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Abstract 
 

This thesis presents a series of studies conducted on particle swarm optimization 

(PSO) technique for global optimization inspired by the drawbacks identified in the 

technique with respect to premature convergence, weak local search ability and the 

desire to make the technique simpler and more effective, efficient and robust when 

handling optimization problems with many local optima. Generally, PSO is widely 

applied by individuals, enterprises and researchers to seek best possible solutions to 

varieties of problems amidst limited resources hence the need to better efficiency in 

its implementation. Many variants of PSO have been proposed to address its 

drawbacks with varying successes and failures stories. Many of these variants have 

introduced several other parameters, complexities and more computational efforts into 

the technique, yet its drawbacks are not sufficiently addressed. Besides, there exist 

some areas, like particle velocity limits and search space limits of the PSO technique 

that remain static throughout its lifetime of execution in many existing variants. 

Introducing dynamism could make the algorithm perform better and obtain better 

quality solutions to optimization problems. Besides, the pure greedy method of 

obtaining the swarm global best among the personal bests of all the particles in the 

swarm is a common attribute of very many PSO variants. These form part of the 

things addressed in the studies carried out in this thesis.   

 

In this study, selected existing PSO variants were improved upon and additional 

variants were proposed which greatly improved the efficiency and performance of the 

PSO technique. These proposed variants include Swarm Success Rate Decreasing 

Inertia Weight PSO (SSRDIWPSO) and Swarm Success Rate Random Inertia Weight 

PSO (SSRRIWPSO) which use swarm success rate as the feedback parameter for their 

inertia weight strategies to enhance the explorative and exploitative power of the PSO 

technique. The Modified Basic PSO (M-BPSO) with seven versions, which use 

dynamic velocity limits to control the global and local search activities of the PSO; 

Improved Original PSO (IOPSO) which does not use the inertia weight parameter but 

has dynamic search space and velocity limits; PSOCLUS in which the PSO technique 

was hybridized with a novel local search technique called Collective Local Unimodal 

search (CLUS) and GRA-PSO which diversified the operations of the PSO by 
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incorporating randomness and adaptivity to complement the greedy method PSO, 

chooses the global best from among the personal bests of particles in the swarm. 

 

Through numerical experiments, several test problems from literature were used to 

validate the proposed variants. The results obtained were compared with their original 

counterparts and with various efficient PSO variants that exist in literature. The 

results reveal that substantial evidence exist that prove that the new variants are better 

than their original counterparts and several of the PSO variants in literature in terms 

of reliability, robustness, convergence speed, solution quality, search ability and 

efficiency. As a result, the new variants proposed in this thesis offer an alternative to 

many currently available algorithms for solving global optimization problems in 

which the gradient information is not readily available. These variants can be applied 

to solve various global optimization problems and are available for optimization 

researchers. The results can also serve as a benchmark on which future researches 

could be based. 
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Chapter 1 
 

Introduction 
 

Since its inception [35, 36], the Particle Swarm Optimization (PSO) technique has 

experienced tremendous improvements, which has fostered its wide application to 

optimization problems in different fields of study. The diverse trends accompanying 

researches in PSO include its hybridization with other optimizers, addressing the 

problem of premature convergence as well as the adaptation of its control parameters 

during optimization. 

 

Control parameters like inertia weight, acceleration coefficients and random factors 

are widely acknowledged to play important roles in the performance of PSO and 

different mathematical analysis have been done relative to how these parameters 

influence the diversity of the particles, with the belief that population diversity 

influences optimization effectiveness. One of the utmost goals of the authors who 

introduced the PSO technique was to make it as simple as possible. Contrary to this, 

many existing PSO variants have introduced some computational complexities to this 

technique. However, there are some studies on simplified variants of PSO in 

literature.  One of the objectives of this research work is to provide answers to the 

following questions: 

i. Are there other ways, different from the existing methods, that the operations of 

the original PSO and the basic PSO can be altered without affecting the velocity 

and position updating formulas of particles for increased performance compared 

to the existing PSO variants? 

ii. Can the exploration and exploitation activities of the PSO technique be 

successfully and efficiently achieved without using the widely accepted inertia 

weight parameter? In reality, is it possible to implement the PSO technique 

without any of the three control parameters (inertia weight, acceleration 

coefficients and random factors) in the velocity updating formula without 
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additional complex computational efforts being exerted elsewhere in the 

algorithm? 

iii. Can the existing simplified PSO variants be made simpler without compromising 

the efficiency, accuracy, reliability and robustness needed in the discovery of the 

global minimum compared with existing variants? In this context, efficiency 

refers to the amount of efforts (CPU time or number of function evaluations) 

required to obtain a solution. Accuracy describes how close the final solution 

obtained by a global optimization algorithm is to the known global minimum of a 

problem while reliability explains how successful the method is in finding the 

global minimum. 

 

This thesis reports series of studies carried out on basic PSO and different existing 

PSO variants to improve on their identified weaknesses in order to target better global 

optimal results. As a result, new hybrids and promising variants of the PSO technique, 

including derived simplifications, were proposed which greatly improved on the 

efficiency of existing PSO techniques. These variants can be applied to solve various 

global optimization problems and are available for optimization researchers. Several 

problems were used to validate the proposed variants and their results were compared 

with various efficient PSO variants that exist in literature. 

1.1 Background to the Study 
Inherent in the human nature is the quest for the best possible in almost all endeavours 

of life. Driven by this kind of nature, individuals, enterprises and governments daily 

seek optimal solutions, amidst limited resources, to different problems encountered. 

Many of these problems can be formulated as optimization problems, thus 

optimization plays an increasingly significant role in daily management and technical 

decision making. Examples in science would include varying some decision 

parameters to maximize profit (e.g. investment portfolios, supply chains, etc.); in 

engineering, choosing design parameters to improve some objective and in data 

analysis, extracting some model parameters from data while minimizing error 

measures (e.g. fitting).  

 

Global optimization is an inherently difficult problem because no general criterion 

exists for determining when the global optimum is reached. This type of optimization 
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seeks to provide solutions to optimization problems which are often multi-modal and 

non-convex. These solutions may be good globally or may be a mix of globally and 

locally good solutions. Generally, optimization problems entail how to select the best 

course of action given some restrictions.  

 

A large number of optimization methods for solving various optimization problems 

exist in literature. Broadly, these methods can be categorized into either local or 

global optimization search techniques. A local search method iteratively improves its 

estimate of the optimum by searching for better solutions within the local 

neighborhood of the current solution while a global search method searches 

complicated landscapes of multiple local minima. Nature always finds the optimal 

solution to solve its problem maintaining perfect balance among its components and is 

thus equipping man to discover various inspired solutions for problem-solving and 

adaption to the ever-changing environment. For researchers, inspirations from natural 

systems that display problem-solving capabilities have been received to develop 

algorithms for solving complex and challenging optimization problems. Nature-

inspired techniques have been evolving in recent years, exhibiting extremely diverse, 

dynamic, robust, complex and fascinating phenomenon.  

 

Since the inspiration for each nature-inspired technique are unrelated to a particular 

class of optimization problems, it becomes easier to modify them substantially 

especially when applied in practice. With amazing results being obtained by 

researchers, the scope and viability of nature-inspired algorithms has been broadened 

opening up the possibilities for exploring new areas of application and providing more 

opportunities in computing.   A major reason why these sets of algorithms have 

become popular is because they are easy to code in relatively few lines. They have 

become an important part of contemporary research in global optimization algorithms, 

computational intelligence and soft computing 

 

Swarm intelligence (SI) is one of the classes of nature-inspired metaheuristics that has 

been used to provide (near) optimal solutions to many complex optimization problems 

in recent years. The goal of SI is to design intelligent multi-agent systems by taking 

inspiration from the collective behavior of social organisms. Amongst the first set of 

(and most popular)  SI metaheuristics is the PSO. PSO [35,36] is a technique that 
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displays problem-solving capabilities that enables  researchers solve complex and 

challenging optimization problems. It is an evolutionary computation technique 

inspired by the social behaviour of birds and schools of fish.   

 

The basic idea of the PSO stems from biology where a swarm of birds are able to 

coordinate themselves, with some degree of randomness, in order to achieve a goal. 

Each particle (bird) uses the local information regarding the displacement of its 

reachable close neighbours to decide on its own displacement, resulting in complex 

and adaptive collective behaviours. The concept was introduced to the field of 

optimization in 1995 [35, 36]. PSO can be used to provide solutions to optimization 

problems with multimodal or unimodal landscapes. 

 

When PSO was initially proposed, swarm size, particle velocity, acceleration 

coefficients and random coefficients, were the associated parameters that controlled 

its operations and efficiency. However, it exhibited the problem of premature 

convergence. In ridding the PSO of this problem and make it more efficient, many 

variants have been developed and these are detailed in literature [41, 55]. These 

variants have additional parameter(s) and require extra (complex) computational 

effort(s), which give them an edge over the Original OPSO (OPSO).   

1.2 Motivation 
Optimization problems are wide in range and numerous, hence methods required to 

solve them require active and dynamic researches. These include data mining, 

engineering, and bio-computing problems which are large-scale in terms of the 

decision variables that need to be handled in trying to solve them. As a result, the 

performance of most available optimization algorithms deteriorate very quickly as the 

the problem dimension increases.  This is because complex problems has large 

solution space which increases exponentially with the problem size.  A current trend 

is to develop scalable algorithms with efficient search strategies to explore all the 

promising regions in the solution space within given constraint. Nature-inspired 

optimization techniques are prominent among these algorithms.  They are presently 

more frequently studied and utilized for solving optimization problems in academia 

and industry than mathematical optimization techniques such as convex 
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programming, linear programming and other metaheuristics [79, 123] due to the 

increased complexities of many real-world problems.  

 

 

It is a general knowledge that nature-inspired metaheuristic algorithms are prominent 

in tackling challenging highly nonlinear optimization problems with evidence of 

efficiency. As a result, researches are expanding towards this direction in different 

fields. However, till date, researchers have only utilised very limited characteristics 

inspired by nature; thus, other properties of natural environments are worth 

investigating for the development of novel nature-inspired algorithms. Moreover, 

there are still lots of opportunities to  improve  existing nature-inspired techniques 

hence the thrust of this paper.  

 

The nonlinearity of several optimization problems often results in multiple local 

optima that pose substantial challenges in obtaining the global optimality of interest. 

Therefore, the need for efficient techniques and improvement on existing ones to 

solve complex global optimization problems in the continuous space is evident. PSO 

being one of the popular techniques used to solve both simple and complex 

optimization problems has undergone countless modifications and improvements 

since when it was introduced; hence, many of its variants exist. These modifications 

and improvements are done either on  the parameters that control the operations of 

PSO, the addition of new parameters or both, the resulting variants that have been 

useful in solving many global optimization problems. 

 

Diverse variants of the PSO have been proposed with varying level of improved 

performances [93,133]. However, many of these variants are characterized by: static 

particle search space and velocity limits, which limit their flexibilities in obtaining 

optimal solutions for many of the optimization problems. Furthermore, in spite of 

some extra computations inherent in these variants and additional parameters like 

inertia weight incorporated, premature convergence, which is the major challenge 

associated with the OPSO technique, remains a problem that many of the variants 

have not been able to handle successfully [29, 39, 41, 46]. In cases where (near) 

optimal solutions are obtained, they are with low precision [53, 132].   
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In many of the PSO variants, solution search space and velocity threshold are static 

throughout the execution of the algorithm [4, 5, 37, 41, 77]. This characteristic 

somewhat limits the flexibility of these variants in obtaining optimal solutions for 

many of optimization problems. Also, there is the challenge of selection of velocity 

threshold especially when dealing with some practical problems. Trial-and-error 

approach which can be computationally intensive and time consuming may be 

required to make the selection. . There is need for more dynamic way of varying the 

solution space and velocity threshold in order to obtain optimal results with higher 

precision for optimization problems when using PSO and its variants. This can be 

done based on the state of the particles' dimensions so as to enable the algorithm 

concentrate its search on the sub-range defined during its execution instead of the 

entire search space all the time. In addition, this could also enable the algorithm 

escape premature convergence so as to obtain better quality solutions to given 

optimization problems. 

 

The inertia weight parameter [96] was introduced into PSO to enable it obtain better 

results to optimization problems by balancing the algorithm’s exploration and 

exploitation activities. Many Inertia Weight Strategies (IWS) have the initial and final 

values of the inertia weight fixed, thereby ruling out the flexibility of obtaining lower 

or higher values for the inertia weight that could help the algorithm obtain good 

optimal results. Also, many of the IWS do not have access to information about the 

state of the swarm in the solution search space; this could influence the nature of the 

search for optimal solutions by the swarm. Therefore, it is of utmost importance that a 

means of realising the state of the swarm in the search space is devised, in addition to 

creating some flexibility in either of the limits of the IWS with the belief that this 

could help the algorithm obtain better results.  

 

To further enhance the performance of the PSO algorithm in this work, randomness 

was introduced into its IWS. Since chaotic activities can play the role of 

randomization, this has been brought into the IWS with the logistic chaotic map being 

more prominently used [69]. This feature has improved the optimizing capability of 

PSO by introducing better global search mobility. However, there are several chaotic 

maps in literature that have the possibility of enhancing the performance of PSO even 

more than the logistic map. Therefore, the effects of other chaotic maps on the 
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performance of PSO algorithms need further investigation. The outcomes obtained 

could provide some useful information to optimization practitioners in choosing 

chaotic maps to apply in the various IWS hence another focus of this work 

1.3 Aim and Objectives 
The primary aim of this thesis is to simplify the basic PSO technique and enhance 

selected existing PSO variants so as to improve their performances and extend their 

scope of applicability to optimization problems. The objectives summarized below 

provide guidance in achieving this aim.  

i. To study the parameters of the PSO technique to better understand their 

individual contributions to the algorithm’s operations and efficiency and to 

device means of adjusting these parameters to further enhance the efficiency of 

the PSO.  Some of these will be achieved by introducing dynamism into some 

static aspect of the current PSO algorithm and implementations.   

ii. To develop PSO variants with enhanced parameter selection and combination 

techniques. 

iii. To introduce adaptivity and randomness into the method of selecting the swarm 

global best from among the personal bests of particles, instead of the commonly 

used greedy method. 

iv. To develop PSO variants that could efficiently handle high dimensional global 

optimization problems. 

v. To develop an improved PSO hybrid with local search that compete 

significantly well with current variants. 

1.4 Scope of the Thesis 
 

This thesis considered the PSO technique for solving both simple and complex 

optimization problems in the continuous space. Much attention was given to the 

parameters of the technique because of the vital roles they play in the operations of 

the technique.  The target is to develop means of making the PSO technique simpler 

and more efficient than existing variants in handling optimization problems. 

Conclusions and remarks are based on extensive simulation studies of the proposed 

variants which are compared with that in literature. The set of benchmark problems 
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used in all the studies are with diverse characteristics and complexities as found in 

literature and real world problems.  

 

1.5 Methodology 

In this work, different variants of the PSO algorithms were developed. Numerical 

simulations were carried out on these variants using various benchmark test problems. 

Empirical results obtained from the studies were analyzed using statistical techniques 

to demonstrate the superiority of the new variants in terms of their performances 

compared to the performance of existing PSO variants in literature.  

1.6 Contributions 
This research study carried out series of investigations on the different parameters and 

their contributing effect to the PSO technique for global optimization with the aim of 

addressing its major drawback and to improve its efficiency. Some of the parameters 

are inertia weight, particle velocity limits and acceleration coefficients, which play 

prominent roles in optimizing the power and efficiency of the PSO in the course of 

obtaining (near) optimal solutions for global optimization problems.  

 

During the research process, some existing PSO variants were improved upon and 

new hybrids and promising variants of the PSO were proposed which greatly 

improved the efficiency of the PSO technique. Some of the research contributions in 

the work are highlighted below: 

1. The exploratory and exploitative powers of selected existing PSO variants were 

improved upon by introducing the swarm success rate as the feedback parameter 

for their inertia weight strategies. 

2. Some PSO variants without the inertia weight parameter were proposed. These 

variants implemented dynamic velocity clamping of particles and dynamic 

solution search space. 

3. A variant which diversified the operations of the PSO by incorporating 

randomness and adaptivity to complement the greedy way PSO chooses the 

personal and global best of particles was proposed. 

 



22 
 

Several problems were used to validate the proposed variants and their results were 

compared with various efficient PSO variants that exist in literature. From the results 

obtained from this research study, there are indication of significant success with 

proposed variant which we hope would be useful for both researchers and 

practitioners in the field of global optimization. These variants can be applied to solve 

various global optimization problems and are available for optimization researchers. 

Finally, results obtained in this study further provided higher benchmarks on which 

further work on PSO can be based. 

1.7 Thesis Outline 

The rest of the thesis is organized as follows: 

Chapter 2 provides an introduction to the theory of optimization and metaheuristics, 

followed by a review of the existing swarm intelligence (SI) techniques with emphasis 

on the PSO technique.  

 

Chapter 3 presents the PSO based on dynamic velocity and search space limits. 

Several experiments were conducted using these limits to improve the performance of 

the PSO. Two papers developed from the results of the experiments are also 

presented. 

 

Chapter 4 examines the effect of the swarm success rate feedback parameter and the 

chaotic maps on the performance of the PSO algorithms. Numerical simulations were 

performed to obtain results used for analyzing the effect of the feedback parameter as 

well as the chaotic maps. The results obtained are compared with those of selected 

existing PSO variants. To conclude this chapter, three papers which are products of 

the research study are included. 

 

Chapter 5 presents certain simplifications of the PSO technique. These are done 

without compromising the performance of the PSO. Experimental results and 

comparisons with existing PSO variants are presented. One research paper developed 

is included in this chapter. 
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In chapter 6, a new local search technique was proposed and used to improve the PSO 

algorithm. The technique was applied to existing PSO variants and results obtained 

were compared with those of the prevailing variants to verify the suitability of 

applying the local search. In addition, a different method for updating the positions of 

particles was devised and implemented. One research paper is included in this 

chapter. 

 

Chapter 7 presents a simple PSO variant that is able to handle high dimensional 

problems.  The variant adaptively adjusts the velocity of particles based on Euclidean 

distance between the position of each particle and the position of the global best 

particle and applied to continuous optimization problems with low (10 – 30) and high 

(50 – 4,000) dimensions.  

 

Finally, Chapter 8 presents a summary and conclusion of this thesis. Major 

contributions are highlighted in addition to suggestions for future research. 
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Chapter 2 
Literature Review 
 

2.1. Optimization 
Optimization encompasses selecting the best course of action(s) among several 

alternative while considering given restrictions. Examples of practical optimization 

problems includes: production of fuel efficient car, selecting portfolio that minimizes 

risks while maximizing returns, deciding the shortest route among several 

alternatives, to mention a few. These problems typically have three fundamental 

components namely, the objective function, decision variables, and constraints.  The 

objective function is the numerical quantity to be optimized (maximized or 

minimized), that is, for which we seek the best possible value. Example may include 

maximizing expected return on a stock portfolio, minimizing production cost of an 

item, minimizing cost of travel through a given number of cities, and so on. The 

decision variables are quantities whose values can be manipulated in order to fulfill 

the objective function. Examples include quantities of stock to purchase and 

production schedule to optimize.  Finally, constraints are simply restrictions that are 

placed on the possible values that decision variables can take. For instance, individual 

cannot invest more than s/he has into stock, a lecturer cannot teach more than one 

modules simultaneously. Within this broad framework, the complexity of 

optimization problems depends on many other factors that characterize the problems 

including type of decision variable and the nature of the objectives functions and/or 

constraints. 

 

Generally, an optimization problem can be represented as follows: 

Optimize    ⃗  
subject to  

     ⃗      

where  ⃗               is the decision variable in   , f:     is the objective 

function and gj:    
   , are the constraint functions, j =1, 2, …, m. 
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The goal is to maximize or minimize the objective function. Solution  ⃗  is a global 

minimizer of    ⃗  if and only if     ⃗      ⃗  for all  ⃗ in the domain of    ⃗ . It is a 

global maximizer of    ⃗  if and only if     ⃗      ⃗  for all  ⃗  in the domain of 

   ⃗ . Optimization problems are often multi-modal due to having multiple good 

solutions, which could all be globally good or a mix of globally good and locally good 

solutions.  

 

Researchers are often faced with numerous nonlinear multimodal optimization 

problems such as parameter optimization. Global optimization seeks to find the 

globally best solution for nonlinear models among multiple local optima.  To 

formulate global optimization problems, it is assumed that, (i) objective function and 

constraints are continuous functions, (ii) the component-wise bounds related to the 

decision variable vector are finite, and (iii) the feasible solution set is not empty. Such 

problems require global search technique to solve them.  The different approaches to 

solving global optimization problems can be broadly grouped into exact and heuristics 

methods. However, exact methods often fail to obtain the global optima in the face of 

complex optimization problems while the heuristics seek to compare accuracy slightly 

for speed in order to obtain a near-optima solution to such problems.  An example of 

heuristic methods is the evolutionary algorithms which mimic the principle of 

biological evolution like natural selection and the "survival of the fittest". The 

different types of evolutionary search methods are made up of approaches that are 

aimed at continuous global optimization problems, and others that are targeted 

towards solving combinatorial problems. 

 

Local optimization, on the other hand, involves finding an optimum solution within 

a neighbourhood set of candidate solutions as against all set of possible solutions.  

This involves the use of local search methods which apply a local perturbation within 

the neighbourhood in search of the optimum solution.  These techniques are widely 

used to provide solutions to many NP-hard problems in various fields and are also 

useful in improving the search trajectories of global search techniques for better 

results, in most cases as hybrids.  We explore this hybrid approach for PSO in this 

work. Examples of local search techniques include hill climbing, tabu search, 

simulated annealing, 2-opt algorithm for traveling salesman problem and the 
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collective local unimodal search (CLUS) which is explored in this work. Local 

optimization algorithms generally depend on the derivatives of the cost function and 

constraints to aid in the search. It also depends on an initial point which determines 

the result obtained. 

 

Generally, there are many optimization algorithms which can be classified based on 

various factors and depending on the focus and characteristics of such algorithms. A 

typical classification [121] is presented in Table 2.1.  A general term used for most 

heuristic-based search algorithms is metaheuristics among which is the focus of this 

work.  We shall give a brief overview of these in the next session.  

 

Table 2.1: Classification of optimization algorithms [121] 
S/N Focus/Characteristics Class of Algorithms 

1 Derivative or gradient of a function 
i. Gradient-based 

ii. Derivative-free  

2 Number of agents 
i. Trajectory-based 

ii. Population-based 

3 Search procedure/Movement 
i. Deterministic 

ii. Stochastic 

4 Search capability/space 
i. Local 

ii. Global 

 

2.2. Metaheuristics 
Metaheuristics, a term coined by Glover in 1986 [49], are higher level black boxes 

designed to select, generate or find lower level heuristics that can provide good 

solutions to optimization problems.  They do not guarantee that a global optimum 

point will be found but seek a reasonable trade-off between solution quality and 

computing time.  Metaheuristics seek to maintain an intelligent balance between 

exploration and exploitation capabilities of the underlying heuristics while navigating 

the search space in search of near-optimal solutions. 
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Metaheuristic techniques are well-known global optimization methods which attempt 

to mimic some characteristics of natural phenomena or social behaviour and 

sometimes incorporate complex learning processes.  The algorithms are approximate 

and usually non-deterministic.  Several of these non-problem specific techniques have 

been proposed for global optimization and have helped to increase the overall 

computational efficiency for some large-scale problems [79]. Generally, most 

research on metaheuristics are based on empirical studies (as in this work) with a few 

exploring formal theoretical issues such as convergence.   

2.2.1 Characteristics and Classification of  Metaheuristics 
As mentioned earlier, metaheuristics have many characteristics features [121]. As 

they guide and/or modify other lower level heuristics to produce solutions, 

metaheuristic algorithms often use some tradeoff between randomization and local 

search. While they are good in finding near-optimal solution within reasonable time, 

they do not guarantee that optimal solutions can be reached. Often, metaheuristics 

incorporate strategies to assist underlying heuristics escape from local optimum 

through proper combination of intensification (exploitation) and diversification 

(exploration) [121]. The latter helps the algorithm to explore the entire global search 

space in search of optimal solution while the former helps to concentrate on a local 

region of the search space in search of solution better than the current local optimum.  

A good metaheuristic aims to seek a good balance between intensification and 

diversification during search in order to improve convergence of the algorithm. This 

is to ensure that global optimality is achievable [121].  

 

Metaheuristic algorithms including SI algorithms are optimization methods designed 

in accordance with the strategies laid out in the metaheuristic framework. They form 

essential part of contemporary global optimization algorithms and have been shown to 

be efficient with many advantages over traditional, deterministic methods [120]. 

These algorithms can be categorized as a constructive approach or a local search 

method [100]. A constructive algorithm builds solutions from scratch by gradually 

adding solutions’ components to the initially empty solutions whereas on the other 

hand, local search algorithms start from a known solution and try to improve on it 

over time. Similarly, metaheuristic algorithms can be classified as single solution 
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based or population based depending on the number of solutions the algorithm act 

upon at each iteration.  Evolutionary algorithms are population-based algorithms. 

 

Metaheuristic frameworks are usually defined in general terms without dependence on 

problem specific characteristics such as requiring constraints or objective functions to 

be defined in certain form. This makes them fit into most real-life optimization 

problems with varying requirements, constraints or formulation. These features make 

metaheuristic algorithms more flexible compared to exact methods but they have to be 

adapted to problem-specific domain sometimes to achieve good performance [120]. 

2.3. Swarm Intelligence (SI) 

This is a class of nature-inspired algorithms with potency for handling complex 

optimization problems. These algorithms currently have great impact in contemporary 

computing and this will continue even for future generation computing.  A swarm is a 

collection of large number of homogenous, simple agents that interact locally with 

and their environment with no central control. SI is a research field that studies the 

emergent collective intelligence of self-organized and decentralized simple agents. 

The inspiration often comes from the social behaviours that are observed in nature, 

especially in social animals such as flocks of birds, fish schools and swarm bees.  The 

social interactions among swarm individuals can either be direct or indirect. Examples 

of direct interactions are through visual or audio contacts, such as the waggle dance of 

honey bees. Indirect interactions occur when one individual changes the environment 

for others to respond to, for example, the pheromone trails of ants which they deposit 

as they search for food sources [48]. 

 

SI algorithms seek to mimic the natural or artificial collective 

behaviour of decentralized, self-organized systems. They are population-based 

techniques based on agents that interacts locally and with their environment.  This 

local behaviour with some level of randomness of interacting agents often leads to an 

intelligent emerging behaviour that tends towards a global optimum.  A concise 

introductory overview of the successes of some nature-inspired metaheuristics can be 

found in [125]. 
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2.3.1 Properties of Swarm Intelligence Paradigm 
Researchers have long realized the importance of emergent behaviour for complex 

problem solving especially in search of intelligent solutions to real-world problems. 

However, some recent advances in SI, comprising new swarm-based optimization 

methods, hybrid algorithms and innovative applications can be found in [82]. The 

major concepts underlying the SI research field are decentralization, stigmergy, self-

organization, emergence, feedbacks (positive and negative), fluctuations and 

bifurcations. Furthermore, division of labor, morphogenesis and collective decisions 

are essential concept to the SI paradigm [48]. SI algorithms are population-based but 

not population-based techniques are swarm-based [120]. 

 

A typical SI system has the following properties [33,120]:  

i. It is based on population of individuals which are relatively homogeneous (i.e. 

they are either all identical or they belong to a few typologies).  

ii. Individuals interact based on simple behavioral rules that exploit local information 

they exchange directly or via the environment (stigmergy).  

iii. Information exchange is through models of well-known behavior of the 

underlying agents such as chemical secretion, dance, or broadcasting ability 

depending on the nature of the agents. 

iv. The overall emerging (global) behaviour of the system results from the self-

organizing ability through the local interaction with each other and the 

environment.  

v. There is no central control among the self-interested agents. 

 

2.3.2 Swarm Intelligence Models 
SI models are computational models inspired by natural swarm systems. Many SI 

models have been proposed and successfully applied in literature based on the 

characteristics of different natural swarm systems [33]. These include Altruism 

algorithm [115], Ant Colony Optimization [34], Artificial Immune System [33, 65, 

112], Artificial Bee Colony [60], Bacterial Foraging [32, 83], Bat Echolocation [126], 

Cat Swarm Optimization [26], Charged System Search [61, 62, 109], Cuckoo Search 

[119], Firefly Algorithm [123, 124], Glowworm Swarm Optimization [66], Intelligent 
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Water Drops [78, 80, 98, 99], Mosquito Host-seeking [42], Particle Swarm 

Optimization [36, 63], River Formation Dynamics [87-89], Roach Infestation 

optimization [52], Slime Mould Optimization [75] and Stochastic Diffusion Search 

[17, 18, 74].     

 

Table 2.2 provides, in alphabetical order, a list of well-known SI algorithms as well as 

motivation that lead to their derivations including their originators.  

 

Table 2.2: List of Swarm Intelligence Algorithms and their motivations 
 

S/N ALGORITHM MOTIVATION RESEARCHER(S) YEAR 

1 Altruism Algorithm 
[115] 

Hamilton's rule of kin selection Waibe M., Floreans 
D & Keller L.  

2011 

2 Ant Colony 
Optimization [34] 

The foraging behaviour of social 
ants 

Dorigo, M  1992 

3 Artificial Immune 
Systems [65] 

The characteristics of the immune 
system of mammals 

Kephart J. O. 1994 

4 Artificial Bee Colony 
[60] 

The foraging behaviour of bees Karaboga, D.  2005 

5 Bacterial Foraging [83] The social foraging behaviour of 
bacteria such as Escherichia coli 

Passino, K. M.  2002 

6 Bat Echolocation [126] Based on the echolocation behaviour 
of bats 

Yang, X.-S.  2010 

7 Cat Swarm 
Optimization [26] 

Based on two of the major 
behavioral traits of cats termed 
”seeking mode” and ”tracing mode” 

Chu, S.-C. & Tsai, 
P.-W. 

2006 

8 Charged System 
Search [61] 

Some principles from physics (laws 
of Coulomb and Gauss from 
electrostatics) and mechanics 
(Newtonian laws) 

Kaveh, A. & 
Talatahari, S. 

2010 

9 Cuckoo Search [119] The brooding behaviour of some 
cuckoo species, which use host birds 
to hatch their eggs and raise their 
chicks 

Yang , X.-S. & 
Deb, S 

2009 

10 Firefly Algorithm 
[123] 

The flashing patterns and behaviour 
of fireflies. 

Yang, X.-S.  2008 

11 Glowworm Swarm 
Optimization [66] 

The behaviour of glowworms  Krishnanand, K. N. 
& Ghose, D.  

2006 
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12 Intelligent Water Drops 
[98] 

Natural rivers and how they find 
almost optimal paths to their 
destination. 

Shah-Hosseini, H.  2007 

13 Mosquito Host-seeking 
[42] 

The host-seeking behaviour of 
mosquitoes 

Feng, X., Lau, F. C. 
M. & Yu, H. 

2013 

14 River Formation 
Dynamics [87] 

The way water forms rivers by 
eroding the ground and depositing 
sediments; similar to ant colony 
optimization. 

Rabanal, P., 
Rodriguez, I, & 
Rubio, F. 

2007 

15 Roach Infestation 
Optimization [52] 

Social behaviour of cockroaches Havens, T. C. 
Spain, C. J., 
Salmon, N. G. & 
Keller, J. M. 

2008 

16 Particle Swarm 
Optimization [63] 

Social behaviour of flock of bird and 
school of fishes 

Kennedy, J. and 
Eberhart, R.. C.  

1995 

17 Slime Mould 
Optimization [75] 

The lifecycle of amoeba Monismith, D. R. & 
Mayfield, B. E. 

2008 

18 Stochastic Diffusion 
Search [15] 

The restaurant game Bishop, J. M. 1989 

 
The swarm-based algorithms can be classified into three: microscopic agents-based 

SI, inanimate agents-based SI metaheuristics and others. Those based on microscopic 

agents are the Artificial Immune System, Bacterial Foraging, Slime-Mould while 

those based on inanimate agents are Charged System Search, River Formation 

Dynamics and Stochastic Diffusion Search. They are so named because they are 

unlike other SI metaheuristics like Ant colony Optimization, Artificial Bee Colony, 

Bat Echolocation, Cat Swam, Cuckoo Search, etc. stated in Table 2.2 which are based 

on animate agents individually visible to the human eyes. 

 

2.4. Particle Swarm Optimization 
PSO is one of the two fundamental mainstreams of SI developed in 1995 by James 

Kennedy and Russell Eberhart [36, 63]. It is a robust population-based stochastic 

optimization technique based on the social behavior, movement and intelligence of 

flocks of birds or schools of fish. It applies the concept of social interaction of a 

number of agents (particles) that constitute a swarm moving around, with a certain 

velocity, in an n-dimensional search space in search of the best solution to an 

optimization problem.  Each particle resides at a position in the search space with the 
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fitness value (evaluated by the fitness function to be optimized) of each particle 

representing the quality of its position.  

2.4.1 The original PSO framework 
PSO involves a swarm of particles (agents) randomly initialized as points in the n-

dimensional Euclidean space in search of optima solution to an optimization problem. 

Each particle i is characterized by a position vector  ⃗              , a velocity 

vector  ⃗             , and another position vector  ⃗             , which is the 

best position the particle has been able to find. The position of each particle is 

evaluated using the problem-specific objective function to determine their quality 

(fitness).  As the particles move in the search space, their position and velocity vectors 

are updated as shown in equations (2.1) and (2.2) respectively in the OPSO algorithm. 

 ⃗ 
     ⃗ 

     ⃗   ⃗   ⃗ 
      ⃗ ( ⃗   ⃗ 

 ) (2.1) 

 ⃗ 
     ⃗ 

   ⃗ 
    (2.2) 

where i = 1, 2, …, S and t = 1, 2, …, T; S represents the swarm size while T represents 

the maximum number of iteration allowed for the algorithm to run. 

 

The velocity updating formula  

Equation (2.1) known as the velocity updating formula is an integral part of the OPSO 

algorithm.  This formula determines the flying speed of particles in the search space 

and is made up of the past velocity (  ⃗ 
 ), cognitive (    ⃗   ⃗   ⃗ 

  ) and social 

(   ⃗ ( ⃗   ⃗ 
 )) components. These three components play vital and different roles 

for PSO in demonstrating efficient optimizing power in providing (near) optimal 

solutions to various optimization problems, therefore making the algorithm sensitive 

to these parameters. The random coefficients  ⃗  and  ⃗  are n-dimensional vectors of 

uniform random numbers between 0 and 1, which introduce randomness to the 

searching strategy and enable the algorithm escape from local optima.  The 

acceleration coefficients c1 and c2, also known as the cognitive and social scaling 

parameters respectively, determine the magnitude of the random forces on particles in 

the direction of  ⃗  (the best position particle i has been able to find till the tth iteration) 

and  ⃗  (the overall best  position the whole particles has been able to find till the tth 

iteration). They play active roles in the convergence of the algorithm. The combined 

effort of these control parameters grants the velocity of each particle its value which 
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in turn determines the exploratory power of the algorithm. Getting appropriate values 

for particles' velocities demand additional computational efforts and time. An 

example can be found in [4].  

 

It is very rare to find any PSO variants in literature that does not utilize the velocity 

updating formula, whether in its simplified form or otherwise. This confirms the 

implicit belief that PSO algorithms cannot be separated from the velocity updating 

formula for a successful optimization process. 

 

The position updating formula  

The position updating formula of each particle is made up of two components, 

namely: (i) previous position of each particle, (ii) current velocity of each particle. 

Depending on the value if its current velocity, each particle moves from its current 

position to another position in the solution space. The solution space is bounded by 

the upper and lower limits of the decision variables. During execution of the PSO 

technique, there is the possibility that values of the design variables extend beyond 

their lower (Xmin) and upper (Xmax) boundaries values which could lead to divergence. 

In such situations, the common practice is to artificially bring the affected particle 

back to the search space boundary as shown in Equation (2.3).  

   {
              

              
 

(2.3) 

 

PSO technique has a wide range of applications in different fields including 

economics, engineering, industry, biology and many other complex real world 

optimization problems [3, 56, 73, 76]. 

2.4.2 Strengths and weaknesses of the PSO 
The good attributes of the PSO technique has been a major attraction for numerous 

researchers. However, there are some challenges associated with its usage which have 

caused some alternative optimization techniques to be sought for in solving certain 

complex optimization problems. We present a few of the strengths and weaknesses of 

the OPSO in the following sub-sections.  
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2.4.2.1 Strengths of the PSO technique 
PSO is self-adaptive, not problem-dependent and easy to implement with few 

parameters to adjust and/or optimize. It can be applied to solve both simple and 

complex optimization problems with less computational burden. As an intelligent 

technique, it does not need major adjustments to adapt it to new problems. 

 

The technique does not need the gradient, continuity or differentiability of the 

problem to work with. It is also insensitive to problem dimensionality as well as 

initial solutions and can easily be parallelized for concurrent processing. 

 

PSO has good global search ability with high accuracy and fast searching speed. 

Besides, it adopts real number representation which is decided directly by the 

solution.   

 

2.4.2.2 Weaknesses of the PSO technique 
In spite of the attractive features of the PSO as a potential global optimizer, some 

weaknesses associated with it have been identified by various researchers. These 

include:  

i. Lack of PSO variants that perform well in optimizing diverse set of problems. As 

identified by [119], some variants of the PSO have high quality performance in 

solving complex multimodal functions but demonstrate unsatisfactory 

convergence rates in unimodal functions.  

ii. Victim of premature convergence (easily trapped in local optima) when solving 

complex multimodal problems. This area of the PSO has received much attention 

in literature [4, 28, 43, 53, 54, 106, 131] and is a situation where the particles 

converge to the existing global best in the search space rather than the global 

optimum. This comes about because the more the particles communicate 

information to one another, the more similar they become especially when other 

particles follow are in line with the global best particle. A primary reason 

advanced by [106] that could also cause premature convergence is that, all 

particles have very similar behaviours because they have the same acceleration 

coefficients and inertia weight values leading to poor population diversity among 

the particles. 
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iii. Profoundly dependence on the settings of cognitive and social learning constants 

as well as inertia weight [53].  The cognitive and social learning constants (c1 and 

c2) were part of the OPSO [36, 63] while the inertia weight parameter became part 

of the technique in 1998 [104]. In [63], the stochastic factors of both the cognitive 

and social components were multiplied by c1 and c2 respectively and both 

constants were set to the value of 2.0, to give each factor a mean of 1.0. The 

inclusion of c1 and c2 in the PSO, their settings and contributions to accelerating 

convergence as well as enabling PSO to avoid local minimum [43, 63] has made 

these parameters fundamental to the operations of PSO. Also, the general belief 

that the inertia weight parameter is vital in balancing the exploration and 

exploitation activities of the PSO has equally made it an indispensable parameter.   

iv. Possible computational inefficiency as measured by function evaluations [131]. 

v. Blindness and computational inefficiency in the search process. The cognitive and 

social components in the velocity update formula are weighted by c1 and c2 having 

values of 2.0 and r1 and r2 which take random values in the range [0,1]; this means 

that, these two weighting factors arbitrarily take values in the range [0,2]. This 

constrains the search covering the surrounding regions [0,2] to be centered on  ⃗ 
  

and  ⃗ 
 . Thus, while the search is approximating the global optimal solution, large 

weighting factors generated randomly could make the particles blindly jump over 

the optimal solution. On the other hand, small weighting factors generated 

randomly could result in an increase in the number of iterations needed to reach 

the global optimal solution especially if the search initially began far from the 

global optimal solution [63, 68] 

vi. Slow convergence [7] 

 

2.4.3 Developments and improvements on OPSO 
The OPSO opened a new world of opportunity in the field of optimization. Over the 

years, many researchers in the field of optimization have made tremendous efforts to 

address the weaknesses of the PSO technique by developing different strategies to 

improve on its effectiveness, efficiency and robustness in handling optimization 

problems. These developments can be grouped into five areas, namely: 

(i) Modification and selection of parameters,  
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(ii) Mutations of particles' positions, 

(iii) Swarm initialization, 

(iv) Hybridization with other techniques, and 

(v) Topological structure. 

Brief overviews of these are provided below. 

2.4.3.1 PSO Parameters 
Optimization techniques often have parameters that guide its behaviour as is the case 

with PSO. These parameters have to be set by the user to achieve good performance. 

The implication is that different choices of these parameters can cause the technique 

to perform badly or very well in solving particular problems. Thus, the PSO is a 

parameter-sensitive technique and selecting good parameters is significant and very 

challenging [21, 84, 103, 132]. 

 

The researches that fall into this category relate to the inertia weight parameter, 

maximum velocity, constriction factor, acceleration coefficients, random factors and 

swarm size. These are briefly reviewed below: 

(a) Inertia weight parameter and its variants 

To further enhance the performance of the PSO, the Inertia Weight Strategy (IWS) 

was introduced with the aim of enhancing its exploitation and exploration 

characteristics. This parameter, commonly represented as ω, was originally 

introduced into the PSO by [104] as a static (constant) factor with a fixed value 

throughout the execution of the algorithm. It was introduced to balance the scope of 

local and global searches of PSO and reduce the importance of (or eliminate) velocity 

clamping during the optimization process [30, 38, 108]. This parameter was added to 

the velocity updating formula to modify equation (2.1) resulting in equation (2.4). 

 ⃗ 
      ⃗ 

     ⃗   ⃗   ⃗ 
      ⃗ ( ⃗   ⃗ 

 ) (2.4) 

The inertia weight parameter added to the first term at the right hand side of equation 

(2.4) determines the proportion of the previous velocity that is contributed to the 

current particles’ velocity. This implies that, if the value is high, the velocity is 

increased and if the value is low the velocity decreases thus a determinant of the 

speed of the particles. 
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Over the years several inertia weight strategies have been proposed to dynamically 

adjust its value at each iteration (see for example [4, 41, 55, 64, 69, 72, 102, 118]). 

These strategies include random, time varying, chaotic and adaptive inertia weight 

strategies. These inertia weight strategies have been experimentally proven to enhance 

the performance of the PSO with varying degrees of success.  These variants are 

briefly discussed below. 

i. Random inertia weight strategies 

Diversification (exploration) is vital in locating the area of global solution to an 

optimization problem. This activity can be facilitated mostly by means of 

randomization. As a result, randomness has been introduced to the IWS by different 

researchers [36, 47]. This strategy does not have any feedback parameter. The inertia 

weight thus takes different values randomly assigned at each iteration from a specified 

interval. In [37] it was empirically discovered that random inertia weight strategy 

increases convergence in the PSO and could find good solutions to most functions.  

ii. Time varying inertia weight strategies 

In this category, the value of the inertia weight is computed based on the iteration 

number. Variants in this category can be broadly divided into two classes namely, 

linear and nonlinear. The linear time-varying strategies can be further categorized into 

linear time decreasing and linear time increasing strategies. The linear time 

decreasing strategy uses an initially large inertia weight (usually 0.9) which is  

linearly decreased to a small value (usually 0.4) [29, 41, 71, 72, 113, 129]. There are 

cases where values other than 0.9 or 0.4 are used [39, 64, 68, 101]. The linear time 

increasing strategy increases the inertia weight linearly from a specified small value to 

a final large value [128, 129].  

