the
gradient of the problems to work with, so the technique can
be employed for a host of optimization problems. In PSO, a
swarm of particles (set of solutions) is randomly positioned
(distributed) in the search space. For every particle, the
objective function determines the food at its place (value of
the objective function). Every particle knows its own actual
value of the objective function, its own best value (locally best
solution), the best value of the whole swarm (globally best
solution), and its own velocity.

PSOmaintains a single static population whose members
are tweaked (adjust slightly) in response to new discoveries
about the space. The method is essentially a form of directed
mutation. It operates almost exclusively in multidimensional
metric, and usually real-valued, spaces. Because of its origin,
PSO practitioners tend to refer to candidate solutions not
as a population of individuals but as a swarm of particles.
Generally, these particles never die [19], but are moved about
in the search space by the directed mutation.

Implementing PSO involves a small number of different
parameters that regulates the behavior and efficacy of the
algorithm in optimizing a given problem. These parameters
are particle swarm size, problem dimensionality, particle
velocity, inertia weight, particle velocity limits, cognitive
learning rate, social learning rate, and the random factors.
The versatility of the usage of PSO comes at a price because for
it to workwell on any problem at hand, these parameters need
tuning and this could be very laborious. The inertia weight
parameter (popularly represented as 𝜔) has attracted a lot of
attentions and seems to be themost important comparedwith
other parameters.Themotivation behind its introductionwas
the desire to better control (or balance) the scope of the
(local and global) search and reduce the importance of (or
eliminate) velocity clamping, 𝑉max, during the optimization
process [20–22]. According to [22], the inertia weight was
successful in addressing the former objective, but could not
completely eliminate the need for velocity clamping. The
feature of the divergence or convergence of particles can be
controlled only by parameter𝜔, however, in conjunctionwith
the selection of values for the acceleration constants [22, 23]
as well as other parameters.

Each individual in the particle swarm is composed of
three 𝑛-dimension vectors (current position, previous posi-
tion, and velocity), where 𝑛 is the dimensionality of the search

If 𝑥
𝑖
< min𝑋

𝑥
𝑖
= min𝑋

else if 𝑥
𝑖
> max𝑋

𝑥
𝑖
= max𝑋

end if

Algorithm 1: Particle position clamping.

If V
𝑖
< min𝑉

V
𝑖
= min𝑉

else if 𝑥
𝑖
> max𝑉

V
𝑖
= max𝑉

end if

Algorithm 2: Particle velocity clamping.

space. Thus, in a physical 𝑛-dimensional search space, the
position and velocity of each particle 𝑖 are represented as the
vectors𝑋

𝑖
= (𝑥
𝑖1
, . . . , 𝑥

𝑖𝑛
) and 𝑉

𝑖
= (V
𝑖1
, . . . , V

𝑖𝑛
), respectively.

In course of movement in the search space looking for
the optimum solution of the problem being optimized, the
particle’s velocity and position are updated as follows:

𝑉
𝑘+1

𝑖
= 𝜔𝑉
𝑘

𝑖
+ 𝑐
1
𝑟
1
(𝑃best𝑘

𝑖
− 𝑋
𝑘

𝑖
)

+ 𝑐
2
𝑟
2
(𝐺best𝑘

𝑖
− 𝑋
𝑘

𝑖
) ,

(1)

𝑋
𝑘+1

𝑖
= 𝑋
𝑘

𝑖
+ 𝑉
𝑘+1

𝑖
, (2)

where, 𝑐
1
and 𝑐
2
are acceleration (weighting) factors known

as cognitive and social scaling parameters that determine the
magnitude of the random forces in the direction of 𝑃best
(previous best) and𝐺best (global previous best); 𝑟

1
and 𝑟
2
are

random numbers between 0 and 1; 𝑘 is iteration index; 𝜔 is
inertia weight. It is common that the positions and velocities
of particles in the swarm, when they are being updated, are
controlled to be within some specified bounds as shown
in Algorithms 1 and 2, respectively. An inertia weight PSO
algorithm is shown in Algorithm 3.

3. A Review of LDIW-PSO and Some of Its
Competing PSO Variants

Despite the fact that LDIW-PSO algorithm, from the lit-
erature, is known to have a shortcoming of premature
convergence in solving complex (multipeak) problems, itmay
not always be true that LDIW-PSO is as weak or inferior as it
has been pictured to be by some PSO variants in the literature
[2, 7, 13]. Reviewed below are some of these variants and other
variants, though not directly compared with LDIW-PSO in
the literature, but have been adopted for comparison with
LDIW-PSO.

3.1. Linear Decreasing Inertia Weight PSO (LDIW-PSO). The
inertia weight parameter was introduced into the original

The Scientific World Journal 3

Begin Algorithm
Input: function to optimize, 𝑓

swarm size, 𝑝𝑠
problem dimension, 𝑑
search space range, [min𝑋,max𝑋]
velocity range, [min𝑉,max𝑉]

Output: 𝑥∗: the best value found
Initialize: for all particles in problem space

𝑥
𝑖
= (𝑥
𝑖1
, . . . , 𝑥

𝑖𝑑
) and

V
𝑖
= (V
𝑖1
, . . . , V

𝑖𝑑
),

Evaluate 𝑓(𝑥
𝑖
) in 𝑑 variables and get 𝑝best

𝑖
, (𝑖 = 1, . . . , 𝑝𝑠)

𝑔best← best of 𝑝best
𝑖

Repeat
Calculate 𝜔
Update V

𝑖
for all particles using (1)

Update 𝑥
𝑖
for all particles using (2)

Evaluate 𝑓(𝑥
𝑖
) in 𝑑 variables and get 𝑝best

𝑖
, (𝑖 = 1, . . . , 𝑝𝑠)

If 𝑓(𝑥
𝑖
) is better than 𝑝best

𝑖
then 𝑝best

𝑖
← 𝑥
𝑖

If the best of 𝑝best
𝑖
is better than 𝑔best then 𝑔best← best of 𝑝best

𝑖

Until Stopping criteria (e.g., maximum iteration or error tolerance is met)
𝑥
∗
← 𝑔best

Return 𝑥∗
End Algorithm

Algorithm 3: Inertia weight PSO algorithm.

version of PSO by [20]. By introducing a linearly decreas-
ing inertia weight into the original version of PSO, the
performance of PSO has been greatly improved through
experimental study [24]. In order to further illustrate the
effect of this linearly decreasing inertiaweight, [4] empirically
studied the performance of PSO. With the conviction that a
large inertia weight facilitates a global search while a small
inertia weight facilitates a local search, a linearly decreasing
inertia weight was used with an initial value of 0.9 and
a final value of 0.4. By reason of these values, the inertia
weight can be interpreted as the fluidity of the medium in
which a particle moves [21], showing that setting it to a
relatively high initial value (e.g., 0.9) makes particles move in
a low viscosity medium and performs extensive exploration.
Gradually reducing it to a much lower value (e.g., 0.4) makes
the particle moves in a high viscosity medium and performs
more exploitation. The experimental results in [4] showed
that the PSO converged quickly towards the optimal positions
but slowed down its convergence speed when it is near the
optima.Thus, by using the linearly decreasing inertia weight,
the PSO lacks global search ability at the end of run even
when the global search ability is required to jump out of the
local minimum in some cases. As a result, employing adapt-
ing strategy for adjusting the inertia weight was suggested
to improve PSO’s performance near the optima. Towards
achieving this, there are many improvements on LDIW-PSO
in the literature [2, 3, 16, 24–26], which have made PSO to
perform with varying degree of successes. Represented in (3)
is the LDIW:

𝜔
𝑡
= (𝜔start − 𝜔end) (

𝑇max − 𝑡

𝑇max
) + 𝜔end, (3)

where 𝜔start and 𝜔end are the initial and final values of
inertia weight, 𝑡 is the current iteration number, 𝑇max is the
maximum iteration number, and 𝜔

𝑡
∈ [0, 1] is the inertia

weight value in the 𝑡th iteration.

3.2. Chaotic Descending Inertia Weight PSO (CDIW-PSO).
Chaos is a nonlinear dynamic system which is sensitive
to the initial value. It has the characteristic of ergodicity
and stochastic property. Using the idea of chaotic mapping,
CDIW-PSO was proposed by [2] as shown in (5) based on
logistic mapping in (4). The goal was to improve on the
LDIW-PSO to avoid getting into local optimum in searching
process by utilizing the merits of chaotic optimization

𝑧
𝑘+1
= 𝜇 × 𝑧

𝑘
× (1 − 𝑧

𝑘
) , (4)

where 𝜇 = 4 and 𝑧
𝑘
is the 𝑘th chaotic number. The map

generates values between 0 and 1, provided that the initial
value 𝑧

0
∈ (0, 1) and that 𝑧

0
∉ (0.0, 0.25, 0.5, 0.75, 1.0):

𝜔
𝑡
= (𝜔start − 𝜔end) (

𝑇max − 𝑡

𝑇max
) + 𝜔end × 𝑧𝑘+1, (5)

where 𝜔start and 𝜔end are the initial and final values of
inertia weight, and rand() is a uniform random number
in [0, 1]. The experimental results in [2] show that CDIW-
PSO outperformed LDIW-PSO in all the test problems used
in the experiment in terms of convergence precision, quick
convergence velocity, and better global search ability.

3.3. Random Inertia Weight and Evolutionary Strategy PSO
(REPSO). This variant proposed in [7] used the idea of sim-
ulated annealing and the fitness of particles to design another

4 The Scientific World Journal

inertia weight represented by (6). A cooling temperature
was introduced to adjust the inertia weight based on certain
probability to facilitate jumping off local optimal solutions.

It was experimentally proven that REPSO is significantly
superior LDIW-PSO in terms of convergent speed and
accuracy:

𝜔
𝑡
=

{
{

{
{

{

𝛼
1
+

𝑟

2.0

, 𝑝 ≥ 𝑟,

𝛼
2
+

𝑟

2.0

, 𝑝 < 𝑟,

(6)

where 𝛼
1
, 𝛼
1
∈ [0, 1] are constants with 𝛼

1
> 𝛼
2
and 𝑟 ∈

𝑈[0, 1]. The simulated annealing probability is defined as
follows:

𝑝 =

{{{{

{{{{

{

1, min
1≤𝑖≤𝑚

𝑓
𝑡−𝑘

𝑖
≤ min
1≤𝑖≤𝑚

𝑓
𝑡

𝑖
,

exp(−
min1≤𝑖≤𝑚𝑓𝑡−𝑘𝑖 −min1≤𝑖≤𝑚𝑓𝑡𝑖

𝑇𝑡

) , min
1≤𝑖≤𝑚

𝑓
𝑡−𝑘

𝑖
> min
1≤𝑖≤𝑚

𝑓
𝑡

𝑖
,

(7)

where 𝑚 is the number of particles, 𝑓𝑡
𝑖
is the fitness value

of particle 𝑖 in the 𝑡th iteration, and the adaptive cooling
temperature in the 𝑡th iteration,𝑇

𝑡
, is defined as shown in (8):

𝑇
𝑡
=

𝑓
𝑡

avg

𝑓
𝑡

best
− 1, (8)

where 𝑓𝑡best is the current best fitness value, and 𝑓
𝑡

avg which is
defined in (9), is the average fitness value in the 𝑡th iteration:

𝑓
𝑡

avg =
1

𝑚

𝑚

∑

𝑖=1

𝑓
𝑡

𝑖
. (9)

The combined efforts of the simulated annealing idea and
fitness variance of particles improved the global search ability
of PSO. In all the experiments performed, REPSO was
recorded superior to LDIW-PSO in convergence velocity and
precision.

3.4. Dynamic Adaptive Particle Swarm Optimization
(DAPSO). DAPSO was introduced by [3] with the aim
of proffering solution to the PSO premature convergence
problem associated with typical multipeak, high dimensional
function optimization problems so as to improve its global
optimum and convergence speed. A dynamic adaptive
strategy was introduced into the variant to adjust the inertia
weight value based on the current swarm diversity and
congregate degree as well as the impact on the search
performance of the swarm. The experimental results
recorded showed that DAPSO was more effective compared
with LDIW-PSO.The inertia weight formula that was used is
represented in (10):

𝜔
𝑡
= 𝜔min + (𝜔max − 𝜔min) × 𝐹𝑡 × 𝜑𝑡, (10)

where𝜔min and𝜔max are theminimum andmaximum inertia
weight values, 𝑡 is the current number of iterations, the

diversity function 𝐹
𝑡
and adjustment function 𝜑

𝑡
, both in the

𝑡th iteration, are represented in (11) and (12), respectively:

𝐹
𝑡
= 1 −

2

𝜋

arc tan (𝐸) , (11)

where 𝐸 is the group fitness as shown in (13):

𝜑
𝑡
= 𝑒
(−𝑡
2
/(2𝜎
2
))
, (12)

where 𝜎 = 𝑇/3 and 𝑇 are the total numbers of iterations:

𝐸 =

1

𝑁

𝑁

∑

𝑖=1

(𝑓 (𝑥
𝑖
) − 𝑓avg)

2

, (13)

where 𝑁 is the swarm size, 𝑓(𝑥
𝑖
) is the fitness of particle 𝑖,

and 𝑓avg represented in (14) is the current average fitness of
the swarm:

𝑓avg =
1

𝑁

𝑁

∑

𝑖=1

𝑓 (𝑥
𝑖
) . (14)

3.5. Adaptive Particle SwarmOptimization (APSO). ThisPSO
variant was proposed in [5], in which an adaptive mutation
mechanism and a dynamic inertia weight were incorporated
into the conventional PSO method. These mechanisms were
employed to enhance global search ability and convergence
speed and to increase accuracy, while the mutation mech-
anism affected the particle position updating formula, the
dynamic inertia weight affected the inertia weight formula
shown in (15). Though APSO was not compared with LDIW-
PSO, it outperformed all its competitors as evidenced by all
the experimental results:

𝜔
𝑡
= 0.5 {1 + tanh [1

𝛼

× 𝐹 (𝑃
𝑡

𝑔𝑑
)]} , (15)

where 𝐹(𝑃𝑡
𝑔𝑑
) is the fitness of current best solution in the

𝑡th iteration, and the parameter 𝛼 is predefined which
could be set equal to the fitness of the best particle in the
initial population. For the updating of the particle’s position,
when a particle is chosen for mutation, a Gaussian random
disturbance was added as depicted in (16):

𝑥
𝑖𝑗
= 𝑥
𝑖𝑗
+𝑀 × 𝛽

𝑖𝑗
, (16)

where 𝑥
𝑖𝑗
is the 𝑖th component of the 𝑗th particle, 𝛽𝑖𝑗 is a

random variable with Gaussian distribution with zero mean
and unit variance, and 𝑀 is a variable step size which
dynamically decreases according to current best solution
fitness.𝑀 is defined in 𝑡th iteration according to

𝑀
𝑡
= 𝑥max × tanh [

1

𝛼

× 𝐹 (𝑃
𝑡

𝑔𝑑
)] . (17)

3.6. Dynamic Nonlinear and Dynamic Logistic Chaotic Map
PSO (DLPSO2). In [11], two types of variants were proposed
to solve the premature convergence problem of PSO. In
this variant, two dynamic nonlinear methods and logistic
chaotic map were used to adjust the inertia weight in parallel

The Scientific World Journal 5

Table 1: Settings for parameter 𝛿 in LDIW-PSO.

Problem 𝑓
1

𝑓
2

𝑓
3

𝑓
4

𝑓
5

𝑓
6

𝛿 0.05 0.0075 0.05 0.015 0.075 0.015

according to different fitness values. One of the dynamic
nonlinear inertiaweights is represented by (18) and (19), while
the other is represented by (20) and (21). They are meant to
achieve tradeoff between exploration and exploitation:

𝑑𝑛 = 𝑑𝑛min + (𝑑𝑛max − 𝑑𝑛min) (
iter

itermax
) , (18)

𝜔 = 𝜔min + (𝜔max − 𝜔min) (
iter

itermax
)

𝑑𝑛

, (19)

𝑑𝑛 = 𝑑𝑛max − (𝑑𝑛max − 𝑑𝑛min) (
iter

itermax
) , (20)

𝜔 = 𝜔max − (𝜔max − 𝜔min) (
iter

itermax
)

𝑑𝑛

, (21)

where 𝑑𝑛 is the dynamic nonlinear factor, 𝜔 is the inertia
weight, 𝜔max and 𝜔min are the maximum and minimum
values of 𝜔, respectively, 𝑑𝑛max and 𝑑𝑛min are the maximum
and minimum values of 𝑑𝑛, respectively, and iter and itermax
are the current iteration numbers and themaximum iteration
number, respectively.

A dynamic logistic chaotic map in (4) was incorporated
into the PSO variant inertia weight as shown in (23) to
enrich searching behaviors and avoid being trapped into local
optima:

𝛼 = 𝛼max − (𝛼max − 𝛼min) (
iter

itermax
) , (22)

𝜔 = 𝛼 + (1 − 𝛼) Lmap, (23)

where 𝛼 is the dynamic chaotic inertia weight adjustment
factor, 𝛼max and 𝛼min are the maximum and minimum values
of 𝛼, respectively, and Lmap is the result of logistic chaotic
map. In this variant, using (19) and (23) was labeled DLPSO1,
while using (21) and (23) was captioned DLPSO2.

For the purpose of achieving a balance between global
exploration and local exploitation and also avoiding prema-
ture convergence, (19), (21), and (23) were mixed together
to dynamically adjust the inertia weight of the variant as
shown in Algorithm 4, where 𝑓

𝑖
is the fitness value of

particle 𝑖 and 𝑓avg is the average fitness value of the swarm.
Experiments and comparisons showed that the DLPSO2
outperformed several other well-known improved particle
swarm optimization algorithms on many famous benchmark
problems in all cases.

3.7. Discussions. LDIW-PSO is relatively simple to implement
and fast in convergence. When [4] experimentally ascer-
tained that LDIW-PSO is prone to premature convergence,
especially when solving complex multimodal optimization

if 𝑓
𝑖
≤ 𝑓avg

compute 𝜔 using (19) or (21)
elseif 𝑓

𝑖
> 𝑓avg

compute 𝜔 using (23)
end if

Algorithm 4

problems, a new area of research was opened up for improve-
ments on inertia weight strategies in PSO, and LDIW-PSO
became a popular yard stick for many other variants.

From the variants described previously, there are ample
expectations that they should outperform LDIW-PSO judg-
ing by the various additional strategies introduced into the
inertia weight strategies used by them. For example, CDIW-
PSO introduced chaotic optimization characteristic, REPSO
introduced a combined effort of simulated annealing idea and
fitness variance of particles, DAPSO introduced a dynamic
adaptive strategy based on swarm diversity function, APSO
introduced an adaptive mutation to the particle positions
and made the inertia weight dynamic based on the best
global fitness, while DLPSO2 used different formulas coupled
with chaotic mapping. The general aims of remedying the
problem of premature convergence by these variants were not
achieved, rather they only struggled tomove a bit further than
LDIW-PSO in trying to optimize the test problems because a
total solution to this problem is for an algorithm to escape all
possible local optima and obtain the global optimum. With
this, it is possible that LDIW-PSO was subjected to settings,
for example, the particles velocity limits [24], which were not
appropriate for it to operate effectively.

4. Testing with Benchmark Problems

To validate the claim in this paper, 6 different experiments
were performed for the purpose of comparing the LDIW-
PSO with 6 other different PSO variants, namely, AIW-PSO,
CDIW-PSO, REPSO, SA-PSO, DAPSO, and APSO. Different
experiments, relative to the competing PSO variants, used
different set of test problems which were also used to test
LDIW-PSO. Brief descriptions of these test problems are
given next. Additional information on these problems can be
found in [27–29]. The application software was developed in
Microsoft Visual C# programming language.

4.1. Benchmark Problems. Six well studied benchmark prob-
lems in the literature were used to test the performance
of LDIW-PSO, AIW-PSO, CDIW-PSO, REPSO, SA-PSO,
DAPSO, and APSO. These problems were selected because
their combinations were used to validate the competing
PSO variants in the respective literature referenced. The
test problems are Ackley, Griewank, Rastrigin, Rosenbrock,
Schaffer’s f6, and Sphere.

The Ackley problem is multimodal and nonseparable. It
is a widely used test problem, and it is defined in (24). The

6 The Scientific World Journal

Table 2: Test problems search and initialization ranges for the PSO variants.

Label CDIW-PSO REPSO DAPSO APSO DLPSO2
𝑓
1

— — [−32, 32] — [−32, 32]

𝑓
2

[−600, 600] [−600, 600] [−600, 600] [−600, 600] [−600, 600]

𝑓
3

[−5.12, 5.12] [−10, 10] [−5.12, 5.12] [−5.12, 5.12] [−10, 10]

𝑓
4

[−30, 30] [−100, 100] — [−30, 30] —
𝑓
5

[−100, 100] [−10, 10] — — [−1.0, 1.0]

𝑓
6

[−100, 100] [−10, 10] — — [−100, 100]

Table 3: Goals for the test problems in CDIW-PSO.

Label 𝑓
2

𝑓
3

𝑓
4

𝑓
5

𝑓
6

Goal 0.05 50.0 100.0 0.00001 0.01

global minimum 𝑓
1
(�⃗�) = 0 is obtainable at �⃗� = 0, and the

number of local minima is not known:

𝑓
1 (
�⃗�) = −20 exp(−0.2√ 1

𝑛

𝑑

∑

𝑖=1

𝑥
2

𝑖
)

− exp(1
𝑛

𝑑

∑

𝑖=1

cos (2𝜋𝑥
𝑖
)) + 20 + 𝑒.

(24)

The Griewank problem is similar to that of Rastrigin. It
is continuous, multimodal scalable, and nonseparable with
many widespread local minima regularly distributed. The
complexity of the problem increases with its dimensionality.
Its global minimum 𝑓

2
(�⃗�) = 0 is obtainable at �⃗� = 0, and the

number of local minima for arbitrary 𝑛 is not known, but in
the two-dimensional case, there are some 500 local minima.
This problem is represented by

𝑓
2 (
�⃗�) =

1

4000

(

𝑑

∑

𝑖=1

𝑥
2

𝑖
) − (

𝑑

∏

𝑖=1

cos(
𝑥
𝑖

√𝑖

)) + 1. (25)

The Rastrigin problem represented in (26) is continuous,
multimodal, scalable, and separable with many local minima
arranged in a lattice-like configuration. It is based on the
Sphere problem with the addition of cosine modulation so
as to produce frequent local minima.There are about 50 local
minima for two-dimensional case, and its global minimum
𝑓
3
(�⃗�) = 0 is obtainable at �⃗� = 0:

𝑓
3 (
�⃗�) =

𝑑

∑

𝑖=1

(𝑥
2

𝑖
− 10 cos (2𝜋𝑥

𝑖
) + 10) . (26)

Shown in (27) is the Rosenbrock problem. It is continu-
ous, unimodal, scalable, and nonseparable. It is a classic opti-
mization problem also known as banana function, the second
function of De Jong, or extended Rosenbrock function. Its
global minimum 𝑓

4
(�⃗�) = 0 obtainable at �⃗� = 1, lies inside a

long narrow, parabolic shaped valley. Though it looks simple

to solve, yet due to a saddle point it is very difficult to converge
to the global optimum:

𝑓
4 (
�⃗�) =

𝑑−1

∑

𝑖=1

(100(𝑥
𝑖+1
− 𝑥
2

𝑖
)

2

) + (𝑥
𝑖
− 1)
2
. (27)

The Schaffer’s f6 problem represented in (28) is 2-
dimensional, continuous, multimodal, and nonseparable
with unknown number of many local minima. Its global
minimum 𝑓

5
(�⃗�) = 0 is obtainable at �⃗� = 0:

𝑓
5 (
�⃗�) =

𝑑−1

∑

𝑖=1

(0.5 +

sin2 (√𝑥2
𝑖+1
+ 𝑥
2

𝑖
) − 0.5

(0.001 (𝑥
2

𝑖+1
+ 𝑥
2

𝑖
) + 1)

2
). (28)

The Sphere problem also known as the first De Jong
function is continuous, convex, unimodal, scalable, and
separable. It is one of the simplest test benchmark problems.
Its global minimum 𝑓

6
(�⃗�) = 0 is obtainable at �⃗� = 0, and the

problem is represented by

𝑓
6 (
�⃗�) =

𝑑

∑

𝑖=1

𝑥
2

𝑖
. (29)

4.2. Parameter Settings. The limits of particle velocity could
negatively affect the performance of PSO algorithm if it is
not properly set. As a result, different work has been done to
determine the velocity limits of particles in order to improve
on the performance of PSO. Researches in this direction
are [4, 24, 30] the three major methods that appear in the
literature, for computing the velocity clamping (𝑉min and
𝑉max) are (i) multiplying the search space range with certain
percentage (𝛿); that is, 𝑉max = 𝛿(𝑋max − 𝑋min) and 𝑉min =
−𝑉max; (ii) multiplying both the minimum and maximum
limits of the search space separately with certain percentage
(𝛿); that is, 𝑉max = 𝛿(𝑋max) and 𝑉min = 𝛿(𝑋min); (iii)
assigning the search space upper limit to 𝑉max. It is obvious
from (i) and (ii) that the parameter 𝛿 is very important. As
a result, different values have been used by different authors
[5, 6, 13, 30] for 𝛿 to determine velocity clamping for particles.

In trying to substantiate the fact that LDIW-PSO is not
as weak or inferior as many authors claimed it to be, an
experiment was conducted to investigate the effect of the
parameter 𝛿 on the performance of LDIW-PSO using the
benchmark problems described previously. The results were
used as a guide to set 𝛿 in LDIW-PSO before embarking on
some experimental comparison, between it and some other

The Scientific World Journal 7

Table 4: Experimental results for LDIW-PSO compared with CDIW-PSO.

Criteria Griewank Rastrigin Rosenbrock Schaffer’s f6 Sphere
CDIW-PSO LDIW-PSO CDIW-PSO LDIW-PSO CDIW-PSO LDIW-PSO CDIW-PSO LDIW-PSO CDIW-PSO LDIW-PSO

Mean
fitness 0.014773 0.007609 40.044561 33.055877 44.305058 31.148789 0.007732 0.000117 0.000092 0.000000

Std. Dev. 0.002959 0.008439 8.028912 10.498048 8.861012 20.832263 0.001546 0.001058 0.000016 0.000000
SR (%) 96.2 100 83.6 92.8 99.6 98.0 22.0 98.6 100 100

Table 5: Experimental results for LDIW-PSO compared with REPSO.

Iteration Griewank1 Rastrigin Rosenbrock2 Sphere
REPSO LDIW-PSO REPSO LDIW-PSO REPSO LDIW-PSO REPSO LDIW-PSO

50 — — — — — — — —
100 0.6705 0.7859 30.7320 44.2732 — — 0.00671 0.00493
200 0.4922 0.6437 — — — — — —
300 0.2487 0.5607 — — — — 2.1142e − 04 2.9792𝑒 − 04

400 0.2345 0.4318 20.6671 16.5414 — — — —
500 0.1658 0.3185 17.3751 10.4621 570.7681 352.1663 7.1144𝑒 − 05 9.1853e − 07
800 — — 15.5611 3.9143 — — 6.8751𝑒 − 06 5.8431e − 17
1000 0.1461 0.0967 10.8120 3.2609 300.1407 218.9924 5.6367𝑒 − 07 1.2425e − 28
1500 0.1353 0.0842 — — 260.8421 138.2756 — —
2000 0.1089 0.0794 — — 170.2157 79.9941 — —
3000 — — — — 60.4418 21.5586 — —
1This problem is slightly different from the one in (25).
2This problem is slightly different from the one in (27).

PSO variants described previously to prove that LDIW-PSO
is superior to many of the variants that have been claimed to
be better that it.The results of the experiments are listed in the
Appendix. Using the results as guide, the value of 𝛿was set in
LDIW-PSO for the various test problems as listed in Table 1.
However, 𝛿 was set to 0.015 for 𝑓

2
in Experiment 2 and 0.25

for 𝑓
3
in Experiments 2 and 5.

4.3. Experimental Setup. The settings for the different exper-
iments carried out for the comparisons are described next
one after the other. In all the experiments, LDIW-PSO was
subjected to the settings of its competitors as recorded in
the literature. For LDIW-PSO, 𝑐

1
= 𝑐
2
= 2.0, 𝜔max = 0.9,

𝜔min = 0.4, 𝑉min = 𝛿𝑋min, and 𝑉max = 𝛿𝑋max. Table 2
shows the respective search and initialization ranges for all
the algorithms, the symbol “–” means that the corresponding
test problem was not used by the algorithm under which the
symbol appears.

Experiment 1.Thepurpose of this experimentwas to compare
LDIW-PSO with CDIW-PSO [2]. All the test problems
described previously were used in this experiment, except 𝑓

1
.

The dimension for 𝑓
5
was 2, while it was 30 for others. The

maximum numbers of iterations were set to 1500 with swarm
size of 20, and the experiment was repeated 500 times. Stated
in Table 3 are the set goals (criteria) of success for each of the
problems.

Experiment 2. The purpose of this experiment was to com-
pare LDIW-PSO with REPSO [7]. All the test problems in
Table 1 except 𝑓

1
were used. The dimension for 𝑓

5
was 2,

while it was 10 for others.The performances of the algorithms
were considered at different number of iterations as shown in
Section 5, in line with what is recorded in the literature [7].
The swarm size usedwas 30, and the experiment was repeated
50 times.

Experiment 3. The purpose of this experiment was to com-
pare LDIW-PSOwithDAPSO [13]. Test problems𝑓

1
−𝑓
3
were

used with four different problem dimensions of 20, 30, 40,
and 50. The maximum number of iterations and swarm size
was set to 3000 and 30, respectively, and the experiment was
repeated 50 times.

Experiment 4. The purpose of this experiment was to com-
pare LDIW-PSO with APSO [5]. 𝑓

2
, 𝑓
3
, and 𝑓

4
were used

as test problems with three different problem dimensions
of 10, 20, and 30. The respective maximum numbers of
iterations associated with these dimensions are 1000, 1500,
and 2000, respectively. The experiment was carried out over
three different swarm sizes, 20, 40, and 80 for each problem
dimension, and the experiment was repeated 30 times.

Experiment 5. This experiment compared LDIW-PSO with
DLPSO2 [11]. All the test problems except 𝑓

4
were used in the

experiment with two different problem dimensions of 2 (for

8 The Scientific World Journal

Table 6: Experimental results for LDIW-PSO compared with DAPSO.

Dim Ackley Griewank Rastrigin
DAPSO LDIW-PSO DAPSO LDIW-PSO DAPSO LDIW-PSO

20 3.906209𝑒 − 014 8.970602e − 015 8.605280𝑒 − 002 1.649481e − 002 2.159059𝑒 + 001 2.040020e + 001
30 4.159541𝑒 − 008 1.527799e − 010 2.583338𝑒 − 002 9.258783e − 003 3.263463𝑒 + 001 2.996404e + 001
40 7.046093𝑒 − 005 2.578715e − 007 1.087868𝑒 − 002 4.875733e − 003 3.890287e + 001 4.109865𝑒 + 001

50 1.025568𝑒 − 003 1.629095e − 005 1.346732𝑒 − 002 4.335978e − 003 4.823559𝑒 + 001 4.606947e + 001

Table 7: Experimental results for LDIW-PSO compared with APSO.

Swarm size Dim Maximum iteration Griewank Rastrigin Rosenbrock
APSO LDIW-PSO APSO LDIW-PSO APSO LDIW-PSO

20
10 1000 0.0983 0.2347 5.1565 12.4602 5.8467 4.3695
20 1500 0.0237 0.0150 16.0456 27.6708 47.9842 19.1223
30 2000 0.0117 0.0103 42.2325 33.2050 100.4528 29.3482

40
10 1000 0.0952 0.2231 2.9468 10.5713 4.5431 3.9145
20 1500 0.0201 0.0211 15.3678 19.3199 38.3464 16.5186
30 2000 0.0105 0.0099 33.7538 26.3453 72.5473 26.9638

80
10 1000 0.0689 0.1294 2.0457 9.0800 4.1680 6.5127
20 1500 0.0199 0.0184 10.0563 16.4368 27.9547 17.6043
30 2000 0.0102 0.0080 25.3473 23.2303 69.0609 24.6653

Table 8: Experimental results for LDIW-PSO compared with
DLPSO2.

Criteria Best fitness Mean fitness Std. Dev.
Ackley

DLPSO2 8.6209𝑒 − 06 0.4743 0.6527
LDIW-PSO 2.0441e − 07 0.0000 0.0000

Griewank
DLPSO2 7.7589𝑒 − 06 0.0086 0.0114
LDIW-PSO 3.5694e − 13 0.0083 0.0088

Rastrigin
DLPSO2 −2 −2 0
LDIW-PSO −2 −2 0

Schaffer’s f6
DLPSO2 7.5206𝑒 − 07 5.6300𝑒 − 06 2.8969𝑒 − 06

LDIW-PSO 0.0000e + 00 0.0000e + 00 0.0000e + 00
Sphere

DLPSO2 7.6941𝑒 − 06 9.5001𝑒 − 06 4.9557𝑒 − 07

LDIW-PSO 4.1289e − 14 0.0000e + 00 0.0000e + 00

𝑓
3
and 𝑓
5
) and 30 (for 𝑓

1
, 𝑓
2
, and 𝑓

6
).Themaximum number

of iterations was set to 2000 and swarm sizes to 20, and the
experiment was repeated 20 times.

5. Results and Discussions

Presented in Tables 4–8 are the results obtained for all the
experiments. The results for all the competing PSO variants
were obtained from the respective referenced papers, and
they are presented here the way they were recorded. Thus,
the recording of the results for LDIW-PSO was patterned
after them. In each of the tables, bold values represent the

best results. In the tables, mean best fitness (solution) is a
measure of the precision that the algorithm can get within
a given number of iterations, standard deviation (Std. Dev.)
is a measure of the algorithm’s stability and robustness, while
success rate (SR) [31] is the rate at which an algorithm obtains
optimum fitness result in the criterion range during a given
number of independent runs.

Experiment 1 (comparison of LDIW-PSO with CDIW-PSO).
The results in Table 4 clearly reveal a great difference in
performance between LDIW-PSO and CDIW-PSO [2]. The
results are compared based on the final accuracy of the aver-
aged best solutions, success rate (SR), and standard deviation
(Std. Dev.) of the best solutions. In all the test problems,
the result indicates that LDIW-PSO can get better optimum
fitness result, showing better convergence precision. LDIW-
PSO is also more stable and robust compared with CDIW-
PSO, because its standard deviation is comparatively lesser
in three of the test problems. Besides, LDIW-PSO has better
global search ability and could easily get out of local optima
than CDIW-PSO.

Experiment 2 (comparison of LDIW-PSO with REPSO). In
Table 5, the comparison between LDIW-PSOandREPSOwas
based on the final accuracy of the averaged best solutions
relative to the specified number of iterations and convergence
speed as recorded in [7]. From the results, REPSO appears to
converge faster in Griewank and Rastrigin at the beginning
butwas overtaken by LDIW-PSOwhich eventually converged
faster and had better accuracy. In Rosenbrock and Sphere
problems, LDIW-PSO had better convergence speed and
accuracy in comparisonwith REPSO.The symbol “—”means
that the corresponding iteration number was not considered
for the test problem under which the symbol appears.

The Scientific World Journal 9

Table 9: Different values of parameter 𝛿 and respective mean best fitness for Griewank test problem.

𝛿

Dimension 10 Dimension 30 Dimension 50
Size = 20 Size = 30 Size = 20 Size = 30 Size = 20 Size = 30

1.0 9.913𝑒 − 02 9.125𝑒 − 02 1.157𝑒 + 01 5.607𝑒 + 00 6.269𝑒 + 01 3.941𝑒 + 01

0.75 9.645𝑒 − 02 8.825𝑒 − 02 3.088𝑒 + 00 1.451𝑒 − 02 1.519𝑒 + 01 6.875𝑒 + 00

0.5 9.983𝑒 − 02 9.018𝑒 − 02 1.972𝑒 − 01 1.601𝑒 − 02 2.003𝑒 + 00 5.522𝑒 − 01

0.25 1.002𝑒 − 01 2.925e − 02 1.602𝑒 − 02 1.458𝑒 − 02 1.200𝑒 − 02 9.885𝑒 − 03

0.15 9.772𝑒 − 02 9.276𝑒 − 02 1.556𝑒 − 02 1.450𝑒 − 02 9.925𝑒 − 03 8.654𝑒 − 03

0.1 1.044𝑒 − 01 9.141𝑒 − 02 1.489𝑒 − 02 1.564𝑒 − 02 1.027𝑒 − 02 9.339𝑒 − 03

0.075 1.064𝑒 − 01 1.006𝑒 − 01 1.328𝑒 − 02 1.389𝑒 − 02 8.937𝑒 − 03 7.963𝑒 − 03

0.05 1.011𝑒 − 01 9.417𝑒 − 02 1.521𝑒 − 02 1.580𝑒 − 02 8.224𝑒 − 03 7.821𝑒 − 03

0.025 9.682𝑒 − 02 8.738𝑒 − 02 1.604𝑒 − 02 1.668𝑒 − 02 7.108𝑒 − 03 7.354𝑒 − 03

0.015 9.028e − 02 8.648𝑒 − 02 1.379𝑒 − 02 1.444𝑒 − 02 5.719𝑒 − 03 6.226𝑒 − 03

0.01 1.274𝑒 − 01 1.265𝑒 − 01 1.148𝑒 − 02 1.141𝑒 − 02 5.005𝑒 − 03 4.768𝑒 − 03

0.0075 2.251𝑒 − 01 2.078𝑒 − 01 7.160e − 03 7.595e − 03 4.237𝑒 − 03 4.021e − 03
0.005 5.546𝑒 − 01 3.751𝑒 − 01 8.006𝑒 − 03 8.030𝑒 − 03 4.025e − 03 4.526𝑒 − 03

0.0025 1.258𝑒 + 00 6.833𝑒 − 01 1.203𝑒 − 02 1.218𝑒 − 02 6.808𝑒 − 03 6.013𝑒 − 03

0.0015 1.895𝑒 + 01 9.642𝑒 − 01 1.415𝑒 − 02 1.434𝑒 − 02 7.226𝑒 − 03 7.419𝑒 − 03

0.001 4.061𝑒 + 00 2.083𝑒 + 00 1.366𝑒 − 02 1.622𝑒 − 02 7.184𝑒 − 03 7.462𝑒 − 03

Table 10: Different values of parameter 𝛿 and respective mean best fitness for Rastrigin test problem.

𝛿

Dimension 10 Dimension 30 Dimension 50
Size = 20 Size = 30 Size = 20 Size = 30 Size = 20 Size = 30

1.0 4.551𝑒 + 00 3.400e + 00 9.959𝑒 + 01 8.462𝑒 + 01 2.694𝑒 + 02 2.361𝑒 + 02

0.75 4.537e + 00 3.619𝑒 + 00 6.924𝑒 + 01 5.866𝑒 + 01 1.935𝑒 + 02 1.729𝑒 + 02

0.5 4.646𝑒 + 00 3.476𝑒 + 00 5.253𝑒 + 01 4.282𝑒 + 01 1.330𝑒 + 02 1.151𝑒 + 02

0.25 6.484𝑒 + 00 5.247𝑒 + 00 4.534𝑒 + 01 4.197𝑒 + 01 8.943𝑒 + 01 8.462𝑒 + 01

0.15 1.043𝑒 + 01 9.013𝑒 + 00 4.142𝑒 + 01 3.798𝑒 + 01 7.204𝑒 + 01 6.590𝑒 + 01

0.1 1.149𝑒 + 01 9.470𝑒 + 00 3.702𝑒 + 01 3.380𝑒 + 01 6.183𝑒 + 01 5.653𝑒 + 01

0.075 1.077𝑒 + 01 9.397𝑒 + 00 3.328𝑒 + 01 2.917𝑒 + 01 5.394𝑒 + 01 4.824𝑒 + 01

0.05 1.162𝑒 + 01 1.022𝑒 + 01 3.302e + 01 2.943e + 01 5.370e + 01 4.704e + 01
0.025 1.373𝑒 + 01 1.160𝑒 + 01 3.607𝑒 + 01 3.194𝑒 + 01 5.474𝑒 + 01 4.860𝑒 + 01

0.015 1.387𝑒 + 01 1.159𝑒 + 01 3.893𝑒 + 01 3.521𝑒 + 01 5.762𝑒 + 01 5.087𝑒 + 01

0.01 1.431𝑒 + 01 1.221𝑒 + 01 4.010𝑒 + 01 3.565𝑒 + 01 5.995𝑒 + 01 5.390𝑒 + 01

0.0075 1.475𝑒 + 01 1.213𝑒 + 01 4.164𝑒 + 01 3.692𝑒 + 01 6.256𝑒 + 01 5.476𝑒 + 01

0.005 1.868𝑒 + 01 1.398𝑒 + 01 4.300𝑒 + 01 3.663𝑒 + 01 6.451𝑒 + 01 5.464𝑒 + 01

0.0025 3.337𝑒 + 01 2.507𝑒 + 01 7.294𝑒 + 01 4.917𝑒 + 01 9.215𝑒 + 01 6.073𝑒 + 01

0.0015 4.794𝑒 + 01 4.027𝑒 + 01 1.168𝑒 + 02 7.803𝑒 + 01 1.396𝑒 + 02 8.922𝑒 + 01

0.001 5.792𝑒 + 01 5.220𝑒 + 01 1.898𝑒 + 02 1.548𝑒 + 02 2.102𝑒 + 02 1.390𝑒 + 02

Experiment 3 (comparison of LDIW-PSO with DAPSO). The
results for DAPSOwere obtained from [13]. Comparing these
results with that of LDIW-PSO were measured using the
final accuracy of the respective mean best solutions across
the different problems dimensions as shown in Table 6. In
all the problems and dimensions except dimension 40 of
Rastrigin, LDIW-PSO outperformed DAPSO getting better
fitness quality and precision. This is a clear indication that
LDIW-PSO has better global search ability and is not easily
trapped in local optima compared with DAPSO.

Experiment 4 (comparison of LDIW-PSO with APSO).
Recorded in Table 7 are the results for LDIW-PSO and APSO

[5] over different swarm sizes, dimensions, and iterations.
The basis for comparison is the final accuracy and quality
of their mean best fitness. The two variants put up a good
competition. In Griewank and Rastrigin, APSO performed
better in smaller dimensions, while LDIW-PSO performed
better in higher dimensions. But in Rosenbrock, LDIW-PSO
outperformed APSO in locating better solutions to the
problem.

Experiment 5 (comparison of LDIW-PSO with DLPSO2).
The results for LIDIW-PSO and DLPSO2 [11] in Table 8
are compared based on the best fitness, mean best fitness,
convergence speed, aswell as standard deviation (Std.Dev.) of

10 The Scientific World Journal

Table 11: Different values of parameter 𝛿 and respective mean best fitness for Rosenbrock test problem.

𝛿

Dimension 10 Dimension 30 Dimension 50
Size = 20 Size = 30 Size = 20 Size = 30 Size = 20 Size = 30

1.0 1.165𝑒 + 04 1.040𝑒 + 04 1.851𝑒 + 05 2.873𝑒 + 04 3.075𝑒 + 06 1.148𝑒 + 06

0.75 6.020𝑒 + 03 4.020𝑒 + 03 2.009𝑒 + 04 1.711𝑒 + 04 8.240𝑒 + 05 1.837𝑒 + 05

0.5 2.585𝑒 + 03 2.189𝑒 + 03 1.128𝑒 + 04 8.214𝑒 + 03 1.175𝑒 + 04 1.360𝑒 + 04

0.25 1.872𝑒 + 01 5.571𝑒 + 00 4.307𝑒 + 02 4.445𝑒 + 02 2.315𝑒 + 03 1.056𝑒 + 03

0.15 1.075𝑒 + 01 4.229𝑒 + 00 4.910𝑒 + 01 4.750𝑒 + 01 1.156𝑒 + 02 9.710𝑒 + 01

0.1 4.798𝑒 + 00 4.241𝑒 + 00 4.248𝑒 + 01 4.147𝑒 + 01 9.217𝑒 + 01 8.699𝑒 + 01

0.075 4.680e + 00 4.099e + 00 4.531𝑒 + 01 3.607𝑒 + 01 1.073𝑒 + 02 7.701𝑒 + 01

0.05 5.182𝑒 + 00 4.534𝑒 + 00 3.453𝑒 + 01 3.282𝑒 + 01 6.858𝑒 + 01 6.383𝑒 + 01

0.025 5.770𝑒 + 00 5.598𝑒 + 00 3.148𝑒 + 01 3.035𝑒 + 01 5.450𝑒 + 01 5.215𝑒 + 01

0.015 7.818𝑒 + 00 6.800𝑒 + 00 2.956e + 01 2.832e + 01 5.207e + 01 5.218𝑒 + 01

0.01 7.748𝑒 + 00 6.480𝑒 + 00 2.962𝑒 + 01 2.891𝑒 + 01 5.487𝑒 + 01 5.154e + 01
0.0075 8.085𝑒 + 00 7.945𝑒 + 00 2.998𝑒 + 01 2.948𝑒 + 01 5.505𝑒 + 01 5.164𝑒 + 01

0.005 6.491𝑒 + 00 6.896𝑒 + 00 3.134𝑒 + 01 3.015𝑒 + 01 5.544𝑒 + 01 5.263𝑒 + 01

0.0025 7.943𝑒 + 01 7.682𝑒 + 00 3.052𝑒 + 01 2.915𝑒 + 01 5.656𝑒 + 01 5.163𝑒 + 01

0.0015 5.003𝑒 + 01 1.408𝑒 + 01 3.095𝑒 + 01 2.672𝑒 + 01 5.398𝑒 + 01 5.174𝑒 + 01

0.001 2.417𝑒 + 04 3.426𝑒 + 03 3.020𝑒 + 01 2.949𝑒 + 01 5.614𝑒 + 01 5.222𝑒 + 01

Table 12: Different values of parameter 𝛿 and respective mean best fitness for Sphere test problem.

𝛿

Dimension 10 Dimension 30 Dimension 50
Size = 20 Size = 30 Size = 20 Size = 30 Size = 20 Size = 30

1.0 1.043𝑒 − 20 3.679𝑒 − 23 1.140𝑒 + 03 5.400𝑒 + 02 7.380𝑒 + 03 4.400𝑒 + 03

0.75 9.490𝑒 − 21 1.554𝑒 − 23 1.600𝑒 + 02 4.000𝑒 + 01 1.460𝑒 + 03 7.600𝑒 + 02

0.5 5.108𝑒 − 21 1.048𝑒 − 23 1.349𝑒 − 08 4.015𝑒 − 10 1.000𝑒 + 02 2.000𝑒 + 01

0.25 8.561𝑒 − 22 5.859𝑒 − 24 3.547𝑒 − 09 6.110𝑒 − 11 1.538𝑒 − 05 4.976𝑒 − 07

0.15 5.304𝑒 − 21 9.144𝑒 − 25 1.503𝑒 − 09 2.963𝑒 − 11 6.952𝑒 − 06 2.114𝑒 − 07

0.1 6.679𝑒 − 23 1.203𝑒 − 24 4.432𝑒 − 10 1.193𝑒 − 11 2.224𝑒 − 06 7.656𝑒 − 08

0.075 8.577𝑒 − 23 2.149𝑒 − 25 2.397𝑒 − 10 8.813𝑒 − 12 1.306𝑒 − 06 4.954𝑒 − 08

0.05 3.921𝑒 − 23 1.794𝑒 − 25 1.147𝑒 − 10 3.490𝑒 − 12 5.098𝑒 − 07 2.235𝑒 − 08

0.025 1.006𝑒 − 23 4.835𝑒 − 26 2.596𝑒 − 11 7.592𝑒 − 13 1.620𝑒 − 07 6.654𝑒 − 09

0.015 2.466𝑒 − 24 1.795𝑒 − 26 1.349𝑒 − 11 2.364𝑒 − 13 5.689𝑒 − 08 2.222𝑒 − 09

0.01 1.022𝑒 − 24 4.326𝑒 − 27 3.998𝑒 − 12 1.245𝑒 − 13 3.983𝑒 − 08 8.837𝑒 − 10

0.0075 9.942𝑒 − 25 3.991𝑒 − 27 2.758𝑒 − 12 7.017𝑒 − 14 1.115𝑒 − 08 5.786𝑒 − 10

0.005 6.363e − 25 2.300e − 27 1.449𝑒 − 12 3.061𝑒 − 14 1.116𝑒 − 08 2.034𝑒 − 10

0.0025 2.003𝑒 − 23 1.376𝑒 − 26 3.638e − 13 9.420e − 15 1.592𝑒 − 09 6.778𝑒 − 11

0.0015 4.469𝑒 − 08 2.962𝑒 − 08 7.378𝑒 − 13 1.254𝑒 − 14 1.062e − 09 3.130𝑒 − 11

0.001 2.900𝑒 + 02 9.887𝑒 + 01 5.711𝑒 − 02 8.265𝑒 − 13 2.563𝑒 − 09 2.755e − 11

the best solutions. In Rastrigin, the two algorithms have equal
performances. However, in other test problems, the result
indicates that LDIW-PSO can get better optimum fitness
result, showing better convergence speed. LDIW-PSO is also
more stable and robust compared with DLPSO2, because its
standard deviation is comparatively smaller in all the test
problems. Besides, LDIW-PSO demonstrated better global
search ability and getting out of local optima than DLPSO2.

6. Conclusion

Motivated by the superiority claims by some PSO variants
over LDIW-PSO in terms of performance, a number of

experiments were performed in this paper to empirically
verify some of these claims. Firstly, an appropriate (approx-
imate) percentage of the test problems search space limits
were obtained to determine the particle velocity limits for
LDIW-PSO. Secondly, these values were used in the imple-
mentation of LDIW-PSO for some benchmark optimization
problems and the results obtained compared with that of
some PSO variants that have previously claimed superiority
in performance. LDIW-PSO performed better than these
variant. The performances of the two other recent PSO
variants with different inertia weight strategies were also
compared with LDIW-PSO on similar problems with the
latter showing competitive advantage.Thiswork has therefore

The Scientific World Journal 11

Table 13: Different values of parameter 𝛿 and respective mean best
fitness for Schaffer’s f6 test problem.

𝛿

Dimension 2
Size = 20 Size = 30

1.0 1.342𝑒 − 03 5.446𝑒 − 04

0.75 2.392𝑒 − 03 9.335𝑒 − 04

0.5 2.052𝑒 − 03 7.651𝑒 − 04

0.25 1.387𝑒 − 03 7.212𝑒 − 04

0.15 7.756𝑒 − 04 2.731𝑒 − 04

0.1 6.816𝑒 − 04 1.847𝑒 − 04

0.075 4.865e − 04 1.749𝑒 − 04

0.05 6.413𝑒 − 04 1.612e − 04
0.025 4.275𝑒 − 03 2.740𝑒 − 03

0.015 5.625𝑒 − 03 3.129𝑒 − 03

0.01 4.726𝑒 − 03 2.993𝑒 − 03

0.0075 4.594𝑒 − 03 2.683𝑒 − 03

0.005 5.663𝑒 − 03 3.327𝑒 − 03

0.0025 5.940𝑒 − 03 4.760𝑒 − 03

0.0015 7.582𝑒 − 03 5.449𝑒 − 03

0.001 7.776𝑒 − 03 6.092𝑒 − 03

showed that with good experimental setting, LDIW-PSOwill
perform competitively with similar variants. Precious claims
of inferior performance might therefore be due to some
unfavourable experimental settings. The Appendix provides
further simulation results that can provide useful hints for
deciding the setting velocity threshold for particles for LDIW-
PSO.

Appendix

Tables 9, 10, 11, 12, and 13 show the results of LDIW-PSO in
optimizing some benchmark problems so as to determine a
suitable value for 𝛿 that was used to set the velocity limits for
the particles. The experiments were repeated 500 times for
each of the problems. Two different swarm sizes of 20 and 30
were used for each of the three different problem dimensions
10, 30, and 50. The respective number of iterations that was
used with the dimensions is 1000, 1500, and 2000.The LDIW
strategy was decreased from 0.9 to 0.4 in course of searching
for solution to the problem [7, 10–12, 27], the acceleration
constants (𝑐

1
and 𝑐
2
) were set to 2.0, and 𝑉max = 𝛿(𝑋max) and

𝑉min = 𝛿(𝑋min). In the tables, bold values represent the best
mean fitness value.

Acknowledgment

Thanks are due to the College of Agricultural Science, Engi-
neering and Sciences, University of Kwazulu-Natal, South
Africa, for their support towards this work through financial
grant.

References

[1] R. C. Eberhart and J. Kennedy, “New optimizer using particle
swarm theory,” in Proceedings of the 6th International Sympo-
sium on Micro Machine and Human Science (MHS ’95), pp. 39–
43, Nagoya, Japan, October 1995.

[2] Y. Feng, G. F. Teng, A. X. Wang, and Y. M. Yao, “Chaotic inertia
weight in particle swarmoptimization,” inProceedings of the 2nd
International Conference on Innovative Computing, Information
and Control (ICICIC ’07), p. 475, Kumamoto, Japan, September
2007.

[3] J. Xin, G. Chen, and Y. Hai, “A particle swarm optimizer with
multi-stage linearly-decreasing inertia weight,” in Proceedings
of the International Joint Conference on Computational Sciences
and Optimization (CSO ’09), Sanya, China, April 2009.

[4] Y. H. Shi and R. C. Eberhart, “Empirical study of particle swarm
optimization,” in Proceedings of the IEEE International Confer-
ence on Evolutionary Computation, pp. 1945–1950, Washington,
DC, USA, 1999.

[5] A. Alfi, “PSO with adaptive mutation and inertia weight and its
application in parameter estimation of dynamic systems,” Acta
Automatica Sinica, vol. 37, no. 5, pp. 541–549, 2011.

[6] G. Chen, X. Huang, J. Jia, and Z. Min, “Natural exponential
inertia weight strategy in particle swarm optimization,” in
Proceedings of the 6th World Congress on Intelligent Control and
Automation (WCICA ’06), pp. 3672–3675, Dalian, China, June
2006.

[7] Y.-L. Gao and Y.-H. Duan, “A new particle swarm optimization
algorithm with random inertia weight and evolution strategy,”
in Proceedings of the International Conference on Computational
Intelligence and Security Workshops (CISW ’07), pp. 199–203,
Heilongjiang, China, December 2007.

[8] Y. Gao, X. An, and J. Liu, “A particle swarm optimization
algorithm with logarithm decreasing inertia weight and chaos
mutation,” in Proceedings of the International Conference on
Computational Intelligence and Security (CIS ’08), vol. 1, pp. 61–
65, Suzhou, China, December 2008.

[9] K. Kentzoglanakis and M. Poole, “Particle swarm optimization
with an oscillating inertia weight,” in Proceedings of the 11th
Annual Conference on Genetic and Evolutionary Computation
(GECCO ’09), pp. 1749–1750, Montreal, Canada, July 2009.

[10] H. R. Li and Y. L. Gao, “Particle swarm optimization algo-
rithm with exponent decreasing inertia weight and stochastic
mutation,” in Proceedings of the 2nd International Conference
on Information and Computing Science (ICIC ’09), pp. 66–69,
Manchester, UK, May 2009.

[11] H. Liu, R. Su, Y. Gao, and R. Xu, “Improved particle swarm
optimization using two novel parallel inertia weights,” in Pro-
ceedings of the 2nd IEEE International Conference on Intelligent
Computing Technology and Automation (ICICTA ’09), pp. 185–
188, Hunan, China, October 2009.

[12] R. F. Malik, T. A. Rahman, S. Z. M. Hashim, and R. Ngah,
“New particle swarm optimizer with sigmoid increasing inertia
weight,” International Journal of Computer Science and Security,
vol. 1, no. 2, p. 35, 2007.

[13] X. Shen, Z. Chi, J. Yang, C. Chen, and Z. Chi, “Particle
swarm optimization with dynamic adaptive inertia weight,” in
Proceedings of the IEEE International Conference on Challenges
in Environmental Science and Computer Engineering (CESCE
’10), pp. 287–290, Wuhan, China, March 2010.

[14] Z. Jian-Ru, Z. Guo-Li, and Z. Hua, “Hybrid linear and nonlinear
weight particle swarm optimization algorithm,” in Proceedings

12 The Scientific World Journal

of the International Conference onMachine Learning and Cyber-
netics (ICMLC ’12), vol. 3, pp. 1237–1241, July 2012.

[15] P. Chauhan, K. Deep, andM. Pant, “Novel inertia weight strate-
gies for particle swarm optimization,”Memetic Computing, vol.
5, no. 3, pp. 229–251, 2013.

[16] Y. Shi and R. C. Eberhart, “Fuzzy adaptive particle swarm
optimization,” in Proceedings of the Congress on Evolutionary
Computation, pp. 101–106, Seoul, Republic of Korea, May 2001.

[17] M. A. Arasomwan and A. O. Adewumi, “An adaptive velocity
particle swarm optimization for high-dimensional function
optimization,” in Proceedings of the IEEE Congress on Evolu-
tionary Computation (CEC ’13), pp. 2352–2359, Mexico City,
Mexico, June 2013.

[18] M. A. Arasomwan and A. O. Adewumi, “On adaptive chaotic
inertia weights in particle swarm optimization,” in Proceedings
of the 4th IEEE Symposium Series on Computational Intelligence
(SSCI ’13), pp. 72–79, Singapore, 2013.

[19] S. Luke, Essentials of Metaheuristics, a Set of Undergraduate
Lecture Notes, version 1.2, 1st edition, 2011.

[20] Y. H. Shi and R. C. Eberhart, “Amodified particle swarm
optimizer,” in Proceedings of the IEEE International Conferences
on Evolutionary Computation, pp. 69–73, Anchorage, Alaska,
USA, May 1998.

[21] R. Poli, J. Kennedy, and T. Blackwell, “Particle swarm optimiza-
tion: an overview,” Swarm Intelligence, vol. 1, pp. 33–57, 2007.

[22] A. P. Engelbrecht, Computational Intelligence: An Introduction,
John Wiley & Sons, New York, NY, USA, 2007.

[23] N. Iwasaki, K. Yasuda, and G. Ueno, “Dynamic parameter
tuning of particle swarm optimization,” IEEJ Transactions on
Electrical and Electronic Engineering, vol. 1, no. 3, pp. 353–363,
2006.

[24] Y. Shi and R. Eberhart, “Parameter selection in particle swarm
optimization,” in Evolutionary Programming VII, V. W. Porto,
N. Saravanan, D. Waagen, and A. E. Eiben, Eds., vol. 1447, pp.
591–600, Springer, Berlin, Germany, 1998.

[25] R. C. Eberhart and Y. Shi, “Tracking and optimizing dynamic
systems with particle swarms,” in Proceedings of the Congress on
Evolutionary Computation, vol. 1, pp. 94–100, Seoul, Republic of
Korea, May 2001.

[26] A. Nickabadi, M. M. Ebadzadeh, and R. Safabakhsh, “A novel
particle swarm optimization algorithm with adaptive inertia
weight,”Applied Soft Computing Journal, vol. 11, no. 4, pp. 3658–
3670, 2011.

[27] M. Molga and C. Smutnicki, “Test functions for optimiza-
tion needs,” 2005, http://www.zsd.ict.pwr.wroc.pl/files/docs/
functions.pdf.

[28] A. M. Montaz, C. Khompatraporn, and Z. B. Zabinsky,
“A numerical evaluation of several stochastic algorithms on
selected continuous global optimization test problems,” Journal
of Global Optimization, vol. 31, no. 4, pp. 635–672, 2005.

[29] S. Chetty and A. O. Adewumi, “Three new stochastic local
search algorithms for continuous optimization problems,”Com-
putational Optimization and Applications, 2013.

[30] G. I. Evers, An automatic regrouping mechanism to deal with
stagnation in particle swarm optimization [M.S. thesis], Univer-
sity of Texas-Pan American, Edinburg, Tex, USA, 2009.

[31] B. A. Sawyerr, M. M. Ali, and A. O. Adewumi, “A comparative
study of some real-coded genetic algorithms for unconstrained
global optimization,” Optimization Methods and Software, vol.
26, no. 6, pp. 945–970, 2011.

Submit your manuscripts at
http://www.hindawi.com

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

International Journal of
Computer Games
Technology
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

ISRN
Software
Engineering

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

 Applied
Computational
Intelligence and Soft
Computing

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Advances in Software
Engineering

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

ISRN
Computer Graphics

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

 Advances in 

 Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2009

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

The Scientific
World Journal

ISRN
Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Human-Computer
Interaction

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

ISRN
Machine Vision

Computational
Intelligence &
Neuroscience

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2013

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

ISRN
Communications
and Networking

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Distributed
Sensor Networks

International Journal of

 1

Abstract— This paper presents an improved particle swarm

optimization technique for global optimization. Many variants of
the algorithm have been proposed in literature. However, two
major things characterize many of these variants namely, static
particle search space and velocity limits which bound their
flexibilities in obtaining optimal solutions for many optimization
problems. Besides, despite some additional parameters like
inertia weight and extra computations in these variants
compared with the original algorithm, the premature
convergence of the original particle swarm algorithm remains a
challenge. This paper proposes an improved particle swarm
optimization algorithm without inertia weight. The proposed
algorithm dynamically adjusts the search space and velocity
limits for the swarm in each iteration by simply picking the
highest and lowest values among all the dimensions of the
particles, calculates their absolute values and use the higher of
the two values to define a new search range and velocity limits for
the next iteration. The efficiency and performance of the
proposed algorithm was shown using popular benchmark global
optimization problems with low and high dimensions. Results
obtained demonstrate better convergence speed and precision,
stability, robustness with better global search ability when
compared with six recent variants of the original algorithm.

Index Terms— Global optimization, particle swarm
optimization, evolutionary computation, search space limits,
swarm Intelligence, velocity limits

I. INTRODUCTION
Individuals, enterprises and governments meet varieties of

problems from day to day for which they seek best possible
solutions amidst limited resources. Many of these problems
can be formulated as optimization problems. The Original
Particle Swarm Optimization (OPSO) [3] is a popular nature-
inspired technique that displays problem-solving capabilities
for researchers to solve complex and challenging optimization
problems. It is an evolutionary computation technique inspired
by social behaviour of birds and fish schooling. The concept
was brought into optimization in 1995 [3, 12]

This work was supported in part by the College of Agriculture,

Engineering and Sciences, University of Kwazulu-Natal, South Africa.
A. M. ARASOMWAN is with School of Mathematics, Statistics, and

Computer Science University of Kwazulu-Natal South Africa Private Bag
X54001, Durban, 4000 (e-mail: accuratesteps@yahoo.com).

A. O. ADEWUMI is with School of Mathematics, Statistics, and Computer
Science University of Kwazulu-Natal South Africa Private Bag X54001,
Durban, 4000 (e-mail: adewumia@ukzn.ac.za).

Global optimization seeks to provide solutions to
optimization problems which are often multi-modal and non-
convex. These solutions could all be globally good or a mix of
globally and locally good solutions. While global optimization
algorithms such as OPSO are most naturally applied to the
optimization of multimodal cost functions, they can optimize
unimodal functions as well. However, OPSO is often
characterized with the problem of premature convergence. The
quest for ridding OPSO of this problem and make the
algorithm more efficient has led to many of its variants which
are recorded in literature [4, 6, 14, 23, 25, 18], with many
encouraging successes as well as resounding superiorities
compared with OPSO algorithm. These variants have
additional parameter(s) or extra (complex) computational
effort(s), which without doubt should give them an edge over
OPSO. Two major parameters common among OPSO variants
are inertia weight and velocity threshold. Inertia weight was
introduced into OPSO by [23] and helps the algorithm to
balance its global and local search abilities while the velocity
threshold, which helps control particle from searching outside
the solution search space, has been extensively used in
experimental studies in [24]. Solution search space is
delimited by the upper and lower limits of the decision
variables.

In many of the OPSO variants, solution search space and
velocity threshold are static throughout the execution of the
algorithm [1, 7, 8, 15, 20, 22, 24]. This characteristic
somewhat limits the flexibilities of these variants in the
process of obtaining optimal solutions for many of the
optimization problems. Also, the common problem of
premature convergence associated with OPSO remains
unsolved by very many of the existing its variants [9, 16, 22].
In cases where (near) optimal solutions are obtained, they are
with low precision [1, 6, 14, 20]. In order to obtain optimal
results with higher precision for optimization problems by
OPSO and many of its variants, there are needs to allow the
solution search space and velocity threshold to vary
dynamically based on the state of the particles' dimensions.
This will enable the algorithm to concentrate its searching on
the sub-range dynamically defined during its executing instead
of searching the entire search space all the time. It could also
enable the algorithm escape premature convergence.

In this paper, efforts were made to improve the performance
of OPSO in terms of convergence speed, global search ability
and increased solution accuracy, without additional parameters
or complex computational efforts. The improved OPSO

Improved Particle Swarm Optimizer with
Dynamically Adjusted Search Space and

Velocity Limits
Akugbe Martins ARASOMWAN and Aderemi Oluyinka ADEWUMI, Member

 2

algorithm (IOPSO), which does not use inertia weight,
dynamically adjusted the search space and velocity limits for
the swarm in each iteration by simply picking the highest and
lowest values among all the dimensions of the particles,
calculates their absolute values and then use the higher of the
two values to define a new search range and velocity limits for
next iteration. Empirical results from experiments performed
showed that IOPSO is very efficient compared with the
variants adopted for comparisons.

In the sections that follow, the framework of the OPSO is
considered in Section 2, the OPSO variants adopted for
comparisons are reviewed in Section 3, the proposed IOPSO
technique is described in section 4, results of numerical
simulations are presented in Section 5 and Section 6 concludes
the paper.

II. THE FRAMEWORK OF ORIGINAL PSO (OPSO)
OPSO is a popular member of swarm intelligence

metaheuristic. It is population-based, stochastic, robust,
problem-independent and self-adaptive optimization technique
for solving simple and complex optimization problems. It has
been successfully used to solve many difficult real-world
optimization problems [10, 17, 19]. When the technique was
initially introduced, it was implemented with few lines of
codes using basic mathematical operations; no major
adjustment was needed to adapt it to new problems; it was
almost independent of the initialization of the swarm; the
gradient, continuity or differentiability of the problem to work
with was not needed and very few parameters regulate the
behaviour and efficiency, were required to be tuned to obtain
quality solutions. Implementing this technique requires that
the positions and velocities of a number of particles (swarm)
be randomly generated using upper and lower bounds on the
design variable values, after which the particles are randomly
distributed in the solution search space. In the course of
operation, every particle works with two major information –
its personal experience and reachable neighbours' experiences;
these are used to determine its next move in the solution
space. Besides, each particle is associated with a value
determined by the objective function of the problem being
optimized to measure their qualities. The technique maintains
a single swarm of particles throughout its execution and
adjusts their positions and velocities in each iteration based on
new discoveries about the solution space. These operations are
basic to the implementations of OPSO variants.

The solution search space of the optimization search space
is often represented as n-dimensional space. Also, the position
and velocity of each particle are represented as the vectors Xi
= (xi1, …, xin) and Vi = (vi1, …, vin), respectively. When the
particles move in the search space searching for optimum
solution to the problem being optimized, their velocities and
positions are updated according to (1) and (2).

)()()()1(21 igiiii XPceffXPcoefftVtV (1)

)1()()1(tVtXtX ii (2)

Where Pi and Pg are vectors representing the ith particle
personal best and swarm global best positions respectively;

coeff1 = c1r1 and coeff2 = c2r2; c1 and c2 are acceleration factors
known as cognitive and social scaling parameters that
determine the magnitude of the random forces in the direction
of Pi and Pg ; r1 and r2 are random numbers between 0 and 1
and t is iteration index. A value of 2.0 is used for c1 and c2
respectively.

The positions of particles in the swarm when they are being
updated are controlled to be within some specified bounds as
shown in (3), where minX and maxX represent the lower and
upper bounds of the particle's position. Because the particle
velocity based on (1), without restriction, could grow and
make the particle oscillates around an optimum, increase its
distance to the optimum on each iteration, or go out of the
search space, the idea of velocity clamping was introduced by
Eberhart and Kennedy in 1995 [5], into PSO to avoid the
phenomenon of "swarm explosion". With this introduction, the
particles could take reasonably sized steps so as to rake
through the search space rather than bouncing about
excessively. This has led to significant improvement as
regards the performance of PSO. However, efforts have been
made in time past to eliminate the use of velocity clamping,
but researches have shown that velocity clamping has become
a standard feature of OPSO [5]. Equation (4) shows one of the
ways velocity clamping is implemented, with minV and maxV
representing the lower and upper bounds of the particle's
velocity.

 {

 (3)

 {

 (4)

OPSO being a stochastic population-based technique that
relies directly on the objective values rather than the derivative
information of the problem being optimized is less exposed to
deception in the solution search space. However, it is
susceptible to premature convergence, especially when the
problem to be optimized is multi-peaked and when there are
many decision variables (dimensions). This is because the
more the particles communicate among themselves, the more
they be alike until converging to the same region of the
solution search space. If after some time no better global best
is found by any other particle, they all converge about the
existing global best which may not be the global minimizer.

III. OPSO VARIANTS ADOPTED FOR COMPARISONS
The OPSO variants considered for comparison with the

proposed improved original PSO (IOPSO) in this paper are
subsequently reviewed. These variants are AIW-PSO, iPSO,
MARPSO, AIWPSO, PSOrank and mPSO. All these variants
implements (5) to update the velocities of particles, except
otherwise clearly stated. Equation (5) differ from (1) because
of the inertia weight parameter (ω) introduced into it. This
parameter has attracted a lot of attentions and seems to be the
most important compared with other parameters. The
motivation behind its introduction was the desire to better
control (or balance) the scope of the (local and global) search
of OPSO algorithm and reduce the importance of (or

 3

eliminate) velocity clamping, Vmax during the optimization
process [21, 23].

)()()()1(21 igiiii XPceffXPcoefftVtV (5)

A. Adaptive inertia weight PSO algorithm (AIW-PSO)
This variant was proposed in [22] to improve on balancing

the global exploration and local exploitation abilities for PSO
by taking advantage of the effect of inertia weight to achieve
better results. A measure called individual search ability (ISA)
defined in (6) was used to ascertain the current situation of
each particle, i.e. whether the particle lacks global exploration
or local exploitation abilities in each dimension. A large ISA
means strong global exploration ability, inertia weight should
be decreased. While a small ISA means that the inertia weight
should be increased. This enables a particle decide whether to
increase or decrease its values of inertia weight.

| |

| |

(6)

where, xij is the position of the ith particle in the jth dimension,
pij is the own best solution, pgj is the current global best
solution, |…| denotes absolute value and is a positive
constant close enough to zero.

Depending on the ISA, the inertia weight of ith particle in jth
dimension was dynamically calculated in each iteration using
a transform function defined in (7), so as to enhance the
corresponding weak search abilities. This strategy was found
to improve the performance of PSO algorithm.

 (

)

(7)

where, is a positive constant in the range (0,1].

B. Improved PSO (iPSO)
This variant used opposition-based learning to enhance the

performance of PSO. The underlying principle behind this
approach is the basic idea of opposition-based learning [15]:
assuming a worst case, particle with the lowest fitness, xb, is
taken to be a guess that is “very far away from the existing
solution” in the opposite location. In each iteration this
particle is replaced with its opposite (the anti-particle) as
shown in (8).

 (8)

where xbj ∈ [LBj, UBj], j = 1, 2, …, Nd and Nd is the dimension
of the problem. LBj and UBj are the lower and upper bounds
for the decision variable x, in the dth dimension.

During each iteration, the velocity and personal experience
of the anti-particle are reset while the global best solution is
also updated.