 

Similarly, the nonlinear time-varying strategies can be categorized into nonlinear time 

decreasing and nonlinear time increasing strategies. The nonlinear time decreasing 

strategy decreases an initially large value nonlinearly to a small value [6, 56, 67, 116]. 

This allows shorter time for exploration than the linear decreasing methods which 

spend more time on refining solutions (i.e. exploitation) [29, 67]. These methods seem 

more appropriate for smoother search spaces [29]. Conversely, the nonlinear time 

increasing strategy works in the reverse order of the nonlinear time decreasing 

strategy [88].  
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A common characteristic of these inertia weight strategies is that the inertia weight 

computed is bounded by two values which are always pre-defined by the user. These 

values are the initial value (ωmin) and final value (ωmax) for the increasing strategies. 

However, for the decreasing strategies, the initial value is ωmax while the final value is 

ωmin. With these static values, no room for flexibility is created for the inertia weight 

computed values.  

iii. Chaotic inertia weight strategies 

Chaos optimizations have been applied to different aspects of PSO by various 

researchers over time [31, 27, 46, 45, 70]. The important role of randomization can be 

understood using the chaos theory. Chaos is mathematically defined as randomness 

generated by a simple deterministic system [110]. It is generally characterised by 

three dynamic properties namely, ergodicity, stochastic and sensitivity to its initial 

conditions [27, 110] which is believe to enhance the search ability of PSO. This seems 

to be the motivation behind the introduction of chaos feature into IWS by [41] which 

led to improved optimizing capabilities of the Chaotic Descending Inertia Weight 

PSO (CDIW-PSO) and Chaotic Random Inertia Weight PSO (CRIW-PSO) due to 

better global search mobility, convergence speed and convergence precision 

compared to the Linear Decreasing Inertia Weight PSO (LDIW-PSO) and Random 

Inertia Weight PSO (RIW-PSO) respectively. There are several other chaotic maps 

such as the logistic chaotic map which can be used in conjunction with the IWSs to 

improve the performance of PSO. 

iv. Adaptive inertia weight strategies 

The adaptive IWSs were also introduced to improve the performance of PSO. These 

can be grouped into two namely,  the fuzzy adaptive inertia weight, which is 

dynamically adjusted based on fuzzy sets and rules in each iteration [77, 105] and 

non-fuzzy adaptive inertia weights, which are dynamically adjusted based on some 

feedback parameters like swarm particle fitness, particle rank, distance to particle, 

global best positions, and particle success rate  [77].  

 

(b) Introduction of maximum velocity 

The velocity of a particle as given in equation (2.1), without restriction, can grow 

unbounded while the particle oscillates around an optimum, increasing its distance to 

the optimum in each iteration. This initiated the introduction of the velocity clamping 

effect (or maximum velocity, Vmax) to avoid velocity divergence.  This idea was 



39 
 

introduced by Eberhart and Kennedy in 1995 [36, 103]. It improves the performance 

of the PSO as it helps particles take reasonably sized steps raking through the search 

space rather than bouncing and continuously searching outside the solution space. 

Velocity limits has been widely used in experimental studies [102]. However, efforts 

have been made to eliminate the use of Vmax although, researches have shown that 

velocity clamping has become a standard feature of the PSO [40].  

 

The maximum velocity bounds for particles could negatively affect the performance 

of the PSO algorithm if it is not properly set. As a result, various works have sought 

to determine the velocity limits of particles that help to improve the performance of 

PSO [102, 132]. The three major methods for computing the velocity clamping (Vmin 

and Vmax) in literature are: (i) multiplying the search space range with a certain 

percentage ( ), i.e. Vmax = (Xmax – Xmin) and Vmin = -Vmax [40], (ii) multiplying both 

the minimum and maximum limits of the search space separately with a certain 

percentage ( ), i.e. Vmax = (Xmax) and Vmin = (Xmin) [132], and (iii) assigning the 

search space upper limit to Vmax, ( ), i.e. Vmax = Xmax [38, 122]. It can be seen from (i) 

and (ii) that the parameter  is very important. As a result, different values have been 

used by different authors [40, 68, 101] for   (0,1] to determine velocity clamping 

for particles. In literature, irrespective any of the three methods used, the velocity 

limits remain constant throughout the lifetime of the algorithm. 

 

From equation (2.2), it is obvious that the velocity of a particle dictates the particle's 

trajectory and is the direct determinant of its step sizes. Thus, the velocity limit plays 

important roles in the exploration and exploitation ability of the PSO algorithm, 

though its selections may be problem-dependent [103]. There exists the possibility of 

encountering certain practical problems as a result of lack of knowledge regarding the 

selection of Vmax leading to the use of a trial-and-error approach in order to make a 

selection which could be very arduous and time consuming. Allowing the velocity 

threshold to remain static, either by assigning to it a predefined constant value or a 

search space threshold, throughout the lifetime of the algorithms, can make the 

particles have some step size causing them to do more than enough exploration or 

insufficient exploitation.  
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(c) Introduction of the constriction factor 

 To ensure convergence, a PSO with constriction coefficient was proposed by [30] 

which help transform the velocity update formula in equation (2.1) to that of equation 

(2.5) below. The introduction of this parameter was to eliminate the need for velocity 

limit as it is believed to limit the exploration of PSO [38]. However, empirical studies 

in [38] shows that the constriction factor performed better when used with velocity 

limit parameter. A mathematical argument presented in [15] revealed that the inertia 

weight model is equivalent to the constriction factor. Earlier on in [38], the two 

parameters were observed to be the same and the PSO with the constriction factor was 

considered to be a special case of an algorithm with inertia weight. Another study 

reported in [132] shows that the constriction factor PSO has varied efficiencies 

relative to unimodal and multimodal problems being solved. However, based on the 

findings of [15], it is not necessary to compute the constriction factor using equation 

(2.5) because the sum of the learning coefficients which is required to be greater than 

4 produces an unnecessary oscillation of the particles.  

  
      (  

         ⃗     
        ( ⃗     

 )) (2.5) 

where, 

  
  

|    √      |
 

with 
            

and 
    

The parameters                    ⃗       ⃗  are as defined in Section 2.4.1. Parameter 

  is known as the constriction factor which is a function of         ;         is an 

arbitrary constant that is used to adjust the value of  . 

 

(d) Acceleration coefficients 

These parameters are positive values that are commonly represented as c1 (cognitive 

scaling parameter) and c2 (social scaling parameter). They regulate the relative 

velocity of each particle towards the local and global best respectively. The values of 

2.0 as originally assigned to these parameters in the OPSO [63] have been adopted by 

many researchers over the years [4, 29, 39, 41]. As a result of the sensitive roles of 
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these parameters in the performance of PSO, other researchers have attempted to 

adjust them through empirical studies [50, 95-107]. In [50], the role of the 

acceleration coefficients on the performance of PSO was investigated by using 

unsymmetrical transfer range of acceleration coefficients. Simulation studies 

exhibited an improved optimum solution for most of the benchmarks used especially 

when changing c1 from 2.75 to 1.25 and c2 from 0.5 to 2.25, over the full range of the 

search [50]. 

 

Furthermore, in [95], the New PSO (NPSO) was proposed. Here, the cognitive 

acceleration coefficient c1 was split into good experience component c1g and bad 

experience component c1b to help the particles move towards their previous best 

positions and away from their previous worst positions in order to facilitate 

exploration capability. Similarly, the Anti-Predatory PSO (APSO) was proposed by 

[96], where the cognitive acceleration coefficient c1 was split into good experience 

component c1g and bad experience component c1b. c2 was also split into the good 

experience component c2g and the bad experience component c2b. The bad experiences 

help particles to by-pass their previous worst positions while good experiences help 

particles move towards their previous best positions. Likewise in [107], the Time-

Varying Acceleration Coefficients PSO (PSO-TVAC) was introduced to enhance the 

global search in the early part of the optimization and to encourage particles’ 

convergence towards the global optimum at the end of the search. This was achieved 

by linearly decreasing the cognitive parameter c1 from a high value c1max to a low 

value c1min while the social parameter, c2, was linearly increased from a low value 

c2min to a high value of c2max. Discussions on other strategies for determining these 

acceleration coefficients can be found in [57]. 

 

From the preceding information regarding acceleration coefficients, it is clear that in a 

bid to make the PSO technique perform better, some complexities and extra 

computational efforts have been added to or introduced to the technique. If the 

activities of these parameters could be compensated for, with less effort and 

complexities, in other parts of the PSO technique, then the parameters could be 

removed from the velocity updating formula to avert the extra computational 

complications. 
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(e) Random factor 

A closer look at the PSO algorithm reveals that randomness plays a very useful role in 

making the algorithm while seeking effective solution to optimization problems. 

Randomness comes into play at the point of initializing the particles in the solution 

space and in updating the velocities of particles at each iteration of the algorithm. The 

presence of random factors in the velocity formula enhances stochastic tendency and 

slows down convergence in order to promote the state space exploration and prevent 

premature convergence to non-optimal points [116]. This random feature has 

contributed immensely to the performance of PSO [41, 46].  

 

(f) Swarm size 

This is often set relative to the dimensionality and perceived complexity of a problem. 

Values in the range 20-50 are common [20, 63, 86, 117, 122], depending on the 

problem being solved. The convergence of PSO can also be influenced by the swarm 

size. Small size of swarm results in fewer numbers of function evaluations and 

consequently faster clock time, but in most cases, a large number of algorithm 

iterations is needed while large swarm size requires more function evaluations and 

fewer numbers of iterations [113, 132]. Tuning this parameter is seen to be of minor 

importance [98], thus, there appears to be no generally defined swarm size in the 

literature. 

2.4.3.2 Mutation operators 
In order to increase the diversity of the swarm and to prevent premature convergence 

to local optimal, various mutation operators have been introduced to the PSO [5, 31, 

46, 68, 69]. Chaos mutation operator based on logistic map was used by [27, 46] and 

another based on Zaslavskii was used by [31]. In [45], twelve different chaos maps 

were implemented to tune the attraction parameter of an accelerated PSO algorithm.  

2.4.3.3 Swarm initialization 
Swarm initialization involves the way particles are randomly distributed in the search 

space at the initial stage relative to their positions and velocities, before the algorithm 

starts execution. There are two sides to this, i.e. the random number generator used 

and the way particles are distributed, both of which could enhance the computational 

behaviour of PSO technique during the search process.  
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Random number generators: These are systems with the ability to generate sequences 

of random numbers according to a probability function [16].  Different types of 

random number generators have been experimentally implemented to initialize 

particles in the search space [16, 57, 81] but their efficiency seems to be problem 

specific, as a certain initialization technique may lead to desirable behaviour in one 

problem and undesirable in another [57]. 

Distribution of particles: During initialization, particles could be distributed 

symmetrically or asymmetrically. When particles are distributed within the entire 

feasible search space, with the global optimum lying within the space, most especially 

when it is at the centre of distribution, it is said to be symmetrical; this is common 

among the PSO variants relative to the benchmarking problems [81]. The 

initialization is asymmetric when the particles are distributed within a subspace of the 

entire feasible search space that does not contain the global optimum. The latter 

method is referred to as region scaling and is most applicable as a research standard 

for performance testing and comparison of algorithms when both the problem and its 

optimum are known [20]. 

 

Most PSO variants use uniformly distributed random numbers for the initialization of 

particles [81]. However, the random number generator used to initialize swarm in 

PSO is not commonly specified by researchers in literature. This is not an 

encouraging practice because it makes performance comparisons of PSO variants 

difficult. 

2.4.3.4 Swarm topological structure 
This is the communication structure by which all the particles in the swarm are 

organized to share information with each other when they are searching for solution in 

the search space. It typically consists of bidirectional links connecting pairs of 

particles and the best point found by any particle affects its neighbourhood. For 

further information on swarm topological structure and the various ways they are 

categorized can be found in [20, 57, 86, 94]. The type of topology used to implement 

PSO can affect its efficiency and could be problem dependent. 
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2.4.3.5 Hybridization with other techniques 
Hybridization is the combination of two or more techniques, taking advantage of their 

strengths, to build up a better technique that will be of more benefit compared with 

the original individual techniques. Two popular ways of hybridization are sequential 

and parallel hybridizations [44, 111]. Using these methods, the PSO has been 

hybridized with different population-based techniques over the years. In the research 

carried out by [111], hybridization with the Genetic Algorithm is the most popular 

choice among researchers followed by Differential Evolution and Ant Colony 

Optimization algorithms. Other techniques that have been combined with the PSO are 

bacterial foraging optimization [14, 71] and simulated annealing [6, 51, 58, 106]. In 

[70], PSO was hybridized with a chaotic local search procedure based on logistic 

map.  The logistic and tent chaotic maps were respectively used as inertia weights by 

[27] in binary PSO to handle the feature selection problem.  

 

PSO has also been hybridized with other local search techniques to help strengthen its 

local search ability. Among these are Hill Climbing [59], Golden ratio method [127], 

Local interpolation search [114], Adaptive local search [58] and the Quasi-Newton 

method [130]. Some other local search techniques hybridized with the PSO are 

reviewed in [94, 111]. 
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Chapter 3 
Studies based on Dynamic Velocity and 
Search Space Limits 
 

The velocity limits (threshold) as well as the search space limits play important roles 

in the efficiency of the PSO technique. They are used to control the extent of the 

movements of particles when searching for (near) optimal solutions to optimization 

problems within the search space. This control helps particles not to move out of the 

search space of the problem, thereby forcing them to concentrate on the environment 

where solutions to the problems can be found. The velocity limits are generally 

represented by Vmin and Vmax to form an interval [Vmin, Vmax], where Vmin is the 

minimum velocity and Vmax is the maximum velocity of particles in the search space.  

 

These parameters are often pre-set by users when implementing PSO. The search 

space limits define the boundaries for the decision variables of the problems being 

optimized and the dimensions of the variables are expected to take values from within 

this space defined by the boundaries. The search space limits are generally 

represented by Xmin and Xmax to form an interval [Xmin, Xmax], where Xmin is the 

minimum value and Xmax is the maximum value the decision variables can obtain 

relative to the search space. These parameters are also often pre-set by users when 

implementing the PSO and they vary with the type of optimization problems.   This 

chapter presents two research articles (Paper 1 and Paper 2) based on studies on the 

velocity and search space limits of PSO. Furthermore, the chapter reports results 

another PSO variant based on greedy and adaptive methods of obtaining the global 

swarm best.  

3.1 Paper 1: On the Performance of Linear Decreasing 
Inertia Weight Particle Swarm Optimization for 
Global optimization 
 

In Paper 1, the effects of different velocity limits on the performance of PSO were 

studied and some of the values obtained for the limits were used to improve the 
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performance of one of the PSO variants in literature, that is, the LDIW-PSO. This 

variant has been considered by some researchers to be less effective compared to their 

respective proposed PSO variants with numerical evidences recorded in literature. In 

trying to validate these claims, several numerical simulations were performed using 

the improved LDIW-PSO. Empirical results obtained showed that LDIW-PSO 

performed better than these variants. Compared to other recent PSO variants with 

different inertia weight strategies on the same test problems, it was also discovered 

that LDIW-PSO had a competitive advantage. The findings in Paper 1 revealed that 

previous claims of its inferior performance might have been due to some unfavourable 

experimental settings. With good experimental settings, LDIW-PSO will perform 

competitively well compared to many PSO variants. Further simulation results that 

can provide useful hints for deciding the setting velocity limits for particles for 

LDIW-PSO were provided in the paper. 

3.2 Paper 2: Improved Particle Swarm Optimizer with 
Dynamically Adjusted Search Space and Velocity 
Limits for Global Optimization 
 

Based on the positive effects of velocity limits on the performance of the PSO 

technique in Paper 1, it became necessary for further studies on velocity and search 

space limits.  This is the focus of Paper 2. This further study was motivated by the 

original goal of PSO of finding solutions to optimization problems much faster than 

traditional methods. Also, spending time to find optimal settings for the velocity 

limits parameters could count against any superiority claim over competing methods. 

Another motivation for further studies hinges on two major features that characterize 

many of the PSO variants in literature namely, the static particle search space and 

velocity limits. That is, once values for these parameters are set, they remain the same 

throughout the lifetime of the algorithm. This has limited the flexibilities of these 

variants in obtaining optimal solutions for many of optimization problems. Paper 2 

therefore studied the OPSO with the aims of improving its performance and compare 

results thereof with some efficient PSO variants recorded in literature.  

 

Instead of using the inertia weight parameter, which is the common tool being used to 

address the problem of premature convergence associated with PSO, Paper 2 worked 

directly with the velocities of the particles. This is because the velocities of particles 
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are the direct determinants of the particles' step sizes. The velocity limits were made 

to vary throughout the lifetime of the algorithm to create opportunities for the 

algorithm to obtain better quality solutions to optimization problems. Also, the 

solution search spaces were made to vary to prevent particles from spending 

unnecessary time searching areas that may not be necessary in finding good solutions.  

 

Numerical simulation results show that the improved OPSO is very consistent in 

convergence velocity, convergence accuracy, global search ability and robustness 

than all the PSO variants adopted for comparisons. The findings in Paper 2 further 

revealed that if the velocity limits and solution search space of particles are allowed to 

vary dynamically relative to the values of particles' dimension, there is likelihood of 

great improvement in the performance of the algorithm. This results from the better 

exploration and exploitation activities of the algorithm with added flexibility in 

concentrating on the promising areas in the solution search space for further search by 

the particles instead of the entire space all the time.  

3.3 Particle Swarm Optimizer based on greedy and 
adaptive methods 
 

This is an additional work, not yet reported or submitted as an article to any journal or 

conference as at the time of this thesis.  The study attempt to further improve the way 

global best is obtained from the personal bests of all the particles in the PSO 

technique. In this variant, adaptive feature was introduced in the process of obtaining 

the global best. Also, the way velocity limits and search space limits were obtained is 

different from the methods mentioned in section 3.2 and reported in Paper 2. This 

variant is named PSO based on greedy and adaptive methods (GAPSO). 

 

3.3.1 Motivation 
This study was motivated by the fact that: 

i. PSO uses pure greedy method in searching for (near) optimal solution. We seek 

ways to complement this with an adaptive strategy for better efficiency. 

ii. We also observed that premature convergence to a non-global local minimum is 

more likely to occur with a greedy strategy in handling multimodal problems 

which might not be of much problem if an adaptive approach is adopted. 
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In GAPSO, four phases are involved in the determination of the global best position 

from the personal bests of particles as well as in the calculation of the search space 

and the velocity limits. 

 

Phase 1: Personal best construction  

In this phase, the personal best of each particle is obtained in the normal way as in the 

OPSO by using greedy method. That is, if the current position of a particle is better 

than the best it last visited, it is retained otherwise it is replaced with the best last 

visited position. With this, a vector of personal bests  ⃗⃗               is created for 

all the particles, where n is the swarm size. 

 

Phase 2: Swarm splitting phase 

After obtaining personal bests ( ⃗⃗) for all the particles, a threshold is defined using a 

value-based method. In the value-based method, the parameter [0,1] is used in 

defining the threshold. Assume g is the candidate evaluation function which maps 

every elements ci of the set of yet to be added particles C to a real value, gmin = 

min{g(ci)}, ci  C and gmax = max{g(ci)}, ci  C. Since minimization problems are 

considered, all particles which have objective function value smaller than the 

threshold μ = gmin + (gmax - gmin) are included in group 1 while the other particles are 

included in group 2. Thus, the objective function value of each particle must be in the 

interval g(ci)  [gmin,μ] to be included in group 1. If  = 0 the selection is greedy, but 

purely random if  = 1. 

 

Listed below are three different approaches of choosing ,  

i. Choosing  randomly from a uniform discrete probability, 

ii. Choosing  from a non-uniform decreasing discrete probability, and 

iii. Fixing  to a value close to the purely greedy choice. 

Approach (i) is currently used in the implementation of GAPSO. 

 

This process of obtaining the personal bests involves using a greedy method whereas 

an adaptive method is used in the algorithm to update the particles in group1. As long 

as this phase continues, the solution found gradually improves. 
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Phase 3: Obtaining global best position 

Instead of obtaining the global best by picking the best of all personal bests, it is 

obtained by collecting the least value in each dimension across all particles in group 

1. Thus, the global best position (     ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗) for entire swarm is obtained using equation 

(3.1).  

          
 

(  
 
) (3.1) 

 

where, i = 1,2 ,…, n, is particle’s index, j = 1,2 ,…, d, is the index of particle’s 

dimension, n is the swarm size and d is the dimension size.  

 

Phase 4: Obtaining velocity and search space limits for particles 

The velocity and search space limits are obtained using group 2 of particles as 

follows:  
 

(i) During each iteration, the largest dimensions value (Ld) and the smallest 

dimension value (Sd) among the dimensions of all the particles, are obtained 

according to equations (2) and (3), where,   
  is the ith particle with jth

 dimension. 

      
 

(   
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(   
 

(  
 
)) (3.3) 

(ii) The upper limit xmax and lower limit xmin of the solution search space for the 

particles were obtained according to equations (3.4) and (3.5), where | . | means 

absolute value. 

         |  | |  |  (3.4) 

           (3.5) 

(iii)After obtaining xmax and xmin, they are used to compute the upper (vmax) and lower 

(vmin) particle velocity limits as defined in equations (3.6) and (3.7). 

           (3.6) 
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           (3.7) 

where,  is a velocity clamping percentage which is used to scale the upper and 

lower solution space limits to help reduce the velocity range for particles.  

 

Equation (3.8) was used to update the positions of particles at each iteration. 

   {
                                    

                                    
 (3.8) 

Simulation experiments were conducted to implement this new algorithm (GAPSO) in 

order to determine its weakness and strength, to guide the direction for its further 

improvement(s). 

3.3.2 Experimental settings 
Since PSO is a stochastic algorithm, all experiments were repeated 50 times with 

different random seeds. The performance of each approach takes into account the 

Mean Best Fitness (MBF), Standard Deviation (SD), Success Rate (SR), number of 

Function Evaluations (FE) to satisfy the success criteria and Average Computer Time 

(ACT) in minutes for all the 50 runs. The proposed PSO variant was applied to 31 

benchmark test problems in Appendix A as obtained from literature [8, 22, 60, 91, 

92].  

 

The number of variables (dimensions) for all functions in the experiments ranges from 

2 to 30. Swarm size was set to 30; maximum number of iteration was set to 5,000 for 

dimensions of 30 and 2,000 for others. The stopping criterion is to allow algorithms 

run for the maximum number of iterations. For the test problems that have their global 

minimum as zero (0.0), a run was considered successful if at the end of maximum 

iteration the algorithm obtains a result less than 10−5. For other test problems, a run 

was considered successful if at the end of maximum iteration the algorithm obtains a 

result less than the success criteria stated in Table 3.1. The parameters c1 and c2 were 

set to 2.0. For LDIW-PSO, Vmax was set relative to the search space of each problem, 

using maxmax 05.0 XV  , where Xmax is the maximum value of the domain of x. This 

Vmax setting was used because it greatly increased the efficiency of LDIW-PSO. For 

GAPSO, at the beginning maxmax XV  , but Vmax was subsequently adjusted using 

Equations (3.6) and (3.7).  
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Table 3.1: Success criteria for some of the test problems 

Test Problem ALFP CML6 CSM1 EXPN ESOM HTMF MCLZ ROSB 

Success criteria -0.3520 -1.0315 -2.9999 -0.9999 -0.9999 -3.85 -1.8012 30.0 

 

3.3.3 Experimental results and discussions 
Presented in Table 3.2 are the results obtained from the experiments when LDIW-

PSO and GAPSO were used on the benchmarked test functions. The bold values show 

better optimal results. From the results, it is clear that LDIW-PSO generally 

performed better in low dimension problems while GAPSO generally performed 

better in high dimension problems. However, the two algorithms performed equally in 

BKY2 and EXPN problems. In these two problems, GAPSO executed fewer number 

of FEs with slightly higher ACT. The higher ACT is perhaps as a result of the time 

used by GAPSO to compute Equations (3.1) – (3.7). A general observation is that, 

GAPSO has the ability to escape local optima than LDIW-PSO in complex search 

spaces. 

 

Observations from the performance of the two algorithms might suggest the need to 

hybridize them with other technique for improved overall performance. GAPSO 

needs further improvements to make it perform well on low-dimensional problems.  

These might include:  

i. Introduction of randomness into equation (3.1). This will involve a random 

selection of some personal bests of particles in group 1 to obtain the global 

best. 

ii. Implementing other approaches of choosing  

iii. Introduction some mutations to the positions of particles. 

 

  



52 
 

Table 3.2: Results obtained for the test problems using LDIW-PSO and GAPSO 

Test 
Prob. 

LDIW-PSO GAPSO 

MBF SD midERR SR AFE ACT MBF SD midERR SR AFE ACT 

ACKL 1.6289e-14 4.6707e-15 1.4655e-14 100 105595 1.43 8.7574e-15 2.6213e-15 7.5495e-15 100 32101 2.04 

ALFP -3.5239e-01 3.3307e-16 8.6074e-05 100 603 0.04 -3.5131e-01 1.8381e-03 3.8840e-04 42 87820 0.05 

BEAL 3.0483e-02 1.4933e-01 0.0000e+00 96 4728 0.05 8.2188e-01 4.2357e-01 9.3484e-01 0 62000 0.05 

BELA 0.0000e+00 0.0000e+00 0.0000e+00 100 3287 0.03 5.4024e-02 1.5026e-01 1.8151e-02 0 62000 0.04 

BKY1 0.0000e+00 0.0000e+00 0.0000e+00 100 8909 0.03 1.5543e-16 8.5998e-17 2.2204e-16 100 1882 0.05 

BKY2 0.0000e+00 0.0000e+00 0.0000e+00 100 8546 0.04 0.0000e+00 0.0000e+00 0.0000e+00 100 1923 0.03 

BOOT 0.0000e+00 0.0000e+00 0.0000e+00 100 4063 0.03 7.3119e-01 7.1674e-01 4.9647e-01 0 62000 0.04 

BRWN 1.3800e+01 2.0778e+01 1.9478e-34 62 168093 4.56 6.8330e-48 3.5987e-47 2.2084e-51 100 20259 4.45 

CML3 2.2116e-148 1.3789e-147 2.99172-152 100 1516 0.05 4.9407e-324 0.0000e+00 0.0000e+00 100 3354 0.07 

CML6 -1.0316e+00 2.2204e-16 1.0316e+00 100 58 0.05 -1.0250e+00 8.1582e-03 4.1526e-03 6 948720 0.06 

CIGR 4.8951e-29 1.2908e-28 1.7227e-30 100 100744 1.24 7.6967e-46 4.0746e-45 7.0415e-49 100 30658 1.39 

CSM1 -2.6158e+00 2.2510e-01 4.4335e-01 6 2425340 1.38 -3.0000e+00 0.0000e+00 0.0000e+00 100 20957 1.49 

CVLE 2.4795e-01 1.2575e+00 7.0065e-04 4 1483260 0.08 9.2771e+00 4.9589e+00 9.0742e+00 0 62000 0.10 

DEJ4 1.6220e-42 5.5364e-42 2.5449e-44 100 69724 1.21 9.8669-62 5.2637e-61 2.6681e-66 100 20242 1.40 

DIXP 6.6667e-01 3.0927e-16 6.6667e-01 0 150000 2.03 9.5727e-01 1.2447e-02 9.5819e-01 0 155000 2.25 

EXPN -1.0000e+00 4.7103e-17 1.1102e-16 100 58001 1.27 -1.0000e+00 8.7419e-17 1.1102e-16 100 10670 1.42 

ESOM -1.0000e+00 0.0000e+00 0.0000e+00 100 1543 0.03 -9.7990e-01 6.6969e-02 3.9320e-03 4 1457015 0.05 

GWNK 1.5137e-02 1.8336e-02 9.8610e-03 32 415785 1.52 0.0000e+00 0.0000e+00 0.0000e+00 100 30870 1.54 

LVM1 1.4514e-02 3.5972e-02 1.6995e-32 86 95692 2.23 1.3511e-02 6.5184e-02 2.2328e-04 0 155000 2.32 

LVM2 6.5924e-04 2.6094e-03 3.0753e-32 94 85950 2.16 9.8279e-03 1.7673e-02 6.7619e-03 0 155000 2.36 

HTMF -3.7746e+00 6.6502e-02 7.4606e-02 4 1440360 0.23 -3.7898e+00 1.1711e-01 3.1946e-02 30 144474 0.21 

MTYS 6.1019e-117 3.8018e-116 3.2015e-120 100 1166 0.03 1.4880e-247 0.0000e+00 2.6758e-272 100 3262 0.03 

MCLZ -1.7415e+00 3.8134e-02 5.2467e-02 0 60000 0.05 -1.6893e+00 1.6901e-01 3.8400e-02 0 62000 0.07 

NQTC 1.4648e-03 5.2335e-04 1.4087e-03 0 150000 1.28 4.4310e-04 3.4823e-04 3.8526e-04 2 7423760 1.41 

NCRA 3.6641e+01 1.1758e+01 3.6501e+01 0 150000 1.49 6.0002e-01 4.2001e+00 0.0000e+00 98 66826 2.14 

PLZ1 4.8012e-32 2.1277e-31 6.7335e-33 100 80986 2.32 8.9313e-05 4.3428e-05 8.8466e-05 0 155000 2.30 

PLZ2 8.7899e-04 2.9808e-03 4.8010e-32 92 101760 2.39 4.7446e-03 2.2900e-03 4.3059e-03 0 155000 2.49 

PRDC 9.1600e-01 3.6661e-02 9.0000e-01 0 60000 0.05 9.0000e-01 8.8818e-16 9.0000e-01 0 60175 0.07 

RAS1 3.1873e+01 1.1360e+01 2.8831e+01 0 150000 1.47 8.9601e-07 6.2721e-06 0.0000e+00 98 83736 1.55 

RAS2 3.0505e+01 1.0002e+01 3.0844e+01 0 150000 1.37 1.2574e-03 8.8017e-03 0.0000e+00 98 88057 1.59 

ROSB 3.1898e+01 2.1961e+01 2.3236e+01 86 102257 2.43 2.8696e+01 9.2685e-04 2.8696e+01 100 19495 2.56 
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Chapter 4 
Studies based on Swarm Success Rate and 
Chaotic Maps 
The drive to further enhance the performance of the PSO technique led to the 

introduction of the inertia weight parameter into the PSO in 1998 [104] to balance its 

intensification and diversification activities. Intensification (exploitation) searches for 

the current best solutions and selects the best candidate; while diversification 

(exploration) allows the algorithm explore the search space more efficiently mostly by 

means of randomization to locate promising regions that would proffer better 

solutions. Motivated by the possibility of increasing the search ability of PSO with 

chaotic optimization, the Chaotic Descending Inertia Weight PSO (CDIW-PSO) and 

Chaotic Random Inertia Weight PSO (CRIW-PSO) were introduced in [41]. These 

variants used logistic chaotic map, to improve the performances of the two PSO 

variants that implemented two pioneering inertia weight strategies: linear decreasing 

and random inertia weight strategies.  

 

Chaos is mathematically defined as randomness generated by a simple deterministic 

system. Also, the swarm success rate was embedded in the inertia weight strategy as a 

feedback parameter in [77] to enhance the performance of the PSO technique. Other 

chaotic maps different from the existing ones but relative to the inertia weight 

strategies, were utilised in this chapter. Moreover, the swarm success rate was applied 

in a different way to that employed in [77].  

 

In the three papers (Paper 3, Paper 4 and Paper 5) included in this chapter, three 

different types of studies were carried out with three major goals as follows:  

i. To investigate the effects of various chaotic maps in comparison with the logistic 

map when used in the inertia weight strategy,  

ii. To propose new inertia weight strategies based on swarm success rate combined 

with the logistic map on one hand and based on only swarm success rate on the 

other hand.   
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iii. To use the proposed variants to further improve the effectiveness of the PSO 

algorithms in terms of convergence speed, global search ability, robustness and 

increased solution accuracy. 

 

4.1 Paper 3: On Adaptive Chaotic Inertia Weight in 
Particle Swarm Optimization 

 
In Paper 3, two adaptive chaotic inertia weights which combine the swarm success 

rate feedback parameter with the logistic chaotic mapping to harness the adaptive and 

chaotic characteristics of the individual techniques are proposed.  

4.2 Paper 4: An Improved Particle Swarm Optimizer 
based on Swarm Success Rate for Global optimization 
Problems 

 
Based on the findings in Paper 3, the swarm success rate was found to be a very 

useful tool for enhancing the performance of PSO. Paper 4 further explored the 

potentiality of inertia weight combined with the swarm success rate as the latter 

provide useful information about the particles in the search space.  It was ascertained 

from literature that many of the inertia weight strategies which originated from the 

LDIW strategies always have fixed initial and final values of inertia weight with the 

exception of CDIW-PSO and CRIW-PSO which utilize chaotic values to adjust part 

of the boundaries.  

 

Paper 4 proposes two new PSO variants namely, the Swarm Success Rate Decreasing 

Inertia Weight PSO (SSRDIWPSO) and Swarm Success Rate Random Inertia Weight 

PSO (SSRRIWPSO). It is believed that these variants performed better because the 

swarm success rate which served as a feedback parameter helped in realizing the state 

of the swarm in the search space and hence, adjusted the value of the inertia weight in 

each iteration appropriately for better results compared with when chaotic value 

which has no information about the state of the swarm is used.   

 

More experiments were conducted using 31 test problems (see Appendix A) to further 

test the performance of SSDIWPSO compared to LDIW-PSO and CDIW-PSO. The 

dimension of the test problems ranges from 2 to 30. Other experimental settings used 
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in Paper 4 were used. Presented in Tables 4.1 – 4.3 are the results obtained 

implementing the three variants. Best results obtained among the three variants are 

indicated in bold. In all the results, the average performance of SSRDIWPSO in all the 

performance measurements is better than the competing variants. 

 

Table 4.1: Mean Best Fitness (MBF) and Standard Deviation (SD) for the three PSO variants 

Test 
Problems 

MBF SD 

LDIW-PSO CDIW-PSO SSRDIWPSO LDIW-PSO CDIW-PSO SSRDIWPSO 

ACKL 1.5323e-10 1.6573e-14 1.3944E-14 1.6311e-10 1.2494e-14 3.0972E-15 

ALFP -3.5239e-01 -3.5239e-01 -3.5239e-01 3.3307e-16 3.3307e-16 3.3307e-16 

BEAL 4.5724e-02 6.0966e-02 7.6207e-02 1.8098e-01 2.0674e-01 2.2862e-01 

BELA 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 

BKY1 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 

BKY2 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 

BOOT 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 

BRWN 4.0640e+01 1.4720e+01 3.8080e+01 3.4792e+01 2.1188e+01 3.4597e+01 

CML3 3.6188e-148 1.6838e-303 0.0000e+00 1.4715e-147 0.0000e+00 0.0000e+00 

CML6 -1.0316e+00 -1.0316e+00 -1.0316e+00 2.2204e-16 2.2204e-16 2.2204e-16 

CIGR 8.2652e-29 3.3044e-38 1.8190e-68 3.7258e-28 2.3131e-37 1.1950e-67 

CSM1 -2.5862e+00 -2.6305e+00 -2.5951e+00 2.6928e-01 2.1568e-01 2.4518e-01 

CVLE 8.7573e-04 1.5782e-01 6.2974e-04 1.0333e-03 1.1006e+00 9.6451e-04 

DEJ4 1.3210e-40 8.2972e-83 2.0480e-120 9.1181e-40 3.0762e-82 1.2303e-119 

DIXP 6.6667e-01 6.6667e-01 6.6667e-01 3.2101e-16 3.5388e-16 3.3233e-16 

EXPN -1.0000e+00 -1.0000e+00 -1.0000e+00 2.7195e-17 1.5701e-17 3.5108e-17 

ESOM -1.0000e+00 -1.0000e+00 -1.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 

GWNK 1.6122e-02 1.3480e-02 9.9941e-03 1.6529e-02 1.4403e-02 9.3724e-03 

LVM1 1.2440e-02 1.0367e-02 8.2935e-03 3.3688e-02 3.1101e-02 2.8125e-02 

LVM2 2.6235e-31 8.7899e-04 4.1449e-03 1.0428e-30 2.9808e-03 1.4021e-02 

HTMF -3.7768e+00 -3.7753e+00 -3.7500e+00 5.5431e-02 5.9576e-02 1.5927e-01 

MTYS 8.2243e-116 1.9156e-213 8.0597e-274 5.3343e-115 0.0000e+00 0.0000e+00 

MCLZ -1.7576e+00 -1.7654e+00 -1.7675e+00 3.6620e-02 2.3939e-02 1.5048e-02 

NQTC 1.4412e-03 2.3647e-03 3.6301e-03 6.0783e-04 7.8462e-04 1.3296e-03 

NCRA 3.9561e-01 3.9921e+01 4.0406e+01 1.0911e+01 1.1701e+01 1.1733e+01 

PLZ1 1.8548e-32 9.4183e-33 1.4329e-02 4.9741e-32 1.5041e-31 1.0031e-01 

PLZ2 1.0987e-03 8.7899e-04 3.0765e-03 3.2962e-03 2.9808e-03 4.9333e-03 

PRDC 9.1400e-01 9.2000e-01 9.0800e-01 3.4699e-02 4.0000e-02 2.7129e-02 

RAS1 3.1495e+01 3.1396e+01 3.2390e+01 9.1559e+00 1.0665e+01 9.0203e+00 

RAS2 3.3948e+01 3.2814e+01 3.4306e+01 1.0491e+01 9.2322e+00 1.0594e+01 

ROSB 2.9097e+01 2.5845e+01 2.9072e+01 1.6590e+01 1.4162e+01 2.0483e+01 
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Table 4.2: Success Rate (SR), Average Function Evaluation (AFE) and Average Computer Time (ACT in minutes for 
all the runs) for the three PSO variants 

Test 
Prob. 

SR (%) AFE ACT (min) 

LDIW-PSO CDIW-PSO SSRDIWPSO LDIW-PSO CDIW-PSO SSRDIWPSO LDIW-PSO CDIW-PSO SSRDIWPSO 

ACKL 100 100 100 71937 41092 24071 1.06 1.07 1.09 

ALFP 100 100 100 391 345 389 0.04 0.03 0.04 

BEAL 94 92 90 5929 6281 7664 0.05 0.05 0.04 

BELA 100 100 100 3220 1108 852 0.04 0.03 0.03 

BKY1 100 100 100 8868 1934 1558 0.03 0.04 0.03 

BKY2 100 100 100 8915 1979 1550 0.04 0.03 0.03 

BOOT 100 100 100 3458 1206 1084 0.03 0.02 0.03 

BRWN 28 64 28 461863 112559 400440 5.01 5.07 5.02 

CML3 100 100 100 1705 807 803 0.05 0.05 0.06 

CML6 100 100 100 1385 745 695 0.05 0.05 0.04 

CIGR 100 100 100 100362 46835 22705 1.3 1.29 1.32 

CSM1 4 10 6 3674550 1369698 2358920 1.48 1.49 1.53 

CVLE 6 2 14 997040 2970360 403037 0.07 0.08 0.06 

DEJ4 100 100 100 69273 18272 7420 1.34 1.37 1.30 

DIXP 0 0 0 150000 150000 150000 2.17 2.24 2.17 

EXPN 100 100 100 56761 11175 5107 1.33 1.27 1.31 

ESOM 100 100 100 1407 819 720 0.03 0.04 0.04 

GWNK 36 30 32 362598 395244 337328 1.53 2.01 2.01 

LVM1 88 90 92 92961 37551 22215 2.32 2.25 2.3 

LVM2 100 92 78 79616 42177 56291 2.4 2.34 2.25 

HTMF 4 6 6 1440195 940110 940170 0.19 0.21 0.20 

MTYS 100 100 100 1117 704 740 0.03 0.03 0.03 

MCLZ 0 0 0 60000 60000 60000 0.06 0.05 0.05 

NQTC 0 0 0 150000 150000 150000 1.31 1.36 1.37 

NCRA 78 80 84 46263 39569 30292 2.03 1.50 1.58 

PLZ1 100 100 98 81662 31735 20038 2.38 2.37 2.21 

PLZ2 90 92 72 105741 49135 73847 5.30 2.40 2.31 

PRDC 0 0 0 60000 60000 60000 0.05 0.05 0.04 

RAS1 96 94 96 24691 12599 8379 1.54 1.5 1.53 

RAS2 90 92 94 37342 15856 11955 2.10 2.09 2.05 

ROSB 90 94 86 90851 30902 34723 3.30 3.30 3.28 
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Table 4.3: Mean error (MEANERR), least error (LEASTERR) and median error (MEDIANERR) for the three PSO variants 

Test 
Prob. 