C. Modified attractive and repulsive PSO (MARPSO)
MARPSO is a new diversity-guided PSO and a

modification of the attractive and repulsive PSO (ARPSO) [8].
The major goal of this variant was to solve the problem of
premature convergence associated with PSO by increasing the
diversity of swarm, while maintaining a higher convergence

speed. In achieving their goal, the authors introduced new
measure of population diversity function and concept of the
particle's best flight direction into ARPSO. Because the
algorithm could not guarantee local and global convergences,
a mutation strategy was also introduced into it in order to
improve its convergence. The algorithm used (9) to update the
velocities of particles and maintained (2) for the particles'
positions updating.

 () () () ()

 ((())

 (()))
(9)

Where dir(t) as defined in (10) is the flight direction of the tth
generation and di(t) in (11) is the flight direction of the ith
particle of the tth generation.

 () {

 (()) ()

 (()) ()

 ()

 (10)

The expression dir(t) = 1 means that the swarm does attractive
movement while dir(t) = -1 means it does repulsive
movement. The dlow and dhigh are low and high limits of the
particles respectively.

 () {

 ()

| ()|
 ((()) ())

 ()

 (11)

The inertia part of (9) is beneficial to the search when di(t) is 1
or -1. The diversity of the swarm represented by diversity is
measured according to (12).

 ∑√∑(̅)

 (12)

 The mutation strategy as used in the algorithm is defined in
(13) for velocities of particles and (14) for the positions of
particles.

 () {

 (| ()|) ()

 (| ()|) ()

 (13)

 () {

 (| ()|) ()

 (| ()|) ()

 (14)

Where Vmin and Vmax are the low and high limits of the
speed of particles while r3, r4 U[0,1]. It is evident in (13)
and (14) that the mutation is carried out when the speed of the
particle is less than Vmin.

D. Adaptive inertia weight PSO (AIWPSO)
In [20], AIWPSO was proposed to further improve on the

performance of PSO by introducing inertia weight that uses
the swarm success rate to compute inertia weight by mapping
it to a range of maximum and minimum inertia weight values
[ωmax,ωmin] using a linear function shown in (15). Using this

 4

adaptive inertia weight value, the algorithm is able to improve
the performance of PSO in the static and dynamic
environments. To improve exploration, at the end of each
iteration of the algorithm, the worst particle is replaced by a
mutated best particle. The mutation is done by adding a
Gaussian noise with zero mean standard deviation to one of
the randomly chosen dimension of the best particle to facilitate
exploration. AIWPSO outperformed its competitors virtually
in all the numerical tests performed [20]. The adaptive inertia
weights help to provide a knowledge of situation of the swarm
at each iteration. A high percentage of success indicates that
the particles have converged to a point that is far from the
optimum point and the entire swarm is slowly moving towards
the optimum while a low percentage of success shows that the
particles are oscillating around the optimum without much
improvement.

 () (15)

where, ωstart and ωend are predefined constants representing the
initial and final values of the inertia weight. The success
percentage in the tth iteration (SPt[0,1]) of the swarm is
computed according to (16).

∑

 (16)

where, n is the swarm size and the success of particle i in the
tth iteration () is obtained using (17), with the assumption
that a minimization problem is being considered.

 {

 (
) (

)

 (
) (

)
 (17)

where is the current best position of particle i until
iteration t and f() is the function to be optimized.

E. Rank based PSO with dynamic adaptation (PSOrank)
In [1], a variation on the standard PSO algorithm called

PSOrank was proposed based on cooperative behavior of
particles in the swarm. It uses a time-varying inertia weight
which decreases non-linearly to improve its performance. In
the algorithm, some of the best particles (which decrease in
number as the iteration increases) are selected proportionate to
their respective strengths, after the particles are ranked based
on their fitness, so that they contribute to the updating of the
position of a candidate particle. The strength of each
contributing particle is a function of strivness, immediacy and
number of contributed particles. The local search and
convergence to global optimum solution by the algorithm
depends on these selected best particles. PSOrank updates the
velocity vector of the particles using (18).

 ()

 () (

 ())

 (∑

(

 ()
 ())

)
(18)

where,

() (

()

())

()

()

models the influence of the neighbour particle j on the
candidate particle i in the kth iteration,

 () () ∑ ()

 ⁄ is the ranking

parameter which signifies the strivness of the individual j in
the neighbourhood of the ith particle; fitnessj(k) is the fitness of
particle j in the neighbourhood of particle i and Neighboursi is
the number of neighbour particles.

 () √∑ (

 ()

 ()) ⁄ is the immediacy of

individual j from particle i based on Euclidean distance in D-
dimensional solution space where

 () and ()
respectively represent the positions of the particle j and the
candidate particle i in dimension d of the solution space.

 is the effect of the individuals in the neighbourhood
of the ith particle, where Ni is the number of individuals in the
neighbourhood of particle i; and are
parameters which controls the importance of social knowledge
provided by the neighbour individuals.

F. Modified PSO (mPSO)
This variant [7], addressed the issue of particles getting over

concentrated, tried to delay the algorithm falling into local
minimum and increase the global search capability of the
swarm. The authors used (19) to control the swarm diversity
effectively in order to prevent their quick gathering at the
location of gbest. This was done with the belief that, effective
control of the swarm's aggregation degree will improve the
algorithm's capability to obtain global minimum.

 () (19)

From (19), is a random number drawn from the standard
Gaussian distribution, the initial value of the = 1.0, and set
= every 50 iterations, where is a random number
between [0.01, 0.9]. This method not only produces a small
range of disturbance to achieve the local search with high
probability, but also produces a significant disturbance to step
out of the local minimum area with large step migration in
time.

G. Discussions
All the variants described above tried to address the

problem of getting stuck in local optima (premature
convergence) common with OPSO. In the process of trying to
achieve their goals, the authors of these variants modified
OPSO in various ways by introducing additional parameters
and computations. All the variants outperformed their
competitors in solving various test problems that were used in
the different experiments conducted by their authors.
Summarized in Table I are the additional parameters to OPSO
and the extra computations associated with these variants.

TABLE I: ADDITIONAL PARAMETERS AND COMPUTATIONS IN THE
COMPETING OPSO VARIANTS

No. Variant
Additional

parameters and
computations

Remark

1 AIW-PSO
i. ISA
ii. Vmax and Vmin
iii. ω

(i) and (iii) were
computed. (ii)
was assigned the

 5

search space
limits

2 iPSO i. ω Was set as a
constant

3 MARPSO

i. Flight
directions (for
the swarm
and each
particle

ii. Diversity
iii. Mutation of

particles'
positions

iv. ω
v. dhigh and dlow
vi. Vmax and Vmin

(i) – (v) were
computed and no
value was
explicitly
assigned to (vi)

4 AIWPSO

i. SR
ii. Mutation of

selected
particle

iii. ω
iv. Vmax and Vmin

(i) – (iii) were
computed while
(iv) was not
explicitly stated
whether it was
assigned a
constant value or
the search space
threshold

5 PSOrank

i. Ranking of
particles

ii. Influence
iii. Euclidean

distance
iv. Individual

effects
v.
vi.
vii. Vmax and Vmin
viii. ω

(i) – (iv) and (viii)
were computed.
(v) and (vi) were
set experimentally
while (vii) was
assigned the
search space
threshold

6 mPSO

i.
ii.
iii. newPbest
iv. Vmax and Vmin
v. ω

(i), (ii), (iii) and
(v) were
computed while
(iv) was assigned
a constant value

Considering the OPSO variants described above, MARPSO

and PSOrank are more complicated than others while iPSO is
the least complicated in terms of extra computations and
additional parameters. In this regard, iPSO strived at
maintaining the goal of being a simple algorithm which was
one the desires of the authors of OPSO [12], but could not
maintain the goal of robustness. For mPSO, AIWPSO,
MARPSO and PSOrank, the goal of robustness was achieved to
a very high level, but could not maintain the goal of
simplicity. From Table I, inertia weight (ω) and particles
velocity limits (Vmax and Vmin) parameters are common among
the variants. In cases where the velocity limits were assigned
the upper and lower limits of the solution search space of a
problem, the values remained constant throughout the lifetime
of the algorithm [1, 22]. This was equally the same thing when
the velocity threshold was assigned constant values relative to
each problem [7]. Also, in all the variants as it is common

among other OPSO variants, the solution search space remains
constant till the algorithms finish their executions.

The inertia weight and velocity threshold plays important
roles in the exploration and exploitation ability of PSO
algorithm, though their selections may be problem-dependent.
There are possibilities of encountering some practical
problems with lack of knowledge regarding the selection of
Vmax which could result to using trial-and-error approach in
order to make a selection and this can be very labourious and
time consuming. Allowing the velocity threshold to remain
static, either by assigning to it a predefined constant value or a
search space threshold, throughout the lifetime of the
algorithms can make the particles have some step size that
may make them do more than enough exploration or less than
enough exploitation. The inertia weight parameter is the
common tool being used to address this challenge, but this
could better be addressed by working directly with the
velocities of the particles because it is the direct determinant
of the particles' step sizes. Making the solution search spaces
static could also make the particles spend needless time
searching areas that may not be necessary for solution. If the
velocity and solution search space limits are made to vary
(dynamic) throughout the lifetime of the algorithms without
using the inertia weight parameter, there are possibilities of
obtaining better and quality solutions to optimization
problems. This is what the present paper seeks to achieve.

IV. THE IMPROVED ORIGINAL PSO (IOPSO)
All the PSO variants considered in this paper obtained

solutions for the test problems that were used to validate the,
with varied solution quality and precision. These variants have
additional parameters and some extra (or complex)
computations that enabled them achieve their various levels of
successes. The major goal of this paper is to improve on the
performance of OPSO, in a simple way, without using the
inertia weight parameter (ω) or getting involved in complex
computation(s). Apart from the commonly used Vmax and
velocity clamping percentage (represented as in this paper),
no other parameters were used. This was done to make the
algorithm simple and robust yet very effective.

In order to achieve this major goal, a careful study was done
regarding the particles' dimensions. First, the following
observations were made:
i. During search, every particle dynamically changes its

position in a complex environment facing different
situation. As a result, each particle along every dimension
may have different trade-off between global and local
search abilities

ii. Clamping the velocity of a particle changes the step size
as well as the particle’s direction since changing any
component of a vector changes that vector’s direction. As
each dimension is optimized independently, the particle
moves toward the global best on each dimension with a
speed depending on the velocity limits. Since the
maximum iterative movement toward global best on any
dimension is clamped, particles may be thought of as
combing the search space a bit more thoroughly than
when their velocities are unclamped [5]

 6

iii. It has also been experimentally discovered that large
velocity threshold enhances exploration while small
velocity threshold enhances exploitation [24]

iv. A minimizer is sought for the optimization problem
v. The final fitness (objective function) value depends on the

values of the various dimensions that make up the
minimizer

vi. When the algorithm terminates, the final values at the
various dimensions of the minimizer are smaller than their
initial values (when they were initialized at the beginning
of the algorithm)

vii. From the foregoing, the primary purpose of an
optimization algorithm is to optimize the values of each
dimension (decision variables) from its initial value to a
smaller (final) value such that the objective function value
is the possible minimum (i.e. for minimization problems).

Second, an experimental study was conducted using OPSO
to observe the progressive values of the dimensions as well as
the fitness value for each particle while the algorithm is being
run. The Ackley problem was used for the experiment, with
dimension of 10, swarm size of 10, upper and lower particle
velocity limits set as vmax = xmax and vmin = xmin and a maximum
iteration of 100. Sample results for the values of the different
dimension and fitness at the initialization state, as well as at
the 10th, 20th, 50th and 100th iteration relative to the particles
are shown in Appendix 1. From the results, it was discovered
that algorithm

When the velocity and search space limits were allowed to
vary dynamically (method described below), the experiment
was repeated with the same settings. It was discovered that
there was a great improvement as shown by the sample results
in Appendix 2. The velocity threshold was used to control
exploitation while the search space threshold was used to
control exploration.
In every iteration, the largest dimension value (Ld) and the
smallest dimension value (Sd) among the dimensions of all the
particles, were obtained according to (20) and (21).

(

(

)) (20)

(

(

)) (21)

where,
 is the ith particle with jth

 dimension. The upper limit
xmax and lower limit xmin of the solution search space for the
particles were obtained according to (22) and (23).

 (| | | |) (22)

 (23)

where | . | means absolute value. After obtaining xmax and xmin,
they are used to compute the upper (vmax) and lower (vmin)
particle velocity limits as defined in (24) and (25).

 (24)

 (25)

where, is a velocity clamping percentage. It serves as a
scaling factor of the upper and lower solution space limits to
help reduce the velocity range for particles in the process of
operation by IOPSO.

After obtaining the new velocity limits and solution search
space, the particles are redistributed in the search space. When
the particles' positions are being updated, contrary to the
common method in (3) for ensuring that the particles do not
move out of the solution search space, IOPSO uses Fig. 1.
This method in some way help the algorithm achieve some
level of exploration.

If xi < xmin

 xi xmin + (xmin – xi)* random(0,1)

else if xi > xmax

 xi xmax - (xi – xmax)* random(0,1)

end if

Fig. 1: Particle position clamping

Shown in Fig. 2 below is the algorithm for IOPSO. The
shaded portions indicate areas of improvements made to
OPSO.

1) Exploration feature of IOPSO
In order to be able to leave a current peak and look for better
solutions in the search space, IOPSO utilizes (20) – (23) to
redistribute the particles within the newly calculated solution
search space. This method could provide the particles with the
opportunity of leaving their current positions to other parts of
the search space, thus helping to escape getting stuck in local
optimum. This happens throughout the process of the
algorithm.
2) Exploitation feature of IOPSO

To facilitate the refinement of the best solution it has found
so far, (24) and (25) enable IOPSO to search a small vicinity
of this solution. This is so because, as the algorithm's
operation progresses, the velocity range of the particles
decreases, thereby reducing the distance each particle should
exploit for better solution and the smaller the velocity range
the higher the exploitation by the particles.

V. NUMERICAL SIMULATIONS
To validate the performance of the proposed IOPSO, a total

of 6 different recent and efficient PSO variants, namely: AIW-
PSO, iPSO, MARPSO, AIWPSO, mPSO and PSOrank were
adopted for comparisons. Different experiments, relative to the
competing PSO variants, used different set of test problems
which were also used to test IOPSO. The application software
was developed in Microsoft Visual C# programming
language.

 7

Begin IOPSO Algorithm

Input: f: the function to optimize

 s: the swarm size

 d: the problem dimension

 pr: solution search space

 vr: particle velocity range

Output: x*: the best particle position found

 f*: the best fitness value found

Initialize: position xi = (xi1, …, xid) and velocity vi = (vi1, …, vid),

for all particles in problem space

evaluate f(xi) in d variables and get pbesti, (i = 1, …, s)

gbest best of pbesti

While stopping criteria is false do

compute new solution search range, pr, using (20) – (23)

compute new particle velocity range, vr, using (24) and (25)

randomly redistribute particles in the new pr

randomly reinitialize velocities for particles using the new vr

Loop for s times

Loop for d times

update vi for particle using (1)

validate for velocity boundaries using (4)

update xi for particle using (2)

validate for position boundaries using Fig. 1

End

End

If f(xi) < f(pbesti) then pbesti xi

If f(xi) < f(gbest) then

gbest xi

f(gbest) f(xi)

end if

End while

x* gbest

f* f(gbest)

Return x* and f*

End IOPSO Algorithm

Fig. 2: Algorithm for IOPSO

A. Benchmark problems
Different test problems (see Table III) with varied

difficulties that are diverse enough to cover many of the
problems which can arise in global optimization problems
were used to verify the performance of IOPSO, in comparison
with the competing variants. All the test problems were
obtained from [1, 7, 8, 15, 20, 22]. Some of the characteristics
(US – unimodal separable, UN – unimodal non-separable, MS
– multimodal separable, MN – multimodal non-separable)
were obtained from [11].

B. Parameter setting
Two parameters were set for IOPSO, irrespective of their

values used in the various competing variants. These
parameters are c1, c2, and. Different values like 0.5, 0.15,
0.05, 0.75 and 1.0 have been used for in the literatures [1, 2,
5, 13, 22]. In this paper, the value for in (24) and (25) is
0.15; this value was used because it has been proved to be

good and efficient [5, 13]. The value for c1 and c2 was 2.0; this
value has also been proved to be generally good and are
commonly used in the literature [1, 2, 8, 23]. The parameters
r1 and r2 were randomly generated using the uniform random
number generator. Inertia weight parameter ω was not used in
IOPSO.

C. Settings of the experiment
A total of 6 different experiments were conducted. The

settings of each experiment were relative to the competing
variant as recorded in the respective literature. The settings for
all the experiments are stated below one after the other,
relative to each competing variant. Table II summarizes the
different testing ground to prove the robustness, convergence
speed, solution quality and stability of the algorithms. The
initial positions of particles in IOPSO were generated using
uniform random number generator.

TABLE II: SETTINGS FOR PSO VARIANTS ADOPTED FOR COMPARISONS WITH IOPSO

No. Variant Testing ground
Particles initialization Swam sizes Problem dimensions Number of test problems

1 AIW-PSO Asymmetric 20, 40 and 80 10, 20 and 30 3
2 iPSO Symmetric 50 30 7
3 MARPSO Symmetric 20 20, 50 and 100 4
4 AIWPSO Symmetric 20 2 and 30 12
5 PSOrank Asymmetric 30 2, 10, 20 and 30 6
6 mPSO Symmetric 30 2, 10, 20 and 30 6

 8

TABLE III: BENCHMARK PROBLEMS

No. Problem Formulation Characteristics Optimum

1 Ackley (⃗)

(

 √

∑

)

 (

∑ ()

) MN 0

2 Griewank (⃗)

(∑

) (∏ (

√
)

) MN 0

3 Noisy Quadric (⃗) ∑
 ()

 US 0

4 Noncontinous Rastrigin

 (⃗) ∑(
 ())

 {

 | |
 ()

 | |

}

MS 0

5 Rastrigin (⃗) ∑(
 ())

 MS 0

6 Rosenbrock (⃗) ∑((
))

()
 UN 0

7 Rotated Ellipsoid (⃗) ∑(∑

)

 UN 0

8 Salomon (⃗) (∑

) √∑

 MN 0

9 Schaffer's f6 (⃗) ∑(
 (√

)

((

))
)

 MN 0

10 Schwefel P2.22 (⃗) ∑| |

 ∏| |

 UN 0

11 Shubert (⃗) ∏(∑ (())

)

 MN -186.7309

12 Sphere (⃗) ∑

 US 0

13 Step (⃗) ∑(⌊ ⌋)

 US 0

1) Experiment 1

In this experiment IOPSO was compared with AIW-PSO

[22]. The test problems, search ranges and initialization ranges

are stated in Table IV while their dimensions and swarm sizes

in Table II. The maximum numbers of iterations was set to

1000, 1500 and 2000 respectively for the dimensions. The

experiment was repeated 100 times for each test problem.

TABLE IV: SETTINGS FOR EXPERIMENT 1

Test problem Griewank Rastrigin Rosenbrock

Search range [-600,600] [-10,10] [-100,100]

Initialization range [300,600] [2.56,5.12] [15,30]

 9

2) Experiment 2

In this experiment IOPSO was compared with iPSO [15]. The
test problems dimensions and swarm sizes are stated in Table
II. The total number of simulations was 30 and each
simulation was allowed to run for 50,000 evaluations of the
objective function. Shown in Table IV are test problems,
search ranges and initialization ranges.
3) Experiment 3
In this experiment IOPSO was compared with MARPSO [8].
The test problems, search ranges and initialization ranges are
stated in Table VI while their dimensions and swarm sizes are
stated in Table II. The number of evaluations of objective
function for the different problem dimensions was set to
40000, 100000, and 200000 respectively. Error tolerance was
set to 10-10, that is, fitness smaller than error tolerance was
considered as zero. For IOPSO, the experiment was repeated
100 times for each of the test problems.
4) Experiment 4
In this experiment IOPSO was compared with AIWPSO [20].
The test problems, search ranges and initialization ranges are
stated in Table VII while their dimensions and swarm sizes are
stated in Table II. The maximum allowed number of function
evaluations was set to 200,000. The experiment was repeated
30 times for each of the test problems.

5) Experiment 5
In this experiment IOPSO was compared with PSOrank [1]. The
test problems, search ranges and initialization ranges are stated
in Table VII while their dimensions and swarm sizes are stated
in Table II. The maximum numbers of iterations was set to
1000, 1500 and 2000 for 10, 20 and 30 dimensions
respectively. For Schaffer's f6 problem, the maximum
iteration was set to 1000. The experiment was repeated 100
times for each test problem. Success criterion was set for all
the problems; for Schaffer's f6, success criterion was set to 10-

6 and 10-2 for others. After the maximum iteration, if the
minimum value reached by the algorithm was not below the
threshold, the run was considered unsuccessful. Average
fitness smaller than 10-15 was considered as zero.
6) Experiment 6
In this experiment IOPSO was compared with mPSO [7]. The
test problems, search ranges and initialization ranges are stated
in Table IX while their dimensions and swarm sizes are stated
in Table II. The maximum numbers of iterations was set to
3000 for all dimensions. The experiment was repeated 50
times for each test problem. The target value of function
optimization was set to 10-10. After the maximum iteration,
any average fitness smaller than 10-10 was considered to be
zero. The goal of this experiment was to verify whether
IOPSO.

TABLE V: SETTINGS FOR EXPERIMENT 2

Test problem Ackley Griewank Rastrigin Rosenbrock
Rotated hyper-

ellipsoid Salomon Sphere

Search range [-32,32] [-600,600] [-5.12,5.12] [-2,2] [-100,100] [-100,100] [-100,100]

Initialization range [-32,32] [-600,600] [-5.12,5.12] [-2,2] [-100,100] [-100,100] [-100,100]

TABLE VI: SETTINGS FOR EXPERIMENT 3

Test problem Ackley Griewank Rastrigin Rosenbrock

Search range [-32,32] [-600,600] [-5.12,5.12] [-30,30]

Initialization range [-32,32] [-600,600] [-5.12,5.12] [-30,30]

TABLE VII: SETTINGS FOR EXPERIMENT 4

Test problem Ackley Griewank Noisy Quadric NC Rastrigin Rastrigin Rosenbrock

Search range [-32,32] [-600,600] [-1.28,1.28] [-30,30] [-5.12,5.12] [-5,10]

Initialization range [-32,32] [-600,600] [-1.28,1.28] [-30,30] [-5.12,5.12] [-5,10]

Test problem Rotated-ellipsoid Schwefel Schwefel P2.22 Shubert Sphere Step

Search range [-100,100] [-500,500] [-10,10] [-10,10] [-100,100] [-100,100]

Initialization range [-100,100] [-500,500] [-10,10] [-10,10] [-100,100] [-100,100]

TABLE VIII: SETTINGS FOR EXPERIMENT 5

Test problem Ackley Griewank Rastrigin Rosenbrock Schaffer's f6 Sphere

Search range [-30,30] [-600,600] [-5.12,5.12] [-30,30] [-100,100] [-100,100]

Initialization range [15,30] [300,600] [2.56,5.12] [15,30] [50,100] [50,100]

TABLE IX: SETTINGS FOR EXPERIMENT 6

Test problem Ackley Griewank Rastrigin Rosenbrock Schaffer's f6 Sphere

Search range [-30,30] [-600,600] [-5.12,5.12] [-30,30] [-5.12,5.12] [-1000,1000]

Initialization range [-30,30] [-600,600] [-5.12,5.12] [-30,30] [-5.12,5.12] [-1000,1000]

 10

D. Comparative Study and Discussions
Results obtained from all the experiments are presented and

discussed in this sub-section to show the overall performance
of the proposed method compared to other methods. In all the
comparisons, mean best solution (Mean Fitness) is a measure
of the precision that the algorithm can get within given
iterations while standard deviation (Std. Dev.) is a measure of
the algorithm's stability and robustness and success rate (SR)
is the rate of the optimum fitness result in the criterion range
experimenting a number times independently.

Recorded in Tables X – XV are the numerical results
obtained for all the experiments. All the results for the
competing PSO variants were obtained from the respective
referenced papers and they are presented here the way they
were recorded. Thus, the recording of the results for IOPSO
were patterned after them. In each of the tables, for ease of
observation bold values represent the best results.

1) Results for Experiment 1

The results in Table X clearly reveal a great difference in
performance between IOPSO and AIW-PSO. The results are
compared based on the final accuracy of the averaged best
solutions. In all the test problems across the swarm sizes and

dimensions except dimension 30 with swarm size 80, results
indicate that IOPSO can get better optimum fitness results,
showing better convergence precision better global search
ability compared with AIW-PSO. The solution obtained for
Rastrigin problem when the swarm size was 80 and dimension
30, shows that IOPSO was not comfortable working with large
swarm size relative to the problem, under the limitation of
allowed maximum number of iterations. IOPSO obtained
optimal solutions for Griewank and Rastrigin, but it was
trapped in local minimum solving Rosenbrock.

2) Results for Experiment 2

In Tables XI, IOPSO is compared together with iPSO based
on their final accuracies of the averaged best solutions and
stability. Both algorithms performed equally in Ackley and
Sphere problems. IOPSO demonstrated better search ability to
obtain optimal minimum with better accuracy and stability for
Griewank, Rotated Ellipsoid and Salomon. For Rosenbrock,
the two algorithms could not obtain optimal minimum but
iPSO was better in solution accuracy while IOPSO was better
in algorithm stability. iPSO performed better in Rastrigin; this
is because IOPSO was not comfortable working with the large
swarm size within the allowed number of iterations.

TABLE X: THE BEST FITNESS VALUES FOR IOPSO AND AIW-PSO

Swarm
size Dimension Max

Iteration
Griewank Rastrigin Rosenbrock
AIW-PSO IOPSO AIW-PSO IOPSO AIW-PSO IOPSO

20
10 1000 0.0734 0.0000 3.7415 0.0000 48.6378 8.9251
20 1500 0.0252 0.0000 11.1323 0.0000 115.1627 18.9097
30 2000 0.0120 0.0000 22.1155 0.0000 218.9012 28.9001

40
10 1000 0.0671 0.0000 1.9900 0.0000 24.5149 8.9160
20 1500 0.0266 0.0000 7.2145 0.0000 60.0686 18.8963
30 2000 0.0146 0.0000 17.5765 0.0000 128.7677 28.8835

80
10 1000 0.0106 0.0000 1.0051 0.0000 19.2232 8.9088
20 1500 0.0258 0.0000 5.0615 2.0800 52.8523 18.8815
30 2000 0.0106 0.0000 13.1237 19.5370 149.4491 28.8659

TABLE XI: RESULTS FOR IOPSO AND IPSO FOR THE SCALABLE BENCHMARK PROBLEMS IN 10

Problem Ackley Griewank Rastrigin Rosenbrock
Method iPSO IOPSO iPSO IOPSO iPSO IOPSO iPSO IOPSO

Mean Fitness 0.000000 0.000000 0.006163 0.000000 27.460845 29.578568 20.645323 28.879818
Std. Dev. 0.000000 0.000000 0.009966 0.000000 11.966896 56.553040 0.426212 0.016367

Problem Rotated Ellipsoid Salomon Sphere
Method iPSO IOPSO iPSO IOPSO iPSO IOPSO

Mean Fitness 0.355572 0.000000 0.113207 0.099834 0.000000 0.000000
Std. Dev. 0.890755 0.000000 0.034575 0.000002 0.000000 0.000000

3) Results for Experiment 3

Table XII compares the results of IOPSO with that of
MARPSO based on their final accuracies of the averaged best
solutions. IPSO generally performed better than MARPSO
because it was able to obtain optimal minimum for 3 (Ackley,
Griewank and Rastrigin) out of the 5 problems across the
problems dimensions whereas MAPSO was able to obtain
optimal minimum for Rastrigin. IOPSO was able to obtain

better result for Rastrigin because a swarm size of 20 was
used. For Rosenbrock, the two algorithms could not obtain
optimal minimum but the solutions obtained by MARPSO
across the problems dimensions were better in terms of
accuracy.

 11

4) Results for Experiment 4
Table XIII represents two measures (mean fitness and

standard deviation) for the experimental results obtained by
IOPSO and AIWPSO in 12 problems. Out of these problems,
IOPSO significantly outperforms AIWPSO in 8 of them while
AIWPSO obtained better results in 3 of them. But the two
algorithms successfully optimized the Step problem with equal
precision, quality and stability. IOPSO was able to obtain
optimal minimum for Rastrigin and Non-continuous Rastrigin
(NC Rastrigin) because the swarm size used for the
experiment was 20. In Griewank and Rastrigin problems,
while AIWPSO became trapped in the local optima, IOPSO
was able to escape and obtained optimal results. Though
AIWPSO got good results in Ackley, Rotated Ellipsoid,
Schwefel P2.22 and the problem with noise (Noisy Quadric),
but IOPSO excelled it by obtaining results with better quality,
precision and stability. The two algorithms could not obtain
optimal solution for Rosenbrock and Schwefel, but AIWPSO
obtained better solutions for them than IOPSO; however,
IOPSO was more stable optimizing Rosenbrock. AIWPSO
obtained optimal solution for Shubert but IOPSO could not
because its results for some of the runs were not optimal
which affected its average performance in the problem.
Considering the entire set of problems, IOPSO demonstrated
better global search ability, convergence quality and speed, as
well as stability compared with AIWPSO.

5) Results for experiment 5

The numerical results for the test problems are recorded in
Tables XIV (a) – (d). The results are presented in order of
problem dimensions for the scalable problems and then
followed by the Schaffer's f6 problem. The two algorithms
successfully optimized Rastrigin across the three different
problem dimensions and Schaffer's f6 which is of dimension 2.

They demonstrated equal stability, search ability and obtained
solutions with same quality. In Rosenbrock problem, PSOrank
obtained solutions with better quality and demonstrated better
search ability in all the dimensions, but IOPSO was more
stable. Though the two algorithms had equal success rate in
Ackley, Griewank and Sphere across the dimensions, IOPSO
significantly outperformed PSOrank in result quality,
robustness, stability and global search ability.

6) Results for experiment 6

Tables XV(a) – (d) show all the results of IOPSO and
mPSO for six problems. The two algorithms were tested with
different dimensions of the problems and four measures as
shown in the tables were used to verify their performances.
From the results, the two algorithms could not reach the given
target value when optimizing Rosenbrock problem; while
mPSO obtained a result with little difference in accuracy,
IOPSO was more stable across the dimensions. For the other
problems, in terms of result quality, convergence accuracy,
robustness, algorithm stability and global search ability the
two algorithms had equal performance in optimizing the
problems. However, the results revealed that the two
algorithms differ in terms of convergence speed. Across the
problem dimensions, IOPSO converged twice as fast as mPSO
in Ackley and Sphere problems but almost twice as fast as
mPSO in Griewank problem. Optimizing Rastrigin problem,
IOPSO also converge faster than mPSO when the problem
dimension was set to 10, but as the problem dimension was
increased to 20 and 30, mPSO converged faster than IOPSO.
In Schaffer's f6 problem, mPSO had higher convergence speed
than IOPSO.

TABLE XII: THE BEST FITNESS VALUES FOR IOPSO AND MARPSO

Dimension Function
evaluation

Ackley Griewank Rastrigin Rosenbrock
MARPSO IOPSO MARPSO IOPSO MARPSO IOPSO MARPSO IOPSO

20 40000 0.00e+00 0.00e+00 4.03e-03 0.00e+00 0.00e+00 0.00e+00 0.13 1.89e+01
50 100000 2.39e-10 0.00e+00 1.97e-04 0.00e+00 0.00e+00 0.00e+00 1.28 4.89e+01
100 200000 3.99e-09 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 16.93 9.89e+01

TABLE XIII: RESULTS FOR IOPSO AND AIWPSO

Problem Ackley Griewank Noisy Quadric NC Rastrigin
Method AIWPSO IOPSO AIWPSO IOPSO AIWPSO IOPSO AIWPSO IOPSO

Mean Fitness 6.9870e-15 4.4409e-16 2.8524e-02 0.0000e+00 5.5241e-03 6.0166e-06 1.1842e-16 0.0000e+00
Std. Dev. 4.2073e-31 0.0000e+00 7.6640e-04 0.0000e+00 1.5358e-05 6.0163e-06 4.2073e-31 0.0000e+00

Problem Rastrigin Rosenbrock Rotated Ellipsoid Schwefel
Method AIWPSO IOPSO AIWPSO IOPSO AIWPSO IOPSO AIWPSO IOPSO

Mean Fitness 1.6583e-01 0.0000e+00 2.5003e+00 2.8901e+01 1.9570e-10 4.2366e-256 -1.1732e+04 -2.7375e+03
Std. Dev. 2.1051e-01 0.0000e+00 1.5978e+01 1.9131e-02 1.2012e-19 0.0000e+000 1.1409e-25 4.2861e+02

Problem Schwefel P2.22 Shubert Sphere Step
Method AIWPSO IOPSO AIWPSO IOPSO AIWPSO IOPSO AIWPSO IOPSO

Mean Fitness 1.6534e-62 2.2083e-206 -1.8673e+02 -1.7717e+02 3.3703e-134 0.0000e+00 0.0000e+00 0.0000e+00
Std. Dev. 7.7348e-123 0.0000e+000 1.0306e-27 9.8384e+00 5.1722e-267 0.0000e+00 0.0000e+00 0.0000e+00

 12

TABLE XIV(A): RESULTS FOR IOPSO AND PSORANK FOR THE SCALABLE BENCHMARK WITH DIMENSION OF 10
Problem Ackley Griewank Rastrigin Rosenbrock Sphere
Method PSOrank IOPSO PSOrank IOPSO PSOrank IOPSO PSOrank IOPSO PSOrank IOPSO

Mean Fitness 1.31e-06 0.00e+00 2.53e-05 0.00e+00 0.00e+00 0.00e+00 9.14e-03 8.92e+00 1.21e-10 0.00e+00
Std. Dev. 6.54e-06 0.00e+00 3.47e-o5 0.00e+00 0.00e+00 0.00e+00 1.42e-02 7.31e-03 8.36e-10 0.00e+00
SR 1 1 1 1 1 1 0.96 0 1 1

TABLE XIV(B): RESULTS FOR IOPSO AND PSORANK FOR THE SCALABLE BENCHMARK WITH DIMENSION OF 20

Problem Ackley Griewank Rastrigin Rosenbrock Sphere
Method PSOrank IOPSO PSOrank IOPSO PSOrank IOPSO PSOrank PSOrank AIWPSO PSOrank

Mean Fitness 4.22e-06 0.00e+00 4.47e-07 0.00e+00 0.00e+00 0.00e+00 1.61e+00 1.89e+01 1.08e-09 0.00e+00
Std. Dev. 9.11e-06 0.00e+00 7.69e-07 0.00e+00 0.00e+00 0.00e+00 2.04e+00 1.46e-02 3.76e-09 0.00e+00
SR 1 1 1 1 1 1 0.56 0 1 1

TABLE XIV(C): RESULTS FOR IOPSO AND PSORANK FOR THE SCALABLE BENCHMARK WITH DIMENSION OF 30

Problem Ackley Griewank Rastrigin Rosenbrock Sphere
Method PSOrank IOPSO PSOrank IOPSO PSOrank IOPSO PSOrank IOPSO PSOrank IOPSO

Mean Fitness 3.12e-05 0.00e+00 2.73e-08 0.00e+00 0.00e+00 0.00e+00 1.27e+01 2.89e+01 2.05e-08 0.00e+00
Std. Dev. 8.35e-05 0.00e+00 5.24e-08 0.00e+00 0.00e+00 0.00e+00 1.39e+01 1.52e-02 6.41e-08 0.00e+00
SR 1 1 1 1 1 1 0.19 0 1 1

TABLE XIV(D): RESULTS FOR IOPSO AND PSORANK FOR SCHAFFER'S F6

Problem Schaffer's f6
Method PSOrank IOPSO

Mean Fitness 0.00e+00 0.00e+00
Std. Dev. 0.00e+00 0.00e+00
SR 1 1

TABLE XV(A): RESULTS FOR IOPSO AND MPSO FOR THE BENCHMARK WITH DIMENSION OF 10

Problem Ackley Griewank Rastrigin Rosenbrock Sphere
Method mPSO IOPSO mPSO IOPSO mPSO IOPSO mPSO IOPSO mPSO IOPSO

Mean Fitness 0.000 0.000 0.000 0.000 0.000 0.000 8.253 8.915 0.000 0.000
Std. Dev. 0.000 0.000 0.000 0.000 0.000 0.000 0.210 0.009 0.000 0.000
Avg. Iteration 468.08 203.82 294.32 176.42 315.24 239.92 3000 3000 340.18 139.12
SR 50/50 50/50 50/50 50/50 50/50 50/50 0/50 0/50 50/50 50/50

TABLE XV(B): RESULTS FOR IOPSO AND MPSO FOR THE BENCHMARK WITH DIMENSION OF 20

Problem Ackley Griewank Rastrigin Rosenbrock Sphere
Method mPSO IOPSO mPSO IOPSO mPSO IOPSO mPSO IOPSO mPSO IOPSO

Mean Fitness 0.000 0.000 0.000 0.000 0.000 0.000 18.429 18.890 0.000 0.000
Std. Dev. 0.000 0.000 0.000 0.000 0.000 0.000 0.301 0.014 0.000 0.000
Avg. Iteration 532.78 252.96 343.42 183.98 354.10 446.42 3000 3000 397.64 177.08
SR 50/50 50/50 50/50 50/50 50/50 50/50 0/50 0/50 50/50 50/50

TABLE XV(C): RESULTS FOR IOPSO AND MPSO FOR THE BENCHMARK WITH DIMENSION OF 30

Problem Ackley Griewank Rastrigin Rosenbrock Sphere
Method mPSO IOPSO mPSO IOPSO mPSO IOPSO mPSO IOPSO mPSO IOPSO

Mean Fitness 0.000 0.000 0.000 0.000 0.000 0.000 28.586 28.881 0.000 0.000
Std. Dev. 0.000 0.000 0.000 0.000 0.000 0.000 0.273 0.020 0.000 0.000
Avg. Iteration 562.60 289.86 370.06 219.28 395.22 655.28 3000 3000 415.02 206.88
SR 50/50 50/50 50/50 50/50 50/50 50/50 0/50 0/50 50/50 50/50

TABLE XV(D): RESULTS FOR IOPSO AND MPSO FOR SCHAFFER'S F6

Problem Schaffer's f6
Method mPSO IOPSO

Mean Fitness 0.00e+00 0.00e+00
Std. Dev. 0.00e+00 0.00e+00
Avg. Iteration 67.98 97.74
SR 50/50 50/50

 13

VI. CONCLUSION

The original PSO (OPSO) introduced in 1995 has been
improved upon in this paper and has been named improved
OPSO (IOPSO), without additional parameter(s) or complex
computational efforts. Several experiments were performed
using different nonlinear optimization problems well studied
in literature with varied complexities and dimensions to
compare the performance of IOPSO with the performances of
six recent efficient PSO variants. From the experiments
conducted, results show that IOPSO is very consistent in
convergence velocity, convergence accuracy, global search
ability and robustness than all the OPSO variants adopted for
comparisons. IOPSO works well with swarm size not greater
than 40. However, with high number of iterations it can
comfortably work with higher swarm sizes.

Allowing the velocity limits and solution search space of
particles to vary dynamically relative to the values of particles'
dimension has greatly improved the performance of OPSO
algorithm. This was as a result of better exploration and
exploitation activities of the algorithm with flexibility in
concentrating on the promising areas in the solution search
space for further search by the particles instead of the entire
space all the time.

Further study is needed on the optimization of Rosenbrock
because the algorithm still experienced premature
convergence solving the problem. Also, further empirical
investigation of the effect of noise on the performance of the
proposed algorithm by using more optimization problems with
noise is needed. Furthermore, a scalability study will be
conducted by using the algorithm on problems with
dimensions greater than 100. Finally, applying the proposed
algorithm to real-world problems will be investigated.

 14

Appendix 1

Experimental results obtained for Original PSO algorithm when velocity limits and search space limits were
kept static.

Iteration 0: Initialization state
Particle Dimension (number of variables) Fitness

1 2 3 4 5 6 7 8 9 10
1 -24.9973 -2.6798 -27.3189 31.2818 1.2440 -23.7598 -20.7054 29.3716 15.8120 -31.7267 21.5945

2 9.7768 -6.6610 2.1409 15.4727 -9.5688 6.6259 -15.1245 -20.8422 -18.0165 -20.4337 20.5614

3 3.4141 13.1284 12.5347 -31.6679 11.1312 5.0291 -4.5519 -8.8463 6.3953 18.6167 20.6850

4 23.3647 -31.8631 15.3881 4.2457 -18.6393 30.3913 -1.9281 -26.3176 -4.5832 26.1878 21.6350

5 -20.8222 25.7218 4.7624 -4.6332 15.9622 24.5665 3.9390 4.7236 -30.3351 -4.2180 21.0533

6 -25.0429 -10.2343 27.7369 12.2075 -15.9793 -10.2171 -27.5820 -26.3737 8.2654 12.3757 21.2902

7 -5.5478 25.3483 -27.9825 31.6348 22.2695 25.2856 5.7528 19.7386 -31.2892 29.1800 21.7068

8 20.1485 -1.6873 28.4581 -10.7107 -5.0774 10.5479 -7.5564 8.6199 -13.2508 -7.5515 20.6966

9 16.0300 -15.3206 -27.0845 11.0854 13.4676 -3.6559 10.5331 25.2651 -18.9965 26.0282 21.0384

10 0.8420 29.1329 0.9894 8.2623 21.2772 -10.8109 -15.4903 -15.3400 -26.6860 -3.1638 20.8751

Iteration 10
Particle Dimension (number of variables) Fitness 1 2 3 4 5 6 7 8 9 10

1 -9.5775 8.5050 13.6811 -3.6087 17.6482 -8.0625 2.3476 22.1802 -2.4674 -26.7557 20.8155

2 -10.7869 7.4366 14.2270 17.9172 -7.6638 -6.6673 31.9691 -23.8333 -0.6684 -7.8016 20.7677

3 20.6746 -3.5014 -17.6140 -18.6915 -31.8585 2.8360 -14.9008 -15.1372 19.8502 8.0729 20.9145

4 24.0232 -3.1183 8.8484 29.2548 7.6398 21.4961 7.4836 -25.6657 -16.2618 -29.9331 21.3401

5 6.4589 -29.4998 3.6289 -19.1809 13.7074 0.2264 24.1318 -15.7341 -22.4759 3.1417 21.2194

6 31.8361 -19.3649 -21.9912 8.7731 17.3316 24.6280 1.9834 -5.7799 -25.4585 -21.6496 21.3981

7 -15.3417 -6.5091 -28.6087 5.3995 -28.4838 17.7482 -7.5352 -9.6965 -23.8764 -18.8277 21.5336

8 -6.9055 17.1036 23.1164 21.3556 -22.0255 24.0964 -14.5442 23.3977 -25.9140 8.5283 21.1665

9 -5.4536 -24.6376 20.2403 20.1042 7.7701 24.5649 -7.8313 -10.7024 -28.3579 10.1072 21.2730

10 -0.3972 -20.9702 -19.4958 14.0257 7.4597 -0.9172 -6.9416 -4.0414 -28.0087 8.0745 20.0563

Iteration 20
Particle Dimension (number of variables) Fitness 1 2 3 4 5 6 7 8 9 10

1 3.5731 -5.7818 -19.2758 11.7207 19.4027 -17.6967 -9.1958 24.2263 -22.2842 -19.0468 21.1082

2 2.2476 -19.4430 -26.7984 -0.5095 4.0055 18.0942 29.6159 -28.3571 -31.8930 -8.1363 21.3553

3 30.3007 9.3716 18.7880 18.2364 -4.3004 -23.2864 14.8461 22.9884 -9.6773 1.5268 21.2377

4 1.2976 9.7296 -2.3934 7.2303 0.3418 -31.8191 3.1731 -0.1895 8.1259 18.3452 20.1208

5 2.4065 27.8393 -3.1227 4.0533 -19.6425 -1.0798 -11.7057 8.5010 16.8957 13.5931 20.3772

6 13.1445 -1.6784 -29.4500 -5.0847 -12.2327 30.7924 8.0393 7.6105 -3.0842 -1.7470 20.5931

7 -11.1974 -5.0874 -30.7542 18.4400 16.8934 -31.0622 12.5464 6.0303 -18.6541 -12.9351 20.9408

8 -19.1001 1.0887 14.5515 29.1161 1.6738 -19.2266 5.8677 23.6749 -0.9904 21.2992 20.8181

9 22.8798 -23.2605 -11.3066 31.7077 10.5584 19.6958 16.1144 -7.1917 15.6423 17.2987 21.3521

10 -1.9144 8.3954 -4.0554 28.5616 23.4996 9.0947 7.9905 -9.8366 -7.9165 18.0803 20.2351

Iteration 50
Particle Dimension (number of variables) Fitness 1 2 3 4 5 6 7 8 9 10

1 6.4118 26.9190 0.9788 -2.6566 13.5709 -26.3595 5.4654 -15.5886 15.0924 -17.2695 21.0460

2 -9.8258 30.4402 -26.1851 4.7184 -30.1112 8.4986 26.1265 -9.4668 21.8231 -1.6354 21.4495

3 -0.4352 5.1495 -20.9570 -13.9545 19.9318 13.7724 -11.8027 -13.9019 14.3579 -12.4680 20.2327

4 -16.7978 5.4568 -8.4531 7.6304 -28.6542 -30.3529 9.5790 -3.4640 2.2265 -12.6519 21.2794

5 -8.4113 10.7908 14.9354 13.8923 22.5234 7.3198 24.0203 8.4986 2.9928 23.8971 20.6445

6 -3.8409 -25.4197 -1.4372 6.8332 -18.1763 -11.4118 14.4304 7.4268 21.6938 1.2369 20.7324

7 -2.3379 27.0719 -21.6785 -3.8542 -0.8993 -11.8634 8.6957 7.7003 -11.1161 10.2275 20.0173

8 -1.1889 1.7352 -25.9687 10.5012 -0.4692 14.0572 16.7618 -5.9988 2.6411 -16.4312 20.1220

9 9.1273 2.8833 -0.4603 10.7812 16.7900 7.3565 20.9360 -11.5087 21.5833 -30.7529 20.9310

10 -0.0156 0.6126 -16.0604 25.9209 20.6494 -30.9606 -24.2338 -9.5977 1.5047 3.9225 20.9205

Iteration 100
Particle Dimension (number of variables) Fitness 1 2 3 4 5 6 7 8 9 10

1 11.3871 -10.7803 -27.6744 7.0541 -20.3879 -14.1282 30.4589 -21.8337 -3.5679 9.7338 21.3008

2 -5.5953 -6.1570 -17.0900 14.3686 6.8755 29.1574 -10.9838 16.2174 -0.4425 -1.3969 20.3540

3 -4.1888 -6.4975 -16.1131 23.0767 -20.4793 14.5525 -26.5726 -2.9188 12.7322 29.5546 21.3478

4 0.5645 11.5082 -0.1308 2.3655 11.7916 18.8184 -20.5615 29.4515 20.0930 12.6901 21.0908

5 23.3968 -1.3666 -24.4680 1.6752 -1.3551 0.0097 21.4358 -2.9025 20.9001 -24.1938 21.0875

6 30.3577 25.2763 10.0381 -24.3547 14.0642 -9.9417 -18.5338 0.0519 31.4084 -11.9425 21.2186

7 18.1247 -20.8702 -19.6981 -20.3142 7.4203 -13.3663 31.1404 -13.5926 7.0499 7.0947 21.0462

8 0.8815 0.0132 17.3364 -6.4547 31.9944 31.3149 -13.5031 -22.8926 4.4094 -8.1189 21.0956

9 -3.4764 -29.2753 -15.5202 15.8452 6.1010 22.5230 10.7976 -24.5199 7.2464 15.4126 21.3428

10 -2.7331 -28.9624 -18.7217 0.5734 15.5571 -1.2504 -7.1333 23.3516 19.3271 -24.8294 21.1995

 15

Appendix 2

Experimental results obtained for Original PSO algorithm when velocity limits and search space limits were
allowed to vary dynamically.

Iteration 0: Initialization state
Particle Dimension (number of variables) Fitness 1 2 3 4 5 6 7 8 9 10

1 -3.5250 0.2855 -28.7509 -20.2534 17.1054 31.3762 6.7659 -14.7401 9.0177 -23.3386 21.2897

2 21.0522 30.3839 5.4546 1.7135 -13.9940 20.0352 -28.2359 -23.4844 26.8322 -15.6490 21.4117

3 -5.5858 17.4756 31.2305 19.6098 -22.7965 -24.1239 -14.9091 -31.7354 -25.8181 0.5503 21.5651

4 27.6122 -1.7497 -9.5722 -7.3333 -16.6750 23.8907 -8.8003 -5.0156 12.7990 21.3582 20.9327

5 2.9442 -28.5006 -29.6663 -5.7181 -29.3814 -31.8090 -31.4788 14.2763 13.8185 -21.8334 21.6477

6 16.6764 22.1066 -12.5344 -15.1763 -27.9602 -28.4455 -0.5211 24.5660 30.5120 17.7648 21.6973

7 23.3694 8.9234 13.1659 2.6325 -21.8978 -18.5289 9.9891 -14.2069 -14.7211 29.9331 20.9023

8 0.7121 -24.0447 15.7643 28.0537 11.2289 2.2699 -25.9862 16.5780 13.7474 -6.1322 20.7731

9 -6.4346 -18.3142 7.2870 -31.4211 -22.7639 -25.6519 27.4261 -30.1715 -9.8428 13.2883 21.7027

10 -24.5427 25.4112 4.0457 23.4111 -2.3141 -22.3732 -23.9261 24.4092 13.2537 -14.2995 21.6029

Iteration 10
Particle Dimension (number of variables) Fitness 1 2 3 4 5 6 7 8 9 10

1 11.0394 15.9085 -17.5174 4.7708 1.3686 -6.3809 9.0679 6.7526 15.5767 -5.6932 19.4455

2 -7.4505 -12.2549 -8.9327 -11.6891 -13.1298 -17.5964 -7.3384 2.2458 -0.4147 -10.6630 19.4263

3 3.6525 -3.2172 -7.4511 -11.7514 -5.5937 -4.8882 -15.8480 6.8306 -16.6976 0.7473 18.6050

4 2.6253 -5.0526 -11.3615 -5.1466 9.1389 -6.6932 5.7634 -9.0284 -13.5493 -4.3420 17.6431

5 -16.6376 -15.4981 -5.0560 10.4171 -10.3647 7.7989 13.7402 -4.6192 -14.9488 -14.0683 19.9987

6 -10.2750 -13.9208 2.6315 -2.8811 7.9265 -3.4148 6.4817 11.9053 -6.3526 -9.5545 18.0700

7 -8.2042 -15.4341 5.7788 -2.8420 7.4927 13.5079 16.7780 13.8853 -4.7326 11.2348 19.5904

8 -5.6884 -15.9813 -3.7365 -11.8840 -13.5568 1.4792 -13.9724 1.6633 16.2847 2.4187 19.3760

9 -0.9571 6.4425 4.1080 15.0421 -4.7890 0.7348 9.8927 9.1909 2.7381 -3.2575 16.5807

10 3.4297 11.5294 14.9956 13.6765 -13.8091 16.4678 -3.6056 15.4574 -16.6072 -6.2012 20.4427

Iteration 20
Particle Dimension (number of variables) Fitness 1 2 3 4 5 6 7 8 9 10

1 2.6215 0.8121 -5.3739 0.8147 4.0689 1.8807 -4.6498 3.7051 5.1376 -1.2619 11.6569

2 7.3537 6.7580 -2.7140 5.7055 -1.4706 -6.0146 0.5742 -7.7269 -9.1337 7.0022 15.8365

3 -0.5468 -8.3482 -6.4349 2.3879 -2.6680 0.5856 6.5631 -3.8257 -9.1224 -8.0598 15.6727

4 3.7529 -3.2566 -8.7767 2.0113 1.0031 -5.6818 3.9923 5.0050 3.8234 0.0796 12.7790

5 7.4133 0.6540 9.0956 1.0387 3.8049 3.1753 2.8417 5.1514 -8.2874 -7.6847 15.1583

6 -8.2273 -4.0256 -3.4603 3.8939 -8.1725 1.7190 -2.0037 0.5151 -4.7942 -5.8713 14.0053

7 4.5683 8.4266 3.5768 3.9468 4.2359 2.3334 6.2840 4.5253 -3.5746 -5.0394 14.5192

8 -1.6614 4.8199 -2.2997 0.0373 8.8395 7.0762 -8.1932 0.8033 7.8337 3.4074 14.7695

9 7.9683 -7.8389 -5.7627 7.8130 -9.0832 -0.4985 -9.0470 -3.4200 1.9069 7.5611 16.3330

10 5.5725 -6.0913 0.5485 0.4440 4.7620 8.2374 6.3278 -4.1018 6.0534 -6.8055 15.0380

Iteration 50
Particle Dimension (number of variables) Fitness 1 2 3 4 5 6 7 8 9 10

1 -0.4716 0.8854 -0.5727 0.2673 1.2188 0.9980 -0.6318 -0.6788 -0.0120 1.3228 4.7542

2 0.7376 -1.1127 0.9071 0.0546 0.5731 -0.0926 0.4955 -1.0368 -0.9398 0.0829 3.8764

3 -0.3496 -0.4373 -1.0073 1.0448 0.8889 -0.7114 -0.4469 -0.0849 0.0701 -0.0806 3.7700

4 -0.5756 -0.1973 -0.1454 0.5611 0.3107 -0.5367 -0.4946 -1.3852 0.2511 -0.3141 4.2794

5 -0.8205 -0.2171 1.0177 0.8656 -1.3132 -0.7781 -0.2522 -0.2427 0.3600 0.2550 4.2376

6 -1.0117 -0.2055 0.3291 0.0465 -0.4973 -1.2741 0.5070 -0.2792 0.7641 0.6904 4.2964

7 -0.0286 0.6929 0.6368 1.3085 0.5128 -0.3048 0.2724 -1.0397 1.1346 -0.1300 4.4083

8 -1.1295 0.4951 -0.0481 0.9059 -0.4823 1.2532 -0.2152 -0.4872 0.9723 0.2814 4.4175

9 0.7806 1.3273 1.0171 1.0549 -0.3087 1.0156 0.7134 1.3396 -0.3273 0.2928 4.9379

10 0.1961 1.2688 -0.7636 1.0923 1.0123 -0.1278 0.3859 1.0949 -1.0515 0.3774 4.4453

Iteration 100
Particle Dimension (number of variables) Fitness

1 2 3 4 5 6 7 8 9 10
1 -0.0016 -0.0343 0.0105 -0.0397 -0.0563 -0.0066 -0.0603 -0.0543 -0.0506 -0.0283 0.2434

2 0.0363 0.0001 -0.0202 0.0432 0.0457 0.0403 0.0032 0.0463 -0.0307 -0.0311 0.1944

3 -0.0381 0.0449 0.0420 -0.0544 -0.0487 -0.0460 0.0488 -0.0487 0.0012 0.0128 0.2592

4 -0.0119 0.0390 -0.0161 -0.0515 0.0206 0.0546 -0.0341 -0.0467 0.0320 0.0287 0.2140

5 -0.0293 0.0052 0.0183 -0.0533 -0.0459 0.0471 -0.0190 0.0445 0.0131 0.0537 0.2205

6 0.0013 0.0416 0.0168 0.0600 0.0445 0.0112 -0.0118 0.0072 -0.0555 0.0607 0.2297

7 0.0091 0.0529 0.0022 -0.0057 0.0549 0.0617 -0.0432 -0.0333 -0.0419 0.0556 0.2589

8 0.0167 -0.0078 -0.0570 -0.0017 -0.0595 0.0212 -0.0379 0.0308 0.0560 -0.0312 0.2236

9 0.0375 -0.0602 0.0028 0.0120 -0.0530 0.0043 -0.0404 -0.0099 -0.0315 -0.0551 0.2202

10 0.0087 0.0232 -0.0557 0.0358 -0.0449 -0.0176 0.0607 -0.0405 -0.0437 -0.0431 0.2476

 16

REFERENCES

[1] Akbari, R. and Ziarati, K. (2011). A rank based particle

swarm optimization algorithm with dynamic adaptation.
Journal of Computational and Applied Mathematics,
Elsevier, 235, 2694–2714,

[2] Arasomwan, A. M. and Adewumi, A. O. (2013), On the
Performance of Linear Decreasing Inertia Weight Particle
Swarm Optimization for Global Optimization, The Science
World Journal, In press.

[3] Eberhart, R. C. and Kennedy, J., (1995). A new optimizer
using particle swarm theory. In Proceedings of the Sixth
International Symposium on Micro Machine and Human
Science, MHS '95. (Nagoya, Japan, 1995), pp. 39-43.

[4] Eberhart, R. C. and Shi, Y. (2002). Tracking and
optimizing dynamic systems with particle swarms. In
Proceedings of the 2001 Congress on Evolutionary
Computation, Korea, 1, pp. 94–100.

[5] Evers, G.I. (2009). An automatic regrouping mechanism to
deal with stagnation in particle swarm optimization", MSc.
Thesis, Graduate school of the University of Texas-Pan
American, May, 2009

[6] Gao Y.-l. and Duan, Y.-h., (2007), A New Particle Swarm
Optimization Algorithm with Random Inertia Weight and
Evolution Strategy, In Computational Intelligence and
Security Workshops, 2007. CISW 2007. International
Conference on, pp. 199-203.

[7] Yang G., Zhang, D. and Hu X. (2010). A Learning
Algorithm Based on PSO and L-M for Parity Problem, In,
Chris Myers (Ed.) Stochastic Control, InTech, pp. 151-
166. Retrieved from:
http://www.intechopen.com/books/stochastic-control

[8] Guochao, N., Baodi, C. and Jianchao, Z. (2010). Repulsive
Particle Swarm Optimization based on new diversity.
Control and Decision Conference (CCDC), pp. 815-819.

[9] Jianbin Xin, Guimin Chen, Yubao Hai (2009). A Particle
Swarm Optimizer with Multi-Stage Linearly-Decreasing
Inertia Weight. Proceedings of the International Joint
Conference on Computational Sciences and Optimization
(CSO 2009), pp 505-508.

[10] Jing, B., Xueying, Z. and Yueling, G. (2009). Different
inertia weight PSO algorithm optimizing SVM kernel
parameters applied in a speech recognition system.
Proceedings of the International Conference on
Mechatronics and Automation (ICMA 2009), pp. 4754-
4759.

[11] Karaboga, D. and Akay B. (2009). A Comparative Study
of Artificial Bee Colony Algorithm. Applied Mathematics
and Computation, 214 (1), pp. 108-132.

[12] Kennedy, J. and Eberhart, R.C. (1995). Particle swarm
optimization. In Proceedings of IEEE international
conference on neural networks, 4, Perth, Australia. pp.
1942–1948.

[13] Liu, B. , Wang, L. , Jin, Y. , Tang, F. and Huang, D.
(2005). Improved particle swarm optimization combined

with chaos, Chaos, Solution and Fractals, 25, pp. 1261-
1271.

[14] Liu, H., Su, R., Gao Y., and Xu R., (2009), Improved
Particle Swarm Optimization Using Two Novel Parallel
Inertia Weights. IEEE Second International Conference on
Intelligent Computation Technology and Automation, pp
185-188.

[15] Omran M.G.H. (2009). Using Opposition-based Learning
with Particle Swarm Optimization and Barebones
Differential Evolution. In Aleksandar Lazinica (Ed),
Particle Swarm Optimization, InTech, pp. 373-384,
Retrieved from:
http://www.intechopen.com/books/particle_swarm_optimi
zation

[16] Malik, R.F. Rahman, T.A. Hashim, S.Z.M. and Ngah, R.
(2007). New Particle Swarm Optimizer with Sigmoid
Increasing Inertia Weight, International Journal of
Computer Science and Security, 1(2), pp. 35.

[17] Mansour, M.M., Mekhamer, S.F. and El-Kharbawe, N.E.S.
(2007), A Modified Particle Swarm Optimizer for the
Coordination of Directional Overcurrent Relays, IEEE
Transactions on Power Delivery, Vol. 22, pp. 1400-1410.

[18] Martins A. A. and Oluyinka A. A. (2013), An Adaptive
Velocity Particle Swarm Optimization for High-
Dimensional Function optimization, IEEE Congress
Evolutionary Computation (CEC), 2013, pp. 2352-2359

[19] Dieu, V.N, Schegner, P., and Ongsakul, W. (2011), A
newly improved particle swarm optimization for economic
dispatch with valve point loading effects, in IEEE Power
and Energy Society General Meeting, pp. 1-8.

[20] Nickabadi A., Ebadzadeh M. M., and Safabakhsh R.
(2011), A novel particle swarm optimization algorithm
with adaptive inertia weight. Applied soft computing, 11,
3658-3670.

[21] Poli R., Kennedy J., Blackwell T. (2007). Particle swarm
optimization: An overview. Swarm Intelligence. Vol. 1, pp
33–57.

[22] Quin, Z., Yu, F., Shi, Z. and Wang, Y. (2006), Adaptive
inertia weight particle swarm optimization. L. Rutkowski
et. al. (Eds), Proceedings of the 8th International
Conference Artificial Intelligence and Soft Computing
(ICAISC 2006), Zakopane, Poland, June 25-29, pp. 450-
459

[23] Shi, Y. H., Eberhart, R. C., (1998), A modified particle
swarm optimizer. IEEE International Conference on
Evolutionary Computation, Anchorage, Alaska, May 4-9,
pp. 69-73.

[24] Shi, Y. and Eberhart, R., (1998), Parameter selection in
particle swarm optimization. Proceedings of the 7th
International Conference on Evolutionary Programming
(EP98) San Diego, California, USA, March 25–27, Vol.
1447, pp. 591-600.

[25] Shi, Y. H., and Eberhart, R. C. (2001), Fuzzy adaptive
particle swarm optimization. Proceedings of the 2001
Congress on Evolutionary Computation (CEC 2001),
Korea, Vol. 1, pp. 101 – 106.

On Adaptive Chaotic Inertia Weights in Particle
Swarm Optimization

1Martins Akugbe ARASOMWAN and 2Aderemi Oluyinka ADEWUMI
School of Mathematics, Statistics and Computer Science

University of Kwa-Zulu-Natal
Durban, South Africa

1accuratesteps@yahoo.com, 2adewumia@ukzn.ac.za

Abstract—Inertia weight is one of the control parameters that
influence the performance of Particle Swarm Optimization (PSO).
Since the introduction of the inertia weight parameter into PSO
technique, different inertia weight strategies have been proposed to
enhance the performance of PSO in handling optimization
problems. Each of these inertia weights has shown varying degree
of efficiency in improving the PSO algorithm. Research is however
still ongoing in this area. This paper proposes two adaptive chaotic
inertia weight strategies based on swarm success rate.
Experimental results show that these strategies further enhance the
speed of convergence and the location of best near optimal
solutions. The performance of the PSO algorithm using proposed
inertia weights compared with PSO using the chaotic random and
chaotic linear decreasing inertia weights as well as the inertia
weight based on decreasing exponential function adopted for
comparison in this paper are verified through empirical studies
using some benchmark global optimization problems.

Keywords—Adaptation; Success rate; Inertia weights;
Chaotic; Swarm Intelligence; Global optimization; Particle
swarm optimization

I. INTRODUCTION

Since the inception of PSO strategy for solving
optimization problems, a lot of work has been done by
researchers to enhance its efficiency in handling optimization
problems. The PSO has a small number of parameters that
regulates the behaviour of the algorithm. These include
particle swarm size, problem dimensionality, particle velocity,
inertia weight, cognitive learning rate and social learning rate.
The inertia weight parameter (popularly represented as ω)
introduced in [3], is the most important compared with other
parameters [4]. The motivation behind its introduction was the
desire to better control (or balance) the scope of the (local and
global) search and reduce the importance of (or eliminate)
velocity clamping, Vmax during the optimization process [2, 5,
8]. According to [8], the inertia weight was successful in
addressing the first objective, but could not completely
eliminate the need for velocity clamping. As reported in [5, 6],
ω gets important effect on balancing the global search and the
local search in PSO. Therefore, the feature of the divergence
or convergence of particles can be controlled only by
parameterω, however, in conjunction with the selection of
values for the acceleration constants [7, 8].

Each individual in the particle swarm is composed of
three n-dimension vectors (current position, previous position,
and velocity), where n is the dimensionality of the search
space. Thus, in a physical n-dimensional search space, the
position and velocity of each particle i are represented as the
vectors Xi = (xi1, …, xin) and Vi = (vi1, …, vin), respectively. In
the course of movement within the search space in search of
the optimum solution of a problem, the particle’s velocity and
position are updated as shown in equations (1) and (2)

)()(2211
1 k

i
k
i

k
i

k
i

k
i

k
i XGbestrcXPbestrcVV −+−+=+ ω (1)

11 ++ += k
i

k
i

k
i VXX (2)

where, c1 and c2 are acceleration (weighting) factors known as
cognitive and social scaling parameters that determine the
magnitude of the random forces in the direction of Pbest
(previous best) and Gbest (global previous best); r1 and r2 are
random numbers between 0 and 1; k is the iteration index and

 is the inertia weight.
From the time PSO was proposed, several strategies have

been proposed to modify the algorithm by using dynamic value
of ω in each iteration [1, 4, 10, 11, 15, 21]. These strategies
include random [9], chaotic random [14], linear decreasing [8],
and chaotic linear decreasing [14] strategies which were
adopted for comparison in this work. In [8], the linear
decreasing inertia weight strategy decreases from a value of 0.9
to 0.4 in course of searching for solution to the problem being
solved. Though it enhances the performance of PSO, it usually
get into local optimum when solving functions with more
apices [14]. In [9] it was experimentally found that random
inertia weight strategy increases the convergence in PSO and
could find good results with most functions. A chaotic term
was included to the random as well as the linear decreasing
inertia weight strategies in [14]. These strategies were
experimentally proved to be superior to the random and linear
decreasing strategies in terms of convergence speed, global
search ability and convergence precision. The remaining part
of the paper is organized as follows. In section 2, we give a
summarized review of inertia weight strategies in PSO with
more emphasis on the adaptive and chaotic inertia weights.
Section 3 describes the proposed adaptive chaotic inertia
weights while in section 4, the experimental settings are stated.
The experimental results are given and discussed in section 5
and section 6 concludes the paper.

72978-1-4673-6004-3/13/$31.00 c©2013 IEEE

II. INERTIA WEIGHT STRATEGIES FOR PSO

The basic PSO presented by [17] has no inertia weight.
The first inertia weight was introduced into PSO in [3], this
inertia weight was static in nature. However a lot of
improvement on inertia weight strategies have been made over
the years [3, 6, 8, 9, 11, 12, 13]. By reason of its operation, the
inertia weight (ω) can be interpreted as the fluidity of the
medium in which a particle moves [2]; showing that setting it
to a relatively high initial value (for example, 0.9) makes
particles move in a low viscosity medium and performs
extensive exploration. Gradually reducing it to a much lower
value (for example, 0.4) makes the particle moves in a high
viscosity medium and performs more exploitation. Different
strategies have been proposed to determineω. These strategies
could be categorized into static and dynamic (or variable). In
the static strategy, a fixed or constant value is used for the
entire search duration [3]. The dynamic category is subdivided
into random adjustment, linear time-varying, nonlinear time-
varying and adaptive[1, 8]. In the random adjustment
techniques, different inertia weight is randomly selected in
each iteration [9, 21]. The linear time-varying can be
subdivided into linear time decreasing and linear time
increasing. In linear time decreasing approach an initially
large inertia weight (commonly 0.9) is linearly decreased to a
small value (commonly 0.4) [6, 11, 12, 13, 14]. There are
cases where values other than 0.9 or 0.4 are used [1, 15, 16].
Linear time increasing deals with the reverse [19]. Also,
nonlinear time-varying can be subdivided into nonlinear time
decreasing, and nonlinear time increasing. For nonlinear time
decreasing, an initially large value decreases nonlinearly to a
small value [12, 15]. It allows a shorter exploration time than
the linear decreasing methods, with more time spent on
refining solutions [8]. Nonlinear time decreasing methods
seem more appropriate for smoother search spaces [8]. Again,
the nonlinear time increasing deals with the reverse [11]. The
adaptive inertia weight approaches can be subdivided into
fuzzy adaptive and non-fuzzy adaptive. Fuzzy adaptive inertia
weight is dynamically adjusted on the basis of fuzzy sets and
rules in each iteration [1, 8, 10]. The non-fuzzy adaptive
inertia weights are dynamically adjusted based on the state of
the swarm in terms of fitness, particle rank, and distance to
particle, global best positions, and particle success rate which
are regarded as feedback parameters [1]

A. Adaptive inertia weight in PSO based on swarm success
rate

Generally, adaptive inertia weight strategies monitor the
search space and adapt the inertia weight value based on one
or more feedback parameters [1, 18]. Our focus is on the
inertia weights based on swarm success rate feedback
parameter. The PSO variant (AIWPSO) proposed in [1]
monitors the search situation and adapts the inertia weight
value based on the swarm success rate parameter. It can
properly adapt the value of the inertia weight in the static and
dynamic environment using (3). The best particle was mutated
by adding a Gaussian noise with zero mean standard deviation

to one of its randomly chosen dimension and used to replace
the worst particle at the end of each iteration to improve on the
exploration of the method.

endendstartt SR ωωωω +−=)((3)

where SR is as shown in (5) and the range of inertia weight
[start, end] was selected to be [0, 1].

AIWPSO was found work better than its competitors due
to its adaptive nature. For static functions, changes over
time, starting with a large value in the first few number of
iterations due to the high rate of successful movements
(particle best updates) which facilitates exploration and later
converges to oscillate round about 0.39 (a value suitable for
sphere function) for exploitation. For the dynamic function
described in the paper, AIWPSO was able to locate (track)
new optimum position after the environment changes (peak
movements). At each peak movement the particles are placed
on a point far from the optimum which is identified using the
number of successful movements of the particles which grows
to a value of about 1 (high) which help the particles to
accelerate up towards the new optimum point and after that
rapidly reduces to a value around 0.4. A high percentage of
success indicates that the particles have converged to a point
that is far from the optimum point and the entire swarm is
slowly moving towards the optimum while a low percentage
of success shows that the particles are oscillating around the
optimum without much improvement [1].

The success of particle i at iteration t, in a minimization
problem, is defined in (4):

≥

<

−

−

)()(0

)()(1

1

1
i
t

i
t

i
t

i
ti

t
PbestfPbestf

PbestfPbestf
succ (4)

Where i
tpbest is the current best position of particle i until

iteration t and f() is the function to be optimized. The success
rate (SR) of the swarm is computed using (5):

=

=
n

i

i
tt nsuccSR

1

 (5)

Where n is the swarm size and SRt ∈[0,1] is the percentage
of the particles with improvement in fitness in the last iteration.
Where no particle succeeds to improve its fitness, SR is set to
0; where all the particles succeed in improving their individual
fitness, SR is set to 1. Therefore SR reflects the state of the
swarm and serves as a feedback parameter to the PSO
algorithm to determine the inertia weight at each iteration.

B. Chaotic inertia weight in PSO

Chaos is a form of nonlinear dynamic system which has the
characteristic of stochastic property, ergodicity, and sensitive
to initial value [20]. Two chaotic inertia weights were proposed
in [14], they are Chaotic descending inertia weight (CDIW)
and Chaotic random inertia weight (CRIW) shown in (7) and
(8) respectively. The aim then was to improve on the random
and linear descending inertia weights using logistic mapping
shown in equation (6), to avoid getting into local optimum in
searching process by utilizing the merits of chaotic
optimization.

2013 IEEE Symposium on Swarm Intelligence (SIS) 73

)1(zzz −××= μ (6)

where 475.3 ≤< μ and when μ = 4 its chaotic result sprinkles
the interval of [0,1].

() zTtT endendstartt ×+−−= ωωωω maxmax)()((7)

zrandt ×+×= 5.0()5.0ω (8)

where start and end are the initial and final values of inertia
weight, rand() is a uniform random number in [0,1], t is the
current iteration, Tmax is the maximum iteration,

)1(4 zzz −××= is a logistic mapping and z is a random
number in the interval of (0,1). The results from [14] shows
that the proposed methods make PSO have preferable
convergence precision, quick convergence velocity, and better
global search ability. This is because, at the initial stage, it has
a wide rough search (exploration) which makes it to quickly
get to a position near the global optimum and at the later stage,
it has a detailed search (exploitation) which make it to exploit
the neighbourhood of the discovered near optimal position till
discovering the optimum result or end of maximum iteration.
With the chaotic characteristic they are able to get away from
the local optimum unlike Linear decreasing inertia weight
which during exploitation, becomes reduced such that the
particles have not enough velocity to escape from local
optimum. Shown in Fig. 1 is how of CDIW and CRIW
changes. Due to non-repetition of chaos the algorithm with the

 can carry out overall searches at higher speed and diversify
the particles and improves the algorithm's performance in
preventing premature convergence to local minima compared
with without chaos characteristic.

Fig. 1. Changes in inertia weights of CDIW and CRIW

C. Decreasing exponential function inertia weight in PSO

 The method in [18] is based on decreasing exponential
functions. It is made up of two parts (base and power). The
PSO algorithm's iteration was used in these parts as shown in
(9). As the iteration increases, goes from one to zero as
shown in Fig. 2.

Fig. 2. Changes in inertia weight of decreasing exponential inertia weight

Graphical results in [18] show evidences of its superiority to
the competitors in fitness quality and speed of convergence.
Shown in Fig. 2 is the change of inertia weight over time.

t t
t t −=ω (9)

III. PROPOSED ADAPTIVE CHAOTIC INERTIA WEIGHTS

Our proposed adaptive chaotic inertia weights simply
combine the swarm success rate feedback parameter with
chaotic mapping to harness together adaptivity and chaotic
characteristics. These inertia weights labelled CAIWS-D and
CAIWS-R are shown in (10) and (11) respectively.

() zTtT endendstartt ×+−−=))()((maxmax ωωωω (10)

zSRt ×+×=)5.05.0(ω (11)

where,)1(4 SRSRz −××= . In this case z is not just a uniform
random number in the interval of (0,1) but the swarm success
rate in the interval [0,1]. Also in (11), rand() which is a
uniform random number in the interval of [0,1] is replaced with
SR in the interval [0,1]. start and end are the initial and final
values of inertia weight respectively.

 These proposed strategies are based on the fact that usually,
a uniform random number does not convey much information
about the state of the swarm and therefore cannot be assumed
to adjust the inertia weight appropriately. However, the success
rate of the swarm as a feedback parameter can help realize the
state of the swarm in the search space and hence adjust the
value of inertia weight in each iteration appropriately for better
results. The values calculated by these strategies are always in
the interval [0,1]. Giving below is the PSO pseudo-code of
inertia weight adaptation using CAIWS-D and CAIWS-R.

74 2013 IEEE Symposium on Swarm Intelligence (SIS)

Pseudo-code using CAIWS-D and CAIWS-R

Begin PSO Algorithm
Input: f: the function to optimize
 ps: the swarm size
 d: the problem dimension
Output: x*: the best fitness value found
Initialize: xi = (xi1, …, xid) and vi = (vi1, …, vid), for all particles
in problem space
evaluate f(xi) in d variables and get pbesti,

 (i = 1, …, ps)
gbest ← best of pbesti
While stopping criteria is false do

succ ← 0
Begin Loop for ps times

Begin Loop for d times
calculate using (10) or (11)
update vi for particle using (1)
check for velocity boundaries

End
update xi for particle using (2)
validate for position boundaries

End
If f(xi) < f(pbesti) then

pbesti ← xi
succ ← succ + 1

end if
If f(xi) < f(gbesti) then

gbesti ← xi
end if
compute swarm success rate using (5)

End while
x* ← gbest
Return x*
End PSO Algorithm

Fig. 3 (a) and (b) shows the change of in CAIWS-D and
CAIWS-R over time. Their structures reflect the rate of success
of the particles over time.

IV. EXPERIMENTAL SETTINGS

The experiments were carried out in two stages. In stage 1,
the results of CAIWS-D and CAIWS-R were compared with
existing results in [14] while in stage 2, the method in [18],
CDIW and CRIW were implemented and their performances
compared with that of CAIWS-D and CAIWS-R. All
experiments were done on a laptop computer with a 2.0GHz
Intel Pentium dual-core processor, 2.0GB of RAM, running
Windows Vista Home Basic. The simulation program was
development in Microsoft Visual C# programming language,
2008 Express Edition.

A. Settings for stage 1of experiments

The settings used for CDIW and CRIW in [14] were also
used to implement CAIWS-D and CAIWS-R for the purpose
of fairness in comparing their performances.

Fig. 3. Changes in inertia weights of CAIWS-D and CAIWS-R

B. Settings for stage 2 of experiments

CAIWS-D and CAIWS-R were implemented along side
with the method in [18]. They were subjected to the settings
and were used to optimize the same problems in [18]. A
method is successful if at the end of a run its mean fitness
value is not greater than 0.01 for Sphere and Griewank
problems and 50 for Rastrigin problem.

Also, CAIWS-D and CAIWS-R were implemented
together with the following four inertia weight strategies in
[14].

a) 5.0()5.0 +×= randtω

b) zrandt ×+×= 5.0()5.0ω

c) () endendstartt TtT ωωωω +−−= maxmax)()(

d) () zTtT endendstartt ×+−−= ωωωω maxmax)()(

The following nine well-known benchmark problems, which
are extensively used in the literature for the evaluation of
metaheuristics were used.

Ackley (f1): ex
n

x
n

xf
d

i
i

d

i
i ++−−−=

==

20)2cos(
1

exp
1

2.0exp20)(
11

2
1 π

Search space: [-30,30], optimal value = 0

Griewank (f2): 1cos
4000

1
)(

11

2
2 +−= ∏

==

d

i

i
d

i
i

i

x
xxf

Search spae: [-600,600], optimal value = 0

Levy (f3): () () −++−+=
−

=

+

1

1

2
11

22
1

2
3)1()(sin1011)(sin10)(

d

i
di yyyy

d
xf ππ

π

Search space: [-10,10], optimal value = 0

2013 IEEE Symposium on Swarm Intelligence (SIS) 75

Rastrigin (f4): ()
=

+−=
d

i
ii xxxf

1

2
4 10)2cos(10)(π

Search space: [-5.12,5.12], optimal value = 0

Rosenbrock (f5): ()
−

=

+ −+−=
1

1

222
15)1()(100)(

d

i
iii xxxxf

Search space: [-5,10], optimal value = 0

Schwefel (f6): ()
=

−=
d

i
ii xxxf

1
6 sin)(

Search space: [-500,500], optimal value = -418.9829d

Schwefel P2.22 (f7): ∏
= =

+=
d

i

d

i
ii xxxf

1 1
7)(

Search space: [-10,10], optimal value = 0

Sphere (f8):
=

=
d

i
ixxf

1

2
8)(

Search space: [-100,100], optimal value = 0

Step (f9): ()
=

+=
d

i
ixxf

1

2

9 5.0)(

Search space: [-10,10], optimal value = 0

The number of variables (dimensions) for all problems was set
to 30 because it is commonly used in literature, for example in
[1, 6, 13, 14, 16, 18]. In all experiments, the maximum number
of iterations and swarm size were set to 2,000 and 50 particles,
respectively. The stop condition is reaching the maximum
number of iterations. The values of start and end, were set to
0.9 and 0.4, c1 and c2 were set to 2.0 as used in [14]. Vmax was
set relative to the testing problems using

)(minmaxmax XXV −=δ , where Xmax is the maximum value of

the domain of X , Xmin is the minimum value of the domain of
X , ∈ (0,1] was set to 0.5 based on the findings of [19]. All
experiments were repeated ten times. The performance of each
method takes into account the average best solution and
standard deviation of solution found in each run.

V. RESULTS AND DISCUSSIONS

The results are presented in stages in line with stages with
which the experiments were carried out. Presented in stage 1
is the performance between CAIWS-D and CAIWS-R with
the results of CRIW and CDIW recorded in literature. In stage
2, the results of def-PSO, CRIW, CDIW, CAIWS-D and
CAIWS-R as implemented in this work are reported.

A. Results of stage 1 of experiments

Shown in Table I are the results of CAIWS-D and
CAIWS-R with the results of CRIW and CDIW recorded in
literature. From the results, the mean fitness indicates that
CAIWS-D and CAIWS-R can get better optimum fitness
value with preferable convergence precision and quick
convergence speed in Schaffer f6 and Sphere problems than
CRIW and CDIW. They also demonstrate better stability,
robustness and global search abilities in the two problems as
indicated by the standard deviation and success rate. But they
lost superiority in Griewank, Rastrigin and Rosenbrock
problems to their competitors, in every way. The reason for
this is that CAIWS-D and CAIWS-R were not able to perform

thorough global search during some of the runs which affected
their overall performances.

TABLE I. THE MEAN, STANDARD DEVIATION AND SUCCESS RATE OF
CDIW, CRIW, CAIWS-D AND CAIWS-R OVER 500

INDEPENDENT RUNS

Function Performance
index

Inertia Weight PSO
Linear Decreasing Random

CDIW CAIWS-D CRIW CAIWS-R

Griewank

Mean Fitness 0.014773 0.020989 0.016616 0.024682

Standard Deviation 0.002955 0.073804 0.003323 0.075676

Success Rate 96.2 93.4 98.2 90.8

Rastrigin

Mean Fitness 40.044561 61.862829 40.267957 63.740040

Standard Deviation 8.028912 23.993071 8.053591 23.194192

Success Rate 83.6 37.6 91.8 30.8

Rosenbrock

Mean Fitness 44.305058 5679.561129 37.090110 6382.479413

Standard Deviation 8.861012 21321.202152 11.618022 22607.241308

Success Rate 99.6 70.2 99.4 68.4

Schaffer f6

Mean Fitness 0.007732 0.004167 0.009211 0.004609

Standard Deviation 0.001546 0.004803 0.001842 0.004848

Success Rate 22 56.6 24.4 51.6

Sphere

Mean Fitness 0.000092 0.000000 0.000087 0.000000

Standard Deviation 0.000016 0.000000 0.000017 0.000000

Success Rate 100 100 100 100

B. Results of stage 2 of experiments

The performances of the method in [18], CAIWS-D and
CAIWS-R are presented in Table II. Their comparisons are
based on mean fitness, standard deviation, average iteration to
reach goal and success rate.

TABLE II. THE MEAN, STANDARD DEVIATION AND SUCCESS RATE OF
INERTIA WEIGHT IN [18], CAIWS-D AND CAIWS-R OVER 10

INDEPENDENT RUNS

Function Performance
index

Inertia Weight PSO
def-PSO CAIWS-D CAIWS-R

Griewank

Mean Fitness 0.103337 0.007341 0.017089

Standard Deviation 0.134860 0.022023 0.034599

Least Iteration 129 268 219

Worst Iteration 280 305 357

Average Iteration 187 290 248

Success Rate 60 90 80

Rastrigin

Mean Fitness 65.968908 62.484002 52.520341

Standard Deviation 13.529611 17.666654 16.395482

Least Iteration 388 221 122

Worst Iteration 388 390 368

Average Iteration 388 306 203

Success Rate 10 20 40

Sphere

Mean Fitness 0.000000 0.000000 0.000000

Standard Deviation 0.000000 0.000000 0.000000

Least Iteration 220 408 340

Worst Iteration 462 465 380

Average Iteration 342 434 359

Success Rate 100 100 100

From the results in Table II, in Griewank and Rastrigin

problems, CAIWS-D and CAIWS-R achieved better accuracy
in mean fitness and demonstrate higher global search ability
than def-PSO, the method in [18], despite the early

76 2013 IEEE Symposium on Swarm Intelligence (SIS)

convergence in Griewank and better stability in Rastrigin
demonstrated by def-PSO. For Sphere problem, the three
methods had the same performance except that the average
convergence speed of def-PSO is higher. Generally, the
proposed method performed better than their competitor in
multimodal problems.

Table III shows the results of applying the PSO algorithm
which implements RIW, LDIW, CRIW and CDIW with the
proposed CAIWS-D and CAIWS-R. The results are compared
based on the final accuracy of the averaged best solutions as
well as standard deviation of the best solutions. The mean best
fitness (Mean) is a measure of the precision that the algorithm
can get within given iterations while the standard deviation
(SD) is a measure of the algorithm's stability and robustness.

CAIWS-R is compared with RIW and CRIW while
CAIW-D is compared with LDIW and CDIW and then all the
strategies are finally compared together. The bold values
indicate the best fitness solution. The results show that
CAIWS-R provides the best accuracy, compared with RIW
and CRIW, in all the test problems considered except in f9
where CAIWS-R and CRIW are at the same level of accuracy,
stability and robustness. Also CAIWS-D provides the best
accuracy, compared with LDIW and CDIW, in all the test
problems considered except f2 where LDIW performs better in
fitness accuracy, robustness and stability. Comparing all the
strategies together, CAIWS-R performed best followed by
CAIWS-D. What gave the proposed inertia weight strategies
edge over the competitors is the fact that the success rate of
the swarm serves as a feedback parameter to help provide
information on the state of the swarm in the search space
which helps adjust the value of the inertia weight in each
iteration appropriately for better results.

The convergence curves in Fig. 4 provide insight into the
searching behaviour of the six strategies in Ackley and
Rastrigin test problems. All methods in Fig. 4(a) have long
periods of iterations in which the fitness is not improved much,
except for CAIWS-D and CAIWS-R, which are more or less
straight lines in logarithm scale for a long time. This shows
that our proposed adaptive chaotic methods are consistent in
their speed of convergence to the optimum and have
outstanding performance over other strategies.

Fig. 4. The mean of the best fitness of 10 independent runs on Ackley and
Rastrigin test problems

For Rastrigin problem in Fig. 4(b), the proposed methods also
performed better than their competitors both in speed of
convergence to the optimum and solution accuracy. What gave
CAIWS-D and CAIWS-R superiority over their competitors is
their adaptive nature.

TABLE III. THE MEAN AND STANDARD DEVIATION (SD) OF THE BEST
FITNESS OF SIX INERTIA WEIGHT STRATEGIES ON NINE TEST

PROBLEMS

Function
Random Linear Decreasing

RIW CRIW CAIWS-R LDIW CDIW CAIWS-D

f1

Mean 6.0629E+00 1.3507E+00 2.0900E-14 4.0834E+00 1.9947E+00 2.2200E-14

SD 5.7679E-01 4.2713E+00 5.2589E-15 6.5753E+00 6.3076E+00 5.4934E-15

f2
Mean 4.3447E+00 1.9923E-02 1.8149E-02 1.2025E-02 9.0651E+00 2.0629E-02

SD 8.5579E-01 2.1296E-02 2.1198E-02 1.6834E-02 2.8605E+01 2.0306E-02

f3
Mean 4.7117E-01 1.2050E-01 1.0724E-02 2.4645E-01 3.9394E-01 7.6291E-02

SD 5.0303E-01 2.5530E-01 3.3913E-02 3.2763E-01 3.3417E-01 2.0634E-01

f4
Mean 1.5158E+02 4.8236E+01 4.2587E+01 4.4912E+01 5.7018E+01 4.2966E+01

SD 4.5464E+01 2.4039E+01 1.3163E+01 2.3827E+01 2.3984E+01 1.2981E+01

f5
Mean 5.6345E+04 5.6018E+03 2.9732E+02 7.2712E+04 2.7250E+04 5.7041E+01

SD 7.2362E+04 1.7546E+04 7.7901E+02 6.9162E+04 3.8866E+04 9.5159E+01

f6
Mean -9.4355E+3 -9.5267E+3 -9.5888E+3 -8.6574E+3 -9.3759E+3 -9.9136E+3

SD 8.7794E+02 8.9974E+02 6.5649E+02 5.1187E+02 8.5024E+02 3.1901E+02

f7
Mean 8.8935E+00 1.0000E+00 0.0 1.2000E+01 6.0000E+00 2.0000E+00

SD 5.7282E+00 3.1623E+00 0.0 9.1894E+00 8.4327E+00 6.3246E+00

f8
Mean 3.7163E+02 1.1629E-08 0.0 5.4141E-12 1.0000E+03 0.0

SD 9.5088E+01 1.3570E-08 0.0 4.5455E-12 3.1623E+03 0.0

f9
Mean 6.4000E+00 0.0 0.0 0.0 0.0 0.0

SD 2.7162E+00 0.0 0.0 0.0 0.0 0.0

2013 IEEE Symposium on Swarm Intelligence (SIS) 77

C. Searching behaviour of CAIWS-D

In Fig. 5, the changes in success rate (SR), inertia weight
(IW) of Griewank problem of two dimensions using 20
particles and their relationship are shown. At the beginning,
both SR and IW were high, however, as SR drops below 0.4,
the IW was sustained to fluctuate between 0.7 and 0.2
appropriate for the problem with the help of the chaos
characteristics of the logistic mapping.

Fig. 5. Changes in success rate (SR) and inertia weight (IW) of CAIWS-D

For the purpose of convenient observation, the searching
behaviour of the proposed algorithm with CAIWS-D for a
group of 20 particles on a 2-dimensional Griewank problem is
presented in Fig. 6(a) – (d). The figure represents the
distribution of particles with different roles at the 1st, 50th,
100th, and 150th iterations. The initial positions of the particles
were chosen at random before the iterations began. During the
initial iterations, relative to the feedback from the success rate
of particles in the swarm, the particles are in the state of
exploration as shown, for example, in Fig. 6(a). As the
iterations increases, the algorithm begins to exploit around the
near optimal solution discovered during the exploration stage
as shown, for example, in Fig. 6(d).

Fig. 6. 3D pictures (a) – (d) of CAIWS-D for 2-dimensional Griewank
problem with 20 particles

VI. CONCLUSIONS

In this paper, the performance of the PSO algorithm with
two (2) adaptive chaotic inertia weights based on chaotic
movement and swarm success rate of particles were proposed
and investigated. Their results and performances were
extensively compared with those of five (5) existing inertia

78 2013 IEEE Symposium on Swarm Intelligence (SIS)

weight strategies (RIW, LDIW, CRIW, CDIW and the inertia
weight based on decreasing exponential function) recorded in
literature, through experimental studies using some nonlinear
problems well studied in the literature. Experiment results
show that the two proposed inertia weight strategies, CAIWS-
R and CAIWS-D, can further improve the performance PSO
algorithm in terms of convergence speed and accuracy as well
as global search ability because of their chaotic characteristics
and adaptive nature provided by the swarm success rate which
helped in providing information about the state of the swarm in
the search space to adjust the value of inertia weight in each
iteration appropriately for better results.

The swarm success rate could be a very useful tool for
enhancing the performances of any swarm-based optimization
algorithms as a result of the useful information about the
particles in the search space it provides, thus its potentiality
should be further explored.

Future research will focus on improving on the global
search ability, stability and robustness of the proposed methods
and then be subjected to comparisons with other adaptive
inertia weight strategies. They shall also be applied to solve
problems with higher dimensionality and some real-world
problems.

ACKNOWLEDGMENT

Our thanks to the College of Agriculture, Engineering and
Science, University of Kwazulu-Natal, South Africa for their
support towards this work through financial bursary. We also
appreciate the reviewers of the original manuscript for their
time and efforts, which has made this paper what it is.

REFERENCES
[1] A. Nickabadi , M.M. Ebadzadeh, and R. Safabakhsh, "A novel particle

swarm optimization algorithm with adaptive inertia weight," Applied
soft computing on, vol. 11, pp. 3658-3670, 2011.

[2] R. Poli, J. Kennedy, and T. Blackwell, "Particle swarm optimization: An
overview," Swarm Intelligence, vol. 1, pp. 33–57, 2007.

[3] Y. Shi, and R. C. Eberhart, "A modified particle swarm optimizer,"
Proceedings of the IEEE international conference on evolutionary
computation, pp. 69–73, 1998.

[4] G. Chen, X. Huang, J. Jia, and Z. Min, "Natural Exponential Inertia
Weight Strategy in Particle Swarm Optimization," Proceedings of the
6th World Congress on Intelligent Control and Automation, June 21 -
23, Dalian, China, 2006.

[5] Y. Feng1, G-F Teng1, A-X Wang1, and Y-M Yao, "Chaotic Inertia
Weight in Particle Swarm Optimization," IEEE, 2007.

[6] J. Xin, G. Chen, and Y. Hai , "A particle swarm optimizer with multi-
stage linearly-decreasing inertia weight," International Joint Conference
on Computational Sciences and Optimization, 2009.

[7] N. Iwasaki, K. Yasuda, and G. Ueno, "Dynamic parameter tuning of
particle swarm optimization," IEEJ Transactions on electrical and
electronic engineering, vol. 1, pp. 353–363, 2006.

[8] "Computational swarm intelligence," part IV, chapter 16, online at
http://www.scribd.com/doc/73337453/13/Basic-PSO-Parameters.

[9] R.C. Eberhart, and Y. Shi., “Tracking and optimizing dynamic systems
with particle swarms,” Proceedings of the 2001 Congress on
Evolutionary Computation, vol. 1, pp. 94–100, 2002.

[10] Y.H. Shi, and R.C. Eberhart, "Fuzzy adaptive particle swarm
optimization," Congress on evolutionary computation, Korea, 2001

[11] R.F. Malik, T.A. Rahman, S.Z.M. Hashim, and R. Ngah, “New particle
swarm optimizer with sigmoid increasing inertia weight,” International
Journal of Computer Science and Security, vol. 1, no. 2, p. 35, 2007.

[12] Y. Gao, X. An, and J. Liu., “A particle swarm optimization algorithm
with logarithm decreasing inertia weight and chaos mutation”,
International Conference on Computational Intelligence and Security,
IEEE, vol. 1, pp. 61–65, 2008.

[13] G. Chen, X. Huang, J. Jia, and Z. Min., “Natural exponential inertia
weight strategy in particle swarm optimization”, The Sixth World
Congress on Intelligent Control and Automation, IEEE, vol. 1, pp.
3672–3675, 2006.

[14] Y. Feng, G.F. Teng, A.X. Wang, and Y.M. Yao., “Chaotic Inertia
Weight in Particle Swarm Optimization,” Second International
Conference on Innovative Computing, Information and Control, IEEE,
p. 475, 2008.

[15] H.R. Li and Y.L. Gao., “Particle swarm optimization algorithm with
exponent decreasing inertia weight and stochastic mutation”, Second
International Conference on Information and Computing Science, IEEE,
pp. 66–69, 2009.

[16] K. Kentzoglanakis, and M. Poole., “Particle swarm optimization with an
oscillating inertia weight”, Proceedings of the 11th Annual conference
on Genetic and evolutionary computation, ACM, pp. 1749–1750, 2009.

[17] J. Kennedy, and R.C. Eberhart, “Particle swarm optimization”,
Proceedings of IEEE international conference on neural networks, Perth,
Australia,vol. 4, pp. 1942–1948, 1995.

[18] J. Ememipour, M.M.S. Nejad, M.M. Ebadzadeh, and J. Rezanejad,
"Introduce a new inertia weight for particle swarm optimization", The
Fourth International Conference on Computer Sciences and
Convergence Information Technology, pp. 1650-1653. IEEE, 2009.

[19] G.I. Evers, "An automatic regrouping mechanism to deal with stagnation
in particle swarm optimization," MSc. Thesis, Graduate school of the
University of Texas-Pan American, May, 2009.

[20] Y. Gao, X. An, and J. Liu., “A particle swarm optimization algorithm
with logarithm decreasing inertia weight and chaos mutation,”
International Conference on Computational Intelligence and Security,
vol. 1, pp. 61–65. IEEE, 2008.

[21] J. Sun, C-H. Lai, and X-J Wu, "Particle swarm optimization: classical
and quantum perspectives", CRC press, New York, 2011.

2013 IEEE Symposium on Swarm Intelligence (SIS) 79

For Peer Review Only

An Improved Particle Swarm Optimizer based on Swarm

Success Rate for Global Optimization Problems

Journal: Journal of Experimental & Theoretical Artificial Intelligence

Manuscript ID: Draft

Manuscript Type: Original Article

Keywords:
Particle swarm optimization, Global optimization, Unconstrained

Optimization, Inertia weights, Success rate

URL: http://mc.manuscriptcentral.com/teta

Journal of Experimental & Theoretical Artificial Intelligence

For Peer Review Only

An Improved Particle Swarm Optimizer

based on Swarm Success Rate for Global

Optimization Problems

Abstract

Inertia weight is one of the control parameters that influence the performance of Particle Swarm Optimization

(PSO) in course of solving global optimization problems, by striking a balance between exploration and

exploitation. Among many inertia weight strategies that have been proposed in literature include Chaotic

descending inertia weight (CDIW) and chaotic random inertia weight (CRIW). These two strategies have been

claimed to perform better than Linear descending inertia weight (LDIW) and Random inertia weight (RIW) PSO

variants respectively. Despite these successes, a closer look at their results reveals that the common problem of

premature convergence associated with PSO algorithm still lingers. Motivated by the better performances of

CDIW and CRIW, this paper proposed two new inertia weight strategies namely: Swarm success rate

descending inertia weight (SSRDIW) and Swarm success rate random inertia weight (SSRRIW). These two

strategies use swarm success rate as feedback parameter. Efforts were made using the proposed inertia weight

strategies with PSO to further improve the effectiveness of the algorithm in terms of convergence speed, global

search ability and increased solution accuracy. The proposed PSO variants, SSRDIWPSO and SSRRIWPSO were

validated using several benchmark unconstrained global optimization test problems and their performances

compared with LDIW-PSO, CDIW-PSO, RIW-PSO, CRIW-PSO, and some other existing PSO variants.

Empirical results showed that the proposed variants are more efficient.

Keywords: Particle swarm optimization, Success rate, chaos, Inertia weights, Global optimization

1. Introduction
Generally, optimization problems involve how to select the best course of action among many others, given

some restrictions. Optimization problems typically have three fundamental elements – objective function,

decision variables, and constraints. Objective function is (in many cases) a single numerical quantity that is to be

optimized (maximized or minimized). Decision variables are quantities whose values can be manipulated in

order to optimize the objective. Constraints are restrictions on the values that the decision variables can take. A

global optimization problem can be generally represented in the following way:

Optimize �����
subject to ������ 		 	0	

where �� � ���, ��, … , ��� is the decision variable in ��, f:�� → � is the objective function and ��: �� → �, j

=1, 2, …, m the constraint functions.

The goal of any optimization problem is to maximize or minimize an objective function. Solution ��∗ is a global

minimizer of ����� if and only if ����∗� 	 ����� for all ��∗ in the domain of �����. But it is global maximizer of ����� if and only if ����∗� � ����� for all ��∗ in the domain of �����. Optimization problems are often multi-

modal (non-convex); that is, they possess multiple good solutions and proffering solutions to such problems is

the subject matter of global optimization. The proffered solutions could all be globally good (same cost function

value) or there could be a mix of globally good and locally good solutions.

Swarm intelligence is one of the classes of nature-inspired metaheuristics that has been used to provide (near)

optimal solutions to many complex optimization problems, over the years. The goal of swarm intelligence is the

design of intelligent multi-agent systems by taking inspiration from the collective behavior of social organisms.

A popular member of swarm intelligence metaheuristcs is PSO. The notion of PSO originated from the

Page 1 of 28

URL: http://mc.manuscriptcentral.com/teta

Journal of Experimental & Theoretical Artificial Intelligence

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only

behaviour of a group of birds which coordinates itself, with some degree of randomness, in order to achieve an

objective. The idea of PSO was transferred to optimization by Eberhart and Kennedy in 1995 [3], where each

particle (bird) uses its personal experience and that of its neighbours to decide on its own movement from one

point to the other, resulting to adaptive swarm emergent behaviour.

Many variants of PSO that exist in literature include [2, 5-7, 9, 12-15, 21, 25]. These variants emanated as a

result of the desires by researchers to improve on the performance of PSO technique. Among these variants are

LDIW-PSO [22-24], RIW-PSO [4], CDIW-PSO and CRIW-PSO [5], dynamic adaptive PSO (DAPSO) [21] and

natural exponential (base e) PSOs (e1-PSO and e2-PSO) [2]. In this paper, some efforts were made using the

proposed inertia weight strategies to further improve the effectiveness of PSO technique in terms of

convergence speed, global search ability and increased solution accuracy. The paper focuses on the inertia

weight strategy of PSO to study the effect of swarm success rate as feedback parameter compared to non-

feedback chaotic values in the inertia weight formula. Empirical results from numerical experiments performed

showed that the proposed PSO variants are very efficient.

The remaining part of this paper is organized in five major sections. Section 2 summarized the inertia weight

PSO technique. Section 3 reviewed the PSO variants that were experimentally compared with the proposed

variants. Section 4 described the proposed PSO variants while the numerical simulations were carried out in

Section 5. Conclusion of the paper is in Section 6.

2. Inertia weight PSO
PSO technique is population-based, adaptive and stochastic in nature. It has a wide range of applications in

different fields including economics, engineering, industry, biology and many other complex real world

optimization problems [10, 16, 19]. In PSO, a swarm of particles (set of solutions) is randomly positioned in the

search space and the quality of each particle is determined by the value of the objective function associated with

the problem being optimized. Each particle knows its own best solution and the best solution of the whole

swarm and a single population is often maintained but is adjusted in response to new discoveries about the

solution space.

To implement PSO involves manipulating about eight different parameters which are particle swarm size,

problem dimensionality, particle velocity, inertia weight, particle velocity limits, cognitive learning rate, social

learning rate and the random factors. However, the number of parameters needed depends on the PSO variants

being implemented. These parameters collectively help the algorithm in the course of optimizing a given

problem. Among these parameters, the inertia weight (ω) have attracted much attentions of researchers because

of the common belief that it helps in balancing the local and global search of PSO algorithm during the

optimization process [20, 22, 26]. Despite the significant and prominent role of inertia weight, it needs the

support of other parameters to function effectively [8, 26].

The inertia weight PSO consists of three steps, generating initial positions and velocities for particles, updating

the velocities of particles and updating the positions of particles. Each particle in the swarm is made up of two

major n-dimension vectors, Xi = (xi1, …, xin) represents the position and Vi = (vi1, …, vin) represent the velocity of

particle i. When the technique is being implemented, the particles move around while adjusting their velocities

and positions according to equations (1) and (2), in the search space in search for optimum solution to the

problem being optimized.

)()(2211

1 k

i

kk

i

k

i

k

i

k

i XGBrcXPBrcVV −+−+=
+

ω (1)

11 ++
+=

k

i

k

i

k

i VXX (2)

where, c1 and c2 are acceleration constants also known as cognitive and social scaling parameters that determine

the magnitude of the random forces in the direction of PB (particle’s previous best) and GB (global best); r1 and

r2 are random numbers between 0 and 1; k is iteration index and ω is inertia weight. The original PSO algorithm

[3] uses the values of 1.0, 2.0 and 2.0 for ω, c1 and c2 respectively. The positions of the particles are controlled

to be within the solution search space while their velocities are clamped within some specified maximum

velocity bounds.

Page 2 of 28

URL: http://mc.manuscriptcentral.com/teta

Journal of Experimental & Theoretical Artificial Intelligence

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only

3. A review of the PSO variants adopted for comparison
In this section, all the PSO variants considered for comparison with the variants proposed in this paper are

reviewed and discussed. These variants are LDIW-PSO, CDIW-PSO, RIW-PSO, CRIW-PSO, e1-PSO, e2-PSO

and DAPSO.

3.1. Linear decreasing inertia weight PSO (LDIW-PSO)

LDIW-PSO is a variant of PSO which implements the linear descending (or decreasing) inertia weight strategy.

The introduction of linearly decreasing inertia weight into the inertia weight PSO greatly improved the

algorithm. This was ascertained through experimental studies by [23, 24]. In this variant, the inertia weight

starts with some large initial value and then linearly decreases to some smaller final value with the belief that a

large inertia weight facilitates a global search while a small inertia weight facilitates a local search. The

commonly used initial and final values are 0.9 and 0.4 [2, 5, 15]. However, there are cases where values other

than 0.9 or 0.4 are used [12, 13, 21]. With these values, the inertia weight could be seen as the fluidity of the

medium in which a particle travels [20]; high initial value makes particles travel in a low viscosity medium,

which favours exploration while lower inertia value makes the particle moves in a high viscosity medium

favouring exploitation. However, using the linearly decreasing inertia weight makes PSO become victim of

premature convergence, despite its quick convergence towards the optimal positions at the beginning [23].

Many attempts have been made to improvement on LDIW-PSO [4, 5, 9, 25, 26]. Equation (3) shows the LDIW

strategy.

�� � ������� �	����� �� �! � "� �! # $ ���� (3)

where ωstart and ωend are the initial and final values of inertia weight, t is the current iteration number, Tmax is

the maximum iteration number and ωt ∈ [0,1] is the inertia weight value in the t
th
 iteration.

3.2. Chaotic descending inertia weight PSO (CDIW-PSO)

Utilizing the merits of chaotic optimization, CDIW-PSO was proposed by [5] based on logistic mapping in

equation (4). Chaos is a nonlinear dynamic system which is sensitive to the initial value. It has the characteristic

of ergodicity and stochastic property. The goal was to address the problem of premature convergence associated

with LDIW-PSO. Equation (5) represents the chaotic descending inertia weight. %&'� � () %&) �1 � %&� (4)

where µ = 4 and zk is the kth chaotic number. The map generates values between 0 and 1, provided that the initial

value z0 ∈ (0,1) and that z0 ∉ (0.0, 0.25, 0.5, 0.75, 1.0).

�� � ������� �	����� �� �! � "� �! # $ ����) %&'� (5)

where ωstart and ωend are as defined above. CDIW-PSO demonstrated better convergence precision, quick

convergence velocity, and better global search ability compared with LDIW-PSO [5].

3.3. Random inertia weight PSO (RIW-PSO)

In [4], randomness was introduced into the inertia weight strategy in PSO. Using particle swarms to track and

optimize dynamic systems, a new way of calculating the inertia weight value was proposed as shown in

equation (6). The formula produces a number randomly varying between 0.5 and 1.0, with a mean value of 0.75

while c1 and c2 = 1.494.

�� � 0.5 $ -./0��2
(6)

As a result of the difficulty in predicting whether exploration (a larger inertia weight value) or exploitation (a

smaller inertia weight) will be better at any given time in tracking a nonlinear dynamic system, the strategy in

equation (6) was introduced to address the inefficiency of linearly decreasing inertia weight, which decreases

from 0.9 to 0.4 during a run, in handling such a problem.

3.4. Chaotic random inertia weight PSO (CRIW-PSO)

The chaotic random inertia weight (CRIW) was proposed in [5] as shown in equation (7). The aim was to

improve on the random inertia weight in equation (6) using logistic map in equation (4), to avoid getting into

local optimum in searching process by utilizing the merits of chaotic optimization.

Page 3 of 28

URL: http://mc.manuscriptcentral.com/teta

Journal of Experimental & Theoretical Artificial Intelligence

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only

�� � -./0��2 $ 0.5) %&'� (7)

where rand() is a uniform random number in [0,1] The results in [5] show that the PSO had preferable

convergence precision, quick convergence velocity, and better global search ability. This is because, due to non-

repetition of chaos the algorithm could carry out overall searches at higher speed and diversify the particles and

improves the algorithm's performance in preventing premature convergence too quickly to local minima

compared with RIW which have no chaos characteristics.

3.5. Dynamic adaptive particle swarm optimization (DAPSO)

This variant was proposed by [21] to solve the PSO premature convergence problem associated with
typical multi-peak, high dimensional function optimization problems and improve its global optimum

convergence speed. So as to achieve this goal, a dynamic adaptive strategy was introduced into the
variant to adjust the inertia weight value based on the current swarm diversity. Experimental results
showed evidences that DAPSO performed better than LDIW-PSO. The inertia weight formula that was
used is represented in equation (8). �� � � 2� $ �� �! �� 2��) 3�) 4� (8)

where ωmin and ωmax are the minimum and maximum inertia weight values, t is the current number of iterations,

the diversity function Ft and adjustment function ϕt, both in the tth iteration are represented in equations (9) and

(10) respectively.

3� � 1 � 25 .-6	tan	�:� (9)

where E is the group fitness as shown in equation (11). 4� � ;<=�> ��?>�⁄ A (10)

where, B � CD and T is the total number of iterations.

: � 1EF<���2� � ��GHA�I
2J� (11)

Where N is the swarm size, f(xi) is the fitness of particle i and favg represented in equation (12) is the current

average fitness of the swarm.

��GH � 1EF���2�I
2J� (12)

3.6. Natural exponential inertia weight PSO

Based on the idea of decreasing inertia weight strategy, [2] proposed two inertia weight strategies of natural

exponential functions, e1-PSO and e2-PSO represented by equations (13) and (14) respectively. Based on the

experimental settings in [2], these inertia weight strategies were proved to converge faster than LDIW-PSO

during the early stage of the search process. Besides, they were also claimed to have performed better in most of

the continuous optimization problems that were solved.

�� � 		� 2� $ �� �! � � 2��;=K �LMNOPCQR�S TU

(13)

�� � 		� 2� $ �� �! � � 2��;=K �LMNOPCQRV TU
>

(14)

where, t is the current iteration number and MAXITER is the maximum allowed number of iterations.

3.7. Discussions

The inertia weight PSO is generally not difficult to implement and it is fast in convergence. Looking at the

variants described above, they all tried to address the problem of getting stuck in local optima associated with

PSO. They are basically of two groups – randomly and linearly inclined, though with some infusion of chaotic

Page 4 of 28

URL: http://mc.manuscriptcentral.com/teta

Journal of Experimental & Theoretical Artificial Intelligence

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only

and swarm variance into some of them for enhancement. For the randomly-inclined inertia weight strategies,

they are more or less purely controlled by randomly (or chaotic) generated numbers while the linearly-inclined

strategies are controlled by the iteration number of the algorithm; and none of them has any information about

the state of the swarm in the search space which could influence the nature of search for optimal solution by the

swarm. Besides, the linearly directed strategies have the initial and final values of the inertia weight fixed,

thereby ruling out the flexibility of obtaining some lower or higher values for the inertia weight that could help

the algorithm obtain some good optima results. Therefore, it is of utmost importance that some means be

devised to help reaslise the state of the swarm in the search space as well as create some flexibility in either of

the limits of the inertia weight with the belief that this could help the algorithm obtain some better results.

4. Proposed PSO variants
One of the major goals of this work is to enhance the performance of the inertia weight PSO. In achieving this,

the following 3 definitions are given:

Definition 1: Given that the current position of particle i at iteration t is WX;Y"�2 and the function to be optimized

as f(). The success of particle i at iteration t, in a minimization problem, is defined in equation (15).

YZ66�2 � [1 , \�	��WX;Y"�2�] ��WX;Y"�=�2 �0 , \�	��WX;Y"�2� � ��WX;Y"�=�2 � (15)

Definition 2: Given a swarm of particles of size n and the success of each particle at iteration t to be YZ66�2 . The

swarm success rate (ssr) at iteration t is defined as shown in equation (16).

YY-� � ∑ YZ66�2�2 / (16)

From definition 2, ssrt ∈[0,1]. Where no particle succeeds to improve its fitness, ssrt is set to 0; where all

the particles succeed in improving their individual fitness, it is set to 1. Therefore ssrt reflects the state of the

swarm and can serve as a feedback parameter to the PSO algorithm to determine the inertia weight at the tth

iteration.

Definition 3: Given ωmin and ωmax as the minimum and maximum inertia weight values, Tmax as the maximum

iteration number and t as the current iteration of the algorithm, the two proposed inertia weight strategies

SSRDIWPSO and SSRRIWPSO, are defined by equations (17) and (18) respectively.

�� � ������� �	����� �� �! � "� �! # $ ����) YY-�=� (17)

�� � 0.5) -./0�� $ 0.5) YY-�=� (18)

where, YY-�=�is the swarm success rate at the previous iteration which adaptively determine the lower limit of

the range of inertia weight values. This was made so because, having a fixed final inertia weight value (i.e., ωend

and 0.5) could limit the flexibility of the inertia weight strategy obtaining some possible lower or higher values

around ωend and 0.5 that could contribute to its effectiveness. Besides, the algorithms could perform better if

there is a way the state of the swarm in the search space could be fed back into the system. Thus, YY-�=� as a
feedback parameter could help realize the state of the swarm in the search space and hence adjust the value of

inertia weight at each iteration appropriately for better results. Among the goals of this paper is to further

improve on the performances of LDIW-PSO and RIW-PSO using this idea and then verify the superiorities of

the proposed variants in comparison with CDIW-PSO, CRIW and some other existing PSO variants. Figure 1

shows the algorithm for the proposed variants.

5. Numerical simulations
To validate the performance of the proposed PSO variants, four different experiments were performed for the

purpose of detailed comparison of SSRDIWPSO and SSRRIWPSO with seven other different PSO variants

namely, LDIW-PSO, RIW-PSO, CDIW-PSO, CRIW-PSO, DAPSO, e1-PSO and e2-PSO. Different

experiments, relative to the competing PSO variants, used different set of test problems which were also used to

test the proposed variants. The program was developed with Window-based Microsoft Visual C# programming

language, running on a system with a 2.0GHz Intel Pentium dual-core processor, 2.0GB of RAM.

Page 5 of 28

URL: http://mc.manuscriptcentral.com/teta

Journal of Experimental & Theoretical Artificial Intelligence

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only

5.1. Benchmark problems

Different test problems with varied difficulties were used to verify the performance of the proposed variants.

Descriptions of all the test problems, with some additional information found in [11, 17, 18, 27, 28], are given in

Appendix I. Shown in Tables 1 and 2 are the names, search ranges, optimum values, dimensions and

characteristics (US – unimodal separable, UN – unimodal non-separable, MS – multimodal separable, MN –

multimodal non-separable) of the respective test problems.

5.2. Settings of the experiment

The settings of the different experiments performed for the comparisons are described below one after the other.

In experiments 1 – 3, SSRDIWPSO and SSRDIWPSO were subjected to the same settings of its competitors as

recorded in literature [2, 5, 21]. All experiments were made to run for the maximum number of iterations which

serves as the stopping criteria for all the algorithms. In all the experiments in this paper, the initial positions of

particles were generated using uniform random number generator.

5.2.1. Experiment 1

In this experiment SSRDIWPSO and SSRDIWPSO were respectively compared with the two PSO variants, CDIW-

PSO and CRIW-PSO adopted from [5]. The test problems used were Griewank, Rastrigin, Rosenbrock,

Schaffer's f6 and Sphere problems as shown in Table 1. The problems dimensions and stopping criteria are

stated in Table 3. The maximum numbers of iterations was set to 1500 with swarm size of 20 and the

experiment was repeated 500 times for each test problem. All these settings were adopted from [5]. The goal of

this experiment was to verify whether the proposed variants are more efficient than their competitors.

5.2.2. Experiment 2

In this experiment, another settings used for e1-PSO and e2-PSO in [2] were adopted. Apart from the parameter

Vmax set to be 0.05Xmax for SSRDIWPSO and SSRDIWPSO, all other settings remain the same. The performances

of the proposed variants were compared with that of e1-PSO and e2-PSO. The test problems used were

Griewank, Rastrigin, Rosenbrock and Sphere problems as shown in Table 1. The problems dimensions and

stopping criteria are stated in Table 4. The maximum numbers of iterations was set to 3000 with swarm size of

30 and the experiment was repeated 50 times for each of the test problems. These settings were adopted from

[2].

5.2.3. Experiment 3

In this experiment, SSRDIWPSO and SSRDIWPSO were further tested by subjecting them to different settings

used for DAPSO in [21]. The test problems used were Ackley, Griewank and Rastrigin problems. The problems

dimensions and search ranges are stated in Table 5. The maximum numbers of iterations was set to 3000 with

swarm size of 30 and the experiment was repeated 50 times for each of the test problems. All settings were

adopted from [21].

5.2.4. Experiment 4

After the preceding experiments, SSRDIWPSO, SSRDIWPSO, LDIW-PSO, RIW-PSO, CDIW-PSO and CRIW-

PSO were subjected to the same experimental settings to optimize 12 test problems. Subjecting the variants to

the same experimental settings gives each of them equal opportunity of performance.

A common platform of test problems, search ranges, dimensions and success criteria, all shown in Tables 7 and

8, was set for all the competing variants to test their respective performance. Table 7 contains 6 high-scaled

benchmark test problems while Table 8 contains 6 low-scaled benchmark test problems. The swarm size was set

to 20 and 30; maximum allowed number of iterations was 1000, 3000 and 5000 for three respective different

problem dimensions of 10, 30 and 50. A maximum iteration of 1000 was used for the low-scaled problems. The

experiment was repeated 100 times for each of the test problems. In the experiment, c1 = c2 = 2.0, ωmax = 0.9,

ωmin = 0.4.

For the purpose of fair comparison, an experiment was conducted to obtain a suitable setting for Vmin and Vmax

for CDIW-PSO, CRIW-PSO, LDIW-PSO and RIW-PSO. The experiment tested these four variants with Vmin =

Xmin and Vmax = Xmax on the one hand and Vmin = 0.05Xmin and Vmax = 0.05Xmax on the other. Ackley, Griewank,

Rastrigin and Rosenbrock problems were used with 20 particles and maximum iteration of 3000. The

experiment was repeated 100 times. Presented in Table 6 are the results obtained from the experiment, showing

the mean best fitness for all the problems as obtained by the four PSO variants.

Page 6 of 28

URL: http://mc.manuscriptcentral.com/teta

Journal of Experimental & Theoretical Artificial Intelligence

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only

From the results in Table 6, it was discovered that CDIW-PSO, CRIW-PSO, LDIW-PSO and RIW-PSO

performed very well using Vmin = 0.05Xmin and Vmax = 0.05Xmax compared with Vmin = Xmin and Vmax = Xmax.

Therefore, the particle velocity bounds that were used in this experiment 4 for all the competing variants was

Vmin = 0.05Xmin and Vmax = 0.05Xmax.

5.3. Comparative study and Discussions

In this sub-section results obtained from all the experiments are presented and discussed. The results were

compared based on the final accuracy of the mean best solutions (Mean fitness), convergence speed, standard

deviation (Std. Dev.) and success rate (SR).The mean best fitness (solution) is a measure of the precision that

the algorithm can get within given iterations while the standard deviation is a measure of the algorithm's

stability and robustness and success rate is the rate of the optimum fitness result in the criterion range

experimenting a number times independently.

Presented in Tables 9 – 31 are the results obtained for all the experiments. The results for all the competing PSO

variants for experiments 1 – 3 were obtained from the respective referenced papers and they are presented here

the way they were recorded. Thus, the recording of the results for SSRDIWPSO and SSRRIWPSO were patterned

after them. In each of the tables, bold values represent the best results.

5.3.1. Results for Experiment 1

The results for CDIW-PSO were adopted from [5]. The results in Table 9 clearly reveal a great difference in

performance between SSRDIWPSO and CDIW-PSO. The results are compared based on the final accuracy of the

averaged best solutions and success rate (SR%). In all the test problems, the result indicates that SSRDIWPSO

can get better optimum fitness results, showing better convergence precision. Besides, SSRDIWPSO has better

global search ability and could easily get out of local optima than CDIW-PSO.

Table 10 compares the performances SSRRIWPSO and CRIW-PSO. The results for CRIW-PSO were adopted

from [5]. The results are also compared based on the final accuracy of the averaged best solutions and success

rate (SR%). The results show that in all the test problems, SSRRIWPSO can get better optimum fitness results,

showing better convergence precision. However, there are some differences in their global search abilities in

favour of CRIW-PSO in Griewank and Rosenbrock problems with slight differences. But SSRRIWPSO has better

global search ability in Rastrigin and Schaffer's f6 problems with high differences.

5.3.2. Results for Experiment 2

In Tables 11 and 12, SSRDIWPSO and SSRRIWPSO are compared together with e1-PSO and e2-PSO based on

their final accuracies of the averaged best solutions and number of trials that successfully reached the stopping

criteria. The results for e1-PSO and e2-PSO were adopted from [2]. In all the test problems, SSRDIWPSO and

SSRRIWPSO outperformed e1-PSO as well as e2-PSO. They got better optimum fitness results, demonstrated

better convergence precision global search ability showing that they could easily get out of local optima than

their competitors. However, e1-PSO was three trials higher in reaching the stopping criteria for Rosenbrock

problem.

5.3.3. Results for Experiment 3

The results for DAPSO were obtained from [21]. As shown in Table 13, these results were compared with those

of SSRDIWPSO and SSRRIWPSO based on the final accuracy of the respective mean best solutions across the

different problems dimensions. In all the problems and dimensions, SSRDIWPSO and SSRRIWPSO outperformed

DAPSO in getting better fitness quality and precision. This is a clear indication that in both global search ability

and not easily getting trapped in local optima, SSRDIWPSO and SSRRIWPSO are superior to DAPSO. Generally,

SSRRIWPSO performed better than SSRDIWPSO.

5.3.4. Results for Experiment 4

In this sub-section an in-depth empirical and comparison studies were carried out based on the obtained results

from experiment 4, to find which variants among SSRDIWPSO, LDIW-PSO and CDIW-PSO on the one hand

and SSRRIWPSO, RIW-PSO and CRIW-PSO on the other hand, could obtain outstanding results with the intent

of validating the performances of the two proposed inertia weight strategies when used with the inertia weight

PSO algorithm.

Page 7 of 28

URL: http://mc.manuscriptcentral.com/teta

Journal of Experimental & Theoretical Artificial Intelligence

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only

5.3.4.1. Comparison of SSRDIWPSO, CDIW-PSO and LDIW-PSO using the high-scaled test problems

Tables 14 – 19 show all the results of all the variants for six high-scaled problems using two different swarm

sizes (20 and 30) and three different problems dimensions (10, 30 and 50). When the dimension was set to 10

for all the problems (Tables 14a, 14b, 15a and 15b), SSRDIWPSO obtained better optimal results for all the

problems, except Rosenbrock when swarm size was 20 and Rastrigin when swarm size was 30, that CDIW-

PSO had better optimal results. Though, LDIW-PSO was able to get good results but could not perform better

that the others.

When the dimension was set to 30 for all the problems (Tables 16a, 16b, 17a and 17b), SSRDIWPSO also

obtained better optimal results for all the problems, except Ackley when swarm size was 20 and Rosenbrock

when swarm size was 30, where CDIW-PSO had better optimal results and Rastrigin when swarm size was 30,

where LDIW-PSO had better optimal result.

With the dimension set to 50 for all the problems (Tables 18a, 18b, 19a and 19b), SSRDIWPSO could only obtain

better optimal results in Rastrigin, Schwefel P2.22 and Sphere problems while CDIW-PSO performed better in

Ackley and Griewank problems and LDIW-PSO in Rosenbrock when swarm size was 20. When swarm size was

30, SSRDIWPSO took lead in Ackley, Schwefel P2.22 and Sphere problems while CDIW-PSO took lead in

Rastrigin and Rosenbrock, but LDIW-PSO in Griewank.

Table 20 gives the summarized of the average performance ranking in terms of mean best fitness for LDIW-

PSO, CDIW-PSO and SSRDIWPSO across all the swarm sizes and problems dimensions for the test problems.

From the table, SSRDIWPSO had the best overall performance compared with its competitors when the problems

dimensions were set to 10 and 30, but CRIW-PSO slightly performed better than SSRDIWPSO when the

problems dimension was 50. RIW-PSO had the least performance.

Figure 2 below shows the convergence curves and the searching behaviour of SSRDIWPSO compared with

CDIW-PSO and LDIW-PSO in all the six high-scaled test problems with swarm size of 20 and a dimension of

30. Apart from Ackley problem, SSRDIWPSO was consistent in demonstrating better convergence and obtaining

better quality results than other variants in all other test problems.

5.3.4.2. Comparison of SSRRIWPSO, CRIW-PSO and RIW-PSO using the high-scaled test problems

Tables 21 – 26 show all results for the variants for six scalable problems using two different swarm sizes and

three different problems dimensions. When the dimension was set to 10 for all the problems (Tables 21a, 21b,

22a and 22b), SSRRIWPSO obtained better optimal results for all the problems, except Griewank and Rosenbrock

when swarm size was 20 and Rastrigin when swarm size was 30, that CRIW-PSO had better optimal results.

When the dimension was set to 30 for all the problems (Tables 23a, 23b, 24a and 24b), SSRRIWPSO also

obtained better optimal results for all the problems, except Ackley when swarm size was 20 and Rastrigin when

swarm size was 30, where CRIW-PSO had better optimal results.

With the dimension set to 50 for all the problems (Tables 25a, 25b, 26a and 26b), SSRRIWPSO still obtained

better optimal results for all the problems, except Ackley when swarm size was 20 and 30 where CRIW-PSO

performed better.

Table 27 summarizes the average performance ranking in terms of mean best fitness for RIW-PSO, CRIW-PSO

and SSRRIWPSO across all the swarm sizes and problems dimensions for the test problems. From the table,

SSRRIWPSO had the best overall performance compared with its competitors in all the test problems, followed

by CRIW-PSO. RIW-PSO performed the least.

Figure 3 shows the convergence curves and the searching behaviour of SSRRIWPSO compared with CRIW-PSO

and RIW-PSO in all the six high-scaled test problems with swarm size of 20 and a dimension of 30. Apart from

Ackley problem, SSRRIWPSO was consistent in demonstrating better convergence and obtaining better quality

results than other variants in all other test problems.

Page 8 of 28

URL: http://mc.manuscriptcentral.com/teta

Journal of Experimental & Theoretical Artificial Intelligence

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only

5.3.4.3. Comparison of SSRDIWPSO, CDIW-PSO and LDIW-PSO using the low-scaled test problems

Tables 28 and 29 show all results for the variants for six low-scaled problems using two different swarm sizes.

When the swarm size was set to both 20 and 30 for all the problems (Tables 28a, 28b, 29a and 29b), all the

variants almost performed equally except in Michalewicz where SSRDIWPSO obtained better optimal result than

others and Schaffer's f6 where LDIW-PSO had better optimal result.

Figure 4 shows the convergence curves and the searching behaviour of SSRDIWPSO compared with CDIW-PSO

and LDIW-PSO in 4 of the six low-scaled test problems with swarm size of 20. SSRDIWPSO was consistent in

its speed of convergence in Booth to obtain the optimum earlier than others. It also performed better in

Michalewicz than others. However, LDIW-PSO had a better convergence speed at the later stage with better

search ability to obtain high quality result in Schaffer's f6 than others but of the same convergence speed with

SSRDIWPSO in Shurbert. SSRDIWPSO was able to recover from being trapped very close to the optimum.

5.3.4.4. Comparison of SSRRIWPSO, CRIW-PSO and RIW-PSO using the low-scaled test problems

Tables 30 and 31 show all results for the variants for six low-scaled problems using two different swarm sizes.

When the swarm size was set to both 20 and 30, SSRRIWPSO obtained better optimal result in Michalewicz

while RIW-PSO had better optimal result in Schaffer's f6. RIW-PSO and CRIW-PSO had equal performance in

Shubert.

The convergence curves in Figure 5 provide insight into the searching behaviour of the competing variants in 4

of the six low-scaled test problems with swarm size of 20. It is clearly shown that SSRRIWPSO was consistent in

its speed of convergence in Booth to obtain the optimum earlier than others. It also performed better in

Michalewicz than others. However, RIW-PSO had a better convergence speed at the later stage with better

search ability to obtain high quality result in Schaffer's f6 than others but of the same convergence speed with

CRIW-PSO in Shubert.

6. Conclusion
Motivated by CDIW and CRIW, in this paper two inertia weight strategies, SSRDIW and SSRRIW, have been

introduced into the inertia weight PSO thereby leading to proposing two PSO variants, SSRDIWPSO and

SSRDIWPSO. To verify whether these variants were as efficient as some of the existing PSO variants, the

performance of SSRDIWPSO was extensively compared with those of LDIW-PSO and CDIW-PSO while that of

SSRDIWPSO with those of RIW-PSO and CRIW-PSO through experimental studies of some nonlinear functions

well studied in the literature. From the experiments conducted, results show that SSRDIW and SSRRIW are

more efficient and robust than their competitors in high-scaled problems than in low-scaled. The proposed

variants were also compared with e1-PSO, e2-PSO and DAPSO and it was discovered that they were also more

efficient and robust. In all, the proposed inertia weight strategies have greatly improved the robustness, accuracy

and convergent speed of the inertial weight PSO. These proposed variants are based on the fact that usually, a

uniform random number does not convey much information about the state of the swarm and therefore cannot

be assumed to adjust the inertia weight appropriately. The better performances of the proposed variants was as

result of the fact that, the swarm success rate which served as a feedback parameter helped in realizing the state

of the swarm in the search space and hence adjusted the value of inertia weight in each iteration appropriately

for better results. Finally, there is room for further studies on the proposed PSO variants especially in applying

them to constrained global optimization problems as well as real-world optimization problems.

References

[1] Cao, B., Shen, X. and Qian, Q. (2010), Application of two-order particle swarm optimization algorithm in
image segmentation, in Computer-Aided Industrial Design & Conceptual Design (CAIDCD), 2010 IEEE 11th
International Conference on, pp. 749-752.

Page 9 of 28

URL: http://mc.manuscriptcentral.com/teta

Journal of Experimental & Theoretical Artificial Intelligence

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only

[2] Chen, G. Huang, X. Jia, J. and Min., Z., (2006). Natural exponential Inertia Weight strategy in particle

swarm optimization, In Sixth World Congress on Intelligent Control and Automation, WCICA, June 21 -

23, Dalian, China, 1, pp. 3672–3675.

[3] Eberhart, R. C. and Kennedy, J., (1995), A new optimizer using particle swarm theory. In Proceedings of

the Sixth International Symposium on Micro Machine and Human Science, MHS '95. (Nagoya, Japan,

1995), pp. 39-43.

[4] Eberhart, R. C. and Shi, Y. (2002), Tracking and optimizing dynamic systems with particle swarms. In

Proceedings of the 2001 Congress on Evolutionary Computation, Korea, 1, pp. 94–100.

[5] Feng, Y. Teng, G.F. Wang, A.X. and Yao., Y.M., (2008), Chaotic Inertia Weight in Particle Swarm

Optimization, In Innovative Computing, Information and Control, ICICIC’07. Second International

Conference on, pp. 475.

[6] Gao Y.-l. and Duan, Y.-h., (2007), A New Particle Swarm Optimization Algorithm with Random Inertia

Weight and Evolution Strategy, In Computational Intelligence and Security Workshops, 2007. CISW 2007.

International Conference on, pp. 199-203.

[7] Gao, Y. An, X. and Liu.,J., (2008), A Particle Swarm Optimization Algorithm with Logarithm Decreasing

Inertia Weight and Chaos Mutation, In Computational Intelligence and Security, 2008. CIS’08.

International Conference on, 1, pp. 61–65.

[8] Iwasaki, N., Yasuda, K., and Ueno G. (2006). Dynamic Parameter Tuning of Particle Swarm Optimization.

Transactions on electrical and electronic engineering, IEEJ Trans, 1, pp. 353–363

[9] Jianbin Xin, Guimin Chen, Yubao Hai (2009). A Particle Swarm Optimizer with Multi-Stage Linearly-

Decreasing Inertia Weight. International Joint Conference on Computational Sciences and Optimization

[10] Jing, B., Xueying, Z. and Yueling, G. (2009), Different inertia weight PSO algorithm optimizing SVM

kernel parameters applied in a speech recognition system, in Mechatronics and Automation, 2009. ICMA

2009. International Conference on, pp. 4754-4759.

[11] Karaboga, D., and Akay B. (2009). A Comparative Study of Artificial Bee Colony Algorithm. Applied

Mathematics and Computation, 214, pp. 1.0-132.

[12] Kentzoglanakis, K. and Poole., M., (2009), Particle swarm optimization with an oscillating Inertia Weight,

In Proceedings of the 11th Annual conference on Genetic and evolutionary computation, pp. 1749–1750.

[13] Li H. R. and Gao.Y. L., (2009), Particle Swarm Optimization Algorithm with Exponent Decreasing Inertia

Weight and Stochastic Mutation, In Second International Conference on Information and Computing

Science, pp. 66–69.

[14] Liu, H., Su, R., Gao Y., and Xu R., (2009), Improved Particle Swarm Optimization Using Two Novel

Parallel Inertia Weights. IEEE Second International Conference on Intelligent Computation Technology
and Automation, pp 185-188.

[15] Malik, R.F. Rahman, T.A. Hashim, S.Z.M. and Ngah, R., (2007), New Particle Swarm Optimizer with

Sigmoid Increasing Inertia Weight, International Journal of Computer Science and Security, 1(2), pp. 35.

[16] Mansour, M. M., Mekhamer, S. F. and El-Kharbawe, N. E. S. (2007), A Modified Particle Swarm

Optimizer for the Coordination of Directional Overcurrent Relays, Power Delivery, IEEE Transactions on,

vol. 22, pp. 1400-1410.

[17] Molga, M., and Smutnicki, C. (2005). Test functions for optimization needs. Available:

http://www.zsd.ict.pwr.wroc.pl/files/docs/functions.pdf. [Cited May, 2013].

[18] Montaz A., M. Khompatraporn, C. and Zabinsky, Z. B., (2005), A numerical evaluation of several

stochastic algorithms on selected continuous global optimization test problems, J. of Global Optimization,

31, pp. 635-672.

Page 10 of 28

URL: http://mc.manuscriptcentral.com/teta

Journal of Experimental & Theoretical Artificial Intelligence

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only

[19] Ngoc,D. Vo, Schegner, P., and Ongsakul, W. (2011), A newly improved particle swarm optimization for

economic dispatch with valve point loading effects, in Power and Energy Society General Meeting, 2011

IEEE, pp. 1-8.

[20] Poli R., Kennedy J., Blackwell T. (2007). Particle swarm optimization: An overview. Swarm Intelligence.

Vol. 1, pp 33–57.

[21] Shen, X., Chi, Z., Yang, J., Chen, C., and Chi, Z. (2010), Particle swarm optimization with dynamic

adaptive inertia weight. In International Conference on Challenges in Environmental Science and

Computer Engineering, IEEE, 287-290.

[22] Shi, Y. H., Eberhart, R. C., (1998), A modified particle swarm optimizer. IEEE International Conference on

Evolutionary Computation, Anchorage, Alaska, May 4-9, pp. 69-73.

[23] Shi, Y. H., Eberhart, R. C., (1999), Empirical study of particle swarm optimization. IEEE International

Conference on Evolutionary Computation, Washington, USA, pp. 1945-1950.

[24] Shi, Y. and Eberhart, R., (1998), Parameter selection in particle swarm optimization, in Evolutionary

Programming VII. vol. 1447, V. W. Porto, N. Saravanan, D. Waagen, and A. E. Eiben, Eds., ed: Springer

Berlin Heidelberg, pp. 591-600.

[25] Shi, Y. H., and Eberhart, R. C. (2001), Fuzzy adaptive particle swarm optimization. Congress on

evolutionary computation, Korea.

[26] Engelbrecht, A.P. (2007). Computational Intelligence : An Introduction. John Wiley & Sons Inc., USA.

[27] Chetty, S. and Adewumi, A.O. (2013). Three New Stochastic Local Search Algorithms for Continuous

Optimization Problems. Computational Optimization and Applications, Springer Online first doi:

10.1007/s10589-013-9566-3.