MEANERR LEASTERR MEDIANERR 

LDIW-PSO CDIW-PSO SSRDIWPSO LDIW-PSO CDIW-PSO SSRDIWPSO LDIW-PSO CDIW-PSO SSRDIWPSO 

ACKL 1.5323e-10 1.6573e-14 1.3944E-14 8.1681e-12 7.5495e-15 7.5495E-15 1.1020e-10 1.4655e-14 1.4655E-14 

ALFP 8.6074e-05 8.6074e-05 8.6074e-05 8.6074e-05 8.6074e-05 8.6074e-05 8.6074e-05 8.6074e-05 8.6074e-05 

BEAL 4.5724e-02 6.0966e-02 7.6207e-02 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 

BELA 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 

BKY1 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 

BKY2 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 

BOOT 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 

BRWN 4.0640e+01 1.4720e+01 3.8080e+01 2.0057e-37 1.8120e-67 1.9220e-91 3.2000e+01 1.5906e-54 3.2000e+01 

CML3 3.6188e-148 1.6838e-303 0.0000e+00 2.8046e-157 0.0000e+00 0.0000e+00 1.3218e-150 6.9811e-313 0.0000e+00 

CML6 2.8453e-05 2.8453e-05 2.8453e-05 2.8453e-05 2.8453e-05 2.8453e-05 2.8453e-05 2.8453e-05 2.8453e-05 

CIGR 8.2652e-29 3.3044e-38 1.8190e-68 5.4450e-33 1.0222e-65 2.9552e-89 4.7527e-30 1.0087e-52 1.6144e-78 

CSM1 4.1380e-01 3.6946e-01 4.0493e-01 0.0000e+00 0.0000e+00 0.0000e+00 4.4335e-01 4.4335e-01 4.4335e-01 

CVLE 8.7573e-04 1.5782e-01 6.2974e-04 3.4675e-07 1.7165e-06 1.1562e-08 6.1549e-04 5.4307e-04 3.4693e-04 

DEJ4 1.3210e-40 8.2972e-83 2.0480e-120 1.5984e-48 2.7001e-92 3.5283e-131 2.4644e-44 1.4147e-86 4.4213e-125 

DIXP 6.6667e-01 6.6667e-01 6.6667e-01 6.6667e-01 6.6667e-01 6.6667e-01 6.6667e-01 6.6667e-01 6.6667e-01 

EXPN 1.1768e-16 1.1324e-16 1.2212e-16 1.1102e-16 1.1102e-16 1.1102e-16 1.1102e-16 1.1102e-16 1.1102e-16 

ESOM 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 

GWNK 1.6122e-02 1.3480e-02 9.9941e-03 0.0000e+00 0.0000e+00 0.0000e+00 1.3544e-02 9.8573e-03 9.8573e-03 

LVM1 1.2440e-02 1.0367e-02 8.2935e-03 1.5704e-32 1.5704e-32 1.5704e-32 2.0867e-32 1.8931e-32 2.0867e-32 

LVM2 2.6235e-31 8.7899e-04 4.1449e-03 1.3497e-32 1.4730e-32 1.4730e-32 3.8765e-32 7.9441e-32 1.5771e-31 

HTMF 8.3254e-02 8.4687e-02 1.1010e-01 3.5640e-04 1.1193e-03 1.4795e-03 7.4288e-02 7.2117e-02 8.5187e-02 

MTYS 8.2243e-116 1.9156e-213 8.0597-274 2.5760e-127 8.5756e-232 6.2555e-295 8.2894e-120 2.6983e-220 9.5689e-281 

MCLZ 4.3705e-02 3.5938e-02 3.3756e-02 1.8403e-02 1.8207e-02 1.8479e-02 3.5420e-02 2.8134e-02 2.9801e-02 

NQTC 1.4412e-03 2.3647e-03 3.6301e-03 5.6536e-04 6.6833e-04 1.3726e-03 1.4087e-03 2.3879e-03 3.5082e-03 

NCRA 3.9561e+01 3.9921e+01 4.0406e+01 1.7001e+01 1.6001e+01 2.2001e+01 3.9001+01 3.9001e+01 3.0501e+01 

PLZ1 1.8548e-32 9.4183e-33 1.4392e-02 1.5704e-33 1.5704e-33 1.5704e-33 6.7335e-33 6.7335e-33 6.7335e-33 

PLZ2 1.0987e-03 8.7899e-04 3.0765e-03 1.5962e-32 1.4730e-32 1.5962e-32 6.7115e-32 7.2662e-32 1.4169e-31 

PRDC 9.14000e-01 9.2000e-01 9.0800e-01 9.0000e-01 9.0000e-01 9.0000e-01 9.0000e-01 9.0000e-01 9.0000e-01 

RAS1 3.1495e+01 3.1396e+01 3.2390e+01 1.1930e+01 1.3918e+01 2.0877e+01 3.0819e+01 2.9825e+01 3.0819e+01 

RAS2 3.3948e+01 3.2814e+01 3.4306e+01 1.4924e+01 1.4924e+01 1.4924e+01 3.3331e+01 3.1839e+01 3.2834e+01 

ROSB 2.9097e+01 2.5845e+01 2.9072e+01 1.7107e+01 7.8878e+00 2.5413e+00 2.3134e+01 2.2516e+01 2.1972e+01 
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4.3 Paper 5: An Investigation into the Performance of 
Particle Swarm Optimization with Various Chaotic 
Maps 

 
Paper 5 empirically investigated further the performances of two PSO variants, 

LDIW-PSO and RIW-PSO algorithms. Various chaotic maps were incorporated into 

their respective IWSs to provide chaotic features that will enable the particles move to 

new search regions in the search space. These investigations reveal that many of the 

chaotic maps improved the performance of the algorithms at a higher level than the 

commonly used logistic map. In terms of the number of FEs, the two PSO variants 

generally performed best with the intermittency chaotic map. However, considering 

other performance measurement, none of the chaotic maps, when used with the two 

variants, could enable the algorithms perform well in all test problems compared to 

other maps.  

Based on the experimental findings, it is clear that though the logistic map could 

make LDIW-PSO and RIW-PSO have good performances, there exist chaotic maps 

that can make them perform even better in terms of convergence speed, accuracy, 

stability and global search ability. The findings in this paper provide some useful 

information regarding the usage of these maps in the inertia weight strategies of PSO 

variants especially LDIW-PSO and RIW-PSO.   
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Chapter 5 
Simplified Particle Swarm Optimization 
 

5.1. Paper 6: On the Performance of Particle Swarm 
Optimization with(out) some Control Parameters 
for Global Optimization 

 
 
The efficient optimizing power of the PSO algorithm lies in the balancing of 

exploration and exploitation activities. Meanwhile, inertia weight, acceleration 

constants, random factors and velocity threshold play important roles in the 

exploration and exploitation ability of the PSO algorithm. Their selections could be 

problem-dependent, labour intensive and time consuming with the exception of 

random factors. Several PSO variants depend on these parameters. 

 

Two major goals were achieved in Paper 6. Firstly, the paper experimentally 

demonstrated that the basic PSO (BPSO) technique can perform efficiently without 

using some (or any) of the control parameters in the particle velocity update formula. 

Secondly, the problem of premature convergence associated with the PSO technique 

when optimizing high dimensional multi-modal optimization problems was 

addressed. In achieving these goals, some modifications were made to the BPSO to 

make it simpler but more effective without additional complex computational efforts, 

to form another PSO variant branded as the modified BPSO (M-BPSO).  

 

The modifications were inspired by the drawbacks of the BPSO with respect to 

premature convergence, weak local search ability and the desire to make the 

algorithm simpler but more efficient. Some of the modifications involved making the 

velocity limits of the particles decrease dynamically depending on the progressive 

minimum and maximum dimensional values of the entire swarm. The decreasing 

nature of the velocity limits was used to control the exploration and exploitation 

activities of M-BPSO.  
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Results obtained from the numerical simulations confirm that the inertia weight 

parameter may not always be necessary for PSO algorithms to work effectively. Also, 

it was discovered from the experiments that with proper modifications to some other 

parts of PSO algorithms, the acceleration coefficients and random factors may not be 

necessary in the particle velocity updating equation to obtain global optimal solutions 

to optimization problems.  

 
 

  



148 
 

 
 
 
 
 
 
 
 
 
 
 

INCLUDED ARTICLES 
 

  



149 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

PAPER 6 
 

ON THE PERFORMANCE OF PARTICLE SWARM 
OPTIMIZATION WITH(OUT) SOME CONTROL PARAMETERS 

FOR GLOBAL OPTIMIZATION  
 

M. A. ARASOMWAN AND A. O. ADEWUMI 
 

Submitted to the International Journal of Bio-Inspired Computation 
 

Manuscript ID: IJBIC_73503 
 



180 
 

 

Chapter 6 
Particle Swarm Optimization Hybrid with 
Local Search 
6.1. Paper 7: Improved Particle Swarm Optimization with 

a Collective Local Unimodal Search for Continuous 
Optimization Problems 

 
 
Naturally, the PSO technique combines local search idea (through self-experience) 

with global search method (through neighbouring experience), in an attempt to 

balance exploration and exploitation activities. However, it is widely accepted that the 

PSO technique has good global search ability but weak local search ability because it 

can easily locate areas in the solution space where good solutions can be discovered. 

However, finding the best solution is a challenge. This difficulty often traps the PSO 

in local optimum leading to premature convergence.  

 

The optimizing strategy of the PSO hinges on the sharing of new discoveries by each 

particle in the swarm with neighbours, while the particle with the best discovery 

attracts others. Though, this strategy seems to be very promising, there is the risk that 

the particles would be susceptible to premature convergence, especially when the 

problem to be optimized is multi-modal and has high dimensionality. This is due to 

the fact that, the more particles share their discoveries among themselves, the more 

likely they are to have identical behaviours, until they converge to the same area in 

the solution search space. If none of the particles could discover the global best, then, 

at some point, all the particles will converge about the existing global best and this 

may in turn not be the global minimizer. 

 

For the PSO technique to leave up to expectation, it must possess a major feature that 

characterizes an efficient optimization algorithm, which is the ability to strike a 

balance between local and global searches. As a result, one of the possible ways to 

prevent this premature convergence is to embed a local search technique into the PSO 
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algorithm to help improve the quality of each solution by searching its 

neighbourhood. Once this is accomplished, better information is communicated 

among the particles thereby increasing the algorithm's ability to locate better global 

solutions during the course of optimization.  

 

Paper 7 was motivated by the possibility of premature convergence associated with 

the idea of other particles following the best particle among them in search for a 

global solution within the search space relative to the optimization problem being 

solved. In the paper, a different local search technique was proposed to harness the 

global search ability of PSO and improve on its local search efforts. The local search 

technique is based on the collective efforts of randomly selected (with replacement) 

particles, which are chosen a number of times equal to the size of the problem 

dimension. Each particle selected is made to contribute the value in the position of its 

randomly selected dimension from the personal best. The contributed values are then 

used to form a potential global best solution which is further refined to locate a better 

solution in comparison to the current global solution. Two PSO variants, LDIW-PSO 

and RIW-PSO, which have been claimed to be less efficient in optimizing many 

continuous optimization problems, were used to validate the proposed improvement 

of the performance of the PSO technique.  

 

Another achievement made in the paper is the improvement of the decision making 

strategy by the swarm in obtaining potential global solutions in the search space. 
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Chapter 7 
Solving High Dimensional Problems with 
Particle Swarm Optimization 
7.1 Paper 8: An Adaptive Velocity Particle Swarm 

Optimization for High-Dimensional Function 
Optimization 

 
 
PSO variants that have been used to solve optimization problems up to 2,000 

dimensions without losing superiority to its competitor(s) are not common in 

literature. There are possibilities of encountering high-dimensional real-world 

optimization problems. Therefore, PSO algorithm needs to be improved to enhance it 

for better performance in handling such problems.  

 

Presented in Paper 8 is a simple PSO variant, Adaptive Velocity PSO (AV-PSO) 

which adaptively adjusts the velocity of particles based on Euclidean distance 

between the position of each particle and the position of the global best particle. The 

variant was implemented without using the inertia weight, acceleration coefficients 

and random coefficients parameters in the velocity formula for particle in the swarm. 

A chaotic feature was introduced into the particle's position formula to promote some 

stochasticity in order to facilitate good exploitation. Numerical simulations were 

conducted to compare the performance of AV-PSO with Adaptive Inertial weight 

PSO (AIWPSO), Rank based PSO (PSOrank), Chaotic Random Inertia Weight PSO 

(CRIW-PSO), Decreasing exponential function PSO (def-PSO), Natural Exponential 

inertia weight PSO (e1-PSO) and Adaptive PSO (APSO). It was also compared with 

Line Search Restart (LSRS) optimization technique. 

 

Continuous optimization problems with low (10 – 30) and high (50 – 4,000) 

dimensions were used in the experiments. In all the experiments AV-PSO 

outperformed all its competitors showing that PSO is very much suitable for large-

scale global optimization problems involving very high dimensions, with very good 
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performance in locating quality global optimal solutions with few numbers of 

iterations without easily getting stuck in local optimal. 
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Chapter 8 
 
Conclusion, Summary and Future Research 
 
Motivated by the drawbacks of the PSO technique viz-a-viz premature convergence, 

weak local search ability as well as the desire to make the technique simpler, more 

effective, efficient and robust than existing variants in handling both simple and 

complex optimization problems, a series of studies were conducted with promising 

results that are reported in this thesis. 

8.1 Conclusions 

A number of new PSO variants are proposed in this thesis that effectively addressed 

the drawbacks of PSO technique namely, premature convergence and weak local 

search ability. Efforts were made to make the technique simpler and more effective, 

efficient and robust in handling problems with many local optima.  Results obtained 

from these variants were compared among themselves and with available ones in 

literature in order to show their superiority.  

 

The variants introduced in this thesis tried to avoid the introduction of additional 

parameters, complexities or more computational efforts unlike several other PSO 

variants in literature. We also introduced some dynamics into the control of the 

particle velocity limits and search space limits during execution of PSO as opposed to 

many other existing variants. Moreover, the pure greedy method of obtaining the 

swarm global best among the personal bests of all the particles in the swarm which is 

a common attribute of very many of the existing PSO variants was complemented 

with random and adaptive features. Some of the variants were implemented without 

the inertia weight, acceleration constants, random factors and the cognitive 

component of the velocity formula. All these clearly provide expected answers to the 

research questions raised in Chapter 1. 
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The new variants were validated with several test problems of diverse complexities 

and dimensionality. Experimental results obtained show substantial evidences that the 

variants are much better than their original counterparts and many variants in the 

literature in terms of reliability, robustness, convergence speed, solution quality, 

search ability and efficiency. Since the trends in global optimization focus nowadays 

on the application of metaheuristics to practical problems arising from the industries 

[1, 2, 23-25, 85], this thesis offers researchers with efficient variants of PSO that we 

believe will be of great help in solving industrial problems. These variants offer 

alternatives to many currently available algorithms for solving global optimization 

problems in which the gradient information is not readily available. They are 

available for optimization researchers and the results can also serve as benchmark on 

which further research could be based. 

8.2 Summary of contributions 

We provide a summary of the contributions made through the series of studies carried 

out as highlight over this thesis below: 

i. New variants of PSO which use swarm success rate as feedback parameter 

into their inertia weight strategies are proposed to enhance the explorative and 

exploitative power of the PSO technique. 

ii. The basic PSO was modified to propose another variant with seven versions, 

which use dynamic velocity limits instead of inertia weight to control its 

global and local search activities. 

iii. This work also introduced a new improved PSO with dynamic search space 

and velocity limits. 

iv. Another novel variant was proposed which diversified the operations of PSO 

by incorporating randomness and adaptivity to complement the greedy method 

PSO normally use to choose the global best among the personal bests of 

particles among the swarm. 

v. A new local search technique was proposed to address the weak local search 

ability of PSO technique. Promising results from this local search technique 

show that it can also be used with any other population-based optimization 
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algorithms to obtain quality solutions to simple and complex optimization 

problem. 

vi. The results obtained from the experiments with various chaotic maps provide 

a platform for informative decision making by practitioners in the process of 

selecting chaotic maps to be used in the inertia weight formula of LDIW-PSO 

and RIW-PSO. 

8.3 Future research 

Despite the depth of experimental study conducted in this thesis, there is still room for 

improvement and future study.  Two major areas stand out clearly for future research 

study namely, 

i. The application of the proposed variants to real-world problems with diverse 

complexities especially combinatorial optimization problems and adaptation 

of the variants to handling constrained global optimization problems. 

ii. Further study on the tuning of the parameters that makes up the proposed local 

search technique. 

iii. Study on the parameters and behaviour of other SI techniques especially more 

recent ones, in search of improved techniques that can handle increasingly 

complex real-world optimization problems. 

iv. Finally, since PSO exhibits an implicit parallelism as a multi-agent based 

technique, it would be worthwhile to explore a multi-agent-based framework 

(see [19, 97]) in the implementation of the variants which perhaps might 

further improve their efficiency and convergence. 
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LVM2: Levy & Mantalvo-2 Function 
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Linear decreasing inertia weight (LDIW) strategy was introduced to improve on the performance of the original particle swarm
optimization (PSO). However, linear decreasing inertia weight PSO (LDIW-PSO) algorithm is known to have the shortcoming of
premature convergence in solving complex (multipeak) optimization problems due to lack of enough momentum for particles to
do exploitation as the algorithm approaches its terminal point. Researchers have tried to address this shortcoming by modifying
LDIW-PSO or proposing new PSO variants. Some of these variants have been claimed to outperform LDIW-PSO. The major goal
of this paper is to experimentally establish the fact that LDIW-PSO is very much efficient if its parameters are properly set. First,
an experiment was conducted to acquire a percentage value of the search space limits to compute the particle velocity limits in
LDIW-PSO based on commonly used benchmark global optimization problems. Second, using the experimentally obtained values,
five well-known benchmark optimization problems were used to show the outstanding performance of LDIW-PSO over some of its
competitors which have in the past claimed superiority over it. Two other recent PSO variants with different inertia weight strategies
were also compared with LDIW-PSO with the latter outperforming both in the simulation experiments conducted.

1. Introduction

The idea of Particle Swarm Optimization (PSO) stems from
biology where a swarm of birds coordinates itself in order
to achieve a goal. When a swarm of birds looks for food,
its individuals will spread in the environment and move
around independently with some degree of randomness
which enables it to discover food accumulations. After a
while, one of them will find something digestible and, being
social, communicates this to its neighbors. These can then
approach the source of food, thus leading to the convergence
of the swarm to the source of food. Following this analogy,
PSO was largely derived from sociopsychology concept and
transferred to optimization [1], where each particle (bird)
uses the local information regarding the displacement of its
reachable closer neighbors to decide on its own displacement,
resulting to complex and adaptive collective behaviors.

Since the inception of PSO technique, a lot of work has
been done by researchers to enhance its efficiency in handling

optimization problems. One such work is the introduction
of linear decreasing inertia weight (LDIW) strategy into the
original PSO to control its exploration and exploitation for
better performance [2–4]. However, LDIW-PSO algorithm
from the literature is known to have the shortcoming of
premature convergence in solving complex (multipeak) prob-
lems due to lack of enough momentum for particles to do
exploitation as the algorithm approaches its terminal point.
The challenge of addressing this shortcoming has been on for
a long time and has attracted much attention of researchers
in the field of global optimization. Consequently upon this,
many other inertia weight PSO variants have been proposed
[2, 5–16], with different levels of successes. Some of these
variants have claimed better performances over LDIW-PSO,
therebymaking it lookweak or inferior. Also, since improving
on the performance of PSO is an area which still attractsmore
researchers, this paper strives to experimentally establish the
fact that LDIW-PSO is very much efficient if its parameters,
like velocity limits for the particles, are properly set. Using
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the experimentally obtained values for particle velocity limits
in LDIW-PSO, results show that LDIW-PSO outperformed
other PSO variants adopted for comparison.

In the sections that follow, inertia weight PSO technique
is described in Section 2, LDIW-PSO and the PSO variants
adopted for comparison are reviewed in Section 3, parameter
settings were experimentally conducted in Section 4, presen-
tations and discussions of the experimental results of LDIW-
PSO and its competing variants are made in Section 5, while
Section 6 concludes the paper.

2. Particle Swarm Optimization

This technique is a simple but efficient population-based,
adaptive, and stochastic technique for solving simple and
complex optimization problems [17, 18]. It does not need the
gradient of the problems to work with, so the technique can
be employed for a host of optimization problems. In PSO, a
swarm of particles (set of solutions) is randomly positioned
(distributed) in the search space. For every particle, the
objective function determines the food at its place (value of
the objective function). Every particle knows its own actual
value of the objective function, its own best value (locally best
solution), the best value of the whole swarm (globally best
solution), and its own velocity.

PSOmaintains a single static population whose members
are tweaked (adjust slightly) in response to new discoveries
about the space. The method is essentially a form of directed
mutation. It operates almost exclusively in multidimensional
metric, and usually real-valued, spaces. Because of its origin,
PSO practitioners tend to refer to candidate solutions not
as a population of individuals but as a swarm of particles.
Generally, these particles never die [19], but are moved about
in the search space by the directed mutation.

Implementing PSO involves a small number of different
parameters that regulates the behavior and efficacy of the
algorithm in optimizing a given problem. These parameters
are particle swarm size, problem dimensionality, particle
velocity, inertia weight, particle velocity limits, cognitive
learning rate, social learning rate, and the random factors.
The versatility of the usage of PSO comes at a price because for
it to workwell on any problem at hand, these parameters need
tuning and this could be very laborious. The inertia weight
parameter (popularly represented as 𝜔) has attracted a lot of
attentions and seems to be themost important comparedwith
other parameters.Themotivation behind its introductionwas
the desire to better control (or balance) the scope of the
(local and global) search and reduce the importance of (or
eliminate) velocity clamping, 𝑉max, during the optimization
process [20–22]. According to [22], the inertia weight was
successful in addressing the former objective, but could not
completely eliminate the need for velocity clamping. The
feature of the divergence or convergence of particles can be
controlled only by parameter𝜔, however, in conjunctionwith
the selection of values for the acceleration constants [22, 23]
as well as other parameters.

Each individual in the particle swarm is composed of
three 𝑛-dimension vectors (current position, previous posi-
tion, and velocity), where 𝑛 is the dimensionality of the search

If 𝑥
𝑖
< min𝑋

𝑥
𝑖
= min𝑋

else if 𝑥
𝑖
> max𝑋

𝑥
𝑖
= max𝑋

end if

Algorithm 1: Particle position clamping.

If V
𝑖
< min𝑉

V
𝑖
= min𝑉

else if 𝑥
𝑖
> max𝑉

V
𝑖
= max𝑉

end if

Algorithm 2: Particle velocity clamping.

space. Thus, in a physical 𝑛-dimensional search space, the
position and velocity of each particle 𝑖 are represented as the
vectors𝑋

𝑖
= (𝑥
𝑖1
, . . . , 𝑥

𝑖𝑛
) and 𝑉

𝑖
= (V
𝑖1
, . . . , V

𝑖𝑛
), respectively.

In course of movement in the search space looking for
the optimum solution of the problem being optimized, the
particle’s velocity and position are updated as follows:

𝑉
𝑘+1

𝑖
= 𝜔𝑉
𝑘

𝑖
+ 𝑐
1
𝑟
1
(𝑃best𝑘

𝑖
− 𝑋
𝑘

𝑖
)

+ 𝑐
2
𝑟
2
(𝐺best𝑘

𝑖
− 𝑋
𝑘

𝑖
) ,

(1)

𝑋
𝑘+1

𝑖
= 𝑋
𝑘

𝑖
+ 𝑉
𝑘+1

𝑖
, (2)

where, 𝑐
1
and 𝑐
2
are acceleration (weighting) factors known

as cognitive and social scaling parameters that determine the
magnitude of the random forces in the direction of 𝑃best
(previous best) and𝐺best (global previous best); 𝑟

1
and 𝑟
2
are

random numbers between 0 and 1; 𝑘 is iteration index; 𝜔 is
inertia weight. It is common that the positions and velocities
of particles in the swarm, when they are being updated, are
controlled to be within some specified bounds as shown
in Algorithms 1 and 2, respectively. An inertia weight PSO
algorithm is shown in Algorithm 3.

3. A Review of LDIW-PSO and Some of Its
Competing PSO Variants

Despite the fact that LDIW-PSO algorithm, from the lit-
erature, is known to have a shortcoming of premature
convergence in solving complex (multipeak) problems, itmay
not always be true that LDIW-PSO is as weak or inferior as it
has been pictured to be by some PSO variants in the literature
[2, 7, 13]. Reviewed below are some of these variants and other
variants, though not directly compared with LDIW-PSO in
the literature, but have been adopted for comparison with
LDIW-PSO.

3.1. Linear Decreasing Inertia Weight PSO (LDIW-PSO). The
inertia weight parameter was introduced into the original
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Begin Algorithm
Input: function to optimize, 𝑓

swarm size, 𝑝𝑠
problem dimension, 𝑑
search space range, [min𝑋,max𝑋]
velocity range, [min𝑉,max𝑉]

Output: 𝑥∗: the best value found
Initialize: for all particles in problem space

𝑥
𝑖
= (𝑥
𝑖1
, . . . , 𝑥

𝑖𝑑
) and

V
𝑖
= (V
𝑖1
, . . . , V

𝑖𝑑
),

Evaluate 𝑓(𝑥
𝑖
) in 𝑑 variables and get 𝑝best

𝑖
, (𝑖 = 1, . . . , 𝑝𝑠)

𝑔best← best of 𝑝best
𝑖

Repeat
Calculate 𝜔
Update V

𝑖
for all particles using (1)

Update 𝑥
𝑖
for all particles using (2)

Evaluate 𝑓(𝑥
𝑖
) in 𝑑 variables and get 𝑝best

𝑖
, (𝑖 = 1, . . . , 𝑝𝑠)

If 𝑓(𝑥
𝑖
) is better than 𝑝best

𝑖
then 𝑝best

𝑖
← 𝑥
𝑖

If the best of 𝑝best
𝑖
is better than 𝑔best then 𝑔best← best of 𝑝best

𝑖

Until Stopping criteria (e.g., maximum iteration or error tolerance is met)
𝑥
∗
← 𝑔best

Return 𝑥∗
End Algorithm

Algorithm 3: Inertia weight PSO algorithm.

version of PSO by [20]. By introducing a linearly decreas-
ing inertia weight into the original version of PSO, the
performance of PSO has been greatly improved through
experimental study [24]. In order to further illustrate the
effect of this linearly decreasing inertiaweight, [4] empirically
studied the performance of PSO. With the conviction that a
large inertia weight facilitates a global search while a small
inertia weight facilitates a local search, a linearly decreasing
inertia weight was used with an initial value of 0.9 and
a final value of 0.4. By reason of these values, the inertia
weight can be interpreted as the fluidity of the medium in
which a particle moves [21], showing that setting it to a
relatively high initial value (e.g., 0.9) makes particles move in
a low viscosity medium and performs extensive exploration.
Gradually reducing it to a much lower value (e.g., 0.4) makes
the particle moves in a high viscosity medium and performs
more exploitation. The experimental results in [4] showed
that the PSO converged quickly towards the optimal positions
but slowed down its convergence speed when it is near the
optima.Thus, by using the linearly decreasing inertia weight,
the PSO lacks global search ability at the end of run even
when the global search ability is required to jump out of the
local minimum in some cases. As a result, employing adapt-
ing strategy for adjusting the inertia weight was suggested
to improve PSO’s performance near the optima. Towards
achieving this, there are many improvements on LDIW-PSO
in the literature [2, 3, 16, 24–26], which have made PSO to
perform with varying degree of successes. Represented in (3)
is the LDIW:

𝜔
𝑡
= (𝜔start − 𝜔end) (

𝑇max − 𝑡

𝑇max
) + 𝜔end, (3)

where 𝜔start and 𝜔end are the initial and final values of
inertia weight, 𝑡 is the current iteration number, 𝑇max is the
maximum iteration number, and 𝜔

𝑡
∈ [0, 1] is the inertia

weight value in the 𝑡th iteration.

3.2. Chaotic Descending Inertia Weight PSO (CDIW-PSO).
Chaos is a nonlinear dynamic system which is sensitive
to the initial value. It has the characteristic of ergodicity
and stochastic property. Using the idea of chaotic mapping,
CDIW-PSO was proposed by [2] as shown in (5) based on
logistic mapping in (4). The goal was to improve on the
LDIW-PSO to avoid getting into local optimum in searching
process by utilizing the merits of chaotic optimization

𝑧
𝑘+1
= 𝜇 × 𝑧

𝑘
× (1 − 𝑧

𝑘
) , (4)

where 𝜇 = 4 and 𝑧
𝑘
is the 𝑘th chaotic number. The map

generates values between 0 and 1, provided that the initial
value 𝑧

0
∈ (0, 1) and that 𝑧

0
∉ (0.0, 0.25, 0.5, 0.75, 1.0):

𝜔
𝑡
= (𝜔start − 𝜔end) (

𝑇max − 𝑡

𝑇max
) + 𝜔end × 𝑧𝑘+1, (5)

where 𝜔start and 𝜔end are the initial and final values of
inertia weight, and rand() is a uniform random number
in [0, 1]. The experimental results in [2] show that CDIW-
PSO outperformed LDIW-PSO in all the test problems used
in the experiment in terms of convergence precision, quick
convergence velocity, and better global search ability.

3.3. Random Inertia Weight and Evolutionary Strategy PSO
(REPSO). This variant proposed in [7] used the idea of sim-
ulated annealing and the fitness of particles to design another
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inertia weight represented by (6). A cooling temperature
was introduced to adjust the inertia weight based on certain
probability to facilitate jumping off local optimal solutions.

It was experimentally proven that REPSO is significantly
superior LDIW-PSO in terms of convergent speed and
accuracy:

𝜔
𝑡
=

{
{

{
{

{

𝛼
1
+

𝑟

2.0

, 𝑝 ≥ 𝑟,

𝛼
2
+

𝑟

2.0

, 𝑝 < 𝑟,

(6)

where 𝛼
1
, 𝛼
1
∈ [0, 1] are constants with 𝛼

1
> 𝛼
2
and 𝑟 ∈

𝑈[0, 1]. The simulated annealing probability is defined as
follows:

𝑝 =

{{{{

{{{{

{

1, min
1≤𝑖≤𝑚

𝑓
𝑡−𝑘

𝑖
≤ min
1≤𝑖≤𝑚

𝑓
𝑡

𝑖
,

exp(−
min1≤𝑖≤𝑚𝑓𝑡−𝑘𝑖 −min1≤𝑖≤𝑚𝑓𝑡𝑖

𝑇𝑡

) , min
1≤𝑖≤𝑚

𝑓
𝑡−𝑘

𝑖
> min
1≤𝑖≤𝑚

𝑓
𝑡

𝑖
,

(7)

where 𝑚 is the number of particles, 𝑓𝑡
𝑖
is the fitness value

of particle 𝑖 in the 𝑡th iteration, and the adaptive cooling
temperature in the 𝑡th iteration,𝑇

𝑡
, is defined as shown in (8):

𝑇
𝑡
=

𝑓
𝑡

avg

𝑓
𝑡

best
− 1, (8)

where 𝑓𝑡best is the current best fitness value, and 𝑓
𝑡

avg which is
defined in (9), is the average fitness value in the 𝑡th iteration:

𝑓
𝑡

avg =
1

𝑚

𝑚

∑

𝑖=1

𝑓
𝑡

𝑖
. (9)

The combined efforts of the simulated annealing idea and
fitness variance of particles improved the global search ability
of PSO. In all the experiments performed, REPSO was
recorded superior to LDIW-PSO in convergence velocity and
precision.

3.4. Dynamic Adaptive Particle Swarm Optimization
(DAPSO). DAPSO was introduced by [3] with the aim
of proffering solution to the PSO premature convergence
problem associated with typical multipeak, high dimensional
function optimization problems so as to improve its global
optimum and convergence speed. A dynamic adaptive
strategy was introduced into the variant to adjust the inertia
weight value based on the current swarm diversity and
congregate degree as well as the impact on the search
performance of the swarm. The experimental results
recorded showed that DAPSO was more effective compared
with LDIW-PSO.The inertia weight formula that was used is
represented in (10):

𝜔
𝑡
= 𝜔min + (𝜔max − 𝜔min) × 𝐹𝑡 × 𝜑𝑡, (10)

where𝜔min and𝜔max are theminimum andmaximum inertia
weight values, 𝑡 is the current number of iterations, the

diversity function 𝐹
𝑡
and adjustment function 𝜑

𝑡
, both in the

𝑡th iteration, are represented in (11) and (12), respectively:

𝐹
𝑡
= 1 −

2

𝜋

arc tan (𝐸) , (11)

where 𝐸 is the group fitness as shown in (13):

𝜑
𝑡
= 𝑒
(−𝑡
2
/(2𝜎
2
))
, (12)

where 𝜎 = 𝑇/3 and 𝑇 are the total numbers of iterations:

𝐸 =

1

𝑁

𝑁

∑

𝑖=1

(𝑓 (𝑥
𝑖
) − 𝑓avg)

2

, (13)

where 𝑁 is the swarm size, 𝑓(𝑥
𝑖
) is the fitness of particle 𝑖,

and 𝑓avg represented in (14) is the current average fitness of
the swarm:

𝑓avg =
1

𝑁

𝑁

∑

𝑖=1

𝑓 (𝑥
𝑖
) . (14)

3.5. Adaptive Particle SwarmOptimization (APSO). ThisPSO
variant was proposed in [5], in which an adaptive mutation
mechanism and a dynamic inertia weight were incorporated
into the conventional PSO method. These mechanisms were
employed to enhance global search ability and convergence
speed and to increase accuracy, while the mutation mech-
anism affected the particle position updating formula, the
dynamic inertia weight affected the inertia weight formula
shown in (15). Though APSO was not compared with LDIW-
PSO, it outperformed all its competitors as evidenced by all
the experimental results:

𝜔
𝑡
= 0.5 {1 + tanh [ 1

𝛼

× 𝐹 (𝑃
𝑡

𝑔𝑑
)]} , (15)

where 𝐹(𝑃𝑡
𝑔𝑑
) is the fitness of current best solution in the

𝑡th iteration, and the parameter 𝛼 is predefined which
could be set equal to the fitness of the best particle in the
initial population. For the updating of the particle’s position,
when a particle is chosen for mutation, a Gaussian random
disturbance was added as depicted in (16):

𝑥
𝑖𝑗
= 𝑥
𝑖𝑗
+𝑀 × 𝛽

𝑖𝑗
, (16)

where 𝑥
𝑖𝑗
is the 𝑖th component of the 𝑗th particle, 𝛽𝑖𝑗 is a

random variable with Gaussian distribution with zero mean
and unit variance, and 𝑀 is a variable step size which
dynamically decreases according to current best solution
fitness.𝑀 is defined in 𝑡th iteration according to

𝑀
𝑡
= 𝑥max × tanh [

1

𝛼

× 𝐹 (𝑃
𝑡

𝑔𝑑
)] . (17)

3.6. Dynamic Nonlinear and Dynamic Logistic Chaotic Map
PSO (DLPSO2). In [11], two types of variants were proposed
to solve the premature convergence problem of PSO. In
this variant, two dynamic nonlinear methods and logistic
chaotic map were used to adjust the inertia weight in parallel
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Table 1: Settings for parameter 𝛿 in LDIW-PSO.

Problem 𝑓
1

𝑓
2

𝑓
3

𝑓
4

𝑓
5

𝑓
6

𝛿 0.05 0.0075 0.05 0.015 0.075 0.015

according to different fitness values. One of the dynamic
nonlinear inertiaweights is represented by (18) and (19), while
the other is represented by (20) and (21). They are meant to
achieve tradeoff between exploration and exploitation:

𝑑𝑛 = 𝑑𝑛min + (𝑑𝑛max − 𝑑𝑛min) (
iter

itermax
) , (18)

𝜔 = 𝜔min + (𝜔max − 𝜔min) (
iter

itermax
)

𝑑𝑛

, (19)

𝑑𝑛 = 𝑑𝑛max − (𝑑𝑛max − 𝑑𝑛min) (
iter

itermax
) , (20)

𝜔 = 𝜔max − (𝜔max − 𝜔min) (
iter

itermax
)

𝑑𝑛

, (21)

where 𝑑𝑛 is the dynamic nonlinear factor, 𝜔 is the inertia
weight, 𝜔max and 𝜔min are the maximum and minimum
values of 𝜔, respectively, 𝑑𝑛max and 𝑑𝑛min are the maximum
and minimum values of 𝑑𝑛, respectively, and iter and itermax
are the current iteration numbers and themaximum iteration
number, respectively.

A dynamic logistic chaotic map in (4) was incorporated
into the PSO variant inertia weight as shown in (23) to
enrich searching behaviors and avoid being trapped into local
optima:

𝛼 = 𝛼max − (𝛼max − 𝛼min) (
iter

itermax
) , (22)

𝜔 = 𝛼 + (1 − 𝛼) Lmap, (23)

where 𝛼 is the dynamic chaotic inertia weight adjustment
factor, 𝛼max and 𝛼min are the maximum and minimum values
of 𝛼, respectively, and Lmap is the result of logistic chaotic
map. In this variant, using (19) and (23) was labeled DLPSO1,
while using (21) and (23) was captioned DLPSO2.

For the purpose of achieving a balance between global
exploration and local exploitation and also avoiding prema-
ture convergence, (19), (21), and (23) were mixed together
to dynamically adjust the inertia weight of the variant as
shown in Algorithm 4, where 𝑓

𝑖
is the fitness value of

particle 𝑖 and 𝑓avg is the average fitness value of the swarm.
Experiments and comparisons showed that the DLPSO2
outperformed several other well-known improved particle
swarm optimization algorithms on many famous benchmark
problems in all cases.

3.7. Discussions. LDIW-PSO is relatively simple to implement
and fast in convergence. When [4] experimentally ascer-
tained that LDIW-PSO is prone to premature convergence,
especially when solving complex multimodal optimization

if 𝑓
𝑖
≤ 𝑓avg

compute 𝜔 using (19) or (21)
elseif 𝑓

𝑖
> 𝑓avg

compute 𝜔 using (23)
end if

Algorithm 4

problems, a new area of research was opened up for improve-
ments on inertia weight strategies in PSO, and LDIW-PSO
became a popular yard stick for many other variants.

From the variants described previously, there are ample
expectations that they should outperform LDIW-PSO judg-
ing by the various additional strategies introduced into the
inertia weight strategies used by them. For example, CDIW-
PSO introduced chaotic optimization characteristic, REPSO
introduced a combined effort of simulated annealing idea and
fitness variance of particles, DAPSO introduced a dynamic
adaptive strategy based on swarm diversity function, APSO
introduced an adaptive mutation to the particle positions
and made the inertia weight dynamic based on the best
global fitness, while DLPSO2 used different formulas coupled
with chaotic mapping. The general aims of remedying the
problem of premature convergence by these variants were not
achieved, rather they only struggled tomove a bit further than
LDIW-PSO in trying to optimize the test problems because a
total solution to this problem is for an algorithm to escape all
possible local optima and obtain the global optimum. With
this, it is possible that LDIW-PSO was subjected to settings,
for example, the particles velocity limits [24], which were not
appropriate for it to operate effectively.

4. Testing with Benchmark Problems

To validate the claim in this paper, 6 different experiments
were performed for the purpose of comparing the LDIW-
PSO with 6 other different PSO variants, namely, AIW-PSO,
CDIW-PSO, REPSO, SA-PSO, DAPSO, and APSO. Different
experiments, relative to the competing PSO variants, used
different set of test problems which were also used to test
LDIW-PSO. Brief descriptions of these test problems are
given next. Additional information on these problems can be
found in [27–29]. The application software was developed in
Microsoft Visual C# programming language.

4.1. Benchmark Problems. Six well studied benchmark prob-
lems in the literature were used to test the performance
of LDIW-PSO, AIW-PSO, CDIW-PSO, REPSO, SA-PSO,
DAPSO, and APSO. These problems were selected because
their combinations were used to validate the competing
PSO variants in the respective literature referenced. The
test problems are Ackley, Griewank, Rastrigin, Rosenbrock,
Schaffer’s f6, and Sphere.

The Ackley problem is multimodal and nonseparable. It
is a widely used test problem, and it is defined in (24). The
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Table 2: Test problems search and initialization ranges for the PSO variants.

Label CDIW-PSO REPSO DAPSO APSO DLPSO2
𝑓
1

— — [−32, 32] — [−32, 32]

𝑓
2

[−600, 600] [−600, 600] [−600, 600] [−600, 600] [−600, 600]

𝑓
3

[−5.12, 5.12] [−10, 10] [−5.12, 5.12] [−5.12, 5.12] [−10, 10]

𝑓
4

[−30, 30] [−100, 100] — [−30, 30] —
𝑓
5

[−100, 100] [−10, 10] — — [−1.0, 1.0]

𝑓
6

[−100, 100] [−10, 10] — — [−100, 100]

Table 3: Goals for the test problems in CDIW-PSO.

Label 𝑓
2

𝑓
3

𝑓
4

𝑓
5

𝑓
6

Goal 0.05 50.0 100.0 0.00001 0.01

global minimum 𝑓
1
(�⃗�) = 0 is obtainable at �⃗� = 0, and the

number of local minima is not known:

𝑓
1 (
�⃗�) = −20 exp(−0.2√ 1

𝑛

𝑑

∑

𝑖=1

𝑥
2

𝑖
)

− exp(1
𝑛

𝑑

∑

𝑖=1

cos (2𝜋𝑥
𝑖
)) + 20 + 𝑒.

(24)

The Griewank problem is similar to that of Rastrigin. It
is continuous, multimodal scalable, and nonseparable with
many widespread local minima regularly distributed. The
complexity of the problem increases with its dimensionality.
Its global minimum 𝑓

2
(�⃗�) = 0 is obtainable at �⃗� = 0, and the

number of local minima for arbitrary 𝑛 is not known, but in
the two-dimensional case, there are some 500 local minima.
This problem is represented by

𝑓
2 (
�⃗�) =

1

4000

(

𝑑

∑

𝑖=1

𝑥
2

𝑖
) − (

𝑑

∏

𝑖=1

cos(
𝑥
𝑖

√𝑖

)) + 1. (25)

The Rastrigin problem represented in (26) is continuous,
multimodal, scalable, and separable with many local minima
arranged in a lattice-like configuration. It is based on the
Sphere problem with the addition of cosine modulation so
as to produce frequent local minima.There are about 50 local
minima for two-dimensional case, and its global minimum
𝑓
3
(�⃗�) = 0 is obtainable at �⃗� = 0:

𝑓
3 (
�⃗�) =

𝑑

∑

𝑖=1

(𝑥
2

𝑖
− 10 cos (2𝜋𝑥

𝑖
) + 10) . (26)

Shown in (27) is the Rosenbrock problem. It is continu-
ous, unimodal, scalable, and nonseparable. It is a classic opti-
mization problem also known as banana function, the second
function of De Jong, or extended Rosenbrock function. Its
global minimum 𝑓

4
(�⃗�) = 0 obtainable at �⃗� = 1, lies inside a

long narrow, parabolic shaped valley. Though it looks simple

to solve, yet due to a saddle point it is very difficult to converge
to the global optimum:

𝑓
4 (
�⃗�) =

𝑑−1

∑

𝑖=1

(100(𝑥
𝑖+1
− 𝑥
2

𝑖
)

2

) + (𝑥
𝑖
− 1)
2
. (27)

The Schaffer’s f6 problem represented in (28) is 2-
dimensional, continuous, multimodal, and nonseparable
with unknown number of many local minima. Its global
minimum 𝑓

5
(�⃗�) = 0 is obtainable at �⃗� = 0:

𝑓
5 (
�⃗�) =

𝑑−1

∑

𝑖=1

(0.5 +

sin2 (√𝑥2
𝑖+1
+ 𝑥
2

𝑖
) − 0.5

(0.001 (𝑥
2

𝑖+1
+ 𝑥
2

𝑖
) + 1)

2
). (28)

The Sphere problem also known as the first De Jong
function is continuous, convex, unimodal, scalable, and
separable. It is one of the simplest test benchmark problems.
Its global minimum 𝑓

6
(�⃗�) = 0 is obtainable at �⃗� = 0, and the

problem is represented by

𝑓
6 (
�⃗�) =

𝑑

∑

𝑖=1

𝑥
2

𝑖
. (29)

4.2. Parameter Settings. The limits of particle velocity could
negatively affect the performance of PSO algorithm if it is
not properly set. As a result, different work has been done to
determine the velocity limits of particles in order to improve
on the performance of PSO. Researches in this direction
are [4, 24, 30] the three major methods that appear in the
literature, for computing the velocity clamping (𝑉min and
𝑉max) are (i) multiplying the search space range with certain
percentage (𝛿); that is, 𝑉max = 𝛿(𝑋max − 𝑋min) and 𝑉min =
−𝑉max; (ii) multiplying both the minimum and maximum
limits of the search space separately with certain percentage
(𝛿); that is, 𝑉max = 𝛿(𝑋max) and 𝑉min = 𝛿(𝑋min); (iii)
assigning the search space upper limit to 𝑉max. It is obvious
from (i) and (ii) that the parameter 𝛿 is very important. As
a result, different values have been used by different authors
[5, 6, 13, 30] for 𝛿 to determine velocity clamping for particles.