[28] Sawyerr, B.A., Ali, M.M. & Adewumi, A.O. (2011) A Comparative Study of Some Real-Coded Genetic

Algorithms for Unconstrained Global Optimization, Optimization Methods and Software, 26:6, 945-970,

DOI: 10.1080/10556788.2010.491865

Page 11 of 28

URL: http://mc.manuscriptcentral.com/teta

Journal of Experimental & Theoretical Artificial Intelligence

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only

Table 1: High-scaled benchmark problems

Test problem Ackley Griewank Rastrigin Rosenbrock Schwefel2.22 Sphere

Optimum 0 0 0 0 0 0

Characteristics MN MN MS UN UN US

Table 2: Low-scaled benchmark problems

Test problem Booth Esom Michalewicz5 Schaffer Shubert Trid6

Optimum 0 -1 -4.6877 0 -186.73 -50

Characteristics MS UN MS MN MN UN

Table 3: Settings for experiment 1

Test problem Griewank Rastrigin Rosenbrock Schaffer's f6 Sphere

Dimension 30 30 30 2 30

Search range ±600 ±30 ±30 ±100 ±100

Criteria 0.05 50.0 100.0 0.00001 0.01

Table 4: Settings for experiment 2

Test problem Griewank Rastrigin Rosenbrock Sphere

Dimension 30 30 30 30

Search range ±600 ±10 ±100 ±100

Criteria 0.02 50.0 50.0 10-10

Table 5: Settings for experiment 3

Test problem Ackley Griewank Rastrigin

Dimension 20, 30, 40 and 50 for all problems

Search range ±32 ±600 ±5.12

Table 6: Mean best fitness to determine better Vmax for the PSO variants

Problem
LDIW-PSO RIW-PSO CDIW-PSO CRIW-PSO

Vmax = Xmax Vmax = 0.05Xmax Vmax = Xmax Vmax = 0.05Xmax Vmax = Xmax Vmax = 0.05Xmax Vmax = Xmax Vmax = 0.05Xmax

Ackley 4.4697e+00 1.8661e-09 7.2254e+00 2.9080e-01 1.6826e+00 2.4425e-14 9.5966e-01 1.0022e-11

Griewank 9.9348e+00 1.4810e-02 1.1114e+01 8.5596e-01 9.0377e+00 1.3234e-02 9.1751e-01 1.4164e-02

Rastrigin 9.5103e+01 3.2638e+01 1.7412e+02 3.3576e+01 7.8947e+01 3.4617e+01 6.2993e+01 3.3573e+01

Rosenbrock 3.0349e+04 2.9721e+01 9.2522e+04 7.6139e+01 1.3009e+04 3.1915e+01 6.7331e+03 3.2548e+01

Table 7: Scalable benchmark problems

Test problem Ackley Griewank Rastrigin Rosenbrock Schwefel2.22 Sphere

Search Range ±30 ±600 ±5.12 ±30 ±10 ±100

Dimension Different dimensions – 10, 30 and 50 were used for each of the problems

Criteria 0.001 0.05 50 50 0.001 0.001

Table 8: Non-scalable benchmark problems

Test problem Booth Esom Michalewicz5 Schaffer Shubert Trid6

Search Range ±10 ±100 [0,π] ±100 ±10 ±36

Dimension 2 2 5 2 2 6

Criteria 0.00001 -0.999 -4.687 0.00001 -186.729 -49.999

Page 12 of 28

URL: http://mc.manuscriptcentral.com/teta

Journal of Experimental & Theoretical Artificial Intelligence

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only

Table 9: Experimental results for SSRDIWPSO compared with CDIW-PSO

Griewank Rastrigin Rosenbrock Schaffer's f6 Sphere

CDIW-PSO SSRDIWPSO CDIW-PSO SSRDIWPSO CDIW-PSO SSRDIWPSO CDIW-PSO SSRDIWPSO CDIW-PSO SSRDIWPSO

Mean fitness 0.014773 0.012153 40.044561 33.053889 44.305058 31.768752 0.007732 0.005106 0.000092 0.000000

Std. Dev. 0.002959 0.015943 8.028912 10.700165 8.861012 21.221641 0.001546 0.004846 0.000016 0.000000

SR (%) 96.2 97.2 83.6 92.6 99.6 99.2 22.0 46.4 100 100

Table 10: Experimental results for SSRRIWPSO compared with CRIW-PSO

Griewank Rastrigin Rosenbrock Schaffer's f6 Sphere

CRIW-PSO SSRRIWPSO CRIW-PSO SSRRIWPSO CRIW-PSO SSRRIWPSO CRIW-PSO SSRRIWPSO CRIW-PSO SSRRIWPSO

Mean fitness 0.016616 0.013559 40.267957 31.721714 37.090110 33.930754 0.009211 0.005615 0.000087 0.000000

Std. Dev. 0.003323 0.016669 8.053591 9.816728 11.618022 24.488409 0.001842 0.005204 0.000017 0.000000

SR (%) 98.2 95.4 91.8 96.0 99.4 98.8 24.4 43.2 100 100

Table 11: SSRDIWPSO, SSRRIWPSO, e1-PSO and e2-PSO

Griewank Rastrigin

e1-PSO e2-PSO SSRDIWPSO SSRRIWPSO e1-PSO e2-PSO SSRDIWPSO SSRRIWPSO

Mean fitness 0.0186 0.0101 0.0080 0.0112 52.5772 53.3436 52.0344 49.2309

Std. Dev. 0.0183 0.0126 0.0109 0.0111 11.1903 15.9680 14.0604 9.8200

Trials reaching

stopping criteria
31/50 39/50 45/50 42/50 19/50 17/50 24/50 25/50

Table 12: SSRDIWPSO, SSRRIWPSO, e1-PSO and e2-PSO

Rosenbrock Sphere

e1-PSO e2-PSO SSRDIWPSO SSRRIWPSO e1-PSO e2-PSO SSRDIWPSO SSRRIWPSO

Mean fitness 57.3858 70.8313 28.9155 32.4599 9.3505e-11 9.3093e-11 1.5552e-58 9.1074e-53

Std. Dev. 86.4313 115.9860 21.7438 31.4591 5.0294e-12 6.2098e-12 5.3840e-58 4.5314e-52

Trials reaching

stopping criteria
45/50 32/50 42/50 38/50 50/50 50/50 50/50 50/50

Table 13: Experimental results for LDIW-PSO compared with DAPSO

Dim
Ackley Griewank Rastrigin

DAPSO SSRDIWPSO SSRRIWPSO DAPSO SSRDIWPSO SSRRIWPSO DAPSO SSRDIWPSO SSRRIWPSO

20 3.906209e-014 7.265299e-15 3.291231e-02 8.605280e-002 3.096072e-02 1.656290e-02 2.159059e+001 1.994289e+01 1.888908e+01

30 4.159541e-008 1.323386e-14 1.209699e-14 2.583338e-002 1.071397e-02 1.303346e-02 3.263463e+001 2.996404e+01 2.930789e+01

40 7.046093e-005 2.907896e-14 2.232881e-14 1.087868e-002 7.486326e-03 9.839458e-03 3.890287e+001 3.905068e+01 3.978636e+01

50 1.025568e-003 2.482814e-13 1.355893e-13 1.346732e-002 8.025957e-03 1.169809e-02 4.823559e+001 4.426009e+01 4.241095e+01

Table 14a: Results for SSRDIWPSO, CDIW-PSO and LDIW-PSO for the scalable benchmark problems in 10 dimensions with swarm size of 20

Ackley Griewank Rastrigin

LDIW-PSO CDIW-PSO SSRDIWPSO LDIW-PSO CDIW-PSO SSRDIWPSO LDIW-PSO CDIW-PSO SSRDIWPSO

Best Fitness 7.5495e-15 3.9968e-15 3.9968e-15 1.9915e-02 7.3960e-03 1.2316e-02 2.9825e+00 2.9825e+00 2.9825e+00

Worst Fitness 1.3082e-11 7.5495e-15 7.5495e-15 3.7893e-01 2.1670e-01 1.6486e-01 3.3801e+01 3.8772e+01 2.3860e+01

Mean Fitness 9.2671e-13 4.7073e-15 4.2810e-15 1.1634e-01 8.5716e-02 7.5072e-02 1.1393e+01 1.1850e+01 1.1145e+01

Std. Dev. 2.1516e-12 1.4211e-15 9.6383e-16 6.6654e-02 4.2657e-02 3.3104e-02 5.3729e+00 5.3402e+00 5.1549e+00

SR (%) 100 100 100 11 22 24 100 100 100

Page 13 of 28

URL: http://mc.manuscriptcentral.com/teta

Journal of Experimental & Theoretical Artificial Intelligence

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only

Table 14b: Results for SSRDIWPSO, CDIW-PSO and LDIW-PSO for the scalable benchmark problems in 10 dimensions with swarm size of 20

Rosenbrock Schwefel 2.22 Sphere

LDIW-PSO CDIW-PSO SSRDIWPSO LDIW-PSO CDIW-PSO SSRDIWPSO LDIW-PSO CDIW-PSO SSRDIWPSO

Best Fitness 1.9028e-01 5.8391e-01 5.0518e-02 2.3283e-16 7.3834e-32 4.9690e-38 3.2643e-27 2.1574e-56 9.8682e-69

Worst Fitness 8.8418e+00 9.8649e+00 8.3477e+01 5.5350e-13 4.1787e-24 1.4294e-32 3.6432e-22 2.7625e-47 6.0214e-60

Mean Fitness 4.4515e+00 4.1277e+00 4.3828e+00 3.3305e-14 4.2916e-26 8.9304e-34 1.7584e-23 4.9843e-49 1.8318e-61

Std. Dev. 1.3834e+00 1.5673e+00 8.1199+00 7.8644e-14 4.1571e-25 2.3983e-33 5.4979e-23 2.8213e-48 8.2708e-61

SR (%) 100 100 99 100 100 100 100 100 100

Table 15a: Results for SSRDIWPSO, CDIW-PSO and LDIW-PSO for the scalable benchmark problems in 10 dimensions with swarm size of 30

Ackley Griewank Rastrigin

LDIW-PSO CDIW-PSO SSRDIWPSO LDIW-PSO CDIW-PSO SSRDIWPSO LDIW-PSO CDIW-PSO SSRDIWPSO

Best Fitness 3.9968e-15 3.9968e-15 3.9968e-15 1.7226e-02 1.2316e-02 0.0000e+00 2.9825e+00 2.9825e+00 1.9883e+00

Worst Fitness 4.3388e-13 7.5495e-15 7.5495e-15 3.0732e-01 1.4269e-01 1.6232e-01 2.5848e+01 2.3860e+01 2.6842e+01

Mean Fitness 5.1568e-14 4.2810e-15 4.2455e-15 1.0222e-01 7.2816e-02 6.9929e-02 1.0608e+01 9.6036e+00 9.9019e+00

Std. Dev. 7.2065e-14 9.6383e-16 9.0646e-16 4.5279e-02 2.9156e-02 3.1923e-02 4.9350e+00 4.1760e+00 5.2057e+00

SR (%) 100 100 100 8 23 31 100 100 100

Table 15b: Results for SSRDIWPSO, CDIW-PSO and LDIW-PSO for the scalable benchmark problems in 10 dimensions with swarm size of 30

Rosenbrock Schwefel 2.22 Sphere

LDIW-PSO CDIW-PSO SSRDIWPSO LDIW-PSO CDIW-PSO SSRDIWPSO LDIW-PSO CDIW-PSO SSRDIWPSO

Best Fitness 2.3881e-05 3.5978e-03 1.2181e-02 1.7600e-17 2.1097e-36 7.9370e-43 3.5127e-29 5.5836e-63 5.6464e-79

Worst Fitness 1.2759e+01 9.5548e+01 8.0678e+00 2.5894e-14 3.2170e-30 1.9570e-37 3.4672e-24 1.4025e52 1.4756e-68

Mean Fitness 4.4631e+00 6.3398e+00 3.0391e+00 1.6898e-15 5.9054e-32 6.2312e-39 7.5616e-26 1.6379e-54 1.6617e-70

Std. Dev. 1.7182e+00 1.4306e+01 1.4428e+00 3.8509e-15 3.2322e-31 2.1735e-38 3.5229e-25 1.4047e-53 1.4716e-69

SR (%) 100 97 100 100 100 100 100 100 100

Table 16a: Results for SSRDIWPSO, CDIW-PSO and LDIW-PSO for the scalable benchmark problems in 30 dimensions with swarm size of 20

Ackley Griewank Rastrigin

LDIW-PSO CDIW-PSO SSRDIWPSO LDIW-PSO CDIW-PSO SSRDIWPSO LDIW-PSO CDIW-PSO SSRDIWPSO

Best Fitness 2.0465E-10 7.5495e-15 7.5495e-15 0.0000e+00 0.0000e+00 0.0000e+00 1.0936e+01 1.3918e+01 1.8889e+01

Worst Fitness 4.6755E-08 1.3900e-13 1.7773e+00 6.6351e-02 5.1620e-02 7.1023e-02 8.0527e+01 6.7603e+01 6.7603e+01

Mean Fitness 2.7482E-09 2.2364e-14 1.7773e-02 1.4725e-02 1.3285e-02 1.0621e-02 3.2678e+01 3.3692e+01 3.2489e+01

Std. Dev. 5.2530E-09 1.6979e-14 1.7684e-01 1.6189e-02 1.4288e-02 1.4009e-02 1.0432e+01 9.5459e+00 1.0170e+01

SR (%) 100 100 99 94 97 97 95 96 92

Table 16b: Results for SSRDIWPSO, CDIW-PSO and LDIW-PSO for the scalable benchmark problems in 30 dimensions with swarm size of 20

Rosenbrock Schwefel 2.22 Sphere

LDIW-PSO CDIW-PSO SSRDIWPSO LDIW-PSO CDIW-PSO SSRDIWPSO LDIW-PSO CDIW-PSO SSRDIWPSO

Best Fitness 1.6192e+01 2.0857e+00 5.7802e-01 5.2163e-13 2.2215e-23 4.3387e-28 1.0555e-19 1.5428e-38 1.1144e-53

Worst Fitness 2.1126e+02 8.5242e+01 8.0744e+01 6.1549e-09 3.2459e-15 1.6830e-17 5.9537e-15 1.8349e-31 1.5942e-43

Mean Fitness 3.3933e+01 2.7721e+01 2.7449e+01 1.5750e-10 3.9337e-17 2.6515e-19 2.8440e-16 3.7389e-33 3.0056e-45

Std. Dev. 2.5786e+01 1.6612e+01 1.9011e+01 6.8513e-10 3.2528e-16 1.8366e-18 7.8348e-16 2.3963e-32 1.8304e-44

SR (%) 86 91 87 100 100 100 100 100 100

Page 14 of 28

URL: http://mc.manuscriptcentral.com/teta

Journal of Experimental & Theoretical Artificial Intelligence

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only

Table 17a: Results for SSRDIWPSO, CDIW-PSO and LDIW-PSO for the scalable benchmark problems in 30 dimensions with swarm size of 30

Ackley Griewank Rastrigin

LDIW-PSO CDIW-PSO SSRDIWPSO LDIW-PSO CDIW-PSO SSRDIWPSO LDIW-PSO CDIW-PSO SSRDIWPSO

Best Fitness 3.5176e-12 7.5495e-15 7.5495e-15 0.0000e+00 0.0000e+00 0.0000e+00 1.3918e+01 1.2924e+01 1.1930e+01

Worst Fitness 6.3501e-10 2.8866e-14 2.1760e-14 8.2838e-02 8.5811e-02 5.1691e-02 5.5673e+01 5.4679e+01 5.0702e+01

Mean Fitness 1.3655e-10 1.4939e-14 1.3589e-14 1.5827e-02 1.4071e-02 1.0187e-02 2.7926e+01 2.8443e+01 2.8542e+01

Std. Dev. 1.3085e-10 4.1940e-15 3.6750e-15 1.7432e-02 1.6390e-02 1.2222e-02 7.4278e+00 8.2735e+00 9.1617e+00

SR (%) 100 100 100 94 96 99 99 97 98

Table 17b: Results for SSRDIWPSO, CDIW-PSO and LDIW-PSO for the scalable benchmark problems in 30 dimensions with swarm size of 30

Rosenbrock Schwefel 2.22 Sphere

LDIW-PSO CDIW-PSO SSRDIWPSO LDIW-PSO CDIW-PSO SSRDIWPSO LDIW-PSO CDIW-PSO SSRDIWPSO

Best Fitness 1.2326e+01 1.6523e+00 7.3902e-01 7.5219e-15 9.4263e-29 7.0255e-37 1.3688e-22 1.7242e-45 3.1391e-64

Worst Fitness 1.1535e+02 8.6298e+01 1.4068e+02 5.0915e-12 2.6929e-23 2.7897-27 1.9235e-17 6.6331e-39 1.9224e-55

Mean Fitness 3.0978e+01 2.7905e+01 2.9223e+01 6.9822e-13 1.4820e-24 3.7222e-29 1.4619e-18 1.3751e-40 3.3796e-57

Std. Dev. 1.9755e+01 1.7322e+01 2.1778e+01 8.6910e-13 4.2054e-24 2.8818e-28 3.3268e-18 7.1578e-40 2.0522e-56

SR (%) 89 90 86 100 100 100 100 100 100

Table 18a: Results for SSRDIWPSO, CDIW-PSO and LDIW-PSO for the scalable benchmark problems in 50 dimensions with swarm size of 20

Ackley Griewank Rastrigin

LDIW-PSO CDIW-PSO SSRDIWPSO LDIW-PSO CDIW-PSO SSRDIWPSO LDIW-PSO CDIW-PSO SSRDIWPSO

Best Fitness 2.3631e-08 4.6629e-14 3.2419e-14 4.6185e-14 0.0000e+00 0.0000e+00 2.8831e+01 2.7837e+01 2.2866e+01

Worst Fitness 8.3629e-07 7.7741e-11 8.7875e-01 6.8700e-02 4.6483e-02 6.1166e-02 9.5440e+01 9.8422e+01 1.0439e+02

Mean Fitness 1.6804e-07 1.4243e-12 8.7875e-03 1.0084e-02 7.7486e-03 1.0543e-02 5.3377e+01 5.2412e+01 5.2134e+01

Std. Dev. 1.4161e-07 7.9154e-12 8.7434e-02 1.3541e-02 1.0204e-02 1.3527e-02 1.3992e+01 1.3660e+01 1.4172e+01

SR (%) 100 100 99 98 100 98 45 46 52

Table 18b: Results for SSRDIWPSO, CDIW-PSO and LDIW-PSO for the scalable benchmark problems in 50 dimensions with swarm size of 20

Rosenbrock Schwefel 2.22 Sphere

LDIW-PSO CDIW-PSO SSRDIWPSO LDIW-PSO CDIW-PSO SSRDIWPSO LDIW-PSO CDIW-PSO SSRDIWPSO

Best Fitness 2.9532e+01 2.6899e+01 2.1839e+01 1.0821e-10 6.6656e-18 7.6328e-22 6.1179e-15 4.3873e-29 5.4489e-39

Worst Fitness 1.5369e+02 1.6537e+02 1.4605e+02 1.4769e-05 7.0244e-11 5.6598e-11 5.3715e-11 2.6626e-21 2.3901e-31

Mean Fitness 5.6306e+01 5.7227e+01 6.1372e+01 1.9472e-07 8.6592e-13 6.8063e-13 4.3243e-12 2.7570e-23 3.4195e-33

Std. Dev. 2.5463e+01 2.7034e+01 2.6729e+01 1.4741e-06 7.0015e-12 5.7339e-12 8.2412e-12 2.6486e-22 2.4105e-32

SR (%) 79 71 61 100 100 100 100 100 100

Page 15 of 28

URL: http://mc.manuscriptcentral.com/teta

Journal of Experimental & Theoretical Artificial Intelligence

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only

Table 19a: Results for SSRDIWPSO, CDIW-PSO and LDIW-PSO for the scalable benchmark problems in 50 dimensions with swarm size of 30

Ackley Griewank Rastrigin

LDIW-PSO CDIW-PSO SSRDIWPSO LDIW-PSO CDIW-PSO SSRDIWPSO LDIW-PSO CDIW-PSO SSRDIWPSO

Best Fitness 2.1934e-09 2.1760e-14 2.1760e-14 8.8818e-16 0.0000+00 0.0000e+00 2.2866e+01 2.1872e+01 2.3860e+01

Worst Fitness 1.0517e-07 1.5676e-13 9.2815e-14 3.9202e-02 4.1846e-02 5.8906e-02 8.8480e+01 9.9416e+01 7.0585e+01

Mean Fitness 1.8971e-08 3.8423e-14 3.1992e-14 6.3007e-03 7.4343e-03 7.4808e-03 4.7551e+01 4.4717e+01 4.4946e+01

Std. Dev. 1.9419e-08 1.9772e-14 8.9070e-15 8.8591e-03 1.0115e-02 1.1316e-02 1.2427e+01 1.1960e+01 1.1342e+01

SR (%) 100 100 100 100 100 99 55 72 70

Table 19b: Results for SSRDIWPSO, CDIW-PSO and LDIW-PSO for the scalable benchmark problems in 50 dimensions with swarm size of 30

Rosenbrock Schwefel 2.22 Sphere

LDIW-PSO CDIW-PSO SSRDIWPSO LDIW-PSO CDIW-PSO SSRDIWPSO LDIW-PSO CDIW-PSO SSRDIWPSO

Best Fitness 3.2034e+01 2.1319e+01 1.7313e+01 9.2580e-12 6.2036e-23 1.0544e-30 1.4142e-16 6.0959e-36 3.4990e-51

Worst Fitness 1.5805e+02 1.5195e+02 1.4811e+02 1.1639e-08 8.1066e-13 2.5765e-22 2.9783e-12 1.7368e-29 9.8013e-42

Mean Fitness 6.1470e+01 5.3631e+01 5.6316e+01 3.7523e-10 8.1180e-15 6.8521e-24 5.4458e-14 4.9748e-31 1.0172e-43

Std. Dev. 3.0565e+01 2.4776e+01 2.7229e+01 1.2318e-09 8.0659e-14 3.2404e-23 3.0355e-13 2.0485e-30 9.7490e-43

SR (%) 72 78 71 100 100 100 100 100 100

Table 20: Performance ranking in terms of mean best fitness for LDIW-PSO, CDIW-PSO and SSRDIWPSO

Test Problem
Swarm

Size

Dimension = 10 Dimension = 30 Dimension = 50

LDIW-PSO CDIW-PSO SSRDIWPSO LDIW-PSO CDIW-PSO SSRDIWPSO LDIW-PSO CDIW-PSO SSRDIWPSO

Ackley
20 3 2 1 2 1 3 2 1 3

30 3 2 1 3 2 1 3 2 1

Griewank
20 3 2 1 3 2 1 2 1 3

30 3 2 1 3 2 1 1 2 3

Rastrigin
20 2 3 1 2 3 1 3 2 1

30 3 1 2 1 2 3 3 1 2

Rosenbrock
20 3 1 2 3 2 1 1 2 3

30 2 3 1 3 1 2 3 1 2

Schwefel P2.22
20 3 2 1 3 2 1 3 2 1

30 3 2 1 3 2 1 3 2 1

sphere
20 3 2 1 3 2 1 3 2 1

30 3 2 1 3 2 1 3 2 1

Average 5.67 4.00 2.33 5.33 3.83 2.83 5.00 3.33 3.67

Table 21a: Results for SSRRIWPSO, CRIW-PSO and RIW-PSO for the scalable benchmark problems in 10 dimensions with swarm size of 20

Ackley Griewank Rastrigin

RIW-PSO CRIW-PSO SSRRIWPSO RIW-PSO CRIW-PSO SSRRIWPSO RIW-PSO CRIW-PSO SSRRIWPSO

Best Fitness 2.6682e-04 3.9968e-15 3.9968e-15 5.7696e-02 9.8573e-03 1.2321e-02 2.9826e+00 3.9767e+00 2.9825e+00

Worst Fitness 3.6701e-02 1.6456e+00 7.5495e-15 5.2743e-01 2.3098e-01 2.1171e-01 2.8831e+01 3.0951e+01 2.3860e+01

Mean Fitness 6.3572e-03 1.6456e-02 4.4587e-15 2.65073-01 8.0140e-02 8.1509e-02 1.1970e+01 1.1792e+01 1.0518e+01

Std. Dev. 6.1370e-03 1.6374e-01 1.1948e-15 1.2088e-01 4.3710e-02 4.1818e-02 5.4829e+00 5.2183e+00 4.4331e+00

SR (%) 9 99 100 0 23 21 100 100 100

Table 21b: Results for SSRRIWPSO, CRIW-PSO and RIW-PSO for the scalable benchmark problems in 10 dimensions with swarm size of 20

Rosenbrock Schwefel 2.22 Sphere

RIW-PSO CRIW-PSO SSRRIWPSO RIW-PSO CRIW-PSO SSRRIWPSO RIW-PSO CRIW-PSO SSRRIWPSO

Best Fitness 5.0327e-01 2.3924e-06 1.3474e-01 7.5130e-05 2.0291e-24 2.2651e-33 5.2270e-06 2.0572e-42 3.9833e-60

Worst Fitness 1.6783e+02 9.2790e+00 1.0544e+02 1.7082e-02 2.1966e-19 1.3014e-28 2.2563e-03 1.5891e-31 4.1936e-51

Mean Fitness 1.1295e+01 4.1748e+00 4.4782e+00 2.0124e-03 9.2187e-21 4.8514e-30 3.5628e-04 3.6683e-33 6.3339e-53

Std. Dev. 2.3681e+01 1.9017e+00 1.0294e+01 2.3871e-03 3.1553e-20 1.6657e-29 4.8987e-04 1.8265e-32 4.3016e-52

SR (%) 96 100 99 38 100 100 88 100 100

Page 16 of 28

URL: http://mc.manuscriptcentral.com/teta

Journal of Experimental & Theoretical Artificial Intelligence

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only

Table 22a: Results for SSRRIWPSO, CRIW-PSO and RIW-PSO for the scalable benchmark problems in 10 dimensions with swarm size of 30

Ackley Griewank Rastrigin

RIW-PSO CRIW-PSO SSRRIWPSO RIW-PSO CRIW-PSO SSRRIWPSO RIW-PSO CRIW-PSO SSRRIWPSO

Best Fitness 5.0628e-04 3.9968e-15 3.9968e-15 5.3134e-02 9.8573e-03 7.3960e-03 2.9825e+00 1.9883e+00 2.9825e+00

Worst Fitness 1.9113e-02 7.5495e-15 7.5495e-15 5.4171e-01 1.7455e-01 1.6488e-01 2.6843e+01 2.7837e+01 1.9883e+01

Mean Fitness 4.5976e-03 4.2100e-15 4.1034e-15 2.2761e-01 7.0440e-02 6.8499e-02 1.0946e+01 9.7826e+00 9.8223e+00

Std. Dev. 3.9745e-03 8.4372e-16 6.0605e-16 1.1050e-01 3.4206e-02 3.3744e-02 4.6641e+00 5.2431e+00 3.7099e+00

SR (%) 4 100 100 0 34 34 100 100 100

Table 22b: Results for SSRRIWPSO, CRIW-PSO and RIW-PSO for the scalable benchmark problems in 10 dimensions with swarm size of 30

Rosenbrock Schwefel 2.22 Sphere

RIW-PSO CRIW-PSO SSRRIWPSO RIW-PSO CRIW-PSO SSRRIWPSO RIW-PSO CRIW-PSO SSRRIWPSO

Best Fitness 2.7771e-01 4.2983e-03 2.1897e-02 4.4332e-05 5.9217e-27 7.7888e-37 1.7477e-06 1.3646e-45 4.9571e-67

Worst Fitness 1.0266e+02 9.3917e+01 8.1281e+00 5.1963e-03 7.6797e-22 6.9684e-33 1.2363e-03 1.2652e-34 2.9736e-58

Mean Fitness 7.3222e+00 4.6473e+00 3.0159e+00 1.1568e-03 5.2086e-23 2.7837e-34 1.7524e-04 1.4248e-36 3.5758e-60

Std. Dev. 9.7155e+00 9.1254e+00 1.8573e+00 9.8438e-04 1.2312e-22 7.6303e-34 2.4192e-04 1.2594e-35 2.9790e-59

SR (%) 99 99 100 57 100 100 97 100 100

Table 23a: Results for SSRRIWPSO, CRIW-PSO and RIW-PSO for the scalable benchmark problems in 30 dimensions with swarm size of 20

Ackley Griewank Rastrigin

RIW-PSO CRIW-PSO SSRRIWPSO RIW-PSO CRIW-PSO SSRRIWPSO RIW-PSO CRIW-PSO SSRRIWPSO

Best Fitness 7.6075e-02 1.0347e-13 7.5495e-15 3.7072e-01 0.0000e+00 0.0000e+00 1.3497e+01 1.2924e+01 1.0936e+01

Worst Fitness 5.8770e-01 5.4655e-11 1.6456e+00 1.0221e+00 1.1059e-01 7.8665e-02 7.6612e+01 5.7661e+01 5.8656e+01

Mean Fitness 2.8934e-01 7.0854e-12 6.2645e-02 8.3199e-01 1.5365e-02 1.3793e-02 3.6975e+01 3.1803e+01 3.1068e+01

Std. Dev. 1.1061e-01 1.1089e-11 2.7657e-01 1.3791e-01 1.9516e-02 1.5409e-02 1.2344e+01 9.5081e+00 1.0160e+01

SR (%) 0 100 95 0 92 98 82 96 94

Table 23b: Results for SSRRIWPSO, CRIW-PSO and RIW-PSO for the scalable benchmark problems in 30 dimensions with swarm size of 20

Rosenbrock Schwefel 2.22 Sphere

RIW-PSO CRIW-PSO SSRRIWPSO RIW-PSO CRIW-PSO SSRRIWPSO RIW-PSO CRIW-PSO SSRRIWPSO

Best Fitness 3.1445e+01 5.3172e+00 3.4264e+00 9.4209e-02 3.6066e-19 4.2575e-29 1.4671e-01 3.1570e-25 4.9847e-48

Worst Fitness 3.8305e+02 1.0504e+02 8.5352e+01 4.8363e-01 3.7281e-14 5.1517e-23 3.5501e+00 1.5072e-20 1.2989e-40

Mean Fitness 9.0321e+01 3.3052e+01 3.0608e+01 2.6077e-01 1.3696e-15 2.2417e-24 9.9836e-01 9.3610e-22 1.6515e-42

Std. Dev. 6.5995e+01 2.2626e+01 2.1631e+01 8.4975e-02 4.6744e-15 7.1414e-24 5.1607e-01 2.3631e-21 1.2937e-41

SR (%) 34 82 81 0 100 100 0 100 100

Table 24a: Results for SSRRIWPSO, CRIW-PSO and RIW-PSO for the scalable benchmark problems in 30 dimensions with swarm size of 30

Ackley Griewank Rastrigin

RIW-PSO CRIW-PSO SSRRIWPSO RIW-PSO CRIW-PSO SSRRIWPSO RIW-PSO CRIW-PSO SSRRIWPSO

Best Fitness 1.0369e-01 1.4655e-14 7.5495e-15 2.5742e-01 0.0000e+00 0.0000e+00 1.1137e+01 1.4912e+01 8.9475e+00

Worst Fitness 5.8677e-01 1.4286e-12 2.1760e-14 1.0162e+00 6.8642e-02 6.1273e-02 5.6933e+01 5.8656e+01 6.5615e+01

Mean Fitness 2.3662e-01 1.1100e-13 1.2026e-14 8.0305e-01 1.2720e-02 1.2227e-02 3.0321e+01 2.8910e+01 2.9656e+01

Std. Dev. 7.2953e-02 1.9207e-13 3.7806e-15 1.3412e-01 1.3742e-02 1.3654e-02 8.9028e+00 8.8817e+00 9.7347e+00

SR (%) 0 100 100 0 96 96 97 98 96

Table 24b: Results for SSRRIWPSO, CRIW-PSO and RIW-PSO for the scalable benchmark problems in 30 dimensions with swarm size of 30

Rosenbrock Schwefel 2.22 Sphere

RIW-PSO CRIW-PSO SSRRIWPSO RIW-PSO CRIW-PSO SSRRIWPSO RIW-PSO CRIW-PSO SSRRIWPSO

Best Fitness 3.0042e+01 7.5603e+00 6.5598e+00 9.4323e-02 1.0508e-21 9.3322e-35 1.7171e-01 7.1988e-31 4.6258e-58

Worst Fitness 3.5254e+02 1.0744e+02 8.5689e+01 4.5703e-01 6.2399e-17 1.8446e-29 3.2880e+00 4.2228e-22 1.2856e-50

Mean Fitness 8.0443e+01 3.4158e+01 2.9701e+01 2.0920e-01 2.0142e-18 3.3125e-31 9.0064e-01 5.2226e-24 3.1736e-52

Std. Dev. 6.1967e+01 2.3257e+01 2.0574e+01 7.4517e-02 6.9944e-18 1.9947e-30 4.7463e-01 4.2099e-23 1.6311e-51

SR (%) 54 79 84 0 100 100 0 100 100

Page 17 of 28

URL: http://mc.manuscriptcentral.com/teta

Journal of Experimental & Theoretical Artificial Intelligence

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only

Table 25a: Results for SSRRIWPSO, CRIW-PSO and RIW-PSO for the scalable benchmark problems in 50 dimensions with swarm size of 20

Ackley Griewank Rastrigin

RIW-PSO CRIW-PSO SSRRIWPSO RIW-PSO CRIW-PSO SSRRIWPSO RIW-PSO CRIW-PSO SSRRIWPSO

Best Fitness 3.7363e-01 9.1547e-11 2.1760e-14 9.9927e-01 0.0000e+00 0.0000e+00 3.2130e+01 3.0819e+01 2.4854e+01

Worst Fitness 1.2499e+00 2.5416e-07 2.0126e+00 1.1542e+00 5.1442e-02 8.5172e-02 9.3415e+01 1.0638e+02 8.9475e+01

Mean Fitness 7.6250e-01 1.1668e-08 1.0014e-01 1.0770e+00 8.6034e-03 1.3725e-02 5.9013e+01 5.1358e+01 4.9748e+01

Std. Dev. 2.0357e-01 3.0443e-08 4.0343e-01 2.4943e-02 1.2163e-02 1.7229e-02 1.2692e+01 1.3579e+01 1.4310e+01

SR (%) 0 100 94 0 99 97 22 50 54

Table 25b: Results for SSRRIWPSO, CRIW-PSO and RIW-PSO for the scalable benchmark problems in 50 dimensions with swarm size of 20

Rosenbrock Schwefel 2.22 Sphere

RIW-PSO CRIW-PSO SSRRIWPSO RIW-PSO CRIW-PSO SSRRIWPSO RIW-PSO CRIW-PSO SSRRIWPSO

Best Fitness 1.4630e+02 2.9319e+01 3.9227e+00 6.0443e-01 1.4917e-14 4.9312e-23 3.9011e+00 1.3119e-18 1.3133e-38

Worst Fitness 1.3202e+03 1.5698e+02 1.5186e+02 1.5538e+00 1.8198e-10 8.6419e-16 1.7889e+01 4.9716e-14 8.3601e-31

Mean Fitness 3.1463e+02 7.2915e+01 5.9867e+01 1.0389e+00 3.5025e-12 9.8776e-18 8.9417e+00 2.9163e-15 9.9652e-33

Std. Dev. 1.6544e+02 3.0272e+01 3.0551e+01 2.3005e-01 1.8487e-11 8.6379e-17 3.0265e+00 7.8862e-15 8.3149e-32

SR (%) 0 47 66 0 100 100 0 100 100

Table 26a: Results for SSRRIWPSO, CRIW-PSO and RIW-PSO for the scalable benchmark problems in 50 dimensions with swarm size of 30

Ackley Griewank Rastrigin

RIW-PSO CRIW-PSO SSRRIWPSO RIW-PSO CRIW-PSO SSRRIWPSO RIW-PSO CRIW-PSO SSRRIWPSO

Best Fitness 3.0381e-01 1.0183e-11 1.4655e-14 7.7108e-01 0.0000e+00 0.0000e+00 2.2200e+01 1.8889e+01 2.5848e+01

Worst Fitness 1.1737e+00 8.6233e-09 1.5607e+00 1.1282e+00 6.3542e-02 1.1634e-01 8.1841e+01 8.7486e+01 8.3510e+01

Mean Fitness 6.6528e-01 5.6290e-10 2.5874e-02 1.0586e+00 7.3540e-03 1.1541e-02 4.8061e+01 4.3902e+01 4.3972e+01

Std. Dev. 1.7192e-01 1.2606e-09 1.8501e-01 3.9840e-02 1.0921e02 1.7802-02 1.1406e+01 1.2159e+01 1.0683e+01

SR (%) 0 100 98 0 99 96 63 77 77

Table 26b: Results for SSRRIWPSO, CRIW-PSO and RIW-PSO for the scalable benchmark problems in 50 dimensions with swarm size of 30

Rosenbrock Schwefel 2.22 Sphere

RIW-PSO CRIW-PSO SSRRIWPSO RIW-PSO CRIW-PSO SSRRIWPSO RIW-PSO CRIW-PSO SSRRIWPSO

Best Fitness 1.1525e+02 1.0825e+01 1.4610e+01 5.1310e-01 7.6172e-17 4.5557e-30 2.8877e+00 3.6199e-21 9.2338e-48

Worst Fitness 8.9680e+02 1.4977e+02 1.4609e+02 1.5876e+00 2.0753e-13 3.3717e-25 1.6115e+01 2.1283e-16 4.1533e-41

Mean Fitness 2.7098e+02 6.7473e+01 6.0529e+01 9.3819e-01 6.8685e-15 2.2273e-26 7.2065e+00 7.7623e-18 6.4333e-43

Std. Dev. 1.1521e+02 3.1220e+01 2.9462e+01 2.1819e-01 2.2435e-14 5.3956e-26 2.4652e+00 2.3964e-17 4.1989e-42

SR (%) 0 58 61 0 100 100 0 100 100

Table 27: Performance ranking in terms of mean best fitness for RIW-PSO, CRIW-PSO and SSRRIWPSO

Test Problem
Swarm

Size

Dimension = 10 Dimension = 30 Dimension = 50

RIW-PSO CRIW-PSO SSRRIWPSO RIW-PSO CRIW-PSO SSRRIWPSO RIW-PSO CRIW-PSO SSRRIWPSO

Ackley
20 2 3 1 3 1 2 3 1 2

30 3 2 1 3 2 1 3 1 2

Griewank
20 3 1 2 3 2 1 3 1 2

30 3 2 1 3 2 1 3 1 2

Rastrigin
20 3 2 1 3 2 1 3 2 1

30 3 1 2 3 1 2 3 1 2

Rosenbrock
20 3 1 2 3 2 1 3 2 1

30 3 2 1 3 2 1 3 2 1

Schwefel P2.22
20 3 2 1 3 2 1 3 2 1

30 3 2 1 3 2 1 3 2 1

sphere
20 3 2 1 3 2 1 3 2 1

30 3 2 1 3 2 1 3 2 1

Average 5.83 3.67 2.50 6.00 3.67 2.33 6.00 3.17 2.83

Page 18 of 28

URL: http://mc.manuscriptcentral.com/teta

Journal of Experimental & Theoretical Artificial Intelligence

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only

Table 28a: Results for SSRDIWPSO, CDIW-PSO and LDIW-PSO for the low-scaled benchmark problems with swarm size of 20

Booth Esom Michalewicz 5

LDIW-PSO CDIW-PSO SSRDIWPSO LDIW-PSO CDIW-PSO SSRDIWPSO LDIW-PSO CDIW-PSO SSRDIWPSO

Best Fitness 0.0000e+00 0.0000e+00 0.0000e+00 -1.0000e+00 -1.0000e+00 -1.0000e+00 -4.0236e+00 -36547e+00 -3.6419e+00

Worst Fitness 0.0000e+00 0.0000e+00 0.0000e+00 -1.0000e+00 -1.0000e+00 -1.0000e+00 -1.6676e+00 -1.7707e+00 -1.6865e+00

Mean Fitness 0.0000e+00 0.0000e+00 0.0000e+00 -1.0000e+00 -1.0000e+00 -1.0000e+00 -2.5887e+00 -2.6595e+00 -2.7246e+00

Std. Dev. 0.0000e+00 0.0000e+00 0.0000e+00 1.4433e-15 1.4433e-15 1.4433e-15 4.2216e-01 3.8361e+00 3.8299e-01

SR (%) 100 100 100 100 100 100 0 0 0

Table 28b: Results for SSRDIWPSO, CDIW-PSO and LDIW-PSO for the low-scaled benchmark problems with swarm size of 20

Schaffer's f6 Shubert Trid 6

LDIW-PSO CDIW-PSO SSRDIWPSO LDIW-PSO CDIW-PSO SSRDIWPSO LDIW-PSO CDIW-PSO SSRDIWPSO

Best Fitness 0.0000e+00 0.0000e+00 0.0000e+00 -1.8673e+02 -18673e+02 -1.8673e+02 -5.0000e+01 -5.0000e+01 -5.0000e+01

Worst Fitness 9.7159e-03 9.7159e-03 9.7159e-03 -1.8673e+02 -1.2358e+02 -1.8673e+02 -5.0000e+01 -5.0000e+01 -5.0000e+01

Mean Fitness 1.9432e-04 3.1091e-03 4.4943e-03 -1.8673e+02 -1.8610e+02 -1.8673e+02 -5.0000e+01 -5.0000e+01 -5.0000e+01

Std. Dev. 1.3602e-03 4.5322e-03 4.8257e-03 1.9479e-13 6.2838e+00 1.3999e-13 7.2196e-14 7.0153e-14 8.2042e-14

SR (%) 98 68 53 100 99 100 100 100 100

Table 29a: Results for SSRDIWPSO, CDIW-PSO and LDIW-PSO for the low-scaled benchmark problems with swarm size of 30

Booth Esom Michalewicz 5

LDIW-PSO CDIW-PSO SSRDIWPSO LDIW-PSO CDIW-PSO SSRDIWPSO LDIW-PSO CDIW-PSO SSRDIWPSO

Best Fitness 0.0000e+00 0.0000e+00 0.0000e+00 -1.0000e+00 -1.0000e+00 -1.0000e+00 -3.7093e+00 -3.9666e+00 -4.0414e+00

Worst Fitness 0.0000e+00 0.0000e+00 0.0000e+00 -1.0000e+00 -1.0000e+00 -1.0000e+00 -1.9647e+00 -2.0913e+00 -1.8581e+00

Mean Fitness 0.0000e+00 0.0000e+00 0.0000e+00 -1.0000e+00 -1.0000e+00 -1.0000e+00 -2.7524e+00 -2.9189e+00 -2.9281e+00

Std. Dev. 0.0000e+00 0.0000e+00 0.0000e+00 1.4433e-15 1.4433e-15 1.4433e-15 3.3793e-01 3.5757e-01 3.8822e-01

SR (%) 100 100 100 100 100 100 0 0 0

Table 29b: Results for SSRDIWPSO, CDIW-PSO and LDIW-PSO for the low-scaled benchmark problems with swarm size of 30

Schaffer's f6 Shubert Trid 6

LDIW-PSO CDIW-PSO SSRDIWPSO LDIW-PSO CDIW-PSO SSRDIWPSO LDIW-PSO CDIW-PSO SSRDIWPSO

Best Fitness 0.0000e+00 0.0000e+00 0.0000e+00 -1.8673e+02 -1.8673e+02 -1.8673e+02 -5.0000e+01 -5.0000e+01 -5.0000e+01

Worst Fitness 0.0000e+00 9.7159e-03 9.7159e-03 -1.8673e+02 -1.8673e+02 -1.8673e+02 -5.0000e+01 -5.0000e+01 -5.0000e+01

Mean Fitness 0.0000e+00 2.0403e-03 3.5171e-03 -1.8673e+02 -1.8673e+02 -1.8673e+02 -5.0000e+01 -5.0000e+01 -5.0000e+01

Std. Dev. 0.0000e+00 3.9574e-03 4.6530e-03 1.1548e-13 1.9915e-13 1.1132e-13 6.7273e-14 8.1796e-14 7.4455e-14

SR (%) 100 79 63 100 100 100 100 100 100

Table 30a: Results for SSRRIWPSO, CRIW-PSO and RIW-PSO for the low-scaled benchmark problems with swarm size of 20

Booth Esom Michalewicz 5

RIW-PSO CRIW-PSO SSRRIWPSO RIW-PSO CRIW-PSO SSRRIWPSO RIW-PSO CRIW-PSO SSRRIWPSO

Best Fitness 0.0000e+00 0.0000e+00 0.0000e+00 -1.0000e+00 -1.0000e+00 -1.0000e+00 -3.8987e+00 -36182e+00 -4.1505e+00

Worst Fitness 0.0000e+00 0.0000e+00 0.0000e+00 -1.0000e+00 -1.0000e+00 -1.0000e+00 -1.9726e+00 -2.0289e+00 2,0063e+00

Mean Fitness 0.0000e+00 0.0000e+00 0.0000e+00 -1.0000e+00 -1.0000e+00 -1.0000e+00 -2.7105e+00 -2.7591e+00 -2.8714e+00

Std. Dev. 0.0000e+00 0.0000e+00 0.0000e+00 1.4479e-15 1.4433e-15 1.4433e-15 3.6438e-01 3.6934e-01 4.0069e-01

SR (%) 100 100 100 100 100 100 0 0 0

Table 30b: Results for SSRRIWPSO, CRIW-PSO and RIW-PSO for the low-scaled benchmark problems with swarm size of 20

Schaffer's f6 Shubert Trid 6

RIW-PSO CRIW-PSO SSRRIWPSO RIW-PSO CRIW-PSO SSRRIWPSO RIW-PSO CRIW-PSO SSRRIWPSO

Best Fitness 0.0000e+00 0.0000e+00 0.0000e+00 -1.8673e+02 -1.8673e+02 -18673e+02 -5.0000E+01 -5.0000e+01 -5.0000e+01

Worst Fitness 9.7159e-03 9.7159e-03 9.7159e-03 -1.8673e+02 -1.8673e+02 -1.2358e+02 -5.0000E+01 -5.0000e+01 -5.0000e+01

Mean Fitness 8.7533e-04 4.8580e-03 5.4414e-03 -1.8673e+02 -1.8673e+02 -1.8610e+02 -5.0000E+01 -5.0000e+01 -5.0000e+01

Std. Dev. 2.7802e-03 4.8580e-03 4.8223e-03 2.2081e-13 8.4933e-14 6.2838e+00 2.2079e-07 7.4455e-14 7.1747e-14

SR (%) 90 50 43 100 100 99 100 100 100

Page 19 of 28

URL: http://mc.manuscriptcentral.com/teta

Journal of Experimental & Theoretical Artificial Intelligence

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only

Table 31a: Results for SSRRIWPSO, CRIW-PSO and RIW-PSO for the low-scaled benchmark problems with swarm size of 30

Booth Esom Michalewicz 5

RIW-PSO CRIW-PSO SSRRIWPSO RIW-PSO CRIW-PSO SSRRIWPSO RIW-PSO CRIW-PSO SSRRIWPSO

Best Fitness 0.0000e+00 0.0000e+00 0.0000e+00 -1.0000e+00 -1.0000e+00 -1.0000e+00 -3.9345e+00 -4.4362e+00 -3.9058e+00

Worst Fitness 0.0000e+00 0.0000e+00 0.0000e+00 -1.0000e+00 -1.0000e+00 -1.0000e+00 -2.0385e+00 -2.1389e+00 -2.4530e+00

Mean Fitness 0.0000e+00 0.0000e+00 0.0000e+00 -1.0000e+00 -1.0000e+00 -1.0000e+00 -2.8436e+00 -2.9961e+00 -3.0545e+00

Std. Dev. 0.0000e+00 0.0000e+00 0.0000e+00 1.4444e-15 1.4433e-15 1.4433e-15 3.4103e-01 3.7627e-01 3.4268e-01

SR (%) 100 100 100 100 100 100 0 0 0

Table 31b: Results for SSRRIWPSO, CRIW-PSO and RIW-PSO for the low-scaled benchmark problems with swarm size of 30

Schaffer's f6 Shubert Trid 6

RIW-PSO CRIW-PSO SSRRIWPSO RIW-PSO CRIW-PSO SSRRIWPSO RIW-PSO CRIW-PSO SSRRIWPSO

Best Fitness 0.0000e+00 0.0000e+00 0.0000e+00 -1.8673e+02 -1.8673e+02 -1.8673e+02 -5.0000e+01 -5.0000e+01 -5.0000e+01

Worst Fitness 9.7159e-03 9.7159e-03 9.7159e-03 -1.8673e+02 -1.8673e+02 -1.8673e+02 -5.0000e+01 -5.0000e+01 -5.0000e+01

Mean Fitness 9.7159e-05 3.1091e-03 4.5674e-03 -1.8673e+02 -1.8673e+02 -1.8673e+02 -5.0000e+01 -5.0000e+01 -5.0000e+01

Std. Dev. 9.6672e-04 4.5322e-03 4.8484e-03 1.3391e-13 1.9924e-13 9,1525e-14 4.2546e-08 6.3553e-14 7.3458e-14

SR (%) 99 68 52 100 100 100 100 100 100

Page 20 of 28

URL: http://mc.manuscriptcentral.com/teta

Journal of Experimental & Theoretical Artificial Intelligence

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only

Begin PSO Algorithm

Input: f: the function to optimize

 s: the swarm size

 n: the problem dimension

 pr: solution search space

 vr: particle velocity range

Output: x*: the best particle position found

 f*: the best fitness value found

Initialize: position xi = (xi1, …, xin) and velocity vi = (vi1, …, vin), for all

particles in problem space

evaluate f(xi) in n variables and get pbesti, (i = 1, …, s)

gbest ← best of pbesti

While stopping criteria is false do

succ ← 0

Loop for s times

Loop for n times

calculate ω using equation (8) or (9)

update vi for particle using equation (1)

validate for velocity boundaries based on vr

update xi for particle using equation (2)

validate for position boundaries based on pr

End

End

If f(xi) < f(pbesti) then

pbesti ← xi

succ ← succ + 1

end if

If f(xi) < f(gbest) then

gbest ← xi

f(gbest) ← f(xi)

end if

compute swarm success rate using equation (4)

End while

x* ← gbest

f* ← f(gbest)

Return x* and f*

End PSO Algorithm

Figure 1: Inertia weight PSO algorithm for SSRDIWPSO and SSRRIWPSO

Page 21 of 28

URL: http://mc.manuscriptcentral.com/teta

Journal of Experimental & Theoretical Artificial Intelligence

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only

(a) (b)

(c) (d)

(e) (f)

Figure 2: Convergence curves for SSRDIWPSO, CDIW-PSO and LDIW-PSO in six test problems with size = 20 and dim = 30

Page 22 of 28

URL: http://mc.manuscriptcentral.com/teta

Journal of Experimental & Theoretical Artificial Intelligence

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only

(a) (b)

(c) (d)

(e) (f)

Figure 3: Convergence curves for SSRRIWPSO, CRIW-PSO and RIW-PSO in six test problems with size = 20 and dim = 30

Page 23 of 28

URL: http://mc.manuscriptcentral.com/teta

Journal of Experimental & Theoretical Artificial Intelligence

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only

(a) (b)

(c) (d)

Figure 4: Convergence curves for SSRDIWPSO, CDIW-PSO and LDIW-PSO in four low-scaled test problems with size = 20

Page 24 of 28

URL: http://mc.manuscriptcentral.com/teta

Journal of Experimental & Theoretical Artificial Intelligence

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only

(a) (b)

(c) (d)

Figure 5: Convergence curves for SSRRIWPSO, CRIW-PSO and RIW-PSO in four low-scaled test problems with size = 20

Page 25 of 28

URL: http://mc.manuscriptcentral.com/teta

Journal of Experimental & Theoretical Artificial Intelligence

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only

Appendix I: Descriptions of the Benchmark Global Optimization Test

Problems used in the experiments

Described below are the benchmark global optimization problems used in the experiments. The mathematical

models as well as graphical representations of these problems are also given. The essence of the graphs is to

facilitate the comprehension of the landscape of the respective problem. The test problems are grouped into two

– High-scaled and Low-scaled. Additional information about the problems was obtained from

https://en.wikipedia.org/wiki/Test_functions_for_optimization and http://www-optima.amp.i.kyoto-

u.ac.jp/member/student/hedar/Hedar_files/TestGO_files/Page364.htm.

1. High-scaled global optimization test problems

Ackley problem: It is continuous, multimodal, scalable and non-

separable. It is a widely used test problem. The global minimum ������ � 0 is obtainable at �� = 0 and the number of local minima is

not known. Search space is in [-30,30].

Model:

���_�� � �20;�`ab�0.2c
1/F �\20
\�1 de � ;�`f

1/F cos�25�\�0
\�1 j $ 20

$;

Griewank problem: Similar to Rastrigin. It is continuous,

multimodal, scalable and non-separable with many widespread

local minima regularly distributed. The complexity of the problem

increases with its dimensionality. Its global minimum ������ � 0 is
obtainable at �� = 0 and the number of local minima for arbitrary n

is not known, but in the two dimensional case, there are some 500

local minima. Search space is in [-600,600].

Model:

����� � 14000 fF�2��
2J� j � fl6mY ��2√\#

�
2J� j $ 1

Rastrigin problem: It is continuous, multimodal, scalable and

separable with many local minima arranged in a lattice-like

configuration. It is based on the Sphere problem with the

addition of cosine modulation so as to produce frequent local

minima. There are about 50 local minima for two dimensional

case and its global minimum �D���� � 0 is obtainable at �� = 0.

Search space is in [-5.12,5.12].

Model:

����� � F��2� � 10 cos�25�2� $ 10��
2J�

Page 26 of 28

URL: http://mc.manuscriptcentral.com/teta

Journal of Experimental & Theoretical Artificial Intelligence

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only

Rosenbrock problem: It is continuous, unimodal, scalable and

non-separable. It is a classic optimization problem also known as

banana function, the second function of De Jong or extended

Rosenbrock function. Its global minimum �V���� � 0 obtainable

at �� = 1, lies inside a long narrow, parabolic shaped valley.

Though it look simple to solve, yet due to a saddle point it is

very difficult to converge to the global optimum. Search space is

in [-30,30].

Model:

����� � F�100��2'� � �2���� $�=�
2J� ��2 � 1��

Sphere problem: Known as the first De Jong function is

continuous, convex, unimodal, scalable and separable. It is one

of the simplest test benchmark problems. Its global minimum �o���� � 0 is obtainable at �� = 0. Search space is in [-100,100].

Model:

����� � F�2��
2J�

2. Low-scaled global optimization test problems

Booth problem: It is continuous, multimodal, non-scalable and

separable. Its global minimum �p���� � 0 is obtainable at �� = 0.

Search space is in [-10,10].

Model: ����� � ��� $ 2�� � 7�� $ �2�� $ �� � 5��

Easom problem: It is continuous, unimodal, non-scalable and

non-separable. Its global minimum has a small area relative to

the search space. It was inverted for minimization and has only

two variables. Its global minimum �p���� � �1 is obtainable at ��
= π. Search space is in [-100,100].

Model: ����� � � cos���� cos���� exp	����� � 5�� � ��� � 5���

Page 27 of 28

URL: http://mc.manuscriptcentral.com/teta

Journal of Experimental & Theoretical Artificial Intelligence

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only

Michalewicz problem: It is continuous, multimodal and

separable. It has d! local optima. The parameter m defines the

“steepness” of the valleys or edges. Larger m leads to more

difficult search. For very large m the function values for points in

the space outside the narrow peaks give very little information

on the location of the global optimum. The value of m is usually

10. The approximated global minimum is �p���� � �4.687 for d

= 5 and �p���� � �9.66 for d = 10. Search space is in [0,π]

Model:

����� � �Fsin	��2� yY\/ z\�2�5 {|� �
2J�

Schaffer's f6 problem: It is 2-dimensional, continuous,

multimodal and non-separable with unknown number of many

local minima. Its global minimum �p���� � 0 is obtainable at �� =

0. Search pace is in [-100,100].

Model:

����� � F}0.5 $ Y\/�L~�2'�� $ �2�T � 0.5�0.001��2'�� $ �2�� $ 1���
�=�
2J�

Shubert's problem: It is 2-dimensional, continuous, multimodal

and non-separable with unknown number of local minima. But

with d = 2, there are 760 local optimal, 18 of which are global

with �p���� � �1.86.7309. Search pace is in [-10,10].

Model:

����� �l}F�6mY��� $ 1��2 $ ��p
�J� ��

2J�

Trid problem: It is continuous, unimodal and non-separable. It

has no local optima except the global one. With d = 6, the global

minimum�p���� � �50 but with d = 10, the global minimum �p���� � �200. Search pace is in [-d
2
,d

2
].

Model:

����� � F��2 � 1�� ��
2J� F�2�2=��

2J�

Page 28 of 28

URL: http://mc.manuscriptcentral.com/teta

Journal of Experimental & Theoretical Artificial Intelligence

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Research Article
An Investigation into the Performance of Particle Swarm
Optimization with Various Chaotic Maps

Akugbe Martins Arasomwan and Aderemi Oluyinka Adewumi

School of Mathematics, Statistics & Computer Science, University of KwaZulu-Natal, Private Bag X54001,
Durban 4000, South Africa

Correspondence should be addressed to Aderemi Oluyinka Adewumi; laremtj@gmail.com

Received 12 September 2013; Accepted 9 December 2013; Published 20 January 2014

Academic Editor: Sergio Preidikman

Copyright © 2014 A. M. Arasomwan and A. O. Adewumi. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

This paper experimentally investigates the effect of nine chaotic maps on the performance of two Particle Swarm Optimization
(PSO) variants, namely, Random Inertia Weight PSO (RIW-PSO) and Linear Decreasing Inertia Weight PSO (LDIW-PSO)
algorithms.The applications of logistic chaoticmap by researchers to these variants have led toChaotic Random InertiaWeight PSO
(CRIW-PSO) and Chaotic Linear Decreasing Inertia Weight PSO (CDIW-PSO) with improved optimizing capability due to better
global searchmobility. However, there are many other chaotic maps in literature which could perhaps enhance the performances of
RIW-PSO and LDIW-PSO more than logistic map. Some benchmark mathematical problems well-studied in literature were used
to verify the performances of RIW-PSO and LDIW-PSO variants using the nine chaotic maps in comparison with logistic chaotic
map. Results show that the performances of these two variants were improved more by many of the chaotic maps than by logistic
map in many of the test problems. The best performance, in terms of function evaluations, was obtained by the two variants using
Intermittency chaotic map. Results in this paper provide a platform for informative decision making when selecting chaotic maps
to be used in the inertia weight formula of LDIW-PSO and RIW-PSO.

1. Introduction

PSO algorithm is one of the many algorithms that have
been proposed over the years for global optimization. When
it was proposed in 1995 [1], swarm size, particle velocity,
acceleration coefficients, and random coefficients were the
associated parameters that controlled its operations. A close
look at the algorithm shows that randomness plays very
useful role in making the algorithm effectively solve opti-
mization problems. Randomness comes into play at the point
of initializing the particles in the solution space and in
updating the velocities of particles at each iteration of the
algorithm. This random feature has contributed immensely
to the performance of PSO [1–3]. To further enhance the
performance of PSO, inertia weight strategy (IWS) was
introduced into it by [4] to facilitate the intensification
and diversification characteristics of the algorithm. Inten-
sification searches around the current best solutions and
selects the best candidate, while diversification makes the

algorithm explore the search space more efficiently, mostly
by means of randomization. As a result, randomness has
been brought into the IWS by different researchers [5–8].
The important role of randomization can also be played
by using chaos theory. Chaos is mathematically defined as
randomness generated by simple deterministic system [2].
It is generally characterised by three dynamic properties,
namely, ergodicity, stochastic, and sensitivity, to its initial
conditions [2, 9].These characteristics can enhance the search
ability of PSO. This seems to be the motivation behind the
introduction of chaos feature into IWS in [10], which led to
improved optimizing capabilities of CDIW-PSO and CRIW-
PSO due to better global search mobility compared with
LDIW-PSO and RIW-PSO, respectively. Chaos optimizations
have been applied to different aspects of PSO by various
researchers over the years [9, 11–14]. In order to increase the
diversity of the swarm and prevent premature convergence
to local optimal, chaos mutation operator based on logistic
map was used in [13] and another based on zaslavskii was

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2014, Article ID 178959, 17 pages
http://dx.doi.org/10.1155/2014/178959

http://dx.doi.org/10.1155/2014/178959

2 Mathematical Problems in Engineering

used in [11]. But in [14], PSOwas hybridizedwith chaotic local
search procedure based on logisticmap.TheLogistic andTent
chaotic maps were, respectively, used as inertial weight by [9]
in binary PSO to handle feature selection problem. In [12],
twelve different chaos maps were implemented to tune the
attraction parameter of accelerated PSO algorithm.

The aim of this paper is to further investigate the per-
formances of two PSO variants, LDIW-PSO and RIW-PSO
algorithms, with various chaoticmaps incorporated into their
IWSs. For this purpose, 9 additional chaotic maps along
with logistic map are introduced in this paper and used
with the two variants at different times. Some well-studied
benchmark mathematical problems in the literature were
used to test the algorithms using these maps.The outcome of
the experiments should help ascertain the chaotic maps that
contribute better to the performances of the algorithms in
comparison to logistic chaotic map in order to provide some
useful information regarding the usage of these maps in the
IWSs of the PSO variants.

In the sections that follow, the inertia weight PSO and its
variants considered in this paper are introduced in Section 2,
chaotic maps used in the experiments are described in
Section 3, setting of the experiments is given in Section 4,
and experimental results and discussions are presented in
Section 5, while Section 6 concludes the paper.

2. Inertia Weight PSO

PSO algorithm is a population-based evolutionary stochastic
technique made up of a swarm of particles which coexist
and evolve simultaneously based on knowledge shared with
neighbouring particles. The PSO process is initialized with
a swarm of random particles in the search space and the
algorithm is allowed to execute a number of times in order
to carry out a search for optimal solutions in the search
space. In inertia weight PSO, each particle is assumed to
have position and velocity in a physical n-dimensional search
space; the position and velocity of a particle 𝑖 in each iteration
𝑡 is represented as the vectors �⃗�

𝑖
= (𝑥

𝑖1
, . . . , 𝑥in) and

�⃗�
𝑖
= (V
𝑖1
, . . . , Vin), respectively. When the particles move in

the search space searching for the optimum solution for
a particular optimization problem, other particles follow
the current optimum particle by adjusting their velocities
and positions using (1). The positions and velocities of the
particles are confinedwithin [𝑋min, 𝑋max]

𝑛 and [𝑉min, 𝑉max]
𝑛,

respectively, as follows:

�⃗�
𝑡+1

𝑖
= 𝜔�⃗�
𝑡

𝑖
+ 𝑐
1
⃗𝑟
1
(

→

𝑝best𝑡
𝑖
− �⃗�
𝑡

𝑖
) + 𝑐
2
⃗𝑟
2
(

→

𝑔best𝑡 − �⃗�𝑡
𝑖
) ,

�⃗�
𝑡+1

𝑖
= �⃗�
𝑡

𝑖
+ �⃗�
𝑡+1

𝑖
.

(1)

A particle’s position is taken as possible solution for the
problem being optimized, while the fitness of this possible
solution is determined by evaluating the problem’s objective
function. The best position searched by the particle itself
so far (

→

𝑝best𝑡
𝑖
) and the optimization position searched by

the whole particle swarms so far (
→

𝑔best𝑡) are 𝑛-dimensional
vectors representing personal best position of particle 𝑖

at iteration 𝑡 and global best positions selected from the
personal best positions of all the particles in the swarm at
iteration 𝑡. whereas ⃗𝑟

1
and ⃗𝑟
2
are two 𝑛-dimensional vectors

of random numbers between 0 and 1, which introduces
randomness to the searching strategy, and the two positive
constants 𝑐

1
and 𝑐
2
are cognitive and social scaling parameters

that determine the magnitude of the random forces in the
direction of

→

𝑝best𝑡
𝑖
and

→

𝑔best𝑡.
The inertia weight (𝜔) strikes a balance between explo-

ration and exploitation characteristics of PSO and it deter-
mines the level of contribution of previous particle velocity
to the present velocity.

2.1. Linear Decreasing Inertia Weight PSO (LDIW-PSO). This
variant implements the linear decreasing IWS which has
greatly improved the algorithm [15, 16]. In this variant, the
inertia weight starts with a large initial value and then linearly
decreases to a smaller final value with the belief that a large
inertia weight facilitates a global search, while a small inertia
weight facilitates a local search. The commonly used initial
and final values are 0.9 and 0.4 [10, 17, 18]; other values have
also been used [19–21]. The inertia weight creates a means
of flexibility for the movements of particles in the search
space. According to [22], relatively high inertia weight value
(e.g., 0.9) creates a medium of low viscosity for the particles
to facilitate extensive exploration while gradually reducing
it to a much lower value (e.g., 0.4) creates a high viscosity
medium to facilitate exploitation. The experimental results
in [15] showed that using the linearly decreasing inertia
weight can make PSO suffer from premature convergence
due to lack of search ability towards the end of run to
jump out of the local minimum in some cases. Because of
this challenge, employing adapting strategy for adjusting the
inertia weight was suggested to improve the performance
PSOnear the optima [15].Many researchers havemade efforts
to achieve this through various improvements on LDIW-PSO
by introducing newparameters into its IWSor proposing new
IWS to generally improve the performance of PSO technique
[5, 10, 17, 19, 23, 24]. Equation (2) represents the commonly
used LDIW strategy:

𝜔
𝑡
= (𝜔start − 𝜔end) (

𝑇max − 𝑡

𝑇max
) + 𝜔end, (2)

where 𝜔start and 𝜔end are the initial and final values of
inertia weight, 𝑡 is the current iteration number, 𝑇max is the
maximum iteration number, and 𝜔

𝑡
∈ [0, 1] is the inertia

weight value in the 𝑡th iteration.

2.2. Random Inertia Weight PSO (RIW-PSO). There are
different IWSs with random features [5–8], but the one in
[5] is adopted in this paper for the experiments. With the
aim of using particle swarms to track and optimize dynamic
systems, a new way of calculating the inertia weight value
was proposed in [5] as shown in (3). The formula makes
the inertia weight change randomly and produces a number

Mathematical Problems in Engineering 3

randomly varying between 0.5 and 1.0, with a mean value of
0.75. Consider

𝜔
𝑡
= 0.5 +

rand (⋅)
2

. (3)

In (3), rand(⋅) is a uniformly distributed random number
within the range [0, 1]. As a result of the difficulty in
predicting whether exploration (a larger inertia weight value)
or exploitation (a smaller inertia weight) will be better at any
given time in tracking a nonlinear dynamic system, the strat-
egy in (3) was introduced by [5] to address the inefficiency of
linearly decreasing inertia weight, which decreases from 0.9
to 0.4 during a run, in handling such a problem.

2.3. Chaotic Inertia Weight PSO. The chaotic inertia weights
PSO that were proposed in [10] are Chaotic Decreasing
Inertia Weight PSO (CDIW-PSO) and Chaotic Random
Inertia Weight PSO (CRIW-PSO) shown in (5) and (6),
respectively. The aim was to improve LDIW-PSO and RIW-
PSO using logistic map in order to avoid getting into local
optimum in searching process by utilizing the merits of
chaotic optimization. Logistic map, represented in (4), is one
of the simplest maps that appear in nonlinear dynamics of
biological population evidencing chaotic behavior. Consider

𝑧
𝑘+1

= 𝜇𝑧
𝑘
(1 − 𝑧

𝑘
) , (4)

where 𝑘 is the iteration number, 𝑥
𝑘
is the 𝑘th chaotic number,

and 𝜇 = 4.0. This map generates values between 0 and 1,
provided that the initial value 𝑧

0
∈ (0, 1) and that 𝑧

0
∉

(0.0, 0.25, 0.5, 0.75, and 1.0).

𝜔
𝑡
= (𝜔start − 𝜔end) (

(𝑇max − 𝑡)

𝑇max
) + 𝜔end × 𝑧𝑘+1, (5)

𝜔
𝑡
= 0.5 × rand (⋅) + 0.5 × 𝑧𝑘+1, (6)

where 𝜔start and 𝜔end are the initial and final values of
inertia weight, rand(⋅) is a uniform random number in
[0, 1], 𝑡 is the current iteration, and 𝑇max is the maximum
iteration.The results in [10] show that the PSO had preferable
convergence precision, quick convergence velocity, and better
global search ability. This is because, due to nonrepetition
of chaos, the algorithm could carry out overall searches at
higher speed, diversify the particles, and improve the algo-
rithm’s performance in preventing premature convergence
too quickly to local minima compared with RIW-PSO and
LDIW-PSO which have no chaos characteristics. No other
chaotic maps were implemented with the linear decreasing
and random IWSs to see if they could make the algorithms
perform better in comparison to using logistic map. Besides,
the results in [10] leave much room for further improvement
on the performance of RIW-PSO and LDIW-PSO.

3. Chaotic Maps

Chaos is a deterministic dynamic system that is very sensitive
to its initial conditions and parameters. The application
of chaotic maps instead of random sequence in PSO is a

powerful strategy to diversify the swarm and improve its
performance. There are various chaotic maps that exist in
the literature which could also be used with RIW-PSO and
LDIW-PSO apart from logistic map used in [10]. Introduced
below are some of these maps, adopted from [2, 12], and they
are described as used in the experiments conducted in this
paper.

3.1. Circle. This map has two parameters a (which can be
interpreted as the strength of nonlinearity) and 𝑏 (which can
be interpreted as externally applied frequency). It is a one-
dimensional map which maps a Circle into itself and it is
represented by (7):

𝑥
𝑘+1

= (𝑥
𝑘
+ 𝑏 −

𝑎

2𝜋

sin (2𝜋𝑥
𝑘
)) mod (1) . (7)

In this paper, 𝑎 = 0.5 and 𝑏 = 0.2.

3.2. Cubic. This map is somehow similar to Sine map, but it
generates values in the interval [−1.5, 1.5]. It is defined as

𝑥
𝑘+1

= 3𝑥
𝑘
(1 − 𝑥

2

𝑘
) . (8)

In this paper, the values generated were normalized
between 0 and 1.

3.3. Gaussian. This map is also known as Gauss or mouse
map. It is defined as

𝑥
𝑘+1

=

{
{
{

{
{
{

{

0, 𝑥
𝑘
= 0

1

𝑥
𝑘

mod (1) , 𝑥
𝑘
∈ (0, 1) ,

(9)

where (1/𝑥
𝑘
) mod (1) = (1/𝑥

𝑘
) − ⌊1/𝑥

𝑘
⌋ and ⌊𝑧⌋ denotes

the largest integer less than 𝑧 which acts as a shift on the
continued fraction representation of numbers.

3.4. Intermittency. This map is the extension of the Bernoulli
Shift inwhich one of the piecewise linear segments is replaced
by a nonlinear segment as shown below

𝑥
𝑘+1

=

{
{
{

{
{
{

{

𝜀 + 𝑥
𝑘
+ 𝑐𝑥
𝑚

𝑘
, 𝑥
𝑘
∈ (0, 𝑑]

(𝑥
𝑘
− 𝑑)

(1 − 𝑑)

, 𝑥
𝑘
∈ (𝑑, 1) ,

(10)

where 𝜀 = 10
−3,𝑚 = 2, 𝑑 = 0.7, and 𝑐 = (1 − 𝜀 − 𝑑)/𝑑

𝑚.

3.5. Iterative Chaotic Map with Infinite Collapses (ICMIC).
This map is represented by

𝑥
𝑘+1

= sin(𝑎𝜋
𝑥
𝑘

) , (11)

where 𝑎(0, 1), 𝑎 = 0.85 and the results were normalized
between 0 and 1.

4 Mathematical Problems in Engineering

3.6. Piecewise. This map consists of line segments and is
defined as

𝑥
𝑘+1

=

{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

𝑥
𝑘

𝑝

, 𝑥
𝑘
∈ [0, 𝑝)

(𝑥
𝑘
− 𝑝)

(0.5 − 𝑝)

, 𝑥
𝑘
∈ [𝑝, 0.5)

(1 − 𝑝 − 𝑥
𝑘
)

(0.5 − 𝑝)

, 𝑥
𝑘
∈ [0.5, 1 − 𝑝)

(1 − 𝑥
𝑘
)

𝑝

, 𝑥
𝑘
∈ [1 − 𝑝, 1) ,

(12)

where 𝑝 is the control parameter between 0 and 0.5.

3.7. Sinusoidal. This map is represented by the following

𝑥
𝑘+1

= 𝛽 sin (𝜋𝑥
𝑘
) . (13)

This map is similar to logistic map in shape with 𝛽 = 1

and generates values in (0, 1). The values were normalized
between 0 and 1 for 𝛽 > 1.

3.8. Skew Tent. This map is a Tent map skewed to either left
or right controlled by the parameter 𝑝. The map is defined by

𝑥
𝑘+1

=

{
{
{
{

{
{
{
{

{

𝑥
𝑘

𝑝

, 𝑥
𝑘
∈ [0, 𝑝)

(1 − 𝑥
𝑘
)

(1 − 𝑝)

, 𝑥
𝑘
∈ [𝑝, 1] ,

(14)

where 𝑝 = 0.3.

3.9. Tent. The tent map is like the logistic map but has a “∧”
shape unlike logistic map which has a dome-like shape. It is
defined by

𝑥
𝑘+1

= {

2𝑝𝑥
𝑘
, 𝑥

𝑘
∈ [0, 0.5]

2𝑝 (1 − 𝑥
𝑘
) , 𝑥

𝑘
∈ (0.5, 1] ,

(15)

where 𝑘 is the iteration number, 𝑥
𝑘
is the 𝑘th chaotic number

and 𝑝 = 0.99. This map also generates values between 0 and
1, provided that the initial value 𝑥

0
∈ [0, 1].

4. Experimental Setup

To investigate the performance of RIW-PSO and LDIW-PSO
with the chaotic maps incorporated into them at different
times, five (5) well-studied benchmark problems described
below were used to validate them. The swarm size was set to
20 particles, while the number of variables (dimensions) for
all problems was set to 30 and 50 with respective maximum
number of iterations of 2000 and 3000. The algorithm was
allowed to run the maximum number of iterations and
number of successful runs recorded. A run is successful if
the mean fitness value obtained by an algorithm is less than
the success criterion after the maximum iteration. Values for
𝜔start and 𝜔end were set to 0.9 and 0.4 and 𝑐

1
and 𝑐
2
were set

to 2.0 as used in [10] and 𝑉max was clamped to be 15% of the
search space [25]. For fairness, the same random seeds were
used in all the experiments with 50 independent runs for
the test problems. The performance criteria were the mean
best solution, standard deviation, success rate, and number
of function evaluations of the algorithms. The simulation
programwas developed inMicrosoftVisual C# programming
language.

The success rate (SR) was computed according to (16) and
expected number of function evaluations (NFE) according to
(17):

SR =

𝐺times
𝑇runs

, (16)

where 𝐺times is the total number of times the set goal was
reached over 50 independent runs and 𝑇runs is the total
number of independent runs (i.e., 50, in our experiment):

NFE = 𝑆size ×
𝑡avg

SR
, (17)

where 𝑆size is the swarm size and 𝑡avg is the average number of
iterations the set goal was reached over 50 independent runs.

4.1. Test Problems. The test problems used in the experiments
are well studied in the literature [26–29]. They are Ackley,
Griewank, Rastrigin, Rosenbrock, and Sphere. All the prob-
lems are continuous, scalable, and multimodal except the last
two problems, which are unimodal. Each of these problems
is described below.

The Ackley problem is nonseparable. It is a widely used
test problem and it is defined in (18). The global minimum
𝑓
1
(�⃗�) = 0 is obtainable at �⃗� = 0 and the number of local

minima is not known. Consider

𝑓
1 (
�⃗�) = −20 exp(−0.2√

1

𝑛

𝑑

∑

𝑖=1

𝑥
2

𝑖
) − exp(1

𝑛

𝑑

∑

𝑖=1

cos (2𝜋𝑥
𝑖
))

+ 20 + 𝑒.

(18)

The Griewank problem is non-separable with many
widespread local minima regularly distributed.The complex-
ity of the problem decreases as the dimensionality increases.
Its global minimum 𝑓

2
(�⃗�) = 0 is obtainable at �⃗� = 0 and the

number of local minima in a two-dimensional case is about
500. This problem is represented by

𝑓
2 (
�⃗�) =

1

4000

(

𝑑

∑

𝑖=1

𝑥
2

𝑖
) − (

𝑑

∏

𝑖=1

cos(
𝑥
𝑖

√𝑖

)) + 1. (19)

The Rastrigin problem represented in (20) is separable
and hasmany local minima arranged in a lattice-like configu-
ration. It is based on the Sphere problem with the addition of
cosine modulation so as to produce frequent local minima.
There are about 50 local minima for two-dimensional case

Mathematical Problems in Engineering 5

Table 1: Search ranges, optimal values, and success criteria for the test problems.

𝑓
1

𝑓
2

𝑓
3

𝑓
4

𝑓
5

Search range [−30, 30] [−600, 600] [−5.12, 5.12] [−30, 30] [−100, 100]
Optimal value 0 0 0 0 0
Success criteria 0.01 0.05 50.0 100.0 0.01

and its global minimum 𝑓
3
(�⃗�) = 0 is obtainable at �⃗� = 0.

Consider

𝑓
3 (
�⃗�) =

𝑑

∑

𝑖=1

(𝑥
2

𝑖
− 10 cos (2𝜋𝑥

𝑖
) + 10) . (20)

Shown in (21) is the Rosenbrock problem; it is non-
separable. It is a classic optimization problem also known
as banana function, the second function of De Jong, or
extended Rosenbrock function. Its global minimum 𝑓

4
(�⃗�) =

0 obtainable at �⃗� = 1, lies inside a long narrow, parabolic’s
shaped valley. Though it look-simple to solve, yet due to a
saddle points it is very difficult to converge to the global
optimum. Consider

𝑓
4 (
�⃗�) =

𝑑−1

∑

𝑖=1

(100(𝑥
𝑖+1

− 𝑥
2

𝑖
)

2

) + (𝑥
𝑖
− 1)
2
. (21)

The Sphere problem also known as the first De Jong
function is separable. It is one of the simplest test benchmark
problems. Its global minimum 𝑓

6
(�⃗�) = 0 is obtainable at

�⃗� = 0 and the problem is represented by

𝑓
6 (
�⃗�) =

𝑑

∑

𝑖=1

𝑥
2

𝑖
. (22)

4.2. Properties of the Test Problems. Shown in Table 1 are the
properties of the test problems.The success criteria are stated
here as used in [10].

5. Results and Discussions

Many researchers have measured the performance of PSO
algorithms using mean (average) fitness value and standard
deviation [17, 19, 30–35]. The number of iterations or evalua-
tions of the objective function that takes the algorithm to find
optimum solution with specified accuracy to an optimization
problemhas also been used.However, the number of function
evaluations appears to be more informative and popularly
used to measure the performance of optimization algorithms
[3, 25]. This is because it reflects the time or computational
complexity of optimization algorithms and takes into account
the swarm size, average number of algorithm iterations to
reach the set goal (e.g., success threshold), and the success
rate of the algorithm. In this paper, average fitness value,
standard deviation of fitness value, success rate, and number
of function evaluations were used for the performance mea-
surement of the two PSO variants.

Themean best fitness (mean) is ameasure of the precision
that an algorithm can get within a given number of iterations;

standard deviation (SD) is a measure of the algorithm’s
stability and robustness, while success rate (SR) is the number
of times an algorithm is able to meet success criterion out of
a specified number of independent runs, which is a reflection
of global search ability of the algorithm.

Tables 2–11 show the numerical results obtained in the
experiments when the various chaotic maps were incor-
porated into RIW-PSO and LDIW-PSO algorithms. In the
tables, “None” means that the algorithms were implemented
without any chaotic map. In Tables 5 and 10, “—” indicates
that no trial run satisfied the success criterion. The values in
bold are the best results obtained by the algorithms using the
corresponding chaotic map incorporated into it compared
with others. The values with asterik (∗) are the better results
obtained by the algorithms relative to the corresponding
chaotic maps, compared to Logistic map.

5.1. Results for LDIW-PSO Using the Various Chaotic Maps.
Presented in Tables 2–5 are the results with respect to mean
fitness value, standard deviation, success rate, and number of
function evaluations as obtained in the experiments.