In trying to substantiate the fact that LDIW-PSO is not
as weak or inferior as many authors claimed it to be, an
experiment was conducted to investigate the effect of the
parameter 𝛿 on the performance of LDIW-PSO using the
benchmark problems described previously. The results were
used as a guide to set 𝛿 in LDIW-PSO before embarking on
some experimental comparison, between it and some other
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Table 4: Experimental results for LDIW-PSO compared with CDIW-PSO.

Criteria Griewank Rastrigin Rosenbrock Schaffer’s f6 Sphere
CDIW-PSO LDIW-PSO CDIW-PSO LDIW-PSO CDIW-PSO LDIW-PSO CDIW-PSO LDIW-PSO CDIW-PSO LDIW-PSO

Mean
fitness 0.014773 0.007609 40.044561 33.055877 44.305058 31.148789 0.007732 0.000117 0.000092 0.000000

Std. Dev. 0.002959 0.008439 8.028912 10.498048 8.861012 20.832263 0.001546 0.001058 0.000016 0.000000
SR (%) 96.2 100 83.6 92.8 99.6 98.0 22.0 98.6 100 100

Table 5: Experimental results for LDIW-PSO compared with REPSO.

Iteration Griewank1 Rastrigin Rosenbrock2 Sphere
REPSO LDIW-PSO REPSO LDIW-PSO REPSO LDIW-PSO REPSO LDIW-PSO

50 — — — — — — — —
100 0.6705 0.7859 30.7320 44.2732 — — 0.00671 0.00493
200 0.4922 0.6437 — — — — — —
300 0.2487 0.5607 — — — — 2.1142e − 04 2.9792𝑒 − 04

400 0.2345 0.4318 20.6671 16.5414 — — — —
500 0.1658 0.3185 17.3751 10.4621 570.7681 352.1663 7.1144𝑒 − 05 9.1853e − 07
800 — — 15.5611 3.9143 — — 6.8751𝑒 − 06 5.8431e − 17
1000 0.1461 0.0967 10.8120 3.2609 300.1407 218.9924 5.6367𝑒 − 07 1.2425e − 28
1500 0.1353 0.0842 — — 260.8421 138.2756 — —
2000 0.1089 0.0794 — — 170.2157 79.9941 — —
3000 — — — — 60.4418 21.5586 — —
1This problem is slightly different from the one in (25).
2This problem is slightly different from the one in (27).

PSO variants described previously to prove that LDIW-PSO
is superior to many of the variants that have been claimed to
be better that it.The results of the experiments are listed in the
Appendix. Using the results as guide, the value of 𝛿was set in
LDIW-PSO for the various test problems as listed in Table 1.
However, 𝛿 was set to 0.015 for 𝑓

2
in Experiment 2 and 0.25

for 𝑓
3
in Experiments 2 and 5.

4.3. Experimental Setup. The settings for the different exper-
iments carried out for the comparisons are described next
one after the other. In all the experiments, LDIW-PSO was
subjected to the settings of its competitors as recorded in
the literature. For LDIW-PSO, 𝑐

1
= 𝑐
2
= 2.0, 𝜔max = 0.9,

𝜔min = 0.4, 𝑉min = 𝛿𝑋min, and 𝑉max = 𝛿𝑋max. Table 2
shows the respective search and initialization ranges for all
the algorithms, the symbol “–” means that the corresponding
test problem was not used by the algorithm under which the
symbol appears.

Experiment 1.Thepurpose of this experimentwas to compare
LDIW-PSO with CDIW-PSO [2]. All the test problems
described previously were used in this experiment, except 𝑓

1
.

The dimension for 𝑓
5
was 2, while it was 30 for others. The

maximum numbers of iterations were set to 1500 with swarm
size of 20, and the experiment was repeated 500 times. Stated
in Table 3 are the set goals (criteria) of success for each of the
problems.

Experiment 2. The purpose of this experiment was to com-
pare LDIW-PSO with REPSO [7]. All the test problems in
Table 1 except 𝑓

1
were used. The dimension for 𝑓

5
was 2,

while it was 10 for others.The performances of the algorithms
were considered at different number of iterations as shown in
Section 5, in line with what is recorded in the literature [7].
The swarm size usedwas 30, and the experiment was repeated
50 times.

Experiment 3. The purpose of this experiment was to com-
pare LDIW-PSOwithDAPSO [13]. Test problems𝑓

1
−𝑓
3
were

used with four different problem dimensions of 20, 30, 40,
and 50. The maximum number of iterations and swarm size
was set to 3000 and 30, respectively, and the experiment was
repeated 50 times.

Experiment 4. The purpose of this experiment was to com-
pare LDIW-PSO with APSO [5]. 𝑓

2
, 𝑓
3
, and 𝑓

4
were used

as test problems with three different problem dimensions
of 10, 20, and 30. The respective maximum numbers of
iterations associated with these dimensions are 1000, 1500,
and 2000, respectively. The experiment was carried out over
three different swarm sizes, 20, 40, and 80 for each problem
dimension, and the experiment was repeated 30 times.

Experiment 5. This experiment compared LDIW-PSO with
DLPSO2 [11]. All the test problems except 𝑓

4
were used in the

experiment with two different problem dimensions of 2 (for
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Table 6: Experimental results for LDIW-PSO compared with DAPSO.

Dim Ackley Griewank Rastrigin
DAPSO LDIW-PSO DAPSO LDIW-PSO DAPSO LDIW-PSO

20 3.906209𝑒 − 014 8.970602e − 015 8.605280𝑒 − 002 1.649481e − 002 2.159059𝑒 + 001 2.040020e + 001
30 4.159541𝑒 − 008 1.527799e − 010 2.583338𝑒 − 002 9.258783e − 003 3.263463𝑒 + 001 2.996404e + 001
40 7.046093𝑒 − 005 2.578715e − 007 1.087868𝑒 − 002 4.875733e − 003 3.890287e + 001 4.109865𝑒 + 001

50 1.025568𝑒 − 003 1.629095e − 005 1.346732𝑒 − 002 4.335978e − 003 4.823559𝑒 + 001 4.606947e + 001

Table 7: Experimental results for LDIW-PSO compared with APSO.

Swarm size Dim Maximum iteration Griewank Rastrigin Rosenbrock
APSO LDIW-PSO APSO LDIW-PSO APSO LDIW-PSO

20
10 1000 0.0983 0.2347 5.1565 12.4602 5.8467 4.3695
20 1500 0.0237 0.0150 16.0456 27.6708 47.9842 19.1223
30 2000 0.0117 0.0103 42.2325 33.2050 100.4528 29.3482

40
10 1000 0.0952 0.2231 2.9468 10.5713 4.5431 3.9145
20 1500 0.0201 0.0211 15.3678 19.3199 38.3464 16.5186
30 2000 0.0105 0.0099 33.7538 26.3453 72.5473 26.9638

80
10 1000 0.0689 0.1294 2.0457 9.0800 4.1680 6.5127
20 1500 0.0199 0.0184 10.0563 16.4368 27.9547 17.6043
30 2000 0.0102 0.0080 25.3473 23.2303 69.0609 24.6653

Table 8: Experimental results for LDIW-PSO compared with
DLPSO2.

Criteria Best fitness Mean fitness Std. Dev.
Ackley

DLPSO2 8.6209𝑒 − 06 0.4743 0.6527
LDIW-PSO 2.0441e − 07 0.0000 0.0000

Griewank
DLPSO2 7.7589𝑒 − 06 0.0086 0.0114
LDIW-PSO 3.5694e − 13 0.0083 0.0088

Rastrigin
DLPSO2 −2 −2 0
LDIW-PSO −2 −2 0

Schaffer’s f6
DLPSO2 7.5206𝑒 − 07 5.6300𝑒 − 06 2.8969𝑒 − 06

LDIW-PSO 0.0000e + 00 0.0000e + 00 0.0000e + 00
Sphere

DLPSO2 7.6941𝑒 − 06 9.5001𝑒 − 06 4.9557𝑒 − 07

LDIW-PSO 4.1289e − 14 0.0000e + 00 0.0000e + 00

𝑓
3
and 𝑓
5
) and 30 (for 𝑓

1
, 𝑓
2
, and 𝑓

6
).Themaximum number

of iterations was set to 2000 and swarm sizes to 20, and the
experiment was repeated 20 times.

5. Results and Discussions

Presented in Tables 4–8 are the results obtained for all the
experiments. The results for all the competing PSO variants
were obtained from the respective referenced papers, and
they are presented here the way they were recorded. Thus,
the recording of the results for LDIW-PSO was patterned
after them. In each of the tables, bold values represent the

best results. In the tables, mean best fitness (solution) is a
measure of the precision that the algorithm can get within
a given number of iterations, standard deviation (Std. Dev.)
is a measure of the algorithm’s stability and robustness, while
success rate (SR) [31] is the rate at which an algorithm obtains
optimum fitness result in the criterion range during a given
number of independent runs.

Experiment 1 (comparison of LDIW-PSO with CDIW-PSO).
The results in Table 4 clearly reveal a great difference in
performance between LDIW-PSO and CDIW-PSO [2]. The
results are compared based on the final accuracy of the aver-
aged best solutions, success rate (SR), and standard deviation
(Std. Dev.) of the best solutions. In all the test problems,
the result indicates that LDIW-PSO can get better optimum
fitness result, showing better convergence precision. LDIW-
PSO is also more stable and robust compared with CDIW-
PSO, because its standard deviation is comparatively lesser
in three of the test problems. Besides, LDIW-PSO has better
global search ability and could easily get out of local optima
than CDIW-PSO.

Experiment 2 (comparison of LDIW-PSO with REPSO). In
Table 5, the comparison between LDIW-PSOandREPSOwas
based on the final accuracy of the averaged best solutions
relative to the specified number of iterations and convergence
speed as recorded in [7]. From the results, REPSO appears to
converge faster in Griewank and Rastrigin at the beginning
butwas overtaken by LDIW-PSOwhich eventually converged
faster and had better accuracy. In Rosenbrock and Sphere
problems, LDIW-PSO had better convergence speed and
accuracy in comparisonwith REPSO.The symbol “—”means
that the corresponding iteration number was not considered
for the test problem under which the symbol appears.
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Table 9: Different values of parameter 𝛿 and respective mean best fitness for Griewank test problem.

𝛿

Dimension 10 Dimension 30 Dimension 50
Size = 20 Size = 30 Size = 20 Size = 30 Size = 20 Size = 30

1.0 9.913𝑒 − 02 9.125𝑒 − 02 1.157𝑒 + 01 5.607𝑒 + 00 6.269𝑒 + 01 3.941𝑒 + 01

0.75 9.645𝑒 − 02 8.825𝑒 − 02 3.088𝑒 + 00 1.451𝑒 − 02 1.519𝑒 + 01 6.875𝑒 + 00

0.5 9.983𝑒 − 02 9.018𝑒 − 02 1.972𝑒 − 01 1.601𝑒 − 02 2.003𝑒 + 00 5.522𝑒 − 01

0.25 1.002𝑒 − 01 2.925e − 02 1.602𝑒 − 02 1.458𝑒 − 02 1.200𝑒 − 02 9.885𝑒 − 03

0.15 9.772𝑒 − 02 9.276𝑒 − 02 1.556𝑒 − 02 1.450𝑒 − 02 9.925𝑒 − 03 8.654𝑒 − 03

0.1 1.044𝑒 − 01 9.141𝑒 − 02 1.489𝑒 − 02 1.564𝑒 − 02 1.027𝑒 − 02 9.339𝑒 − 03

0.075 1.064𝑒 − 01 1.006𝑒 − 01 1.328𝑒 − 02 1.389𝑒 − 02 8.937𝑒 − 03 7.963𝑒 − 03

0.05 1.011𝑒 − 01 9.417𝑒 − 02 1.521𝑒 − 02 1.580𝑒 − 02 8.224𝑒 − 03 7.821𝑒 − 03

0.025 9.682𝑒 − 02 8.738𝑒 − 02 1.604𝑒 − 02 1.668𝑒 − 02 7.108𝑒 − 03 7.354𝑒 − 03

0.015 9.028e − 02 8.648𝑒 − 02 1.379𝑒 − 02 1.444𝑒 − 02 5.719𝑒 − 03 6.226𝑒 − 03

0.01 1.274𝑒 − 01 1.265𝑒 − 01 1.148𝑒 − 02 1.141𝑒 − 02 5.005𝑒 − 03 4.768𝑒 − 03

0.0075 2.251𝑒 − 01 2.078𝑒 − 01 7.160e − 03 7.595e − 03 4.237𝑒 − 03 4.021e − 03
0.005 5.546𝑒 − 01 3.751𝑒 − 01 8.006𝑒 − 03 8.030𝑒 − 03 4.025e − 03 4.526𝑒 − 03

0.0025 1.258𝑒 + 00 6.833𝑒 − 01 1.203𝑒 − 02 1.218𝑒 − 02 6.808𝑒 − 03 6.013𝑒 − 03

0.0015 1.895𝑒 + 01 9.642𝑒 − 01 1.415𝑒 − 02 1.434𝑒 − 02 7.226𝑒 − 03 7.419𝑒 − 03

0.001 4.061𝑒 + 00 2.083𝑒 + 00 1.366𝑒 − 02 1.622𝑒 − 02 7.184𝑒 − 03 7.462𝑒 − 03

Table 10: Different values of parameter 𝛿 and respective mean best fitness for Rastrigin test problem.

𝛿

Dimension 10 Dimension 30 Dimension 50
Size = 20 Size = 30 Size = 20 Size = 30 Size = 20 Size = 30

1.0 4.551𝑒 + 00 3.400e + 00 9.959𝑒 + 01 8.462𝑒 + 01 2.694𝑒 + 02 2.361𝑒 + 02

0.75 4.537e + 00 3.619𝑒 + 00 6.924𝑒 + 01 5.866𝑒 + 01 1.935𝑒 + 02 1.729𝑒 + 02

0.5 4.646𝑒 + 00 3.476𝑒 + 00 5.253𝑒 + 01 4.282𝑒 + 01 1.330𝑒 + 02 1.151𝑒 + 02

0.25 6.484𝑒 + 00 5.247𝑒 + 00 4.534𝑒 + 01 4.197𝑒 + 01 8.943𝑒 + 01 8.462𝑒 + 01

0.15 1.043𝑒 + 01 9.013𝑒 + 00 4.142𝑒 + 01 3.798𝑒 + 01 7.204𝑒 + 01 6.590𝑒 + 01

0.1 1.149𝑒 + 01 9.470𝑒 + 00 3.702𝑒 + 01 3.380𝑒 + 01 6.183𝑒 + 01 5.653𝑒 + 01

0.075 1.077𝑒 + 01 9.397𝑒 + 00 3.328𝑒 + 01 2.917𝑒 + 01 5.394𝑒 + 01 4.824𝑒 + 01

0.05 1.162𝑒 + 01 1.022𝑒 + 01 3.302e + 01 2.943e + 01 5.370e + 01 4.704e + 01
0.025 1.373𝑒 + 01 1.160𝑒 + 01 3.607𝑒 + 01 3.194𝑒 + 01 5.474𝑒 + 01 4.860𝑒 + 01

0.015 1.387𝑒 + 01 1.159𝑒 + 01 3.893𝑒 + 01 3.521𝑒 + 01 5.762𝑒 + 01 5.087𝑒 + 01

0.01 1.431𝑒 + 01 1.221𝑒 + 01 4.010𝑒 + 01 3.565𝑒 + 01 5.995𝑒 + 01 5.390𝑒 + 01

0.0075 1.475𝑒 + 01 1.213𝑒 + 01 4.164𝑒 + 01 3.692𝑒 + 01 6.256𝑒 + 01 5.476𝑒 + 01

0.005 1.868𝑒 + 01 1.398𝑒 + 01 4.300𝑒 + 01 3.663𝑒 + 01 6.451𝑒 + 01 5.464𝑒 + 01

0.0025 3.337𝑒 + 01 2.507𝑒 + 01 7.294𝑒 + 01 4.917𝑒 + 01 9.215𝑒 + 01 6.073𝑒 + 01

0.0015 4.794𝑒 + 01 4.027𝑒 + 01 1.168𝑒 + 02 7.803𝑒 + 01 1.396𝑒 + 02 8.922𝑒 + 01

0.001 5.792𝑒 + 01 5.220𝑒 + 01 1.898𝑒 + 02 1.548𝑒 + 02 2.102𝑒 + 02 1.390𝑒 + 02

Experiment 3 (comparison of LDIW-PSO with DAPSO). The
results for DAPSOwere obtained from [13]. Comparing these
results with that of LDIW-PSO were measured using the
final accuracy of the respective mean best solutions across
the different problems dimensions as shown in Table 6. In
all the problems and dimensions except dimension 40 of
Rastrigin, LDIW-PSO outperformed DAPSO getting better
fitness quality and precision. This is a clear indication that
LDIW-PSO has better global search ability and is not easily
trapped in local optima compared with DAPSO.

Experiment 4 (comparison of LDIW-PSO with APSO).
Recorded in Table 7 are the results for LDIW-PSO and APSO

[5] over different swarm sizes, dimensions, and iterations.
The basis for comparison is the final accuracy and quality
of their mean best fitness. The two variants put up a good
competition. In Griewank and Rastrigin, APSO performed
better in smaller dimensions, while LDIW-PSO performed
better in higher dimensions. But in Rosenbrock, LDIW-PSO
outperformed APSO in locating better solutions to the
problem.

Experiment 5 (comparison of LDIW-PSO with DLPSO2).
The results for LIDIW-PSO and DLPSO2 [11] in Table 8
are compared based on the best fitness, mean best fitness,
convergence speed, aswell as standard deviation (Std.Dev.) of
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Table 11: Different values of parameter 𝛿 and respective mean best fitness for Rosenbrock test problem.

𝛿

Dimension 10 Dimension 30 Dimension 50
Size = 20 Size = 30 Size = 20 Size = 30 Size = 20 Size = 30

1.0 1.165𝑒 + 04 1.040𝑒 + 04 1.851𝑒 + 05 2.873𝑒 + 04 3.075𝑒 + 06 1.148𝑒 + 06

0.75 6.020𝑒 + 03 4.020𝑒 + 03 2.009𝑒 + 04 1.711𝑒 + 04 8.240𝑒 + 05 1.837𝑒 + 05

0.5 2.585𝑒 + 03 2.189𝑒 + 03 1.128𝑒 + 04 8.214𝑒 + 03 1.175𝑒 + 04 1.360𝑒 + 04

0.25 1.872𝑒 + 01 5.571𝑒 + 00 4.307𝑒 + 02 4.445𝑒 + 02 2.315𝑒 + 03 1.056𝑒 + 03

0.15 1.075𝑒 + 01 4.229𝑒 + 00 4.910𝑒 + 01 4.750𝑒 + 01 1.156𝑒 + 02 9.710𝑒 + 01

0.1 4.798𝑒 + 00 4.241𝑒 + 00 4.248𝑒 + 01 4.147𝑒 + 01 9.217𝑒 + 01 8.699𝑒 + 01

0.075 4.680e + 00 4.099e + 00 4.531𝑒 + 01 3.607𝑒 + 01 1.073𝑒 + 02 7.701𝑒 + 01

0.05 5.182𝑒 + 00 4.534𝑒 + 00 3.453𝑒 + 01 3.282𝑒 + 01 6.858𝑒 + 01 6.383𝑒 + 01

0.025 5.770𝑒 + 00 5.598𝑒 + 00 3.148𝑒 + 01 3.035𝑒 + 01 5.450𝑒 + 01 5.215𝑒 + 01

0.015 7.818𝑒 + 00 6.800𝑒 + 00 2.956e + 01 2.832e + 01 5.207e + 01 5.218𝑒 + 01

0.01 7.748𝑒 + 00 6.480𝑒 + 00 2.962𝑒 + 01 2.891𝑒 + 01 5.487𝑒 + 01 5.154e + 01
0.0075 8.085𝑒 + 00 7.945𝑒 + 00 2.998𝑒 + 01 2.948𝑒 + 01 5.505𝑒 + 01 5.164𝑒 + 01

0.005 6.491𝑒 + 00 6.896𝑒 + 00 3.134𝑒 + 01 3.015𝑒 + 01 5.544𝑒 + 01 5.263𝑒 + 01

0.0025 7.943𝑒 + 01 7.682𝑒 + 00 3.052𝑒 + 01 2.915𝑒 + 01 5.656𝑒 + 01 5.163𝑒 + 01

0.0015 5.003𝑒 + 01 1.408𝑒 + 01 3.095𝑒 + 01 2.672𝑒 + 01 5.398𝑒 + 01 5.174𝑒 + 01

0.001 2.417𝑒 + 04 3.426𝑒 + 03 3.020𝑒 + 01 2.949𝑒 + 01 5.614𝑒 + 01 5.222𝑒 + 01

Table 12: Different values of parameter 𝛿 and respective mean best fitness for Sphere test problem.

𝛿

Dimension 10 Dimension 30 Dimension 50
Size = 20 Size = 30 Size = 20 Size = 30 Size = 20 Size = 30

1.0 1.043𝑒 − 20 3.679𝑒 − 23 1.140𝑒 + 03 5.400𝑒 + 02 7.380𝑒 + 03 4.400𝑒 + 03

0.75 9.490𝑒 − 21 1.554𝑒 − 23 1.600𝑒 + 02 4.000𝑒 + 01 1.460𝑒 + 03 7.600𝑒 + 02

0.5 5.108𝑒 − 21 1.048𝑒 − 23 1.349𝑒 − 08 4.015𝑒 − 10 1.000𝑒 + 02 2.000𝑒 + 01

0.25 8.561𝑒 − 22 5.859𝑒 − 24 3.547𝑒 − 09 6.110𝑒 − 11 1.538𝑒 − 05 4.976𝑒 − 07

0.15 5.304𝑒 − 21 9.144𝑒 − 25 1.503𝑒 − 09 2.963𝑒 − 11 6.952𝑒 − 06 2.114𝑒 − 07

0.1 6.679𝑒 − 23 1.203𝑒 − 24 4.432𝑒 − 10 1.193𝑒 − 11 2.224𝑒 − 06 7.656𝑒 − 08

0.075 8.577𝑒 − 23 2.149𝑒 − 25 2.397𝑒 − 10 8.813𝑒 − 12 1.306𝑒 − 06 4.954𝑒 − 08

0.05 3.921𝑒 − 23 1.794𝑒 − 25 1.147𝑒 − 10 3.490𝑒 − 12 5.098𝑒 − 07 2.235𝑒 − 08

0.025 1.006𝑒 − 23 4.835𝑒 − 26 2.596𝑒 − 11 7.592𝑒 − 13 1.620𝑒 − 07 6.654𝑒 − 09

0.015 2.466𝑒 − 24 1.795𝑒 − 26 1.349𝑒 − 11 2.364𝑒 − 13 5.689𝑒 − 08 2.222𝑒 − 09

0.01 1.022𝑒 − 24 4.326𝑒 − 27 3.998𝑒 − 12 1.245𝑒 − 13 3.983𝑒 − 08 8.837𝑒 − 10

0.0075 9.942𝑒 − 25 3.991𝑒 − 27 2.758𝑒 − 12 7.017𝑒 − 14 1.115𝑒 − 08 5.786𝑒 − 10

0.005 6.363e − 25 2.300e − 27 1.449𝑒 − 12 3.061𝑒 − 14 1.116𝑒 − 08 2.034𝑒 − 10

0.0025 2.003𝑒 − 23 1.376𝑒 − 26 3.638e − 13 9.420e − 15 1.592𝑒 − 09 6.778𝑒 − 11

0.0015 4.469𝑒 − 08 2.962𝑒 − 08 7.378𝑒 − 13 1.254𝑒 − 14 1.062e − 09 3.130𝑒 − 11

0.001 2.900𝑒 + 02 9.887𝑒 + 01 5.711𝑒 − 02 8.265𝑒 − 13 2.563𝑒 − 09 2.755e − 11

the best solutions. In Rastrigin, the two algorithms have equal
performances. However, in other test problems, the result
indicates that LDIW-PSO can get better optimum fitness
result, showing better convergence speed. LDIW-PSO is also
more stable and robust compared with DLPSO2, because its
standard deviation is comparatively smaller in all the test
problems. Besides, LDIW-PSO demonstrated better global
search ability and getting out of local optima than DLPSO2.

6. Conclusion

Motivated by the superiority claims by some PSO variants
over LDIW-PSO in terms of performance, a number of

experiments were performed in this paper to empirically
verify some of these claims. Firstly, an appropriate (approx-
imate) percentage of the test problems search space limits
were obtained to determine the particle velocity limits for
LDIW-PSO. Secondly, these values were used in the imple-
mentation of LDIW-PSO for some benchmark optimization
problems and the results obtained compared with that of
some PSO variants that have previously claimed superiority
in performance. LDIW-PSO performed better than these
variant. The performances of the two other recent PSO
variants with different inertia weight strategies were also
compared with LDIW-PSO on similar problems with the
latter showing competitive advantage.Thiswork has therefore
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Table 13: Different values of parameter 𝛿 and respective mean best
fitness for Schaffer’s f6 test problem.

𝛿

Dimension 2
Size = 20 Size = 30

1.0 1.342𝑒 − 03 5.446𝑒 − 04

0.75 2.392𝑒 − 03 9.335𝑒 − 04

0.5 2.052𝑒 − 03 7.651𝑒 − 04

0.25 1.387𝑒 − 03 7.212𝑒 − 04

0.15 7.756𝑒 − 04 2.731𝑒 − 04

0.1 6.816𝑒 − 04 1.847𝑒 − 04

0.075 4.865e − 04 1.749𝑒 − 04

0.05 6.413𝑒 − 04 1.612e − 04
0.025 4.275𝑒 − 03 2.740𝑒 − 03

0.015 5.625𝑒 − 03 3.129𝑒 − 03

0.01 4.726𝑒 − 03 2.993𝑒 − 03

0.0075 4.594𝑒 − 03 2.683𝑒 − 03

0.005 5.663𝑒 − 03 3.327𝑒 − 03

0.0025 5.940𝑒 − 03 4.760𝑒 − 03

0.0015 7.582𝑒 − 03 5.449𝑒 − 03

0.001 7.776𝑒 − 03 6.092𝑒 − 03

showed that with good experimental setting, LDIW-PSOwill
perform competitively with similar variants. Precious claims
of inferior performance might therefore be due to some
unfavourable experimental settings. The Appendix provides
further simulation results that can provide useful hints for
deciding the setting velocity threshold for particles for LDIW-
PSO.

Appendix

Tables 9, 10, 11, 12, and 13 show the results of LDIW-PSO in
optimizing some benchmark problems so as to determine a
suitable value for 𝛿 that was used to set the velocity limits for
the particles. The experiments were repeated 500 times for
each of the problems. Two different swarm sizes of 20 and 30
were used for each of the three different problem dimensions
10, 30, and 50. The respective number of iterations that was
used with the dimensions is 1000, 1500, and 2000.The LDIW
strategy was decreased from 0.9 to 0.4 in course of searching
for solution to the problem [7, 10–12, 27], the acceleration
constants (𝑐

1
and 𝑐
2
) were set to 2.0, and 𝑉max = 𝛿(𝑋max) and

𝑉min = 𝛿(𝑋min). In the tables, bold values represent the best
mean fitness value.
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Abstract— This paper presents an improved particle swarm 

optimization technique for global optimization. Many variants of 
the algorithm have been proposed in literature. However, two 
major things characterize many of these variants namely, static 
particle search space and velocity limits which bound their 
flexibilities in obtaining optimal solutions for many optimization 
problems. Besides, despite some additional parameters like 
inertia weight and extra computations in these variants 
compared with the original algorithm, the premature 
convergence of the original particle swarm algorithm remains a 
challenge. This paper proposes an improved particle swarm 
optimization algorithm without inertia weight. The proposed 
algorithm dynamically adjusts the search space and velocity 
limits for the swarm in each iteration by simply picking the 
highest and lowest values among all the dimensions of the 
particles, calculates their absolute values and use the higher of 
the two values to define a new search range and velocity limits for 
the next iteration. The efficiency and performance of the 
proposed algorithm was shown using popular benchmark global 
optimization problems with low and high dimensions. Results 
obtained demonstrate better convergence speed and precision, 
stability, robustness with better global search ability when 
compared with six recent variants of the original algorithm.  
 

Index Terms— Global optimization, particle swarm 
optimization, evolutionary computation, search space limits, 
swarm Intelligence, velocity limits 
 

I. INTRODUCTION 
Individuals, enterprises and governments meet varieties of 

problems from day to day for which they seek best possible 
solutions amidst limited resources. Many of these problems 
can be formulated as optimization problems. The Original 
Particle Swarm Optimization (OPSO) [3] is a popular nature-
inspired technique that displays problem-solving capabilities 
for researchers to solve complex and challenging optimization 
problems. It is an evolutionary computation technique inspired 
by social behaviour of birds and fish schooling. The concept 
was brought into optimization in 1995 [3, 12]  
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Global optimization seeks to provide solutions to 
optimization problems which are often multi-modal and non-
convex. These solutions could all be globally good or a mix of 
globally and locally good solutions. While global optimization 
algorithms such as OPSO are most naturally applied to the 
optimization of multimodal cost functions, they can optimize 
unimodal functions as well. However, OPSO is often 
characterized with the problem of premature convergence. The 
quest for ridding OPSO of this problem and make the 
algorithm more efficient has led to many of its variants which 
are recorded in literature [4, 6, 14, 23, 25, 18], with many 
encouraging successes as well as resounding superiorities 
compared with OPSO algorithm. These variants have 
additional parameter(s) or extra (complex) computational 
effort(s), which without doubt should give them an edge over 
OPSO. Two major parameters common among OPSO variants 
are inertia weight and velocity threshold. Inertia weight was 
introduced into OPSO by [23] and helps the algorithm to 
balance its global and local search abilities while the velocity 
threshold, which helps control particle from searching outside 
the solution search space, has been extensively used in 
experimental studies in [24]. Solution search space is 
delimited by the upper and lower limits of the decision 
variables.  

In many of the OPSO variants, solution search space and 
velocity threshold are static throughout the execution of the 
algorithm [1, 7, 8, 15, 20, 22, 24]. This characteristic 
somewhat limits the flexibilities of these variants in the 
process of obtaining optimal solutions for many of the 
optimization problems. Also, the common problem of 
premature convergence associated with OPSO remains 
unsolved by very many of the existing its variants [9, 16, 22]. 
In cases where (near) optimal solutions are obtained, they are 
with low precision [1, 6, 14, 20]. In order to obtain optimal 
results with higher precision for optimization problems by 
OPSO and many of its variants, there are needs to allow the 
solution search space and velocity threshold to vary 
dynamically based on the state of the particles' dimensions. 
This will enable the algorithm to concentrate its searching on 
the sub-range dynamically defined during its executing instead 
of searching the entire search space all the time. It could also 
enable the algorithm escape premature convergence. 

In this paper, efforts were made to improve the performance 
of OPSO in terms of convergence speed, global search ability 
and increased solution accuracy, without additional parameters 
or complex computational efforts. The improved OPSO 
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algorithm (IOPSO), which does not use inertia weight, 
dynamically adjusted the search space and velocity limits for 
the swarm in each iteration by simply picking the highest and 
lowest values among all the dimensions of the particles, 
calculates their absolute values and then use the higher of the 
two values to define a new search range and velocity limits for 
next iteration. Empirical results from experiments performed 
showed that IOPSO is very efficient compared with the 
variants adopted for comparisons.   

In the sections that follow, the framework of the OPSO is 
considered in Section 2, the OPSO variants adopted for 
comparisons are reviewed in Section 3, the proposed IOPSO 
technique is described in section 4, results of numerical 
simulations are presented in Section 5 and Section 6 concludes 
the paper.  

II. THE FRAMEWORK OF ORIGINAL PSO (OPSO) 
OPSO is a popular member of swarm intelligence 

metaheuristic. It is population-based, stochastic, robust, 
problem-independent and self-adaptive optimization technique 
for solving simple and complex optimization problems. It has 
been successfully used to solve many difficult real-world 
optimization problems [10, 17, 19]. When the technique was 
initially introduced, it was implemented with few lines of 
codes using basic mathematical operations; no major 
adjustment was needed to adapt it to new problems; it was 
almost independent of the initialization of the swarm; the 
gradient, continuity or differentiability of the problem to work 
with was not needed and very few parameters regulate the 
behaviour and efficiency, were required to be tuned to obtain 
quality solutions. Implementing this technique requires that 
the positions and velocities of a number of particles (swarm) 
be randomly generated using upper and lower bounds on the 
design variable values, after which the particles are randomly 
distributed in the solution search space. In the course of 
operation, every particle works with two major information – 
its personal experience and reachable neighbours' experiences; 
these are used to determine its next move in the solution 
space. Besides, each particle is associated with a value 
determined by the objective function of the problem being 
optimized to measure their qualities. The technique maintains 
a single swarm of particles throughout its execution and 
adjusts their positions and velocities in each iteration based on 
new discoveries about the solution space. These operations are 
basic to the implementations of OPSO variants.  

The solution search space of the optimization search space 
is often represented as n-dimensional space. Also, the position 
and velocity of each particle are represented as the vectors Xi 
= (xi1, …, xin) and Vi = (vi1, …, vin), respectively. When the 
particles move in the search space searching for optimum 
solution to the problem being optimized, their velocities and 
positions are updated according to  (1) and (2). 

)()()()1( 21 igiiii XPceffXPcoefftVtV   (1) 

)1()()1(  tVtXtX ii  (2) 

Where Pi and Pg are vectors representing the ith particle 
personal best and swarm global best positions respectively; 

coeff1 = c1r1 and coeff2 = c2r2; c1 and c2 are acceleration factors 
known as cognitive and social scaling parameters that 
determine the magnitude of the random forces in the direction 
of Pi and Pg ; r1 and r2 are random numbers between 0 and 1 
and t is iteration index. A value of 2.0 is used for c1 and c2 
respectively.  

The positions of particles in the swarm when they are being 
updated are controlled to be within some specified bounds as 
shown in (3), where minX and maxX represent the lower and 
upper bounds of the particle's position. Because the particle 
velocity based on (1), without restriction, could grow and 
make the particle oscillates around an optimum, increase its 
distance to the optimum on each iteration, or go out of the 
search space, the idea of velocity clamping was introduced by 
Eberhart and Kennedy in 1995 [5], into PSO to avoid the 
phenomenon of "swarm explosion". With this introduction, the 
particles could take reasonably sized steps so as to rake 
through the search space rather than bouncing about 
excessively. This has led to significant improvement as 
regards the performance of PSO. However, efforts have been 
made in time past to eliminate the use of velocity clamping, 
but researches have shown that velocity clamping has become 
a standard feature of OPSO [5]. Equation (4) shows one of the 
ways velocity clamping is implemented, with minV and maxV 
representing the lower and upper bounds of the particle's 
velocity. 

   {
              
              

 (3) 

   {
              
              

 (4) 

OPSO being a stochastic population-based technique that 
relies directly on the objective values rather than the derivative 
information of the problem being optimized is less exposed to 
deception in the solution search space.  However, it is 
susceptible to premature convergence, especially when the 
problem to be optimized is multi-peaked and when there are 
many decision variables (dimensions). This is because the 
more the particles communicate among themselves, the more 
they be alike until converging to the same region of the 
solution search space. If after some time no better global best 
is found by any other particle, they all converge about the 
existing global best which may not be the global minimizer.  

III. OPSO VARIANTS ADOPTED FOR COMPARISONS 
The OPSO variants considered for comparison with the 

proposed improved original PSO (IOPSO) in this paper are 
subsequently reviewed. These variants are AIW-PSO, iPSO, 
MARPSO, AIWPSO, PSOrank and mPSO. All these variants 
implements (5) to update the velocities of particles, except 
otherwise clearly stated. Equation (5) differ from (1) because 
of the inertia weight parameter (ω) introduced into it. This 
parameter has attracted a lot of attentions and seems to be the 
most important compared with other parameters. The 
motivation behind its introduction was the desire to better 
control (or balance) the scope of the (local and global) search 
of OPSO algorithm and reduce the importance of (or 
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eliminate) velocity clamping, Vmax during the optimization 
process [21, 23].   
 

)()()()1( 21 igiiii XPceffXPcoefftVtV    (5) 

A. Adaptive inertia weight PSO algorithm (AIW-PSO) 
This variant was proposed in [22] to improve on balancing 

the global exploration and local exploitation abilities for PSO 
by taking advantage of the effect of inertia weight to achieve 
better results. A measure called individual search ability (ISA) 
defined in (6) was used to ascertain the current situation of 
each particle, i.e. whether the particle lacks global exploration 
or local exploitation abilities in each dimension. A large ISA 
means strong global exploration ability, inertia weight should 
be decreased. While a small ISA means that the inertia weight 
should be increased. This enables a particle decide whether to 
increase or decrease its values of inertia weight.  

      
|       |

|       |   
 

(6) 

where, xij is the position of the ith particle in the jth dimension, 
pij is the own best solution, pgj is the current global best 
solution, |…| denotes absolute value and  is a positive 
constant close enough to zero. 

Depending on the ISA, the inertia weight of ith particle in jth 
dimension was dynamically calculated in each iteration using 
a transform function defined in (7), so as to enhance the 
corresponding weak search abilities.  This strategy was found 
to improve the performance of PSO algorithm.  

       (
 

         
) 

(7) 

where,  is a positive constant in the range (0,1]. 

B. Improved PSO (iPSO) 
This variant used opposition-based learning to enhance the 

performance of PSO. The underlying principle behind this 
approach is the basic idea of opposition-based learning [15]: 
assuming a worst case, particle with the lowest fitness, xb, is 
taken to be a guess that is “very far away from the existing 
solution” in the opposite location. In each iteration this 
particle is replaced with its opposite (the anti-particle) as 
shown in (8).  

                (8) 

where xbj ∈ [LBj, UBj],  j = 1, 2, …, Nd and Nd is the dimension 
of the problem. LBj and UBj are the lower and upper bounds 
for the decision variable x, in the dth dimension. 

During each iteration, the velocity and personal experience 
of the anti-particle are reset while the global best solution is 
also updated. 

C. Modified attractive and repulsive PSO (MARPSO) 
MARPSO is a new diversity-guided PSO and a 

modification of the attractive and repulsive PSO (ARPSO) [8]. 
The major goal of this variant was to solve the problem of 
premature convergence associated with PSO by increasing the 
diversity of swarm, while maintaining a higher convergence 

speed. In achieving their goal, the authors introduced new 
measure of population diversity function and concept of the 
particle's best flight direction into ARPSO. Because the 
algorithm could not guarantee local and global convergences, 
a mutation strategy was also introduced into it in order to 
improve its convergence. The algorithm used (9) to update the 
velocities of particles and maintained (2) for the particles' 
positions updating. 

   (   )      ( )   (   )     (   )

 (     (       ( ))

      (       ( ))) 
(9) 

Where dir(t) as defined in (10) is the flight direction of the tth 
generation and di(t) in (11) is the flight direction of the ith 
particle of the tth generation.  

   (   )  {

      (   ( )   )   (              )

     (   ( )   )   (               )

   ( )          

 (10) 

The expression dir(t) = 1 means that the swarm does attractive 
movement while dir(t) = -1 means it does repulsive 
movement. The dlow and dhigh are low and high limits of the 
particles respectively. 

  (   )  {

 ( )

| ( )|
    ( ( ( ))   (  ))

  ( )          

 (11) 

The inertia part of (9) is beneficial to the search when di(t) is 1 
or -1. The diversity of the swarm represented by diversity is 
measured according to (12). 

          
 

  
 ∑√∑(     ̅ )

 
 

   

 

   

 (12 ) 

 
 The mutation strategy as used in the algorithm is defined in 
(13) for velocities of particles and (14) for the positions of 
particles. 

 (   )  {
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     (| ( )|      )   (      )

 (13) 
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Where Vmin and Vmax are the low and high limits of the 
speed of particles while r3, r4  U[0,1]. It is evident in  (13) 
and (14) that the mutation is carried out when the speed of the 
particle is less than Vmin. 

D. Adaptive inertia weight PSO (AIWPSO) 
In [20], AIWPSO was proposed to further improve on the 

performance of PSO by introducing inertia weight that uses 
the swarm success rate to compute inertia weight by mapping 
it to a range of maximum and minimum inertia weight values 
[ωmax,ωmin] using a linear function shown in (15). Using this 
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adaptive inertia weight value, the algorithm is able to improve 
the performance of PSO in the static and dynamic 
environments. To improve exploration, at the end of each 
iteration of the algorithm, the worst particle is replaced by a 
mutated best particle. The mutation is done by adding a 
Gaussian noise with zero mean standard deviation to one of 
the randomly chosen dimension of the best particle to facilitate 
exploration. AIWPSO outperformed its competitors virtually 
in all the numerical tests performed [20]. The adaptive inertia 
weights help to provide a knowledge of situation of the swarm 
at each iteration. A high percentage of success indicates that 
the particles have converged to a point that is far from the 
optimum point and the entire swarm is slowly moving towards 
the optimum while a low percentage of success shows that the 
particles are oscillating around the optimum without much 
improvement. 

   (            )         (15) 

 
where, ωstart and ωend are predefined constants representing the 
initial and final values of the inertia weight. The success 
percentage in the tth iteration (SPt[0,1]) of the swarm is 
computed according to (16). 

    
∑      

  
 

 
 (16) 

where, n is the swarm size and the success of particle i in the 
tth iteration (      ) is obtained using (17), with the assumption 
that a minimization problem is being considered. 

     
  {

  (      
 )   (        

 )

  (      
 )   (        
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where         is the current best position of particle i until 
iteration t and f( ) is the function to be optimized. 

E. Rank based PSO with dynamic adaptation (PSOrank) 
In [1], a variation on the standard PSO algorithm called 

PSOrank was proposed based on cooperative behavior of 
particles in the swarm. It uses a time-varying inertia weight 
which decreases non-linearly to improve its performance. In 
the algorithm, some of the best particles (which decrease in 
number as the iteration increases) are selected proportionate to 
their respective strengths, after the particles are ranked based 
on their fitness, so that they contribute to the updating of the 
position of a candidate particle. The strength of each 
contributing particle is a function of strivness, immediacy and 
number of contributed particles. The local search and 
convergence to global optimum solution by the algorithm 
depends on these selected best particles. PSOrank updates the 
velocity vector of the particles using (18). 
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where,   
 
( )   (  
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( )    

 
( )     

models the influence of the neighbour particle j on the 
candidate particle i in the kth iteration, 

  
 ( )          ( ) ∑         ( )

           
   ⁄  is the ranking 

parameter which signifies the strivness of the individual j in 
the neighbourhood of the ith particle; fitnessj(k) is the fitness of 
particle j in the neighbourhood of particle i and Neighboursi is 
the number of neighbour particles. 