Table 2 shows themean fitness values obtained by LDIW-
PSO using the various chaotic maps. None of the chaotic
maps used with the variants could enable it to perform best
in all test problems compared with other maps. Apart from
Sine, Intermittency and Cubic maps, the algorithm was able
to obtain best optimal fitness for different test problems using
other maps. Circle and Gaussian maps look more robust
than others, because with them the algorithm was able to
obtain the best optimal fitness for two test problems in the
two problem dimensions which shows better characteristics
for convergence precision. Besides 𝑓

3
, logistic map was

outperformed by othermaps as shown by the shaded portions
in obtaining better optimal fitness.

Table 3 shows the standard deviation (stability measure)
of LDIW-PSO using the various chaotic maps. As shown by
the results, none of the chaotic maps when used with the
variant could enable the algorithm to have the best stability
across the test problems.However, the algorithmachieved the
best stabilities with the various maps for different test prob-
lems, except with Sine, Intermittency, and Cubic maps. The
algorithm looks more stable using Piecewise and Gaussian
maps than others, because with them it was able to obtain
the best stability in two test problems with the two problem
dimensions. Other maps were able to facilitate better stability
than logistic map as shown by the shaded portions in the
table.

Table 4 shows the global search ability of LDIW-PSO
using the various chaotic maps. The algorithm had the same
search ability using all the maps for 𝑓

5
in both dimensions

6 Mathematical Problems in Engineering

Ta
bl
e
2:
M
ea
n
fit
ne
ss
ob

ta
in
ed

by
LD

IW
-P
SO

fo
rt
es
tp

ro
bl
em

su
sin

g
th
ev

ar
io
us

ch
ao
tic

m
ap
s.

Ch
ao
sm

ap
s

D
im

en
sio

n
=
30

D
im

en
sio

n
=
50

𝑓
1

𝑓
2

𝑓
3

𝑓
4

𝑓
5

𝑓
1

𝑓
2

𝑓
3

𝑓
4

𝑓
5

N
on

e
1.
71

5e
−
05

1
.8
9
6
𝑒
−
0
2

4
.5
6
3
𝑒
+
0
1

1
.9
2
2
𝑒
+
0
3

4
.7
9
7
𝑒
−
0
9

2
.0
6
0
𝑒
−
0
1

8
.6
0
4
𝑒
−
0
3

9
.0
9
1
𝑒
+
0
1

5
.5
4
2
𝑒
+
0
3

2
.7
5
3
𝑒
−
0
5

Lo
gi
sti
c

3
.7
9
8
𝑒
−
0
2

1
.5
4
9
𝑒
−
0
2

4.
06

4e
+
01

4
.6
9
8
𝑒
+
0
1

4
.1
0
9
𝑒
−
2
0

1
.7
0
1
𝑒
−
0
1

1
.6
2
0
𝑒
−
0
2

8
.8
7
5
𝑒
+
0
1

9
.1
9
7
𝑒
+
0
1

6
.0
1
0
𝑒
−
1
3

Te
nt

2
.6
8
0
𝑒
−
0
2
∗

1
.4
0
3
𝑒
−
0
2
∗

4
.5
7
9
𝑒
+
0
1

3
.7
6
4
𝑒
+
0
1
∗

4
.5
0
5
𝑒
−
2
1
∗

2
.6
0
8
𝑒
−
0
1

1
.2
7
9
𝑒
−
0
2
∗

8
.7
1
6
𝑒
+
0
1
∗

8.
59

2e
+
01
∗

4
.1
0
8
𝑒
−
1
3
∗

Sk
ew

Te
nt

3
.7
2
4
𝑒
−
0
2
∗

2
.3
0
5
𝑒
−
0
2

4
.1
7
2
𝑒
+
0
1

1
.8
3
9
𝑒
+
0
3

1
.2
7
0
𝑒
−
2
2
∗

1
.2
9
9
𝑒
−
0
1
∗

1
.7
8
5
𝑒
−
0
2

8.
18

4e
+
01
∗

1
.5
7
8
𝑒
+
0
2

1
.0
2
8
𝑒
−
1
3
∗

Si
ne

3
.0
0
2
𝑒
−
0
2
∗

1
.6
0
2
𝑒
−
0
2

4
.0
8
0
𝑒
+
0
1

4
.2
1
9
𝑒
+
0
1
∗

1
.7
9
2
𝑒
−
2
1
∗

2
.0
1
1
𝑒
−
0
1

1
.3
9
6
𝑒
−
0
2
∗

8
.9
7
1
𝑒
+
0
1

1
.9
1
5
𝑒
+
0
3

1
.0
2
0
𝑒
−
1
0

IC
M
IC

7
.6
2
1
𝑒
−
0
2

1.
15
1e

−
02
∗

4
.2
3
9
𝑒
+
0
1

3
.7
0
9
𝑒
+
0
1
∗

2
.4
2
2
𝑒
−
1
9

2
.3
6
5
𝑒
−
0
1

1
.6
6
8
𝑒
−
0
2

8
.6
4
6
𝑒
+
0
1
∗

1
.9
5
5
𝑒
+
0
3

2
.4
7
8
𝑒
−
1
1

Ci
rc
le

4
.1
7
1
𝑒
−
0
2

1
.7
5
3
𝑒
−
0
2

4
.3
9
6
𝑒
+
0
1

3.
52

4e
+
01

8
.2
0
6
𝑒
−
2
3
∗

2
.9
7
0
𝑒
−
0
1

7.
96
9e

−
03
∗

8
.5
6
2
𝑒
+
0
1
∗

9
.2
1
5
𝑒
+
0
1

2
.3
4
6
𝑒
−
1
3
∗

Pi
ec
ew

ise
5
.6
0
1
𝑒
−
0
2

1
.4
1
2
𝑒
−
0
2
∗

4
.1
1
6
𝑒
+
0
1

5
.0
2
6
𝑒
+
0
1

1
.0
6
9
𝑒
−
2
1
∗

8.
19

1e
−
02
∗

1
.2
5
6
𝑒
−
0
2
∗

8
.7
9
9
𝑒
+
0
1
∗

2
.7
2
8
𝑒
+
0
2

9
.2
4
7
𝑒
−
1
4
∗

G
au
ss
ia
n

6
.0
3
3
𝑒
−
0
2

1
.5
9
7
𝑒
−
0
2

4
.3
6
7
𝑒
+
0
1

4
.4
8
7
𝑒
+
0
1
∗

1.
55
3e

−
23
∗

1
.5
5
0
𝑒
−
0
1
∗

1
.4
0
4
𝑒
−
0
2
∗

8
.2
3
4
𝑒
+
0
1
∗

1
.0
0
5
𝑒
+
0
2

8.
36

9e
−
15
∗

In
te
rm

itt
en
cy

1
.1
2
8
𝑒
−
0
1

1
.4
2
1
𝑒
−
0
2
∗

4
.3
1
1
𝑒
+
0
1

3
.7
1
7
𝑒
+
0
1
∗

1
.8
0
1
𝑒
−
2
3
∗

4
.2
4
9
𝑒
−
0
1

1
.3
4
4
𝑒
−
0
2
∗

8
.4
5
4
𝑒
+
0
1
∗

1
.5
0
3
𝑒
+
0
2

3
.6
3
6
𝑒
−
1
4
∗

Cu
bi
c

2
.3
0
9
𝑒
−
0
2
∗

1
.6
3
6
𝑒
−
0
2

4
.2
3
0
𝑒
+
0
1

6
.2
0
0
𝑒
+
0
1

9
.4
1
2
𝑒
−
2
1
∗

1
.7
0
7
𝑒
−
0
1

1
.4
4
9
𝑒
−
0
2
∗

8
.5
8
5
𝑒
+
0
1
∗

8
.7
0
3
𝑒
+
0
1
∗

9
.5
1
4
𝑒
−
1
3

Th
ev

al
ue
si
n
bo

ld
ar
et
he

be
st
re
su
lts

ob
ta
in
ed

by
th
ea

lg
or
ith

m
su

sin
g
th
ec

or
re
sp
on

di
ng

ch
ao
tic

m
ap

in
co
rp
or
at
ed

in
to

it
co
m
pa
re
d
w
ith

ot
he
rs
.

∗
ar
et
he

be
tte

rr
es
ul
ts
ob

ta
in
ed

by
th
ea

lg
or
ith

m
sr
el
at
iv
et
o
th
ec

or
re
sp
on

di
ng

ch
ao
tic

m
ap
s,
co
m
pa
re
d
to

Lo
gi
sti
cm

ap
.

Mathematical Problems in Engineering 7

Ta
bl
e
3:
St
an
da
rd

de
vi
at
io
n
fo
rt
es
tf
un

ct
io
n
us
in
g
LD

IW
-P
SO

.

Ch
ao
sm

ap
s

D
im

en
sio

n
=
30

D
im

en
sio

n
=
50

𝑓
1

𝑓
2

𝑓
3

𝑓
4

𝑓
5

𝑓
1

𝑓
2

𝑓
3

𝑓
4

𝑓
5

N
on

e
2.
31
2e

−
05

2
.0
9
5
𝑒
−
0
2

1
.2
2
6
𝑒
+
0
1

1
.2
5
9
𝑒
+
0
4

8
.5
8
9
𝑒
−
0
9

5
.0
4
1
𝑒
−
0
1

1
.2
9
2
𝑒
−
0
2

1
.7
3
7
𝑒
+
0
1

2
.1
3
6
𝑒
+
0
4

9
.9
1
3
𝑒
−
0
5

Lo
gi
sti
c

2
.6
5
9
𝑒
−
0
1

2
.0
2
0
𝑒
−
0
2

9
.5
9
5
𝑒
+
0
0

3
.5
9
6
𝑒
+
0
1

1
.5
9
2
𝑒
−
1
9

4
.6
8
1
𝑒
−
0
1

2
.3
0
9
𝑒
−
0
2

1
.8
7
9
𝑒
+
0
1

4
.1
2
5
𝑒
+
0
1

2
.6
5
6
𝑒
−
1
2

Te
nt

1
.8
7
6
𝑒
−
0
1
∗

1
.5
3
9
𝑒
−
0
2
∗

1
.3
2
2
𝑒
+
0
1

3
.1
5
8
𝑒
+
0
1
∗

1
.7
1
7
𝑒
−
2
0
∗

5
.7
0
4
𝑒
−
0
1

1
.9
6
0
𝑒
−
0
2
∗

2
.0
6
3
𝑒
+
0
1

3.
59

9e
+
01
∗

1
.6
1
4
𝑒
−
1
2
∗

Sk
ew

Te
nt

1
.8
2
4
𝑒
−
0
1
∗

2
.8
5
4
𝑒
−
0
2

7.
70

6e
+
00
∗

1
.2
6
0
𝑒
+
0
4

2
.7
1
3
𝑒
−
2
2
∗

3
.9
3
8
𝑒
−
0
1
∗

2
.6
3
5
𝑒
−
0
2

1.
49

2e
+
01
∗

4
.2
4
6
𝑒
+
0
2

3
.6
5
8
𝑒
−
1
3
∗

Si
ne

2
.1
0
2
𝑒
−
0
1
∗

2
.0
9
6
𝑒
−
0
2

1
.2
8
9
𝑒
+
0
1

4
.7
7
3
𝑒
+
0
1

5
.8
9
7
𝑒
−
2
1
∗

5
.1
1
2
𝑒
−
0
1

2
.7
8
3
𝑒
−
0
2

2
.0
3
2
𝑒
+
0
1

1
.2
6
0
𝑒
+
0
4

7
.1
0
3
𝑒
−
1
0

IC
M
IC

3
.0
4
3
𝑒
−
0
1

1
.3
5
9
𝑒
−
0
2
∗

1
.1
6
9
𝑒
+
0
1

2.
99

7e
+
01
∗

1
.6
8
0
𝑒
−
1
8

5
.1
1
2
𝑒
−
0
1

2
.4
8
3
𝑒
−
0
2

2
.1
9
8
𝑒
+
0
1

1
.2
6
0
𝑒
+
0
4

1
.7
2
2
𝑒
−
1
0

Ci
rc
le

2
.0
5
6
𝑒
−
0
1
∗

1
.9
9
7
𝑒
−
0
2
∗

1
.3
2
8
𝑒
+
0
1

3
.2
7
8
𝑒
+
0
1
∗

2
.9
1
4
𝑒
−
2
2
∗

5
.6
6
5
𝑒
−
0
1

1.
25

7e
−
02
∗

1
.7
3
2
𝑒
+
0
1
∗

5
.0
1
3
𝑒
+
0
1

1
.5
7
2
𝑒
−
1
2
∗

Pi
ec
ew

ise
2
.7
8
7
𝑒
−
0
1

1.
27

1e
−
02
∗

1
.2
9
4
𝑒
+
0
1

3
.4
2
2
𝑒
+
0
1
∗

3
.7
2
8
𝑒
−
2
1
∗

3.
26
3e

−
01
∗

1
.7
6
7
𝑒
−
0
2
∗

2
.4
4
6
𝑒
+
0
1

7
.1
7
3
𝑒
+
0
2

2
.6
1
0
𝑒
−
1
3
∗

G
au
ss
ia
n

2
.4
0
2
𝑒
−
0
1
∗

1
.9
1
6
𝑒
−
0
2
∗

1
.2
9
6
𝑒
+
0
1

3
.2
8
8
𝑒
+
0
1
∗

3.
98
6e

−
23
∗

4
.3
0
4
𝑒
−
0
1
∗

1
.9
0
3
𝑒
−
0
2
∗

1
.9
7
6
𝑒
+
0
1

8
.6
2
0
𝑒
+
0
1

2.
22

7e
−
14
∗

In
te
rm

itt
en
cy

3
.8
6
1
𝑒
−
0
1

1
.8
1
7
𝑒
−
0
2
∗

1
.1
2
6
𝑒
+
0
1

3
.0
8
9
𝑒
+
0
1
∗

7
.8
9
4
𝑒
−
2
3
∗

6
.9
8
9
𝑒
−
0
1

2
.0
5
2
𝑒
−
0
2
∗

1
.6
3
3
𝑒
+
0
1
∗

4
.2
6
0
𝑒
+
0
2

2
.4
2
7
𝑒
−
1
3
∗

Cu
bi
c

1
.6
1
7
𝑒
−
0
1
∗

1
.7
6
0
𝑒
−
0
2
∗

1
.2
9
0
𝑒
+
0
1

8
.9
9
5
𝑒
+
0
1

4
.6
3
7
𝑒
−
2
0
∗

4
.6
7
9
𝑒
−
0
1
∗

1
.7
9
1
𝑒
−
0
2
∗

1
.9
1
0
𝑒
+
0
1

4
.6
6
1
𝑒
+
0
1

5
.1
9
6
𝑒
−
1
2

Th
ev

al
ue
si
n
bo

ld
ar
et
he

be
st
re
su
lts

ob
ta
in
ed

by
th
ea

lg
or
ith

m
su

sin
g
th
ec

or
re
sp
on

di
ng

ch
ao
tic

m
ap

in
co
rp
or
at
ed

in
to

it
co
m
pa
re
d
w
ith

ot
he
rs
.

∗
ar
et
he

be
tte

rr
es
ul
ts
ob

ta
in
ed

by
th
ea

lg
or
ith

m
sr
el
at
iv
et
o
th
ec

or
re
sp
on

di
ng

ch
ao
tic

m
ap
s,
co
m
pa
re
d
to

Lo
gi
sti
cm

ap
.

8 Mathematical Problems in Engineering

Table 4: Success rate for test problems using LDIW-PSO.

Chaos maps Dimension = 30 Dimension = 50
𝑓
1

𝑓
2

𝑓
3

𝑓
4

𝑓
5

𝑓
1

𝑓
2

𝑓
3

𝑓
4

𝑓
5

None 50/50 25/50 32/50 38/50 50/50 37/50 34/50 1/50 17/50 50/50
Logistic 49/50 29/50 42/50 45/50 50/50 44/50 27/50 0/50 36/50 50/50
Tent 49/50 25/50 33/50 49/50∗ 50/50 41/50 30/50∗ 1/50∗ 41/50∗ 50/50
Skew Tent 48/50 23/50 43/50∗ 48/50∗ 50/50 45/50∗ 27/50 1/50∗ 30/50 50/50
Sine 49/50 25/50 38/50 48/50∗ 50/50 43/50 35/50∗ 1/50∗ 31/50 50/50
ICMIC 47/50 29/50 39/50 47/50∗ 50/50 41/50 28/50∗ 1/50∗ 34/50 50/50
Circle 48/50 24/50 36/50 48/50∗ 50/50 39/50 36/50∗ 0/50 37/50∗ 50/50
Piecewise 48/50 25/50 37/50 46/50∗ 50/50 47/50∗ 32/50∗ 1/50∗ 34/50 50/50
Gaussian 47/50 29/50 36/50 48/50∗ 50/50 44/50 31/50∗ 1/50∗ 37/50∗ 50/50
Intermittency 46/50 25/50 38/50 49/50∗ 50/50 36/50 33/50∗ 0/50 36/50 50/50
Cubic 49/50 25/50 42/50 46/50∗ 50/50 44/50 29/50∗ 0/50 36/50 50/50
The values in bold are the best results obtained by the algorithms using the corresponding chaotic map incorporated into it compared with others.
∗are the better results obtained by the algorithms relative to the corresponding chaotic maps, compared to Logistic map.

and performed poorly in 𝑓
3
under dimension 50. From the

results, the algorithm seems to have better global search
ability using Tentmap than othermaps, because with themap
it had the best search ability in both problem dimensions for
𝑓
4
. However, the algorithm could not demonstrate the best

global search ability across the test problems and dimensions
using any of the chaotic maps. Sine and Cubic maps had least
positive influence on the algorithm in terms of search ability.
Besides 𝑓

2
, other maps had better influence on the algorithm

in achieving better global search ability than logistic map as
shown by the shaded portions in the table.

Table 5 shows the number of function evaluations by the
algorithm, using the various chaos maps. When Intermit-
tencymapwas used and the problemdimensionwas set to 30,
the algorithm had the lowest number of function evaluations
in all the test problems except in two of the test problems
under dimension 50. As indicated by the shaded portions,
the algorithm executed lesser number of function evaluations
using other chaotic maps than logistic map.

Table 6 shows the average ranking of the performance of
LDIW-PSO when each of the chaotic maps was incorporated
into it to solve all the test problems. In otherwords, each value
in the table represents the average rank of the corresponding
map in comparison to others across the test problems for each
problem dimension. The least value indicates that the asso-
ciated map performed best, while the largest value indicates
that the associated map performed worst. Generally, when
the problem dimension was set to 30, the algorithm obtained
the best convergence precision using Sine map and was
more stable using Intermittency map. But it demonstrated
the best global search ability with Logistic, Skew Tent, Sine,
and cubic maps. Less computational effort was needed using
Intermittencymap comparedwith others.When the problem
dimension was set to 50, the algorithm obtained the best
convergence precision and was more stable when Gaussian
map was used. But it demonstrated the best global search
ability using Circle and Piecewise maps. Less computational
effort was needed using Gaussian and Intermittency maps in
comparison with others. On the average, Intermittency map

performed best when the problem dimension was 30, while
Gaussian map performed best when the problem dimension
was 50.

5.2. Results for RIW-PSO Using the Various Chaotic Maps.
Presented in Tables 7–10 are the results with respect to mean
fitness value, standard deviation, success rate, and number of
function evaluations as obtained in the experiments by RIW-
PSO.

Table 7 shows the mean fitness values obtained by RIW-
PSO using the various chaotic maps. None of the chaotic
maps could make the algorithm perform the best across the
test problems in both dimensions. Apart from Skew Tent,
Sine, and Gaussian maps, the algorithm was able to obtain
best optimal fitness for different test problems using other
maps. Intermittency map looks more effective than others,
because with it the algorithm was able to obtain best optimal
fitness for three test problems in the two problem dimensions
showing better characteristics for convergence precision.
Apart from 𝑓

2
, logistic map was less effective compared with

other maps as shown by the shaded portions.
Presented in Table 8 is the standard deviation (stability

measure) obtained by RIW-PSO using the various chaotic
maps. From the results, none of the chaotic maps could make
the algorithm have the best stability across the test problems.
However, the algorithm achieved the best stabilities with the
various maps for different test problems across the problem
dimensions, except with ICMIC, Gaussian, and Cubic maps.
The algorithm looks more stable using Logistic, Tent and
intermittency maps than others, because with them it was
able to obtain the best stability in two test problems. Besides
𝑓
2
and 𝑓

3
with dimension 30, other maps were able to

facilitate better stability than logistic map as shown by the
shaded portions in the table.

Table 9 shows the global search ability of RIW-PSO using
the various chaotic maps.The algorithm had the same search
ability using all themaps for𝑓

5
in both dimensions. As shown

in the results, the algorithm seems to have better global search
ability using Logistic, Tent, Sine and Cubic maps than other

Mathematical Problems in Engineering 9

Ta
bl
e
5:
N
um

be
ro

ff
un

ct
io
n
ev
al
ua
tio

ns
fo
rt
es
tp

ro
bl
em

su
sin

g
LD

IW
-P
SO

.

Ch
ao
sm

ap
s

D
im

en
sio

n
=
30

D
im

en
sio

n
=
50

𝑓
1

𝑓
2

𝑓
3

𝑓
4

𝑓
5

𝑓
1

𝑓
2

𝑓
3

𝑓
4

𝑓
5

N
on

e
3
.2
0
3
𝑒
+
0
4

6
.3
1
7
𝑒
+
0
4

3
.8
0
3
𝑒
+
0
4

4
.1
2
5
𝑒
+
0
4

3
.0
1
6
𝑒
+
0
4

7
.4
6
8
𝑒
+
0
4

7
.7
0
5
𝑒
+
0
4

2
.3
1
5
𝑒
+
0
6

1
.5
9
8
𝑒
+
0
5

5
.1
4
4
𝑒
+
0
4

Lo
gi
sti
c

1
.8
6
7
𝑒
+
0
4

3
.1
9
5
𝑒
+
0
4

1
.0
9
6
𝑒
+
0
4

1
.8
6
8
𝑒
+
0
4

1
.6
2
7
𝑒
+
0
4

3
.9
8
7
𝑒
+
0
4

5
.7
8
6
𝑒
+
0
4

—
5
.6
3
1
𝑒
+
0
4

3
.0
3
2
𝑒
+
0
4

Te
nt

1
.8
4
6
𝑒
+
0
4
∗

3
.5
1
9
𝑒
+
0
4

1
.4
8
4
𝑒
+
0
4

1
.7
7
0
𝑒
+
0
4
∗

1
.6
4
3
𝑒
+
0
4

4
.4
6
4
𝑒
+
0
4

5
.2
8
2
𝑒
+
0
4
∗

9.
86
0e

+
05
∗

5
.0
0
3
𝑒
+
0
4
∗

3
.0
6
8
𝑒
+
0
4

Sk
ew

Te
nt

1
.8
2
8
𝑒
+
0
4
∗

3
.6
4
9
𝑒
+
0
4

1
.1
9
2
𝑒
+
0
4

1
.5
4
1
𝑒
+
0
4
∗

1
.4
2
9
𝑒
+
0
4
∗

3
.8
3
5
𝑒
+
0
4
∗

5
.5
2
2
𝑒
+
0
4
∗

1
.2
0
7
𝑒
+
0
6
∗

6
.8
8
6
𝑒
+
0
4

2
.9
5
3
𝑒
+
0
4
∗

Si
ne

1
.9
0
4
𝑒
+
0
4

3
.4
8
6
𝑒
+
0
4

1
.1
7
1
𝑒
+
0
4

1
.7
3
2
𝑒
+
0
4
∗

1
.6
2
2
𝑒
+
0
4
∗

4
.1
7
3
𝑒
+
0
4

4
.5
8
2
𝑒
+
0
4
∗

1
.3
9
0
𝑒
+
0
6
∗

6
.8
0
9
𝑒
+
0
4

3
.1
1
5
𝑒
+
0
4

IC
M
IC

1
.8
9
8
𝑒
+
0
4

3
.0
2
8
𝑒
+
0
4
∗

1
.2
1
9
𝑒
+
0
4

1
.6
6
4
𝑒
+
0
4
∗

1
.6
0
3
𝑒
+
0
4
∗

4
.2
6
5
𝑒
+
0
4

5
.5
2
2
𝑒
+
0
4
∗

1
.2
6
1
𝑒
+
0
6
∗

5
.8
0
8
𝑒
+
0
4

3
.0
2
8
𝑒
+
0
4
∗

Ci
rc
le

1
.6
2
4
𝑒
+
0
4
∗

3
.0
6
5
𝑒
+
0
4
∗

9
.3
2
8
𝑒
+
0
3
∗

1
.4
2
5
𝑒
+
0
4
∗

1
.3
4
6
𝑒
+
0
4
∗

3
.9
8
7
𝑒
+
0
4

3.
80
7e

+
04
∗

—
4
.9
2
0
𝑒
+
0
4
∗

2
.6
2
7
𝑒
+
0
4
∗

Pi
ec
ew

ise
1
.8
3
7
𝑒
+
0
4
∗

3
.5
0
1
𝑒
+
0
4

1
.2
4
5
𝑒
+
0
4

1
.8
8
5
𝑒
+
0
4

1
.5
8
1
𝑒
+
0
4
∗

3.
62
9e

+
04
∗

4
.8
5
7
𝑒
+
0
4
∗

1
.0
9
5
𝑒
+
0
6
∗

6
.1
2
7
𝑒
+
0
4

3
.0
1
0
𝑒
+
0
4
∗

G
au
ss
ia
n

1
.7
6
5
𝑒
+
0
4
∗

2
.7
8
7
𝑒
+
0
4
∗

1
.1
5
5
𝑒
+
0
4

1
.5
3
4
𝑒
+
0
4
∗

1
.4
5
9
𝑒
+
0
4
∗

3
.7
0
0
𝑒
+
0
4
∗

4
.6
2
4
𝑒
+
0
4
∗

1
.1
4
2
𝑒
+
0
6
∗

5
.0
6
7
𝑒
+
0
4
∗

2
.7
8
0
𝑒
+
0
4
∗

In
te
rm

itt
en
cy

1.
53

7e
+
04
∗

2.
67

3e
+
04
∗

8.
36

9e
+
03
∗

1.
27

7e
+
04
∗

1.
22
1e

+
04
∗

3
.9
4
9
𝑒
+
0
4
∗

3
.8
1
3
𝑒
+
0
4
∗

—
4.
75
8e

+
04
∗

2.
41

5e
+
04
∗

Cu
bi
c

1
.8
5
2
𝑒
+
0
4
∗

3
.5
2
0
𝑒
+
0
4

1
.1
9
9
𝑒
+
0
4

1
.8
5
0
𝑒
+
0
4
∗

1
.6
2
0
𝑒
+
0
4
∗

4
.1
8
8
𝑒
+
0
4

5
.4
8
8
𝑒
+
0
4
∗

—
5
.6
3
3
𝑒
+
0
4

3
.0
8
6
𝑒
+
0
4

—
In
di
ca
te
st
ha
tn

o
tr
ia
lr
un

sa
tis
fie
d
th
es

uc
ce
ss
cr
ite
rio

n.
Th

ev
al
ue
si
n
bo

ld
ar
et
he

be
st
re
su
lts

ob
ta
in
ed

by
th
ea

lg
or
ith

m
su

sin
g
th
ec

or
re
sp
on

di
ng

ch
ao
tic

m
ap

in
co
rp
or
at
ed

in
to

it
co
m
pa
re
d
w
ith

ot
he
rs
.

∗
ar
et
he

be
tte

rr
es
ul
ts
ob

ta
in
ed

by
th
ea

lg
or
ith

m
sr
el
at
iv
et
o
th
ec

or
re
sp
on

di
ng

ch
ao
tic

m
ap
s,
co
m
pa
re
d
to

Lo
gi
sti
cm

ap
.

10 Mathematical Problems in Engineering

Ta
bl
e
6:
Av

er
ag
er

an
ki
ng

of
th
ep

er
fo
rm

an
ce

of
LD

IW
-P
SO

re
lat
iv
et
o
th
ev

ar
io
us

ch
ao
tic

m
ap
s.

Ch
ao
sm

ap
s

Pr
ob

le
m

di
m
en
sio

n
=
30

Pr
ob

le
m

di
m
en
sio

n
=
50

M
ea
n
fit
ne
ss

St
an
da
rd

de
vi
at
io
n

Su
cc
es
sr
at
e

Fu
nc
tio

n
ev
al
ua
tio

n
Av

er
ag
e

pe
rfo

rm
an
ce

M
ea
n
fit
ne
ss

St
an
da
rd

de
vi
at
io
n

Su
cc
es
sr
at
e

Fu
nc
tio

n
ev
al
ua
tio

n
Av

er
ag
e

pe
rfo

rm
an
ce

N
on

e
8.
6

7.2
3.
6

11
7.6

0
8.
4

6.
8

3.
8

10
.2

7.3
0

Lo
gi
st
ic

5.
6

6.
8

2.
2

6.
8

5.
35

6.
4

5.
4

3.
8

7
5.
65

Te
nt

5.
4

5.
4

2.
6

8.
2

5.
40

5.
4

6.
4

3
5.
6

5.
10

Sk
ew

Te
nt

6.
8

5.
8

2.
2

5.
4

5.
05

5
4.
6

4
5.
8

4.
85

Si
ne

4.
8

7.2
2.
2

7
5.
30

8.
2

9
2.
6

7
6.
70

IC
M
IC

5.
8

5.
4

2.
4

6.
2

4.
95

8.
4

9.2
4

7.2
7.2

0
Ci
rc
le

5.
8

6.
2

3
2.
4

4.
35

4.
8

4.
4

2.
4

3.
8

3.
85

Pi
ec
ew

ise
5.
4

5.
8

3
7.2

5.
35

4.
6

5.
2

2.
4

4.
2

4.
10

G
au
ss
ia
n

6
5.
6

2.
8

3.
2

4.
40

3.
6

4.
2

2.
6

3.
2

3.
40

In
te
rm

itt
en
cy

5.
4

4.
6

2.
6

1
3.
40

5.
4

5.
8

3.
6

3.
2

4.
50

Cu
bi
c

6.
4

6
2.
2

7.6
5.
55

5.
6

5
3.
4

7.6
5.
40

Th
ev

al
ue
si
n
bo

ld
ar
et
he

be
st
re
su
lts

ob
ta
in
ed

by
th
ea

lg
or
ith

m
su

sin
g
th
ec

or
re
sp
on

di
ng

ch
ao
tic

m
ap

in
co
rp
or
at
ed

in
to

it
co
m
pa
re
d
w
ith

ot
he
rs
.

Mathematical Problems in Engineering 11

Ta
bl
e
7:
M
ea
n
fit
ne
ss
ob

ta
in
ed

by
RI
W
-P
SO

fo
rt
es
tp

ro
bl
em

su
sin

g
th
ev

ar
io
us

ch
ao
tic

m
ap
s.

Ch
ao
sm

ap
s

D
im

en
sio

n
=
30

D
im

en
sio

n
=
50

𝑓
1

𝑓
2

𝑓
3

𝑓
4

𝑓
5

𝑓
1

𝑓
2

𝑓
3

𝑓
4

𝑓
5

N
on

e
3
.3
5
8
𝑒
+
0
0

1
.4
9
6
𝑒
+
0
0

6
.9
8
8
𝑒
+
0
1

4
.1
7
3
𝑒
+
0
3

5
.5
1
2
𝑒
+
0
1

5
.0
2
2
𝑒
+
0
0

4
.9
0
5
𝑒
+
0
0

1
.8
8
4
𝑒
+
0
2

3
.0
6
2
𝑒
+
0
4

4
.3
5
2
𝑒
+
0
2

Lo
gi
sti
c

8
.9
1
5
𝑒
−
0
7

1.
41

1e
−
02

3
.9
3
3
𝑒
+
0
1

5
.0
8
5
𝑒
+
0
1

5
.4
0
4
𝑒
−
1
3

9
.9
3
8
𝑒
−
0
4

1
.3
0
3
𝑒
−
0
2

7
.0
4
1
𝑒
+
0
1

1
.2
1
8
𝑒
+
0
2

2
.7
9
8
𝑒
−
0
7

Te
nt

3
.7
1
2
𝑒
−
0
7
∗

1
.6
1
0
𝑒
−
0
2

4
.5
5
5
𝑒
+
0
1

5
.0
9
2
𝑒
+
0
1

2
.0
9
9
𝑒
−
1
3
∗

1.
70

1e
−
04
∗

1
.0
0
7
𝑒
−
0
2
∗

7
.2
3
7
𝑒
+
0
1

1
.3
4
4
𝑒
+
0
2

1
.5
7
4
𝑒
−
0
8
∗

Sk
ew

Te
nt

2
.3
0
9
𝑒
−
0
2

2
.0
5
5
𝑒
−
0
2

4
.2
6
7
𝑒
+
0
1

4
.7
1
0
𝑒
+
0
1
∗

3
.2
8
0
𝑒
−
1
5
∗

3
.4
6
8
𝑒
−
0
2

2
.1
7
2
𝑒
−
0
2

7
.0
4
4
𝑒
+
0
1

1
.1
6
1
𝑒
+
0
2
∗

1
.4
4
3
𝑒
−
0
9
∗

Si
ne

5
.3
6
0
𝑒
−
0
2

1
.4
9
6
𝑒
−
0
2

3
.8
7
7
𝑒
+
0
1
∗

5
.3
4
1
𝑒
+
0
1

3
.4
9
8
𝑒
−
1
3
∗

4
.2
8
1
𝑒
−
0
4
∗

1
.3
6
7
𝑒
−
0
2

6
.9
2
2
𝑒
+
0
1
∗

1
.1
7
1
𝑒
+
0
2
∗

7
.3
8
6
𝑒
−
0
8
∗

IC
M
IC

3
.7
9
8
𝑒
−
0
2

1
.4
5
0
𝑒
−
0
2

4
.2
5
2
𝑒
+
0
1

6
.7
3
6
𝑒
+
0
1

9
.9
6
3
𝑒
−
1
5
∗

2
.6
2
3
𝑒
−
0
4
∗

1
.8
8
5
𝑒
−
0
2

6.
89

4e
+
01
∗

1
.1
3
8
𝑒
+
0
2
∗

8
.3
2
3
𝑒
−
0
9
∗

Ci
rc
le

5
.3
6
0
𝑒
−
0
2

1
.5
7
7
𝑒
−
0
2

4
.1
2
8
𝑒
+
0
1

1
.2
1
0
𝑒
+
0
2

1.
16

7e
−
17
∗

2
.7
7
2
𝑒
−
0
2

1
.9
8
5
𝑒
−
0
2

7
.6
4
1
𝑒
+
0
1

9
.8
8
6
𝑒
+
0
1
∗

2
.2
5
3
𝑒
−
1
0
∗

Pi
ec
ew

ise
1.9

13
e−

07
∗

1
.6
8
6
𝑒
−
0
2

4
.0
9
6
𝑒
+
0
1

5
.3
5
7
𝑒
+
0
1

2
.0
1
9
𝑒
−
1
4
∗

7
.3
5
3
𝑒
−
0
4
∗

9.
62
7e

−
03
∗

7
.2
5
6
𝑒
+
0
1

1
.1
2
5
𝑒
+
0
2
∗

5
.9
6
0
𝑒
−
0
9
∗

G
au
ss
ia
n

3
.0
0
2
𝑒
−
0
2

1
.8
2
5
𝑒
−
0
2

4
.2
4
8
𝑒
+
0
1

5
.1
5
5
𝑒
+
0
1

3
.6
9
3
𝑒
−
1
7
∗

2
.9
5
0
𝑒
−
0
2

2
.0
7
2
𝑒
−
0
2

7
.1
8
8
𝑒
+
0
1

1
.0
4
7
𝑒
+
0
2
∗

7
.5
0
2
𝑒
−
1
1
∗

In
te
rm

itt
en
cy

5
.6
7
4
𝑒
−
0
1

1
.5
4
1
𝑒
−
0
2

4
.2
3
9
𝑒
+
0
1

4.
45
3e

+
01
∗

1
.3
5
7
𝑒
−
1
6
∗

3
.8
3
1
𝑒
−
0
1

2
.9
1
5
𝑒
−
0
2

7
.3
6
2
𝑒
+
0
1

9.
45

6e
+
01
∗

3.
69

9e
−
13
∗

Cu
bi
c

4
.6
2
9
𝑒
−
0
7
∗

1
.9
0
5
𝑒
−
0
2

3.
82

4e
+
01
∗

1
.0
9
5
𝑒
+
0
2

2
.3
6
8
𝑒
−
1
3
∗

4
.7
5
7
𝑒
−
0
4
∗

1
.4
5
7
𝑒
−
0
2

6
.9
5
7
𝑒
+
0
1
∗

1
.7
8
5
𝑒
+
0
2

7
.5
7
0
𝑒
−
0
8
∗

Th
ev

al
ue
si
n
bo

ld
ar
et
he

be
st
re
su
lts

ob
ta
in
ed

by
th
ea

lg
or
ith

m
su

sin
g
th
ec

or
re
sp
on

di
ng

ch
ao
tic

m
ap

in
co
rp
or
at
ed

in
to

it
co
m
pa
re
d
w
ith

ot
he
rs
.

∗
ar
et
he

be
tte

rr
es
ul
ts
ob

ta
in
ed

by
th
ea

lg
or
ith

m
sr
el
at
iv
et
o
th
ec

or
re
sp
on

di
ng

ch
ao
tic

m
ap
s,
co
m
pa
re
d
to

Lo
gi
sti
cm

ap
.

12 Mathematical Problems in Engineering

Ta
bl
e
8:
St
an
da
rd

de
vi
at
io
n
fo
rt
es
tp

ro
bl
em

su
sin

g
RI
W
-P
SO

.

Ch
ao
sm

ap
s

D
im

en
sio

n
=
30

D
im

en
sio

n
=
50

𝑓
1

𝑓
2

𝑓
3

𝑓
4

𝑓
5

𝑓
1

𝑓
2

𝑓
3

𝑓
4

𝑓
5

N
on

e
4
.4
9
5
𝑒
−
0
1

2
.8
8
6
𝑒
−
0
1

1
.9
1
7
𝑒
+
0
1

1
.2
4
8
𝑒
+
0
4

3
.2
0
7
𝑒
+
0
1

4
.5
0
5
𝑒
−
0
1

1
.3
3
0
𝑒
+
0
0

3
.0
3
1
𝑒
+
0
1

1
.5
8
9
𝑒
+
0
4

1
.4
8
8
𝑒
+
0
2

Lo
gi
sti
c

1
.7
5
5
𝑒
−
0
6

1.
55
2e

−
02

1.
04

5e
+
01

4
.1
4
5
𝑒
+
0
1

1
.3
0
8
𝑒
−
1
2

1
.3
9
8
𝑒
−
0
3

1
.9
4
6
𝑒
−
0
2

1
.7
2
4
𝑒
+
0
1

9
.2
1
6
𝑒
+
0
1

6
.1
4
1
𝑒
−
0
7

Te
nt

1
.4
7
6
𝑒
−
0
6
∗

2
.1
0
3
𝑒
−
0
2

1
.2
6
5
𝑒
+
0
1

3
.7
6
2
𝑒
+
0
1
∗

1
.2
0
5
𝑒
−
1
2
∗

3.
40
2e

−
04
∗

1.
53

6e
−
02
∗

1
.5
4
7
𝑒
+
0
1
∗

8
.2
5
3
𝑒
+
0
1
∗

2
.4
4
9
𝑒
−
0
8
∗

Sk
ew

Te
nt

1
.6
1
7
𝑒
−
0
1

2
.3
6
1
𝑒
−
0
2

1
.1
7
2
𝑒
+
0
1

4
.0
1
4
𝑒
+
0
1
∗

1
.0
2
7
𝑒
−
1
4
∗

2
.4
1
6
𝑒
−
0
1

3
.3
1
3
𝑒
−
0
2

1.
43

5e
+
01
∗

4
.4
9
8
𝑒
+
0
1
∗

3
.1
3
7
𝑒
−
0
9
∗

Si
ne

2
.6
2
6
𝑒
−
0
1

2
.1
8
4
𝑒
−
0
2

1
.0
9
1
𝑒
+
0
1

3.
27

6e
+
01
∗

1
.0
8
9
𝑒
−
1
2
∗

5
.9
2
8
𝑒
−
0
4
∗

2
.2
4
0
𝑒
−
0
2

1
.6
4
8
𝑒
+
0
1
∗

9
.4
2
5
𝑒
+
0
1

1
.2
5
1
𝑒
−
0
7
∗

IC
M
IC

2
.6
5
9
𝑒
−
0
1

1
.9
2
4
𝑒
−
0
2

1
.0
9
0
𝑒
+
0
1

8
.1
1
2
𝑒
+
0
1

3
.0
5
4
𝑒
−
1
4
∗

7
.1
8
2
𝑒
−
0
4
∗

3
.1
1
2
𝑒
−
0
2

2
.2
8
9
𝑒
+
0
1

6
.8
1
0
𝑒
+
0
1
∗

3
.3
3
0
𝑒
−
0
8
∗

Ci
rc
le

2
.6
2
6
𝑒
−
0
1

1
.5
9
8
𝑒
−
0
2

1
.1
9
0
𝑒
+
0
1

4
.2
4
0
𝑒
+
0
2

2.
19
7e

−
17
∗

1
.9
2
3
𝑒
−
0
1

3
.2
7
1
𝑒
−
0
2

2
.3
7
1
𝑒
+
0
1

5
.7
9
2
𝑒
+
0
1
∗

7
.9
2
5
𝑒
−
1
0
∗

Pi
ec
ew

ise
7.
52

7e
−
07
∗

2
.4
8
6
𝑒
−
0
2

1
.1
5
9
𝑒
+
0
1

4
.1
2
6
𝑒
+
0
1
∗

8
.1
1
4
𝑒
−
1
4
∗

3
.0
1
8
𝑒
−
0
3

1
.5
4
0
𝑒
−
0
2
∗

1
.7
3
7
𝑒
+
0
1

4
.7
9
4
𝑒
+
0
1
∗

1
.3
6
5
𝑒
−
0
8
∗

G
au
ss
ia
n

2
.1
0
2
𝑒
−
0
1

2
.7
4
9
𝑒
−
0
2

1
.3
4
2
𝑒
+
0
1

3
.6
8
6
𝑒
+
0
1
∗

6
.2
5
4
𝑒
−
1
7
∗

2
.0
5
9
𝑒
−
0
1

3
.0
2
6
𝑒
−
0
2

1
.6
5
0
𝑒
+
0
1
∗

7
.2
9
8
𝑒
+
0
1
∗

1
.0
9
8
𝑒
−
1
0
∗

In
te
rm

itt
en
cy

8
.3
3
1
𝑒
−
0
1

1
.8
7
2
𝑒
−
0
2

1
.4
2
0
𝑒
+
0
1

3
.7
1
7
𝑒
+
0
1
∗

9
.4
4
1
𝑒
−
1
6
∗

6
.7
5
0
𝑒
−
0
1

4
.0
4
3
𝑒
−
0
2

1
.9
9
9
𝑒
+
0
1

4.
10

9e
+
01
∗

1.
55

5e
−
12
∗

Cu
bi
c

1
.1
1
1
𝑒
−
0
6
∗

2
.6
0
1
𝑒
−
0
2

1
.1
9
0
𝑒
+
0
1

4
.2
1
1
𝑒
+
0
2

8
.1
0
7
𝑒
−
1
3
∗

8
.1
9
3
𝑒
−
0
4
∗

2
.1
1
7
𝑒
−
0
2

1
.8
0
7
𝑒
+
0
1

4
.2
1
5
𝑒
+
0
2

1
.5
0
7
𝑒
−
0
7
∗

Th
ev

al
ue
si
n
bo

ld
ar
et
he

be
st
re
su
lts

ob
ta
in
ed

by
th
ea

lg
or
ith

m
su

sin
g
th
ec

or
re
sp
on

di
ng

ch
ao
tic

m
ap

in
co
rp
or
at
ed

in
to

it
co
m
pa
re
d
w
ith

ot
he
rs
.

∗
ar
et
he

be
tte

rr
es
ul
ts
ob

ta
in
ed

by
th
ea

lg
or
ith

m
sr
el
at
iv
et
o
th
ec

or
re
sp
on

di
ng

ch
ao
tic

m
ap
s,
co
m
pa
re
d
to

Lo
gi
sti
cm

ap
.

Mathematical Problems in Engineering 13

Table 9: Success rate for test function using RIW-PSO.

Chaos maps Dimension = 30 Dimension = 50
𝑓
1

𝑓
2

𝑓
3

𝑓
4

𝑓
5

𝑓
1

𝑓
2

𝑓
3

𝑓
4

𝑓
5

None 0/50 0/50 7/50 0/50 0/50 0/50 0/50 0/50 0/50 0/50
Logistic 50/50 26/50 43/50 46/50 50/50 50/50 29/50 4/50 27/50 50/50
Tent 50/50 29/50∗ 36/50 47/50∗ 50/50 50/50 34/50∗ 2/50 21/50 50/50
Skew Tent 49/50 21/50 41/50 48/50∗ 50/50 49/50 29/50 2/50 23/50 50/50
Sine 48/50 26/50 40/50 49/50∗ 50/50 50/50 33/50∗ 6/50∗ 29/50∗ 50/50
ICMIC 49/50 30/50∗ 39/50 47/50∗ 50/50 50/50 26/50 8/50∗ 30/50∗ 50/50
Circle 48/50 26/50 37/50 45/50 50/50 49/50 29/50 10/50∗ 31/50∗ 50/50
Piecewise 50/50 25/50 40/50 46/50 50/50 49/50 37/50∗ 8/50∗ 29/50∗ 50/50
Gaussian 49/50 23/50 39/50 48/50∗ 50/50 49/50 26/50 5/50∗ 35/50∗ 50/50
Intermittency 31/50 26/50 39/50 47/50∗ 50/50 37/50 25/50 5/50∗ 37/50∗ 50/50
Cubic 50/50 23/50 42/50 44/50 50/50 50/50 31/50∗ 7/50∗ 31/50∗ 50/50
The values in bold are the best results obtained by the algorithms using the corresponding chaotic map incorporated into it compared with others.
∗are the better results obtained by the algorithms relative to the corresponding chaotic maps, compared to Logistic map.

maps, because with the maps, the algorithm had the best
search ability in two or more test problems. However, the it
could not demonstrate the best global search ability across
the test problems and dimensions using any of the chaotic
maps. Apart from 𝑓

1
, 𝑓
3
, and 𝑓

5
(for dimension 30) and 𝑓

1

and 𝑓
5
(for dimension 50), other maps had better influence

on the algorithm in achieving better global search ability than
logistic map as shown by the shaded portions in the table.

Table 10 shows the number of function evaluations by
the algorithm, using the various chaos maps. When Inter-
mittency map was used and the problem dimension was
set to 30, the algorithm had the lowest number of function
evaluations in four of the test problems but in three of
the test problems under dimension 50, thereby making the
algorithm be more robust in terms of search ability than
other maps. The shaded portions indicate lower number
of function evaluations executed by the algorithm when
the corresponding chaotic maps were used compared with
logistic map.

Table 11 shows the average ranking of the performance of
RIW-PSO when each of the chaotic maps was incorporated
into it to solve all the test problems. Each value in the table
represents the average rank of the corresponding map in
comparison to others across the test problems for each prob-
lem dimension. The least value indicates that the associated
map performed best, while the largest value indicates that the
associated map is the least in performance. Generally, when
the problem dimension was set to 30, the algorithm obtained
the best convergence precision, demonstrated the best global
search ability and stability when logistic map was used. But
using Circle and Intermittency maps, less computational
effort was needed compared with others. When problem
dimension was set to 50, the algorithm obtained the best
convergence precision using ICMIC map and it was more
stable using Tent map; it did better global search using
Piecewise map and required less computational time using
Circle map. On the average, Intermittency map performed
best when the problem dimension was 30, while Piecewise
map performed best when the problem dimension = 50.

6. Conclusions

Chaotic features cause the values of inertia weight to fluctuate
between 0 and 1. It affects the velocities and positions of each
particle in each iteration to facilitate its local and global search
ability as theymove to new search regions in the search space.

In this paper, two PSO variants, LDIW-PSO and RIW-
PSO algorithms, were implemented with different chaotic
maps incorporated into their inertia weight strategies at
different times. Their performances were investigated based
on the results obtained from numerical simulations, using
some well-studied benchmark problems. Mean best solution,
standard deviation, success rate, and function evaluations
of the algorithms were the instruments of measurement.
Results show that, though logistic map could enhance the
performance of LDIW-PSO and RIW-PSO, there are other
chaotic maps that can make the variants perform better in
terms of convergence speed, accuracy, stability, and global
search ability.

In terms of average performance, LDIW-PSO performed
best using the Intermittency map when the problem dimen-
sion is 30. But it performed best using Gaussian map when
the problem dimension is 50. On the other hand, RIW-
PSO also performed best using the Intermittency map when
the problem dimension is 30. But it performed best using
Piecewise map when the problem dimension is 50. This is an
indication that the Intermittency chaotic map could enhance
the performance of the two PSO variants compared with
other maps, when the dimensionality of the problem is in the
neighbourhood of 30.

However, it should be noted that due to the different
search pattern of the chaotic maps, they could be problem
dependent. The results presented in this paper can also
serve as a platform for informative decision making by
practitioners in the process of selecting chaotic maps to be
used in the inertia weight formula of LDIW-PSO and RIW-
PSO. Further work will be done in applying these variants to
real-world problems to test their effectiveness relative to the
chaotic maps.

14 Mathematical Problems in Engineering

Ta
bl
e
10
:N

um
be
ro

ff
un

ct
io
n
ev
al
ua
tio

ns
fo
rt
es
tp

ro
bl
em

su
sin

g
RI
W
-P
SO

.

Ch
ao
sm

ap
s

D
im

en
sio

n
=
30

D
im

en
sio

n
=
50

𝑓
1

𝑓
2

𝑓
3

𝑓
4

𝑓
5

𝑓
1

𝑓
2

𝑓
3

𝑓
4

𝑓
5

N
on

e
—

—
1
.9
4
5
𝑒
+
0
5

—
—

—
—

—
—

—
Lo

gi
sti
c

1
.6
5
2
𝑒
+
0
4

2
.7
7
5
𝑒
+
0
4

6
.6
8
8
𝑒
+
0
3

1
.4
8
7
𝑒
+
0
4

1
.2
2
0
𝑒
+
0
4

4
.4
0
4
𝑒
+
0
4

5
.3
6
5
𝑒
+
0
4

5
.4
4
9
𝑒
+
0
5

8
.4
5
3
𝑒
+
0
4

3
.0
3
5
𝑒
+
0
4

Te
nt

1
.5
6
7
𝑒
+
0
4
∗

2
.3
2
9
𝑒
+
0
4
∗

8
.7
7
5
𝑒
+
0
3

1
.4
1
5
𝑒
+
0
4
∗

1
.1
8
7
𝑒
+
0
4
∗

3
.7
4
2
𝑒
+
0
4
∗

4
.3
8
5
𝑒
+
0
4
∗

3
.1
7
0
𝑒
+
0
5
∗

8
.8
2
8
𝑒
+
0
4

2
.6
9
8
𝑒
+
0
4
∗

Sk
ew

Te
nt

1
.5
1
5
𝑒
+
0
4
∗

2
.8
9
6
𝑒
+
0
4

5
.4
5
8
𝑒
+
0
3
∗

1
.2
7
8
𝑒
+
0
4
∗

1
.0
8
1
𝑒
+
0
4
∗

3
.7
8
5
𝑒
+
0
4
∗

4
.5
5
9
𝑒
+
0
4
∗

3
.6
5
8
𝑒
+
0
5
∗

8
.3
2
9
𝑒
+
0
4
∗

2
.4
7
4
𝑒
+
0
4
∗

Si
ne

1
.6
5
7
𝑒
+
0
4

2
.6
5
0
𝑒
+
0
4
∗

7
.0
8
3
𝑒
+
0
3

1
.2
2
1
𝑒
+
0
4
∗

1
.2
1
8
𝑒
+
0
4
∗

4
.0
6
3
𝑒
+
0
4
∗

4
.7
4
7
𝑒
+
0
4
∗

2
.5
4
1
𝑒
+
0
5
∗

6
.7
6
7
𝑒
+
0
4
∗

2
.8
5
3
𝑒
+
0
4
∗

IC
M
IC

1
.6
2
9
𝑒
+
0
4
∗

2
.0
3
3
𝑒
+
0
4
∗

7
.9
5
5
𝑒
+
0
3

1
.3
3
8
𝑒
+
0
4
∗

1
.1
1
7
𝑒
+
0
4
∗

3
.8
0
6
𝑒
+
0
4
∗

5
.3
9
5
𝑒
+
0
4

1
.3
1
5
𝑒
+
0
5
∗

6
.4
2
6
𝑒
+
0
4
∗

2
.5
8
7
𝑒
+
0
4
∗

Ci
rc
le

1
.5
0
9
𝑒
+
0
4
∗

2
.1
8
7
𝑒
+
0
4
∗

4
.9
8
6
𝑒
+
0
3
∗

1
.2
9
1
𝑒
+
0
4
∗

9
.6
0
0
𝑒
+
0
3
∗

3
.6
8
2
𝑒
+
0
4
∗

4
.1
8
5
𝑒
+
0
4
∗

1
.2
3
5
𝑒
+
0
5
∗

6
.0
1
1
𝑒
+
0
4
∗

2
.2
6
5
𝑒
+
0
4
∗

Pi
ec
ew

ise
1
.5
3
7
𝑒
+
0
4
∗

2
.7
0
8
𝑒
+
0
4
∗

8
.7
9
6
𝑒
+
0
3

1
.4
5
5
𝑒
+
0
4
∗

1
.1
3
5
𝑒
+
0
4
∗

4
.0
3
2
𝑒
+
0
4
∗

3.
81
1e

+
04
∗

1
.9
9
9
𝑒
+
0
5
∗

6
.3
5
8
𝑒
+
0
4
∗

2
.6
1
5
𝑒
+
0
4
∗

G
au
ss
ia
n

1.
44

7e
+
04
∗

2
.4
9
2
𝑒
+
0
4
∗

5
.5
0
9
𝑒
+
0
3
∗

1
.2
4
3
𝑒
+
0
4
∗

9
.8
8
8
𝑒
+
0
3
∗

3.
58
3e

+
04
∗

4
.6
4
9
𝑒
+
0
4
∗

2
.8
9
9
𝑒
+
0
5
∗

5
.0
6
2
𝑒
+
0
4
∗

2
.2
9
2
𝑒
+
0
4
∗

In
te
rm

itt
en
cy

1
.9
7
6
𝑒
+
0
4

1.
75

9e
+
04
∗

3.
74

0e
+
03
∗

1.
02

6e
+
04
∗

7.
97
0e

+
03
∗

4
.3
9
1
𝑒
+
0
4
∗

3
.9
7
8
𝑒
+
0
4
∗

1.
11
2e

+
05
∗

4.
00
0e

+
04
∗

1.
87

4e
+
04
∗

Cu
bi
c

1
.6
3
0
𝑒
+
0
4
∗

3
.2
1
3
𝑒
+
0
4

7
.2
0
5
𝑒
+
0
3

1
.4
2
1
𝑒
+
0
4
∗

1
.2
2
2
𝑒
+
0
4

4
.1
1
4
𝑒
+
0
4
∗

4
.8
9
8
𝑒
+
0
4
∗

2
.1
5
3
𝑒
+
0
5
∗

6
.7
0
9
𝑒
+
0
4
∗

2
.8
8
4
𝑒
+
0
4
∗

Th
ev

al
ue
si
n
bo

ld
ar
et
he

be
st
re
su
lts

ob
ta
in
ed

by
th
ea

lg
or
ith

m
su

sin
g
th
ec

or
re
sp
on

di
ng

ch
ao
tic

m
ap

in
co
rp
or
at
ed

in
to

it
co
m
pa
re
d
w
ith

ot
he
rs
.

∗
ar
et
he

be
tte

rr
es
ul
ts
ob

ta
in
ed

by
th
ea

lg
or
ith

m
sr
el
at
iv
et
o
th
ec

or
re
sp
on

di
ng

ch
ao
tic

m
ap
s,
co
m
pa
re
d
to

Lo
gi
sti
cm

ap
.

Mathematical Problems in Engineering 15

Ta
bl
e
11
:A

ve
ra
ge

ra
nk

in
g
of

th
ep

er
fo
rm

an
ce

of
RI
W
-P
SO

re
lat
iv
et
o
th
ev

ar
io
us

ch
ao
tic

m
ap
s.

Ch
ao
sm

ap
s

Pr
ob

le
m

di
m
en
sio

n
=
30

Pr
ob

le
m

di
m
en
sio

n
=
50

M
ea
n
fit
ne
ss

St
an
da
rd

de
vi
at
io
n

Su
cc
es
sr
at
e

Fu
nc
tio

n
ev
al
ua
tio

n
Av

er
ag
e

pe
rfo

rm
an
ce

M
ea
n
fit
ne
ss

St
an
da
rd

de
vi
at
io
n

Su
cc
es
sr
at
e

Fu
nc
tio

n
ev
al
ua
tio

n
Av

er
ag
e

pe
rfo

rm
an
ce

N
on

e
11

10
.8

5.
8

11
9.6

5
11

10
.8

6.
2

11
9.7

5
Lo

gi
sti
c

4.
2

4.
6

2
8

4.
70

6.
2

6.
2

3.
8

9.6
6.
45

Te
nt

5.
8

5.
8

2.
8

6.
4

5.
20

5.
2

3.
4

3.
8

6.
4

4.
70

Sk
ew

Te
nt

6
5.
2

2.
8

4.
6

4.
65

6.
6

3.
6

4.
4

6
5.
15

Si
ne

5.
6

5
2.
4

6.
2

4.
80

4.
8

6.
8

2.
8

7
5.
35

IC
M
IC

6
5.
6

2.
4

5.
4

4.
85

4
6.
2

2.
8

5.
6

4.
65

Ci
rc
le

6
5.
4

3.
6

2.
8

4.
45

5.
8

6.
4

2.
4

2.
4

4.
25

Pi
ec
ew

ise
5

5
2.
8

7.2
5.
00

4.
6

4.
4

2.
2

4.
2

3.
85

G
au
ss
ia
n

5.
6

5.
8

3
3.
2

4.
40

5.
4

5.
2

3.
2

3.
8

4.
40

In
te
rm

itt
en
cy

4.
8

6
3.
2

2.
8

4.
20

6.
2

6.
2

3.
4

2.
8

4.
65

Cu
bi
c

6
6.
8

3
8.
4

6.
05

6.
2

6.
8

2.
4

7.2
5.
65

Th
ev

al
ue
si
n
bo

ld
ar
et
he

be
st
re
su
lts

ob
ta
in
ed

by
th
ea

lg
or
ith

m
su

sin
g
th
ec

or
re
sp
on

di
ng

ch
ao
tic

m
ap

in
co
rp
or
at
ed

in
to

it
co
m
pa
re
d
w
ith

ot
he
rs
.

16 Mathematical Problems in Engineering

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] R. Eberhart and J. Kennedy, “New optimizer using particle
swarm theory,” in Proceedings of the 6th International Sympo-
sium onMicroMachine and Human Science, pp. 39–43, October
1995.

[2] M. S. Tavazoei and M. Haeri, “Comparison of different one-
dimensional maps as chaotic search pattern in chaos optimiza-
tion algorithms,” Applied Mathematics and Computation, vol.
187, no. 2, pp. 1076–1085, 2007.

[3] I. C. Trelea, “The particle swarm optimization algorithm:
convergence analysis and parameter selection,” Information
Processing Letters, vol. 85, no. 6, pp. 317–325, 2003.

[4] Y. Shi and R. Eberhart, “Modified particle swarm optimizer,”
in Proceedings of the IEEE International Conference on Evolu-
tionary Computation (ICEC ’98), pp. 69–73, Anchorage, Alaska,
USA, May 1998.

[5] R. C. Eberhart and Y. Shi, “Tracking and optimizing dynamic
systems with particle swarms,” in Proceedings of the IEEE
Congress on Evolutionary Computation, vol. 1, pp. 94–100, May
2001.

[6] W. Wang and L. Qiu, “Optimal reservoir operation using
PSO with adaptive random inertia weight,” in Proceedings
of the International Conference on Artificial Intelligence and
Computational Intelligence (AICI ’10), vol. 3, pp. 377–381, Sanya,
China, October 2010.

[7] Y.-L. Gao and Y.-H. Duan, “A new particle swarm optimization
algorithm with random inertia weight and evolution strategy,”
in Proceedings of the International Conference on Computational
Intelligence and Security Workshops (CISW ’07), pp. 199–203,
December 2007.

[8] M. Pant, T. Radha, andV. P. Singh, “Particle swarmoptimization
using Gaussian inertia weight,” in Proceedings of the Interna-
tional Conference on Computational Intelligence andMultimedia
Applications (ICCIMA ’07), vol. 1, pp. 97–102, Sivakasi, India,
December 2007.

[9] L.-Y. Chuang, C.-H. Yang, and J.-C. Li, “Chaotic maps based
on binary particle swarm optimization for feature selection,”
Applied Soft Computing Journal, vol. 11, no. 1, pp. 239–248, 2011.

[10] Y. Feng, G.-F. Teng, A.-X.Wang, andY.-M. Yao, “Chaotic inertia
weight in particle swarmoptimization,” inProceedings of the 2nd
International Conference on Innovative Computing, Information
and Control (ICICIC ’07), p. 475, Kumamoto, Japan, September
2007.

[11] L. D. S. Coelho, “A quantum particle swarm optimizer with
chaotic mutation operator,” Chaos, Solitons & Fractals, vol. 37,
no. 5, pp. 1409–1418, 2008.

[12] A. H. Gandomi, G. J. Yun, X.-S. Yang, and S. Talatahari, “Chaos-
enhanced accelerated particle swarm optimization,” Communi-
cations in Nonlinear Science and Numerical Simulation, vol. 18,
no. 2, pp. 327–340, 2013.

[13] Y. Gao, X. An, and J. Liu, “A particle swarm optimization
algorithm with logarithm decreasing inertia weight and chaos
mutation,” in Proceedings of the IEEE International Conference
on Computational Intelligence and Security (CIS ’08), vol. 1, pp.
61–65, Suzhou, China, December 2008.

[14] B. Liu, L.Wang, Y.-H. Jin, F. Tang, and D.-X. Huang, “Improved
particle swarm optimization combined with chaos,” Chaos,
Solitons & Fractals, vol. 25, no. 5, pp. 1261–1271, 2005.

[15] Y. H. Shi and R. C. Eberhart, “Empirical study of particle swarm
optimization,” in Proceedings of the IEEE International Confer-
ence on Evolutionary Computation, pp. 1945–1950, Washington,
DC, USA, 1999.

[16] Y. Shi and R. Eberhart, “Parameter selection in particle swarm
optimization,” in Evolutionary Programming VII, V. W. Porto,
N. Saravanan, D. Waagen, and A. E. Eiben, Eds., vol. 1447, pp.
591–600, Springer, Berlin, Germany, 1998.

[17] G. Chen, X. Huang, J. Jia, and Z. Min, “Natural exponential
inertia weight strategy in particle swarm optimization,” in
Proceedings of the 6th World Congress on Intelligent Control and
Automation (WCICA ’06), pp. 3672–3675, Dalian, China, June
2006.

[18] R. F. Malik, T. A. Rahman, S. Z. M. Hashim, and R. Ngah,
“New particle swarm optimizer with sigmoid increasing inertia
weight,” International Journal of Computer Science and Security,
vol. 1, no. 2, pp. 35–44, 2007.

[19] X. Shen, Z. Chi, J. Yang, andC. Chen, “Particle swarm optimiza-
tion with dynamic adaptive inertia weight,” in Proceedings of the
IEEE International Conference on Challenges in Environmental
Science and Computer Engineering (CESCE ’10), vol. 1, pp. 287–
290, Wuhan, China, March 2010.

[20] K. Kentzoglanakis and M. Poole, “Particle swarm optimiza-
tion with an oscillating inertia weight,” in Proceedings of the
11th Annual Genetic and Evolutionary Computation Conference
(GECCO ’09), pp. 1749–1750, July 2009.

[21] H.-R. Li and Y.-L. Gao, “Particle swarm optimization algo-
rithm with exponent decreasing inertia weight and stochastic
mutation,” in Proceedings of the 2nd International Conference on
Information and Computing Science (ICIC ’09), vol. 1, pp. 66–69,
Manchester ,UK, May 2009.

[22] R. Poli, J. Kennedy, and T. Blackwell, “Particle swarm optimiza-
tion: an overview,” Swarm Intelligence, vol. 1, pp. 33–57, 2007.

[23] J. Xin, G. Chen, and Y. Hai, “A particle swarm optimizer with
multi-stage linearly-decreasing inertia weight,” in Proceedings
of the International Joint Conference on Computational Sciences
and Optimization (CSO ’09), pp. 505–508, Sanya, China, April
2009.

[24] Y. H. Shi and R. C. Eberhart, “Fuzzy adaptive particle swarm
optimization,” in Proceedings of the Congress on Evolutionary
Computation, vol. 1, pp. 101–106, Seoul, Republic of korea, May
2001.

[25] G. I. Evers, An automatic regrouping mechanism to deal with
stagnation in particle swarm optimization [M.S. thesis], Univer-
sity of Texas-Pan American, Edinburg, Tex, USA, 2009.

[26] A. M. Arasomwan and A. O. Adewumi, “An adaptive velocity
particle swarm optimization for high-dimensional function
optimization,” in Proceedings of the IEEE Congress Evolutionary
Computation (CEC ’13), pp. 2352–2359, 2013.

[27] M.M. Ali, C. Khompatraporn, and Z. B. Zabinsky, “A numerical
evaluation of several stochastic algorithms on selected con-
tinuous global optimization test problems,” Journal of Global
Optimization, vol. 31, no. 4, pp. 635–672, 2005.

[28] S. Chetty and A. O. Adewumi, “Three new stochastic local
search algorithms for continuous optimization problems,”Com-
putational Optimization andApplications, vol. 56, no. 3, pp. 675–
721, 2013.

[29] B. A. Sawyerr, M. M. Ali, and A. O. Adewumi, “A comparative
study of some real-coded genetic algorithms for unconstrained

Mathematical Problems in Engineering 17

global optimization,” Optimization Methods and Software, vol.
26, no. 6, pp. 945–970, 2011.

[30] R. Akbari and K. Ziarati, “A rank based particle swarm
optimization algorithm with dynamic adaptation,” Journal of
Computational and Applied Mathematics, vol. 235, no. 8, pp.
2694–2714, 2011.

[31] D. Bratton and J. Kennedy, “Defining a standard for particle
swarm optimization,” in Proceedings of the IEEE Swarm Intelli-
gence Symposium (SIS ’07), pp. 120–127, Honolulu, Hawaii, USA,
April 2007.

[32] A. Nickabadi, M. M. Ebadzadeh, and R. Safabakhsh, “A novel
particle swarm optimization algorithm with adaptive inertia
weight,” Applied Soft Computing, vol. 11, no. 4, pp. 3658–3670,
2011.

[33] M. E. H. Pedersen, “Good parameters for particle swarm
optimization,” Tech. Rep. HL1001, Hvass Laboratories, 2010.

[34] M. A. Arasomwan and A. O. Adewumi, “On the performance
of linear decreasing inertia weight particle swarm optimization
for global optimization,”The Scientific World Journal, vol. 2013,
Article ID 860289, 12 pages, 2013.

[35] B. A. Sawyerr, M. M. Ali, and A. O. Adewumi, “Benchmarking
projection-based real coded genetic algorithm on BBOB-2013
noiseless function testbed,” in Proceeding of the 15th Annual
Conference on Genetic and Evolutionary Computation (GECCO
’13), pp. 1193–1200, ACM, New York, NY, USA, 2013.

Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Journal of
Applied Mathematics

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability
and
Statistics

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Advances in

Mathematical Physics

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Combinatorics

 Operations
Research

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of Function Spaces

Abstract and
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Decision
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of

Improved Particle Swarm Optimization for Global Optimization with(out) 1

some Control Parameters 2

Akugbe Martins ARASOMWAN and Aderemi Oluyinka ADEWUMI1 3

School of Mathematics, Statistics & Computer Science 4
University of KwaZulu-Natal, 5

Private Bag X54001, 6
Durban 4000, South Africa 7

 8

Abstract 9

 10

This paper achieved two major goals. First, it experimentally showed that the Basic Particle 11

Swarm Optimization (BPSO) technique can perform efficiently without using some (or any) 12

of the control parameters in the particle velocity update formula. Second, the problem of 13

premature convergence associated with PSO technique when optimizing high dimensional 14

multi-modal optimization problems was ameliorated. In achieving these goals, some 15

modifications were done to BPSO. Some of the modifications involved making the velocity 16

limits of the particles to decrease dynamically depending on the progressive minimum and 17

maximum dimensional values of the entire swarm. The decreasing nature of the velocity 18

limits was used to control the exploration and exploitation activities of the modified BPSO 19

(M-BPSO). Different experiments were carried out to ascertain the possibilities of 20

implementing BPSO and M-BPSO without some and all of the control parameters in the 21

particle's updating formula. Typical global optimization benchmark problems were used to 22

validate the proposed modifications through empirical studies and results of M-BPSO were 23

compared with BPSO. The results of some of the variants of M-BPSO were also compared 24

with those of two other efficient optimization algorithms in literature. All the experimental 25

results show that the proposed M-BPSO algorithm is very effective and was found superior in 26

1
 Corresponding Author: Email: adewumia@ukzn.ac.za

mailto:adewumia@ukzn.ac.za

2

performance to the other algorithms adopted for comparison in terms of solution quality, 1

convergence speed, global-local search ability, and stability. 2

 3

Keywords: Particle Swarm Optimization, Global Optimization, Parameter Control, 4

Continuous Problems, Inertia weight 5

 6

1. Introduction 7

The increase in computationally complex problems found in engineering, sciences, etc., is a 8

source of continual motivations to researchers in the field of optimization. The outcome of 9

such motivations is the development of efficient algorithms inspired by nature. Biologically 10

inspired algorithms have proven to be efficient in handling computationally complex 11

problems with competence and many successes have been recorded. Swarm intelligence, a 12

class of biologically inspired algorithms, comprises algorithms that are population-based 13

which do not depend on the gradient, continuity or differentiability for problem being 14

optimized or solved. All that is required is the computability of the problem. Some of the 15

algorithms which belong to the class of swarm intelligence are Ant Colony Optimization 16

(ACO), Bees Algorithm (BA), Firefly Algorithm (FA) as well as Particle Swarm 17

Optimization (PSO). 18

 19

Apart from being population-based, PSO is a stochastic and adaptive optimization technique 20

which was inspired by the social interaction in human beings and animals like bird flocking 21

or fish schooling. It was introduced by Kennedy and Eberhart in 1995 [7, 15]. To optimize a 22

problem, the basic PSO (BPSO) technique is initialized by randomly distributing a set of 23

particles (potential solutions) in a solution search space. The particles are made to fly through 24

the problem space and allowed to repeatedly search for optimal solution over a period of 25

time. In the process, other particles follow the current optimum particle while their positions 26

3

and velocities are updated in each iteration relative to the personal experience of each particle 1

as well as that of the entire particles. The quality of the solution found by each particle is 2

obtained using the objective function of the problem being optimized. Represented in 3

equations (1) and (2) are the respective updating formulas for the velocity and position of 4

each particle. In a physical d-dimensional search space, the particle’s position is represented 5

as ⃗ = (xi1, …, xid) while its velocity is represented as ⃗⃗ = (vi1, …, vid). 6

 7

 ⃗⃗
 = ⃗⃗

 + ⃗ (⃗⃗⃗⃗⃗
 ⃗

) + ⃗ (⃗⃗ ⃗⃗ ⃗ ⃗)

(1)

 Inertia
component Cognitive

component Social
component

 8
 ⃗
 ⃗

 ⃗⃗
 (2)

 9

From equation (1), it is clear that the velocity updating formula is made up of three different 10

components. These components are briefly described as follows: 11

(i) Inertia component: This component provides the necessary momentum for particles to 12

roam across the search space. It is made up of the inertia weight parameter () which 13

help to balance the exploration and exploitation activities of the algorithm; and the 14

particle’s previous velocity at tth
 iteration (⃗⃗). In the original PSO technique, the value 15

of 1 was used for. This component models the tendency of a particle to remain in the 16

same direction it has been navigating. 17

(ii) Cognitive component: This component represents the memory or personal thinking of 18

the particle. It consists of a constant value c1 representing the self-confidence of a 19

particle, a vector of random numbers (⃗) uniformly generated in the interval [0,1] and 20

the distance between the best position the particle has ever visited known as personal 21

best (⃗⃗⃗⃗⃗) and its current position (⃗). This component models the linear attraction of 22

the particle towards its own best experience. 23

4

(iii) Social component: This component represents the knowledge and collaborative effect 1

of the particles of the swarm, in finding the global optimal solution. It is made up of a 2

constant value c2 representing the swarm confidence, another vector of random numbers 3

(⃗) uniformly generated in the interval [0,1] and the distance between the swarm’s best 4

position known as global best (⃗⃗ ⃗⃗ ⃗) at tth iteration and the particle’s current position 5

(⃗). This component models the linear attraction of the particle towards the best 6

experience of the swarm. 7

 8

During execution of the BPSO technique, there are possibilities that the design variables can 9

go outside their lower (Xmin) and upper (Xmax) boundaries and take values which could lead to 10

divergence. In such situations, the common practice is to artificially bring the affected 11

particle back to the search space boundary. In the same vain, velocities of the particles are 12

clamped within some specified maximum velocity bounds [Vmin, Vmax], where Vmin is the 13

velocity lower bound and Vmax is the velocity upper bound. This is because the velocity 14

updating formula is stochastic and the velocity may become too high which could lead the 15

particles becoming uncontrolled and exceed the search space. 16

If xi < xmin

 xi xmin

else if xi > xmax

 xi xmax

end if

If vi < vmin

 vi vmin

else if vi > vmax

 vi vmax

end if

Algorithm 1 Algorithm 2
 17

From the foregoing, two major observations can be made: 18

(i) The BPSO consists of 3 major steps in sequential order of generating positions and 19

velocities for all the particles that make up the swarm; updating the velocities of the 20

particles; and updating the positions of the particles. 21

(ii) The BPSO depends on some parameters which control its operations and efficiency 22

namely: Inertial weight parameter (); Self-confidence of particle (c1) and swarm 23

5

confidence (c2), which are also known as acceleration constants (or coefficients); 1

Cognitive and social random factors ⃗ and ⃗ ; Particles’ velocity clamping, [Vmin, 2

Vmax]; and Particles’ position clamping, [Xmin, Xmax]. 3

Although, the topology of particle’s neighbourhood may also influence the trajectories of 4

particles but this is not considered in this paper. 5

 6

Naturally, BPSO technique combines local search method (through self-experience) with 7

global search methods (through neighbouring experience), attempting to balance exploration 8

and exploitation. Exploration is the ability the algorithm to explore new regions of the search 9

space, while exploitation is the ability to search a smaller region more thoroughly. It is 10

widely accepted that BPSO technique has good global search ability but weak local search 11

ability, because it can easily locate the good area of the solution space in which good 12

solutions are located but finding the best solution proves difficult. This challenge has 13

motivated many researchers to introduce many new BPSO variants while others tried to 14

improve on existing variants. [1, 2, 11, 18]. This paper has made some improvements on the 15

BPSO technique to make it simpler but more effective. It has been empirically shown that the 16

algorithm can perform efficiently without some of the control parameters listed above. This 17

was done by using some well-known benchmark problems extensively used in the literature 18

for the evaluations of metaheuristics to validate the proposed modified BPSO (M-BPSO). 19

The importance of BPSO to enhance its local search ability for computational effectiveness 20

and efficiency is one of the things achieved by M-BPSO. 21

 22

The remaining part of the paper is organized as follows. In section 2, the control parameters 23

in BPSO technique are reviewed. The proposed modification to BPSO algorithm is described 24

in section 3. Sections 4 gives the methodological approach used in carrying out the numerical 25

6

simulations in the paper and Section 5 reports and discusses the numerical simulations and 1

results. Finally, Section 6 concludes the paper. 2

2. Control parameters in particle swarm optimization technique 3

When PSO was proposed in 1995, a new world was opened to researchers in the field of 4

optimization. Since then quite a number of researches have been done, with the singular focus 5

to improve on the performance and robustness of the technique in handling optimization 6

problems. These researches have been in terms of introducing velocity limit, Vmax [7] and 7

inertia weight, [23] into PSO and their various improvements [1, 3]; introduction of 8

constriction factor [5], creating other variants of PSO [11] and hybridization of PSO with 9

other algorithms [13]. Briefly reviewed below are the control parameters mentioned earlier. 10

Inertia weight and its variants: 11

This parameter, commonly represented as ω, was introduced into PSO by [23]. The 12

inspiration behind its introduction was the desire to balance the scope of local and global 13

searches and reduce the importance of velocity clamping during the optimization process. 14

Over the years several inertia weight strategies have been proposed to dynamically adjust the 15

value of in each iteration [17 19, 20]. These strategies include random [8], chaotic random 16

[10], linear decreasing [24, 28], and chaotic linear decreasing [10]. In [24, 28], the linear 17

decreasing inertia weight strategy decreases from a value of 0.9 to 0.4, however there are 18

cases where values other than 0.9 or 0.4 are used [16]. Though it enhanced the performance 19

of PSO, it usually got into local optimum when solving functions with more apices [10]. In 20

[8] it was experimentally found that random inertia weight strategy increases the convergence 21

in PSO and could find good results with most functions. A chaotic term was included to the 22

random as well as the linear decreasing inertia weight strategies in [10]. These strategies were 23

experimentally proved to be superior to the random and linear decreasing strategies in terms 24

of convergence speed, global search ability and convergence precision. Other inertia weight 25

strategies include Fuzzy adaptive inertia weight which is dynamically adjusted on the basis of 26

7

fuzzy sets and rules in each iteration [25] and adaptive inertia weights which are dynamically 1

adjusted based on some feedback parameters like swarm particle fitness, particle rank, 2

distance to particle, global best positions, and particle success rate [20]. All these inertia 3

weight strategies have been experimentally proved to enhance the performance of PSO with 4

varying degree of successes. 5

Maximum velocity: 6

The particle velocity based on equation (1), without restriction, can grow unbounded while 7

the particle oscillates around an optimum, increasing its distance to the optimum on each 8

iteration. This initiated the introduction of velocity clamping effect to avoid the phenomenon 9

of "swarm explosion". This idea was introduced by Eberhart and Kennedy in 1995 [9]. It 10

improves the performance of PSO because it helps particles take reasonably sized steps so as 11

to rake through the search space rather than bouncing about excessively. Efforts have been 12

made in time past to eliminate the use of Vmax but researches have shown that velocity 13

clamping has become a standard feature of PSO [9]. 14

 15

Wrong setting of maximum velocity bounds for particles could have negative affect on the 16

performance of PSO algorithms because it may either make the particles do too much 17

exploration or exploitation (if the value is too high or too low). Different efforts have been 18

made by researchers to determine appropriate values for the velocity limits of particles in 19

order to improve on the performance of PSO [1, 9, 24]. The three major methods that appear 20

in literature, for computing the velocity clamping (Vmin and Vmax) are recorded in [1]: 21

(i) multiplying the search space range with certain percentage (), i.e. Vmax = (Xmax – 22

Xmin) and Vmin = -Vmax. 23

(ii) multiplying both the minimum and maximum limits of the search space separately with 24

certain percentage (), i.e. Vmax = max) and Vmin = min). 25

(iii) assigning the search space upper limit to Vmax, i.e., Vmax = Xmax 26

8

 1

Some of the different values used by different authors for (0,1] to determine velocity 2

clamping for particles are shown Table 1. 3

Acceleration coefficients 4

These parameters are commonly represented as c1 (cognitive scaling parameter) and c2 (social 5

scaling parameter) and are positive values. The values of 2.0 as originally assigned to these 6

parameters when PSO was introduced in [13], have been adopted by many researchers over 7

the years [1, 4, 10, 11, 29]. As a result of the sensitive roles of these parameters in the 8

performance of PSO, other researchers have attempted to adjust them through empirical 9

studies. Such researches include [30 – 33]. In [33], the role acceleration coefficients play in 10

the performance of PSO was investigated by using unsymmetrical transfer range of 11

acceleration coefficients. The simulations that were carried out showed an improved optimum 12

solution for most of the benchmarks that were used was observed when changing c1 from 13

2.75 to 1.25 and changing c2 from 0.5 to 2.25, over the full range of the search. 14

Table 1: Various values for in the literature
 Velocity clamping formula Reference

0.2 Vmax = * Xmax [6]

0.05 Vmax = * Xmax
Vmin = * Xmin

[1, 22]

0.15 Vmax = * (Xmax – Xmin) [1, 9, 29]
0.5 Vmax = * (Xmax – Xmin) [1, 3]

 15

In [31], New PSO (NPSO) was proposed. In it the cognitive acceleration coefficient c1 was 16

split into good experience component c1g and bad experience component c1b to help the 17

particles move towards their previous best positions and away from their previous worst 18

positions in order to facilitate exploration capability. For the purpose of improvement Anti-19

Predatory PSO (APSO) was proposed by [32], where the cognitive acceleration coefficients 20

c1 was split into good experience component c1g and bad experience component c1b and c2 21

was also split was split into good experience component c2g and bad experience component 22

c2b. The bad experiences help particles to by-pass their previous worst positions while good 23

9

experiences help particles to move towards their previous best positions. Similarly in [30], 1

Time-Varying Acceleration Coefficients PSO (PSO-TVAC) was introduced to enhance the 2

global search in the early part of the optimization and to encourage the particles to converge 3

toward the global optimum at the end of the search. This was achieved by linearly decreasing 4

the cognitive parameter c1 from a high value c1max to a low value c1min but the social 5

parameter c2 linearly increased from a low value c2min to a high value of c2max. 6

 7

Relationships among the control parameters in the velocity update formula 8

The importance of parameter selection in PSO algorithm has drawn attention from many 9

researchers. However, the general belief in PSO community has been that the inertia weight 10

balances exploration and exploitation activities in PSO algorithm. Researches have shown 11

that that inertia weight cannot balance exploration and exploitation by itself in PSO algorithm 12

but in cooperation with some other (control) parameters [12, 24]. Different researchers have 13

proposed and used different sets of control parameter values which are presented in Table 2. 14

 15

Table 2: Various BPSO values for inertia weight and acceleration constants parameters in the literature
Inertia weight

()
Cognitive component acceleration

constant (c1)
Social component acceleration

constant (c2)
Reference

0.729 1.494 1.494 [5]
0.6 1.7 1.7 [27]

0.729 2.041 0.948 [12]
0.715 1.7 1.7 [12]
0.72 1.49 1.49 [18]
0.6 1.8 1.8 [14, 21]

Computed using
formula 2.8 1.3 [3]

 16

3. The proposed modifications in PSO technique 17

The efficient optimizing power of PSO lies in the balancing of exploration and exploitation 18

activities. As earlier established, the inertia weight, acceleration constants, random factors 19

and velocity threshold play important roles in the exploration and exploitation ability of PSO 20

algorithm, though their selections could be problem-dependent, laborious and time 21

10

consuming except the random factors. The following observation motivated and facilitated 1

the proposed modification done to the basic PSO in this paper. 2

 3

(i) Experimental studies in [24] show that large Vmax enhances exploration while small Vmax 4

enhances exploitation. The implication of this is that, if Vmax can be dynamically varied 5

from some large value to some small value, then it can solely play the role of the inertia 6

weight parameter. Besides, clamping the velocity of a particle can change the step size 7

and direction of the particle. As each dimension is optimized independently, the particle 8

moves toward the global best on each dimension with a speed depending on the velocity 9

limits, thereby creating opportunities for particles to comb the search space a bit more 10

thoroughly than when their velocities are unclamped [9]. Above all, exploration and 11

exploitation in PSO could better be addressed by working directly with the velocities of 12

the particles because it is the direct determinant of the particles' step sizes. 13

(ii) Without doubt, the appropriate selection of c1 and c2 can accelerate convergence and 14

avoid being trapped in local optimums. Combining them with the random factors (r1 and 15

r2) to weight the cognitive and social components as shown in equation (1) make particles 16

to base their searches in the interval [0,2] centred on particle’s personal best and swarm 17

global best. This could lead a problem of particles jumping over the optimal solution if 18

large weighting factors are generated or the number of iterations to locate the optimal 19

solution may be increased if small weighting factors are generated [2, 15]. Some efforts 20

could be saved if c1 and c2 are eliminated (i.e., they are allowed to take the value of 1). 21

(iii)The purpose why r1 and r2 was included into PSO algorithm was to make it stochastic to 22

facilitate exploration. Despite the good roles they play, it is possible that PSO can still 23

perform well if they are not included in the velocity formula. To compensate for this 24

exploration could be initiated in some other part (e.g., position clamping, etc.) of the 25

algorithm. 26

11

Based on these observations, the modifications were done to the basic PSO algorithms are 1

now described as follows: 2

(i) During each iteration, the largest dimension value (Ld) and the smallest dimension value 3

(Sd) among the dimensions of all the particles, were obtained according to equations (3) 4

and (4), where,
 is the ith particle with jth

 dimension. 5

(

(

)) (3)

(

(

)) (4)

(ii) The upper limit xmax and lower limit xmin of the solution search space for the particles 6

were obtained according to equations (5) and (6), where | . | means absolute value. 7

 (| | | |) (5)

 (6)

(iii)After obtaining xmax and xmin, they are used to compute the upper (vmax) and lower (vmin) 8

particle velocity limits as defined in equations (7) and (8). 9

 (7)

 (8)

where, is a velocity clamping percentage. It serves as a scaling factor of the upper and 10

lower solution space limits to help reduce the velocity range for particles. As the 11

algorithm progresses, the velocity range of the particles decreases, thereby reducing the 12

distance each particle should exploit for better solution and the smaller the velocity range 13

the higher the exploitation by the particles. 14

(iv) Next, an integer random number p is generated in the interval [1, S] where S is the swarm 15

size and out of the swarm, p number of particles are randomly selected 16

12

(v) A value h was obtained by dividing the problem dimension by 2, after which h number of 1

dimensions were randomly selected for each particle picked in (iv). The position and 2

velocity for each of the dimension are uniformly re-initialized based on the new xmin, xmax, 3

vmin, and vmax obtained from equations (5) – (8). This process is represented by equations 4

(9) – (11). 5

 (

) (9)

 () [] (10)

 () [] (11)

where i and j are the index and dimension respectively, of a randomly selected particle in 6

(iv). This method help the algorithm achieve some level of exploration by providing it 7

with the particles opportunities of leaving their current positions to other parts of the 8

search space, thus helping to escape getting stuck in local optimum. This happens 9

throughout the process of the algorithm. 10

(vi) When the particles' positions are being updated, contrary to the common method 11

(Algorithm 1) of forcing the particles that obtain values outside the search space to the 12

search boundaries, they are adjusted using Algorithm 3. This method can also enable the 13

algorithm jump out of local optimum and does some exploration to search other parts of 14

the search space. This also happens throughout the process of the algorithm. 15

If xi < xmin

 xi xmin + (xmin – xi)*

random(0,1)

else if xi > xmax

 xi xmax - (xi – xmax)*

random(0,1)

end if

Algorithm 3
 16

13

The algorithm for the proposed modified basic PSO (M-BPSO) is presented in Algorithm 4. 1

The shaded portions show the modifications that have been incorporated into BPSO. 2

Begin M-BPSO Algorithm

Input: f: the function to optimize

 s: the swarm size

 d: the problem dimension

 Xmin, Xmax : decision variable search range

 Vmin, Vmax : particle velocity limits

Output: x*: the best particle position found (global

best)

 f*: the best fitness value found

Initialize: position xi = (xi1, …, xid) and velocity vi = (vi1,

…, vid), for all particles in problem space

evaluate f(xi) in d variables and get pbesti, (i = 1, …, s)

gbest best of pbesti

While stopping criteria is false do

if it is necessary, compute inertia weight (ω) if it is not

a constant

compute new Xmin, Xmax using equations (3) – (6)

compute new Vmin, Vmax using equations (7) and (8)

generate an integer random value p U[1,S] and randomly

pick p particles from the swarm

compute h using Equation (9)

using Equations (10) and (11) randomly re-initialize the

positions and corresponding velocities of h randomly

selected dimensions of the p particles, based on the new

Xmin, Xmax, Vmin and Vmax

randomly reinitialize velocities for particles using the

new vr

Repeat for s times

Repeat for d times

update vi for particle using equation (1)

validate for velocity boundaries using Algorithm 2

update xi for particle using equation (2)

validate for position boundaries using Algorithm 3

compute f(xi)

End Repeat for d

compute f(xi)

obtain new pbesti

If f(xi) < f(pbesti) then pbesti xi

If f(xi) < f(gbest) then

gbest xi

f(gbest) f(xi)

end if

End Repeat for s

End while

x* gbest

f* f(gbest)

Return x* and f*

End M-BPSO Algorithm

Algorithm 4

4. Methodology 3

The methods enumerated below were applied to systematically achieve the set goals in this 4

paper. 5

14

(i) Obtain good values from the literature for the parameters (, c1, c2, Vmin and Vmax) to 1

implement BPSO . 2

(ii) Create different variants for BPSO and M-BPSO as shown Table 3. 3

Table 3: Different variants for BPSO and M-BPSO

Variants of
BPSO

Variants of M-
BPSO Variants were implemented with these parameters in velocity updating formula

BPSO1 M-BPSO1 , c1, c2, r1 and r2 (i.e. all parameters were used)

BPSO2 M-BPSO2 c1, c2, r1 and r2 (i.e. inertia weight parameters was not used)

BPSO3 M-BPSO3 , c1 and c2 (i.e. random factors parameters were not used)

BPSO4 M-BPSO4 , r1 and r2 (i.e. acceleration constants parameters were not used)

BPSO5 M-BPSO5 r1 and r2 (i.e. inertia weight& acceleration constants parameters were not used)

BPSO6 M-BPSO6 c1 and c2(i.e. inertia weight& random factor parameters were not used)

BPSO7 M-BPSO7 None of the parameters (i.e. no parameters were used)

 4

(iii) Implement the various variants in Table 3 using some selected well-studied benchmark 5

continuous optimization problems in ithe literature and compare results between the 6

respective variants of BPSO and M-BPSO. This stage will ascertain the possibilities of 7

implementing BPSO and M-PSO without some (or all) of the control parameters as well 8

as their corresponding performances 9

(iv) If any of the M-BPSO variants perform better, select among them those with few 10

number of parameters and validate their performance against the following algorithms – 11

modified attractive repulsive PSO (MARPSO) [11] and another swarm intelligence 12

technique, Bioluminescent swarm optimization algorithm (BSO) [21]. 13

(v) Measure the performances of all the algorithms using the following criteria [1,34,35]: 14

a. Best fitness solution: This is the best fitness solution among all the best fitness 15

solutions obtained by an algorithm in all the specified independent runs 16

b. Mean best fitness solution: This is the average of all the best fitness solutions. It is a 17

measure of the precision (quality) of the result that the algorithm can get within 18

given iterations in all the specified independent runs 19

15

c. Standard deviation (Std. Dev.) of mean best fitness solution over 50 runs: This 1

measures the algorithm's stability and robustness 2

d. Average number of iteration an algorithm met the specified success criteria. This 3

was mainly used to judge the performance of the variants when there is a tie in 4

success rate (SR) between the respective competing variants 5

e. Success rate (SR) =

 : This is the rate at which the 6

success criteria is met during the independent number of runs and is a reflection of 7

the global search ability and robustness of the algorithm 8

 9

5. Numerical simulations 10

Two sets of experiments were conducted in this study. In the first set, all the variants of M-11

BPSO and BPSO as defined in Table 3, was implemented using the same testing conditions 12

and their performances were compared. The essence of this set of experiments is to test the 13

effects of the various control parameters in the particle's velocity updating formula in 14

Equation (1) on the respective variants. In the second sets of experiments, some of the 15

variants of M-BPSO that that are independent on the inertia weight parameter (ω) were 16

selected and tested against two existing optimization algorithms that are very efficient, 17

Modified Attractive-Repulsive PSO (MARPSO) in [11] and Bioluminescent Swarm 18

Optimization (BSO) algorithm in [21]. The essence of this set of experiments was to test if 19

the proposed algorithm (M-BPSO) could favourably compete with existing optimization 20

algorithms. The application software was developed in Microsoft Visual C# programming 21

language. 22

5.1. Test problems 23

For the first set of experiments, a total of 6 scalable test problems in Table 4 and 4 non-24

scalable problems in Table 5 were used. These problems adapted from [1, 14, 20], have 25

16

diverse complexities and multimodality common among many complex global optimization 1

problems. They have different characteristics (US – unimodal separable, UN – unimodal non-2

separable, MS – multimodal separable, MN – multimodal non-separable). For the second set 3

of experiments, the test problems and other testing conditions were used as recorded in [11, 4

21]. 5

5.2. Parameter setting 6

For the first set of experiments, the maximum number of iterations allowed was 3000. The 7

dimension for the problems in Table 4 was 30 while in Table 5 the dimensions of Easom, 8

Schaffer's f6 and Shubert were each set to 2, but that of Salomon was 5. A swarm size of 20 9

was used in all the experiments and 50 independent runs were conducted to collect data for 10

analysis. The termination criteria for all the algorithms were set to be the maximum number 11

of iterations relative. A run by any of the algorithms was recorded successful when the mean 12

best fitness value at the end of the maximum iteration was less than -0.999999 (for Easom), -13

186.7308 (for Shubert) and less than 10-5 for other problems. The velocity clamping 14

percentage parameter () was 0.25 for M-BPSO; ω = 0.715 and c1 = c2 = 1.7 for both M-15

BPSO and BPSO based on the findings in the experimental studies in [12]; velocity 16

thresholds (Vmin and Vmax) were dynamically obtained using equations (7) and (8) for M-17

BPSO; while for BPSO, maxmax 05.0 XV , minmin 05.0 XV based on the findings in some of 18

our experiments that they make BPSO perform efficiently, where Xmin and Xmax are the fixed 19

minimum and maximum values of the domain for the decision variables. The parameters r1 20

and r2 were randomly generated using the uniform random number generator. 21

Table 4: Scalable Benchmark problems

No. Problem Formulation Feature Search
range

1 Ackley (⃗)

(

 √

∑

)

 (

∑ ()

) MN 32

2 Griewank (⃗)

(∑

) (∏ (

√
)

) MN 600

17

3 Levy
 (⃗) () ∑()

 (())

 ()
 (())

MN 10

4 Noisy Quadric (⃗) ∑
 ()

 US 1.28

5 Rastrigin (⃗) ∑(
 ())

 MS 5.12

6 Rosenbrock (⃗) ∑((
)

)

()
 UN 30

 1

Table 5: Nonscalable Benchmark problems

No. Problem Formulation Feature Search
range

1 Easom (⃗) () () (()
 ()

) UN 100

2 Salomon (⃗) (∑

) √∑

 MN 100

3 Schaffer's f6 (⃗)
 (√

)

((

))
 MN 100

4 Shubert (⃗) ∏(∑ (())

)

 MN 10

 2

5.3. Experimental results and discussions 3

Results obtained from all the experiments are presented in Tables (6) – (24) and discussed in 4

this sub-section to show the overall computational effectiveness and efficiencies of all the 5

algorithms that were compared in the paper. The measurement criteria stated in Section 4 6

were used. In all the tables “*” means no result was computed because the algorithm could 7

not meet the success criteria in all the runs for the particular test problem. Bold values 8

indicate best results obtained among the competing algorithms. 9

 10

5.3.1. Results for the non-scalable test problems 11

Tables (6) – (12) show the results obtained by the respective variants of BPSO and M-BPSO 12

for the low-scaled benchmark problems. The results reflect their performances when all, 13

some and none of the control parameters were used in the particles' velocity update formula. 14

18

For Schaffer's f6 and Salomon problems, all the variants of the proposed M-PSO not only 1

outperformed those of BPSO, but were able to obtain the global minimum and 100% success 2

rate for the problems. The consistencies in their performances and the successfulness of M-3

BPSO7 show that the control parameters have no significant effects on the computational 4

effectiveness and efficiency of the proposed algorithm. For Easom problem, four variants of 5

M-BPSO (i.e., M-BPSO3, M-BPSO5, M-BPSO6 and M-BPSO7) performed better than their 6

respective counterpart of BPSO variants. On the other hand three of the variants of BPSO 7

(i.e., BPSO1, BPSO2 and BPSO4) performed better than their respective counterpart of M-8

PSO variants. From the results obtained as Best fitness, Mean fitness and standard deviation 9

by M-BPSO variants in terms of magnitude, it was observed that the proposed algorithm was 10

consistent in its performance irrespective of the presence of all, some or none of the control 11

parameters in the velocity formula. For Salomon problem, four variants of M-BPSO (i.e., M-12

BPSO1, M-BPSO3, M-BPSO6 and M-BPSO7) performed better than their respective 13

counterpart of BPSO variants, but were unable to meet the success criteria like BPSO 14

variants. On the other hand three of the variants of BPSO (i.e., BPSO2, BPSO4 and BPSO5) 15

performed better than their respective counterpart of M-PSO variants. Another interesting 16

observation that was made is that, M-BPSO variants were consistent in their performances in 17

terms of magnitude, irrespective of the presence of any or none of the control parameters in 18

the velocity formula. 19

 20

The inconsistencies of the performances of BPSO variants in all the results presented in the 21

tables show that the presence of some or none of the control parameters in the particle 22

velocity update formula have some significant effects on it. Surprisingly, BPSO6 obtained 23

better results than BPSO1 in Schaffer's f6, BPSO4 obtained better results than BPSO1 in 24

Shubert, and BPSO4 had equal performance with BPSO1 in Easom problems. All these are 25

clear indications that there are possibilities for BPSO algorithm to perform better when some 26

19

of the control parameters are not used in the particle's velocity update formula than when all 1

the parameters are used. These show that the insensitivity to the effects of the control 2

parameters exhibited by the proposed algorithm (M-BPSO) is reasonable. In fact, it can be 3

clearly stated that the inertia weight parameter (ω) was not responsible for the exploration 4

and exploitation activities of M-PSO, but the dynamically decreased of the particle's velocity 5

limits. 6

5.3.2. Results for the high-scaled test problems 7

To further validate the computational effectiveness and efficiencies of M-BPSO and BPSO 8

algorithms and study their reactions to the absence of some or all the control parameters in 9

the particle's velocity update formula, they were tested using 6 scaled test problems with 10

higher dimension. Presented in Tables (13) – (19) are the results obtained by all the variants 11

of both algorithms optimizing these problems. In all the results, except Table 16 where 12

BPSO4 obtained better Best fitness and Mean fitness values, all the variants of M-PSO clearly 13

outperformed their respective counterpart in all the test problems. In Rastrigin (Tables 14 and 14

15), Ackley and Griewank problems in all the tables, M-BPSO variants were able to obtain 15

100% success rate and global minimum, satisfying the success criteria which BPSO variants 16

could not achieve. The results further revealed that BPSO can only obtain better results when 17

all the control parameters are used in the particles’ velocity updating formula, showing that it 18

is sensitive to the parameters and that the inertia weight parameter (ω) was responsible for its 19

exploration and exploitation activities (since the variants of BPSO that seems to perform 20

better than their fellow variants, for example BPSO1 and BPSO4, contain the inertia weight 21

parameter); whereas the inertia weight parameter has little or no effects on the variants of M-22

BPSO (since there are some of its variants without the inertial weight parameters, for 23

example M-BPSO6 and M-BPSO7, which performed better than their fellow variants that 24

have). Also, from the results, there are evidences of consistent successful performances by 25

the variants of M-BPSO compared with those of BPSO. 26

20

 1

From the results, it can be observed that it is only M-PSO2 and M-BPSO3 in Tables (14) and 2

(15) that could obtain 100% success rate optimizing Rastrigin problem. On investigation it 3

was experimentally discovered that all the M-BPSO variants could obtain 100% success rate 4

for Rastrigin when the parameter was set to 0.15. This value was discovered, through 5

further experiments, to be efficient for these variants optimizing the other problems with 6

100% success rate as well. With this discovery, it was clear that further experiments will 7

prove the optimal value for to improve on the current performance of M-BPSO. 8

5.3.3. Comparison of M-BPSO with some existing optimization algorithms 9

When it became clear that M-BPSO could perform efficiently without the inertia weight 10

parameter (), its variants without this parameter (M-BPSO2, M-BPSO5, M-BPSO6 and M-11

BPSO7) were selected for further comparisons with Modified Attractive-Repulsive PSO 12

(MARPSO) [11] and Bioluminescent Swarm Optimization (BSO) algorithm [21]. The results 13

for the two competing algorithms were obtained from the respective referenced literature. 14

Presented in Table 20 are the results for MARPSO and the selected 4 M-BPSO variants while 15

the results in Tables (21) – (24) are for BSO and the 4 M-BPSO variants. In these 16

comparisons, was set to 0.15 as a result of the discovery explained before. 17

 18

Table 20 shows the mean best fitness values obtained by the algorithms for all the 4 testing 19

problems. The solution error tolerance, according to [11], was set to 1.0e-10. Meaning that, 20

any solution obtained that was lower than the error tolerance was taken to be zero (global 21

minimum). From the results, all the algorithms performed equally in Ackley (when the 22

problem dimension was 20), Griewank (when the problem dimension was 100) and Rastrigin 23

(when the problem dimensions were 50 and 100). But all the M-BPSO variants outperformed 24

MARPSO in Ackley (when the problem dimensions were 50 and 100) and in Griewank (when 25

the problem dimensions were 20 and 50); in Rastrigin, when the problem dimension was 20, 26

21

only 2 of M-BPSO variants could outperform MARPSO. This is a clear indication that M-1

BPSO is better-off in global search and local refinement operations than MARPSO. 2

However, M-BPSO variants were outperformed by MARPSO in Rosenbrock across the three 3

different problem dimensions. These results equally show that M-BPSO is more efficient 4

optimizing multimodal problems. 5

 6

In comparison with BSO, all the selected variants of M-BPSO performed better being able to 7

obtain global minimum and better stability in Griewank problem across the problem 8

dimensions as shown in Table 21. The same thing was repeated in Table 22 for Rastrigin 9

problem except M-BPSO7 that could not meet up when the problem dimension was 50. In 10

Table 23, BSO was better solution accuracy, while M-BPSO was better in algorithm stability 11

(better standard deviation). For the Generalized Schaffer's f6 problem, when the problem 12

dimension was 10, all the variants of M-BPSO obtained global minimum and better stability 13

compared with BSO. When the dimension was 30, all the variants of M-BPSO except M-14

BPSO7, performed better than BSO in solution quality only. However, none of the variants 15

could succeed over BSO when the dimension was increased to 50. From all these results, it is 16

still very clear that, though simpler in nature, M-BPSO algorithm has the capability of 17

efficient performance without some or all the control parameters in the velocity update 18

formula. 19

Table 6: Results of B-PSO1 and M-BPSO1 for the 4 non-scaled problems (Parameters used in velocity formula = ω, c1, c2, r1, and r2)
Problem Easom Schaffer's f6 Salomon Shubert
Algorithm B-PSO1 M-BPSO1 B-PSO1 M-BPSO1 B-PSO1 M-BPSO1 B-PSO1 M-BPSO1

Best Fitness -9.999989e-01 -9.999880e-01 0.000000e+00 0.000000e+00 9.983321e-02 0.000000e+00 -1.867309e+02 -1.867233e+02
Mean Fitness -9.999989e-01 -9.998001e-01 3.497728e-03 0.000000e+00 9.983321e-02 0.000000e+00 -1.845845e+02 -1.855964e+02
Std. Dev. 1.221245e-15 2.408844e-04 4.663637e-03 0.000000e+00 7.076311e-18 0.000000e+00 1.502480e+01 1.809705e+00
Av. Iteration * * 712.72 173.20 * 919.10 69.67 *
SR (%) 0 0 64 100 0 100 98 0

Table 7: Results of B-PSO2 and M-BPSO2 for the 4 non-scaled problems (Parameters used in velocity formula = c1, c2, r1, and r2)
Problem Easom Schaffer's f6 Salomon Shubert
Algorithm B-PSO2 M-BPSO2 B-PSO2 M-BPSO2 B-PSO2 M-BPSO2 B-PSO2 M-BPSO2

Best Fitness -9.999788e-01 -9.999989e-01 2.325063e-05 0.000000e+00 9.983322e-02 0.000000e+00 -1.867308e+02 -1.867262e+02
Mean Fitness -9.995661e-01 -9.994382e-01 2.928990e-04 0.000000e+00 1.030151e-01 0.000000e+00 -1.867242e+01 -1.847963e+02
Std. Dev. 4.707143e-04 7.567356e-04 2.307922e-04 0.000000e+00 6.221797e-03 0.000000e+00 7.596182e-03 2.432173e+00
Av. Iteration * * * 182.84 * 939.44 2429 *
SR (%) 0 0 0 100 0 100 2 0
 20

22

Table 8: Results of B-PSO3 and M-BPSO3 for the 4 non-scaled problems (Parameters used in velocity formula = ω, c1 and c2)
Problem Easom Schaffer's f6 Salomon Shubert

Algorithm B-PSO3 M-BPSO3 B-PSO3 M-BPSO3 B-PSO3 M-BPSO3 B-PSO3 M-BPSO3

Best Fitness -9.999989e-01 -9.999841e-01 0.000000e+00 0.000000e+00 9.983321e-02 0.000000e+00 -1.867309e+02 -1.867240e+02
Mean Fitness -9.798395e-01 -9.996697e-01 3.362930e-03 0.000000e+00 9.983321e-02 0.000000e+00 -1.836850e+02 -1.849065e+02
Std. Dev. 1.399807e-01 4.013006e-04 4.556663e-03 0.000000e+00 1.952778e-17 0.000000e+00 1.277241e+01 3.854876e+00
Av. Iteration * * 263.89 174.68 * 832.02 389.32 *
SR (%) 0 0 18 100 0 100 88 0
 1

Table 9: Results of B-PSO4 and M-BPSO4 for the 4 non-scaled problems (Parameters used in velocity formula = ω, r1, and r2)
Problem Easom Schaffer's f6 Salomon Shubert
Algorithm B-PSO4 M-BPSO4 B-PSO4 M-BPSO4 B-PSO4 M-BPSO4 B-PSO4 M-BPSO4

Best Fitness -9.999989e-01 -9.999978e-01 0.000000e+00 0.000000e+00 9.983321e-02 0.000000e+00 -1.867309e+02 -1.867052e+02
Mean Fitness -9.999989e-01 -9.998524e-01 7.739937e-03 0.000000e+00 1.917962e-01 0.000000e+00 -1.867309e+02 -1.847786e+02
Std. Dev. 1.221245e-15 2.101345e-04 5.981072e-03 0.000000e+00 1.338715e-01 0.000000e+00 7.605131e-14 4.099844e+00
Av. Iteration * * 148.23 167.82 * 946.68 77.28 *
SR (%) 0 0 26 100 0 100 100 0

 2

Table 10: Results of B-PSO5 and M-BPSO5 for the 4 non-scaled problems (Parameters used in velocity formula = r1, and r2)
Problem Easom Schaffer's f6 Salomon Shubert
Algorithm B-PSO5 M-BPSO5 B-PSO5 M-BPSO5 B-PSO5 M-BPSO5 B-PSO5 M-BPSO5

Best Fitness -9.999936e-01 -9.999887e-01 1.200820e-06 0.000000e+00 9.983594e-02 0.000000e+00 -1.867307e+02 -1.867269e+02
Mean Fitness -9.991236e-01 -9.994715e-01 3.977075e-04 0.000000e+00 1.106470e-01 5.493292e-134 -1.867190e+02 -1.855022e+02
Std. Dev. 9.938748e-04 4.613385e-04 3.636144e-04 0.000000e+00 1.686063e-02 3.719269e-133 1.282698e-02 1.493956e+00
Av. Iteration * * 2639.00 203.72 * 978.42 * *
SR (%) 0 0 2 100 0 100 0 0
 3

Table 11: Results of B-PSO6 and M-BPSO6 for the 4 non-scaled problems (Parameters used in velocity formula = c1 and c2)
Problem Easom Schaffer's f6 Salomon Shubert
Algorithm B-PSO6 M-BPSO6 B-PSO6 M-BPSO6 B-PSO6 M-BPSO6 B-PSO6 M-BPSO6

Best Fitness -9.999987e-01 -9.999945e-01 4.941064e-08 0.000000e+00 9.983321e-02 0.000000e+00 -1.867309e+02 -1.867231e+02
Mean Fitness -9.571209e-01 -9.994552e-01 3.833779e-06 0.000000e+00 9.983498e-02 0.000000e+00 -1.848939e+02 -1.849871e+02
Std. Dev. 1.588489e-01 5.335085e-04 6.687517e-06 0.000000e+00 1.051058e-05 0.000000e+00 9.329951e+00 3.460685e+00
Av. Iteration * * 1359.16 173.20 * 913.24 1540.59 *
SR (%) 0 0 90 100 0 100 34 0
 4

Table 12: Results of B-PSO7 and M-BPSO7 for the 4 non-scaled problems (Parameters used in velocity formula = none)
Problem Easom Schaffer's f6 Salomon Shubert
Algorithm B-PSO7 M-BPSO7 B-PSO7 M-BPSO7 B-PSO7 M-BPSO7 B-PSO7 M-BPSO7

Best Fitness -9.005780e-01 -9.999899e-01 9.715912e-03 0.000000e+00 2.080237e-01 0.000000e+00 -1.860328e+02 -1.867299e+02
Mean Fitness -2.606330e-01 -9.995850e-01 1.944057e-02 0.000000e+00 5.581529e-01 0.000000e+00 -1.670202e+02 -1.855301e+02
Std. Dev. 3.234060e-01 3.777628e-04 1.421977e-02 0.000000e+00 2.198294e-01 0.000000e+00 1.813388e+01 1.827537e+00
Av. Iteration * * * 176.40 * 1005.18 * *
SR (%) 0 0 0 100 0 100 0 0
 5

6. Conclusion 6

In this paper, the basic particle swarm optimization (BPSO) was modified with no additional 7

complex computational efforts to form another PSO variant (M-BPSO). The modifications 8

were inspired by the drawbacks of BPSO with respect to premature convergence, weak local 9

search ability and the desire to make the algorithm simpler but more efficient. Instead of 10

using the inertia weight parameter, M-BPSO uses a dynamically decreased particle velocity 11

limits to balance its global and local search activities. This is an indication that the inertia 12

23

weight parameter may not always be necessary for PSO algorithms to work effectively. Also, 1

it was discovered form the experiments that with proper modifications to some other parts of 2

PSO algorithms, the acceleration coefficients and random factors may not to be necessary in 3

the particle velocity updating equation to obtain global optimal solutions to optimization 4

problems. With the extensive numerical simulations carried out to test the computational 5

effectiveness and efficiencies of the different variants of the proposed algorithm, it was 6

discovered that the strength of the algorithm lies on the ability to quickly explore the search 7

space to locate a near optimal solution and then begin to exploit the neighbourhood for 8

refinement of the result with the help of dynamically decreased velocity limits. 9

 10

The proposed algorithm could not obtain global minimum for Rosenbrock problem, therefore 11

further study is needed to find out the cause. More work is needed to obtain an appropriate or 12

optimized value for the parameter because it is very important to the proposed algorithm. 13

Another area worth investigating is the effects of using the velocity updating formula without 14

each of the three components (inertia, cognitive and social) in turn, would have on the 15

proposed algorithm. Finally, application of the algorithm to real-world problems needs to be 16

investigated.17

24

 1

Table 13: Results of B-PSO1 and M-BPSO1 for the 6 scaled benchmark problems (Parameters used in velocity formula = ω, c1, c2, r1, and r2)

Problem Ackley Griewank Levy Noisy Quatic Rastrigin Rosenbrock
Algorithm B-PSO1 M-BPSO1 B-PSO1 M-BPSO1 B-PSO1 M-BPSO1 B-PSO1 M-BPSO1 B-PSO1 M-BPSO1 B-PSO1 M-BPSO1

Best Fitness 1.465494e-14 4.440892e-16 0.000000e+00 0.000000e+00 2.395702e-29 7.601640e-03 3.225468e-03 1.436999e-06 1.789493e+01 0.000000e+00 1.371127e+00 2.866977e+01
Mean Fitness 1.261062e-01 1.936229e-15 1.302722e-02 0.000000e+00 1.907781e+00 8.762036e-02 7.897280e-03 2.326464e-05 3.576993e+01 8.255920e+00 2.926283e+01 2.869272e+01
Std. Dev. 3.808949e-01 1.753472e-15 1.424598e-02 0.000000e+00 1.603408e+00 8.436275e-02 2.687338e-03 1.776083e-05 9.996110e+00 1.340263e+01 2.125632e+01 9.794859e-03
Av. Iteration 1129.04 143.56 763.75 155.78 640.5 * * 2064.0 * 1456.79 * *
SR (%) 90 100 40 100 4 0 0 28 0 66 0 0

 2
Table 14: Results of B-PSO2 and M-BPSO2 for the 6 scaled benchmark problems (Parameters used in velocity formula = c1, c2, r1, and r2)

Problem Ackley Griewank Levy Noisy Quatic Rastrigin Rosenbrock
Algorithm B-PSO2 M-BPSO2 B-PSO2 M-BPSO2 B-PSO2 M-BPSO2 B-PSO2 M-BPSO2 B-PSO2 M-BPSO2 B-PSO2 M-BPSO2

Best Fitness 3.318493e+00 4.440892e-16 1.690147e+00 0.000000e+00 4.086332e-01 1.146486e-02 2.633765e-03 1.348283e-06 5.621073e+01 0.000000e+00 8.970409e+02 2.868996e+01
Mean Fitness 3.745884e+00 3.215206e-15 1.830453e+00 0.000000e+00 3.436966e+00 2.612111e-02 5.335727e-03 2.164105e-05 7.379167e+01 0.000000e+00 1.231009e+03 2.869612e+01
Std. Dev. 1.034941e-01 1.471699e-15 6.485999e-02 0.000000e+00 1.979661e+00 1.701562e-02 1.606380e-03 1.810866e-05 9.393737e+00 0.000000e+00 1.771140e+02 1.545186e-03
Av. Iteration * 206 * 209.74 * * * 2172.0 * 909.4 * *
SR (%) 0 100 0 100 0 0 0 32 0 100 0 0

 3
Table 15: Results of B-PSO3 and M-BPSO3 for the 6 scaled benchmark problems (Parameters used in velocity formula = ω, c1 and c2)

Problem Ackley Griewank Levy Noisy Quatic Rastrigin Rosenbrock
Algorithm B-PSO3 M-BPSO3 B-PSO3 M-BPSO3 B-PSO3 M-BPSO3 B-PSO3 M-BPSO3 B-PSO3 M-BPSO3 B-PSO3 M-BPSO3

Best Fitness 1.941143e+00 4.440892e-16 1.053085e+00 0.000000e+00 2.007583e-01 1.311926e-02 2.543067e-02 7.404291e-07 2.590078e+01 0.000000e+00 1.915256e+02 2.865088e+01
Mean Fitness 2.793210e+00 4.440892e-16 1.148693e+00 0.000000e+00 2.508899e+00 2.031907e-01 7.404169e-02 2.639914e-05 4.469248e+01 1.421085e-16 4.345740e+02 2.869382e+01
Std. Dev. 5.910545e-01 0.000000e+00 6.096850e+00 0.000000e+00 2.005186e+00 1.530039e-01 3.418975e-02 2.429079e-05 1.401771e+01 9.947598e-16 2.657047e+02 1.058605e-02
Av. Iteration * 104.06 * 110.3 * * * 2055.07 * 841 * *
SR (%) 0 100 0 100 0 0 0 30 0 100 0 0

 4
Table 16: Results of B-PSO4 and M-BPSO4 for the 6 scaled benchmark problems (Parameters used in velocity formula = ω, r1, and r2)

Problem Ackley Griewank Levy Noisy Quatic Rastrigin Rosenbrock
Algorithm B-PSO4 M-BPSO4 B-PSO4 M-BPSO4 B-PSO4 M-BPSO4 B-PSO4 M-BPSO4 B-PSO4 M-BPSO4 B-PSO4 M-BPSO4

Best Fitness 2.407427e+00 4.440892e-16 1.706413e-13 0.000000e+00 4.476413e-01 4.838234e-03 5.177056e-02 7.665106e-07 1.590765e+01 0.000000e+00 4.052000e+00 2.866791e+01
Mean Fitness 4.726894e+00 2.362555e-15 8.358146e-02 0.000000e+00 2.595458e+00 1.478970e-01 1.583305e-01 2.873640e-05 3.016323e+01 9.325919e+00 2.433012e+01 2.869451e+01
Std. Dev. 1.210246e+00 1.770663e-15 8.793192e-02 0.000000e+00 1.737213e+00 1.077346e-01 6.860169e-02 2.517682e-05 9.267444e+00 1.182169e+01 2.210057e+01 1.085634e-02
Av. Iteration * 159.92 777.67 169.68 * * * 2069.17 * 1737.29 * *
SR (%) 0 100 12 100 0 0 0 24 0 56 0 0

 5

 6

25

Table 17: Results of B-PSO5 and M-BPSO5 for the 6 scaled benchmark problems (Parameters used in velocity formula = r1, and r2)

Problem Ackley Griewank Levy Noisy Quatic Rastrigin Rosenbrock
Algorithm B-PSO5 M-BPSO5 B-PSO5 M-BPSO5 B-PSO5 M-BPSO5 B-PSO5 M-BPSO5 B-PSO5 M-BPSO5 B-PSO5 M-BPSO5

Best Fitness 3.344808e+00 4.440892e-16 1.481730e+00 0.000000e+00 4.798298e-01 1.394459e-02 3.298895e-03 7.663106e-07 5.995154e+01 0.000000e+00 8.185073e+02 2.869521e+01
Mean Fitness 3.964400e+00 3.854694e-15 2.034272e+00 0.000000e+00 3.244917e+00 2.887764e-02 6.407808e-03 2.823978e-05 8.641181e+01 1.286435e-05 1.901100e+03 2.869590e+01
Std. Dev. 1.762065e-01 6.961869e-16 1.640075e-01 0.000000e+00 1.881748e+00 2.789996e-03 1.751897e-03 2.197213e-05 1.297889e+01 9.005045e-05 6.210673e+02 5.868816e-04
Av. Iteration * 277.04 * 274.68 * * * 2256.0 * 1229.39 * *
SR (%) 0 100 0 100 0 0 0 26 0 98 0 0

 1

Table 18: Results of B-PSO6 and M-BPSO6 for the 6 scaled benchmark problems (Parameters used in velocity formula = c1 and c2)

Problem Ackley Griewank Levy Noisy Quatic Rastrigin Rosenbrock
Algorithm B-PSO6 M-BPSO6 B-PSO6 M-BPSO6 B-PSO6 M-BPSO6 B-PSO6 M-BPSO6 B-PSO6 M-BPSO6 B-PSO6 M-BPSO6

Best Fitness 1.774445e+00 4.440892e-16 1.091267e+00 0.000000e+00 3.969549e-02 1.485857e-02 2.727736e-03 1.826915e-06 3.425003e+01 0.000000e+00 1.833782e+02 2.866868e+01
Mean Fitness 2.771661e+00 9.414691e-16 1.312471e+00 0.000000e+00 2.292549e+00 1.040067e-01 5.931060e-03 2.735918e-05 5.564719e+01 9.576085e-01 7.435443e+02 2.869606e+01
Std. Dev. 4.115397e-01 1.232746e-15 1.182277e-01 0.000000e+00 1.605766e+00 1.191236e-01 2.276012e-03 2.420559e-05 1.615439e+01 6.703259e+00 4.269498e+02 7.175068e-03
Av. Iteration * 115.32 * 114.38 * * * 2117.2 * 905.08 * *
SR (%) 0 100 0 100 0 0 0 30 0 98 0 0

 2

Table 19: Results of B-PSO7 and M-BPSO7 for the 6 scaled benchmark problems (Parameters used in velocity formula = none)

Problem Ackley Griewank Levy Noisy Quatic Rastrigin Rosenbrock
Algorithm B-PSO7 M-BPSO7 B-PSO7 M-BPSO7 B-PSO7 M-BPSO7 B-PSO7 M-BPSO7 B-PSO7 M-BPSO7 B-PSO7 M-BPSO7

Best Fitness 6.408485e+00 4.440892e-16 6.394065e+00 0.000000e+00 2.733269e+00 1.390444e-02 2.987741e-02 1.452023e-06 1.418611e+02 0.000000e+00 3.412631e+04 2.867724e+01
Mean Fitness 9.025067e+00 3.641532e-15 1.185077e+01 0.000000e+00 7.539175e+00 6.907410e-02 8.506966e-02 3.242492e-05 1.862238e+02 1.995969e+01 1.232955e+05 2.869711e+01
Std. Dev. 1.159080e+00 1.065814e-15 3.358921e+00 0.000000e+00 3.967178e+00 9.854786e-02 5.146707e-02 3.143463e-05 2.269556e+01 3.175845e+01 9.131989e+04 6.736141e-03
Av. Iteration * 134.22 * 139.20 * * * 2367.7 * 1433.06 * *
SR (%) 0 100 0 100 0 0 0 20 0 66 0 0

 3

26

Table 20: Comparison between MARPSO and proposed variants

Problem
Dimension Algorithm Problem

Ackley Griewank Rastrigin Rosenbrock

20

MARPSO 0.00e+00 4.03e-03 0.00e+00 0.13
M-BPSO2 0.00e+00 0.00e+00 0.00e+00 1.879e+01
M-BPSO5 0.00e+00 0.00e+00 0.00e+00 1.879e+01
M-BPSO6 0.00e+00 0.00e+00 1.33e-03 1.879e+01
M-BPSO7 0.00e+00 0.00e+00 3.11e-07 1.879e+01

50

MARPSO 2.39e-10 1.97e-04 0.00e+00 1.28
M-BPSO2 0.00e+00 0.00e+00 0.00e+00 4.850e+01
M-BPSO5 0.00e+00 0.00e+00 0.00e+00 4.850e+01
M-BPSO6 0.00e+00 0.00e+00 0.00e+00 4.851e+01
M-BPSO7 0.00e+00 0.00e+00 0.00e+00 4.850e+01

100

MARPSO 3.99e-09 0.00e+00 0.00e+00 16.93
M-BPSO2 0.00e+00 0.00e+00 0.00e+00 9.802e+01
M-BPSO5 0.00e+00 0.00e+00 0.00e+00 9.800e+01
M-BPSO6 0.00e+00 0.00e+00 0.00e+00 9.809e+01
M-BPSO7 0.00e+00 0.00e+00 0.00e+00 9.803e+01

 1

Table 21: Comparison between BSO and the proposed variants in Griewank problem

Dimension Measurement BSO M-BPSO2 M-BPSO5 M-BPSO6 M-BPSO7

10 Mean Fitness 0.03465 0.00000 0.00000 0.00000 0.00000
Std. Dev. 0.02183 0.00000 0.00000 0.00000 0.00000

30 Mean Fitness 0.02628 0.00000 0.00000 0.00000 0.00000
Std. Dev. 0.02542 0.00000 0.00000 0.00000 0.00000

50 Mean Fitness 0.02919 0.00000 0.00000 0.00000 0.00000
Std. Dev. 0.01673 0.00000 0.00000 0.00000 0.00000

 2

Table 22: Comparison between BSO and the proposed variants in Rastrigin problem

Dimension Measurement BSO M-BPSO2 M-BPSO5 M-BPSO6 M-BPSO7

10 Mean Fitness 0.00005 0.00000 0.00000 0.00000 0.00000
Std. Dev. 0.00004 0.00000 0.00000 0.00000 0.00000

30 Mean Fitness 0.14368 0.00000 0.00000 0.00000 0.00000
Std. Dev. 0.38712 0.00000 0.00000 0.00000 0.00000

50 Mean Fitness 0.32219 0.00000 0.00000 0.00000 1.80655
Std. Dev. 0.80927 0.00000 0.00000 0.00000 17.9749

 3

Table 23: Comparison between BSO and the proposed variants in Rosenbrock problem

Dimension Algorithm BSO M-BPSO2 M-BPSO5 M-BPSO6 M-BPSO7

10 Mean Fitness 0.72827 8.80651 8.80144 8.73759 8.78180
Std. Dev. 1.52126 0.09826 0.09900 0.20571 0.12739

30 Mean Fitness 27.0083 28.69899 28.6980 28.70292 28.70190
Std. Dev. 1.75217 0.00657 0.00512 0.01177 0.00958

50 Mean Fitness 47.0415 48.49819 48.4961 48.51395 48.50054
Std. Dev. 0.79140 0.00340 0.00145 0.02086 0.00620

 4

Table 24: Comparison between BSO and the proposed variants in Generalized Schaffer's f6 problem

Dimension Algorithm BSO M-BPSO2 M-BPSO5 M-BPSO6 M-BPSO7

10 Mean Fitness 0.07870 0.00000 0.00000 0.00000 0.00000
Std. Dev. 0.02445 0.00000 0.00000 0.00000 0.00000

30 Mean Fitness 0.50525 0.08966 0.22178 0.14591 0.78340
Std. Dev. 0.18516 0.50456 0.87080 0.72556 1.61286

50 Mean Fitness 1.39567 7.85840 9.92779 7.62957 10.92979
Std. Dev. 0.55424 5.09182 3.52718 4.94611 1.79961

 5

References 6

27

[1] Arasomwan, A. M. and Adewumi, A. O. On the Performance of Linear Decreasing 1

Inertia Weight Particle Swarm Optimization for Global Optimization, The Scientific 2

World Journal, 2013: 1-12 3

[2] Chen, F., Sun, X. and Wei, D. Inertia weight particle swarm optimization with 4

Boltzmann exploration, Seventh International Conference on Computational 5

Intelligence and Security (CIS), 2011. pp. 90-95. 6

[3] Chauhan, P., Deep, K. and Pant, M. Novel inertia weight strategies for particle 7

swarm optimization, Memet. Comput, 2013; 5: 229-251. 8

[4] Chen, G. Huang, X. Jia, J. and Min., Z. Natural exponential Inertia Weight strategy 9

in particle swarm optimization, Sixth World Congress on Intelligent Control and 10

Automation, WCICA, June 21 - 23, Dalian, China, 2006; 1: 3672–3675. 11

[5] Clerc, M. and Kennedy, J. The particle swarm - explosion, stability, and 12

convergence in multidimensional complex space, IEEE Trans on Evol Comp, 2002; 13

6: 58-73. 14

[6] Wen, L., Xi, Z. The research of PSO algorithms with non-linear time-decreasing 15

inertia weight, 7th World Congress on Intelligent Control and Automation, 2008; 16

pp. 4002-4005. 17

[7] Eberhart R. C. and Kennedy J. A new optimizer using particle swarm theory, 18

Proceedings of the Sixth International Symposium on Micro Machine and Human 19

Science, MHS '95, 1995, pp. 39-43. 20

[8] Eberhart, R. C. and Shi, Y. Tracking and optimizing dynamic systems with particle 21

swarms. In Proceedings of the 2001 Congress on Evolutionary Computation, Korea, 22

2002; 1: 94–100. 23

[9] Evers, G. I. An automatic regrouping mechanism to deal with stagnation in particle 24

swarm optimization. MSc. Thesis. University of Texas-Pan American, 2009. 25

28

[10] Feng, Y., Teng, G.F., Wang, A.X. and Yao, Y.M. Chaotic inertia weight in 1

particle swarm optimization, IEEE Second International Conference on Innovative 2

Computing, Information and Control, 2007, pp. 475. 3

[11] Guochao, N., Baodi, C. and Jianchao, Z. Repulsive Particle Swarm 4

Optimization based on new diversity, in Control and Decision Conference (CCDC), 5

2010, pp. 815-819. 6

[12] Jiang, M., Luo, Y. P. and Yang, S. Y. Particle swarm optimization - stochastic 7

trajectory analysis and parameter selection, In , Felix T.S. Chan and Manoj Kumar 8

Tiwari (Ed.), Swarm Intelligence: Focus on Ant and Particle Swarm Optimization. 9

InTech Publisher, 2007, pp. 179-198. 10

[13] Jihong, S. and Wensuo, Y. Improvement of original particle swarm optimization 11

algorithm based on simulated annealing algorithm, Eighth International Conference 12

on Natural Computation (ICNC), 2012, pp. 777-781. 13

[14] Karaboga, D., and Akay B. A Comparative Study of Artificial Bee Colony 14

Algorithm. Appl. Math. Comput., 2009; 214: 108-132. 15

[15] Kennedy, J. and Eberhart, R.C. Particle Swarm Optimization, IEEE 16

international conference on neural networks, 4 Perth, Australia, 1995, pp. 1942–17

1948. 18

[16] Kentzoglanakis, K. and Poole, M. Particle swarm optimization with an 19

oscillating inertia weight, Proceedings of the 11th Annual conference on Genetic 20

and evolutionary computation, 2009, pp. 1749–1750. 21

[17] Li, H.R. and Gao, Y.L. Particle swarm optimization algorithm with exponent 22

decreasing inertia weight and stochastic mutation, Second International Conference 23

on Information and Computing Science, 2009, pp. 66–69. 24

29

[18] Mahamed G.H. Omran, Using Opposition-based Learning with Particle Swarm 1

Optimization and Barebones Differential Evolution, In: Aleksandar Lazinica (Ed.), 2

Particle Swarm Optimization, InTech Publisher, 2009, pp. 373-384. 3

[19] Malik, R.F., Rahman, T.A., Hashim, S.Z.M. and Ngah, R. New particle swarm 4

optimizer with sigmoid increasing inertia weight, Internat. J. of Comp. Sc .& 5

Secur., 2007; 1(2): 35-44. 6

[20] Nickabadi, A., Ebadzadeh, M. M. and Safabakhsh, R. A novel particle swarm 7

optimization algorithm with adaptive inertia weight, Appl. soft comp., 2011; 11: 8

3658-3670. 9

[21] Oliveira, D. R., Parpinelli, R. S. and Lopes, H. S. Bioluminescent Swarm 10

Optimization Algorithm, In: Eisuke Kita (Ed.) Evolutionary Algorithms, InTech 11

Publisher, 2011, pp. 69-84. 12

[22] Shen, X., Chi, Z., Yang, J., Chen, C., and Chi, Z. Particle swarm optimization 13

with dynamic adaptive inertia weight. International Conference on Challenges in 14

Environmental Science and Computer Engineering, IEEE, 2010, pp. 287-290. 15

[23] Shi, Y. H., Eberhart, R.C. A modified particle swarm optimizer. IEEE 16

International Conference on Evolutionary Computation, Anchorage, Alaska, May 4-17

9, 1998, pp. 69-73. 18

[24] Shi, Y. and Eberhart, R. Parameter selection in particle swarm optimization, In: 19

V. W. Porto, N. Saravanan, D. Waagen, and A. E. Eiben, (Eds). Evolutionary 20

Programming VII. Springer Berlin Heidelberg, 1998; 1447: 591-600. 21

[25] Shi, Y.H., and Eberhart, R.C. Fuzzy adaptive particle swarm optimization. 22

Proceedings of the Congress on Evolutionary Computation, Korea, 2001; 1: 101-23

106. 24

[26] Sun, J., Lai, C-H, and Wu, X-J. Particle swarm optimization: classical and 25

quantum perspectives, CRC press, New York, 2011. 26

30

[27] Trelea, I.C. The particle swarm optimization algorithm: Convergence analysis 1

and parameter selection. Information. Processing Letter, 2003; 85: 317-325. 2

[28] Yuhui, S. and Eberhart, R.C. Empirical study of particle swarm optimization, 3

Proceedings of the 1999 Congress on Evolutionary Computation, CEC 99., 1999; 3, 4

pp. 1945-1950. 5

[29] Liu, B., Wang, L., Jin, Y., Tang, F. and Huang, D. Improved particle swarm 6

optimization combined with chaos, Chaos, Solution and Fractals, 2005; 25: 1261-1271. 7

[30] Su, T-J. Cheng, J-C. and Sun, Y-D. Particle swarm optimization with time-varying 8

acceleration coefficients based on cellular neural network for color image noise 9

cancellation, Sixth international conference on digital telecommunications. ICDT 2011, 10

pp. 109-115. 11

[31] Selvakumar, A. I. and Thanushkodi, K. A new particle swarm optimization solution 12

to nonconvex economic dispatch Problems. IEEE Transactions on Power Systems, 13

2007; 22(1): 42-51. 14

[32] Selvakumar, A. I. and Thanushkodi, K. Anti-predatory particle swarm optimization: 15

Solution to nonconvex economic dispatch problems, Electric Power Systems Research, 16

2008; 78: 2-10. 17

[33] Guo, W. Chen, G. and Feng, X. A new strategy of acceleration coefficients for 18

particle swarm optimization, Proceedings of the 10th IEEE International Conference on 19

Computer Supported Cooperative Work in Design, 2006, pp. 1-5. 20

[34] Chetty, S. and A. O. Adewumi A.O. Three new stochastic local search 21

algorithms for continuous optimization problems,” Computational Optimization and 22

Applications, 2013 53(3): 675-721. 23

[35] Sawyerr, B. A., Ali, M.M. and Adewumi, A.O. A comparative study of some 24

real-coded genetic algorithms for unconstrained global optimization. Optimization 25

Methods and Software, 2011; 26(6): 945–970. 26

Research Article
Improved Particle Swarm Optimization with a Collective Local
Unimodal Search for Continuous Optimization Problems

Martins Akugbe Arasomwan and Aderemi Oluyinka Adewumi

School of Mathematics, Statistics, and Computer Science, University of Kwazulu-Natal South Africa,
Private Bag X54001, Durban 4000, South Africa

Correspondence should be addressed to Aderemi Oluyinka Adewumi; laremtj@gmail.com

Received 31 October 2013; Accepted 29 December 2013; Published 25 February 2014

Academic Editors: T. Chen, Q. Cheng, and J. Yang

Copyright © 2014 M. A. Arasomwan and A. O. Adewumi. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

A new local search technique is proposed and used to improve the performance of particle swarm optimization algorithms by
addressing the problem of premature convergence. In the proposed local search technique, a potential particle position in the
solution search space is collectively constructed by a number of randomly selected particles in the swarm.The number of times the
selection is made varies with the dimension of the optimization problem and each selected particle donates the value in the location
of its randomly selected dimension from its personal best. After constructing the potential particle position, some local search is
done around its neighbourhood in comparison with the current swarm global best position. It is then used to replace the global best
particle position if it is found to be better; otherwise no replacement is made. Using some well-studied benchmark problems with
low and high dimensions, numerical simulations were used to validate the performance of the improved algorithms. Comparisons
were made with four different PSO variants, two of the variants implement different local search technique while the other two
do not. Results show that the improved algorithms could obtain better quality solution while demonstrating better convergence
velocity and precision, stability, robustness, and global-local search ability than the competing variants.

1. Introduction

Optimization comes to focus when there are needs to plan,
take decisions, operate and control systems, designmodels, or
seek optimal solutions to varieties of problems faced fromday
to day by different people. Anumber of these problems,which
can be formulated as continuous optimization problems, are
often approached with limited resources. Dealing with such
problems, most especially when they are large scale and
complex, has attracted the development of different nature-
inspired optimization algorithms. These algorithms display
problem-solving capabilities for researchers to solve complex
and challenging optimization problems with many success
stories. Swarm-based techniques are a family of nature-
inspired algorithms and are population-based in nature; they
are also known as evolutionary computation techniques.
Particle swarm optimization (PSO) technique is a member
of swarm-based techniques which is capable of producing
low cost, fast, and robust solutions to several complex

optimization problems. It is a stochastic, self-adaptive, and
problem-independent optimization technique and was orig-
inally proposed in 1995 by Eberhart and Kennedy as sim-
ulation of a flock of bird or the sociological behavior of a
group of people [1, 2]. From the time this concept was brought
into optimization, it has been used extensively in many fields
which include function optimization and many difficult real-
world optimization problems [3–5].

PSO technique was initially implemented with few lines
of codes using basic mathematical operations with no major
adjustment needed to adapt it to new problems and it was
almost independent of the initialization of the swarm [6].
It needs few parameters to operate with for successful and
efficient behavior in order to obtain quality solutions. To
implement this technique, a number of particles, which are
characterized by positions and velocities, called swarm are
required to be randomly distributed in a solution search
space depending on the boundaries defined for the design
variables of the problem being optimized. The number of

Hindawi Publishing Corporation
e Scientific World Journal
Volume 2014, Article ID 798129, 23 pages
http://dx.doi.org/10.1155/2014/798129

http://dx.doi.org/10.1155/2014/798129

2 The Scientific World Journal

design variables determines the dimensionality of the search
space. If 𝑑-dimensional space is considered, the position
and velocity of each particle are represented as the vectors
𝑋
𝑖
= (𝑥

𝑖1
, . . . , 𝑥

𝑖𝑑
) and 𝑉

𝑖
= (V
𝑖1
, . . . , V

𝑖𝑑
), respectively.

Every particle has a memory of its personal experience which
is communicated to all reachable neighbours in the search
space to guide the direction of movement of the swarm.
Also, the quality of each particle (solution) is determined by
the objective function of the problem being optimized and
the particle with best quality is taken as the global solution
towards which other particles will converge. The common
practice is for the technique to maintain a single swarm of
particles throughout its operation. This process of seeking
optimal solution involves the adjustments of the position and
velocity of each particle in each iteration using

𝑉
𝑖 (
𝑡 + 1) = 𝜔𝑉

𝑖 (
𝑡) + coeff

1
(𝑃
𝑖
− 𝑋
𝑖
) + coeff

2
(𝑃
𝑔
− 𝑋
𝑖
) ,

(1)

𝑋
𝑖 (
𝑡 + 1) = 𝑋 (𝑡) + 𝑉𝑖 (

𝑡 + 1) . (2)

In (1), 𝑃
𝑖
and 𝑃

𝑔
are vectors representing the 𝑖th particle

personal best and swarm global best positions, respectively;
coeff
1
= 𝑐
1
𝑟
1
and coeff

2
= 𝑐
2
𝑟
2
; 𝑐
1
and 𝑐
2
are acceleration

factors known as cognitive and social scaling parameters
that determine the magnitude of the random forces in the
direction of𝑃

𝑖
and𝑃
𝑔
; 𝑟
1
and 𝑟
2
are randomnumbers between

0 and 1; 𝑡 is iteration index.The symbol 𝜔 is the inertia weight
parameter which was introduced into the original PSO in [7].
Thepurpose of its introductionwas to help the PSOalgorithm
balance its global and local search activities.

There are possibilities of the positions and velocities of the
particles in the swarm increasing in value beyond necessary
when they are updated. As a measure, the positions are
clamped in each dimension to the search range [𝑋min, 𝑋max]
of the design variables, where 𝑋min and 𝑋max represent the
lower and upper bounds of a particle’s position, respectively,
while their velocities are controlled to be within a specified
range [𝑉min, 𝑉max], where 𝑉min and 𝑉max represent the lower
and upper bounds of a particle’s velocity, respectively. The
idea of velocity clamping which was introduced by [1, 2,
8] and extensively experimented with in [9] has led to
significant improvement as regards the performance of PSO.
This is so because the particles could concentrate, taking
reasonably sized steps to search through the search space
rather than bouncing about excessively. A major feature
that characterizes an efficient optimization algorithm is the
ability to strike a balance between local and global search.
Global search involves the particles being able to advance
from a solution to other parts of the search space and locate
other promising candidates while local search means that the
particle is capable of exploiting the neighbourhood of the
present solution for other promising candidates. In PSO, as
the rate of information sharing increases among the particles
they migrate towards the same direction and region in the
search space. If any of the particles could not locate any
better global solution after some time, they will eventually
converge about the existing one which may not be the global
minimum due to lack of exploration power; this is known

as premature convergence. This type of behaviour is more
likely when the swarm of particles is overconcentrated. It
could also occur when the optimization problem is of high
dimension and/or nonconvex. One of the possible ways to
prevent this premature convergence is to embed a local
search technique into PSO algorithm to help improve the
quality of each solution by searching its neighbourhood.
After the improvement, better information is communicated
among the particles thereby increasing the algorithm’s ability
to locate better global solution in course of optimization.
Hill climbing, modified Hooke and Jeeves, gradient descent,
golden ratio, Stochastic local search, adaptive local search,
local interpolation, simulated annealing, and chaotic local
search are different local search techniques that have been
combined with PSO to improve its local search ability [10–
18].

In this paper, a different local search technique was
proposed to harness the global search ability of PSO and
improve on its local search efforts. This technique is based
on the collective efforts of randomly selected (with replace-
ment) particles a number of times equal to the size of
the problem dimension. When a particle is selected, it is
made to contribute the value in the position of its randomly
selected dimension from its personal best. The contributed
values are then used to form a potential global best solution
which is further refined. This concept could offer PSO the
ability to enhance its performance in terms of convergence
speed, local search ability, robustness, and increased solution
accuracy. The local search technique was hybridized with
two of the existing PSO variants, namely, random inertia
weight PSO (RIW-PSO) and linear decreasing inertia weight
PSO (LDIW-PSO), to form two new variants. Numerical
simulations were performed to validate the efficiencies of
each of them and some statistical analyses were performed
to ascertain any statistically significant difference in perfor-
mance between the proposed variants and the old ones. From
the results obtained it was shown that the proposed variants
are very efficient.

In the sections that follow, RIW-PSO and LDIW-PSO are
briefly described in Section 2; themotivation and description
of the proposed local search technique are presented in
Section 3 while the improved PSO with local search tech-
nique is described in Section 4. Numerical simulations are
performed in Section 5 and Section 6 concludes the paper.

2. The Particle Swarm Optimization
Variants Used

Two PSO variants were used to validate the proposed
improvement of the performance of PSO technique. The
variants are LDIW-PSO and RIW-PSO. These were chosen
because of the evidence available in the literature that they
are less efficient in optimizingmany continuous optimization
problems [19–21]. These variants are succinctly described
below.

2.1. PSO Based on Linear Decreasing Inertia Weight (LDIW-
PSO). This variant was proposed in [9] after the inertia

The Scientific World Journal 3

weight parameter was introduced into the original PSO
by [7]. It implements the linear decreasing inertia weight
strategy represented in (3) which decreases from some high
which facilitates exploration to a low value which on the
other hand promotes exploitation. This greatly improved the
performance of PSO. LDIW-PSO does global search at the
beginning and converges quickly towards optimal positions
but lacks exploitation power [9] and the ability required to
jump out of the local minimum most especially when being
in themultimodal landscape. Some improvements on LDIW-
PSO exist in the literature [6, 9, 22]:

𝜔i = (𝜔start − 𝜔stop) (
MAXitr − i
MAXitr

) + 𝜔stop, (3)

where 𝜔start and 𝜔stop are the initial and final values of inertia
weight, 𝑖 is the current iteration number, MAXitr is the
maximum iteration number, and 𝜔i ∈ [0, 1] is the inertia
weight value in the 𝑖th iteration. Apart from the problem of
premature convergence, this variant was found inefficient in
tracking a nonlinear dynamic system because of the difficulty
in predicting whether exploration (a larger inertia weight
value) or exploitation (a smaller inertia weight) will be better
at any given time in the search space of the nonlinear dynamic
system [23].