  
 ( )   √∑ ( 

     
 ( )    

 ( )) ⁄  is the immediacy of 

individual j from particle i based on Euclidean distance in D-
dimensional solution space where    

 ( ) and    ( ) 
respectively represent the positions of the particle j and the 
candidate particle i in dimension d of the solution space. 
      

  is the effect of the individuals in the neighbourhood 
of the ith particle, where Ni is the number of individuals in the 
neighbourhood of particle i;       and       are 
parameters which controls the importance of social knowledge 
provided by the neighbour individuals. 

F. Modified PSO (mPSO) 
This variant [7], addressed the issue of particles getting over 

concentrated, tried to delay the algorithm falling into local 
minimum and increase the global search capability of the 
swarm. The authors used (19) to control the swarm diversity 
effectively in order to prevent their quick gathering at the 
location of gbest. This was done with the belief that, effective 
control of the swarm's aggregation degree will improve the 
algorithm's capability to obtain global minimum.  

                 (    ) (19) 

From (19),  is a random number drawn from the standard 
Gaussian distribution, the initial value of the  = 1.0, and set  
=  every 50 iterations, where  is a random number 
between [0.01, 0.9]. This method not only produces a small 
range of disturbance to achieve the local search with high 
probability, but also produces a significant disturbance to step 
out of the local minimum area with large step migration in 
time. 

G. Discussions 
All the variants described above tried to address the 

problem of getting stuck in local optima (premature 
convergence) common with OPSO. In the process of trying to 
achieve their goals, the authors of these variants modified 
OPSO in various ways by introducing additional parameters 
and computations. All the variants outperformed their 
competitors in solving various test problems that were used in 
the different experiments conducted by their authors. 
Summarized in Table I are the additional parameters to OPSO 
and the extra computations associated with these variants. 
 

TABLE I: ADDITIONAL PARAMETERS AND COMPUTATIONS IN THE 
COMPETING OPSO VARIANTS 

No. Variant 
Additional 

parameters and 
computations 

Remark 

1 AIW-PSO 
i. ISA 
ii. Vmax and Vmin 
iii. ω 

(i) and (iii) were 
computed. (ii) 
was assigned the 
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search space 
limits 

2 iPSO i. ω Was set as a 
constant 

3 MARPSO 

i. Flight 
directions (for 
the swarm 
and each 
particle 

ii. Diversity 
iii. Mutation of 

particles' 
positions 

iv. ω 
v. dhigh and dlow 
vi. Vmax and Vmin 

(i) – (v) were 
computed and no 
value was 
explicitly 
assigned to (vi) 

4 AIWPSO 

i. SR 
ii. Mutation of 

selected 
particle 

iii. ω 
iv. Vmax and Vmin 

(i) – (iii) were 
computed while 
(iv) was not 
explicitly stated 
whether it was 
assigned a 
constant value or 
the search space 
threshold 

5 PSOrank 

i. Ranking of 
particles 

ii. Influence 
iii. Euclidean 

distance 
iv. Individual 

effects 
v.  
vi.   
vii. Vmax and Vmin 
viii. ω 

(i) – (iv) and (viii) 
were computed. 
(v) and (vi) were 
set experimentally 
while (vii) was 
assigned the 
search space 
threshold 

6 mPSO 

i.  
ii.  
iii. newPbest 
iv. Vmax and Vmin 
v. ω 

(i), (ii), (iii) and 
(v) were 
computed while 
(iv) was assigned 
a constant value 

 
Considering the OPSO variants described above, MARPSO 

and PSOrank are more complicated than others while iPSO is 
the least complicated in terms of extra computations and 
additional parameters. In this regard, iPSO strived at 
maintaining the goal of being a simple algorithm which was 
one the desires of the authors of OPSO [12], but could not 
maintain the goal of robustness. For mPSO, AIWPSO, 
MARPSO and PSOrank, the goal of robustness was achieved to 
a very high level, but could not maintain the goal of 
simplicity. From Table I, inertia weight (ω) and particles 
velocity limits (Vmax and Vmin) parameters are common among 
the variants. In cases where the velocity limits were assigned 
the upper and lower limits of the solution search space of a 
problem, the values remained constant throughout the lifetime 
of the algorithm [1, 22]. This was equally the same thing when 
the velocity threshold was assigned constant values relative to 
each problem [7]. Also, in all the variants as it is common 

among other OPSO variants, the solution search space remains 
constant till the algorithms finish their executions.  

The inertia weight and velocity threshold plays important 
roles in the exploration and exploitation ability of PSO 
algorithm, though their selections may be problem-dependent. 
There are possibilities of encountering some practical 
problems with lack of knowledge regarding the selection of 
Vmax which could result to using trial-and-error approach in 
order to make a selection and this can be very labourious and 
time consuming. Allowing the velocity threshold to remain 
static, either by assigning to it a predefined constant value or a 
search space threshold, throughout the lifetime of the 
algorithms can make the particles have some step size that 
may make them do more than enough exploration or less than 
enough exploitation. The inertia weight parameter is the 
common tool being used to address this challenge, but this 
could better be addressed by working directly with the 
velocities of the particles because it is the direct determinant 
of the particles' step sizes. Making the solution search spaces 
static could also make the particles spend needless time 
searching areas that may not be necessary for solution. If the 
velocity and solution search space limits are made to vary 
(dynamic) throughout the lifetime of the algorithms without 
using the inertia weight parameter, there are possibilities of 
obtaining better and quality solutions to optimization 
problems. This is what the present paper seeks to achieve. 

IV. THE IMPROVED ORIGINAL PSO (IOPSO) 
All the PSO variants considered in this paper obtained 

solutions for the test problems that were used to validate the, 
with varied solution quality and precision. These variants have 
additional parameters and some extra (or complex) 
computations that enabled them achieve their various levels of 
successes. The major goal of this paper is to improve on the 
performance of OPSO, in a simple way, without using the 
inertia weight parameter (ω) or getting involved in complex 
computation(s). Apart from the commonly used Vmax and 
velocity clamping percentage (represented as  in this paper), 
no other parameters were used. This was done to make the 
algorithm simple and robust yet very effective.  

In order to achieve this major goal, a careful study was done 
regarding the particles' dimensions.  First, the following 
observations were made: 
i. During search, every particle dynamically changes its 

position in a complex environment facing different 
situation. As a result, each particle along every dimension 
may have different trade-off between global and local 
search abilities 

ii. Clamping the velocity of a particle changes the step size 
as well as the particle’s direction since changing any 
component of a vector changes that vector’s direction. As 
each dimension is optimized independently, the particle 
moves toward the global best on each dimension with a 
speed depending on the velocity limits. Since the 
maximum iterative movement toward global best on any 
dimension is clamped, particles may be thought of as 
combing the search space a bit more thoroughly than 
when their velocities are unclamped [5] 



 6 

iii. It has also been experimentally discovered that large 
velocity threshold enhances exploration while small 
velocity threshold enhances exploitation [24] 

iv. A minimizer is sought for the optimization problem 
v. The final fitness (objective function) value depends on the 

values of the various dimensions that make up the 
minimizer 

vi. When the algorithm terminates, the final values at the 
various dimensions of the minimizer are smaller than their 
initial values (when they were initialized at the beginning 
of the algorithm) 

vii. From the foregoing, the primary purpose of an 
optimization algorithm is to optimize the values of each 
dimension (decision variables) from its initial value to a 
smaller (final) value such that the objective function value 
is the possible minimum (i.e. for minimization problems). 

Second, an experimental study was conducted using OPSO 
to observe the progressive values of the dimensions as well as 
the fitness value for each particle while the algorithm is being 
run. The Ackley problem was used for the experiment, with 
dimension of 10, swarm size of 10, upper and lower particle 
velocity limits set as vmax = xmax and vmin = xmin and a maximum 
iteration of 100. Sample results for the values of the different 
dimension and fitness at the initialization state, as well as at 
the 10th, 20th, 50th and 100th iteration relative to the particles 
are shown in Appendix 1. From the results, it was discovered 
that algorithm  

When the velocity and search space limits were allowed to 
vary dynamically (method described below), the experiment 
was repeated with the same settings. It was discovered that 
there was a great improvement as shown by the sample results 
in Appendix 2. The velocity threshold was used to control 
exploitation while the search space threshold was used to 
control exploration. 
In every iteration, the largest dimension value (Ld) and the 
smallest dimension value (Sd) among the dimensions of all the 
particles, were obtained according to  (20) and (21). 
 

      
 
(   

 
(  

 
)) (20) 

      
 
(   

 
(  

 
)) (21) 

where,   
  is the ith particle with jth

 dimension. The upper limit 
xmax and lower limit xmin of the solution search space for the 
particles were obtained according to  (22) and (23). 

        (|  | |  |) (22) 

           (23) 

where | . | means absolute value. After obtaining xmax and xmin, 
they are used to compute the upper (vmax) and lower (vmin) 
particle velocity limits as defined in  (24) and (25). 

           (24) 

           (25) 

where,  is a velocity clamping percentage. It serves as a 
scaling factor of the upper and lower solution space limits to 
help reduce the velocity range for particles in the process of 
operation by IOPSO. 

After obtaining the new velocity limits and solution search 
space, the particles are redistributed in the search space. When 
the particles' positions are being updated, contrary to the 
common method in (3) for ensuring that the particles do not 
move out of the solution search space, IOPSO uses Fig.  1. 
This method in some way help the algorithm achieve some 
level of exploration. 
 

If xi < xmin 

  xi  xmin + (xmin – xi)* random(0,1) 

else if xi > xmax 

  xi  xmax - (xi – xmax)* random(0,1) 

end if 

Fig. 1: Particle position clamping 

Shown in Fig. 2 below is the algorithm for IOPSO. The 
shaded portions indicate areas of improvements made to 
OPSO. 

 
1) Exploration feature of IOPSO 
In order to be able to leave a current peak and look for better 
solutions in the search space, IOPSO utilizes  (20) – (23) to 
redistribute the particles within the newly calculated solution 
search space. This method could provide the particles with the 
opportunity of leaving their current positions to other parts of 
the search space, thus helping to escape getting stuck in local 
optimum. This happens throughout the process of the 
algorithm. 
2) Exploitation feature of IOPSO 

To facilitate the refinement of the best solution it has found 
so far,  (24) and (25) enable IOPSO to search a small vicinity 
of this solution. This is so because, as the algorithm's 
operation progresses, the velocity range of the particles 
decreases, thereby reducing the distance each particle should 
exploit for better solution and the smaller the velocity range 
the higher the exploitation by the particles. 

V. NUMERICAL SIMULATIONS 
To validate the performance of the proposed IOPSO, a total 

of 6 different recent and efficient PSO variants, namely: AIW-
PSO, iPSO, MARPSO, AIWPSO, mPSO and PSOrank were 
adopted for comparisons. Different experiments, relative to the 
competing PSO variants, used different set of test problems 
which were also used to test IOPSO. The application software 
was developed in Microsoft Visual C# programming 
language.
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Begin IOPSO Algorithm 

Input:  f: the function to optimize 

 s: the swarm size 

 d: the problem dimension 

 pr: solution search space 

 vr: particle velocity range 

Output: x*: the best particle position found 

 f*: the best fitness value found 

Initialize: position xi = (xi1, …, xid) and velocity vi = (vi1, …, vid), 

for all particles in problem space 

evaluate f(xi) in d variables and get pbesti, (i = 1, …, s)  

gbest  best of pbesti  

While stopping criteria is false do 

compute new solution search range, pr, using  (20) – (23) 

compute new particle velocity range, vr, using  (24) and (25) 

randomly redistribute particles in the new pr 

randomly reinitialize velocities for particles using the new vr 

Loop for s times 

Loop for d times 

update vi for particle using (1)  

validate for velocity boundaries using (4) 

update xi for particle using (2) 

validate for position boundaries using Fig. 1 

End 

End 

If f(xi) < f(pbesti) then pbesti  xi  

If f(xi) < f(gbest) then  

gbest  xi  

f(gbest)  f(xi)  

end if 

End while 

x*  gbest  

f*  f(gbest) 

Return x* and f* 

End IOPSO Algorithm 

Fig. 2: Algorithm for IOPSO  

A. Benchmark problems 
Different test problems (see Table III) with varied 

difficulties that are diverse enough to cover many of the 
problems which can arise in global optimization problems 
were used to verify the performance of IOPSO, in comparison 
with the competing variants. All the test problems were 
obtained from [1, 7, 8, 15, 20, 22]. Some of the characteristics 
(US – unimodal separable, UN – unimodal non-separable, MS 
– multimodal separable, MN – multimodal non-separable) 
were obtained from [11]. 

B. Parameter setting 
Two parameters were set for IOPSO, irrespective of their 

values used in the various competing variants. These 
parameters are c1, c2, and. Different values like 0.5, 0.15, 
0.05, 0.75 and 1.0 have been used for  in the literatures [1, 2, 
5, 13, 22]. In this paper, the value for  in  (24) and (25) is 
0.15; this value was used because it has been proved to be 

good and efficient [5, 13]. The value for c1 and c2 was 2.0; this 
value has also been proved to be generally good and are 
commonly used in the literature [1, 2, 8, 23]. The parameters 
r1 and r2 were randomly generated using the uniform random 
number generator. Inertia weight parameter ω was not used in 
IOPSO. 

C. Settings of the experiment 
A total of 6 different experiments were conducted. The 

settings of each experiment were relative to the competing 
variant as recorded in the respective literature. The settings for 
all the experiments are stated below one after the other, 
relative to each competing variant.  Table II summarizes the 
different testing ground to prove the robustness, convergence 
speed, solution quality and stability of the algorithms. The 
initial positions of particles in IOPSO were generated using 
uniform random number generator. 

 
TABLE II: SETTINGS FOR PSO VARIANTS ADOPTED FOR COMPARISONS WITH IOPSO 

No. Variant Testing ground 
Particles initialization Swam sizes Problem dimensions Number of test problems 

1 AIW-PSO Asymmetric 20, 40 and 80 10, 20 and 30 3 
2 iPSO Symmetric 50 30 7 
3 MARPSO Symmetric 20 20, 50 and 100 4 
4 AIWPSO Symmetric 20 2 and 30 12 
5 PSOrank Asymmetric 30 2, 10, 20 and 30 6 
6 mPSO Symmetric 30 2, 10, 20 and 30 6 
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TABLE III: BENCHMARK PROBLEMS 

No. Problem Formulation Characteristics Optimum 

1 Ackley   ( ⃗)        

(

     √
 

 
∑  

 

 

   
)

     (
 

 
∑   (    )

 

   

)       MN 0 

2 Griewank  ( ⃗)  
 

    
(∑  

 

 

   

) (∏   (
  

√ 
)

 

   

)    MN 0 

3 Noisy Quadric  ( ⃗)  ∑   
        (   )

 

   

 US 0 

4 Noncontinous Rastrigin 

 ( ⃗)  ∑(  
       (    )    )

 

   

 

   {

     |  |     
     (   )

 
   |  |     

} 

MS 0 

5 Rastrigin  ( ⃗)  ∑(  
       (    )    )

 

   

 MS 0 

6 Rosenbrock   ( ⃗)  ∑(   (       
 ) )  

   

   

(    )
  UN 0 

7 Rotated Ellipsoid  ( ⃗)  ∑(∑  

 

   

)

 
 

   

 UN 0 

8 Salomon  ( ⃗)      (  ∑  
 

 

   

)    √∑  
 

 

   

   MN 0 

9 Schaffer's f6   ( ⃗)  ∑(    
    (√    

    
 )     

(     (    
    

 )   ) 
)

   

   

 MN 0 

10 Schwefel P2.22  ( ⃗)  ∑|  |

 

   

 ∏|  |

 

   

 UN 0 

11 Shubert  ( ⃗)  ∏(∑    ((   )    )

 

   

)

 

   

 MN -186.7309 

12 Sphere  ( ⃗)  ∑  
 

 

   

 US 0 

13 Step  ( ⃗)  ∑(⌊      ⌋)
 

 

   

 US 0 

 
 

1) Experiment 1 

 

In this experiment IOPSO was compared with AIW-PSO 

[22]. The test problems, search ranges and initialization ranges 

are stated in Table IV while their dimensions and swarm sizes 

in Table II. The maximum numbers of iterations was set to 

1000, 1500 and 2000 respectively for the dimensions. The 

experiment was repeated 100 times for each test problem.

  

TABLE IV: SETTINGS FOR EXPERIMENT 1 

Test problem Griewank  Rastrigin  Rosenbrock  

Search range [-600,600] [-10,10] [-100,100] 

Initialization range [300,600] [2.56,5.12] [15,30] 

 

 



 9 

2) Experiment 2 

In this experiment IOPSO was compared with iPSO [15]. The 
test problems dimensions and swarm sizes are stated in Table 
II. The total number of simulations was 30 and each 
simulation was allowed to run for 50,000 evaluations of the 
objective function. Shown in Table IV are test problems, 
search ranges and initialization ranges.  
3) Experiment 3 
In this experiment IOPSO was compared with MARPSO [8]. 
The test problems, search ranges and initialization ranges are 
stated in Table VI while their dimensions and swarm sizes are 
stated in Table II. The number of evaluations of objective 
function for the different problem dimensions was set to 
40000, 100000, and 200000 respectively. Error tolerance was 
set to 10-10, that is, fitness smaller than error tolerance was 
considered as zero. For IOPSO, the experiment was repeated 
100 times for each of the test problems.   
4) Experiment 4 
In this experiment IOPSO was compared with AIWPSO [20]. 
The test problems, search ranges and initialization ranges are 
stated in Table VII while their dimensions and swarm sizes are 
stated in Table II.  The maximum allowed number of function 
evaluations was set to 200,000. The experiment was repeated 
30 times for each of the test problems.   

5) Experiment 5 
In this experiment IOPSO was compared with PSOrank [1]. The 
test problems, search ranges and initialization ranges are stated 
in Table VII while their dimensions and swarm sizes are stated 
in Table II. The maximum numbers of iterations was set to 
1000, 1500 and 2000 for 10, 20 and 30 dimensions 
respectively. For Schaffer's f6 problem, the maximum 
iteration was set to 1000. The experiment was repeated 100 
times for each test problem. Success criterion was set for all 
the problems; for Schaffer's f6, success criterion was set to 10-

6 and 10-2 for others. After the maximum iteration, if the 
minimum value reached by the algorithm was not below the 
threshold, the run was considered unsuccessful. Average 
fitness smaller than 10-15 was considered as zero.  
6) Experiment 6 
In this experiment IOPSO was compared with mPSO [7]. The 
test problems, search ranges and initialization ranges are stated 
in Table IX while their dimensions and swarm sizes are stated 
in Table II. The maximum numbers of iterations was set to 
3000 for all dimensions. The experiment was repeated 50 
times for each test problem. The target value of function 
optimization was set to 10-10. After the maximum iteration, 
any average fitness smaller than 10-10 was considered to be 
zero. The goal of this experiment was to verify whether 
IOPSO.

TABLE V: SETTINGS FOR EXPERIMENT 2 

Test problem Ackley Griewank Rastrigin Rosenbrock 
Rotated hyper-

ellipsoid Salomon Sphere 

Search range [-32,32] [-600,600] [-5.12,5.12] [-2,2] [-100,100] [-100,100] [-100,100] 

Initialization range [-32,32] [-600,600] [-5.12,5.12] [-2,2] [-100,100] [-100,100] [-100,100] 

 
TABLE VI: SETTINGS FOR EXPERIMENT 3 

Test problem Ackley Griewank Rastrigin Rosenbrock 

Search range [-32,32] [-600,600] [-5.12,5.12] [-30,30] 

Initialization range [-32,32] [-600,600] [-5.12,5.12] [-30,30] 

 
TABLE VII: SETTINGS FOR EXPERIMENT 4 

Test problem Ackley Griewank Noisy Quadric NC Rastrigin Rastrigin Rosenbrock 

Search range [-32,32] [-600,600] [-1.28,1.28] [-30,30] [-5.12,5.12] [-5,10] 

Initialization range [-32,32] [-600,600] [-1.28,1.28] [-30,30] [-5.12,5.12] [-5,10] 
 

Test problem Rotated-ellipsoid Schwefel Schwefel P2.22 Shubert Sphere Step 

Search range [-100,100] [-500,500] [-10,10] [-10,10] [-100,100] [-100,100] 

Initialization range [-100,100] [-500,500] [-10,10] [-10,10] [-100,100] [-100,100] 
 

TABLE VIII: SETTINGS FOR EXPERIMENT 5 

Test problem Ackley Griewank Rastrigin Rosenbrock Schaffer's f6 Sphere 

Search range [-30,30] [-600,600] [-5.12,5.12] [-30,30] [-100,100] [-100,100] 

Initialization range [15,30] [300,600] [2.56,5.12] [15,30] [50,100] [50,100] 
 

TABLE IX: SETTINGS FOR EXPERIMENT 6 

Test problem Ackley Griewank Rastrigin Rosenbrock Schaffer's f6 Sphere 

Search range [-30,30] [-600,600] [-5.12,5.12] [-30,30] [-5.12,5.12] [-1000,1000] 

Initialization range [-30,30] [-600,600] [-5.12,5.12] [-30,30] [-5.12,5.12] [-1000,1000] 
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D. Comparative Study and Discussions 
Results obtained from all the experiments are presented and 

discussed in this sub-section to show the overall performance 
of the proposed method compared to other methods. In all the 
comparisons, mean best solution (Mean Fitness) is a measure 
of the precision that the algorithm can get within given 
iterations while standard deviation (Std. Dev.) is a measure of 
the algorithm's stability and robustness and success rate (SR) 
is the rate of the optimum fitness result in the criterion range 
experimenting a number times independently.   

Recorded in Tables X – XV are the numerical results 
obtained for all the experiments. All the results for the 
competing PSO variants were obtained from the respective 
referenced papers and they are presented here the way they 
were recorded. Thus, the recording of the results for IOPSO 
were patterned after them. In each of the tables, for ease of 
observation bold values represent the best results. 

 
1) Results for Experiment 1 

The results in Table X clearly reveal a great difference in 
performance between IOPSO and AIW-PSO. The results are 
compared based on the final accuracy of the averaged best 
solutions. In all the test problems across the swarm sizes and 

dimensions except dimension 30 with swarm size 80, results 
indicate that IOPSO can get better optimum fitness results, 
showing better convergence precision better global search 
ability compared with AIW-PSO. The solution obtained for 
Rastrigin problem when the swarm size was 80 and dimension 
30, shows that IOPSO was not comfortable working with large 
swarm size relative to the problem, under the limitation of 
allowed maximum number of iterations. IOPSO obtained 
optimal solutions for Griewank and Rastrigin, but it was 
trapped in local minimum solving Rosenbrock. 
 
2) Results for Experiment 2 

In Tables XI, IOPSO is compared together with iPSO based 
on their final accuracies of the averaged best solutions and 
stability. Both algorithms performed equally in Ackley and 
Sphere problems. IOPSO demonstrated better search ability to 
obtain optimal minimum with better accuracy and stability for 
Griewank, Rotated Ellipsoid and Salomon. For Rosenbrock, 
the two algorithms could not obtain optimal minimum  but 
iPSO was better in solution accuracy while IOPSO was better 
in algorithm stability. iPSO performed better in Rastrigin; this 
is because IOPSO was not comfortable working with the large 
swarm size within the allowed number of iterations.

 
 

TABLE X: THE BEST FITNESS VALUES FOR IOPSO AND AIW-PSO 

Swarm 
size Dimension Max 

Iteration 
Griewank Rastrigin Rosenbrock 
AIW-PSO IOPSO AIW-PSO IOPSO AIW-PSO IOPSO 

20 
10 1000 0.0734 0.0000 3.7415 0.0000 48.6378 8.9251 
20 1500 0.0252 0.0000 11.1323 0.0000 115.1627 18.9097 
30 2000 0.0120 0.0000 22.1155 0.0000 218.9012 28.9001 

40 
10 1000 0.0671 0.0000 1.9900 0.0000 24.5149 8.9160 
20 1500 0.0266 0.0000 7.2145 0.0000 60.0686 18.8963 
30 2000 0.0146 0.0000 17.5765 0.0000 128.7677 28.8835 

80 
10 1000 0.0106 0.0000 1.0051 0.0000 19.2232 8.9088 
20 1500 0.0258 0.0000 5.0615 2.0800 52.8523 18.8815 
30 2000 0.0106 0.0000 13.1237 19.5370 149.4491 28.8659 

 
 

TABLE XI: RESULTS FOR IOPSO AND IPSO FOR THE SCALABLE BENCHMARK PROBLEMS IN 10 

Problem Ackley Griewank Rastrigin Rosenbrock 
Method iPSO IOPSO iPSO IOPSO iPSO IOPSO iPSO IOPSO 

Mean Fitness 0.000000 0.000000 0.006163 0.000000 27.460845 29.578568 20.645323 28.879818 
Std. Dev. 0.000000 0.000000 0.009966 0.000000 11.966896 56.553040 0.426212 0.016367 

 
Problem Rotated Ellipsoid Salomon Sphere  
Method iPSO IOPSO iPSO IOPSO iPSO IOPSO   

Mean Fitness 0.355572 0.000000 0.113207 0.099834 0.000000 0.000000   
Std. Dev. 0.890755 0.000000 0.034575 0.000002 0.000000 0.000000   

 
 
3) Results for Experiment 3 

Table XII compares the results of IOPSO with that of 
MARPSO based on their final accuracies of the averaged best 
solutions. IPSO generally performed better than MARPSO 
because it was able to obtain optimal minimum for 3 (Ackley, 
Griewank and Rastrigin) out of the 5 problems across the 
problems dimensions whereas MAPSO was able to obtain 
optimal minimum for Rastrigin. IOPSO was able to obtain 

better result for Rastrigin because a swarm size of 20 was 
used. For Rosenbrock, the two algorithms could not obtain 
optimal minimum but the solutions obtained by MARPSO 
across the problems dimensions were better in terms of 
accuracy. 
 



 11 

4) Results for Experiment 4 
Table XIII represents two measures (mean fitness and 

standard deviation) for the experimental results obtained by 
IOPSO and AIWPSO in 12 problems. Out of these problems, 
IOPSO significantly outperforms AIWPSO in 8 of them while 
AIWPSO obtained better results in 3 of them. But the two 
algorithms successfully optimized the Step problem with equal 
precision, quality and stability. IOPSO was able to obtain 
optimal minimum for Rastrigin and Non-continuous Rastrigin 
(NC Rastrigin) because the swarm size used for the 
experiment was 20. In Griewank and Rastrigin problems, 
while AIWPSO became trapped in the local optima, IOPSO 
was able to escape and obtained optimal results. Though 
AIWPSO got good results in Ackley, Rotated Ellipsoid, 
Schwefel P2.22 and the problem with noise (Noisy Quadric), 
but IOPSO excelled it by obtaining results with better quality, 
precision and stability. The two algorithms could not obtain 
optimal solution for Rosenbrock and Schwefel, but AIWPSO 
obtained better solutions for them than IOPSO; however, 
IOPSO was more stable optimizing Rosenbrock. AIWPSO 
obtained optimal solution for Shubert but IOPSO could not 
because its results for some of the runs were not optimal 
which affected its average performance in the problem. 
Considering the entire set of problems, IOPSO demonstrated 
better global search ability, convergence quality and speed, as 
well as stability compared with AIWPSO. 
 
5) Results for experiment 5 

The numerical results for the test problems are recorded in 
Tables XIV (a) – (d). The results are presented in order of 
problem dimensions for the scalable problems and then 
followed by the Schaffer's f6 problem. The two algorithms 
successfully optimized Rastrigin across the three different 
problem dimensions and Schaffer's f6 which is of dimension 2. 

They demonstrated equal stability, search ability and obtained 
solutions with same quality. In Rosenbrock problem, PSOrank 
obtained solutions with better quality and demonstrated better 
search ability in all the dimensions, but IOPSO was more 
stable. Though the two algorithms had equal success rate in 
Ackley, Griewank and Sphere across the dimensions, IOPSO 
significantly outperformed PSOrank in result quality, 
robustness, stability and global search ability. 
 
6) Results for experiment 6 

Tables XV(a) – (d) show all the results of IOPSO and 
mPSO for six problems. The two algorithms were tested with 
different dimensions of the problems and four measures as 
shown in the tables were used to verify their performances. 
From the results, the two algorithms could not reach the given 
target value when optimizing Rosenbrock problem; while 
mPSO obtained a result with little difference in accuracy, 
IOPSO was more stable across the dimensions. For the other 
problems, in terms of result quality, convergence accuracy, 
robustness, algorithm stability and global search ability the 
two algorithms had equal performance in optimizing the 
problems. However, the results revealed that the two 
algorithms differ in terms of convergence speed. Across the 
problem dimensions, IOPSO converged twice as fast as mPSO 
in Ackley and Sphere problems but almost twice as fast as 
mPSO in Griewank problem. Optimizing Rastrigin problem, 
IOPSO also converge faster than mPSO when the problem 
dimension was set to 10, but as the problem dimension was 
increased to 20 and 30, mPSO converged faster than IOPSO. 
In Schaffer's f6 problem, mPSO had higher convergence speed 
than IOPSO. 
 
 

 
 

TABLE XII: THE BEST FITNESS VALUES FOR IOPSO AND MARPSO 

Dimension Function 
evaluation 

Ackley Griewank Rastrigin Rosenbrock 
MARPSO IOPSO MARPSO IOPSO MARPSO IOPSO MARPSO IOPSO 

20 40000 0.00e+00 0.00e+00 4.03e-03 0.00e+00 0.00e+00 0.00e+00 0.13 1.89e+01 
50 100000 2.39e-10 0.00e+00 1.97e-04 0.00e+00 0.00e+00 0.00e+00 1.28 4.89e+01 
100 200000 3.99e-09 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 16.93 9.89e+01 

 
TABLE XIII: RESULTS FOR IOPSO AND AIWPSO 

Problem Ackley Griewank Noisy Quadric NC Rastrigin 
Method AIWPSO IOPSO AIWPSO IOPSO AIWPSO IOPSO AIWPSO IOPSO 

Mean Fitness 6.9870e-15 4.4409e-16 2.8524e-02 0.0000e+00 5.5241e-03 6.0166e-06 1.1842e-16 0.0000e+00 
Std. Dev. 4.2073e-31 0.0000e+00 7.6640e-04 0.0000e+00 1.5358e-05 6.0163e-06 4.2073e-31 0.0000e+00 

 
Problem Rastrigin Rosenbrock Rotated Ellipsoid Schwefel 
Method AIWPSO IOPSO AIWPSO IOPSO AIWPSO IOPSO AIWPSO IOPSO 

Mean Fitness 1.6583e-01 0.0000e+00 2.5003e+00 2.8901e+01 1.9570e-10 4.2366e-256 -1.1732e+04 -2.7375e+03 
Std. Dev. 2.1051e-01 0.0000e+00 1.5978e+01 1.9131e-02 1.2012e-19 0.0000e+000 1.1409e-25 4.2861e+02 

 
Problem Schwefel P2.22 Shubert Sphere Step 
Method AIWPSO IOPSO AIWPSO IOPSO AIWPSO IOPSO AIWPSO IOPSO 

Mean Fitness 1.6534e-62 2.2083e-206 -1.8673e+02 -1.7717e+02 3.3703e-134 0.0000e+00 0.0000e+00 0.0000e+00 
Std. Dev. 7.7348e-123 0.0000e+000 1.0306e-27 9.8384e+00 5.1722e-267 0.0000e+00 0.0000e+00 0.0000e+00 
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TABLE XIV(A): RESULTS FOR IOPSO AND PSORANK FOR THE SCALABLE BENCHMARK WITH DIMENSION OF 10 
Problem Ackley Griewank Rastrigin Rosenbrock Sphere 
Method PSOrank IOPSO PSOrank IOPSO PSOrank IOPSO PSOrank IOPSO PSOrank IOPSO 

Mean Fitness 1.31e-06 0.00e+00 2.53e-05 0.00e+00 0.00e+00 0.00e+00 9.14e-03 8.92e+00 1.21e-10 0.00e+00 
Std. Dev. 6.54e-06 0.00e+00 3.47e-o5 0.00e+00 0.00e+00 0.00e+00 1.42e-02 7.31e-03 8.36e-10 0.00e+00 
SR 1 1 1 1 1 1 0.96 0 1 1 

 
TABLE XIV(B): RESULTS FOR IOPSO AND PSORANK FOR THE SCALABLE BENCHMARK WITH DIMENSION OF 20 

Problem Ackley Griewank Rastrigin Rosenbrock Sphere 
Method PSOrank IOPSO PSOrank IOPSO PSOrank IOPSO PSOrank PSOrank AIWPSO PSOrank 

Mean Fitness 4.22e-06 0.00e+00 4.47e-07 0.00e+00 0.00e+00 0.00e+00 1.61e+00 1.89e+01 1.08e-09 0.00e+00 
Std. Dev. 9.11e-06 0.00e+00 7.69e-07 0.00e+00 0.00e+00 0.00e+00 2.04e+00 1.46e-02 3.76e-09 0.00e+00 
SR 1 1 1 1 1 1 0.56 0 1 1 

 
TABLE XIV(C): RESULTS FOR IOPSO AND PSORANK FOR THE SCALABLE BENCHMARK WITH DIMENSION OF 30 

Problem Ackley Griewank Rastrigin Rosenbrock Sphere 
Method PSOrank IOPSO PSOrank IOPSO PSOrank IOPSO PSOrank IOPSO PSOrank IOPSO 

Mean Fitness 3.12e-05 0.00e+00 2.73e-08 0.00e+00 0.00e+00 0.00e+00 1.27e+01 2.89e+01 2.05e-08 0.00e+00 
Std. Dev. 8.35e-05 0.00e+00 5.24e-08 0.00e+00 0.00e+00 0.00e+00 1.39e+01 1.52e-02 6.41e-08 0.00e+00 
SR 1 1 1 1 1 1 0.19 0 1 1 

 
TABLE XIV(D): RESULTS FOR IOPSO AND PSORANK FOR SCHAFFER'S F6 

Problem Schaffer's f6     
Method PSOrank IOPSO         

Mean Fitness 0.00e+00 0.00e+00         
Std. Dev. 0.00e+00 0.00e+00         
SR 1 1         

 
TABLE XV(A): RESULTS FOR IOPSO AND MPSO FOR THE BENCHMARK WITH DIMENSION OF 10 

Problem Ackley Griewank Rastrigin Rosenbrock Sphere 
Method mPSO IOPSO mPSO IOPSO mPSO IOPSO mPSO IOPSO mPSO IOPSO 

Mean Fitness 0.000 0.000 0.000 0.000 0.000 0.000 8.253 8.915 0.000 0.000 
Std. Dev. 0.000 0.000 0.000 0.000 0.000 0.000 0.210 0.009 0.000 0.000 
Avg. Iteration 468.08 203.82 294.32 176.42 315.24 239.92 3000 3000 340.18 139.12 
SR 50/50 50/50 50/50 50/50 50/50 50/50 0/50 0/50 50/50 50/50 

 
TABLE XV(B): RESULTS FOR IOPSO AND MPSO FOR THE BENCHMARK WITH DIMENSION OF 20 

Problem Ackley Griewank Rastrigin Rosenbrock Sphere 
Method mPSO IOPSO mPSO IOPSO mPSO IOPSO mPSO IOPSO mPSO IOPSO 

Mean Fitness 0.000 0.000 0.000 0.000 0.000 0.000 18.429 18.890 0.000 0.000 
Std. Dev. 0.000 0.000 0.000 0.000 0.000 0.000 0.301 0.014 0.000 0.000 
Avg. Iteration 532.78 252.96 343.42 183.98 354.10 446.42 3000 3000 397.64 177.08 
SR 50/50 50/50 50/50 50/50 50/50 50/50 0/50 0/50 50/50 50/50 

 
TABLE XV(C): RESULTS FOR IOPSO AND MPSO FOR THE BENCHMARK WITH DIMENSION OF 30 

Problem Ackley Griewank Rastrigin Rosenbrock Sphere 
Method mPSO IOPSO mPSO IOPSO mPSO IOPSO mPSO IOPSO mPSO IOPSO 

Mean Fitness 0.000 0.000 0.000 0.000 0.000 0.000 28.586 28.881 0.000 0.000 
Std. Dev. 0.000 0.000 0.000 0.000 0.000 0.000 0.273 0.020 0.000 0.000 
Avg. Iteration 562.60 289.86 370.06 219.28 395.22 655.28 3000 3000 415.02 206.88 
SR 50/50 50/50 50/50 50/50 50/50 50/50 0/50 0/50 50/50 50/50 

 
TABLE XV(D): RESULTS FOR IOPSO AND MPSO FOR SCHAFFER'S F6 

Problem Schaffer's f6     
Method mPSO IOPSO         

Mean Fitness 0.00e+00 0.00e+00         
Std. Dev. 0.00e+00 0.00e+00         
Avg. Iteration 67.98 97.74         
SR 50/50 50/50         
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VI. CONCLUSION 

The original PSO (OPSO) introduced in 1995 has been 
improved upon in this paper and has been named improved 
OPSO (IOPSO), without additional parameter(s) or complex 
computational efforts. Several experiments were performed 
using different nonlinear optimization problems well studied 
in literature with varied complexities and dimensions to 
compare the performance of IOPSO with the performances of 
six recent efficient PSO variants. From the experiments 
conducted, results show that IOPSO is very consistent in 
convergence velocity, convergence accuracy, global search 
ability and robustness than all the OPSO variants adopted for 
comparisons. IOPSO works well with swarm size not greater 
than 40. However, with high number of iterations it can 
comfortably work with higher swarm sizes. 

 

Allowing the velocity limits and solution search space of 
particles to vary dynamically relative to the values of particles' 
dimension has greatly improved the performance of OPSO 
algorithm. This was as a result of better exploration and 
exploitation activities of the algorithm with flexibility in 
concentrating on the promising areas in the solution search 
space for further search by the particles instead of the entire 
space all the time. 

 

Further study is needed on the optimization of Rosenbrock 
because the algorithm still experienced premature 
convergence solving the problem. Also, further empirical 
investigation of the effect of noise on the performance of the 
proposed algorithm by using more optimization problems with 
noise is needed. Furthermore, a scalability study will be 
conducted by using the algorithm on problems with 
dimensions greater than 100. Finally, applying the proposed 
algorithm to real-world problems will be investigated.  
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Appendix 1 
 
 
 
Experimental results obtained for Original PSO algorithm when velocity limits and search space limits were 
kept static. 
 
Iteration 0: Initialization state 
Particle Dimension (number of variables) Fitness 

1 2 3 4 5 6 7 8 9 10 
1 -24.9973 -2.6798 -27.3189 31.2818 1.2440 -23.7598 -20.7054 29.3716 15.8120 -31.7267 21.5945 

2 9.7768 -6.6610 2.1409 15.4727 -9.5688 6.6259 -15.1245 -20.8422 -18.0165 -20.4337 20.5614 

3 3.4141 13.1284 12.5347 -31.6679 11.1312 5.0291 -4.5519 -8.8463 6.3953 18.6167 20.6850 

4 23.3647 -31.8631 15.3881 4.2457 -18.6393 30.3913 -1.9281 -26.3176 -4.5832 26.1878 21.6350 

5 -20.8222 25.7218 4.7624 -4.6332 15.9622 24.5665 3.9390 4.7236 -30.3351 -4.2180 21.0533 

6 -25.0429 -10.2343 27.7369 12.2075 -15.9793 -10.2171 -27.5820 -26.3737 8.2654 12.3757 21.2902 

7 -5.5478 25.3483 -27.9825 31.6348 22.2695 25.2856 5.7528 19.7386 -31.2892 29.1800 21.7068 

8 20.1485 -1.6873 28.4581 -10.7107 -5.0774 10.5479 -7.5564 8.6199 -13.2508 -7.5515 20.6966 

9 16.0300 -15.3206 -27.0845 11.0854 13.4676 -3.6559 10.5331 25.2651 -18.9965 26.0282 21.0384 

10 0.8420 29.1329 0.9894 8.2623 21.2772 -10.8109 -15.4903 -15.3400 -26.6860 -3.1638 20.8751 

 
Iteration 10 
Particle Dimension (number of variables) Fitness 1 2 3 4 5 6 7 8 9 10 

1 -9.5775 8.5050 13.6811 -3.6087 17.6482 -8.0625 2.3476 22.1802 -2.4674 -26.7557 20.8155 

2 -10.7869 7.4366 14.2270 17.9172 -7.6638 -6.6673 31.9691 -23.8333 -0.6684 -7.8016 20.7677 

3 20.6746 -3.5014 -17.6140 -18.6915 -31.8585 2.8360 -14.9008 -15.1372 19.8502 8.0729 20.9145 

4 24.0232 -3.1183 8.8484 29.2548 7.6398 21.4961 7.4836 -25.6657 -16.2618 -29.9331 21.3401 

5 6.4589 -29.4998 3.6289 -19.1809 13.7074 0.2264 24.1318 -15.7341 -22.4759 3.1417 21.2194 

6 31.8361 -19.3649 -21.9912 8.7731 17.3316 24.6280 1.9834 -5.7799 -25.4585 -21.6496 21.3981 

7 -15.3417 -6.5091 -28.6087 5.3995 -28.4838 17.7482 -7.5352 -9.6965 -23.8764 -18.8277 21.5336 

8 -6.9055 17.1036 23.1164 21.3556 -22.0255 24.0964 -14.5442 23.3977 -25.9140 8.5283 21.1665 

9 -5.4536 -24.6376 20.2403 20.1042 7.7701 24.5649 -7.8313 -10.7024 -28.3579 10.1072 21.2730 

10 -0.3972 -20.9702 -19.4958 14.0257 7.4597 -0.9172 -6.9416 -4.0414 -28.0087 8.0745 20.0563 

 
Iteration 20 
Particle Dimension (number of variables) Fitness 1 2 3 4 5 6 7 8 9 10 

1 3.5731 -5.7818 -19.2758 11.7207 19.4027 -17.6967 -9.1958 24.2263 -22.2842 -19.0468 21.1082 

2 2.2476 -19.4430 -26.7984 -0.5095 4.0055 18.0942 29.6159 -28.3571 -31.8930 -8.1363 21.3553 

3 30.3007 9.3716 18.7880 18.2364 -4.3004 -23.2864 14.8461 22.9884 -9.6773 1.5268 21.2377 

4 1.2976 9.7296 -2.3934 7.2303 0.3418 -31.8191 3.1731 -0.1895 8.1259 18.3452 20.1208 

5 2.4065 27.8393 -3.1227 4.0533 -19.6425 -1.0798 -11.7057 8.5010 16.8957 13.5931 20.3772 

6 13.1445 -1.6784 -29.4500 -5.0847 -12.2327 30.7924 8.0393 7.6105 -3.0842 -1.7470 20.5931 

7 -11.1974 -5.0874 -30.7542 18.4400 16.8934 -31.0622 12.5464 6.0303 -18.6541 -12.9351 20.9408 

8 -19.1001 1.0887 14.5515 29.1161 1.6738 -19.2266 5.8677 23.6749 -0.9904 21.2992 20.8181 

9 22.8798 -23.2605 -11.3066 31.7077 10.5584 19.6958 16.1144 -7.1917 15.6423 17.2987 21.3521 

10 -1.9144 8.3954 -4.0554 28.5616 23.4996 9.0947 7.9905 -9.8366 -7.9165 18.0803 20.2351 

 
Iteration 50 
Particle Dimension (number of variables) Fitness 1 2 3 4 5 6 7 8 9 10 

1 6.4118 26.9190 0.9788 -2.6566 13.5709 -26.3595 5.4654 -15.5886 15.0924 -17.2695 21.0460 

2 -9.8258 30.4402 -26.1851 4.7184 -30.1112 8.4986 26.1265 -9.4668 21.8231 -1.6354 21.4495 

3 -0.4352 5.1495 -20.9570 -13.9545 19.9318 13.7724 -11.8027 -13.9019 14.3579 -12.4680 20.2327 

4 -16.7978 5.4568 -8.4531 7.6304 -28.6542 -30.3529 9.5790 -3.4640 2.2265 -12.6519 21.2794 

5 -8.4113 10.7908 14.9354 13.8923 22.5234 7.3198 24.0203 8.4986 2.9928 23.8971 20.6445 

6 -3.8409 -25.4197 -1.4372 6.8332 -18.1763 -11.4118 14.4304 7.4268 21.6938 1.2369 20.7324 

7 -2.3379 27.0719 -21.6785 -3.8542 -0.8993 -11.8634 8.6957 7.7003 -11.1161 10.2275 20.0173 

8 -1.1889 1.7352 -25.9687 10.5012 -0.4692 14.0572 16.7618 -5.9988 2.6411 -16.4312 20.1220 

9 9.1273 2.8833 -0.4603 10.7812 16.7900 7.3565 20.9360 -11.5087 21.5833 -30.7529 20.9310 

10 -0.0156 0.6126 -16.0604 25.9209 20.6494 -30.9606 -24.2338 -9.5977 1.5047 3.9225 20.9205 

 
Iteration 100 
Particle Dimension (number of variables) Fitness 1 2 3 4 5 6 7 8 9 10 

1 11.3871 -10.7803 -27.6744 7.0541 -20.3879 -14.1282 30.4589 -21.8337 -3.5679 9.7338 21.3008 

2 -5.5953 -6.1570 -17.0900 14.3686 6.8755 29.1574 -10.9838 16.2174 -0.4425 -1.3969 20.3540 

3 -4.1888 -6.4975 -16.1131 23.0767 -20.4793 14.5525 -26.5726 -2.9188 12.7322 29.5546 21.3478 

4 0.5645 11.5082 -0.1308 2.3655 11.7916 18.8184 -20.5615 29.4515 20.0930 12.6901 21.0908 

5 23.3968 -1.3666 -24.4680 1.6752 -1.3551 0.0097 21.4358 -2.9025 20.9001 -24.1938 21.0875 

6 30.3577 25.2763 10.0381 -24.3547 14.0642 -9.9417 -18.5338 0.0519 31.4084 -11.9425 21.2186 

7 18.1247 -20.8702 -19.6981 -20.3142 7.4203 -13.3663 31.1404 -13.5926 7.0499 7.0947 21.0462 

8 0.8815 0.0132 17.3364 -6.4547 31.9944 31.3149 -13.5031 -22.8926 4.4094 -8.1189 21.0956 

9 -3.4764 -29.2753 -15.5202 15.8452 6.1010 22.5230 10.7976 -24.5199 7.2464 15.4126 21.3428 

10 -2.7331 -28.9624 -18.7217 0.5734 15.5571 -1.2504 -7.1333 23.3516 19.3271 -24.8294 21.1995 
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Appendix 2 
 
Experimental results obtained for Original PSO algorithm when velocity limits and search space limits were 
allowed to vary dynamically. 
 
Iteration 0: Initialization state 
Particle Dimension (number of variables) Fitness 1 2 3 4 5 6 7 8 9 10 

1 -3.5250 0.2855 -28.7509 -20.2534 17.1054 31.3762 6.7659 -14.7401 9.0177 -23.3386 21.2897 

2 21.0522 30.3839 5.4546 1.7135 -13.9940 20.0352 -28.2359 -23.4844 26.8322 -15.6490 21.4117 

3 -5.5858 17.4756 31.2305 19.6098 -22.7965 -24.1239 -14.9091 -31.7354 -25.8181 0.5503 21.5651 

4 27.6122 -1.7497 -9.5722 -7.3333 -16.6750 23.8907 -8.8003 -5.0156 12.7990 21.3582 20.9327 

5 2.9442 -28.5006 -29.6663 -5.7181 -29.3814 -31.8090 -31.4788 14.2763 13.8185 -21.8334 21.6477 

6 16.6764 22.1066 -12.5344 -15.1763 -27.9602 -28.4455 -0.5211 24.5660 30.5120 17.7648 21.6973 

7 23.3694 8.9234 13.1659 2.6325 -21.8978 -18.5289 9.9891 -14.2069 -14.7211 29.9331 20.9023 

8 0.7121 -24.0447 15.7643 28.0537 11.2289 2.2699 -25.9862 16.5780 13.7474 -6.1322 20.7731 

9 -6.4346 -18.3142 7.2870 -31.4211 -22.7639 -25.6519 27.4261 -30.1715 -9.8428 13.2883 21.7027 

10 -24.5427 25.4112 4.0457 23.4111 -2.3141 -22.3732 -23.9261 24.4092 13.2537 -14.2995 21.6029 

 
Iteration 10 
Particle Dimension (number of variables) Fitness 1 2 3 4 5 6 7 8 9 10 

1 11.0394 15.9085 -17.5174 4.7708 1.3686 -6.3809 9.0679 6.7526 15.5767 -5.6932 19.4455 

2 -7.4505 -12.2549 -8.9327 -11.6891 -13.1298 -17.5964 -7.3384 2.2458 -0.4147 -10.6630 19.4263 

3 3.6525 -3.2172 -7.4511 -11.7514 -5.5937 -4.8882 -15.8480 6.8306 -16.6976 0.7473 18.6050 

4 2.6253 -5.0526 -11.3615 -5.1466 9.1389 -6.6932 5.7634 -9.0284 -13.5493 -4.3420 17.6431 

5 -16.6376 -15.4981 -5.0560 10.4171 -10.3647 7.7989 13.7402 -4.6192 -14.9488 -14.0683 19.9987 

6 -10.2750 -13.9208 2.6315 -2.8811 7.9265 -3.4148 6.4817 11.9053 -6.3526 -9.5545 18.0700 

7 -8.2042 -15.4341 5.7788 -2.8420 7.4927 13.5079 16.7780 13.8853 -4.7326 11.2348 19.5904 

8 -5.6884 -15.9813 -3.7365 -11.8840 -13.5568 1.4792 -13.9724 1.6633 16.2847 2.4187 19.3760 

9 -0.9571 6.4425 4.1080 15.0421 -4.7890 0.7348 9.8927 9.1909 2.7381 -3.2575 16.5807 

10 3.4297 11.5294 14.9956 13.6765 -13.8091 16.4678 -3.6056 15.4574 -16.6072 -6.2012 20.4427 

 
Iteration 20 
Particle Dimension (number of variables) Fitness 1 2 3 4 5 6 7 8 9 10 

1 2.6215 0.8121 -5.3739 0.8147 4.0689 1.8807 -4.6498 3.7051 5.1376 -1.2619 11.6569 

2 7.3537 6.7580 -2.7140 5.7055 -1.4706 -6.0146 0.5742 -7.7269 -9.1337 7.0022 15.8365 

3 -0.5468 -8.3482 -6.4349 2.3879 -2.6680 0.5856 6.5631 -3.8257 -9.1224 -8.0598 15.6727 

4 3.7529 -3.2566 -8.7767 2.0113 1.0031 -5.6818 3.9923 5.0050 3.8234 0.0796 12.7790 

5 7.4133 0.6540 9.0956 1.0387 3.8049 3.1753 2.8417 5.1514 -8.2874 -7.6847 15.1583 

6 -8.2273 -4.0256 -3.4603 3.8939 -8.1725 1.7190 -2.0037 0.5151 -4.7942 -5.8713 14.0053 

7 4.5683 8.4266 3.5768 3.9468 4.2359 2.3334 6.2840 4.5253 -3.5746 -5.0394 14.5192 

8 -1.6614 4.8199 -2.2997 0.0373 8.8395 7.0762 -8.1932 0.8033 7.8337 3.4074 14.7695 

9 7.9683 -7.8389 -5.7627 7.8130 -9.0832 -0.4985 -9.0470 -3.4200 1.9069 7.5611 16.3330 

10 5.5725 -6.0913 0.5485 0.4440 4.7620 8.2374 6.3278 -4.1018 6.0534 -6.8055 15.0380 

 
Iteration 50 
Particle Dimension (number of variables) Fitness 1 2 3 4 5 6 7 8 9 10 

1 -0.4716 0.8854 -0.5727 0.2673 1.2188 0.9980 -0.6318 -0.6788 -0.0120 1.3228 4.7542 

2 0.7376 -1.1127 0.9071 0.0546 0.5731 -0.0926 0.4955 -1.0368 -0.9398 0.0829 3.8764 

3 -0.3496 -0.4373 -1.0073 1.0448 0.8889 -0.7114 -0.4469 -0.0849 0.0701 -0.0806 3.7700 

4 -0.5756 -0.1973 -0.1454 0.5611 0.3107 -0.5367 -0.4946 -1.3852 0.2511 -0.3141 4.2794 

5 -0.8205 -0.2171 1.0177 0.8656 -1.3132 -0.7781 -0.2522 -0.2427 0.3600 0.2550 4.2376 

6 -1.0117 -0.2055 0.3291 0.0465 -0.4973 -1.2741 0.5070 -0.2792 0.7641 0.6904 4.2964 

7 -0.0286 0.6929 0.6368 1.3085 0.5128 -0.3048 0.2724 -1.0397 1.1346 -0.1300 4.4083 

8 -1.1295 0.4951 -0.0481 0.9059 -0.4823 1.2532 -0.2152 -0.4872 0.9723 0.2814 4.4175 

9 0.7806 1.3273 1.0171 1.0549 -0.3087 1.0156 0.7134 1.3396 -0.3273 0.2928 4.9379 

10 0.1961 1.2688 -0.7636 1.0923 1.0123 -0.1278 0.3859 1.0949 -1.0515 0.3774 4.4453 

 
Iteration 100 
Particle Dimension (number of variables) Fitness 

1 2 3 4 5 6 7 8 9 10 
1 -0.0016 -0.0343 0.0105 -0.0397 -0.0563 -0.0066 -0.0603 -0.0543 -0.0506 -0.0283 0.2434 

2 0.0363 0.0001 -0.0202 0.0432 0.0457 0.0403 0.0032 0.0463 -0.0307 -0.0311 0.1944 

3 -0.0381 0.0449 0.0420 -0.0544 -0.0487 -0.0460 0.0488 -0.0487 0.0012 0.0128 0.2592 

4 -0.0119 0.0390 -0.0161 -0.0515 0.0206 0.0546 -0.0341 -0.0467 0.0320 0.0287 0.2140 

5 -0.0293 0.0052 0.0183 -0.0533 -0.0459 0.0471 -0.0190 0.0445 0.0131 0.0537 0.2205 

6 0.0013 0.0416 0.0168 0.0600 0.0445 0.0112 -0.0118 0.0072 -0.0555 0.0607 0.2297 

7 0.0091 0.0529 0.0022 -0.0057 0.0549 0.0617 -0.0432 -0.0333 -0.0419 0.0556 0.2589 

8 0.0167 -0.0078 -0.0570 -0.0017 -0.0595 0.0212 -0.0379 0.0308 0.0560 -0.0312 0.2236 

9 0.0375 -0.0602 0.0028 0.0120 -0.0530 0.0043 -0.0404 -0.0099 -0.0315 -0.0551 0.2202 

10 0.0087 0.0232 -0.0557 0.0358 -0.0449 -0.0176 0.0607 -0.0405 -0.0437 -0.0431 0.2476 
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Abstract—Inertia weight is one of the control parameters that 
influence the performance of Particle Swarm Optimization (PSO). 
Since the introduction of the inertia weight parameter into PSO 
technique, different inertia weight strategies have been proposed to 
enhance the performance of PSO in handling optimization 
problems. Each of these inertia weights has shown varying degree 
of efficiency in improving the PSO algorithm. Research is however 
still ongoing in this area. This paper proposes two adaptive chaotic 
inertia weight strategies based on swarm success rate. 
Experimental results show that these strategies further enhance the 
speed of convergence and the location of best near optimal 
solutions. The performance of the PSO algorithm using proposed 
inertia weights compared with PSO using the chaotic random and 
chaotic linear decreasing inertia weights as well as the inertia 
weight based on decreasing exponential function adopted for 
comparison in this paper are verified through empirical studies 
using some benchmark global optimization problems. 

Keywords—Adaptation; Success rate; Inertia weights; 
Chaotic; Swarm Intelligence; Global optimization; Particle 
swarm optimization 

I. INTRODUCTION 

Since the inception of PSO strategy for solving 
optimization problems, a lot of work has been done by 
researchers to enhance its efficiency in handling optimization 
problems. The PSO has a small number of parameters that 
regulates the behaviour of the algorithm. These include 
particle swarm size, problem dimensionality, particle velocity, 
inertia weight, cognitive learning rate and social learning rate. 
The inertia weight parameter (popularly represented as ω) 
introduced in [3], is the most important compared with other 
parameters [4]. The motivation behind its introduction was the 
desire to better control (or balance) the scope of the (local and 
global) search and reduce the importance of (or eliminate) 
velocity clamping, Vmax during the optimization process [2, 5, 
8]. According to [8], the inertia weight was successful in 
addressing the first objective, but could not completely 
eliminate the need for velocity clamping. As reported in [5, 6], 
ω gets important effect on balancing the global search and the 
local search in PSO. Therefore, the feature of the divergence 
or convergence of particles can be controlled only by 
parameterω, however, in conjunction with the selection of 
values for the acceleration constants [7, 8].  

Each individual in the particle swarm is composed of 
three n-dimension vectors (current position, previous position, 
and velocity), where n is the dimensionality of the search 
space. Thus, in a physical n-dimensional search space, the 
position and velocity of each particle i are represented as the 
vectors Xi = (xi1, …, xin) and Vi = (vi1, …, vin), respectively. In 
the course of movement within the search space in search of 
the optimum solution of a problem, the particle’s velocity and 
position are updated as shown in equations (1) and (2) 
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where, c1 and c2 are acceleration (weighting) factors known as 
cognitive and social scaling parameters that determine the 
magnitude of the random forces in the direction of Pbest 
(previous best) and Gbest (global previous best); r1 and r2 are 
random numbers between 0 and 1; k is the iteration index and 

 is the inertia weight. 
From the time PSO was proposed, several strategies have 

been proposed to modify the algorithm by using dynamic value 
of ω in each iteration [1, 4, 10, 11, 15, 21]. These strategies 
include random [9], chaotic random [14], linear decreasing [8], 
and chaotic linear decreasing [14] strategies which were 
adopted for comparison in this work. In [8], the linear 
decreasing inertia weight strategy decreases from a value of 0.9 
to 0.4 in course of searching for solution to the problem being 
solved. Though it enhances the performance of PSO, it usually 
get into local optimum when solving functions with more 
apices [14]. In [9] it was experimentally found that random 
inertia weight strategy increases the convergence in PSO and 
could find good results with most functions. A chaotic term 
was included to the random as well as the linear decreasing 
inertia weight strategies in [14]. These strategies were 
experimentally proved to be superior to the random and linear 
decreasing strategies in terms of convergence speed, global 
search ability and convergence precision. The remaining part 
of the paper is organized as follows. In section 2, we give a 
summarized review of inertia weight strategies in PSO with 
more emphasis on the adaptive and chaotic inertia weights. 
Section 3 describes the proposed adaptive chaotic inertia 
weights while in section 4, the experimental settings are stated. 
The experimental results are given and discussed in section 5 
and section 6 concludes the paper. 
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II. INERTIA WEIGHT STRATEGIES FOR PSO 

The basic PSO presented by [17] has no inertia weight. 
The first inertia weight was introduced into PSO in [3], this 
inertia weight was static in nature. However a lot of 
improvement on inertia weight strategies have been made over 
the years [3, 6, 8, 9, 11, 12, 13]. By reason of its operation, the 
inertia weight (ω) can be interpreted as the fluidity of the 
medium in which a particle moves [2]; showing that setting it 
to a relatively high initial value (for example, 0.9) makes 
particles move in a low viscosity medium and performs 
extensive exploration. Gradually reducing it to a much lower 
value (for example, 0.4) makes the particle moves in a high 
viscosity medium and performs  more exploitation. Different 
strategies have been proposed to determineω. These strategies 
could be categorized into static and dynamic (or variable). In 
the static strategy, a fixed or constant value is used for the 
entire search duration [3]. The dynamic category is subdivided 
into random adjustment, linear time-varying,  nonlinear time-
varying and adaptive[1, 8]. In the random adjustment 
techniques, different inertia weight is randomly selected in 
each iteration [9, 21]. The linear time-varying can be 
subdivided into linear time decreasing and linear time 
increasing. In linear time decreasing approach an initially 
large inertia weight (commonly 0.9) is linearly decreased to a 
small value (commonly 0.4) [6, 11, 12, 13, 14]. There are 
cases where values other than 0.9 or 0.4 are used [1, 15, 16]. 
Linear time increasing deals with the reverse [19]. Also, 
nonlinear time-varying can be subdivided into nonlinear time 
decreasing, and nonlinear time increasing. For nonlinear time 
decreasing, an initially large value decreases nonlinearly to a 
small value [12, 15]. It allows a shorter exploration time than 
the linear decreasing methods, with more time spent on 
refining solutions [8]. Nonlinear time decreasing methods 
seem more appropriate for smoother search spaces [8]. Again, 
the nonlinear time increasing deals with the reverse [11]. The 
adaptive inertia weight approaches can be subdivided into 
fuzzy adaptive and non-fuzzy adaptive. Fuzzy adaptive inertia 
weight is dynamically adjusted on the basis of fuzzy sets and 
rules in each iteration [1, 8, 10]. The non-fuzzy adaptive 
inertia weights are dynamically adjusted based on the state of 
the swarm in terms of fitness, particle rank, and distance to 
particle, global best positions, and particle success rate which 
are regarded as feedback parameters [1] 

A. Adaptive inertia weight in PSO based on swarm success 
rate 

Generally, adaptive inertia weight strategies monitor the 
search space and adapt the inertia weight value based on one 
or more feedback parameters [1, 18]. Our focus is on the 
inertia weights based on swarm success rate feedback 
parameter. The PSO variant (AIWPSO) proposed in [1] 
monitors the search situation and adapts the inertia weight 
value based on the swarm success rate parameter. It can 
properly adapt the value of the inertia weight in the static and 
dynamic environment using (3). The best particle was mutated 
by adding a Gaussian noise with zero mean standard deviation 

to one of its randomly chosen dimension and used to replace 
the worst particle at the end of each iteration to improve on the 
exploration of the method.  

endendstartt SR ωωωω +−= )(   (3) 

where SR is as shown in (5) and the range of inertia weight 
[ start, end] was selected to be [0, 1]. 

AIWPSO was found work better than its competitors due 
to its adaptive nature. For static functions,  changes over 
time, starting with a large value in the first few number of 
iterations due to the high rate of successful movements 
(particle best updates) which facilitates exploration and later 
converges to oscillate round about 0.39 (a value suitable for 
sphere function) for exploitation. For the dynamic function 
described in the paper, AIWPSO was able to locate (track) 
new optimum position after the environment changes (peak 
movements). At each peak movement the particles are placed 
on a point far from the optimum which is identified using the 
number of successful movements of the particles which grows 
to a value of about 1 (high ) which help the particles to 
accelerate up towards the new optimum point and after that  
rapidly reduces to a value around 0.4. A high percentage of 
success indicates that the particles have converged to a point 
that is far from the optimum point and the entire swarm is 
slowly moving towards the optimum while a low percentage 
of success shows that the particles are oscillating around the 
optimum without much improvement [1]. 

The success of particle i at iteration t, in a minimization 
problem, is defined in (4): 
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Where i
tpbest  is the current best position of particle i until 

iteration t and f( ) is the function to be optimized. The success 
rate (SR) of the swarm is computed using (5): 
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Where n is the swarm size and SRt ∈[0,1] is the percentage 
of the particles with improvement in fitness in the last iteration. 
Where no particle succeeds to improve its fitness, SR is set to 
0; where all the particles succeed in improving their individual 
fitness, SR is set to 1. Therefore SR reflects the state of the 
swarm and serves as a feedback parameter to the PSO 
algorithm to determine the inertia weight at each iteration. 

B. Chaotic inertia weight in PSO 

Chaos is a form of nonlinear dynamic system which has the 
characteristic of stochastic property, ergodicity, and sensitive 
to initial value [20]. Two chaotic inertia weights were proposed 
in [14], they are Chaotic descending inertia weight (CDIW) 
and Chaotic random inertia weight (CRIW) shown in (7) and 
(8) respectively. The aim then was to improve on the random 
and linear descending inertia weights using logistic mapping 
shown in equation (6), to avoid getting into local optimum in 
searching process by utilizing the merits of chaotic 
optimization. 
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)1( zzz −××= μ   (6) 

where 475.3 ≤< μ and when μ = 4 its chaotic result sprinkles 
the interval of [0,1]. 

( ) zTtT endendstartt ×+−−= ωωωω maxmax )()(          (7) 

zrandt ×+×= 5.0()5.0ω   (8) 

where start and end are the initial and final values of inertia 
weight,  rand() is a uniform random number in [0,1], t is the 
current iteration, Tmax is the maximum iteration, 

)1(4 zzz −××=  is a logistic mapping and z is a random 
number in the interval of (0,1). The results from [14] shows 
that the proposed methods make PSO have preferable 
convergence precision, quick convergence velocity, and better 
global search ability. This is because, at the initial stage, it has 
a wide rough search (exploration) which makes it to quickly 
get to a position near the global optimum and at the later stage, 
it has a detailed search (exploitation) which make it to exploit 
the neighbourhood of the discovered near optimal position till 
discovering the optimum result or end of maximum iteration. 
With the chaotic characteristic they are able to get away from 
the local optimum unlike Linear decreasing inertia weight 
which during exploitation, becomes reduced such that the 
particles have not enough velocity to escape from local 
optimum. Shown in Fig. 1 is how  of CDIW and CRIW 
changes. Due to non-repetition of chaos the algorithm with the 

 can carry out overall searches at higher speed and diversify 
the particles and improves the algorithm's performance in 
preventing premature convergence to local minima compared 
with  without chaos characteristic.  

Fig. 1. Changes in inertia weights of CDIW and CRIW 

C. Decreasing exponential function inertia weight in PSO 

 The method in [18] is based on decreasing exponential 
functions. It is made up of two parts (base and power). The 
PSO algorithm's iteration was used in these parts as shown in 
(9). As the iteration increases,  goes from one to zero as 
shown in Fig. 2.  

Fig. 2. Changes in inertia weight of decreasing exponential inertia weight 

Graphical results in [18] show evidences of its superiority to 
the competitors in fitness quality and speed of convergence. 
Shown in Fig. 2 is the change of inertia weight over time. 

t t
t t −=ω    (9) 

III. PROPOSED ADAPTIVE CHAOTIC INERTIA WEIGHTS 

Our proposed adaptive chaotic inertia weights simply 
combine the swarm success rate feedback parameter with 
chaotic mapping to harness together adaptivity and chaotic 
characteristics. These inertia weights labelled CAIWS-D and 
CAIWS-R are shown in (10) and (11) respectively. 

( ) zTtT endendstartt ×+−−= ))()(( maxmax ωωωω    (10) 

zSRt ×+×= )5.05.0(ω   (11) 

where, )1(4 SRSRz −××= . In this case z is not just a uniform 
random number in the interval of (0,1) but the swarm success 
rate in the interval [0,1]. Also in (11), rand() which is a 
uniform random number in the interval of [0,1] is replaced with 
SR in the interval [0,1]. start and end are the initial and final 
values of inertia weight respectively.  

 These proposed strategies are based on the fact that usually, 
a uniform random number does not convey much information 
about the state of the swarm and therefore cannot be assumed 
to adjust the inertia weight appropriately. However, the success 
rate of the swarm as a feedback parameter can help realize the 
state of the swarm in the search space and hence adjust the 
value of inertia weight in each iteration appropriately for better 
results. The values calculated by these strategies are always in 
the interval [0,1]. Giving below is the PSO pseudo-code of 
inertia weight adaptation using CAIWS-D and CAIWS-R. 
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Pseudo-code using CAIWS-D and CAIWS-R 
 
Begin PSO Algorithm 
Input:  f: the function to optimize 
 ps: the swarm size 
 d: the problem dimension 
Output: x*: the best fitness value found 
Initialize: xi = (xi1, …, xid) and vi = (vi1, …, vid), for all particles 
in problem space 
evaluate f(xi) in d variables and get pbesti, 

 (i = 1, …, ps)  
gbest ← best of pbesti  
While stopping criteria is false do 

succ ← 0 
Begin Loop for ps times 

Begin Loop for d times 
calculate  using (10) or (11) 
update vi for particle using (1) 
check for velocity boundaries 

End 
update xi for particle using (2) 
validate for position boundaries 

End 
If f(xi) < f(pbesti) then  

pbesti ← xi  
succ ← succ + 1 

end if 
If f(xi) < f(gbesti) then  

gbesti ← xi  
end if 
compute swarm success rate using (5) 

End while 
x* ← gbest  
Return x* 
End PSO Algorithm 

 
Fig. 3 (a) and (b) shows the change of  in CAIWS-D and 
CAIWS-R over time. Their structures reflect the rate of success 
of the particles over time. 

IV. EXPERIMENTAL SETTINGS 

The experiments were carried out in two stages. In stage 1, 
the results of CAIWS-D and CAIWS-R were compared with 
existing results in [14] while in stage 2, the method in [18], 
CDIW and CRIW were implemented and their performances 
compared with that of CAIWS-D and CAIWS-R. All 
experiments were done on a laptop computer with a 2.0GHz 
Intel Pentium dual-core processor, 2.0GB of RAM, running 
Windows Vista Home Basic. The simulation program was 
development in Microsoft Visual C# programming language, 
2008 Express Edition.  

A. Settings for stage 1of experiments 

The settings used for CDIW and CRIW in [14] were also 
used to implement CAIWS-D and CAIWS-R for the purpose 
of fairness in comparing their performances. 

Fig. 3. Changes in inertia weights of CAIWS-D and CAIWS-R 

B. Settings for stage 2 of experiments 

CAIWS-D and CAIWS-R were implemented along side 
with the method in [18]. They were subjected to the settings 
and were used to optimize the same problems in [18]. A 
method is successful if at the end of a run its mean fitness 
value is not greater than 0.01 for Sphere and Griewank 
problems and 50 for Rastrigin problem.  

Also, CAIWS-D and CAIWS-R were implemented 
together with the following four inertia weight strategies in 
[14].  

a) 5.0()5.0 +×= randtω   

b) zrandt ×+×= 5.0()5.0ω  

c) ( ) endendstartt TtT ωωωω +−−= maxmax )()(  

d) ( ) zTtT endendstartt ×+−−= ωωωω maxmax )()(  

The following nine well-known benchmark problems, which 
are extensively used in the literature for the evaluation of 
metaheuristics were used.  
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The number of variables (dimensions) for all problems was set 
to 30 because it is commonly used in literature, for example in 
[1, 6, 13, 14, 16, 18]. In all experiments, the maximum number 
of iterations and swarm size were set to 2,000 and 50 particles, 
respectively. The stop condition is reaching the maximum 
number of iterations. The values of start and end, were set to 
0.9 and 0.4, c1 and c2 were set to 2.0 as used in [14]. Vmax was 
set relative to the testing problems using 

)( minmaxmax XXV −=δ , where Xmax is the maximum value of 

the domain of X , Xmin is the minimum value of the domain of 
X ,  ∈ (0,1]  was set to 0.5 based on the findings of [19]. All 
experiments were repeated ten times. The performance of each 
method takes into account the average best solution and 
standard deviation of solution found in each run.  

V. RESULTS AND DISCUSSIONS 

The results are presented in stages in line with stages with 
which the experiments were carried out. Presented in stage 1 
is the performance between CAIWS-D and CAIWS-R with 
the results of CRIW and CDIW recorded in literature. In stage 
2, the results of def-PSO, CRIW, CDIW, CAIWS-D and 
CAIWS-R as implemented in this work are reported. 

A. Results of stage 1 of experiments 

Shown in Table I are the results of CAIWS-D and 
CAIWS-R with the results of CRIW and CDIW recorded in 
literature. From the results, the mean fitness indicates that 
CAIWS-D and CAIWS-R can get better optimum fitness 
value with preferable convergence precision and quick 
convergence speed in Schaffer f6 and Sphere problems than 
CRIW and CDIW. They also demonstrate better stability, 
robustness and global search abilities in the two problems as 
indicated by the standard deviation and success rate. But they 
lost superiority in Griewank, Rastrigin and Rosenbrock 
problems to their competitors, in every way. The reason for 
this is that CAIWS-D and CAIWS-R were not able to perform 

thorough global search during some of the runs which affected 
their overall performances. 

TABLE I.  THE MEAN, STANDARD DEVIATION AND SUCCESS RATE OF 
CDIW, CRIW, CAIWS-D AND CAIWS-R OVER 500 

INDEPENDENT RUNS  

Function Performance 
index 

Inertia Weight PSO 
Linear Decreasing Random 

CDIW CAIWS-D CRIW CAIWS-R 

Griewank 

Mean Fitness 0.014773 0.020989 0.016616 0.024682 

Standard Deviation 0.002955 0.073804 0.003323 0.075676 

Success Rate 96.2 93.4 98.2 90.8 

Rastrigin 

Mean Fitness 40.044561 61.862829 40.267957 63.740040 

Standard Deviation 8.028912 23.993071 8.053591 23.194192 

Success Rate 83.6 37.6 91.8 30.8 

Rosenbrock 

Mean Fitness 44.305058 5679.561129 37.090110 6382.479413 

Standard Deviation 8.861012 21321.202152 11.618022 22607.241308 

Success Rate 99.6 70.2 99.4 68.4 

Schaffer f6 

Mean Fitness 0.007732 0.004167 0.009211 0.004609 

Standard Deviation 0.001546 0.004803 0.001842 0.004848 

Success Rate 22 56.6 24.4 51.6 

Sphere 

Mean Fitness 0.000092 0.000000 0.000087 0.000000 

Standard Deviation 0.000016 0.000000 0.000017 0.000000 

Success Rate 100 100 100 100 

 

B. Results of stage 2 of experiments 

The performances of the method in [18], CAIWS-D and 
CAIWS-R are presented in Table II. Their comparisons are 
based on mean fitness, standard deviation, average iteration to 
reach goal and success rate. 

TABLE II.  THE MEAN, STANDARD DEVIATION AND SUCCESS RATE OF 
INERTIA WEIGHT IN [18], CAIWS-D AND CAIWS-R OVER 10 

INDEPENDENT RUNS 

Function Performance 
index 

Inertia Weight PSO 
def-PSO CAIWS-D CAIWS-R 

Griewank 

Mean Fitness 0.103337 0.007341 0.017089 

Standard Deviation 0.134860 0.022023 0.034599 

Least Iteration 129 268 219 

Worst Iteration 280 305 357 

Average Iteration 187 290 248 

Success Rate 60 90 80 

Rastrigin 

Mean Fitness 65.968908 62.484002 52.520341 

Standard Deviation 13.529611 17.666654 16.395482 

Least Iteration 388 221 122 

Worst Iteration 388 390 368 

Average Iteration 388 306 203 

Success Rate 10 20 40 

Sphere 

Mean Fitness 0.000000 0.000000 0.000000 

Standard Deviation 0.000000 0.000000 0.000000 

Least Iteration 220 408 340 

Worst Iteration 462 465 380 

Average Iteration 342 434 359 

Success Rate 100 100 100 

 
From the results in Table II, in Griewank and Rastrigin 

problems, CAIWS-D and CAIWS-R achieved better accuracy 
in mean fitness and demonstrate higher global search ability 
than def-PSO, the method in [18], despite the early 
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convergence in Griewank and better stability in Rastrigin 
demonstrated by def-PSO. For Sphere problem, the three 
methods had the same performance except that the average 
convergence speed of def-PSO is higher. Generally, the 
proposed method performed better than their competitor in 
multimodal problems.  

Table III shows the results of applying the PSO algorithm 
which implements RIW, LDIW, CRIW and CDIW with the 
proposed CAIWS-D and CAIWS-R. The results are compared 
based on the final accuracy of the averaged best solutions as 
well as standard deviation of the best solutions. The mean best 
fitness (Mean) is a measure of the precision that the algorithm 
can get within given iterations while the standard deviation 
(SD) is a measure of the algorithm's stability and robustness. 

CAIWS-R is compared with RIW and CRIW while 
CAIW-D is compared with LDIW and CDIW and then all the 
strategies are finally compared together. The bold values 
indicate the best fitness solution. The results show that 
CAIWS-R provides the best accuracy, compared with RIW 
and CRIW, in all the test problems considered except in f9 
where CAIWS-R and CRIW are at the same level of accuracy, 
stability and robustness. Also CAIWS-D provides the best 
accuracy, compared with LDIW and CDIW, in all the test 
problems considered except f2 where LDIW performs better in 
fitness accuracy, robustness and stability. Comparing all the 
strategies together, CAIWS-R performed best followed by 
CAIWS-D. What gave the proposed inertia weight strategies 
edge over the competitors is the fact that the success rate of 
the swarm serves as a feedback parameter to help provide 
information on the state of the swarm in the search space 
which helps adjust the value of the inertia weight in each 
iteration appropriately for better results.   

The convergence curves in Fig. 4 provide insight into the 
searching behaviour of the six strategies in Ackley and 
Rastrigin test problems. All methods in Fig. 4(a) have long 
periods of iterations in which the fitness is not improved much, 
except for CAIWS-D and CAIWS-R, which are more or less 
straight lines in logarithm scale for a long time. This shows 
that our proposed adaptive chaotic methods are consistent in 
their speed of convergence to the optimum and have 
outstanding performance over other strategies.   

 

 

Fig. 4. The mean of the best fitness of 10 independent runs on Ackley and 
Rastrigin test problems 

For Rastrigin problem in Fig. 4(b), the proposed methods also 
performed better than their competitors both in speed of 
convergence to the optimum and solution accuracy. What gave 
CAIWS-D and CAIWS-R superiority over their competitors is 
their adaptive nature. 

TABLE III.  THE MEAN AND STANDARD DEVIATION (SD) OF THE BEST 
FITNESS OF SIX INERTIA WEIGHT STRATEGIES ON NINE TEST 

PROBLEMS 

Function 
Random Linear Decreasing 

RIW CRIW CAIWS-R LDIW CDIW CAIWS-D 

f1 

Mean 6.0629E+00 1.3507E+00 2.0900E-14 4.0834E+00 1.9947E+00 2.2200E-14 

SD 5.7679E-01 4.2713E+00 5.2589E-15 6.5753E+00 6.3076E+00 5.4934E-15 

f2 
Mean 4.3447E+00 1.9923E-02 1.8149E-02 1.2025E-02 9.0651E+00 2.0629E-02 

SD 8.5579E-01 2.1296E-02 2.1198E-02 1.6834E-02 2.8605E+01 2.0306E-02 

f3 
Mean 4.7117E-01 1.2050E-01 1.0724E-02 2.4645E-01 3.9394E-01 7.6291E-02 

SD 5.0303E-01 2.5530E-01 3.3913E-02 3.2763E-01 3.3417E-01 2.0634E-01 

f4 
Mean 1.5158E+02 4.8236E+01 4.2587E+01 4.4912E+01 5.7018E+01 4.2966E+01 

SD 4.5464E+01 2.4039E+01 1.3163E+01 2.3827E+01 2.3984E+01 1.2981E+01 

f5 
Mean 5.6345E+04 5.6018E+03 2.9732E+02 7.2712E+04 2.7250E+04 5.7041E+01 

SD 7.2362E+04 1.7546E+04 7.7901E+02 6.9162E+04 3.8866E+04 9.5159E+01 

f6 
Mean -9.4355E+3 -9.5267E+3 -9.5888E+3 -8.6574E+3 -9.3759E+3 -9.9136E+3 

SD 8.7794E+02 8.9974E+02 6.5649E+02 5.1187E+02 8.5024E+02 3.1901E+02 

f7 
Mean 8.8935E+00 1.0000E+00 0.0 1.2000E+01 6.0000E+00 2.0000E+00 

SD 5.7282E+00 3.1623E+00 0.0 9.1894E+00 8.4327E+00 6.3246E+00 

f8 
Mean 3.7163E+02 1.1629E-08 0.0 5.4141E-12 1.0000E+03 0.0 

SD 9.5088E+01 1.3570E-08 0.0 4.5455E-12 3.1623E+03 0.0 

f9 
Mean 6.4000E+00 0.0 0.0 0.0 0.0 0.0 

SD 2.7162E+00 0.0 0.0 0.0 0.0 0.0 
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C. Searching behaviour of CAIWS-D 

In Fig. 5, the changes in success rate (SR), inertia weight 
(IW) of Griewank problem of two dimensions using 20 
particles and their relationship are shown. At the beginning, 
both SR and IW were high, however, as SR drops below 0.4, 
the IW was sustained to fluctuate between 0.7 and 0.2 
appropriate for the problem with the help of the chaos 
characteristics of the logistic mapping. 

 

Fig. 5. Changes in success rate (SR) and inertia weight (IW) of CAIWS-D 

For the purpose of convenient observation, the searching 
behaviour of the proposed algorithm with CAIWS-D for a 
group of 20 particles on a 2-dimensional Griewank problem is 
presented in Fig. 6(a) – (d). The figure represents the 
distribution of particles with different roles at the 1st, 50th, 
100th, and 150th iterations. The initial positions of the particles 
were chosen at random before the iterations began. During the 
initial iterations, relative to the feedback from the success rate 
of particles in the swarm, the particles are in the state of 
exploration as shown, for example, in Fig. 6(a). As the 
iterations increases, the algorithm begins to exploit around the 
near optimal solution discovered during the exploration stage 
as shown, for example, in Fig. 6(d). 

 

 

 

 

 

 

 

 

Fig. 6. 3D  pictures (a) – (d) of CAIWS-D for 2-dimensional Griewank 
problem with 20 particles 

VI. CONCLUSIONS 

In this paper, the performance of the PSO algorithm with 
two (2) adaptive chaotic inertia weights based on chaotic 
movement and swarm success rate of particles were proposed 
and investigated. Their results and performances were 
extensively compared with those of five (5) existing inertia 
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weight strategies (RIW, LDIW, CRIW, CDIW and the inertia 
weight based on decreasing exponential function) recorded in 
literature, through experimental studies using some nonlinear 
problems well studied in the literature. Experiment results 
show that the two proposed inertia weight strategies, CAIWS-
R and CAIWS-D, can further improve the performance PSO 
algorithm in terms of convergence speed and accuracy as well 
as global search ability because of their chaotic characteristics 
and adaptive nature provided by the swarm success rate which 
helped in providing information about the state of the swarm in 
the search space to adjust the value of inertia weight in each 
iteration appropriately for better results.  

The swarm success rate could be a very useful tool for 
enhancing the performances of any swarm-based optimization 
algorithms as a result of the useful information about the 
particles in the search space it provides, thus its potentiality 
should be further explored. 

Future research will focus on improving on the global 
search ability, stability and robustness of the proposed methods 
and then be subjected to comparisons with other adaptive 
inertia weight strategies. They shall also be applied to solve 
problems with higher dimensionality and some real-world 
problems. 
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Abstract 

 

Inertia weight is one of the control parameters that influence the performance of Particle Swarm Optimization 

(PSO) in course of solving global optimization problems, by striking a balance between exploration and 

exploitation. Among many inertia weight strategies that have been proposed in literature include Chaotic 

descending inertia weight (CDIW) and chaotic random inertia weight (CRIW). These two strategies have been 

claimed to perform better than Linear descending inertia weight (LDIW) and Random inertia weight (RIW) PSO 

variants respectively. Despite these successes, a closer look at their results reveals that the common problem of 

premature convergence associated with PSO algorithm still lingers. Motivated by the better performances of 

CDIW and CRIW, this paper proposed two new inertia weight strategies namely: Swarm success rate 

descending inertia weight (SSRDIW) and Swarm success rate random inertia weight (SSRRIW). These two 

strategies use swarm success rate as feedback parameter. Efforts were made using the proposed inertia weight 

strategies with PSO to further improve the effectiveness of the algorithm in terms of convergence speed, global 

search ability and increased solution accuracy. The proposed PSO variants, SSRDIWPSO and SSRRIWPSO were 

validated using several benchmark unconstrained global optimization test problems and their performances 

compared with LDIW-PSO, CDIW-PSO, RIW-PSO, CRIW-PSO, and some other existing PSO variants. 

Empirical results showed that the proposed variants are more efficient.  

 

Keywords: Particle swarm optimization, Success rate, chaos, Inertia weights, Global optimization 

1. Introduction 
Generally, optimization problems involve how to select the best course of action among many others, given 

some restrictions. Optimization problems typically have three fundamental elements – objective function, 

decision variables, and constraints. Objective function is (in many cases) a single numerical quantity that is to be 

optimized (maximized or minimized). Decision variables are quantities whose values can be manipulated in 

order to optimize the objective. Constraints are restrictions on the values that the decision variables can take. A 

global optimization problem can be generally represented in the following way: 

Optimize ����� 
subject to ������ 		 	0	

where �� � ���, ��, … , ��� is the decision variable in ��, f:�� → � is the objective function and ��: �� → �, j 

=1, 2, …, m the constraint functions. 

The goal of any optimization problem is to maximize or minimize an objective function. Solution ��∗ is a global 

minimizer of ����� if and only if  ����∗� 	 ����� for all ��∗ in the domain of �����. But it is global maximizer of ����� if and only if  ����∗� � ����� for all ��∗ in the domain of �����. Optimization problems are often multi-

modal (non-convex); that is, they possess multiple good solutions and proffering solutions to such problems is 

the subject matter of global optimization. The proffered solutions could all be globally good (same cost function 

value) or there could be a mix of globally good and locally good solutions.  