2.2. PSO Based on Random Inertia Weight (RIW-PSO). Due
to the improved performance of PSO when the constant
inertia weight was introduced into it [7], a new era of research
was indirectly initiated and this has attracted the attentions
of many researchers in the field. The inefficiency of linear
decreasing inertia weight, which linearly decreases from 0.9
to 0.4, in tracking a nonlinear dynamic system prompted the
introduction of RIW which randomly varies within the same
range of values. Random adjustment is one of the strategies
that have been proposed to determine the inertia weight value
to further improve on the performance of PSO. This strategy
is nonfeedback in nature and the inertia weight takes different
value randomly at each iteration, from a specified interval. In
line with this, random inertia weight strategy represented in
(4) was introduced into PSO by [23] to enable the algorithm
track and optimize dynamic systems. In the equation, rand()
is a uniform random number in the interval [0, 1] which
make the formula generate a number randomly varying
between 0.5 and 1.0, with a mean value of 0.75. When c

1
and

c
2
are set to 1.494, the algorithm seems to demonstrate better

optimizing efficiency. The motivation behind the selection of
these values was Clerc’s constriction factor [23]:

𝜔 = 0.5 +

rand ()
2

. (4)

Not much is recorded in the literature regarding the imple-
mentation of this variant of PSO. Some of the few implemen-
tations found in the literature are recorded in [6, 20–22].

3. Proposed Local Search Technique

Thebasic principle underlying the optimizing strategy of PSO
technique is that each particle in the swarm communicates

their discoveries to their neighbours and the particle with the
best discovery attracts others. While this strategy looks very
promising, there is the risk of the particles being susceptible
to premature convergence, especially when the problem to
be optimized is multimodal and high in dimensionality. The
reason is that the more the particles share their discoveries
among themselves, the higher their identical behaviour is
until they converge to the same area in the solution search
space. If none of the particle could discover better global
best, after some time all the particles will converge about the
existing global best which may not be the global minimizer.

One of the motivations for this local search technique
is the challenge of premature convergence associated with
PSO technique which affects its reliability and efficiency.
Another motivation is the decision-making strategy used by
the swarm in searching for optimal solution to optimization
problems. The decision is dictated by a single particle in the
swarm; that is, other particles follow the best particle among
them to search for better solution. Involving more than one
particle in the decision making could lead to a promising
region in the search space where optimal solution could be
obtained.

The description of the local search technique is as follows:
after all the particles have obtained their various personal best
positions, each particle has an equal chance of being selected
to contribute its idea towards how a potential location in
the search space where better global best could be obtained.
As a result, a number of particles equal to the dimension
of the problem being optimized are randomly selected (with
replacement). Each selected particle contributes an idea by
donating the value in the location of its randomly selected
dimension from its personal best. All the ideas contributed
by the selected particles are collectively used (hybridized) to
construct a potential solution in the solution search space.
After constructing the potential solution, some searches are
locally done around its neighbourhood with the hope of
locating a better solution in comparison with the current
global solution. If a better solution is found, it is then used to
replace the current global solution; otherwise no replacement
is made.

In this local search, the potential new position is denoted
by →𝑦 and is sampled from the neighbourhood of the collec-
tively constructed potential global solution represented as →𝑃
by

→
𝑦 ←

→

𝑃 +
→
𝑎 , (5)

where →𝑎 ∼ 𝑈[−
→
𝑟 ,
→
𝑟] is a random vector picked uniformly

from the range [−→𝑟 , →𝑟] and →𝑟 is the search radius which is
initially set to max𝑅 (maximum radius for local search). The
local search technique moves from position →

𝑃 to position
→
𝑦 when there is improvement to the fitness. If there is no
improvement on the fitness of →𝑃 by →𝑦 , the search radius is
linearly decreased by multiplying it with a factor 𝑞 using

→
𝑟 ← 𝑞 ×

→
𝑟 ,

𝑞 ← (maxR −minR) × 𝑡

maxT
+minR,

(6)

4 The Scientific World Journal

→
𝑟 ,
→
𝑎 ,
→
𝑦 ← new arrays, each of length Dim

→
𝑟 ← max𝑅
𝑡 ← 0

While (𝑡 < max𝑇) do
𝑡 ← 𝑡 + 1

→
𝑎 ← 𝑈(−

→
𝑟 ,→𝑟)

for 𝑗 ← 1 to problem Dimension
randomly select any particle 𝑖
randomly select a dimension 𝑑 from the personal best 𝑃 of the selected particle 𝑖

→
𝑦

𝑗

←

→

𝑃

𝑑

𝑖
+
→
𝑎

𝑗

end for
validate for search space boundary
𝐼𝑓𝑓(

→
𝑦) < 𝑔Fit

→

𝑔Pos ← →
𝑦

𝑔Fit ← 𝑓(
→
𝑦)

else
𝑞 ← (max𝑅 −min𝑅) × 𝑡

max𝑇
+min𝑅

→
𝑟 ← 𝑞 ×

→
𝑟

end if
end while
Return →

𝑔Pos and 𝑔Fit

Algorithm 1: Collective local unimodal search.

Begin PSOCLUS Algorithm
Step 1.Definition Phase

(1.1) function to optimize as 𝑓
(1.2) Parameter

(1.2.1) swarm size
(1.2.2) problem dimension
(1.2.3) solution search space
(1.2.4) particle velocity range

Step 2. Initialized phase
For all particles randomly initialized in search space
(2.1) position𝑥

𝑖
← (𝑥
𝑖1
, . . . , 𝑥

𝑖𝑑
)

(2.2) velocity V
𝑖
← (V
𝑖1
, . . . , V

𝑖𝑑
),

(2.3) 𝑝best
𝑖
← (𝑥
𝑖1
, . . . , 𝑥

𝑖𝑑
)

(2.4) 𝑔best← best of 𝑝best
𝑖

(2.5) evaluate 𝑓(𝑥
𝑖
) using objective function of problem

Step 3.Operation Phase
Repeat until a stopping criterion is satisfied
(3.1). Compute inertia weight using any inertia weight formula
(3.2). For each particle 𝑖

(3.2.1). update V
𝑖
for particle using (1)

(3.2.2). validate for velocity boundaries
(3.2.3). update𝑥

𝑖
for particle using (2)

(3.2.4). validate for position boundaries
(3.2.5). If 𝑓(𝑥

𝑖
) < 𝑓(𝑝best

𝑖
) then 𝑝best

𝑖
← 𝑥
𝑖

(3.3). 𝑔best ← best of 𝑝best𝑖
(3.4). Implement local search using CLUS in Algorithm 1

Step 4. Solution Phase
(4.1). 𝑥∗ ← 𝑔best
(4.2). 𝑓∗ ← 𝑓(𝑔best)
(4.3). Return 𝑥∗ and 𝑓

∗

End PSOCLUS Algorithm

Algorithm 2: Algorithm for PSOCLUS.

The Scientific World Journal 5

Table 1: Parameter settings for experiment.

Parameter 𝜔min 𝜔max 𝑐
1
= 𝑐
2

𝑉min 𝑉max minR maxR maxT
Value 0.9 0.4 1.494 0.05 ∗𝑋min 0.05 ∗𝑋max 0.01 2.0 100

where max𝑇 is the maximum number of times the neigh-
bourhood of →𝑃 is to be sampled, 𝑡 is the current time the
neighbourhood is being sampled, and min𝑅 is the minimum
radius for the local search.

This proposed local search technique has been named
collective local unimodal search (CLUS) technique. It has
some trace of similarity in operation with local unimodal
sampling (LUS) technique [24]. But they are quite different in
the sense that, while LUS randomly picks a potential solution
from the entire population, CLUS constructs a potential
solution using the collective efforts of a randomly selected
number of particles from the swarm. Also, CLUS uses a linear
method to decrease the search radius (step size) in the neigh-
bourhood of the potential solution which is different from
the method applied by LUS during optimization. The CLUS
technique is presented in Algorithm 1. In the technique, 𝑔Fit
and →

𝑔Pos represent the current global fitness value and its
corresponding position in the search space.

4. Improved PSO with Collective Unimodal
Local Search (PSOCLUS)

The RIW-PSO increases convergence in early iterations and
does more of global search activities but soon gets stuck
in local optima because of lack of local search ability. Also,
LDIW-PSO does global search at earlier part of its iteration
but lacks enough momentum to do local search as it gets
towards its terminal point of execution.The aim of this paper
is to make a general improvement on the performance of
PSO which can be applied to any of its variants. To achieve
this, the two PSO variants were hybridized with the proposed
collective local unimodal search (CLUS) technique which
takes advantage of their global search abilities to do some
neighbourhood search for better results. The improved PSO
algorithm is presented in Algorithm 2.

5. Numerical Simulations

In this section, the improved algorithm (PSOCLUS) was imple-
mented using the inertia weight strategy of RIW-PSO and
the variant was labeled R-PSOCLUS. It was also implemented
using the inertia weight strategy of LDIW-PSO and the vari-
ant was labeled L-PSOCLUS. The performances of R-PSOCLUS
and L-PSOCLUS were experimentally tested against those
of RIW-PSO and LDIW-PSO, respectively. The maximum
number of iterations allowed was 1000 for problems with
dimensions less than or equal to 10, 2000 for 20-dimensional
problems, and 3000 for 30-dimensional problems. A swarm
size of 20 was used in all the experiments and twenty-
five independent runs were conducted to collect data for
analysis. The termination criteria for all the algorithms were
set to be as maximum number of iterations relative to the

problems’ dimensions. A run, in which an algorithm is able
to satisfy the set success criteria (see Table 1) before or at the
maximum iteration, is considered to be successful. To further
prove the efficiency of the proposed local search technique,
the proposed PSO variants were also compared with some
existing PSO variants hybridized with different local search
techniques. They are PSO with golden ratio local search [15]
and PSO with local interpolation search [18]. A total of 6
different experiments were conducted.

(i) R-PSOCLUS was comparedwith PSOwith golden ratio
local search (GLSPSO);

(ii) R-PSOCLUS was compared with PSO with local inter-
polation search (PSOlis);

(iii) R-PSOCLUS was compared with RIW-PSO;
(iv) L-PSOCLUS was compared with PSOwith golden ratio

local search (GLSPSO);
(v) L-PSOCLUS was compared with PSO with local inter-

polation search (PSOlis);
(vi) L-PSOCLUS was compared with LDIW-PSO.

The application software was developed in Microsoft Visual
C# programming language.

5.1. Test Problems. A total of 21 problems were used in
the experiments. These problems have different degrees
of complexity and multimodality which represents diverse
landscapes enough to cover many of the problems which
can arise in global optimization problems. Shown in Table 2
are the problems dimensions, optimal fitness values, and
success thresholds. Presented in Table 3 are the definitions,
characteristics (US: unimodal separable, UN: unimodal non-
separable, MS: multimodal separable, and MN: multimodal
nonseparable), and search ranges of the problems. More
details on the benchmark problems can be found in [22, 25–
27].

5.2. Parameter Setting. The additional parameters that were
set in the experiment are inertia weight threshold for LDIW-
PSO (𝜔min and 𝜔max), acceleration coefficients (𝑐

1
and 𝑐
2
),

velocity thresholds (𝑉min and𝑉max),minimumradius (min𝑅),
and maximum radius (max𝑅) for local search as well as
the maximum number of neighbourhood sampling (max𝑇)
during the local search. The respective settings of these
parameters are shown in Table 1. The parameters 𝑟

1
and 𝑟
2

were randomly generated using the uniform randomnumber
generator. The values of 𝜔min and 𝜔max were chosen for
LDIW-PSO based on the experiments conducted in [9];
values for 𝑐

1
and 𝑐
2
were chosen for RIW-PSO based on the

recommendation in [23] and it was also used for LDIW-PSO
because it was discovered in course of the experiments in this
paper that these valuesmake LDIW-PSO perform better than

6 The Scientific World Journal

Table 2: Benchmark problems.

Number Problem Dimensions Optimal
value

Success
threshold

1 Ackley 10, 20, 30 0 10
−5

2 Booth 2 0 10
−5

3 Easom 2 −1 −1
4 Griewank 10, 20, 30 0 10

−5

5 Dixon-Price 10, 20, 30 0 10
−5

6 Levy 10, 20, 30 0 10
−5

7 Michalewicz 5 −4.687 −4.687
8 Noisy Quartic 10, 20, 30 0 10

−5

9 Noncontinous
Rastrigin 10, 20, 30 0 20

10 Rastrigin 10, 20, 30 0 20
11 Rosenbrock 10, 20, 30 0 20

12 Rotated
Ellipsoid 10, 20, 30 0 10

−5

13 Salomon 5 0 10
−5

14 Schaffer’s f6 2 0 10
−5

15 Schwefel 10, 20, 30
16 Schwefel P2.22 10, 20, 30 0 10

−5

17 Shubert 2 −186.7309 −186.7309
18 Sphere 10, 20, 30 0 10

−5

19 Step 10, 20, 30 0 10
−5

20 Sum Squares 10, 20, 30 0 10
−5

21 Trid 6 −50 −50

the commonly used value of 2.0. The settings for 𝑉min and
𝑉max were done based on the outcome of experimental studies
in [8].

5.3. Performance Measurement. The efficiency of the algo-
rithms was tested against the set of benchmark problems
given inTable 2 andnumerical results obtainedwere analyzed
using the criteria that are listed below. All the results are
presented in Tables 4 to 20.

(i) Best fitness solution: the best of the fitness solution
among the solutions obtained during the runs.

(ii) Mean best fitness solution: this is a measure of the
precision (quality) of the result that the algorithm can
get within given iterations in all the 25 runs.

(iii) Standard deviation (Std. Dev.) of mean best fitness
solution over 25 runs: this measures the algorithm’s
stability and robustness.

(iv) Average number of iterations an algorithm was able
to reach the success threshold.

(v) Success rate (SR) = (Number of successful runs/
Total number of runs) × 100: this is the rate at which
the success threshold is met during the independent
number of runs and is a reflection of the global search
ability and robustness of the algorithm.

Statistical analysis using the Wilcoxon signed rank non-
parametric test with 0.05 level of significance [28, 29] was
also performed using the numerical results obtained by
the algorithms, while box plots were used to analyze their
variability in obtaining fitness values in all the runs.

5.4. Results and Discussions. Results obtained from all the
experiments are discussed in this subsection to show the
overall performance of the various algorithms. Presented
in Tables 4, 5, 6, 7, 8, and 9 are the numerical results
obtained and used to compare R-PSOCLUS and L-PSOCLUS
with GLSPSO. R-PSOCLUS and L-PSOCLUS were also com-
pared with PSOlis using the results presented in Table 10.
The results in Tables 11–18 were obtained for the scaled and
nonscaled test problems listed in Table 3; the results were
used to validate RIW-PSO, R-PSOCLUS, LDIW-PSO, and L-
PSOCLUS. In each of the tables, for ease of observation, bold
values represent the better results and “–” means that the
algorithm could not satisfy the success threshold in any of
the runs. The Wilcoxon sign rank nonparametric test, which
is used as an alternative to the paired 𝑡-test when the results
cannot be assumed to be normally distributed, was applied to
test the statistical significance differences between RIW-PSO
and R-PSOCLUS as well as LDIW-PSO and L-PSOCLUS.

5.4.1. Comparison of R-PSO
𝐶𝐿𝑈𝑆

and Golden Ratio Local
Search Based PSO (GLSPSO). The results in Tables 4–6 show
the performance and abilities of R-PSOCLUS and GLSPSO
optimizing the test problems over three different problem
dimensions. The results of GLSPSO were obtained from
[15]. A large problem space was used for all the problems
to verify the superiority between the two different local
search techniques hybridizedwith the PSOvariants. From the
results it is evident that R-PSOCLUS is superior to GLSPSO.
Apart fromAckley problem (across the three dimensions) and
Rosenbrock (in dimension 100), R-PSOCLUS outperformed
GLSPSO. It was able to obtain optimal minimum for some
of the problems, demonstrating better exploitation ability,
convergence precision, and solution quality.

5.4.2. Comparison between L-PSO
𝐶𝐿𝑈𝑆

and GLSPSO. To fur-
ther demonstrate the efficiency of the proposed local search
technique, L-PSOCLUS was also implemented and results were
compared with the results of GLSPSO obtained from [15].
Three different types of dimensions were also used for the
problems. As can be observed in Tables 7–9, across the three
dimensions, GLSPSOwas only able to perform better than L-
PSOCLUS in Ackley problem. Apart from Griewank problem
(dimension 10), GLSPSOwas outperformed by L-PSOCLUS in
the remaining four problems. L-PSOCLUS was able to obtain
global optimum for Griewank and Sphere problems across
the three dimensions, but, for Rastrigin, it was able to get
global minimum for dimension 10. Again, the proposed local
search technique demonstrates better exploitation ability
than GLSPSO.

5.4.3. Comparison of R-PSO
𝐶𝐿𝑈𝑆

and L-PSO
𝐶𝐿𝑈𝑆

with PSOlis.
Presented in Table 10 is the result obtained by L-PSOCLUS

The Scientific World Journal 7

Table 3: Benchmark problems.

Number Problem Formulation Feature Search range

1 Ackley 𝑓 (
→
𝑥) = −20 exp(−0.2√ 1

𝑛

𝑑

∑

𝑖=1

𝑥
2

𝑖
) − exp(1

𝑛

𝑑

∑

𝑖=1

cos (2𝜋𝑥
𝑖
)) + 20 + 𝑒 MN ±32

2 Booth 𝑓 (
→
𝑥) = (𝑥

1
+ 2𝑥
2
− 7)
2

+ (2𝑥
1
+ 𝑥
2
− 5)
2 MN ±10

3 Easom 𝑓 (
→
𝑥) = − cos (𝑥

1
) cos (𝑥

2
) exp (−(𝑥

1
− 𝜋)
2
− (𝑥
2
− 𝜋)
2
) UN ±100

4 Griewank 𝑓 (
→
𝑥) =

1

4000

(

𝑑

∑

𝑖=1

𝑥
2

𝑖
) − (

𝑑

∏

𝑖=1

cos(
𝑥
𝑖

√𝑖

)) + 1 MN ±600

5 Dixon-Price 𝑓 (
→
𝑥) = (𝑥

1
− 1)
2

+

𝑑

∑

𝑖=2

𝑖(2𝑥
2

𝑖
− 𝑥
𝑖−1
)

2

UN ±10

6 Levy
𝑓 (

→
𝑥) = sin2 (𝜋𝑦

1
) +

𝑑−1

∑

𝑖=1

(𝑦
𝑖
− 1)
2
(1 + 10 sin2 (𝜋𝑦

𝑖
+ 1)) + (𝑦

𝑑
− 1)
2

(1 + sin2 (2𝜋𝑥
𝑑
)) ,

where 𝑦
𝑖
= 1 +

𝑥
𝑖
− 1

4

, and 𝑖 = 1, 2, . . . , 𝑑

MN ±10

7 Michalewicz 𝑓 (
→
𝑥) = −

𝑑

∑

𝑖=1

sin (𝑥
𝑖
) [sin(

𝑖𝑥
2

𝑖

𝜋

)]

2𝑚

, where 𝑚 = 10 MS [0, 𝜋]

8 Noisy Quartic 𝑓 (
→
𝑥) =

𝑑

∑

𝑖=1

𝑖𝑥
4

𝑖
+ random(0, 1) US ±1.28

9 Noncontinous
Rastrigin

𝑓 (
→
𝑥) =

𝑑

∑

𝑖=1

(𝑦
2

𝑖
− 10 cos (2𝜋𝑦

𝑖
) + 10)

𝑦
𝑖
=

{

{

{

𝑥
𝑖

if

𝑥
𝑖

< 0.5

round(2𝑥
𝑖
)

2

if

𝑥
𝑖

≥ 0.5

}

}

}

MS ±5.12

10 Rastrigin 𝑓 (
→
𝑥) =

𝑑

∑

𝑖=1

(𝑥
2

𝑖
− 10 cos (2𝜋𝑥

𝑖
) + 10) MS ±5.12

11 Rosenbrock 𝑓 (
→
𝑥) =

𝑑−1

∑

𝑖=1

(100 (𝑥
𝑖+1

− 𝑥
2

𝑖
)

2

) + (𝑥
𝑖
− 1)
2 UN ±30

12 Rotated
Ellipsoid 𝑓 (

→
𝑥) =

𝑑

∑

𝑖=1

(

𝑖

∑

𝑗=1

𝑥
𝑗
)

2

UN ±100

13 Salomon 𝑓 (
→
𝑥) = − cos(2𝜋

𝑑

∑

𝑖=1

𝑥
2

𝑖
) + 0.1√

𝑑

∑

𝑖=1

𝑥
2

𝑖
+ 1 MN ±100

14 Schaffer’s f6 𝑓 (
→
𝑥) =

𝑑−1

∑

𝑖=1

(0.5 +

sin2 (√𝑥2
𝑖+1

+ 𝑥
2

𝑖
) − 0.5

(0.001 (𝑥
2

𝑖+1
+ 𝑥
2

𝑖
) + 1)

2
) MN ±100

15 Schwefel 𝑓 (
→
𝑥) =

𝑛

∑

𝑖=1

− 𝑥
𝑖
sin(√

𝑥
𝑖

) MS ±500

16 Schwefel P2.22 𝑓 (
→
𝑥) =

𝑑

∑

𝑖=1

𝑥
𝑖

+

𝑑

∏

𝑖=1

𝑥
𝑖

UN ±10

17 Shubert 𝑓 (
→
𝑥) =

𝑑

∏

𝑖=1

(

5

∑

𝑗=1

𝑗 cos ((𝑗 + 1) 𝑠𝑥
𝑖
+ 𝑗)) MN ±10

18 Sphere 𝑓 (
→
𝑥) =

𝑑

∑

𝑖=1

𝑥
2

𝑖
US ±100

19 Step 𝑓 (
→
𝑥) =

𝑑

∑

𝑖=1

(⌊𝑥
𝑖
+ 0.5⌋)

2 US ±10

20 SumSquares US ±10

21 Trid 𝑓 (
→
𝑥) =

𝑑

∑

𝑖=1

(𝑥
𝑖
− 1)
2

−

𝑑

∑

𝑖=2

𝑥
𝑖
𝑥
𝑖−1 UN ±d2

8 The Scientific World Journal

Table 4: Comparison between GLSPSO and 𝑅-PSOCLUS for problems with dimension of 10.

Problem Ackley Griewank Rastrigin Rosenbrock Sphere
Algorithm GLSPSO 𝑅-PSOCLUS GLSPSO 𝑅-PSOCLUS GLSPSO 𝑅-PSOCLUS GLSPSO 𝑅-PSOCLUS GLSPSO 𝑅-PSOCLUS

Best fitness 0.0364 0.0000 4.2879𝑒 −

04

0.0000e +
00 8.8062 0.0000 2.6188 0.0000 4.7832𝑒 −

04

3.1461e −
43

Mean
fitness 0.3413 17.1371 0.0041 0.0016 29.4936 0.0000 9.0025 1.9971 0.0142 0.0000

Worst
fitness 1.2653 20.0888 0.0419 0.0791 50.4781 0.0000 18.9887 3.1444 0.0476 0.0000

Std. Dev. 0.2762 6.7543 0.0061 0.0111 10.4372 0.0000 0.034 0.7262 0.0123 0.0000

Table 5: Comparison between GLSPSO and 𝑅-PSOCLUS for problems with dimension of 30.

Problem Ackley Griewank Rastrigin Rosenbrock Sphere
Algorithm GLSPSO R-PSOCLUS GLSPSO 𝑅-PSOCLUS GLSPSO 𝑅-PSOCLUS GLSPSO 𝑅-PSOCLUS GLSPSO 𝑅-PSOCLUS

Best fitness 2.2784 20.3075 0.0897 0.0000 109.5946 13.9247 175.8785 22.7589 1.9123 0.0000
Mean
fitness 2.8398 20.4778 0.1257 0.0000 185.5221 36.3715 218.4976 27.5147 2.7449 0.0000

Worst
fitness 3.2952 20.5792 0.2074 0.0000 229.6229 72.6581 259.2466 76.7433 3.9559 0.0000

Std. Dev. 0.2273 0.0574 0.0274 0.0000 24.9829 16.4882 21.8027 9.9182 0.4840 0.0000

Table 6: Comparison between GLSPSO and 𝑅-PSOCLUS for problems with dimension of 100.

Problem Ackley Griewank Rastrigin Rosenbrock Sphere
Algorithm GLSPSO 𝑅-PSOCLUS GLSPSO 𝑅-PSOCLUS GLSPSO 𝑅-PSOCLUS GLSPSO 𝑅-PSOCLUS GLSPSO 𝑅-PSOCLUS

Best fitness 3.5148 20.9666 0.3195 0.0022 792.004 293.5795 1378.0 1867.2669 23.0614 0.1970
Mean
fitness 3.6709 21.0691 0.4242 0.0230 881.0822 688.0048 1602.0 24909.8486 27.2534 4.7232

Worst
fitness 3.7664 21.1306 0.4992 0.0923 934.9773 848.9927 1763.0 95519.4585 29.1615 16.1174

Std. Dev. 0.0551 0.0316 0.0303 0.0255 35.2341 103.1854 90.2874 21083.5791 1.2253 4.2498

Table 7: Comparison between GLSPSO and 𝐿-PSOCLUS for problems with dimension of 10.

Problem Ackley Griewank Rastrigin Rosenbrock Sphere
Algorithm GLSPSO 𝐿-PSOCLUS GLSPSO 𝐿-PSOCLUS GLSPSO 𝐿-PSOCLUS GLSPSO 𝐿-PSOCLUS GLSPSO 𝐿-PSOCLUS

Best fitness 0.0364 0.0000 4.2879𝑒 −

04

0.0000e +
00 8.8062 0.0000 2.6188 0.0000 4.7832𝑒 −

04

6.4151e −
76

Mean
fitness 0.3413 18.2504 0.0041 0.0042 29.4936 0.0000 9.0025 1.0516 0.0142 0.0000

Worst
fitness 1.2653 20.0771 0.0419 0.1008 50.4781 0.0000 18.9887 2.8033 0.0476 0.0000

Std. Dev. 0.2762 5.4640 0.0061 0.0186 10.4372 0.0000 0.034 0.6449 0.0123 0.0000

Table 8: Comparison between GLSPSO and 𝐿-PSOCLUS for problems with dimension of 30.

Problem Ackley Griewank Rastrigin Rosenbrock Sphere
Algorithm GLSPSO 𝐿-PSOCLUS GLSPSO 𝐿-PSOCLUS GLSPSO 𝐿-PSOCLUS GLSPSO 𝐿-PSOCLUS GLSPSO 𝐿-PSOCLUS

Best fitness 2.2784 20.3184 0.0897 0.0000 109.5946 0.1444 175.8785 0.0000 1.9123 0.0000
Mean
fitness 2.8398 20.4631 0.1257 0.0000 185.5221 18.7372 218.4976 25.1359 2.7449 0.0000

Worst
fitness 3.2952 20.5734 0.2074 0.0000 229.6229 38.8433 259.2466 77.4444 3.9559 0.0000

Std. Dev. 0.2273 0.0615 0.0274 0.0000 24.9829 8.4570 21.8027 13.2536 0.4840 0.0000

The Scientific World Journal 9

Table 9: Comparison between GLSPSO and 𝐿-PSOCLUS for problems with dimension of 100.

Problem Ackley Griewank Rastrigin Rosenbrock Sphere
Algorithm GLSPSO 𝐿-PSOCLUS GLSPSO 𝐿-PSOCLUS GLSPSO 𝐿-PSOCLUS GLSPSO 𝐿-PSOCLUS GLSPSO 𝐿-PSOCLUS

Best fitness 3.5148 20.2136 0.3195 0.0000 792.004 212.0416 1378.0 93.7390 23.0614 0.0000
Mean
fitness 3.6709 21.0491 0.4242 0.0000 881.0822 366.6521 1602.0 107.2300 27.2534 0.0000

Worst
fitness 3.7664 21.1152 0.4992 0.0000 934.9773 504.2204 1763.0 428.1758 29.1615 0.0000

Std. Dev. 0.0551 0.1254 0.0303 0.0000 35.2341 68.2009 90.2874 56.9231 1.2253 0.0000

Table 10: Comparison between PSOlis, 𝑅-PSOCLUS and 𝐿-PSOCLUS.

Problem Algorithm
PSOlis 𝑅-PSOCLUS 𝐿-PSOCLUS

Ackley 4.081𝑒 − 03 9.263e − 13 3.7135e − 15
Griewank 2.673𝑒 − 02 6.921e − 03 2.945e − 07
Rastrigin 2.005 1.948e − 09 8.893e − 06
Rosenbrock 3.987 5.180e − 01 2.338e − 01
Sphere 6.137𝑒 − 14 2.197e − 27 2.401e − 54

in comparison with result for PSOlis from [18]. Again, the
outstanding performance of L-PSOCLUS over its competitor
is evidence that the proposed local search technique is very
efficient and capable of complementing the global search
ability of PSO to obtain quality results by making it overcome
premature convergence.

5.4.4. Comparison between RIW-PSO and R-PSO
𝐶𝐿𝑈𝑆

. The
results presented in Table 11 are for the nonscaled test prob-
lems as optimized by the two algorithms while those in
Tables 12–14 are for the scaled problems with 10, 20, and 30
dimensions, respectively. In Table 19 are the results obtained
using the Wilcoxon sign rank nonparametric test.

(1) Results for the Nonscaled Problems. For the 7 nonscaled
problems, Table 11 shows that there are no performance
differences between the two algorithms in optimizing Booth,
Easom, Shubert, and Trid problems. For Michalewicz, Schaf-
fer’s f6, and Salomon, R-PSOCLUS obtained more quality
solutions and demonstrated better global search ability than
RIW-PSO. The convergence curves in Figures 1(c) and 1(d)
show that R-PSOCLUS has faster and better convergence.
However, the 𝑃 value (0.190) obtained from the Wilcoxon
sign test shown in Table 19 revealed that there is no statistical
difference in the performance between the two algorithms for
the nonscaled problems. Also, the two algorithms have equal
median fitness.

(2) Results for 10-Dimensional Problems. For the scaled prob-
lems with 10 dimensions, Table 12 clearly reveals great dif-
ferences in performance between RIW-PSO and R-PSOCLUS.
The two algorithms successfully optimized Rastrigin, Rosen-
brock, Rotated Ellipsoid, Schwefel 2.22, Sphere, and Sum
Squares problems with equal success rate of 100%, but
R-PSOCLUS obtained significantly better mean fitness and

standard deviation with fewer number of iterations. R-
PSOCLUS was able to obtain the minimum optima for both
Rastrigin and Step problems. For the other problems, R-
PSOCLUS clearly outperformed RIW-PSO in solution quality,
convergence precision, global search ability, and robustness,
though none of them could meet the success threshold in
optimizing the Noisy Quartic problem. The 𝑃 value (0.001)
obtained from the Wilcoxon sign test presented in Table 19
indicates that there is statistically significant difference in
performance between the two algorithms with a large effect
size of 𝑟 = 0.6 in favour of R-PSOCLUS. The median fitness is
also an evidence of this.

(3) Results for 20-Dimensional Problems. The same set of
experiments was performed using the same scaled problems
but with their dimensions increased to 20, which also
increased their complexities exceptGriewank. The numerical
results in Table 13 also show that there are great differences
in performance between RIW-PSO and R-PSOCLUS. The two
algorithms had equal success rate of 100% in optimizing
Rosenbrock, Schwefel 2.22, Sphere, and Sum Squares prob-
lems with R-PSOCLUS obtaining significantly better mean
fitness (except Rosenbrock), standard deviation, and fewer
number of iterations. Out of the remaining 10 problems R-
PSOCLUS outperformed RIW-PSO in 9 of them with better
solution quality, convergence precision, global search ability,
and robustness; it also had success rate of 100% in 6 of
the problems compared with RIW-PSO and was able to
obtain global minimum forGriewank and Step problems.The
algorithms could not meet the success criteria in optimizing
theDixon-Price,Noisy Quartic, and Schwefel problems, butR-
PSOCLUS still performed better than RIW-PSO. The 𝑃 value
(0.023) from Wilcoxon sign test as shown in Table 19 also
indicates that there is statistically significant difference in
performance between the two algorithms with a medium
effect size of 𝑟 = 0.43 in favour of R-PSOCLUS. The median
fitness value of R-PSOCLUS is smaller than that of RIW-PSO.

(4) Results for 30-Dimensional Problems. Table 14 represents
the experimental results obtained by the two algorithms using
the same scaled problems but with their dimensions scaled
to 30, which further increased their complexities except
Griewank. The results further show the great differences
in performance between RIW-PSO and R-PSOCLUS. Out of
the 14 problems R-PSOCLUS had 100% success rate in 7 of
them (4 multimodal and 3 unimodal) while RIW-PSO could
only have in 3 of them (all unimodal). The two algorithms

10 The Scientific World Journal

Ta
bl
e
11
:R

es
ul
ts
fo
rR

IW
-P
SO

an
d
𝑅
-P
SO

CL
U
S
fo
rt
he

7
no

ns
ca
le
d
be
nc
hm

ar
k
pr
ob

lem
s.

Pr
ob

le
m

Bo
ot
h

Ea
so
m

M
ic
ha
le
w
ic
z

Sc
ha
ffe
r’s

f6
Sa
lo
m
on

Sh
ub

er
t

Tr
id
-6

A
lg
or
ith

m
RI
W
-P
SO

𝑅
-P
SO

CL
U
S

RI
W
-P
SO

𝑅
-P
SO

CL
U
S

RI
W
-P
SO

𝑅
-P
SO

CL
U
S

RI
W
-P
SO

𝑅
-P
SO

CL
U
S

RI
W
-P
SO

𝑅
-P
SO

CL
U
S

RI
W
-P
SO

𝑅
-P
SO

CL
U
S

RI
W
-P
SO

𝑅
-P
SO

CL
U
S

Be
st
fit
ne
ss

0
.0
0
0
0
𝑒
+

0
0

0
.0
0
0
0
𝑒
+

00
−
1
.0
0
0
0
𝑒
+

0
0

−
1
.0
0
0
0
𝑒
+

0
0

−
3
.3
4
5
3
𝑒
+

0
0

−
4.
43

71
e+

00
0
.0
0
0
0
𝑒
+

0
0

0
.0
0
0
0
𝑒
+

0
0

9
.9
8
3
3
𝑒
−

0
2

7.
36

08
e−

29
−
1
.8
6
7
3
𝑒
+

0
2

−
1
.8
6
7
3
𝑒
+

0
2

−
5
.0
0
0
0
𝑒
+

0
0

−
5
.0
0
0
0
𝑒
+

0
0

M
ea
n
fit
ne
ss

0
.0
0
0
0
𝑒
+

0
0

0
.0
0
0
0
𝑒
+

0
0

−
1
.0
0
0
0
𝑒
+

0
0

−
1
.0
0
0
0
𝑒
+

0
0

−
2
.6
0
3
4
𝑒
+

0
0

−
4.
10

08
e+

00
4
.7
0
5
2
𝑒
−

0
3

1.
16

59
e−

03
9
.9
8
3
3
𝑒
−

0
2

7.
00

73
e−

02
−
1
.8
6
7
3
𝑒
+

0
2

−
1
.8
6
7
3
𝑒
+

0
2

−
5
.0
0
0
0
𝑒
+

0
0

−
5
.0
0
0
0
𝑒
+

0
0

St
d.
D
ev
.

0
.0
0
0
0
𝑒
+

0
0

0
.0
0
0
0
𝑒
+

0
0

6
.6
6
1
3
𝑒
−

1
6

6
.6
6
1
3
𝑒
−

1
6

4
.2
7
1
9
𝑒
−

0
1

1.
78

66
e−

01
4
.8
1
8
3
𝑒
−

0
3

3.
15

73
e−

03
6.
20

63
e−

18
4
.4
2
3
6
𝑒
−

0
2

3 .
77

06
e−

14
4
.0
5
9
4
𝑒
−

1
4

8
.6
6
2
8
𝑒
−

1
4

7.
05
55
e−

14
Av

.i
te
ra
tio

n
39
.12

37
.9
2

55
.0

45
.4
8

—
—

13
3.
83

10
9.
95

—
92

3.
40

71
.8

10
7.1
6

114
.4
0

11
0.
20

SR
(%

)
10
0

10
0

10
0

10
0

0
0

48
88

0
20

10
0

10
0

10
0

10
0

The Scientific World Journal 11

Ta
bl
e
12
:R

es
ul
ts
fo
rR

IW
-P
SO

an
d
𝑅
-P
SO

CL
U
S
fo
rt
he

14
sc
al
ed

be
nc
hm

ar
k
pr
ob

le
m
sw

ith
di
m
en
sio

n
of

10
.

Pr
ob

le
m

Ac
kl
ey

G
rie

w
an
k

D
ix
on

-P
ric

e
Le
vy

N
oi
sy

Q
ua
rt
ic

N
on

co
nt
in
uo

us
Ra

st
rig

in
Ra

st
rig

in
A
lg
or
ith

m
RI
W
-P
SO

𝑅
-P
SO

CL
U
S

RI
W
-P
SO

𝑅
-P
SO

CL
U
S

RI
W
-P
SO

𝑅
-P
SO

CL
U
S

RI
W
-P
SO

𝑅
-P
SO

CL
U
S

RI
W
-P
SO

𝑅
-P
SO

CL
U
S

RI
W
-P
SO

𝑅
-P
SO

CL
U
S

RI
W
-P
SO

𝑅
-P
SO

CL
U
S

Be
st
fit
ne
ss
3
.9
9
6
8
𝑒
−

1
5

4.
44
09
e−

16
7
.3
9
6
0
𝑒
−

0
3

0.
00

00
e+

00
2
.4
6
5
2
𝑒
−

3
1

2
.4
6
5
2
𝑒
−

3
1

1
.4
9
9
7
𝑒
−

3
2

1
.4
9
9
7
𝑒
−

3
2

5
.9
3
0
8
𝑒
−

0
4

2.
77

56
e−

05
6
.0
0
0
2
𝑒
+

0
0

0.
00
00
e+

00
3
.9
7
6
7
𝑒
+

0
0

0.
00
00
e+

00
M
ea
n

fit
ne
ss

1
.0
3
1
6
𝑒
−

0
1

2.
85

99
e−

15
6
.6
2
3
8
𝑒
−

0
2

2.
85

39
e−

03
6
.1
3
3
3
𝑒
−

0
1

6
.1
3
3
3
𝑒
−

0
1

4
.1
6
3
0
𝑒
−

0
1

1.
49

97
e−

32
4
.6
4
5
5
𝑒
−

0
3

1.
15

90
e−

04
1
.1
6
4
0
𝑒
+

0
1

7.
10

54
e−

17
1
.2
2
0
8
𝑒
+

0
1

0.
00
00
e+

00

St
d.
D
ev
.

5
.0
5
3
7
𝑒
−

0
1

1.
65

73
e−

15
3
.3
2
1
8
𝑒
−

0
2

1 .
39

81
e−

02
1
.8
0
8
6
𝑒
−

0
1

1
.8
0
8
6
𝑒
−

0
1

7
.5
3
0
7
𝑒
−

0
1

0.
00

00
e+

00
3
.2
7
8
1
𝑒
−

0
3

5.
95

30
e−

05
4
.3
5
3
3
𝑒
+

0
0

3.
48

09
e−

16
4
.4
6
8
4
𝑒
+

0
0

0.
00
00
e+

00
Av

.
ite
ra
tio

n
28
7.8

8
26

3.
68

—
46

4.
16

29
5.
50

25
8.
50

12
7.3
1

99
.3
2

—
—

40
.4
9

12
.4
4

49
.4
4

25
.0
0

SR
(%

)
96

10
0

0
96

8
8

52
10
0

0
0

92
10
0

10
0

10
0

Pr
ob

le
m

Ro
se
nb

ro
ck

Ro
ta
te
d
El
lip

so
id

Sc
hw

ef
el

Sc
hw

ef
el
2.
22

Sp
he
re

St
ep

Su
m

Sq
ua
re
s

A
lg
or
ith

m
RI
W
-P
SO

𝑅
-P
SO

CL
U
S

RI
W
-P
SO

𝑅
-P
SO

CL
U
S

RI
W
-P
SO

𝑅
-P
SO

CL
U
S

RI
W
-P
SO

𝑅
-P
SO

CL
U
S

RI
W
-P
SO

𝑅
-P
SO

CL
U
S

RI
W
-P
SO

𝑅
-P
SO

CL
U
S

RI
W
-P
SO

𝑅
-P
SO

CL
U
S

Be
st
fit
ne
ss

4.
65

41
e−

03
3
.7
2
4
3
𝑒
−

0
1

2
.5
6
9
0
𝑒
−

2
7

5.
92

10
e−

29
−
3
.2
8
1
8
𝑒
+

0
3

−
4.
18

98
e+

03
1
.8
3
4
8
𝑒
−

3
2

2.
75

55
e−

34
7
.3
6
7
3
𝑒
−

6
1

5.
44

96
e−

61
0
.0
0
0
0
𝑒
+

0
0

0
.0
0
0
0
𝑒
+

0
0

8.
18

35
e−

62
1
.9
0
8
9
𝑒
−

6
1

M
ea
n

fit
ne
ss

1
.4
4
5
9
𝑒
+

0
0

7.
18

32
e−

01
1
.0
4
5
7
𝑒
−

2
1

3.
54

37
e−

24
−
2
.6
1
9
9
𝑒
+

0
3

−
4.
13

84
e+

03
3
.3
3
8
2
𝑒
−

2
8

1.
28

30
e−

30
4
.1
7
6
0
𝑒
−

5
3

9.
27

87
e−

55
8
.0
0
0
0
𝑒
−

0
1

0.
00

00
e+

00
2
.1
9
0
9
𝑒
−

5
3

9.
33
29
e−

54

St
d.
D
ev
.

1
.6
3
6
2
𝑒
+

0
0

2.
31

27
e−

01
3
.0
9
8
4
𝑒
−

2
1

1 .
16

17
e−

23
3
.3
3
5
0
𝑒
+

0
2

9.
79

87
e+

01
1
.3
4
0
6
𝑒
−

2
7

4.
67

01
e−

30
1
.2
4
6
7
𝑒
−

5
2

3.
67
64
−
54

1
.9
1
8
3
+
0
0

0.
00

00
e+

00
1
.0
0
5
2
𝑒
−

5
2

3.
38
39
e−

53
Av

.
ite
ra
tio

n
89
.2
8

35
.16

42
6.
60

33
7.1
6

—
87

7.6
9

26
8.
84

22
2.
04

18
0.
12

15
8.
08

88
.7
2

15
.6
8

14
3.
52

12
3.
48

SR
(%

)
10
0

10
0

10
0

10
0

0
52

10
0

10
0

10
0

10
0

72
10
0

10
0

10
0

12 The Scientific World Journal

Ta
bl
e
13
:R

es
ul
ts
fo
rR

IW
-P
SO

an
d
𝑅
-P
SO

CL
U
S
fo
rt
he

14
sc
al
ed

be
nc
hm

ar
k
pr
ob

le
m
sw

ith
di
m
en
sio

n
of

20
.

Pr
ob

le
m

Ac
kl
ey

G
rie

w
an
k

D
ix
on

-P
ric

e
Le
vy

N
oi
sy

Q
ua
rt
ic

N
on

co
nt
in
uo

us
Ra

st
rig

in
Ra

st
rig

in
A
lg
or
ith

m
RI
W
-P
SO

𝑅
-P
SO

CL
U
S

RI
W
-P
SO

𝑅
-P
SO

CL
U
S

RI
W
-P
SO

𝑅
-P
SO

CL
U
S

RI
W
-P
SO

𝑅
-P
SO

CL
U
S

RI
W
-P
SO

𝑅
-P
SO

CL
U
S

RI
W
-P
SO

𝑅
-P
SO

CL
U
S

RI
W
-P
SO

𝑅
-P
SO

CL
U
S

Be
st
fit
ne
ss
7
.5
4
9
5
𝑒
−

1
5

3.
99

68
e−

15
0
.0
0
0
0
𝑒
+

0
0

0.
00

00
e+

00
6
.6
6
6
7
𝑒
−

0
1

6
.6
6
6
7
𝑒
−

0
1

1
.4
9
9
7
𝑒
−

3
2

1
.4
9
9
7
𝑒
−

3
2

3
.9
7
5
8
𝑒
−

0
3

8.
27

84
e−

05
1
.2
0
0
0
𝑒
+

0
1

1.
66

98
e−

03
1
.4
0
0
0
𝑒
+

0
1

9.
85
24
e−

03
M
ea
n

fit
ne
ss

2
.6
0
1
7
𝑒
−

0
1

3.
99

68
e−

15
2
.7
9
3
5
𝑒
−

0
2

0.
00

00
e+

00
6
.6
6
6
7
𝑒
−

0
1

6
.6
6
6
7
𝑒
−

0
1

7
.8
4
2
1
𝑒
−

0
1

1.
49

97
e−

32
1
.0
2
8
6
𝑒
−

0
2

2.
77

71
e−

04
3
.0
5
2
1
𝑒
+

0
1

4.
44

48
e+

00
2
.8
5
2
1
𝑒
+

0
1

4.
35
99
e+

00

St
d.
D
ev
.

6
.0
3
8
6
𝑒
−

0
1

0.
00

00
e+

00
1
.8
2
1
6
𝑒
−

0
2

0.
00

00
e+

00
2.
42

22
e−

16
4
.1
3
5
2
𝑒
−

0
8

8
.0
2
3
0
𝑒
−

0
1

0.
00

00
e+

00
5
.0
7
9
6
𝑒
−

0
3

1.
35

66
e−

04
1
.0
9
2
2
𝑒
+

0
1

2.
56

68
e+

00
9
.5
0
8
7
𝑒
+

0
0

1.
96
84
e+

00
Av

.
ite
ra
tio

n
58
0.
67

48
8.
52

40
2.
00

38
2.
80

—
—

24
8.
00

20
0.
04

—
—

51
.5

86
.7
2

56
.2

89
.0
8

SR
(%

)
84

10
0

4
10
0

0
0

16
10
0

0
0

16
10
0

20
10
0

Pr
ob

le
m

Ro
se
nb

ro
ck

Ro
ta
te
d
El
lip

so
id

Sc
hw

ef
el

Sc
hw

ef
el
2.
22

Sp
he
re

St
ep

Su
m

Sq
ua
re
s

A
lg
or
ith

m
RI
W
-P
SO

𝑅
-P
SO

CL
U
S

RI
W
-P
SO

𝑅
-P
SO

CL
U
S

RI
W
-P
SO

𝑅
-P
SO

CL
U
S

RI
W
-P
SO

𝑅
-P
SO

CL
U
S

RI
W
-P
SO

𝑅
-P
SO

CL
U
S

RI
W
-P
SO

𝑅
-P
SO

CL
U
S

RI
W
-P
SO

𝑅
-P
SO

CL
U
S

Be
st
fit
ne
ss

8.
28

27
e−

01
7
.4
6
7
2
𝑒
+

0
0

8
.7
6
9
4
𝑒
−

0
4

7.
99

22
e−

09
−
5
.9
3
1
8
𝑒
+

0
3

−
8.
19

03
e+

03
2
.4
7
7
5
𝑒
−

2
2

3.
52

23
e−

26
3
.1
8
4
0
𝑒
−

4
3

2.
95

31
e−

44
0
.0
0
0
0
𝑒
+

0
0

0.
00

00
e+

00
4
.8
7
2
2
𝑒
−

4
5

2.
12
77
e−

46
M
ea
n

fit
ne
ss

9.
16

08
e+

00
1
.0
4
8
8
𝑒
+

0
1

7.
21
46
e−

06
1
.9
5
9
1
𝑒
−

0
5

−
4
.5
6
3
8
𝑒
+

0
3

−
7.
04

64
e+

03
8
.5
0
8
3
𝑒
−

1
7

4.
94

20
e−

23
3
.9
7
5
9
𝑒
−

3
7

8.
41

51
e−

38
1
.5
6
0
0
𝑒
+

0
0

0.
00

00
e+

00
8
.3
3
9
3
𝑒
−

3
9

1.
48
59
e−

39

St
d.
D
ev
.

3
.5
7
1
0
𝑒
+

0
0

8.
16

20
e−

01
1.
92
00
e−

05
7
.2
4
6
6
𝑒
−

0
5

6
.0
8
6
7
𝑒
+

0
2

8.
40

04
e+

02
3
.9
6
8
6
𝑒
−

1
6

1.
25

54
e−

22
1
.2
2
1
8
𝑒
−

3
6

3.
04

36
e−

37
1
.6
0
2
0
𝑒
+

0
0

0.
00

00
e+

00
1
.4
2
8
0
𝑒
−

3
8

4.
99
18
e−

39
Av

.
ite
ra
tio

n
26
3.
40

13
3.
72

17
63
.10

16
36

.7
4

—
—

57
5.
92

41
8.
88

35
4.
00

30
9.
04

64
6.
57

19
.3
6

31
0.
72

26
8.
12

SR
(%

)
10
0

10
0

84
92

0
0

10
0

10
0

10
0

10
0

28
10
0

10
0

10
0

The Scientific World Journal 13

Ta
bl
e
14
:R

es
ul
ts
fo
rR

IW
-P
SO

an
d
𝑅
-P
SO

CL
U
S
fo
rt
he

14
sc
al
ed

be
nc
hm

ar
k
pr
ob

le
m
sw

ith
di
m
en
sio

n
of

30
.

Pr
ob

le
m

Ac
kl
ey

G
rie

w
an
k

D
ix
on

-P
ric

e
Le
vy

N
oi
sy

Q
ua
rt
ic

N
on

co
nt
in
uo

us
Ra

st
rig

in
Ra

st
rig

in
A
lg
or
ith

m
RI
W
-P
SO

𝑅
-P
SO

CL
U
S

RI
W
-P
SO

𝑅
-P
SO

CL
U
S

RI
W
-P
SO

𝑅
-P
SO

CL
U
S

RI
W
-P
SO

𝑅
-P
SO

CL
U
S

RI
W
-P
SO

𝑅
-P
SO

CL
U
S

RI
W
-P
SO

𝑅
-P
SO

CL
U
S

RI
W
-P
SO

𝑅
-P
SO

CL
U
S

Be
st
fit
ne
ss
1
.4
6
5
5
𝑒
−

1
4

3.
99

68
e−

15
0
.0
0
0
0
𝑒
+

0
0

0.
00

00
e+

00
6
.6
6
6
7
𝑒
−

0
1

6
.6
6
6
7
𝑒
−

0
1

2
.6
8
5
8
𝑒
−

0
1

1.
49

97
e−

32
3
.3
4
5
4
𝑒
−

0
3

1.
08

73
e−

04
1
.9
0
0
1
𝑒
+

0
1

5.
77

46
e−

02
1
.7
8
9
5
𝑒
+

0
1

0.
00
00
e+

00
M
ea
n

fit
ne
ss

5
.3
3
4
5
𝑒
−

0
1

4.
13

89
e−

15
1
.1
2
0
0
𝑒
−

0
2

0.
00

00
e+

00
6
.6
6
6
7
𝑒
−

0
1

6
.6
7
1
6
𝑒
−

0
1

1
.8
2
8
6
𝑒
+

0
0

1.
49

97
e−

32
1
.1
2
5
2
𝑒
−

0
2

3.
14

38
e−

04
4
.3
3
3
1
𝑒
+

0
1

9.
08

06
e+

00
3
.2
4
8
9
𝑒
+

0
1

6.
58
10
e+

00

St
d.
D
ev
.

8
.1
5
4
3
𝑒
−

0
1

6.
96

19
e−

16
1
.4
7
5
7
𝑒
−

0
2

0 .
00

00
e+

00
3.
26

34
e−

16
2
.4
1
4
6
𝑒
−

0
3

1
.1
7
8
1
𝑒
+

0
0

0.
00

00
e+

00
4
.3
9
2
6
𝑒
−

0
3

1.
17

54
e−

04
1
.8
8
8
9
𝑒
+

0
1

5.
10

00
e+

00
1
.0
6
6
2
𝑒
+

0
1

5.
72
09
e+

00
Av

.
ite
ra
tio

n
95
9.8

8
77
6.
20

62
8.
00

52
5.
48

—
—

—
34

8.
76

—
—

10
7

37
7.7

2
14
1.0

0
37
9.
35

SR
(%

)
64

10
0

36
10
0

0
0

0
10
0

0
0

4
10
0

4
92

Pr
ob

le
m

Ro
se
nb

ro
ck

Ro
ta
te
d
El
lip

so
id

Sc
hw

ef
el

Sc
hw

ef
el
2.
22

Sp
he
re

St
ep

Su
m

Sq
ua
re
s

A
lg
or
ith

m
RI
W
-P
SO

𝑅
-P
SO

CL
U
S

RI
W
-P
SO

𝑅
-P
SO

CL
U
S

RI
W
-P
SO

𝑅
-P
SO

CL
U
S

RI
W
-P
SO

𝑅
-P
SO

CL
U
S

RI
W
-P
SO

𝑅
-P
SO

CL
U
S

RI
W
-P
SO

𝑅
-P
SO

CL
U
S

RI
W
-P
SO

𝑅
-P
SO

CL
U
S

Be
st
fit
ne
ss

4.
05

55
e−

02
1
.8
9
4
2
𝑒
+

0
1

3
.2
5
9
9
𝑒
−

0
4

1.
71

48
e−

04
−
7
.9
6
5
4
𝑒
+

0
3

−
1.
06

92
e+

04
2
.7
8
1
9
𝑒
−

1
7

1.
00

11
e−

24
5
.7
9
4
7
𝑒
−

3
9

5.
04

90
e−

42
0
.0
0
0
0
𝑒
+

0
0

0
.0
0
0
0
𝑒
+

0
0

1
.7
3
1
0
𝑒
−

3
6

1.
23
87
e−

44
M
ea
n

fit
ne
ss

2
.3
7
9
4
𝑒
+

0
1

1.
99

30
e+

01
5.
50
35
e−

03
1
.8
3
2
7
𝑒
−

0
2

−
6
.7
3
7
6
𝑒
+

0
3

−
9.
10

33
e+

03
4
.1
5
9
7
𝑒
−

1
3

6.
43

68
e−

23
4
.1
2
7
7
𝑒
−

3
3

3.
66

73
e−

36
3
.7
6
0
0
𝑒
+

0
0

0.
00

00
e+

00
3
.9
2
4
0
𝑒
−

3
3

5.
92
19
e−

39

St
d.
D
ev
.

1
.9
0
5
2
𝑒
+

0
1

5.
22

76
e−

01
8.
19
52
e−

03
4
.4
8
2
6
𝑒
−

0
2

8
.7
7
4
7
𝑒
+

0
2

8.
65

28
e+

02
1
.5
5
4
7
𝑒
−

1
2

7.
64

62
e−

23
1
.1
4
7
3
𝑒
−

3
2

8.
20

55
e−

36
2
.3
2
0
0
𝑒
+

0
0

0.
00

00
e+

00
1
.3
9
0
9
𝑒
−

3
2

1.
29
17
e−

38
Av

.
ite
ra
tio

n
15
23
.3
6

28
13
.14

—
—

—
—

11
39
.6
4

65
8.
68

59
5.
52

50
5.
80

28
81
.0
0

21
.4
8

52
6.
28

43
6.
08

SR
(%

)
44

56
0

0
0

0
10
0

10
0

10
0

10
0

4
10
0

10
0

10
0

14 The Scientific World Journal

Ta
bl
e
15
:R

es
ul
ts
fo
rL

D
IW

-P
SO

an
d
𝐿
-P
SO

CL
U
S
fo
rt
he

7
no

ns
ca
le
d
be
nc
hm

ar
k
pr
ob

lem
s.

Pr
ob

le
m

Bo
ot
h

Ea
so
m

M
ic
ha
le
w
ic
z

Sc
ha
ffe
r’s

f6
Sa
lo
m
on

Sh
ub

er
t

Tr
id
-6

A
lg
or
ith

m
LD

IW
-P
SO

𝐿
-P
SO

CL
U
S

LD
IW

-
PS

O
𝐿
-P
SO

CL
U
S

LD
IW

-
PS

O
𝐿
-P
SO

CL
U
S

LD
IW

-
PS

O
𝐿
-P
SO

CL
U
S

LD
IW

-
PS

O
𝐿
-P
SO

CL
U
S

LD
IW

-
PS

O
𝐿
-P
SO

CL
U
S

LD
IW

-
PS

O
𝐿
-P
SO

CL
U
S

Be
st
fit
ne
ss
0
.0
0
0
0
𝑒
+
0
0

0
.0
0
0
0
𝑒
+

0
0

−
1
.0
0
0
0
𝑒
+

0
0

−
1
.0
0
0
0
𝑒
+

0
0

−
3
.4
7
9
2
𝑒
+

0
0

−
4.
37

62
e+

00
0
.0
0
0
0
𝑒
+

0
0

0
.0
0
0
0
𝑒
+

0
0

9
.9
8
3
3
𝑒
−

0
2

3.
31

89
e−

65
−
1
.8
6
7
3
𝑒
+

0
2

−
1
.8
6
7
3
𝑒
+

0
2

−
5
.0
0
0
0
𝑒
+

0
1

−
5
.0
0
0
0
𝑒
+

0
1

M
ea
n

fit
ne
ss

0
.0
0
0
0
𝑒
+
0
0

0
.0
0
0
0
𝑒
+

0
0

−
1
.0
0
0
0
𝑒
+

0
0

−
1
.0
0
0
0
𝑒
+

0
0

−
2
.6
7
3
6
𝑒
+

0
0

−
4.
10

56
e+

00
1
.5
5
4
5
𝑒
−

0
3

1.
16

59
e−

03
9
.9
8
3
3
𝑒
−

0
2

8.
78

53
e−

02
−
1
.8
6
7
3
𝑒
+

0
2

−
1
.8
6
7
3
𝑒
+

0
2

−
5
0
0
0
0
𝑒
+

0
1

−
5
0
0
0
0
𝑒
+

0
1

St
d.
D
ev
.

0
.0
0
0
0
𝑒
+
0
0

0
.0
0
0
0
𝑒
+

0
0

6
.6
6
1
3
𝑒
−

1
6

6
.6
6
1
3
𝑒
−

1
6

3
.6
9
2
1
𝑒
−

0
1

1.
61

96
e−

01
3
.5
6
1
9
𝑒
−

0
3

3.
15

73
e−

03
7.
34

34
e−

18
3
.2
4
4
2
𝑒
−

0
2

3.
93

82
e−

14
7
.5
5
5
9
𝑒
−

0
5

7 .
85

72
e−

14
9
.3
1
5
4
𝑒
−

1
4

Av
.

ite
ra
tio

n
79

.4
8

81
.16

10
7.1
6

73
.12

—
—

27
9.9

0
17
4.
14

—
74
2

17
5.
52

20
8.
20

28
7.4

8
28

1.7
2

SR
(%

)
10
0

10
0

10
0

10
0

0
0

84
88

0
12

10
0

96
10
0

10
0

The Scientific World Journal 15

Ta
bl
e
16
:R

es
ul
ts
fo
rL

D
IW

-P
SO

an
d
𝐿
-P
SO

CL
U
S
fo
rt
he

14
sc
al
ed

be
nc
hm

ar
k
pr
ob

le
m
sw

ith
di
m
en
sio

n
of

10
.

Pr
ob

le
m

Ac
kl
ey

G
rie

w
an
k

D
ix
on

-P
ric

e
Le
vy

N
oi
sy

Q
ua
rt
ic

N
on

co
nt
in
uo

us
Ra

st
rig

in
Ra

st
rig

in

A
lg
or
ith

m
LD

IW
-

PS
O

𝐿
-P
SO

CL
U
S

LD
IW

-
PS

O
𝐿
-P
SO

CL
U
S

LD
IW

-
PS

O
𝐿
-P
SO

CL
U
S

LD
IW

-
PS

O
𝐿
-P
SO

CL
U
S

LD
IW

-
PS

O
𝐿
-P
SO

CL
U
S

LD
IW

-
PS

O
𝐿
-P
SO

CL
U
S

LD
IW

-
PS

O
𝐿
-P
SO

CL
U
S

Be
st
fit
ne
ss
3
.9
9
6
8
𝑒
−

1
5

4.
44

09
e−

16
2
.9
5
1
0
𝑒
−

0
2

0.
00

00
e+

00
6
.6
6
6
7
𝑒
−

0
1

6
.6
6
6
7
𝑒
−

0
1

1
.4
9
9
7
𝑒
−

3
1

1.
49

97
e−

32
3
.4
6
4
1
−
0
4

1.
13

31
e−

05
4
.0
0
0
1
𝑒
+

0
0

0.
00

00
e+

00
2
.9
8
2
5
𝑒
+

0
0

0.
00
00
e+

00
M
ea
n

fit
ne
ss

4
.9
9
1
6
𝑒
−

1
5

2.
43

35
e−

15
8
.4
7
2
0
𝑒
−

0
2

1.
46

39
e−

06
6
.6
6
6
7
𝑒
−

0
1

6
.6
6
6
7
𝑒
−

0
1

1
.9
8
9
2
𝑒
−

0
1

1.
49

97
e−

32
2
.9
6
0
6
𝑒
−

0
3

9.
77

78
e−

05
1
.2
2
0
0
𝑒
+

0
1

4.
00

07
e−

02
9
.9
0
1
9
𝑒
+

0
0

0.
00
00
e+

00

St
d.
D
ev
.

1.
59

52
e−

15
1
.7
6
3
5
𝑒
−

1
5

2
.7
6
4
6
𝑒
−

0
2

7.
17

05
e−

06
1
.5
4
0
1
𝑒
−

1
0

1.
22

78
e−

12
4
.4
0
9
4
𝑒
−

0
1

0.
00

00
e+

00
2
.0
2
7
7
𝑒
−

0
3

6.
38

73
e−

05
6
.2
4
8
4
𝑒
+

0
0

1.
96

00
e−

01
5
.2
1
9
0
𝑒
+

0
0

0.
00
00
e+

00
Av

.
ite
ra
tio

n
50
0.
92

48
6.
84

—
70
3.
83

—
—

30
9.5

8
28

1.3
6

—
—

40
.8
6

12
.8
8

45
.13

26
.2
4

SR
(%

)
10
0

10
0

0
96

0
0

76
10
0

0
0

88
10
0

96
10
0

Pr
ob

le
m

Ro
se
nb

ro
ck

Ro
ta
te
d
El
lip

so
id

Sc
hw

ef
el

Sc
hw

ef
el
2.
22

Sp
he
re

St
ep

Su
m

Sq
ua
re
s

A
lg
or
ith

m
LD

IW
-

PS
O

𝐿
-P
SO

CL
U
S

LD
IW

-
PS

O
𝐿
-P
SO

CL
U
S

LD
IW

-
PS

O
𝐿
-P
SO

CL
U
S

LD
IW

-
PS

O
𝐿
-P
SO

CL
U
S

LD
IW

-
PS

O
𝐿
-P
SO

CL
U
S

LD
IW

-
PS

O
𝐿
-P
SO

CL
U
S

LD
IW

-
PS

O
𝐿
-P
SO

CL
U
S

Be
st
fit
ne
ss

2.
77

01
e−

03
1
.5
5
8
1
𝑒
−

0
1

2
.1
9
2
8
𝑒
−

4
4

1.
22

32
e−

52
−
3
.2
0
2
8
𝑒
+

0
3

−
4.
18

98
e+

03
3.
39

62
e−

48
2
.3
9
8
8
𝑒
−

4
6

9
.8
2
0
1
𝑒
−

1
1
0

3.
23

07
e−

11
2

0
.0
0
0
0
𝑒
+

0
0

0
.0
0
0
0
𝑒
+

0
0

2
.3
3
6
1
𝑒
−

1
1
0

1.
64
46
e−

11
2

M
ea
n

fit
ne
ss

9
.3
2
5
6
𝑒
−

0
1

7.
26

55
e−

01
5
.8
8
0
2
𝑒
−

3
2

4.
69

46
e−

47
−
2
.5
0
7
9
𝑒
+

0
3

−
4.
13

17
e+

03
8
.0
4
5
8
𝑒
−

2
3

5.
45

99
e−

29
3
.1
2
4
9
𝑒
−

1
0
1

1.
73

83
e−

10
6

1
.6
0
0
0
𝑒
−

0
1

0.
00

00
e+

00
1.
62

38
e−

10
5

6
.7
3
0
5
𝑒
−

1
0
5

St
d.
D
ev
.

1
.3
9
8
4
𝑒
+

0
0

5.
15

16
e−

01
2
.8
6
7
2
𝑒
−

3
1

1 .
67

36
e−

46
4
.0
5
6
8
𝑒
+

0
2

1.
24

89
e+

02
3
.9
3
3
6
𝑒
−

2
2

2.
66

83
e−

28
1
.2
6
4
2
𝑒
−

1
0
0

3.
37

35
e−

10
6

7
.8
3
8
4
𝑒
−

0
1

0.
00

00
e+

00
5.
17

60
e−

10
5

3
.1
4
2
5
𝑒
−

1
0
4

Av
.

ite
ra
tio

n
15
5.
20

69
.6
4

56
6.
44

55
9.
20

—
79

8.
45

47
8.
12

45
0.
76

38
5.
52

37
4.
28

73
.7
9

15
.7
6

34
0.
56

32
7.2

4

SR
(%

)
10
0

10
0

10
0

10
0

0
44

10
0

10
0

10
0

10
0

96
10
0

10
0

10
0

16 The Scientific World Journal

Ta
bl
e
17
:R

es
ul
ts
fo
rL

D
IW

-P
SO

an
d
𝐿
-P
SO

CL
U
S
fo
rt
he

14
sc
al
ed

be
nc
hm

ar
k
pr
ob

le
m
sw

ith
di
m
en
sio

n
of

20
.

Pr
ob

le
m

Ac
kl
ey

G
rie

w
an
k

D
ix
on

-P
ric

e
Le
vy

N
oi
sy

Q
ua
rt
ic

N
on

co
nt
in
uo

us
Ra

st
rig

in
Ra

st
rig

in

A
lg
or
ith

m
LD

IW
-

PS
O

𝐿
-P
SO

CL
U
S

LD
IW

-
PS

O
𝐿
-P
SO

CL
U
S

LD
IW

-
PS

O
𝐿
-P
SO

CL
U
S

LD
IW

-
PS

O
𝐿
-P
SO

CL
U
S

LD
IW

-
PS

O
𝐿
-P
SO

CL
U
S

LD
IW

-
PS

O
𝐿
-P
SO

CL
U
S

LD
IW

-
PS

O
𝐿
-P
SO

CL
U
S

Be
st
fit
ne
ss
1
.4
6
5
5
𝑒
−

1
4

3.
99

68
e−

15
7
.3
9
6
0
𝑒
−

0
3

0.
00

00
e+

00
6
.6
6
6
7
𝑒
−

0
1

6
.6
6
6
7
𝑒
−

0
1

1
.4
9
9
7
𝑒
−

3
2

1
.4
9
9
7
𝑒
−

3
2

8
.8
7
2
4
𝑒
−

0
4

8.
28

62
e−

05
9
.0
0
0
3
𝑒
+

0
0

5.
49

58
e−

02
7
.8
5
3
3
𝑒
+

0
0

0.
00
00
e+

00
M
ea
n

fit
ne
ss

2
.7
8
6
9
𝑒
−

1
3

3.
99

68
e−

15
3
.5
7
6
6
𝑒
−

0
2

1.
19

69
e−

05
6
.6
6
6
7
𝑒
−

0
1

6
.6
6
6
7
𝑒
−

0
1

9
.4
8
1
1
𝑒
−

0
1

1.
49

97
e−

32
6
.2
9
3
5
𝑒
−

0
3

1.
87

53
e−

04
2
.9
4
4
1
𝑒
+

0
1

5.
07

33
e+

00
2
.2
6
2
7
𝑒
+

0
1

1.
59
54
e+

00

St
d.
D
ev
.

1
.1
0
1
6
𝑒
−

1
2

0.
00

00
e+

00
2
.3
3
8
8
𝑒
−

0
2

3.
77

30
e−

05
9.
40

22
e−

16
2
.6
7
4
6
𝑒
−

0
8

1
.0
2
9
0
𝑒
+

0
0

0.
00

00
e+

00
2
.8
1
3
0
𝑒
−

0
3

9.
15

06
e−

05
1
.1
3
7
1
𝑒
+

0
1

2.
46

13
e+

00
7
.0
5
9
4
𝑒
+

0
0

2.
99
44
e+

00
Av

.
ite
ra
tio

n
78
5.
08

77
3.
48

—
81
3.
50

—
—

54
5.
13

51
8.
48

—
—

93
88

.4
0

25
6.
17

14
4.
32

SR
(%

)
10
0

10
0

0
88

0
0

32
10
0

0
0

16
10
0

48
10
0

Pr
ob

le
m

Ro
se
nb

ro
ck

Ro
ta
te
d
El
lip

so
id

Sc
hw

ef
el

Sc
hw

ef
el
2.
22

Sp
he
re

St
ep

Su
m

Sq
ua
re
s

A
lg
or
ith

m
LD

IW
-

PS
O

𝐿
-P
SO

CL
U
S

LD
IW

-
PS

O
𝐿
-P
SO

CL
U
S

LD
IW

-
PS

O
𝐿
-P
SO

CL
U
S

LD
IW

-
PS

O
𝐿
-P
SO

CL
U
S

LD
IW

-
PS

O
𝐿
-P
SO

CL
U
S

LD
IW

-
PS

O
𝐿
-P
SO

CL
U
S

LD
IW

-
PS

O
𝐿
-P
SO

CL
U
S

Be
st
fit
ne
ss

8.
52

73
e−

01
7
.8
2
7
9
𝑒
+

0
0

5
.7
4
5
1
𝑒
−

1
0

3.
14

10
e−

20
−
5
.5
5
6
8
𝑒
+

0
3

−
79
20
0e

+

03
2
.1
1
1
4
𝑒
−

1
7

4.
55

37
e−

28
3
.4
8
9
2
𝑒
−

5
9

4.
42

04
e−

68
0
.0
0
0
0
𝑒
+

0
0

0
.0
0
0
0
𝑒
+

0
0

2
.7
4
1
1
𝑒
−

6
0

3.
24
24
e−

71
M
ea
n

fit
ne
ss

8.
84

96
e+

00
9
.1
3
1
8
𝑒
+

0
0

6
.1
2
6
9
𝑒
−

0
5

1.
70

93
e−

15
−
4
.5
0
4
7
𝑒
+

0
3

−
68
18
0e

+

03
3
.5
7
6
6
𝑒
−

0
9

1.
65

26
e−

23
1
.0
3
9
3
𝑒
−

4
5

1.
62

74
e−

58
8
.0
0
0
0
𝑒
−

0
2

0.
00

00
e+

00
1
.4
8
3
8
𝑒
−

4
8

1.
53
78
e−

59

St
d.
D
ev
.

3
.4
6
5
1
𝑒
+

0
0

9.
43

07
e−

01
1
.7
0
6
6
𝑒
−

0
4

4 .
86

92
e−

15
5.
06
03
+
02

5
.1
8
8
6
𝑒
+

0
2

8
.6
6
9
3
𝑒
−

0
9

3.
15

11
e−

23
3
.1
1
9
3
𝑒
−

4
5

5.
51

96
e−

58
2
.7
1
2
9
𝑒
−

0
1

0.
00

00
e+

00
5
.6
8
7
6
𝑒
−

4
8

7.
42
56
e−

59
Av

.
ite
ra
tio

n
59
4.
96

41
9.1

2
14
95
.4
5

12
54

.5
2

—
—

82
0.
56

72
2.
76

63
9.8

8
63

6.
08

14
7.5
2

19
.8
8

59
5.
80

59
3.
52

SR
(%

)
10
0

10
0

88
10
0

0
0

10
0

10
0

10
0

10
0

92
10
0

10
0

10
0

The Scientific World Journal 17

Ta
bl
e
18
:R

es
ul
ts
fo
rL

D
IW

-P
SO

an
d
𝐿
-P
SO

CL
U
S
fo
rt
he

14
sc
al
ed

be
nc
hm

ar
k
pr
ob

le
m
sw

ith
di
m
en
sio

n
of

30
.