Swarm intelligence is one of the classes of nature-inspired metaheuristics that has been used to provide (near) 

optimal solutions to many complex optimization problems, over the years. The goal of swarm intelligence is the 

design of intelligent multi-agent systems by taking inspiration from the collective behavior of social organisms. 

A popular member of swarm intelligence metaheuristcs is PSO. The notion of PSO originated from the 
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behaviour of a group of birds which coordinates itself, with some degree of randomness, in order to achieve an 

objective. The idea of PSO was transferred to optimization by Eberhart and Kennedy in 1995 [3], where each 

particle (bird) uses its personal experience and that of its neighbours to decide on its own movement from one 

point to the other, resulting to adaptive swarm emergent behaviour. 

 

Many variants of PSO that exist in literature include [2, 5-7, 9, 12-15, 21, 25]. These variants emanated as a 

result of the desires by researchers to improve on the performance of PSO technique. Among these variants are 

LDIW-PSO [22-24], RIW-PSO [4], CDIW-PSO and CRIW-PSO [5], dynamic adaptive PSO (DAPSO) [21] and 

natural exponential (base e) PSOs (e1-PSO and e2-PSO) [2]. In this paper, some efforts were made using the 

proposed inertia weight strategies to further improve the effectiveness of PSO technique in terms of 

convergence speed, global search ability and increased solution accuracy. The paper focuses on the inertia 

weight strategy of PSO to study the effect of swarm success rate as feedback parameter compared to non-

feedback chaotic values in the inertia weight formula. Empirical results from numerical experiments performed 

showed that the proposed PSO variants are very efficient.   

 

The remaining part of this paper is organized in five major sections. Section 2 summarized the inertia weight 

PSO technique. Section 3 reviewed the PSO variants that were experimentally compared with the proposed 

variants. Section 4 described the proposed PSO variants while the numerical simulations were carried out in 

Section 5. Conclusion of the paper is in Section 6. 

2. Inertia weight PSO 
PSO technique is population-based, adaptive and stochastic in nature. It has a wide range of applications in 

different fields including economics, engineering, industry, biology and many other complex real world 

optimization problems [10, 16, 19]. In PSO, a swarm of particles (set of solutions) is randomly positioned in the 

search space and the quality of each particle is determined by the value of the objective function associated with 

the problem being optimized. Each particle knows its own best solution and the best solution of the whole 

swarm and a single population is often maintained but is adjusted in response to new discoveries about the 

solution space.  

 

To implement PSO involves manipulating about eight different parameters which are particle swarm size, 

problem dimensionality, particle velocity, inertia weight, particle velocity limits, cognitive learning rate, social 

learning rate and the random factors. However, the number of parameters needed depends on the PSO variants 

being implemented. These parameters collectively help the algorithm in the course of optimizing a given 

problem. Among these parameters, the inertia weight (ω) have attracted much attentions of researchers because 

of the common belief that it helps in balancing the local and global search of PSO algorithm during the 

optimization process [20, 22, 26]. Despite the significant and prominent role of inertia weight, it needs the 

support of other parameters to function effectively [8, 26]. 

 

The inertia weight PSO consists of three steps, generating initial positions and velocities for particles, updating 

the velocities of particles and updating the positions of particles. Each particle in the swarm is made up of two 

major n-dimension vectors, Xi = (xi1, …, xin) represents the position and Vi = (vi1, …, vin) represent the velocity of 

particle i. When the technique is being implemented, the particles move around while adjusting their velocities 

and positions according to equations (1) and (2), in the search space in search for optimum solution to the 

problem being optimized. 
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where, c1 and c2 are acceleration constants also known as cognitive and social scaling parameters that determine 

the magnitude of the random forces in the direction of PB (particle’s previous best) and GB (global best); r1 and 

r2 are random numbers between 0 and 1; k is iteration index and ω is inertia weight. The original PSO algorithm 

[3] uses the values of 1.0, 2.0 and 2.0 for ω, c1 and c2 respectively. The positions of the particles are controlled 

to be within the solution search space while their velocities are clamped within some specified maximum 

velocity bounds.  
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3. A review of the PSO variants adopted for comparison 
In this section, all the PSO variants considered for comparison with the variants proposed in this paper are 

reviewed and discussed. These variants are LDIW-PSO, CDIW-PSO, RIW-PSO, CRIW-PSO, e1-PSO, e2-PSO 

and DAPSO. 

3.1. Linear decreasing inertia weight PSO (LDIW-PSO) 

LDIW-PSO is a variant of PSO which implements the linear descending (or decreasing) inertia weight strategy. 

The introduction of linearly decreasing inertia weight into the inertia weight PSO greatly improved the 

algorithm. This was ascertained through experimental studies by [23, 24]. In this variant, the inertia weight 

starts with some large initial value and then linearly decreases to some smaller final value with the belief that a 

large inertia weight facilitates a global search while a small inertia weight facilitates a local search. The 

commonly used initial and final values are 0.9 and 0.4 [2, 5, 15]. However, there are cases where values other 

than 0.9 or 0.4 are used [12, 13, 21]. With these values, the inertia weight could be seen as the fluidity of the 

medium in which a particle travels [20]; high initial value makes particles travel in a low viscosity medium, 

which favours exploration while lower inertia value makes the particle moves in a high viscosity medium 

favouring exploitation. However, using the linearly decreasing inertia weight makes PSO become victim of 

premature convergence, despite its quick convergence towards the optimal positions at the beginning [23]. 

Many attempts have been made to improvement on LDIW-PSO [4, 5, 9, 25, 26]. Equation (3) shows the LDIW 

strategy. 

�� � ������� �	����� �� �! � "� �! # $ ���� (3) 

where ωstart and ωend are the initial and final values of inertia weight, t is the current iteration number, Tmax is 

the maximum iteration number and ωt ∈ [0,1] is the inertia weight value in the t
th
 iteration. 

3.2. Chaotic descending inertia weight PSO (CDIW-PSO) 

Utilizing the merits of chaotic optimization, CDIW-PSO was proposed by [5] based on logistic mapping in 

equation (4). Chaos is a nonlinear dynamic system which is sensitive to the initial value. It has the characteristic 

of ergodicity and stochastic property. The goal was to address the problem of premature convergence associated 

with LDIW-PSO. Equation (5) represents the chaotic descending inertia weight.  %&'� � ( ) %& ) �1 � %&� (4) 

where µ = 4 and zk is the kth chaotic number. The map generates values between 0 and 1, provided that the initial 

value z0 ∈ (0,1) and that z0 ∉ (0.0, 0.25, 0.5, 0.75, 1.0).  

�� � ������� �	����� �� �! � "� �! # $ ���� ) %&'� (5) 

where ωstart and ωend are as defined above. CDIW-PSO demonstrated better convergence precision, quick 

convergence velocity, and better global search ability compared with LDIW-PSO [5]. 

3.3. Random inertia weight PSO (RIW-PSO) 

In [4], randomness was introduced into the inertia weight strategy in PSO. Using particle swarms to track and 

optimize dynamic systems, a new way of calculating the inertia weight value was proposed as shown in 

equation (6). The formula produces a number randomly varying between 0.5 and 1.0, with a mean value of 0.75 

while c1 and c2 = 1.494. 

�� � 0.5 $ -./0��2  
(6) 

As a result of the difficulty in predicting whether exploration (a larger inertia weight value) or exploitation (a 

smaller inertia weight) will be better at any given time in tracking a nonlinear dynamic system, the strategy in 

equation (6) was introduced to address the inefficiency of linearly decreasing inertia weight, which decreases 

from 0.9 to 0.4 during a run, in handling such a problem.  

3.4. Chaotic random inertia weight PSO (CRIW-PSO) 

The chaotic random inertia weight (CRIW) was proposed in [5] as shown in equation (7). The aim was to 

improve on the random inertia weight in equation (6) using logistic map in equation (4), to avoid getting into 

local optimum in searching process by utilizing the merits of chaotic optimization.  
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�� � -./0��2 $ 0.5 ) %&'� (7) 

where rand() is a uniform random number in [0,1] The results in [5] show that the PSO had preferable 

convergence precision, quick convergence velocity, and better global search ability. This is because, due to non-

repetition of chaos the algorithm could carry out overall searches at higher speed and diversify the particles and 

improves the algorithm's performance in preventing premature convergence too quickly to local minima 

compared with RIW which have no chaos characteristics. 

3.5. Dynamic adaptive particle swarm optimization (DAPSO) 

This variant was proposed by [21] to solve the PSO premature convergence problem associated with 
typical multi-peak, high dimensional function optimization problems and improve its global optimum 

convergence speed. So as to achieve this goal, a dynamic adaptive strategy was introduced into the 
variant to adjust the inertia weight value based on the current swarm diversity. Experimental results 
showed evidences that DAPSO performed better than LDIW-PSO. The inertia weight formula that was 
used is represented in equation (8). �� � � 2� $ �� �! �� 2�� ) 3� ) 4�  (8) 

where ωmin and ωmax are the minimum and maximum inertia weight values, t is the current number of iterations, 

the diversity function Ft and adjustment function ϕt, both in the tth iteration are represented in equations (9) and 

(10) respectively. 

3� � 1 � 25 .-6	tan	�:� (9) 

where E is the group fitness as shown in equation (11). 4� � ;<=�> ��?>�⁄ A (10) 

where, B � CD and T is the total number of iterations. 

: � 1EF<���2� � ��GHA�I
2J�  (11) 

Where N is the swarm size, f(xi) is the fitness of particle i and favg represented in equation (12) is the current 

average fitness of the swarm. 

��GH � 1EF���2�I
2J�  (12) 

3.6. Natural exponential inertia weight PSO  

Based on the idea of decreasing inertia weight strategy, [2] proposed two inertia weight strategies of natural 

exponential functions, e1-PSO and e2-PSO represented by equations (13) and (14) respectively. Based on the 

experimental settings in [2], these inertia weight strategies were proved to converge faster than LDIW-PSO 

during the early stage of the search process. Besides, they were also claimed to have performed better in most of 

the continuous optimization problems that were solved. 

�� � 		� 2� $ �� �! � � 2��;=K �LMNOPCQR�S TU
 

(13) 

�� � 		� 2� $ �� �! � � 2��;=K �LMNOPCQRV TU
>
 

(14) 

where, t is the current iteration number and MAXITER is the maximum allowed number of iterations. 

3.7. Discussions 

The inertia weight PSO is generally not difficult to implement and it is fast in convergence. Looking at the 

variants described above, they all tried to address the problem of getting stuck in local optima associated with 

PSO. They are basically of two groups – randomly and linearly inclined, though with some infusion of chaotic 
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and swarm variance into some of them for enhancement. For the randomly-inclined inertia weight strategies, 

they are more or less purely controlled by randomly (or chaotic) generated numbers while the linearly-inclined 

strategies are controlled by the iteration number of the algorithm; and none of them has any information about 

the state of the swarm in the search space which could influence the nature of search for optimal solution by the 

swarm. Besides, the linearly directed strategies have the initial and final values of the inertia weight fixed, 

thereby ruling out the flexibility of obtaining some lower or higher values for the inertia weight that could help 

the algorithm obtain some good optima results. Therefore, it is of utmost importance that some means be 

devised to help reaslise the state of the swarm in the search space as well as create some flexibility in either of 

the limits of the inertia weight with the belief that this could help the algorithm obtain some better results.  

4. Proposed PSO variants 
One of the major goals of this work is to enhance the performance of the inertia weight PSO. In achieving this, 

the following 3 definitions are given: 

 

Definition 1: Given that the current position of particle i at iteration t is WX;Y"�2  and the function to be optimized 

as f( ). The success of particle i at iteration t, in a minimization problem, is defined in equation (15). 

YZ66�2 � [1 , \�	��WX;Y"�2� ] ��WX;Y"�=�2 �0 , \�	��WX;Y"�2� � ��WX;Y"�=�2 � (15) 

Definition 2: Given a swarm of particles of size n and the success of each particle at iteration t to be YZ66�2 . The 

swarm success rate (ssr) at iteration t is defined as shown in equation (16). 

YY-� � ∑ YZ66�2�2 /  (16) 

From definition 2, ssrt ∈[0,1]. Where no particle succeeds to improve its fitness, ssrt is set to 0; where all 

the particles succeed in improving their individual fitness, it is set to 1. Therefore ssrt reflects the state of the 

swarm and can serve as a feedback parameter to the PSO algorithm to determine the inertia weight at the tth 

iteration. 

Definition 3: Given ωmin and ωmax as the minimum and maximum inertia weight values, Tmax as the maximum 

iteration number and t as the current iteration of the algorithm, the two proposed inertia weight strategies 

SSRDIWPSO  and SSRRIWPSO, are defined by equations  (17) and (18) respectively. 

�� � ������� �	����� �� �! � "� �! # $ ���� ) YY-�=� (17) 

�� � 0.5 ) -./0�� $ 0.5 ) YY-�=� (18 ) 

where, YY-�=�is the swarm success rate at the previous iteration which adaptively determine the lower limit of 

the range of inertia weight values. This was made so because, having a fixed final inertia weight value (i.e., ωend 

and 0.5) could limit the flexibility of the inertia weight strategy obtaining some possible lower or higher values 

around ωend and 0.5 that could contribute to its effectiveness. Besides, the algorithms could perform better if 

there is a way the state of the swarm in the search space could be fed back into the system. Thus, YY-�=� as a 
feedback parameter could help realize the state of the swarm in the search space and hence adjust the value of 

inertia weight at each iteration appropriately for better results. Among the goals of this paper is to further 

improve on the performances of LDIW-PSO and RIW-PSO using this idea and then verify the superiorities of 

the proposed variants in comparison with CDIW-PSO, CRIW and some other existing PSO variants. Figure 1 

shows the algorithm for the proposed variants. 

 

5. Numerical simulations 
To validate the performance of the proposed PSO variants, four different experiments were performed for the 

purpose of detailed comparison of SSRDIWPSO and SSRRIWPSO with seven other different PSO variants 

namely,  LDIW-PSO, RIW-PSO, CDIW-PSO, CRIW-PSO, DAPSO, e1-PSO and e2-PSO. Different 

experiments, relative to the competing PSO variants, used different set of test problems which were also used to 

test the proposed variants. The program was developed with Window-based Microsoft Visual C# programming 

language, running on a system with a 2.0GHz Intel Pentium dual-core processor, 2.0GB of RAM. 
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5.1. Benchmark problems 

Different test problems with varied difficulties were used to verify the performance of the proposed variants. 

Descriptions of all the test problems, with some additional information found in [11, 17, 18, 27, 28], are given in 

Appendix I. Shown in Tables 1 and 2 are the names, search ranges, optimum values, dimensions and 

characteristics (US – unimodal separable, UN – unimodal non-separable, MS – multimodal separable, MN – 

multimodal non-separable) of the respective test problems. 

 

5.2. Settings of the experiment 

The settings of the different experiments performed for the comparisons are described below one after the other. 

In experiments 1 – 3, SSRDIWPSO and SSRDIWPSO were subjected to the same settings of its competitors as 

recorded in literature [2, 5, 21]. All experiments were made to run for the maximum number of iterations which 

serves as the stopping criteria for all the algorithms. In all the experiments in this paper, the initial positions of 

particles were generated using uniform random number generator. 

 

5.2.1. Experiment 1 

In this experiment SSRDIWPSO and SSRDIWPSO were respectively compared with the two PSO variants, CDIW-

PSO and CRIW-PSO adopted from [5]. The test problems used were Griewank, Rastrigin, Rosenbrock, 

Schaffer's f6 and Sphere problems as shown in Table 1. The problems dimensions and stopping criteria are 

stated in Table 3. The maximum numbers of iterations was set to 1500 with swarm size of 20 and the 

experiment was repeated 500 times for each test problem. All these settings were adopted from [5]. The goal of 

this experiment was to verify whether the proposed variants are more efficient than their competitors. 

 

5.2.2. Experiment 2 

In this experiment, another settings used for e1-PSO and e2-PSO in [2] were adopted. Apart from the parameter 

Vmax set to be 0.05Xmax for SSRDIWPSO and SSRDIWPSO, all other settings remain the same. The performances 

of the proposed variants were compared with that of e1-PSO and e2-PSO. The test problems used were 

Griewank, Rastrigin, Rosenbrock and Sphere problems as shown in Table 1. The problems dimensions and 

stopping criteria are stated in Table 4. The maximum numbers of iterations was set to 3000 with swarm size of 

30 and the experiment was repeated 50 times for each of the test problems. These settings were adopted from 

[2].  

  

5.2.3. Experiment 3 

In this experiment, SSRDIWPSO and SSRDIWPSO were further tested by subjecting them to different settings 

used for DAPSO in [21]. The test problems used were Ackley, Griewank and Rastrigin problems. The problems 

dimensions and search ranges are stated in Table 5. The maximum numbers of iterations was set to 3000 with 

swarm size of 30 and the experiment was repeated 50 times for each of the test problems. All settings were 

adopted from [21].   

 

5.2.4. Experiment 4 

After the preceding experiments, SSRDIWPSO, SSRDIWPSO, LDIW-PSO, RIW-PSO, CDIW-PSO and CRIW-

PSO were subjected to the same experimental settings to optimize 12 test problems. Subjecting the variants to 

the same experimental settings gives each of them equal opportunity of performance.  

 

A common platform of test problems, search ranges, dimensions and success criteria, all shown in Tables 7 and 

8, was set for all the competing variants to test their respective performance. Table 7 contains 6 high-scaled 

benchmark test problems while Table 8 contains 6 low-scaled benchmark test problems. The swarm size was set 

to 20 and 30; maximum allowed number of iterations was 1000, 3000 and 5000 for three respective different 

problem dimensions of 10, 30 and 50. A maximum iteration of 1000 was used for the low-scaled problems. The 

experiment was repeated 100 times for each of the test problems. In the experiment, c1 = c2 = 2.0, ωmax = 0.9, 

ωmin = 0.4.  

 

For the purpose of fair comparison, an experiment was conducted to obtain a suitable setting for Vmin and Vmax 

for CDIW-PSO, CRIW-PSO, LDIW-PSO and RIW-PSO. The experiment tested these four variants with Vmin = 

Xmin and Vmax = Xmax on the one hand and Vmin = 0.05Xmin and Vmax = 0.05Xmax on the other. Ackley, Griewank, 

Rastrigin and Rosenbrock problems were used with 20 particles and maximum iteration of 3000. The 

experiment was repeated 100 times. Presented in Table 6 are the results obtained from the experiment, showing 

the mean best fitness for all the problems as obtained by the four PSO variants. 
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From the results in Table 6, it was discovered that CDIW-PSO, CRIW-PSO, LDIW-PSO and RIW-PSO 

performed very well using Vmin = 0.05Xmin and Vmax = 0.05Xmax compared with Vmin = Xmin and Vmax = Xmax. 

Therefore, the particle velocity bounds that were used in this experiment 4 for all the competing variants was 

Vmin = 0.05Xmin and Vmax = 0.05Xmax. 

 

 

5.3. Comparative study and Discussions 

In this sub-section results obtained from all the experiments are presented and discussed. The results were 

compared based on the final accuracy of the mean best solutions (Mean fitness), convergence speed, standard 

deviation (Std. Dev.) and success rate (SR).The mean best fitness (solution) is a measure of the precision that 

the algorithm can get within given iterations while the standard deviation is a measure of the algorithm's 

stability and robustness and success rate is the rate of the optimum fitness result in the criterion range 

experimenting a number times independently.   

 

Presented in Tables 9 – 31 are the results obtained for all the experiments. The results for all the competing PSO 

variants for experiments 1 – 3 were obtained from the respective referenced papers and they are presented here 

the way they were recorded. Thus, the recording of the results for SSRDIWPSO and SSRRIWPSO were patterned 

after them. In each of the tables, bold values represent the best results. 

 

5.3.1. Results for Experiment 1 

The results for CDIW-PSO were adopted from [5]. The results in Table 9 clearly reveal a great difference in 

performance between SSRDIWPSO and CDIW-PSO. The results are compared based on the final accuracy of the 

averaged best solutions and success rate (SR%). In all the test problems, the result indicates that SSRDIWPSO 

can get better optimum fitness results, showing better convergence precision. Besides, SSRDIWPSO has better 

global search ability and could easily get out of local optima than CDIW-PSO. 

 

Table 10 compares the performances SSRRIWPSO and CRIW-PSO. The results for CRIW-PSO were adopted 

from [5]. The results are also compared based on the final accuracy of the averaged best solutions and success 

rate (SR%). The results show that in all the test problems, SSRRIWPSO can get better optimum fitness results, 

showing better convergence precision. However, there are some differences in their global search abilities in 

favour of CRIW-PSO in Griewank and Rosenbrock problems with slight differences. But SSRRIWPSO has better 

global search ability in Rastrigin and Schaffer's f6 problems with high differences. 

 

5.3.2. Results for Experiment 2 

In Tables 11 and 12, SSRDIWPSO and SSRRIWPSO are compared together with e1-PSO and e2-PSO based on 

their final accuracies of the averaged best solutions and number of trials that successfully reached the stopping 

criteria. The results for e1-PSO and e2-PSO were adopted from [2]. In all the test problems, SSRDIWPSO and 

SSRRIWPSO outperformed e1-PSO as well as e2-PSO. They got better optimum fitness results, demonstrated 

better convergence precision global search ability showing that they could easily get out of local optima than 

their competitors. However, e1-PSO was three trials higher in reaching the stopping criteria for Rosenbrock 

problem. 

 

 

5.3.3. Results for Experiment 3 

The results for DAPSO were obtained from [21]. As shown in Table 13, these results were compared with those 

of SSRDIWPSO and SSRRIWPSO based on the final accuracy of the respective mean best solutions across the 

different problems dimensions. In all the problems and dimensions, SSRDIWPSO and SSRRIWPSO outperformed 

DAPSO in getting better fitness quality and precision. This is a clear indication that in both global search ability 

and not easily getting trapped in local optima, SSRDIWPSO and SSRRIWPSO are superior to DAPSO. Generally, 

SSRRIWPSO performed better than SSRDIWPSO. 

 

5.3.4. Results for Experiment 4 

In this sub-section an in-depth empirical and comparison studies were carried out based on the obtained results 

from experiment 4, to find which variants among SSRDIWPSO, LDIW-PSO and CDIW-PSO on the one hand 

and SSRRIWPSO, RIW-PSO and CRIW-PSO on the other hand, could obtain outstanding results with the intent 

of validating the performances of the two proposed inertia weight strategies when used with the inertia weight 

PSO algorithm.  
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5.3.4.1. Comparison of SSRDIWPSO, CDIW-PSO and LDIW-PSO using the high-scaled test problems 

 

Tables 14 – 19 show all the results of all the variants for six high-scaled problems using two different swarm 

sizes (20 and 30) and three different problems dimensions (10, 30 and 50). When the dimension was set to 10 

for all the problems (Tables 14a, 14b, 15a and 15b), SSRDIWPSO obtained better optimal results for all the 

problems, except Rosenbrock when swarm size was 20 and Rastrigin when  swarm size was 30, that CDIW-

PSO had better optimal results. Though, LDIW-PSO was able to get good results but could not perform better 

that the others. 

 

When the dimension was set to 30 for all the problems (Tables 16a, 16b, 17a and 17b), SSRDIWPSO also 

obtained better optimal results for all the problems, except Ackley when swarm size was 20 and  Rosenbrock 

when swarm size was 30, where CDIW-PSO had better optimal results and Rastrigin when swarm size was 30, 

where LDIW-PSO had better optimal result. 

 

With the dimension set to 50 for all the problems (Tables 18a, 18b, 19a and 19b), SSRDIWPSO could only obtain 

better optimal results in Rastrigin, Schwefel P2.22 and Sphere problems while CDIW-PSO performed better in 

Ackley and Griewank problems and LDIW-PSO in Rosenbrock when swarm size was 20.  When swarm size was 

30, SSRDIWPSO took lead in Ackley, Schwefel P2.22 and Sphere problems while CDIW-PSO took lead in 

Rastrigin and Rosenbrock, but LDIW-PSO in Griewank.  

 

 

Table 20 gives the summarized of the average performance ranking in terms of mean best fitness for LDIW-

PSO, CDIW-PSO and SSRDIWPSO across all the swarm sizes and problems dimensions for the test problems. 

From the table, SSRDIWPSO had the best overall performance compared with its competitors when the problems 

dimensions were set to 10 and 30, but CRIW-PSO slightly performed better than SSRDIWPSO when the 

problems dimension was 50. RIW-PSO had  the least performance. 

 

Figure 2 below shows the convergence curves and the searching behaviour of SSRDIWPSO compared with 

CDIW-PSO and LDIW-PSO in all the six high-scaled test problems with swarm size of 20 and a dimension of 

30. Apart from Ackley problem, SSRDIWPSO was consistent in demonstrating better convergence and obtaining 

better quality results than other variants in all other test problems. 

 

5.3.4.2. Comparison of SSRRIWPSO, CRIW-PSO and RIW-PSO using the high-scaled test problems 

 

Tables 21 – 26 show all results for the variants for six scalable problems using two different swarm sizes and 

three different problems dimensions. When the dimension was set to 10 for all the problems (Tables 21a, 21b, 

22a and 22b), SSRRIWPSO obtained better optimal results for all the problems, except Griewank and Rosenbrock 

when swarm size was 20 and Rastrigin when  swarm size was 30, that CRIW-PSO had better optimal results.  

 

When the dimension was set to 30 for all the problems (Tables 23a, 23b, 24a and 24b), SSRRIWPSO also 

obtained better optimal results for all the problems, except Ackley when swarm size was 20 and  Rastrigin when 

swarm size was 30, where CRIW-PSO had better optimal results.  

 

With the dimension set to 50 for all the problems (Tables 25a, 25b, 26a and 26b), SSRRIWPSO still obtained 

better optimal results for all the problems, except Ackley when swarm size was 20 and 30 where CRIW-PSO 

performed better. 

 

Table 27 summarizes the average performance ranking in terms of mean best fitness for RIW-PSO, CRIW-PSO 

and SSRRIWPSO across all the swarm sizes and problems dimensions for the test problems. From the table, 

SSRRIWPSO had the best overall performance compared with its competitors in all the test problems, followed 

by CRIW-PSO. RIW-PSO performed the least. 
 

Figure 3 shows the convergence curves and the searching behaviour of SSRRIWPSO compared with CRIW-PSO 

and RIW-PSO in all the six high-scaled test problems with swarm size of 20 and a dimension of 30. Apart from 

Ackley problem, SSRRIWPSO was consistent in demonstrating better convergence and obtaining better quality 

results than other variants in all other test problems. 
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5.3.4.3. Comparison of SSRDIWPSO, CDIW-PSO and LDIW-PSO using the low-scaled test problems 

 

Tables 28 and 29 show all results for the variants for six low-scaled problems using two different swarm sizes. 

When the swarm size was set to both 20 and 30 for all the problems (Tables 28a, 28b, 29a and 29b), all the 

variants almost performed equally except in Michalewicz where SSRDIWPSO obtained better optimal result than 

others and Schaffer's f6 where LDIW-PSO had better optimal result.  

 

Figure 4 shows the convergence curves and the searching behaviour of SSRDIWPSO compared with CDIW-PSO 

and LDIW-PSO in 4 of the six low-scaled test problems with swarm size of 20. SSRDIWPSO was consistent in 

its speed of convergence in Booth to obtain the optimum earlier than others. It also performed better in 

Michalewicz than others. However, LDIW-PSO had a better convergence speed at the later stage with better 

search ability to obtain high quality result in Schaffer's f6 than others but of the same convergence speed with 

SSRDIWPSO in Shurbert. SSRDIWPSO was able to recover from being trapped very close to the optimum. 

 

 

5.3.4.4. Comparison of SSRRIWPSO, CRIW-PSO and RIW-PSO using the low-scaled test problems 

 

Tables 30 and 31 show all results for the variants for six low-scaled problems using two different swarm sizes. 

When the swarm size was set to both 20 and 30, SSRRIWPSO obtained better optimal result in Michalewicz 

while RIW-PSO had better optimal result in Schaffer's f6. RIW-PSO and CRIW-PSO had equal performance in 

Shubert.  

 

The convergence curves in Figure 5 provide insight into the searching behaviour of the competing variants in 4 

of the six low-scaled test problems with swarm size of 20. It is clearly shown that SSRRIWPSO was consistent in 

its speed of convergence in Booth to obtain the optimum earlier than others. It also performed better in 

Michalewicz than others. However, RIW-PSO had a better convergence speed at the later stage with better 

search ability to obtain high quality result in Schaffer's f6 than others but of the same convergence speed with 

CRIW-PSO in Shubert. 

 

6. Conclusion 
Motivated by CDIW and CRIW, in this paper two inertia weight strategies, SSRDIW and SSRRIW, have been 

introduced into the inertia weight PSO thereby leading to proposing two PSO variants, SSRDIWPSO and 

SSRDIWPSO. To verify whether these variants were as efficient as some of the existing PSO variants, the 

performance of SSRDIWPSO was extensively compared with those of LDIW-PSO and CDIW-PSO while that of 

SSRDIWPSO with those of RIW-PSO and CRIW-PSO through experimental studies of some nonlinear functions 

well studied in the literature. From the experiments conducted, results show that SSRDIW and SSRRIW are 

more efficient and robust than their competitors in high-scaled problems than in low-scaled. The proposed 

variants were also compared with e1-PSO, e2-PSO and DAPSO and it was discovered that they were also more 

efficient and robust. In all, the proposed inertia weight strategies have greatly improved the robustness, accuracy 

and convergent speed of the inertial weight PSO. These proposed variants are based on the fact that usually, a 

uniform random number does not convey much information about the state of the swarm and therefore cannot 

be assumed to adjust the inertia weight appropriately. The better performances of the proposed variants was as 

result of the fact that, the swarm success rate which served as a feedback parameter helped in realizing the state 

of the swarm in the search space and hence adjusted the value of inertia weight in each iteration appropriately 

for better results.  Finally, there is room for further studies on the proposed PSO variants especially in applying 

them to constrained global optimization problems as well as real-world optimization problems. 
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Table 1: High-scaled benchmark problems 

Test problem Ackley  Griewank  Rastrigin  Rosenbrock Schwefel2.22 Sphere  

Optimum  0 0 0 0 0 0 

Characteristics MN MN MS UN UN US 

 

Table 2: Low-scaled benchmark problems 

Test problem Booth Esom Michalewicz5 Schaffer  Shubert Trid6 

Optimum 0 -1 -4.6877 0 -186.73 -50 

Characteristics MS UN MS MN MN UN 

 

Table 3: Settings for experiment 1 

Test problem Griewank Rastrigin  Rosenbrock Schaffer's f6 Sphere  

Dimension 30 30 30 2 30 

Search range ±600 ±30 ±30 ±100 ±100 

Criteria 0.05 50.0 100.0 0.00001 0.01 

 

Table 4: Settings for experiment 2 

Test problem Griewank  Rastrigin  Rosenbrock  Sphere  

Dimension 30 30 30 30 

Search range ±600 ±10 ±100 ±100 

Criteria 0.02 50.0 50.0 10-10 

 

Table 5: Settings for experiment 3 

Test problem Ackley Griewank  Rastrigin  

Dimension 20, 30, 40 and 50 for all problems 

Search range ±32 ±600 ±5.12 

 

Table 6:  Mean best fitness to determine better Vmax for the PSO variants 

Problem 
LDIW-PSO RIW-PSO CDIW-PSO CRIW-PSO 

Vmax = Xmax Vmax = 0.05Xmax Vmax = Xmax Vmax = 0.05Xmax Vmax = Xmax Vmax = 0.05Xmax Vmax = Xmax Vmax = 0.05Xmax 

Ackley 4.4697e+00 1.8661e-09 7.2254e+00 2.9080e-01 1.6826e+00 2.4425e-14 9.5966e-01 1.0022e-11 

Griewank 9.9348e+00 1.4810e-02 1.1114e+01 8.5596e-01 9.0377e+00 1.3234e-02 9.1751e-01 1.4164e-02 

Rastrigin 9.5103e+01 3.2638e+01 1.7412e+02 3.3576e+01 7.8947e+01 3.4617e+01 6.2993e+01 3.3573e+01 

Rosenbrock 3.0349e+04 2.9721e+01 9.2522e+04 7.6139e+01 1.3009e+04 3.1915e+01 6.7331e+03 3.2548e+01 

 

Table 7: Scalable benchmark problems 

Test problem Ackley  Griewank  Rastrigin  Rosenbrock  Schwefel2.22 Sphere  

Search Range ±30 ±600 ±5.12 ±30 ±10 ±100 

Dimension Different dimensions – 10, 30 and 50 were used for each of the problems 

Criteria 0.001 0.05 50 50 0.001 0.001 

 

Table 8: Non-scalable benchmark problems 

Test problem Booth Esom Michalewicz5 Schaffer  Shubert Trid6 

Search Range ±10 ±100 [0,π] ±100 ±10 ±36 

Dimension 2 2 5 2 2 6 

Criteria 0.00001 -0.999 -4.687 0.00001 -186.729 -49.999 
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Table 9: Experimental results for SSRDIWPSO compared with CDIW-PSO 

 
Griewank Rastrigin Rosenbrock Schaffer's f6 Sphere 

CDIW-PSO SSRDIWPSO CDIW-PSO SSRDIWPSO CDIW-PSO SSRDIWPSO CDIW-PSO SSRDIWPSO CDIW-PSO SSRDIWPSO 

Mean fitness 0.014773 0.012153 40.044561 33.053889 44.305058 31.768752 0.007732 0.005106 0.000092 0.000000 

Std. Dev. 0.002959 0.015943 8.028912 10.700165 8.861012 21.221641 0.001546 0.004846 0.000016 0.000000 

SR (%) 96.2 97.2 83.6 92.6 99.6 99.2 22.0 46.4 100 100 

 

Table 10: Experimental results for SSRRIWPSO compared with CRIW-PSO 

 
Griewank Rastrigin Rosenbrock Schaffer's f6 Sphere 

CRIW-PSO SSRRIWPSO CRIW-PSO SSRRIWPSO CRIW-PSO SSRRIWPSO CRIW-PSO SSRRIWPSO CRIW-PSO SSRRIWPSO 

Mean fitness 0.016616 0.013559 40.267957 31.721714 37.090110 33.930754 0.009211 0.005615 0.000087 0.000000 

Std. Dev. 0.003323 0.016669 8.053591 9.816728 11.618022 24.488409 0.001842 0.005204 0.000017 0.000000 

SR (%) 98.2 95.4 91.8 96.0 99.4 98.8 24.4 43.2 100 100 

 

 
Table 11: SSRDIWPSO, SSRRIWPSO, e1-PSO and e2-PSO 

 
Griewank Rastrigin 

e1-PSO e2-PSO SSRDIWPSO SSRRIWPSO e1-PSO e2-PSO SSRDIWPSO SSRRIWPSO 

Mean fitness 0.0186 0.0101 0.0080 0.0112 52.5772 53.3436 52.0344 49.2309 

Std. Dev. 0.0183 0.0126 0.0109 0.0111 11.1903 15.9680 14.0604 9.8200 

Trials reaching 

stopping criteria 
31/50 39/50 45/50 42/50 19/50 17/50 24/50 25/50 

 

Table 12: SSRDIWPSO, SSRRIWPSO, e1-PSO and e2-PSO 

 
Rosenbrock Sphere 

e1-PSO e2-PSO SSRDIWPSO SSRRIWPSO e1-PSO e2-PSO SSRDIWPSO SSRRIWPSO 

Mean fitness 57.3858 70.8313 28.9155 32.4599 9.3505e-11 9.3093e-11 1.5552e-58 9.1074e-53 

Std. Dev. 86.4313 115.9860 21.7438 31.4591 5.0294e-12 6.2098e-12 5.3840e-58 4.5314e-52 

Trials reaching 

stopping criteria 
45/50 32/50 42/50 38/50 50/50 50/50 50/50 50/50 

 

 
Table 13: Experimental results for LDIW-PSO compared with DAPSO 

Dim 
Ackley Griewank Rastrigin 

DAPSO SSRDIWPSO SSRRIWPSO DAPSO SSRDIWPSO SSRRIWPSO DAPSO SSRDIWPSO SSRRIWPSO 

20 3.906209e-014 7.265299e-15 3.291231e-02 8.605280e-002 3.096072e-02 1.656290e-02 2.159059e+001 1.994289e+01 1.888908e+01 

30 4.159541e-008 1.323386e-14 1.209699e-14 2.583338e-002 1.071397e-02 1.303346e-02 3.263463e+001 2.996404e+01 2.930789e+01 

40 7.046093e-005 2.907896e-14 2.232881e-14 1.087868e-002 7.486326e-03 9.839458e-03 3.890287e+001 3.905068e+01 3.978636e+01 

50 1.025568e-003 2.482814e-13 1.355893e-13 1.346732e-002 8.025957e-03 1.169809e-02 4.823559e+001 4.426009e+01 4.241095e+01 

  

  
Table 14a: Results for SSRDIWPSO, CDIW-PSO and LDIW-PSO for the scalable benchmark problems in 10 dimensions with swarm size of 20 

 
Ackley Griewank Rastrigin 

LDIW-PSO CDIW-PSO SSRDIWPSO LDIW-PSO CDIW-PSO SSRDIWPSO LDIW-PSO CDIW-PSO SSRDIWPSO 

Best Fitness 7.5495e-15 3.9968e-15 3.9968e-15 1.9915e-02 7.3960e-03 1.2316e-02 2.9825e+00 2.9825e+00 2.9825e+00 

Worst Fitness 1.3082e-11 7.5495e-15 7.5495e-15 3.7893e-01 2.1670e-01 1.6486e-01 3.3801e+01 3.8772e+01 2.3860e+01 

Mean Fitness 9.2671e-13 4.7073e-15 4.2810e-15 1.1634e-01 8.5716e-02 7.5072e-02 1.1393e+01 1.1850e+01 1.1145e+01 

Std. Dev. 2.1516e-12 1.4211e-15 9.6383e-16 6.6654e-02 4.2657e-02 3.3104e-02 5.3729e+00 5.3402e+00 5.1549e+00 

SR (%) 100 100 100 11 22 24 100 100 100 
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Table 14b: Results for SSRDIWPSO, CDIW-PSO and LDIW-PSO for the scalable benchmark problems in 10 dimensions with swarm size of 20 

 
Rosenbrock Schwefel 2.22 Sphere 

LDIW-PSO CDIW-PSO SSRDIWPSO LDIW-PSO CDIW-PSO SSRDIWPSO LDIW-PSO CDIW-PSO SSRDIWPSO 

Best Fitness 1.9028e-01 5.8391e-01 5.0518e-02 2.3283e-16 7.3834e-32 4.9690e-38 3.2643e-27 2.1574e-56 9.8682e-69 

Worst Fitness 8.8418e+00 9.8649e+00 8.3477e+01 5.5350e-13 4.1787e-24 1.4294e-32 3.6432e-22 2.7625e-47 6.0214e-60 

Mean Fitness 4.4515e+00 4.1277e+00 4.3828e+00 3.3305e-14 4.2916e-26 8.9304e-34 1.7584e-23 4.9843e-49 1.8318e-61 

Std. Dev. 1.3834e+00 1.5673e+00 8.1199+00 7.8644e-14 4.1571e-25 2.3983e-33 5.4979e-23 2.8213e-48 8.2708e-61 

SR (%) 100 100 99 100 100 100 100 100 100 

 

 

 
Table 15a: Results for SSRDIWPSO, CDIW-PSO and LDIW-PSO for the scalable benchmark problems in 10 dimensions with swarm size of 30 

 
Ackley Griewank Rastrigin 

LDIW-PSO CDIW-PSO SSRDIWPSO LDIW-PSO CDIW-PSO SSRDIWPSO LDIW-PSO CDIW-PSO SSRDIWPSO 

Best Fitness 3.9968e-15 3.9968e-15 3.9968e-15 1.7226e-02 1.2316e-02 0.0000e+00 2.9825e+00 2.9825e+00 1.9883e+00 

Worst Fitness 4.3388e-13 7.5495e-15 7.5495e-15 3.0732e-01 1.4269e-01 1.6232e-01 2.5848e+01 2.3860e+01 2.6842e+01 

Mean Fitness 5.1568e-14 4.2810e-15 4.2455e-15 1.0222e-01 7.2816e-02 6.9929e-02 1.0608e+01 9.6036e+00 9.9019e+00 

Std. Dev. 7.2065e-14 9.6383e-16 9.0646e-16 4.5279e-02 2.9156e-02 3.1923e-02 4.9350e+00 4.1760e+00 5.2057e+00 

SR (%) 100 100 100 8 23 31 100 100 100 

 

 

 
Table 15b: Results for SSRDIWPSO, CDIW-PSO and LDIW-PSO for the scalable benchmark problems in 10 dimensions with swarm size of 30 

 
Rosenbrock Schwefel 2.22 Sphere 

LDIW-PSO CDIW-PSO SSRDIWPSO LDIW-PSO CDIW-PSO SSRDIWPSO LDIW-PSO CDIW-PSO SSRDIWPSO 

Best Fitness 2.3881e-05 3.5978e-03 1.2181e-02 1.7600e-17 2.1097e-36 7.9370e-43 3.5127e-29 5.5836e-63 5.6464e-79 

Worst Fitness 1.2759e+01 9.5548e+01 8.0678e+00 2.5894e-14 3.2170e-30 1.9570e-37 3.4672e-24 1.4025e52 1.4756e-68 

Mean Fitness 4.4631e+00 6.3398e+00 3.0391e+00 1.6898e-15 5.9054e-32 6.2312e-39 7.5616e-26 1.6379e-54 1.6617e-70 

Std. Dev. 1.7182e+00 1.4306e+01 1.4428e+00 3.8509e-15 3.2322e-31 2.1735e-38 3.5229e-25 1.4047e-53 1.4716e-69 

SR (%) 100 97 100 100 100 100 100 100 100 

 

 

 

Table 16a: Results for SSRDIWPSO, CDIW-PSO and LDIW-PSO for the scalable benchmark problems in 30 dimensions with swarm size of 20 

 
Ackley Griewank Rastrigin 

LDIW-PSO CDIW-PSO SSRDIWPSO LDIW-PSO CDIW-PSO SSRDIWPSO LDIW-PSO CDIW-PSO SSRDIWPSO 

Best Fitness 2.0465E-10 7.5495e-15 7.5495e-15 0.0000e+00 0.0000e+00 0.0000e+00 1.0936e+01 1.3918e+01 1.8889e+01 

Worst Fitness 4.6755E-08 1.3900e-13 1.7773e+00 6.6351e-02 5.1620e-02 7.1023e-02 8.0527e+01 6.7603e+01 6.7603e+01 

Mean Fitness 2.7482E-09 2.2364e-14 1.7773e-02 1.4725e-02 1.3285e-02 1.0621e-02 3.2678e+01 3.3692e+01 3.2489e+01 

Std. Dev. 5.2530E-09 1.6979e-14 1.7684e-01 1.6189e-02 1.4288e-02 1.4009e-02 1.0432e+01 9.5459e+00 1.0170e+01 

SR (%) 100 100 99 94 97 97 95 96 92 

 