Pr
ob

le
m

Ac
kl
ey

G
rie

w
an
k

D
ix
on

-P
ric

e
Le
vy

N
oi
sy

Q
ua
rt
ic

N
on

co
nt
in
uo

us
Ra

st
rig

in
Ra

st
rig

in

A
lg
or
ith

m
LD

IW
-

PS
O

𝐿
-P
SO

CL
U
S

LD
IW

-
PS

O
𝐿
-P
SO

CL
U
S

LD
IW

-
PS

O
𝐿
-P
SO

CL
U
S

LD
IW

-
PS

O
𝐿
-P
SO

CL
U
S

LD
IW

-
PS

O
𝐿
-

PS
O

CL
U
S

LD
IW

-
PS

O
𝐿
-

PS
O

CL
U
S

LD
IW

-
PS

O
𝐿
-

PS
O

CL
U
S

Be
st
fit
ne
ss

3
.6
9
9
3
𝑒
−

1
3

3.
99
68
e−

15
2
.2
2
0
4
𝑒
−

1
6

0.
00

00
e+

00
6
.6
6
6
7
𝑒
−

0
1

6
.6
6
6
7
𝑒
−

0
1

3
.4
5
5
4
−
2
8

1.
49

97
e−

32
3
.2
2
8
1
𝑒
−

0
3

8.
07

45
e−

05
2
.0
0
0
1
𝑒
+

0
1

2.
23
56
e+

00
1
.8
8
8
9
𝑒
+

0
1

0.
00

00
e+

00
M
ea
n

fit
ne
ss

5
.6
0
7
1
𝑒
−

1
1

3.
99
68
e−

15
1
.2
2
8
9
𝑒
−

0
2

0.
00

00
e+

00
6
.6
6
6
7
𝑒
−

0
1

6
.6
6
6
7
𝑒
−

0
1

2
.0
1
2
5
𝑒
+

0
0

1.
49

97
e−

32
7
.2
1
6
1
𝑒
−

0
3

2.
32

00
e−

04
4
.1
3
6
1
𝑒
+

0
1

1.
28
83
e+

01
3
.3
9
2
1
𝑒
+

0
1

8.
32

17
e+

00

St
d.
D
ev
.

2
.1
7
4
3
𝑒
−

1
0

0.
00
00
e+

00
1
.5
7
3
8
𝑒
−

0
2

0 .
00

00
e+

00
3
.8
2
3
3
𝑒
−

1
2

3.
11

57
e−

14
1
.6
4
6
4
𝑒
+

0
0

0.
00

00
e+

00
3
.4
6
7
7
𝑒
−

0
3

1.
05

14
e−

04
1
.3
4
9
4
𝑒
+

0
1

5.
14
02
e+

00
9
.7
5
8
3
+

0
0

7.
66

97
e+

00
Av

.i
te
ra
tio

n
12
45
.6
8

11
94

.4
0

10
50
.2
3

10
60
.4
4

—
—

92
8.
00

86
5.
44

—
—

—
65

8.
48

51
8.
00

71
8.
21

SR
(%

)
10
0

10
0

52
10
0

0
0

4
10
0

0
0

0
92

4
96

Pr
ob

le
m

Ro
se
nb

ro
ck

Ro
ta
te
d
El
lip

so
id

Sc
hw

ef
el

Sc
hw

ef
el
2.
22

Sp
he
re

St
ep

Su
m

Sq
ua
re
s

A
lg
or
ith

m
LD

IW
-

PS
O

𝐿
-P
SO

CL
U
S

LD
IW

-
PS

O
𝐿
-P
SO

CL
U
S

LD
IW

-
PS

O
𝐿
-P
SO

CL
U
S

LD
IW

-
PS

O
𝐿
-P
SO

CL
U
S

LD
IW

-
PS

O
𝐿
-

PS
O

CL
U
S

LD
IW

-
PS

O
𝐿
-

PS
O

CL
U
S

LD
IW

-
PS

O
𝐿
-

PS
O

CL
U
S

Be
st
fit
ne
ss

1.
42
08
e−

01
1
.4
7
1
5
𝑒
+
0
1

1
.4
9
5
9
𝑒
−

0
4

3.
80

64
e−

11
−
7
.7
2
9
8
𝑒
+

0
3

−
1.
02

32
e+

04
6
.6
4
1
6
𝑒
−

1
0

1.
29

02
e−

24
9
.3
1
5
5
𝑒
−

4
1

1.
45

92
e−

57
0
.0
0
0
0
𝑒
+

0
0

0
.0
0
0
0
𝑒
+

0
0

1
.0
8
7
3
𝑒
−

4
1

1.
20

31
e−

57
M
ea
n

fit
ne
ss

1
.8
3
5
0
𝑒
+

0
1

1.
77
89
e+

01
4
.5
7
4
5
𝑒
−

0
2

1.
80

73
e−

06
−
6
.5
0
2
6
𝑒
+

0
3

−
8.
64

35
e+

03
1
.0
5
6
9
𝑒
−

0
4

2.
44

55
e−

22
1
.2
3
2
5
𝑒
−

3
0

6.
21

08
e−

47
7
.2
0
0
0
𝑒
−

0
1

0.
00
00
e+

00
1
.6
4
0
9
𝑒
−

2
8

2.
04

96
e−

48

St
d.
D
ev
.

1
.1
2
4
0
𝑒
+

0
1

1.
88
67
e+

00
1
.3
6
9
1
𝑒
−

0
1

4.
71

89
e−

06
7.
19

66
e+

02
1
.0
2
0
3
𝑒
+

0
3

4
.0
7
9
2
𝑒
−

0
4

2.
82

67
e−

22
3
.7
3
6
3
𝑒
−

3
0

3.
04

19
e−

46
8
.7
2
7
0
𝑒
−

0
1

0.
00
00
e+

00
5
.9
0
7
1
𝑒
−

2
8

9.
39

04
e−

48
Av

.i
te
ra
tio

n
19
20

.2
2

20
78
.7
0

—
25
24

.3
5

—
—

15
76
.7
5

11
20

.2
0

10
33
.0
4

10
28

.12
40

8.
92

22
.5
2

96
8.
72

95
2.
28

SR
(%

)
92

92
0

92
0

0
80

10
0

10
0

10
0

52
10
0

10
0

10
0

18 The Scientific World Journal

Table 19: Wilcoxon signed rank test on mean fitness obtained by RIW-PSO and 𝑅-PSOCLUS for the test problems.

Measurement Scaled problems Nonscaled problems
Dim = 10 Dim = 20 Dim = 30

𝑅-PSOCLUS < RIW-PSO 13 11 12 3
𝑅-PSOCLUS > RIW-PSO 0 2 2 0
𝑅-PSOCLUS = RIW-PSO 1 1 0 4
𝑧 −3.190 −2.274 −2.606 −1.604
𝑃 value 0.001 0.023 0.009 0.190
𝑟 0.600 0.430 0.490 —
Median

RIW-PSO 0.847 0.144 0.272 −1.000
𝑅-PSOCLUS 0.000 0.000 0.000 −1.000

Table 20: Wilcoxon signed rank test on mean fitness obtained by LDIW-PSO and 𝐿-PSOCLUS for the test problems.

Measurement Scaled problems Nonscaled
Dim = 10 Dim = 20 Dim = 30

𝐿-PSOCLUS < LDIW-PSO 12 12 13 3
𝐿-PSOCLUS > LDIW-PSO 1 1 0 0
𝐿-PSOCLUS = LDIW-PSO 1 1 1 4
𝑧 −2.988 −2.552 −3.181 −1.604
𝑃 value 0.003 0.011 0.001 0.190
𝑟 0.565 0.482 0.601 —
Median

LDIW-PSO 0.044 0.021 0.029 −1.000
𝐿-PSOCLUS 0.000 0.000 0.000 −1.000

had equal success rate of 100% in optimizing Schwefel 2.22,
Sphere, and Sum Squares problemswithR-PSOCLUS obtaining
significantly bettermean fitness standard deviation and fewer
number of iterations. OptimizingDixon-Price,Noisy Quartic,
Rotated Ellipsoid, and Schwefel problems, none of the algo-
rithms could meet the success criteria, yet R-PSOCLUS still
obtained better results than RIW-PSO. In all the 14 problems
exceptRotated Ellipsoid,R-PSOCLUS outperformedRIW-PSO
and was able to obtain global minimum for Griewank and
Step problems. The 𝑃 value (0.009) from Wilcoxon sign test
in Table 19 is a confirmatory evidence that there is statistically
significant difference in performance between RIW-PSO and
R-PSOCLUS with a large effect size of 𝑟 = 0.49 in favour of
R-PSOCLUS. The median fitness value of R-PSOCLUS is also
smaller than that of RIW-PSO.The convergence graphs of six
30-dimensional test problems shown in Figure 2 demonstrate
the speed and ability of convergence of the two algorithms.
From the graphs it is clear that R-PSOCLUS demonstrates
better convergence and global search ability than RIW-PSO.
Besides it also possesses better ability to get out of local
optima.

5.4.5. Comparison between LDIW-PSO and L-PSO
𝐶𝐿𝑈𝑆

. Pre-
sented in Table 15 are the results for the nonscaled test
problems as optimized by the two algorithms while those
in Tables 16–18 are for the scaled problems with 10, 20, and
30 dimensions, respectively. The statistical analysis done by

applyingWilcoxon sign rank nonparametric test is presented
in Table 20.

(1) Results for the Nonscaled Problems. Results in Table 15
show that there are no clear performance differences between
LDIW-PSO and L-PSOCLUS in optimizing Booth, Easom,
Shubert, and Trid problems; however, there are some not too
significant differences in their average number of iterations
to reach the success thresholds and standard deviation; in
Shubert, LDIW-PSO obtained 100% success but L-PSOCLUS
could not. Figures 1(a), 1(b), 1(e), and 1(f) show their con-
vergence behaviour. Optimizing Michalewicz, Schaffer’s f6,
and Salomon, L-PSOCLUS obtained better quality solutions
and has better search ability than LDIW-PSO. Also, the
convergence graphs in Figures 1(c) and 1(d) show that L-
PSOCLUS have faster and better convergence in Schaffer’s f6
and Salomon. The curves show that the two algorithms were
trapped in local optima as shown by the flat parts of their
curves and were able to escape from some of them. The
𝑃 value (0.190) in Table 20, obtained from the Wilcoxon
sign test, indicates that there is no statistically significant
difference between the two algorithms in performance.

(2) Results for 10-Dimensional Problems. Optimizing the 10-
dimensional scaled problems, L-PSOCLUS had 100% success
in 10 of the 14 problems (4multimodal and 6 unimodal) while
LDIW-PSO had 100% success in 6 problems (1 multimodal
and 5 unimodal) as shown in Table 16. It is only L-PSOCLUS

The Scientific World Journal 19

0 100 200 300 400 500 600 700

Booth

Iteration

M
ea

n
be

st
fit

ne
ss

10
−20

10
−15

10
−10

10
−35

10
−30

10
−25

10
−5

10
0

10
5

(a)

0 500 1000 1500

Easom

M
ea

n
be

st
fit

ne
ss

−1.05

−1

−0.95

−0.9

−0.85

−0.8

Iteration

(b)

0 500 1000 1500

Salomon

M
ea

n
be

st
fit

ne
ss

10
−2

10
−1

10
0

10
1

Iteration

(c)

0 500 1000 1500

Schaffer’s f6

M
ea

n
be

st
fit

ne
ss

10
−2

10
−3

10
−1

10
0

Iteration

(d)

0 500 1000 1500

Shubert

M
ea

n
be

st
fit

ne
ss

LDIW-PSO RIW-PSO

−200

−190

−180

−170

−160

−150

−140

−130

−120

Iteration

L-PSOCLUS R-PSOCLUS

(e)

0 500 1000 1500

0

100

200

300

400

500

600

700 Trid

LDIW-PSO RIW-PSO

M
ea

n
be

st
fit

ne
ss

−100

Iteration

L-PSOCLUS R-PSOCLUS

(f)

Figure 1: Convergence graphs for 6 of the nonscaled benchmark problems.

20 The Scientific World Journal

0 500 1000 1500 2000 2500 3000

Ackley

Iteration

M
ea

n
be

st
fit

ne
ss

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

(a)

0 500 1000 1500 2000 2500 3000

Griewank

M
ea

n
be

st
fit

ne
ss

10
−20

10
−15

10
−10

10
−5

10
0

10
5

Iteration

(b)

0 500 1000 1500 2000 2500 3000

Levy

Iteration

M
ea

n
be

st
fit

ne
ss

10
−20

10
−15

10
−10

10
−35

10
−30

10
−25

10
−5

10
0

10
5

(c)

0 500 1000 1500 2000 2500 3000

Rastrigin

Iteration

M
ea

n
be

st
fit

ne
ss

10
0

10
1

10
2

10
3

(d)

LDIW-PSO
L-PSOclus

RIW-PSO
R-PSOclus

0 500 1000 1500 2000 2500 3000

Rosenbrock

Iteration

M
ea

n
be

st
fit

ne
ss

10
1

10
4

10
5

10
6

10
2

10
3

(e)

LDIW-PSO
L-PSOclus

RIW-PSO
R-PSOclus

0 500 1000 1500 2000 2500 3000

Schwefel

M
ea

n
be

st
 fi

tn
es

s

Iteration

−10000

−9000

−8000

−7000

−6000

−5000

−4000

−3000

−2000

(f)

Figure 2: Convergence graphs for 6 of the scaled benchmark problems with dimension of 30.

The Scientific World Journal 21

Ackley

4.0E0

3.0E0

2.0E0

1.0E0

0.0E0

Fi
tn

es
s i

n
al

l r
un

s

RIW-PSO R-PSOclus LDIW-PSO L-PSOclus
Algorithm

(a)

0.0E0

Fi
tn

es
s i

n
al

l r
un

s

RIW-PSO R-PSOclus LDIW-PSO L-PSOclus
Algorithm

Griewank

6.0E − 2

4.0E − 2

2.0E − 2

∗

(b)

6.0E0

4.0E0

2.0E0

0.0E0

Fi
tn

es
s i

n
al

l r
un

s

RIW-PSO R-PSOclus LDIW-PSO L-PSOclus
Algorithm

Levy

(c)

5.0E1

3.0E1

1.0E1

6.0E1

4.0E1

2.0E1

0.0E0

Fi
tn

es
s i

n
al

l r
un

s

RIW-PSO R-PSOclus LDIW-PSO L-PSOclus
Algorithm

Rastrigin

(d)

8.0E1

6.0E1

4.0E1

2.0E1

0.0E0

Fi
tn

es
s i

n
al

l r
un

s

RIW-PSO R-PSOclus LDIW-PSO L-PSOclus
Algorithm

Rosenbrock

∗

∗
∗

∗

∗

∗∗

(e)

Fi
tn

es
s i

n
al

l r
un

s

RIW-PSO R-PSOclus LDIW-PSO L-PSOclus
Algorithm

Schwefel
−5.0E3

−6.0E3

−7.0E3

−8.0E3

−9.0E3

−1.0E4

−1.1E4

(f)

Figure 3: Box plots for 6 of the scaled test problems.

that could successfully obtain the minimum optima for
both Rastrigin and Step problems but none could reach the
success threshold for Dixon-Price and Noisy Quartic. In all
the problems except Dixon-Price (where they have approx-
imately equal performance) and Sum Squares, L-PSOCLUS

clearly outperformed LDIW-PSO in obtaining better solution
quality, convergence precision, global search ability, and
robustness as well as fewer number of iterations. To confirm
this, Wilcoxon sign test was performed on the mean best
fitness over all the problems and results are presented in

22 The Scientific World Journal

Table 20; the 𝑃 value (0.003) obtained indicates that there is
statistically significant difference in performance between the
two algorithmswith a large effect size of 𝑟 = 0.565 in favour of
L-PSOCLUS which also has a lower median value for the mean
best fitness.

(3) Results for 20-Dimensional Problems. The numerical
results in Table 17 also show that there are great differences
in performance between LDIW-PSO and L-PSOCLUS per-
forming the same set of experiments but with the problems
dimensions increased to 20. The two algorithms had equal
success rate of 100% in optimizingAckley, Rosenbrock, Schwe-
fel 2.22, Sphere, and Sum Squares problems with L-PSOCLUS
obtaining significantly better mean fitness (except Rosen-
brock), standard deviation, and fewer number of iterations.
L-PSOCLUS outperformed LDIW-PSO in 7 (5 multimodal
and 2 unimodal) of the rest 9 problems and obtained better
solution, convergence precision, global search ability, and
robustness; it was also able to obtain global minimum for
Step problem. The algorithms could not reach the success
thresholds for Dixon-Price, Noisy Quartic, and Schwefel
problems. The nonparametric test that was performed using
Wilcoxon sign test, with results shown in Table 20, also
confirms statistically significant difference in performance
between the two algorithms with 𝑃 value (0.011) and a large
effect size of 𝑟 = 0.482 in the direction of L-PSOCLUS. The
median fitness value of L-PSOCLUS is also smaller than that of
LDIW-PSO.

(4) Results for 30-Dimensional Problems. Scaling the dimen-
sions of test problems to 30 to further increase their complex-
ities, except Griewank which decreases in complexity with
increased dimension, did not affect the better performance
of L-PSOCLUS over LDIW-PSO. Presented in Table 18 are
the experimental results obtained by the two algorithms
optimizing the same scaled problems. The results indicate
that there are great differences between LDIW-PSO and L-
PSOCLUS in performance. Out of the 14 problems L-PSOCLUS
had 100% success rate in 6 of them (3 multimodal and 3 uni-
modal) while LDIW-PSO could only have in 3 (1 multimodal
and 2 unimodal). They had equal success rate of 100% in
optimizing Ackley, Sphere, and Sum Squares problems and
92% in Rosenbrock with L-PSOCLUS obtaining significantly
better results. Optimizing Dixon-Price, Noisy Quartic, and
Schwefel problems, none of the algorithms could reach the
success threshold, yet L-PSOCLUS still obtained better results
than LDIW-PSO, except in Dixon-Price where they had
approximately the same performance. LDIW-PSO was not
able to reach success threshold for Noncontinuous Rastrigin
and Rotated Ellipsoid problems unlike L-PSOCLUS. In all the
14 problems L-PSOCLUS conceded in none to LDIW-PSO and
it was able to obtain global minimum for Griewank and Step
problems. The 𝑃 value (0.001) in Table 20 further confirms
that there is statistically significant difference between LDIW-
PSO and L-PSOCLUS with a large effect size of 𝑟 = 0.601 in
the direction of L-PSOCLUS. The median value for the mean
fitness of L-PSOCLUS is also smaller than that of RIW-PSO.
Figure 1 shows the convergence graphs of the two algorithms.

From the graphs it is clear that L-PSOCLUS demonstrates
better convergence speed, better ability to escape premature
convergence, and global search ability than LDIW-PSO.

5.4.6. Box Plots Analysis. Other than using statistical test to
observe the performance of RIW-PSO, R-PSOCLUS, LDIW-
PSO, and L-PSOCLUS, box plots analysis was also performed
for 6 of the scaled test problems with 30 dimensions; the
results are presented in Figures 3(a)–3(f). Box plots give a
direct visual comparison of both location and the dispersion
of data. The four algorithms are plotted together to optimize
space. In each of the plot, RIW-PSO is compared with R-
PSOCLUS while LDIW-PSO is comparedwith L-PSOCLUS.The
plots strengthen and justify the better performance of PSO
when used with the proposed local search technique.

6. Conclusion

A new local search technique has been proposed in this
paper with the goal of addressing the problem of premature
convergence associated with particle swarm optimization
algorithms. The proposed local search was used to efficiently
improve the performance of two existing PSO variants, RIW-
PSO and LDIW-PSO. These variants have been known to be
less efficient optimizing continuous optimization problems.
In this paper they were hybridized with the local search to
form two other variants R-PSOCLUS and L-PSOCLUS. Some
well-studied benchmark problems with low and high dimen-
sions were used to extensively validate the performance of
these new variants and comparisons were made with RIW-
PSO and LDIW-PSO. They were also compared with two
other PSO variants in the literature, which are hybridized
with different local search techniques. The experimental
results obtained show that the proposed variants successfully
obtain better results with high quality while demonstrating
better convergence velocity and precision, stability, robust-
ness, and global-local search ability than the competing
variants. This therefore shows that the local search tech-
nique proposed can help PSO algorithms execute effective
exploitation in the search space to obtain high quality results
for complex continuous optimization problems. This local
search technique can be used with any population-based
optimization algorithms to obtain quality solutions to simple
and complex optimization problem.

Further study is needed on the parameter tuning of the
proposed local search technique. Empirical investigation of
the behaviour of the technique in optimizing problems with
noise needs further study.The scalability of the algorithms for
problems with higher dimension greater than 100 is essential.
Finally, the proposed algorithm can be applied to real-world
optimization problems.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

The Scientific World Journal 23

Acknowledgment

The authors acknowledge College of Agriculture, Engineer-
ing and Sciences, University of Kwazulu-Natal, South Africa,
for their support towards this work.

References

[1] R. Eberhart and J. Kennedy, “New optimizer using particle
swarm theory,” in Proceedings of the 6th International Sympo-
sium on Micro Machine and Human Science (MHS ’95), pp. 39–
43, Nagoya, Japan, October 1995.

[2] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,”
in Proceedings of the IEEE International Conference on Neural
Networks, vol. 4, pp. 1942–1948, Perth, Australia, December
1995.

[3] V. N. Dieu, P. Schegner, and W. Ongsakul, “A newly improved
particle swarm optimization for economic dispatch with valve
point loading effects,” in Proceedings of the IEEE Power and
Energy Society General Meeting, pp. 1–8, July 2011.

[4] J. Bai, X. Zhang, and Y. Guo, “Different inertia weight PSO algo-
rithm optimizing SVM kernel parameters applied in a speech
recognition system,” in Proceedings of the IEEE International
Conference on Mechatronics and Automation (ICMA ’09), pp.
4754–4759, August 2009.

[5] M. M. Mansour, S. F. Mekhamer, and N. E.-S. El-Kharbawe,
“A modified particle swarm optimizer for the coordination
of directional overcurrent relays,” IEEE Transactions on Power
Delivery, vol. 22, no. 3, pp. 1400–1410, 2007.

[6] A. M. Arasomwan and A. O. Adewumi, “An adaptive velocity
particle swarm optimization for high-dimensional function
optimization,” in Proceedings of the IEEE Congress Evolutionary
Computation (CEC ’13), pp. 2352–2359, 2013.

[7] Y. Shi and R. C. Eberhart, “A modified particle swarm opti-
mizer,” in Proceedings of the IEEE International Conference on
Evolutionary Computation (ICEC ’98), pp. 69–73, Anchorage,
Alaska, USA, May 1998.

[8] G. I. Evers, An automatic regrouping mechanism to deal with
stagnation in particle swarm optimization [M.S. thesis], Grad-
uate School of the University of Texas-Pan American, 2009.

[9] Y. Shi and R. Eberhart, “Parameter selection in particle swarm
optimization,” in Proceedings of the 7th International Conference
on Evolutionary Programming (EP ’98), vol. 1447, pp. 591–600,
San Diego, Calif, USA, March 1998.

[10] R. Akbari and K. Ziarati, “Combination of particle swarm opti-
mization and stochastic local search for multimodal function
optimization,” in Proceedings of the Pacific-Asia Workshop on
Computational Intelligence and Industrial Application (PACIIA
’08), vol. 2, pp. 388–392, December 2008.

[11] C. Junying, Q. Zheng, L. Yu, and L. Jiang, “Particle swarm opti-
mization with local search,” in Proceedings of the International
Conference on Neural Networks and Brain (ICNNB ’05), pp. 481–
484, October 2005.

[12] B. Liu, L.Wang, Y.-H. Jin, F. Tang, and D.-X. Huang, “Improved
particle swarm optimization combined with chaos,” Chaos,
Solitons and Fractals, vol. 25, no. 5, pp. 1261–1271, 2005.

[13] A. A. Mousa, M. A. El-Shorbagy, and W. F. Abd-El-Wahed,
“Local search based hybrid particle swarm optimization algo-
rithm for multiobjective optimization,” Swarm and Evolution-
ary Computation, vol. 3, pp. 1–14, 2012.

[14] H. Pan, X. Han, and M. Zheng, “Particle swarm-simulated
annealing fusion algorithm and its application in function

optimization,” in Proceedings of the International Conference on
Computer Science and Software Engineering (CSSE ’08), vol. 21,
pp. 78–81, December 2008.

[15] Y. Sun, B. J. Wyk, and Z. Wang, “A new golden ratio local
search based particle swarm optimization,” in Proceedings of the
International Conference on Systems and Informatics (ICSAI ’12),
pp. 754–757, 2012.

[16] J. Tang and X. Zhao, “Particle swarm optimization using adap-
tive local search,” in Proceedings of the International Conference
on Future BioMedical Information Engineering (FBIE ’09), pp.
300–303, December 2009.

[17] Y.-J. Wang, “Improving particle swarm optimization perfor-
mance with local search for high-dimensional function opti-
mization,” Optimization Methods and Software, vol. 25, no. 5,
pp. 781–795, 2010.

[18] W.-B. Zhang, J.-Y. Chen, and Y.-Q. Ye, “Study on particle
swarm optimization algorithm with local interpolation search,”
in Proceedings of the 2nd International Asia Conference on
Informatics in Control, Automation and Robotics (CAR ’10), vol.
1, pp. 345–348, March 2010.

[19] A. M. Arasomwan and A. O. Adewumi, “On the performance
of linear decreasing inertia weight particle swarm optimization
for global optimization,” The Science World Journal, vol. 2013,
Article ID 860289, 2013.

[20] J. Ememipour, M. M. S. Nejad, M. M. Ebadzadeh, and J.
Rezanejad, “Introduce a new inertia weight for particle swarm
optimization,” in Proceedings of the IEEE 4th International
Conference on Computer Sciences and Convergence Information
Technology (ICCIT ’09), pp. 1650–1653, November 2009.

[21] Y. Feng, G.-F. Teng, A.-X.Wang, andY.-M. Yao, “Chaotic inertia
weight in particle swarmoptimization,” inProceedings of the 2nd
International Conference on Innovative Computing, Information
and Control (ICICIC ’07), September 2007.

[22] A. Nickabadi, M. M. Ebadzadeh, and R. Safabakhsh, “A novel
particle swarm optimization algorithm with adaptive inertia
weight,”Applied Soft Computing Journal, vol. 11, no. 4, pp. 3658–
3670, 2011.

[23] R. C. Eberhart and Y. Shi, “Tracking and optimizing dynamic
systems with particle swarms,” in Proceedings of the of the
Congress on Evolutionary Computation, vol. 1, pp. 94–100, Seoul,
Korea, May 2001.

[24] M. E. H. Pedersen,Tuning& simplifying heuristical optimization
[Ph.D. thesis], School of Engineering Sciences, University of
Southampton, Southampton, UK, 2010.

[25] S. Chetty and A. O. Adewumi, “Three new stochastic local
search algorithms for continuous optimization problems,”Com-
putational Optimization andApplications, vol. 56, no. 3, pp. 675–
721, 2013.

[26] D. Karaboga and B. Akay, “A comparative study of Artificial Bee
Colony algorithm,” Applied Mathematics and Computation, vol.
214, no. 1, pp. 108–132, 2009.

[27] B. A. Sawyerr, M. M. Ali, and A. O. Adewumi, “A comparative
study of some real-coded genetic algorithms for unconstrained
global optimization,” Optimization Methods and Software, vol.
26, no. 6, pp. 945–970, 2011.

[28] C. Dytham, Choosing and Using Statistics: A Biologist’s Guide,
Wiley-blackwell, Malaysia, 3rd edition, 2011.

[29] J. Pallant, SPSS Survival Manual, McGraw-Hill, Singapore, 4th
edition, 2010.

Submit your manuscripts at
http://www.hindawi.com

International Journal of
Computer Games
Technology
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in Software
Engineering

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence &
Neuroscience

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

An Adaptive Velocity Particle Swarm Optimization
for High-Dimensional Function Optimization

1Arasomwan Akugbe Martins and 2Adewumi Aderemi Oluyinka
School of Mathematics, Statistics and Computer Science

University of Kwazulu-Natal
Durban, South Africa

1accuratesteps@yahoo.com, 2adewumia@ukzn.ac.za

Abstract—Researchers have achieved varying levels of
successes in proposing different methods to modify the particle's
velocity updating formula for better performance of Particle
Swarm Optimization (PSO). Variants of PSO that solved high-
dimensional optimization problems up to 1,000 dimensions
without losing superiority to its competitor(s) are rare.
Meanwhile, high-dimensional real-world optimization problems
are becoming realities hence PSO algorithm therefore needs
some reworking to enhance it for better performance in handling
such problems. This paper proposes a new PSO variant called
Adaptive Velocity PSO (AV-PSO), which adaptively adjusts the
velocity of particles based on Euclidean distance between the
position of each particle and the position of the global best
particle. To avoid getting trapped in local optimal, chaotic
characteristics was introduced into the particle position updating
formula. In all experiments, it is shown that AV-PSO is very
efficient for solving low and high-dimensional global
optimization problems. Empirical results show that AV-PSO
outperformed AIWPSO, PSOrank, CRIW-PSO, def-PSO, e1-PSO
and APSO. It also performed better than LSRS in many of the
tested high-dimensional problems. AV-PSO was also used to
optimize some high-dimensional problems with 4,000 dimensions
with very good results.

Keywords—adaptive; global optimization; high dimension;
optimization problems; particle swarm optimization; velocity
updating

I. INTRODUCTION
It is almost two decades since PSO algorithm was

introduced in [14] as a technique for solving optimization
problems. It is one of the two fundamental mainstreams of
swarm intelligence and it is driven by the simulation of a
sociological metaphor inspired by collective behaviour of
birds and other social organisms. Over the years, many
researchers have made tremendous efforts to improve on the
effectiveness, efficiency and robustness of PSO technique in
solving optimization problems. Researches in this direction
are the introduction of Vmax [6], inertia weight [23],
constriction factor [4] into PSO, as well as improvements on
the inertia weight [1, 3, 7, 8, 11, 17, 18, 22, 24], PSO with
mutation operators [2, 5, 11, 15, 16], hybridization of PSO
with other algorithms [19] and development of other variants
of PSO [21]. Despite these improvements on PSO, virtually
none of the existing variants of PSO have been able to solve
optimization problems with high dimension up to 2000. In
[13] an improved PSO (IPSO) was used to solve Ackley's

function with 100 dimensions and Sphere's function with 150
dimensions with evidences of superiority over the standard
PSO. In [20] parallel PSO was used to optimize Griewank's
function with 128 dimensions and there was evidence of
success too. However in [12], a PSO algorithm was compared
with Line Search Restart (LSRS) technique in solving some
high-dimensional global optimization problems of dimension
50 to 2,000. In all the dimensions PSO lost its superiority to
LSRS. Moreover, due to the fact that high dimensional real-
world optimization problems is a possibility, PSO algorithm
therefore need some reworking to enhance it for better
performance in handling high-dimensional global optimization
problems.

In this paper a very simple PSO algorithm (AV-PSO) is
proposed. This work is different from existing ones in three
major ways: firstly, it implemented the PSO algorithm without
using any of inertia weight, acceleration coefficients and
random coefficients to compute velocity for any particle in the
swarm; secondly, chaotic characteristics was introduced into
the particle's position formula to promote some stochasticity
in order to facilitate good exploitation; thirdly, the proposed
algorithm is used to favourably compete with another
optimization algorithm (e.g. LSRS) to solve some
optimization problems up to at least 2,000 dimensions. The
rest of the paper is structured as follows: Section 2 succinctly
looked at PSO. In section 3, the proposed simple PSO
algorithm is described, while section 4 focuses on the
numerical simulations. Section 5 briefly looked at the
optimization characteristics of AV-PSO. Section 6 concludes
this work summarizing the contributions made in this paper
and future work.

II. PARTICLE SWARM OPTIMIZATION
A swarm of particles is involved in PSO. This swarm is

randomly initialized as candidate solutions over the fitness
landscape to start the process of optimizing a problem. Each
particle is assumed to have position and velocity in a physical
d-dimensional search space, the position and velocity of a
particle i in each iteration t is represented as the vectors ⃗ =
(xi1, …, xin) and ⃗⃗ = (vi1, …, vin), respectively. When the
particles move in the search space looking for the optimum
solution for a particular optimization problem, other particles
follow the current optimum particle by adjusting their
velocities and positions using (1) and (2).

2013 IEEE Congress on Evolutionary Computation
June 20-23, Cancún, México

978-1-4799-0454-9/13/$31.00 ©2013 IEEE 2352

 ⃗⃗
 ⃗⃗

 ⃗ (⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

 ⃗

) ⃗ (⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

 ⃗

) (1)

 ⃗
 ⃗

 ⃗⃗
 (2)

 where, ⃗⃗

 and ⃗
 are the velocity and position of particle i at

iteration t. A particle's position is taken as possible solution of
the function being optimized while the fitness of this possible
solution is determined by evaluating the function. The best
position searched by the particle itself so far (⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

) and the

optimization position searched by the whole particles swarm
so far (⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

) are d-dimension vectors representing personal

best position of particle i at iteration t and global best
positions selected from the personal best positions of all the
particles in the swarm at iteration t. Whereas, ⃗ and ⃗ are two
d-dimensional vectors of random numbers between 0 and 1,
which introduces randomness to the searching strategy and the
two positive constants c1 and c2 are cognitive and social
scaling parameters that determine the magnitude of the
random forces in the direction of ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

 and ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

 .

With the introduction of inertia weight by [23] into PSO,
(1) was upgraded to become (3).

 ⃗⃗
 ⃗⃗

 ⃗ (⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

 ⃗

) ⃗ (⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

 ⃗

) (3)

Equation (3) is made up of inertia weight component ⃗⃗
 ,

cognitive component ⃗ (⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

 ⃗

) and social
component ⃗ (⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

 ⃗

). The inertia weight strikes a
balance between exploration and exploitation characteristics
of PSO and it determines the level of contribution of previous
particle velocity to the present velocity. It is a common idea
among many researchers that, large inertia weight facilitates
exploration while a small inertia weight facilitates
exploitation; however there are cases where this may not hold
[18].

The common practice has been to update particle velocity
and position using (3) and (2) respectively. The goal of this
research work is to propose very simple variants of PSO with
fewer parameters to adjust, but with improved performance to
achieve better convergence in few numbers of iterations
compared with existing variants, without compromising
quality results. In achieving this goal, the velocity for each
particle was computed without using inertia weight (),
acceleration coefficients (c1 and c2) and random parameters
(⃗ and ⃗) in equation (3). Rather, the velocity was adaptively
adjusted based on Euclidean distance between the position of
each particle and the position of the global best particle. To
avoid getting trapped in local optimal, chaotic characteristics
was introduced into (2). It is evident from experimental results
that the proposed PSO variants, though simple in nature than
many existing PSO variants, have tremendous performance in
finding better global solutions to low and high-dimensional
continuous optimization problems and achieves outstanding
accuracy level of convergence in fewer numbers of iterations.

A. PSO Variants

Since the inception of PSO, quite a number of its variants
have been proposed over the years. A comprehensive list of
many of the variants can be found in [21]. The variants
adopted for comparison in this work are Rank based PSO
(PSOrank) in [1], Adaptive Inertia Weight PSO (AIWPSO) in
[18], Adaptive PSO (APSO) in [2], Natural Exponential
inertia weight PSO (e1-PSO) in [7], Decreasing exponential
function PSO (def-PSO) in [8] and Chaotic Random Inertia
Weight PSO (CRIW-PSO) in [10]. All these variants have
proved to be superior to their competitors in their various
capacities.

PSOrank is based on cooperative behavior of particles. The
local search and convergence to global optimum solution is
controlled by selecting some number (which decreases with
increased iteration) of best particles proportionate to their
respective strengths, to contribute to the updating of the
position of a candidate particle. The strength of each
contributing particle is a function of strivness, immediacy and
number of contributed particles. A time-varying inertia weight
decreasing non-linearly was used to improve its performance.
Experimental evidences show that PSOrank is superior to its
competitors [1].

AIWPSO uses the swarm success rate parameter to
determine the inertia weight value. It monitors the search
situation using the success rate to adapt the value of the inertia
weight in the static and dynamic environment to improve its
performance in dynamic environments. In this variant at the
end of each iteration, the worst particle is replaced by mutated
best particle. The mutation is done by adding a Gaussian noise
with zero mean standard deviation to one of the randomly
chosen dimension of the best particle to improve on
exploration of the method. AIWPSO also outperformed its
competitors virtually in all the tests [18]

The goal of APSO as proposed in [2] was to address the
problem of unknown parameters estimation in nonlinear
systems. It introduced an adaptive mutation mechanism and a
dynamic inertia weight into the conventional PSO to enhance
global search ability and to increase accuracy and was found
to be more successful than the competing algorithms.

e1-PSO is one of the two proposed natural exponential
functions inertia weight strategies (which has some evidences
of better performance than the other) in [3]. It is based on the
basic idea of decreasing inertia weight. It was experimentally
proved to converge faster in early stage of the search process
and performed better in most continuous optimization
problems than linear decreasing inertia weight PSO.

def-PSO adjusts the inertia weight based on decreasing
exponential functions. The function is made up of two parts
(base and power) and the algorithm's iteration was used in
these parts. As the iteration increases, the inertia weight
decreases from one towards zero. Graphical results in [8]
show evidences of its superiority to the competitors.

In CRIW-PSO, two inertia weights (chaotic linear
descending and chaotic random) based on the concept of
linear descending and random inertia weights were proposed
by introducing chaotic (using logistic mapping) optimization

2353

mechanism into them. The purpose was to enhance the
performance of PSO using linear descending and random
inertia weights in terms of convergence precision, quick
convergence velocity and better global search ability. Results
in [10] show their outstanding performances.

Despite the various successes recorded by PSO variants,
none of them have solved problems with up to 2000
dimensions. Besides, their results show that there are still needs
for improvements on the convergence precision, quick
convergence velocity, better global search ability, and further
reduction of the possibilities of getting trapped in local optima
by PSO algorithms. The goal of this paper is to experimentally
address these issues by proposing another PSO variant.

III. PROPOSED PSO VARIANT
The velocity updating formula is a very important aspect

of PSO algorithms. It determines the flying speed of particles
in the search space when they are searching for optimal
solutions to optimization problems. The proposed PSO
algorithm in this paper updates the particle velocity and
position using (4) and (7) respectively. It can quickly and
efficiently locate better global optimal results for optimization
problems without getting stuck in local optimal.

 (4)

where is the current Euclidean distance of particle
i from the global best, at iteration t as shown in (5).

 √∑(⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

 ⃗

)

 (5)

and is the maximum distance, shown in (6), of
a particle from the global best, at iteration t.

() (6)

 ⃗

 ⃗

 (7)

where is a logistic mapping and z is a
random number in the interval (0,1). The chaotic mapping
provides chaotic characteristics for the algorithm to escape
premature convergence.

When any component of the position of any particle falls
outside the search space, it is forced to take the value maxX
(upper limit of search space) or minX (lower limit of search
space) as the case may be.

The proposed PSO algorithm as is shown in Figure 1. The
bold lines indicate the reworking done on the standard PSO
algorithm.

Begin PSO Algorithm
Input: f: the function to optimize
 ps: the swarm size
 d: the problem dimension
Output: x*: the best fitness value found
Initialize: xi = (xi1, …, xid) and vi = (vi1, …, vid), for all
particles in problem space
evaluate f(xi) in d variables and get pbesti, (i = 1, …, ps)
gbest best of pbesti
While stopping criteria is false do

compute particles velocities using equation (4)
Begin Loop for ps times

do chaotic mapping
update xi for particle using equation (7)
validate for position boundaries

End
If f(xi) < f(pbesti) then

pbesti xi
end if
If f(xi) < f(gbesti) then

gbesti xi
end if

End while
x* gbest
Return x*
End PSO Algorithm

Fig. 1. Pseudocode for the proposed PSO algoithm.

IV. NUMERICAL SIMULATION
Different test problems with varied difficulties were used to

verify the performance of AV-PSO with its competitors. The
simulations were carried out in four stages to test its
convergence speed, accuracy, robustness, stability and global
search ability in locating optimal values. In stage 1, AV-PSO
was used to solve the test problems listed in [1, 2, 18] with
same experimental settings, and results were compared with
the existing results of PSOrank, AIWPSO and APSO recorded
in literature. In stage 2, e1-PSO, def-PSO and CRIW-PSO
were implemented and their performances compared with that
of AV-PSO, using the same experimental settings and test
problems. In stage 3, AV-PSO was compared with LSRS using
several high-dimensional benchmark problems with
dimensions from 50 to 2000 [12]. Finally in stage 4, AV-PSO
was used to optimize the some problems with dimensions up to
4,000. A search goal of 0.0000000001 (10-10) was used to test
its efficiency relative to very high problems dimensionality.

The simulations were done on a laptop computer with a
2.0GHz Intel Pentium dual-core processor, 2.0GB of RAM,
running Windows Vista Home Basic. The simulation program
was developed using Microsoft Visual C# programming
language, 2008 Express Edition.

A. Parameter settings
Refer to [1, 2, 18] for parameter settings for PSOrank,

AIWPSO and APSO and [12] for LSRS. In stage 2 of
experiments, swarm size = 10, dimension = 2 for Schaffer's f6

2354

and 40 for others, maximum iterations = 3000 and random runs =
50. In comparison with AIWPSO, AV-PSO used 60,000
function evaluations (FEs). The parameter settings for AV-
PSO to test against LSRS are shown in Table I.

TABLE I. SETTINGS FOR AV-PSO IN COMPARISON WITH LSRS

Parameter Number of dimensions
50 100 500 1000 2000

Swarm size 50 50 50 50 50
Maximum number of iterations 1000 1000 1000 1000 1000
Number of independent runs 25 25 25 25 25

B. Test problems
 The test problems used in the experiments are made up of
some standard continuous functions widely used in the
literature. They were adopted from [1, 2, 12, 18] and any
further details about them could be obtained from these
references. Their characteristics are diverse enough to cover
many of the problems which can arise in global optimization
problems. AV-PSO was used to optimize these problems along
with its competitors. All the problems were of dimension 40
with asymmetric initialization ranges. This dimension was
chosen because test problems in stage 1 ended with dimension
of 30 while stage 3 starts with 50.

1) Test problems of stage 1 of experiment
The test problems and their respective search as well as

initialization ranges that were used to test whether AV-PSO
could compete with existing PSO variants in literature were
adopted from [1, 2, 18]. They have dimensions ranging from 2
– 30.

2) Test problems of stage 2 of experiment
To test the convergence speed, robustness as well as the

global search ability of AV-PSO, the test problems given
below were used. The performance of AV-PSO was compared
with that of CRIW-PSO, def-PSO and e1-PSO which were
adopted for comparison.

Ackley (f1): ex
n

x
n

xf
d

i
i

d

i
i

20)2cos(1exp12.0exp20)(
11

2
1

Search range: [-30,30], Initialization range: [15,30],
Optimal value = 0

Griewank (f2): 1cos
4000

1)(
11

2
2

d

i

i
d

i
i i

xxxf

Search range: [-600,600], Initialization range: [300,600],
Optimal value = 0

Levy (f3): ⃗ ∑

Search range: [-10,10], Initialization range: [5,10],
Optimal value = 0

Rastrigin (f4):

d

i
ii xxxf

1

2
4 10)2cos(10)(

Search range: [-5.12,5.12], Initialization range: [2.56,5.12],
Optimal value = 0

Rosenbrock (f5):

1

1

222
15)1()(100)(

d

i
iii xxxxf

Search range: [-30,30], Initialization range: [15,30],
Optimal value = 0

Schaffer's (f6): ⃗
(√

)

Search range: [-100,100], Initialization range: [50,100],
Optimal value = 0

3) Test problems of stage 3 of experiment
To test the capability of AV-PSO in solving high-

dimensional problems, the test problems used by LSRS in [12]
were also used. The performances of AV-PSO were compared
with that of LSRS.

4) Test problems of stage 4 of experiment
In this stage, AV-PSO was used to optimize problems with

the same search ranges in [12] with dimensions up to 4,000;
but the Rastrigin of the test problems at stage 2 was used,
while Quadric function was replaced with Griewank.

C. Experimental results and comparison
 Shown in Tables II – XI are the numerical results for all the
experiments that were performed in this work. The results for
PSOrank, AIWPSO and APSO were obtained from literature [1,
2, 18] while that of LSRS was adapted from [12] as recorded
by the researchers, but the ones for CRIW-PSO, def-PSO, e1-
PSO and AV-PSO were obtained after the implementation of
each of the algorithms.

1) Experimental results for stage 1

The experimental results are shown in Tables II – IV with
Test problems (TP), Population size (PS), Problem dimension
(PD) and Iteration (ITR). Best optimal results appear in bold.

Table II reflects the performance measurement of PSOrank
and AV-PSO in six test problems with three different problem
dimensions over 100 independent runs. From results in the
table, the two algorithms had equal performances in f3 across
the three dimensions in both average fitness and standard
deviation as well as in f6. In all other test problems across the
dimensions, AV-PSO extremely outperformed PSOrank in
convergence speed, accuracy, robustness and stability with
better global search ability and location of optimal values.
Except f2, AV-PSO obtained the minimum value for all the
test problems. Also the performance of PSOrank decreases with
increasing problem dimension in f1, f2, and f4, but AV-PSO do
not which is an indication that it is less sensitive to increase in
problem dimensionality compared with PSOrank. The two
algorithms had equal success rates in other test problems
except in f2 where AV-PSO outperformed PSOrank in all
dimensions. After the maximum number of iterations, an
algorithm was considered successful if the minimum value
reached was below 0.000001 (10-6) for f6, and 0.01 (10-2) for
others.

From the results in Table III, it is clear that AV-PSO is
superior in all the test problems to APSO in performance. The
performance measurements are in term of average fitness
values of the best particle and standard deviation. The
standard deviation was computed for dimension 10 across the

2355

population sizes for the three test problems [2]. The results
show that AV-PSO demonstrates superiority over APSO in
global searching abilities, stability and robustness. Also, the
convergence velocity and precision of AV-PSO within the
given iterations are far higher than that of APSO. The results
reveal that APSO is sensitive to problems dimensions and
swarm sizes in all the test problems because as the number of
particles increases the quality of fitness also increase across
the dimensions, but the case of AV-PSO is not so as the
results obtained by it remain stable and the minimum optimal
value for all the test problems which is a clear indication of its
stability and robustness.

TABLE II. PERFORMANCE COMPARISON BETWEEN PSORANK AND
AV-PSO

PD TP Average fitness Standard deviation Success rate
PSOrank AV-PSO PSOrank AV-PSO PSOrank AV-PSO

10

f1 1.21E-10 0.00E+00 8.36E-10 0.00E+00 1 1
f2 9.14E-03 2.37E-11 1.42E-02 8.78E-11 0.96 1
f3 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1 1
f4 1.31E-06 0.00E+00 6.54E-06 0.00E+00 1 1
f5 2.53E-05 0.00E+00 3.47E-05 0.00E+00 1 1
f6 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1 1

20

f1 1.08E-09 0.00E+00 3.76E-09 0.00E+00 1 1
f2 1.61E+00 1.75E-11 2.04E+00 1.35E-10 0.56 1
f3 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1 1
f4 4.22E-06 0.00E+00 9.11E-06 0.00E+00 1 1
f5 4.47E-07 0.00E+00 7.69E-07 0.00E+00 1 1

30

f1 2.05E-08 0.00E+00 6.41E-08 0.00E+00 1 1
f2 1.27E+01 1.83E-12 1.39E+01 5.01E-12 0.19 1
f3 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1 1
f4 3.12E-05 0.00E+00 8.35E-05 0.00E+00 1 1
f5 2.73E-08 0.00E+00 5.24E-08 0.00E+00 1 1

Note: Sphere (f1), Rosenbrock (f2), Rastrigin (f3), Ackley (f4),
Griewank (f5), Schaffer's f6 (f6).

TABLE III. PERFORMANCE COMPARISON BETWEEN APSO AND AV-PSO

TP PS PD ITR Average fitness Standard deviation
APSO AV-PSO APSO AV-PSO

f1

20
10 1 000 0.0983 0.0000 0.0054 0.0000
20 1 500 0.0237 0.0000
30 2 000 0.0117 0.0000

40
10 1 000 0.0952 0.0000 0.0036 0.0000
20 1 500 0.0201 0.0000
30 2 000 0.0105 0.0000

80
10 1 000 0.0689 0.0000 0.0029 0.0000
20 1 500 0.0199 0.0000
30 2 000 0.0102 0.0000

f2

20
10 1 000 5.1565 0.0000 0.1358 0.0000
20 1 500 16.0456 0.0000
30 2 000 42.2325 0.0000

40
10 1 000 2.9468 0.0000 0.1064 0.0000
20 1 500 15.3678 0.0000
30 2 000 33.7538 0.0000

80
10 1 000 2.0457 0.0000 0.1084 0.0000
20 1 500 10.0563 0.0000
30 2 000 25.3473 0.0000

f3

20
10 1 000 5.8467 0.0000 1.3471 0.0000
20 1 500 47.9842 0.0000
30 2 000 100.4528 0.0000

40
10 1 000 4.5431 0.0000 1.2376 0.0000
20 1 500 38.3464 0.0000
30 2 000 72.5473 0.0000

80
10 1 000 4.1680 0.0000 1.1450 0.0000
20 1 500 27.9547 0.0000
30 2 000 69.0609 0.0000

Note: Griewank (f1), Rastrigin (f2), Rosenbrock (f3)

Shown in Table IV is the performance measurement of
AIWPSO and AV-PSO in thirteen test problems over 30

independent runs. Better optimal values appear in bold. From
results, the two algorithms had equal performances in f7 in
both mean fitness and standard deviation. In all other test
problems, AV-PSO extremely outperformed AIWPSO in
convergence speed, accuracy, robustness and stability with
better global search ability and location of optimal values
except f8 and f13. Out of the thirteen problems, AV-PSO
obtained outright minimum values for eight while AIWPSO
obtained for only one.

TABLE IV. PERFORMANCE COMPARISON BETWEEN AIWPSO AND
AV-PSO

TP
Mean fitness Standard deviation

AIWPSO AV-PSO AIWPSO AV-PSO
f1 3.3703E-134 0.0000E+000 5.1722E-267 0.0000E+000
f2 1.8317E-137 0.0000E+000 3.4534E-273 0.0000E+000
f3 1.6534E-062 0.0000E+000 7.7348E-123 0.0000E+000
f4 1.9570E-010 0.0000E+000 1.2012E-019 0.0000E+000
f5 5.5241E-003 1.2186E-003 1.5358E-005 5.4511E-003
f6 2.5003E+000 6.9252E-013 1.5978E+001 1.7255E-012
f7 0.0000E+000 0.0000E+000 0.0000E+000 0.0000E+000
f8 -1.1732E+004 -1.9669E+003 1.1409E-025 5.0474E+002
f9 1.6583E-001 0.0000E+000 2.1051E-001 0.0000E+000
f10 1.1842E-016 0.0000E+000 4.2073E-031 0.0000E+000
f11 6.9870E-015 4.4409E-016 4.2073E-031 0.0000E+000
f12 2.8524E-002 0.0000E+000 7.6640E-004 0.0000E+000
f13 1.4998E-032 1.1570E-014 1.2398E-094 3.1485E-014

Note: Sphere (f1), Sphere (f2), Schwefel P2.22 (f3), Rotated hyper-
ellipsoid (f4), Noisy Quadric (f5), Rosenbrock (f6), Step (f7), Schwefel
(f8), Rastrigin (f9), Non continuous Rastrigin (f10), Ackley (f11),
Griewank (f12), Levy (f13).

2) Expeimental results for stage 2
In this section, the performance of AV-PSO is further

tested to prove its superiority in convergence speed, accuracy,
robustness, stability, and global search ability in locating
optimal values. Table V with Test problems (TP), Population
size (PS), Problem dimension (PD), Iteration (ITR) shows the
results of all the algorithms after implementing them. The
comparisons criterions are mean fitness value, Standard
deviation (SD) and Success rate. After the maximum number
of iterations, an algorithm was considered successful if the
minimum value reached was below 0.00000001 (10-8) for all
the test problems.

The results in Table V indicate that AV-PSO is extremely
superior to its competitors in all the test problems in every
way. Again, it is superior in convergence speed, accuracy,
robustness, stability and global search ability in locating
optimal values. In f1 – f5, it is only AV-PSO that met the
success criterion in all the runs. Though, in f6 two of the
competitors were able to meet the success criterion but with
lower SR compared with AV-PSO.

3) Experimental results for stage 3

After subjecting AV-PSO to various swarm sizes, problem
dimensionality, iterations and independent runs to prove its
performance in the preceding tests, it is finally compared with
LSRS using various high-dimensional problems with varying
complexities to test its capability in solving such problems.
The results are categorized in problem dimensions in Tables
VI – X.

2356

TABLE V. RESULTS OF AV-PSO AND THE COMPETING VARIANTS OVER
50 INDEPENDENT RUNS. "X" INDICATES NO RESULT

TP Comparison index CRIW-
PSO def-PSO e1-PSO AV-PSO

f1 Fitness
value

Best 1.92E+01 1.97E+01 1.95E+01 4.44E-16
Worst 1.99E+01 2.03E+01 1.99E+01 4.44E-16
Mean 1.98E+01 1.99E+01 1.98E+01 4.44E-16
SD 1.15E-01 1.18E-01 8.20E-02 0.00E+00

Iterations to
achieve set
goal

Best x x x 6
Worst x x x 18
Mean x x x 11

Success Rate 0 0 0 100%
f2 Fitness

value
Best 1.80E+02 3.30E+02 2.70E+02 0.00E+00
Worst 9.91E+02 9.37E+02 1.08E+03 0.00E+00
Mean 5.79E+02 6.07E+02 6.53E+02 0.00E+00
SD 1.94E+02 1.38E+02 1.73E+02 0.00E+00

Iterations to
achieve set
goal

Best x x x 3
Worst x x x 10
Mean x x x 6

Success Rate 0 0 0 100%
f3 Fitness

value
Best 3.68E+01 8.35E+01 1.77E+01 4.99E-22
Worst 2.16E+02 2.40E+02 2.25E+02 5.87E-13
Mean 1.02E+02 1.47E+02 1.06E+02 2.18E-14
SD 4.39E+01 4.48E+01 4.87E+01 8.81E-14

Iterations to
achieve set
goal

Best x x x 4
Worst x x x 205
Mean x x x 56

Success Rate 0 0 0 100%
f4 Fitness

value
Best 2.93E+02 3.63E+02 2.90E+02 0.00E+00
Worst 5.11E+02 6.52E+02 5.23E+02 0.00E+00
Mean 3.81E+02 4.93E+02 4.09E+02 0.00E+00
SD 5.46E+01 6.12E+01 5.12E+01 0.00E+00

Iterations to
achieve set
goal

Best x x x 3
Worst x x x 19
Mean x x x 9

Success Rate 0 0 0 100%
f5 Fitness

value
Best 3.95E+01 3.88E+07 6.40E+02 3.31E-18
Worst 4.00E+08 3.61E+08 4.80E+08 7.72E-11
Mean 1.83E+08 1.67E+08 2.67E+08 3.00E-12
SD 1.14E+08 7.23E+07 1.05E+08 1.14E-11

Iterations to
achieve set
goal

Best x x x 1
Worst x x x 1,052
Mean x x x 216

Success Rate 0 0 0 100%
f6 Fitness

value
Best 0.00E+00 2.28E-01 0.00E+00 0.00E+00
Worst 9.72E-03 5.00E-01 4.98E-01 1.49E-02
Mean 4.66E-03 4.52E-01 3.55E-01 2.98E-04
SD 4.85E-03 8.40E-02 1.70E-01 2.08E-03

Iterations to
achieve set
goal

Best 122 x 221 3
Worst 2,184 x 2,504 2,091
Mean 843 x 842 54

Success Rate 52% 0 12% 98%

From the results in Tables VI – X, it can be seen that
LSRS and the proposed PSO algorithm (AV-PSO) put up a
good competition solving some high-dimensional optimization
problems. In all the dimensions, AV-PSO performed better
than LSRS in 4 out of the 7 problems because it was able to
obtain the minimum optimal values for Quadric, Schwefel,
Sphere and Sum squares problems. However, in Ackley, Levy
and Rosenbrock problems, the results obtained by LSRS were
higher in magnitude compared with AV-PSO which also
obtained good results. AV-PSO obtained its results with a
small swarm size and fewer numbers of iterations compared
with LSRS. It is very possible that AV-PSO could outsmart
LSRS solving Ackley, Levy and Rosenbrock problems if AV-
PSO uses some larger population size than 50 and maximum
iterations than 1,000 used in this experiment. These results
obtained at this stage 3 are indications that PSO algorithm has
the potentials to solve many high-dimensional optimization
problems without losing its superiority to its competitor(s).

4) Experimental esults for stage 4

In Table XI are the results of AV-PSO when it was used to
optimize high-dimensional optimization problems with 4,000
dimensions over 25 independent runs, to show that it can
handle more than 2,000 dimensions. This also help to find out
the effect of further increase in problem dimensions would
have on its performance. Best, worst and average numbers of
iterations and Function Evaluations were rounded up to the
nearest integer values.

From the results shown in Tables XI, it is evident that the
proposed algorithm (AV-PSO) can efficiently optimize high-
dimension optimization problems up to 4,000 dimensions. The
best, worst and average number of iterations the algorithm
obtained optimal values less than 10-10 shows that AV-PSO
has a very high convergence speed and accuracy. It was able
to the minimum optimal results for 5 out of the 8 problems,
even with such a high criterion of 10-10. The algorithm is still
very strong enough to handle dimensions greater than 4000
with very good results. The algorithm is robust, efficient and
has very good global search ability despite the fact that the
solution spaces of the problems increased exponentially with
their problem sizes

TABLE VI. THE PERFORMANCE OF LSRS AND AV-PSO FOR 50 DIMENSIONS

Algorithm Comparison
index

Test Problems
Ackley Levy Quadric Rosenbrock Schwefel Sphere Sum

squares
LSRS Best −6.50E−19 2.90E−39 6.27E−19 2.47E−28 1.86E−11 1.34E−22 9.86E−21

Average −6.50E−19 2.90E−39 2.33E−18 1.38E−18 1.91E−11 1.38E−18 1.42E−18
SD 0.00E+00 0.00E+00 8.11E−19 1.29E−18 4.15E−12 1.29E−18 1.25E−18

AV-PSO Best 4.44E−16 4.75E−20 0.00E+00 1.55E−17 0.00E+00 0.00E+00 0.00E+00
Average 5.86E−16 4.87E−13 0.00E+00 6.70E−11 0.00E+00 0.00E+00 0.00E+00
SD 6.96E−16 1.32E−12 0.00E+00 2.51E−10 0.00E+00 0.00E+00 0.00E+00

TABLE VII. THE PERFORMANCE OF LSRS AND AV-PSO FOR 100 DIMENSIONS

Algorithm Comparison
index

Test Problems
Ackley Levy Quadric Rosenbrock Schwefel Sphere Sum

squares
LSRS Best −6.50E−19 2.90E−39 9.20E−16 5.83E−28 7.81E−19 5.34E−19 4.68E−18

Average −6.50E−19 2.90E−39 1.15E−15 6.94E−16 3.98E−10 6.94E−16 6.98E−16
SD 0.00E+00 0.00E+00 4.38E−16 6.63E−16 4.97E−10 6.63E−16 6.58E−16

AV-PSO Best 4.44E−16 3.60E−28 0.00E+00 1.60E−25 0.00E+00 0.00E+00 0.00E+00
Average 4.44E−16 3.03E−13 0.00E+00 6.33E−10 0.00E+00 0.00E+00 0.00E+00
SD 0.00E+00 7.37E−13 0.00E+00 2.71E−10 0.00E+00 0.00E+00 0.00E+00

2357

TABLE VIII. THE PERFORMANCE OF LSRS AND AV-PSO FOR 500 DIMENSIONS

Algorithm Comparison
index

Test Problems
Ackley Levy Quadric Rosenbrock Schwefel Sphere Sum

squares
LSRS Best −4.30E−19 2.90E−39 2.12E−11 3.40E−27 2.91E−19 4.54E−16 4.05E−35

Average −4.30E−19 2.90E−39 4.31E−11 2.61E−11 4.08E−19 9.00E−16 7.96E−35
SD 0.00E+00 0.00E+00 1.14E−11 2.32E−11 3.62E−20 1.52E−16 1.95E−35

AV-PSO Best 4.44E−16 1.53E−21 0.00E+00 1.66E−17 0.00E+00 0.00E+00 0.00E+00
Average 5.06E−16 5.28E−13 0.00E+00 7.45E−11 0.00E+00 0.00E+00 0.00E+00
SD 6.96E−16 1.71E−12 0.00E+00 1.67E−10 0.00E+00 0.00E+00 0.00E+00

TABLE IX. THE PERFORMANCE OF LSRS AND AV-PSO FOR 1000 DIMENSIONS

Algorithm Comparison
index

Test Problems
Ackley Levy Quadric Rosenbrock Schwefel Sphere Sum

squares
LSRS Best 1.30E−18 2.90E−39 5.34E−30 6.84E−27 9.30E−18 7.97E−19 3.78E−33

Average 1.30E−18 2.90E−39 1.38E−29 7.41E−27 1.12E−17 1.25E−18 7.35E−33
SD 4.80E−33 0.00E+00 3.68E−30 1.66E−28 7.33E−19 2.05E−19 1.49E−33

AV-PSO Best 4.44E−16 2.58E−18 0.00E+00 7.63E−18 0.00E+00 0.00E+00 0.00E+00
Average 5.86E−16 4.40E−12 0.00E+00 1.47E−10 0.00E+00 0.00E+00 0.00E+00
SD 6.96E−16 1.43E−11 0.00E+00 3.23E−10 0.00E+00 0.00E+00 0.00E+00

TABLE X. THE PERFORMANCE OF LSRS AND AV-PSO FOR 2000 DIMENSIONS

Algorithm Comparison
index

Test Problems
Ackley Levy Quadric Rosenbrock Schwefel Sphere Sum

squares
LSRS Best −4.30E−19 2.9E−39 9.37E−08 1.40E−26 2.41E−17 9.97E−34 7.58E−31

Average −4.30E−19 2.9E−39 1.69E−07 1.48E−26 3.08E−17 2.35E−33 1.27E−30
SD 9.60E−35 0.00E+00 3.42E−08 2.44E−28 2.31E−18 6.91E−34 2.02E−31

AV-PSO Best 4.44E−16 8.11E−19 0.00E+00 2.49E−15 0.00E+00 0.00E+00 0.00E+00
Average 7.28E−16 2.54E−11 0.00E+00 1.68E−09 0.00E+00 0.00E+00 0.00E+00
SD 9.64E−16 7.31E−11 0.00E+00 5.83E−09 0.00E+00 0.00E+00 0.00E+00

TABLE XI. THE PERFORMANCE OF AV-PSO FOR 4000 DIMENSIONS OVER 25 RUNS WITH SIZE = 50, MAXIMUM ITERATION = 1,000

Algorithm Measurement Index Test Problems
Ackley Griewank Levy Rastrigin Rosenbrock Schwefel Sphere Sum squares

AV-PSO

Fitness Values

Best 4.44E−16 0.00E+00 3.17E−19 0.00E+00 3.25E−14 0.00E+00 0.00E+00 0.00E+00
Worst 4.00E−15 0.00E+00 3.00E−10 0.00E+00 2.80E−08 0.00E+00 0.00E+00 0.00E+00
Average 7.28E−16 0.00E+00 2.62E−11 0.00E+00 1.41E−09 0.00E+00 0.00E+00 0.00E+00
SD 9.64E−16 0.00E+00 6.80E−11 0.00E+00 5.47E−09 0.00E+00 0.00E+00 0.00E+00

Iterations to obtain
fitness values
(less than 10-10)

Best 8 3 18 4 56 11 3 6
Worst 18 14 940 16 977 23 14 17
Average 12 7 213 9 582 16 8 11

Success Rate 100% 100% 92% 100% 68% 100% 100% 100%
Function Evaluations 620 328 11,550 470 42,772 798 424 534

V. THE OPTIMIZATION CHARACTERISTICS OF AV-PSO
Fig. 2 and 3, show the adaptive nature of the rate at which

each particle moves towards the global best and chaotic
weighting values (1 – Z) of each particle's position when
optimizing Rastrigin function with 30 dimensions and 30
particles. In iteration 1, particle 4 is the global best and
because others are far away from it they need high velocity
relative to their positions to move towards particle 4. Their
velocity reduces relative to their positions as they all converge
towards the optimal point while exploiting their
neighbourhoods for better results during iterations 40 and 200.
The possibilities of moving too fast and jumping over the
global best or moving too slow and not reaching the global
best is not experienced because of the adaptivity. The chaotic
weighting helps the particles for better
exploration/exploitation and escape from local optimal. These
are the reasons behind the outstanding successes of AV-PSO.

Fig. 2. Velocity of each particle during iterations

2358

Fig. 3. Chaotic weighting of each particle during iterations

VI. CONCLUSION AND FUTURE WORK
A very simple but effective PSO variant (AV-PSO) was

proposed in this paper. The inertia weight, acceleration
coefficients and random factors were found not to be
necessary in the particle velocity updating equation for the
algorithm to obtain outstanding and accurate global optimal
solutions for low and high-dimensional test problems. In all
the experiments AV-PSO extremely outperformed all its
competitors, solving continuous optimization problems with
low (10 – 30) and high (50 – 4,000) dimensions. With the
algorithm, this work has experimentally shown that PSO is
very much suitable for large-scale global optimization
problems involving very high dimensions, with very good
performance in locating quality global optimal solutions with
few numbers of iterations without getting stuck in local
optimal.

The algorithms have the potentiality to solve problems
with higher number of variables greater 4,000 without any
modifications. Further work shall be done by applying the
proposed algorithm to more difficult continuous problems and
discrete problems. Also, various information through
numerical experiments shall be retrieved for analysis to find
further reasons for the outstanding performances of the
proposed PSO variant.

ACKNOWLEDGEMENT
Our thanks to the College of Agricultural Science,

Engineering and Sciences, University of Kwazulu-Natal,
South Africa for their support towards this work through
financial bursary.

REFERENCES
[1] R. Akbari, and K. Ziarati, "A rank based particle swarm optimization

algorithm with dynamic adaptation". Journal of Computational and
Applied Mathematics, Elsevier, vol. 235, pp. 2694–2714, 2011.

[2] A. Alfi, "PSO with adaptive mutation and inertia weight and its
application in parameter estimation of dynamic systems". ACTA,
Automatic Sinica, vol. 37, no. 5, pp. 541-549, May 2011.

[3] G. Chen, X. Huang, J. Jia, and Z. Min., “Natural exponential inertia
weight strategy in particle swarm optimization”, The Sixth World
Congress on Intelligent Control and Automation, IEEE, vol. 1, pp.
3672–3675, 2006.

[4] M. Clerc, and J. Kennedy, "The particle swarm - explosion, stability,
and convergence in multidimensional complex space". IEEE
Transactions on Evolutionary Computation,vol. 6, pp. 58-73, Feb. 2002.

[5] L.D.S. Coelho, "A quantum particle swarm optimizer with chaotic
mutation operator", Chaos, Solutions and Fractals, Elsevier, vol. 37, pp.
1409-1418, 2008.

[6] R.C. Eberhart and J. Kennedy, "A new optimizer using particle swarm
theory". Proceedings of the Sixth International Symposium on Micro
Machine and Human Science, MHS '95, pp. 39-43, Nagoya, Japan,
1995.

[7] R.C. Eberhart, and Y. Shi., “Tracking and optimizing dynamic systems
with particle swarms,” Proceedings of the 2001 Congress on
Evolutionary Computation, vol. 1, pp. 94–100, 2002.

[8] J. Ememipour, M.M.S. Nejad, M.M. Ebadzadeh, and J. Rezanejad,
"Introduce a new inertia weight for particle swarm optimization", The
Fourth International Conference on Computer Sciences and
Convergence Information Technology, pp. 1650-1653. IEEE, 2009.

[9] G.I. Evers, "An automatic regrouping mechanism to deal with stagnation
in particle swarm optimization," MSc. Thesis, Graduate school of the
University of Texas-Pan American, May, 2009.

[10] Y. Feng, G.F. Teng, A.X. Wang, and Y.M. Yao., “Chaotic Inertia
Weight in Particle Swarm Optimization,” Second International
Conference on Innovative Computing, Information and Control, IEEE,
p. 475, 2008.

[11] Y. Gao, X. An, and J. Liu., “A particle swarm optimization algorithm
with logarithm decreasing inertia weight and chaos mutation”,
International Conference on Computational Intelligence and Security,
IEEE, vol. 1, pp. 61–65, 2008.

[12] C. Grosan, and A. Abraham, "A novel global optimization technique for high
dimensional functions". International journal of intelligent systems, Wiley
Periodicals, Inc., vol. 24, pp. 421-440, 2009.

[13] B. Jiao, Z. Lian, and X. Gu, "A dynamic inertia weight particle swarm
optimization algorithm", Chaos, solutions and fractals, Elsevier, no. 37, pp.
698-705, 2006.

[14] J. Kennedy, and R.C. Eberhart, “Particle swarm optimization”,
Proceedings of IEEE international conference on neural networks, Perth,
Australia,vol. 4, pp. 1942–1948, 1995.

[15] H.R. Li and Y.L. Gao., “Particle swarm optimization algorithm with
exponent decreasing inertia weight and stochastic mutation”, Second
International Conference on Information and Computing Science, IEEE,
pp. 66–69, 2009.

[16] Li-Lili, and He-Xingshi, "Gaussian mutation Particle Swarm
Optimization with dynamic adaptation inertia weight", World Congress
on Software Engineering, IEEE, pp. 454-459, 2009.

[17] R.F. Malik, T.A. Rahman, S.Z.M. Hashim, and R. Ngah, “New particle
swarm optimizer with sigmoid increasing inertia weight,” International
Journal of Computer Science and Security, vol. 1, no. 2, pp. 35-44,
2007.

[18] A. Nickabadi , M.M. Ebadzadeh, and R. Safabakhsh, "A novel particle
swarm optimization algorithm with adaptive inertia weight," Applied
soft computing on, vol. 11, pp. 3658-3670, 2011.

[19] V.M. Saffarzadeh, P. Jafarzadeh, and M. Mazloom, "A hybrid approach
using particle swarm optimization and simulated annealing for n-queen
problem", World academy of science, engineering and technology, vol. 67,
pp. 517-521, 2010.

[20] J. F. Schutte, J.A. Reinbolt, B.J. Fregly, R.T. Haftka, and A.D.George,
"Parallel global optimization with the particle swarm algorithm",
International journal for numerical methods in engineering, John Wiley &
Sons, Ltd., vol. 61, pp. 2296–2315, Oct. 2004.

[21] D. Sedighizadeh, and E. Masehian, "Particle swarm optimization methods,
taxonomy and applications", International journal of computer theory and
engineering, vol. 1, no. 5, pp. 486-502, Dec. 2009.

[22] X. Shen, Z. Chi, J. Yang, C. Chen, and Z. Chi, "Particle swarm
optimization with dynamic adaptive inertia weight", International
Conference on Challenges in Environmental Science and Computer
Engineering, pp. 287-290. IEEE, 2010.

[23] Y. Shi, and R. C. Eberhart, "A modified particle swarm optimizer,"
Proceedings of the IEEE international conference on evolutionary
computation, pp. 69–73, 1998.

[24] J. Xin, G. Chen, and Y. Hai , "A particle swarm optimizer with multi-
stage linearly-decreasing inertia weight," International Joint Conference
on Computational Sciences and Optimization, pp. 505-508, 2009.

2359

	Martins THESIS - Final After Examination 26022014
	Paper 1
	Paper 2a
	Paper 3
	Paper 4
	Paper 5
	Paper 6
	Paper 7
	Paper 8

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