 

 
Table 16b: Results for SSRDIWPSO, CDIW-PSO and LDIW-PSO for the scalable benchmark problems in 30 dimensions with swarm size of 20 

 
Rosenbrock Schwefel 2.22 Sphere 

LDIW-PSO CDIW-PSO SSRDIWPSO LDIW-PSO CDIW-PSO SSRDIWPSO LDIW-PSO CDIW-PSO SSRDIWPSO 

Best Fitness 1.6192e+01 2.0857e+00 5.7802e-01 5.2163e-13 2.2215e-23 4.3387e-28 1.0555e-19 1.5428e-38 1.1144e-53 

Worst Fitness 2.1126e+02 8.5242e+01 8.0744e+01 6.1549e-09 3.2459e-15 1.6830e-17 5.9537e-15 1.8349e-31 1.5942e-43 

Mean Fitness 3.3933e+01 2.7721e+01 2.7449e+01 1.5750e-10 3.9337e-17 2.6515e-19 2.8440e-16 3.7389e-33 3.0056e-45 

Std. Dev. 2.5786e+01 1.6612e+01 1.9011e+01 6.8513e-10 3.2528e-16 1.8366e-18 7.8348e-16 2.3963e-32 1.8304e-44 

SR (%) 86 91 87 100 100 100 100 100 100 
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Table 17a: Results for SSRDIWPSO, CDIW-PSO and LDIW-PSO for the scalable benchmark problems in 30 dimensions with swarm size of 30 

 
Ackley Griewank Rastrigin 

LDIW-PSO CDIW-PSO SSRDIWPSO LDIW-PSO CDIW-PSO SSRDIWPSO LDIW-PSO CDIW-PSO SSRDIWPSO 

Best Fitness 3.5176e-12 7.5495e-15 7.5495e-15 0.0000e+00 0.0000e+00 0.0000e+00 1.3918e+01 1.2924e+01 1.1930e+01 

Worst Fitness 6.3501e-10 2.8866e-14 2.1760e-14 8.2838e-02 8.5811e-02 5.1691e-02 5.5673e+01 5.4679e+01 5.0702e+01 

Mean Fitness 1.3655e-10 1.4939e-14 1.3589e-14 1.5827e-02 1.4071e-02 1.0187e-02 2.7926e+01 2.8443e+01 2.8542e+01 

Std. Dev. 1.3085e-10 4.1940e-15 3.6750e-15 1.7432e-02 1.6390e-02 1.2222e-02 7.4278e+00 8.2735e+00 9.1617e+00 

SR (%) 100 100 100 94 96 99 99 97 98 

 

 

Table 17b: Results for SSRDIWPSO, CDIW-PSO and LDIW-PSO for the scalable benchmark problems in 30 dimensions with swarm size of 30 

 
Rosenbrock Schwefel 2.22 Sphere 

LDIW-PSO CDIW-PSO SSRDIWPSO LDIW-PSO CDIW-PSO SSRDIWPSO LDIW-PSO CDIW-PSO SSRDIWPSO 

Best Fitness 1.2326e+01 1.6523e+00 7.3902e-01 7.5219e-15 9.4263e-29 7.0255e-37 1.3688e-22 1.7242e-45 3.1391e-64 

Worst Fitness 1.1535e+02 8.6298e+01 1.4068e+02 5.0915e-12 2.6929e-23 2.7897-27 1.9235e-17 6.6331e-39 1.9224e-55 

Mean Fitness 3.0978e+01 2.7905e+01 2.9223e+01 6.9822e-13 1.4820e-24 3.7222e-29 1.4619e-18 1.3751e-40 3.3796e-57 

Std. Dev. 1.9755e+01 1.7322e+01 2.1778e+01 8.6910e-13 4.2054e-24 2.8818e-28 3.3268e-18 7.1578e-40 2.0522e-56 

SR (%) 89 90 86 100 100 100 100 100 100 

 

 

Table 18a: Results for SSRDIWPSO, CDIW-PSO and LDIW-PSO for the scalable benchmark problems in 50 dimensions with swarm size of 20 

 
Ackley Griewank Rastrigin 

LDIW-PSO CDIW-PSO SSRDIWPSO LDIW-PSO CDIW-PSO SSRDIWPSO LDIW-PSO CDIW-PSO SSRDIWPSO 

Best Fitness 2.3631e-08 4.6629e-14 3.2419e-14 4.6185e-14 0.0000e+00 0.0000e+00 2.8831e+01 2.7837e+01 2.2866e+01 

Worst Fitness 8.3629e-07 7.7741e-11 8.7875e-01 6.8700e-02 4.6483e-02 6.1166e-02 9.5440e+01 9.8422e+01 1.0439e+02 

Mean Fitness 1.6804e-07 1.4243e-12 8.7875e-03 1.0084e-02 7.7486e-03 1.0543e-02 5.3377e+01 5.2412e+01 5.2134e+01 

Std. Dev. 1.4161e-07 7.9154e-12 8.7434e-02 1.3541e-02 1.0204e-02 1.3527e-02 1.3992e+01 1.3660e+01 1.4172e+01 

SR (%) 100 100 99 98 100 98 45 46 52 

 

 

Table 18b: Results for SSRDIWPSO, CDIW-PSO and LDIW-PSO for the scalable benchmark problems in 50 dimensions with swarm size of 20 

 
Rosenbrock Schwefel 2.22 Sphere 

LDIW-PSO CDIW-PSO SSRDIWPSO LDIW-PSO CDIW-PSO SSRDIWPSO LDIW-PSO CDIW-PSO SSRDIWPSO 

Best Fitness 2.9532e+01 2.6899e+01 2.1839e+01 1.0821e-10 6.6656e-18 7.6328e-22 6.1179e-15 4.3873e-29 5.4489e-39 

Worst Fitness 1.5369e+02 1.6537e+02 1.4605e+02 1.4769e-05 7.0244e-11 5.6598e-11 5.3715e-11 2.6626e-21 2.3901e-31 

Mean Fitness 5.6306e+01 5.7227e+01 6.1372e+01 1.9472e-07 8.6592e-13 6.8063e-13 4.3243e-12 2.7570e-23 3.4195e-33 

Std. Dev. 2.5463e+01 2.7034e+01 2.6729e+01 1.4741e-06 7.0015e-12 5.7339e-12 8.2412e-12 2.6486e-22 2.4105e-32 

SR (%) 79 71 61 100 100 100 100 100 100 
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Table 19a: Results for SSRDIWPSO, CDIW-PSO and LDIW-PSO for the scalable benchmark problems in 50 dimensions with swarm size of 30 

 
Ackley Griewank Rastrigin 

LDIW-PSO CDIW-PSO SSRDIWPSO LDIW-PSO CDIW-PSO SSRDIWPSO LDIW-PSO CDIW-PSO SSRDIWPSO 

Best Fitness 2.1934e-09 2.1760e-14 2.1760e-14 8.8818e-16 0.0000+00 0.0000e+00 2.2866e+01 2.1872e+01 2.3860e+01 

Worst Fitness 1.0517e-07 1.5676e-13 9.2815e-14 3.9202e-02 4.1846e-02 5.8906e-02 8.8480e+01 9.9416e+01 7.0585e+01 

Mean Fitness 1.8971e-08 3.8423e-14 3.1992e-14 6.3007e-03 7.4343e-03 7.4808e-03 4.7551e+01 4.4717e+01 4.4946e+01 

Std. Dev. 1.9419e-08 1.9772e-14 8.9070e-15 8.8591e-03 1.0115e-02 1.1316e-02 1.2427e+01 1.1960e+01 1.1342e+01 

SR (%) 100 100 100 100 100 99 55 72 70 

 

Table 19b: Results for SSRDIWPSO, CDIW-PSO and LDIW-PSO for the scalable benchmark problems in 50 dimensions with swarm size of 30 

 
Rosenbrock Schwefel 2.22 Sphere 

LDIW-PSO CDIW-PSO SSRDIWPSO LDIW-PSO CDIW-PSO SSRDIWPSO LDIW-PSO CDIW-PSO SSRDIWPSO 

Best Fitness 3.2034e+01 2.1319e+01 1.7313e+01 9.2580e-12 6.2036e-23 1.0544e-30 1.4142e-16 6.0959e-36 3.4990e-51 

Worst Fitness 1.5805e+02 1.5195e+02 1.4811e+02 1.1639e-08 8.1066e-13 2.5765e-22 2.9783e-12 1.7368e-29 9.8013e-42 

Mean Fitness 6.1470e+01 5.3631e+01 5.6316e+01 3.7523e-10 8.1180e-15 6.8521e-24 5.4458e-14 4.9748e-31 1.0172e-43 

Std. Dev. 3.0565e+01 2.4776e+01 2.7229e+01 1.2318e-09 8.0659e-14 3.2404e-23 3.0355e-13 2.0485e-30 9.7490e-43 

SR (%) 72 78 71 100 100 100 100 100 100 

 

 

 
Table 20: Performance ranking in terms of mean best fitness for LDIW-PSO, CDIW-PSO and SSRDIWPSO 

Test Problem 
Swarm 

Size 

Dimension = 10 Dimension = 30 Dimension = 50 

LDIW-PSO CDIW-PSO SSRDIWPSO LDIW-PSO CDIW-PSO SSRDIWPSO LDIW-PSO CDIW-PSO SSRDIWPSO 

Ackley 
20 3 2 1 2 1 3 2 1 3 

30 3 2 1 3 2 1 3 2 1 

Griewank 
20 3 2 1 3 2 1 2 1 3 

30 3 2 1 3 2 1 1 2 3 

Rastrigin 
20 2 3 1 2 3 1 3 2 1 

30 3 1 2 1 2 3 3 1 2 

Rosenbrock 
20 3 1 2 3 2 1 1 2 3 

30 2 3 1 3 1 2 3 1 2 

Schwefel P2.22 
20 3 2 1 3 2 1 3 2 1 

30 3 2 1 3 2 1 3 2 1 

sphere 
20 3 2 1 3 2 1 3 2 1 

30 3 2 1 3 2 1 3 2 1 

Average 5.67 4.00 2.33 5.33 3.83 2.83 5.00 3.33 3.67 

 

 
Table 21a: Results for  SSRRIWPSO, CRIW-PSO and RIW-PSO for the scalable benchmark problems in 10 dimensions with swarm size of 20 

 
Ackley Griewank Rastrigin 

RIW-PSO CRIW-PSO SSRRIWPSO RIW-PSO CRIW-PSO SSRRIWPSO RIW-PSO CRIW-PSO SSRRIWPSO 

Best Fitness 2.6682e-04 3.9968e-15 3.9968e-15 5.7696e-02 9.8573e-03 1.2321e-02 2.9826e+00 3.9767e+00 2.9825e+00 

Worst Fitness 3.6701e-02 1.6456e+00 7.5495e-15 5.2743e-01 2.3098e-01 2.1171e-01 2.8831e+01 3.0951e+01 2.3860e+01 

Mean Fitness 6.3572e-03 1.6456e-02 4.4587e-15 2.65073-01 8.0140e-02 8.1509e-02 1.1970e+01 1.1792e+01 1.0518e+01 

Std. Dev. 6.1370e-03 1.6374e-01 1.1948e-15 1.2088e-01 4.3710e-02 4.1818e-02 5.4829e+00 5.2183e+00 4.4331e+00 

SR (%) 9 99 100 0 23 21 100 100 100 

 

Table 21b: Results for SSRRIWPSO, CRIW-PSO and RIW-PSO for the scalable benchmark problems in 10 dimensions with swarm size of 20 

 
Rosenbrock Schwefel 2.22 Sphere 

RIW-PSO CRIW-PSO SSRRIWPSO RIW-PSO CRIW-PSO SSRRIWPSO RIW-PSO CRIW-PSO SSRRIWPSO 

Best Fitness 5.0327e-01 2.3924e-06 1.3474e-01 7.5130e-05 2.0291e-24 2.2651e-33 5.2270e-06 2.0572e-42 3.9833e-60 

Worst Fitness 1.6783e+02 9.2790e+00 1.0544e+02 1.7082e-02 2.1966e-19 1.3014e-28 2.2563e-03 1.5891e-31 4.1936e-51 

Mean Fitness 1.1295e+01 4.1748e+00 4.4782e+00 2.0124e-03 9.2187e-21 4.8514e-30 3.5628e-04 3.6683e-33 6.3339e-53 

Std. Dev. 2.3681e+01 1.9017e+00 1.0294e+01 2.3871e-03 3.1553e-20 1.6657e-29 4.8987e-04 1.8265e-32 4.3016e-52 

SR (%) 96 100 99 38 100 100 88 100 100 
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Table 22a: Results for SSRRIWPSO, CRIW-PSO and RIW-PSO for the scalable benchmark problems in 10 dimensions with swarm size of 30 

 
Ackley Griewank Rastrigin 

RIW-PSO CRIW-PSO SSRRIWPSO RIW-PSO CRIW-PSO SSRRIWPSO RIW-PSO CRIW-PSO SSRRIWPSO 

Best Fitness 5.0628e-04 3.9968e-15 3.9968e-15 5.3134e-02 9.8573e-03 7.3960e-03 2.9825e+00 1.9883e+00 2.9825e+00 

Worst Fitness 1.9113e-02 7.5495e-15 7.5495e-15 5.4171e-01 1.7455e-01 1.6488e-01 2.6843e+01 2.7837e+01 1.9883e+01 

Mean Fitness 4.5976e-03 4.2100e-15 4.1034e-15 2.2761e-01 7.0440e-02 6.8499e-02 1.0946e+01 9.7826e+00 9.8223e+00 

Std. Dev. 3.9745e-03 8.4372e-16 6.0605e-16 1.1050e-01 3.4206e-02 3.3744e-02 4.6641e+00 5.2431e+00 3.7099e+00 

SR (%) 4 100 100 0 34 34 100 100 100 

 

Table 22b: Results for SSRRIWPSO, CRIW-PSO and RIW-PSO for the scalable benchmark problems in 10 dimensions with swarm size of 30 

 
Rosenbrock Schwefel 2.22 Sphere 

RIW-PSO CRIW-PSO SSRRIWPSO RIW-PSO CRIW-PSO SSRRIWPSO RIW-PSO CRIW-PSO SSRRIWPSO 

Best Fitness 2.7771e-01 4.2983e-03 2.1897e-02 4.4332e-05 5.9217e-27 7.7888e-37 1.7477e-06 1.3646e-45 4.9571e-67 

Worst Fitness 1.0266e+02 9.3917e+01 8.1281e+00 5.1963e-03 7.6797e-22 6.9684e-33 1.2363e-03 1.2652e-34 2.9736e-58 

Mean Fitness 7.3222e+00 4.6473e+00 3.0159e+00 1.1568e-03 5.2086e-23 2.7837e-34 1.7524e-04 1.4248e-36 3.5758e-60 

Std. Dev. 9.7155e+00 9.1254e+00 1.8573e+00 9.8438e-04 1.2312e-22 7.6303e-34 2.4192e-04 1.2594e-35 2.9790e-59 

SR (%) 99 99 100 57 100 100 97 100 100 

 

 
Table 23a: Results for SSRRIWPSO, CRIW-PSO and RIW-PSO for the scalable benchmark problems in 30 dimensions with swarm size of 20 

 
Ackley Griewank Rastrigin 

RIW-PSO CRIW-PSO SSRRIWPSO RIW-PSO CRIW-PSO SSRRIWPSO RIW-PSO CRIW-PSO SSRRIWPSO 

Best Fitness 7.6075e-02 1.0347e-13 7.5495e-15 3.7072e-01 0.0000e+00 0.0000e+00 1.3497e+01 1.2924e+01 1.0936e+01 

Worst Fitness 5.8770e-01 5.4655e-11 1.6456e+00 1.0221e+00 1.1059e-01 7.8665e-02 7.6612e+01 5.7661e+01 5.8656e+01 

Mean Fitness 2.8934e-01 7.0854e-12 6.2645e-02 8.3199e-01 1.5365e-02 1.3793e-02 3.6975e+01 3.1803e+01 3.1068e+01 

Std. Dev. 1.1061e-01 1.1089e-11 2.7657e-01 1.3791e-01 1.9516e-02 1.5409e-02 1.2344e+01 9.5081e+00 1.0160e+01 

SR (%) 0 100 95 0 92 98 82 96 94 

 

Table 23b: Results for SSRRIWPSO, CRIW-PSO and RIW-PSO for the scalable benchmark problems in 30 dimensions with swarm size of 20 

 
Rosenbrock Schwefel 2.22 Sphere 

RIW-PSO CRIW-PSO SSRRIWPSO RIW-PSO CRIW-PSO SSRRIWPSO RIW-PSO CRIW-PSO SSRRIWPSO 

Best Fitness 3.1445e+01 5.3172e+00 3.4264e+00 9.4209e-02 3.6066e-19 4.2575e-29 1.4671e-01 3.1570e-25 4.9847e-48 

Worst Fitness 3.8305e+02 1.0504e+02 8.5352e+01 4.8363e-01 3.7281e-14 5.1517e-23 3.5501e+00 1.5072e-20 1.2989e-40 

Mean Fitness 9.0321e+01 3.3052e+01 3.0608e+01 2.6077e-01 1.3696e-15 2.2417e-24 9.9836e-01 9.3610e-22 1.6515e-42 

Std. Dev. 6.5995e+01 2.2626e+01 2.1631e+01 8.4975e-02 4.6744e-15 7.1414e-24 5.1607e-01 2.3631e-21 1.2937e-41 

SR (%) 34 82 81 0 100 100 0 100 100 

 

 
Table 24a: Results for SSRRIWPSO, CRIW-PSO and RIW-PSO for the scalable benchmark problems in 30 dimensions with swarm size of 30 

 
Ackley Griewank Rastrigin 

RIW-PSO CRIW-PSO SSRRIWPSO RIW-PSO CRIW-PSO SSRRIWPSO RIW-PSO CRIW-PSO SSRRIWPSO 

Best Fitness 1.0369e-01 1.4655e-14 7.5495e-15 2.5742e-01 0.0000e+00 0.0000e+00 1.1137e+01 1.4912e+01 8.9475e+00 

Worst Fitness 5.8677e-01 1.4286e-12 2.1760e-14 1.0162e+00 6.8642e-02 6.1273e-02 5.6933e+01 5.8656e+01 6.5615e+01 

Mean Fitness 2.3662e-01 1.1100e-13 1.2026e-14 8.0305e-01 1.2720e-02 1.2227e-02 3.0321e+01 2.8910e+01 2.9656e+01 

Std. Dev. 7.2953e-02 1.9207e-13 3.7806e-15 1.3412e-01 1.3742e-02 1.3654e-02 8.9028e+00 8.8817e+00 9.7347e+00 

SR (%) 0 100 100 0 96 96 97 98 96 

 

Table 24b: Results for SSRRIWPSO, CRIW-PSO and RIW-PSO for the scalable benchmark problems in 30 dimensions with swarm size of 30 

 
Rosenbrock Schwefel 2.22 Sphere 

RIW-PSO CRIW-PSO SSRRIWPSO RIW-PSO CRIW-PSO SSRRIWPSO RIW-PSO CRIW-PSO SSRRIWPSO 

Best Fitness 3.0042e+01 7.5603e+00 6.5598e+00 9.4323e-02 1.0508e-21 9.3322e-35 1.7171e-01 7.1988e-31 4.6258e-58 

Worst Fitness 3.5254e+02 1.0744e+02 8.5689e+01 4.5703e-01 6.2399e-17 1.8446e-29 3.2880e+00 4.2228e-22 1.2856e-50 

Mean Fitness 8.0443e+01 3.4158e+01 2.9701e+01 2.0920e-01 2.0142e-18 3.3125e-31 9.0064e-01 5.2226e-24 3.1736e-52 

Std. Dev. 6.1967e+01 2.3257e+01 2.0574e+01 7.4517e-02 6.9944e-18 1.9947e-30 4.7463e-01 4.2099e-23 1.6311e-51 

SR (%) 54 79 84 0 100 100 0 100 100 
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Table 25a: Results for SSRRIWPSO, CRIW-PSO and RIW-PSO for the scalable benchmark problems in 50 dimensions with swarm size of 20 

 
Ackley Griewank Rastrigin 

RIW-PSO CRIW-PSO SSRRIWPSO RIW-PSO CRIW-PSO SSRRIWPSO RIW-PSO CRIW-PSO SSRRIWPSO 

Best Fitness 3.7363e-01 9.1547e-11 2.1760e-14 9.9927e-01 0.0000e+00 0.0000e+00 3.2130e+01 3.0819e+01 2.4854e+01 

Worst Fitness 1.2499e+00 2.5416e-07 2.0126e+00 1.1542e+00 5.1442e-02 8.5172e-02 9.3415e+01 1.0638e+02 8.9475e+01 

Mean Fitness 7.6250e-01 1.1668e-08 1.0014e-01 1.0770e+00 8.6034e-03 1.3725e-02 5.9013e+01 5.1358e+01 4.9748e+01 

Std. Dev. 2.0357e-01 3.0443e-08 4.0343e-01 2.4943e-02 1.2163e-02 1.7229e-02 1.2692e+01 1.3579e+01 1.4310e+01 

SR (%) 0 100 94 0 99 97 22 50 54 

 

Table 25b: Results for SSRRIWPSO, CRIW-PSO and RIW-PSO for the scalable benchmark problems in 50 dimensions with swarm size of 20 

 
Rosenbrock Schwefel 2.22 Sphere 

RIW-PSO CRIW-PSO SSRRIWPSO RIW-PSO CRIW-PSO SSRRIWPSO RIW-PSO CRIW-PSO SSRRIWPSO 

Best Fitness 1.4630e+02 2.9319e+01 3.9227e+00 6.0443e-01 1.4917e-14 4.9312e-23 3.9011e+00 1.3119e-18 1.3133e-38 

Worst Fitness 1.3202e+03 1.5698e+02 1.5186e+02 1.5538e+00 1.8198e-10 8.6419e-16 1.7889e+01 4.9716e-14 8.3601e-31 

Mean Fitness 3.1463e+02 7.2915e+01 5.9867e+01 1.0389e+00 3.5025e-12 9.8776e-18 8.9417e+00 2.9163e-15 9.9652e-33 

Std. Dev. 1.6544e+02 3.0272e+01 3.0551e+01 2.3005e-01 1.8487e-11 8.6379e-17 3.0265e+00 7.8862e-15 8.3149e-32 

SR (%) 0 47 66 0 100 100 0 100 100 

 

 
Table 26a: Results for SSRRIWPSO, CRIW-PSO and RIW-PSO for the scalable benchmark problems in 50 dimensions with swarm size of 30 

 
Ackley Griewank Rastrigin 

RIW-PSO CRIW-PSO SSRRIWPSO RIW-PSO CRIW-PSO SSRRIWPSO RIW-PSO CRIW-PSO SSRRIWPSO 

Best Fitness 3.0381e-01 1.0183e-11 1.4655e-14 7.7108e-01 0.0000e+00 0.0000e+00 2.2200e+01 1.8889e+01 2.5848e+01 

Worst Fitness 1.1737e+00 8.6233e-09 1.5607e+00 1.1282e+00 6.3542e-02 1.1634e-01 8.1841e+01 8.7486e+01 8.3510e+01 

Mean Fitness 6.6528e-01 5.6290e-10 2.5874e-02 1.0586e+00 7.3540e-03 1.1541e-02 4.8061e+01 4.3902e+01 4.3972e+01 

Std. Dev. 1.7192e-01 1.2606e-09 1.8501e-01 3.9840e-02 1.0921e02 1.7802-02 1.1406e+01 1.2159e+01 1.0683e+01 

SR (%) 0 100 98 0 99 96 63 77 77 

 

Table 26b: Results for SSRRIWPSO, CRIW-PSO and RIW-PSO for the scalable benchmark problems in 50 dimensions with swarm size of 30 

 
Rosenbrock Schwefel 2.22 Sphere 

RIW-PSO CRIW-PSO SSRRIWPSO RIW-PSO CRIW-PSO SSRRIWPSO RIW-PSO CRIW-PSO SSRRIWPSO 

Best Fitness 1.1525e+02 1.0825e+01 1.4610e+01 5.1310e-01 7.6172e-17 4.5557e-30 2.8877e+00 3.6199e-21 9.2338e-48 

Worst Fitness 8.9680e+02 1.4977e+02 1.4609e+02 1.5876e+00 2.0753e-13 3.3717e-25 1.6115e+01 2.1283e-16 4.1533e-41 

Mean Fitness 2.7098e+02 6.7473e+01 6.0529e+01 9.3819e-01 6.8685e-15 2.2273e-26 7.2065e+00 7.7623e-18 6.4333e-43 

Std. Dev. 1.1521e+02 3.1220e+01 2.9462e+01 2.1819e-01 2.2435e-14 5.3956e-26 2.4652e+00 2.3964e-17 4.1989e-42 

SR (%) 0 58 61 0 100 100 0 100 100 

 

 

Table 27: Performance ranking in terms of mean best fitness for RIW-PSO, CRIW-PSO and SSRRIWPSO 

Test Problem 
Swarm 

Size 

Dimension = 10 Dimension = 30 Dimension = 50 

RIW-PSO CRIW-PSO SSRRIWPSO RIW-PSO CRIW-PSO SSRRIWPSO RIW-PSO CRIW-PSO SSRRIWPSO 

Ackley 
20 2 3 1 3 1 2 3 1 2 

30 3 2 1 3 2 1 3 1 2 

Griewank 
20 3 1 2 3 2 1 3 1 2 

30 3 2 1 3 2 1 3 1 2 

Rastrigin 
20 3 2 1 3 2 1 3 2 1 

30 3 1 2 3 1 2 3 1 2 

Rosenbrock 
20 3 1 2 3 2 1 3 2 1 

30 3 2 1 3 2 1 3 2 1 

Schwefel P2.22 
20 3 2 1 3 2 1 3 2 1 

30 3 2 1 3 2 1 3 2 1 

sphere 
20 3 2 1 3 2 1 3 2 1 

30 3 2 1 3 2 1 3 2 1 

Average 5.83 3.67 2.50 6.00 3.67 2.33 6.00 3.17 2.83 
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Table 28a: Results for SSRDIWPSO, CDIW-PSO and LDIW-PSO for the low-scaled benchmark problems with swarm size of 20 

 
Booth Esom Michalewicz 5 

LDIW-PSO CDIW-PSO SSRDIWPSO LDIW-PSO CDIW-PSO SSRDIWPSO LDIW-PSO CDIW-PSO SSRDIWPSO 

Best Fitness 0.0000e+00 0.0000e+00 0.0000e+00 -1.0000e+00 -1.0000e+00 -1.0000e+00 -4.0236e+00 -36547e+00 -3.6419e+00 

Worst Fitness 0.0000e+00 0.0000e+00 0.0000e+00 -1.0000e+00 -1.0000e+00 -1.0000e+00 -1.6676e+00 -1.7707e+00 -1.6865e+00 

Mean Fitness 0.0000e+00 0.0000e+00 0.0000e+00 -1.0000e+00 -1.0000e+00 -1.0000e+00 -2.5887e+00 -2.6595e+00 -2.7246e+00 

Std. Dev. 0.0000e+00 0.0000e+00 0.0000e+00 1.4433e-15 1.4433e-15 1.4433e-15 4.2216e-01 3.8361e+00 3.8299e-01 

SR (%) 100 100 100 100 100 100 0 0 0 

 

Table 28b: Results for SSRDIWPSO, CDIW-PSO and LDIW-PSO for the low-scaled benchmark problems with swarm size of 20 

 
Schaffer's f6 Shubert Trid 6 

LDIW-PSO CDIW-PSO SSRDIWPSO LDIW-PSO CDIW-PSO SSRDIWPSO LDIW-PSO CDIW-PSO SSRDIWPSO 

Best Fitness 0.0000e+00 0.0000e+00 0.0000e+00 -1.8673e+02 -18673e+02 -1.8673e+02 -5.0000e+01 -5.0000e+01 -5.0000e+01 

Worst Fitness 9.7159e-03 9.7159e-03 9.7159e-03 -1.8673e+02 -1.2358e+02 -1.8673e+02 -5.0000e+01 -5.0000e+01 -5.0000e+01 

Mean Fitness 1.9432e-04 3.1091e-03 4.4943e-03 -1.8673e+02 -1.8610e+02 -1.8673e+02 -5.0000e+01 -5.0000e+01 -5.0000e+01 

Std. Dev. 1.3602e-03 4.5322e-03 4.8257e-03 1.9479e-13 6.2838e+00 1.3999e-13 7.2196e-14 7.0153e-14 8.2042e-14 

SR (%) 98 68 53 100 99 100 100 100 100 

 

 

Table 29a: Results for SSRDIWPSO, CDIW-PSO and LDIW-PSO for the low-scaled benchmark problems with swarm size of 30 

 
Booth Esom Michalewicz 5 

LDIW-PSO CDIW-PSO SSRDIWPSO LDIW-PSO CDIW-PSO SSRDIWPSO LDIW-PSO CDIW-PSO SSRDIWPSO 

Best Fitness 0.0000e+00 0.0000e+00 0.0000e+00 -1.0000e+00 -1.0000e+00 -1.0000e+00 -3.7093e+00 -3.9666e+00 -4.0414e+00 

Worst Fitness 0.0000e+00 0.0000e+00 0.0000e+00 -1.0000e+00 -1.0000e+00 -1.0000e+00 -1.9647e+00 -2.0913e+00 -1.8581e+00 

Mean Fitness 0.0000e+00 0.0000e+00 0.0000e+00 -1.0000e+00 -1.0000e+00 -1.0000e+00 -2.7524e+00 -2.9189e+00 -2.9281e+00 

Std. Dev. 0.0000e+00 0.0000e+00 0.0000e+00 1.4433e-15 1.4433e-15 1.4433e-15 3.3793e-01 3.5757e-01 3.8822e-01 

SR (%) 100 100 100 100 100 100 0 0 0 

 

Table 29b: Results for SSRDIWPSO, CDIW-PSO and LDIW-PSO for the low-scaled benchmark problems with swarm size of 30 

 
Schaffer's f6 Shubert Trid 6 

LDIW-PSO CDIW-PSO SSRDIWPSO LDIW-PSO CDIW-PSO SSRDIWPSO LDIW-PSO CDIW-PSO SSRDIWPSO 

Best Fitness 0.0000e+00 0.0000e+00 0.0000e+00 -1.8673e+02 -1.8673e+02 -1.8673e+02 -5.0000e+01 -5.0000e+01 -5.0000e+01 

Worst Fitness 0.0000e+00 9.7159e-03 9.7159e-03 -1.8673e+02 -1.8673e+02 -1.8673e+02 -5.0000e+01 -5.0000e+01 -5.0000e+01 

Mean Fitness 0.0000e+00 2.0403e-03 3.5171e-03 -1.8673e+02 -1.8673e+02 -1.8673e+02 -5.0000e+01 -5.0000e+01 -5.0000e+01 

Std. Dev. 0.0000e+00 3.9574e-03 4.6530e-03 1.1548e-13 1.9915e-13 1.1132e-13 6.7273e-14 8.1796e-14 7.4455e-14 

SR (%) 100 79 63 100 100 100 100 100 100 

 

 

Table 30a: Results for SSRRIWPSO, CRIW-PSO and RIW-PSO for the low-scaled benchmark problems with swarm size of 20 

 
Booth Esom Michalewicz 5 

RIW-PSO CRIW-PSO SSRRIWPSO RIW-PSO CRIW-PSO SSRRIWPSO RIW-PSO CRIW-PSO SSRRIWPSO 

Best Fitness 0.0000e+00 0.0000e+00 0.0000e+00 -1.0000e+00 -1.0000e+00 -1.0000e+00 -3.8987e+00 -36182e+00 -4.1505e+00 

Worst Fitness 0.0000e+00 0.0000e+00 0.0000e+00 -1.0000e+00 -1.0000e+00 -1.0000e+00 -1.9726e+00 -2.0289e+00 2,0063e+00 

Mean Fitness 0.0000e+00 0.0000e+00 0.0000e+00 -1.0000e+00 -1.0000e+00 -1.0000e+00 -2.7105e+00 -2.7591e+00 -2.8714e+00 

Std. Dev. 0.0000e+00 0.0000e+00 0.0000e+00 1.4479e-15 1.4433e-15 1.4433e-15 3.6438e-01 3.6934e-01 4.0069e-01 

SR (%) 100 100 100 100 100 100 0 0 0 

 

 

Table 30b: Results for SSRRIWPSO, CRIW-PSO and RIW-PSO for the low-scaled benchmark problems with swarm size of 20 

 
Schaffer's f6 Shubert Trid 6 

RIW-PSO CRIW-PSO SSRRIWPSO RIW-PSO CRIW-PSO SSRRIWPSO RIW-PSO CRIW-PSO SSRRIWPSO 

Best Fitness 0.0000e+00 0.0000e+00 0.0000e+00 -1.8673e+02 -1.8673e+02 -18673e+02 -5.0000E+01 -5.0000e+01 -5.0000e+01 

Worst Fitness 9.7159e-03 9.7159e-03 9.7159e-03 -1.8673e+02 -1.8673e+02 -1.2358e+02 -5.0000E+01 -5.0000e+01 -5.0000e+01 

Mean Fitness 8.7533e-04 4.8580e-03 5.4414e-03 -1.8673e+02 -1.8673e+02 -1.8610e+02 -5.0000E+01 -5.0000e+01 -5.0000e+01 

Std. Dev. 2.7802e-03 4.8580e-03 4.8223e-03 2.2081e-13 8.4933e-14 6.2838e+00 2.2079e-07 7.4455e-14 7.1747e-14 

SR (%) 90 50 43 100 100 99 100 100 100 
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Table 31a: Results for SSRRIWPSO, CRIW-PSO and RIW-PSO for the low-scaled benchmark problems with swarm size of 30 

 
Booth Esom Michalewicz 5 

RIW-PSO CRIW-PSO SSRRIWPSO RIW-PSO CRIW-PSO SSRRIWPSO RIW-PSO CRIW-PSO SSRRIWPSO 

Best Fitness 0.0000e+00 0.0000e+00 0.0000e+00 -1.0000e+00 -1.0000e+00 -1.0000e+00 -3.9345e+00 -4.4362e+00 -3.9058e+00 

Worst Fitness 0.0000e+00 0.0000e+00 0.0000e+00 -1.0000e+00 -1.0000e+00 -1.0000e+00 -2.0385e+00 -2.1389e+00 -2.4530e+00 

Mean Fitness 0.0000e+00 0.0000e+00 0.0000e+00 -1.0000e+00 -1.0000e+00 -1.0000e+00 -2.8436e+00 -2.9961e+00 -3.0545e+00 

Std. Dev. 0.0000e+00 0.0000e+00 0.0000e+00 1.4444e-15 1.4433e-15 1.4433e-15 3.4103e-01 3.7627e-01 3.4268e-01 

SR (%) 100 100 100 100 100 100 0 0 0 

 

Table 31b: Results for SSRRIWPSO, CRIW-PSO and RIW-PSO for the low-scaled benchmark problems with swarm size of 30 

 
Schaffer's f6 Shubert Trid 6 

RIW-PSO CRIW-PSO SSRRIWPSO RIW-PSO CRIW-PSO SSRRIWPSO RIW-PSO CRIW-PSO SSRRIWPSO 

Best Fitness 0.0000e+00 0.0000e+00 0.0000e+00 -1.8673e+02 -1.8673e+02 -1.8673e+02 -5.0000e+01 -5.0000e+01 -5.0000e+01 

Worst Fitness 9.7159e-03 9.7159e-03 9.7159e-03 -1.8673e+02 -1.8673e+02 -1.8673e+02 -5.0000e+01 -5.0000e+01 -5.0000e+01 

Mean Fitness 9.7159e-05 3.1091e-03 4.5674e-03 -1.8673e+02 -1.8673e+02 -1.8673e+02 -5.0000e+01 -5.0000e+01 -5.0000e+01 

Std. Dev. 9.6672e-04 4.5322e-03 4.8484e-03 1.3391e-13 1.9924e-13 9,1525e-14 4.2546e-08 6.3553e-14 7.3458e-14 

SR (%) 99 68 52 100 100 100 100 100 100 
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Begin PSO Algorithm 

Input:  f: the function to optimize 

 s: the swarm size 

 n: the problem dimension 

 pr: solution search space 

 vr: particle velocity range 

Output: x*: the best particle position found 

 f*: the best fitness value found 

Initialize: position xi = (xi1, …, xin) and velocity vi = (vi1, …, vin), for all 

particles in problem space 

evaluate f(xi) in n variables and get pbesti, (i = 1, …, s)  

gbest ← best of pbesti  

While stopping criteria is false do 

succ ← 0 

Loop for s times 

Loop for n times 

calculate ω using equation (8) or (9) 

update vi for particle using equation (1)  

validate for velocity boundaries based on vr 

update xi for particle using equation (2) 

validate for position boundaries based on pr 

End 

End 

If f(xi) < f(pbesti) then  

pbesti ← xi  

succ ← succ + 1 

end if 

If f(xi) < f(gbest) then  

gbest ← xi  

f(gbest) ← f(xi)  

end if 

compute swarm success rate using equation (4) 

End while 

x* ← gbest  

f* ← f(gbest) 

Return x* and f* 

End PSO Algorithm 

Figure 1: Inertia weight PSO algorithm for SSRDIWPSO and SSRRIWPSO 

  

Page 21 of 28

URL: http://mc.manuscriptcentral.com/teta

Journal of Experimental & Theoretical Artificial Intelligence

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 2: Convergence curves for SSRDIWPSO, CDIW-PSO and LDIW-PSO in six test problems with size = 20 and dim = 30 
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(a) (b) 

  
(c) (d) 

  

(e) (f) 

Figure 3: Convergence curves for SSRRIWPSO, CRIW-PSO and RIW-PSO in six test problems with size = 20 and dim = 30 
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(a) (b) 

  

(c) (d) 

Figure 4: Convergence curves for SSRDIWPSO, CDIW-PSO and LDIW-PSO in four low-scaled test problems with size = 20 
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(a) (b) 

  

(c) (d) 

Figure 5: Convergence curves for SSRRIWPSO, CRIW-PSO and RIW-PSO in four low-scaled test problems with size = 20 
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Appendix I: Descriptions of the Benchmark Global Optimization Test 

Problems used in the experiments 
 

Described below are the benchmark global optimization problems used in the experiments. The mathematical 

models as well as graphical representations of these problems are also given. The essence of the graphs is to 

facilitate the comprehension of the landscape of the respective problem. The test problems are grouped into two 

– High-scaled and Low-scaled. Additional information about the problems was obtained from 

https://en.wikipedia.org/wiki/Test_functions_for_optimization and http://www-optima.amp.i.kyoto-

u.ac.jp/member/student/hedar/Hedar_files/TestGO_files/Page364.htm. 

 

1. High-scaled global optimization test problems 

Ackley problem: It is continuous, multimodal, scalable and non-

separable. It is a widely used test problem. The global minimum ������ � 0 is obtainable at �� = 0 and the number of local minima is 

not known. Search space is in [-30,30]. 

 

Model: 

���_�� � �20;�`ab�0.2c
1/F �\20
\�1 de � ;�`f

1/F cos�25�\�0
\�1 j $ 20

$ ; 
 

 

Griewank problem: Similar to Rastrigin. It is continuous, 

multimodal, scalable and non-separable with many widespread 

local minima regularly distributed.  The complexity of the problem 

increases with its dimensionality. Its global minimum ������ � 0 is 
obtainable at �� = 0 and the number of local minima for arbitrary n 

is not known, but in the two dimensional case, there are some 500 

local minima. Search space is in [-600,600]. 

 

Model: 

����� � 14000 fF�2��
2J� j � fl6mY ��2√\#

�
2J� j $ 1 

 

 

Rastrigin problem: It is continuous, multimodal, scalable and 

separable with many local minima arranged in a lattice-like 

configuration. It is based on the Sphere problem with the 

addition of cosine modulation so as to produce frequent local 

minima. There are about 50 local minima for two dimensional 

case and its global minimum �D���� � 0 is obtainable at ��  = 0. 

Search space is in [-5.12,5.12]. 

 

Model: 

����� � F��2� � 10 cos�25�2� $ 10��
2J�  
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Rosenbrock problem: It is continuous, unimodal, scalable and 

non-separable. It is a classic optimization problem also known as 

banana function, the second function of De Jong or extended 

Rosenbrock function. Its global minimum �V���� � 0 obtainable 

at ��  = 1, lies inside a long narrow, parabolic shaped valley. 

Though it look simple to solve, yet due to a saddle point it is 

very difficult to converge to the global optimum. Search space is 

in [-30,30]. 

 

Model: 

����� � F�100��2'� � �2���� $�=�
2J� ��2 � 1�� 

 

Sphere problem: Known as the first De Jong function is 

continuous, convex, unimodal, scalable and separable. It is one 

of the simplest test benchmark problems. Its global minimum �o���� � 0 is obtainable at �� = 0. Search space is in [-100,100]. 

 

Model: 

����� � F�2��
2J�  

 

2. Low-scaled global optimization test problems 

 

Booth problem: It is continuous, multimodal, non-scalable and 

separable. Its global minimum �p���� � 0 is obtainable at �� = 0. 

Search space is in [-10,10]. 

 

Model: ����� � ��� $ 2�� � 7�� $ �2�� $ �� � 5�� 

 

Easom problem: It is continuous, unimodal, non-scalable and 

non-separable. Its global minimum has a small area relative to 

the search space. It was inverted for minimization and has only 

two variables. Its global minimum �p���� � �1 is obtainable at �� 
= π. Search space is in [-100,100]. 

 

Model: ����� � � cos���� cos���� exp	����� � 5�� � ��� � 5��� 
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Michalewicz problem: It is continuous, multimodal and 

separable. It has d! local optima. The parameter m defines the 

“steepness” of the valleys or edges. Larger m leads to more 

difficult search. For very large m the function values for points in 

the space outside the narrow peaks give very little information 

on the location of the global optimum. The value of m is usually 

10. The approximated global minimum is �p���� � �4.687 for d 

= 5 and �p���� � �9.66 for d = 10. Search space is in [0,π] 

 

Model: 

����� � �Fsin	��2� yY\/ z\�2�5 {|� �
2J�  

 

Schaffer's f6 problem: It is 2-dimensional, continuous, 

multimodal and non-separable with unknown number of many 

local minima. Its global minimum �p���� � 0 is obtainable at �� = 

0. Search pace is in [-100,100]. 

 

Model: 

����� � F}0.5 $ Y\/�L~�2'�� $ �2�T � 0.5�0.001��2'�� $ �2�� $ 1���
�=�
2J�  

 

Shubert's problem: It is 2-dimensional, continuous, multimodal 

and non-separable with unknown number of local minima. But 

with d = 2, there are 760 local optimal, 18 of which are global 

with �p���� � �1.86.7309. Search pace is in [-10,10]. 

 

Model: 

����� �l}F�6mY��� $ 1��2 $ ��p
�J� ��

2J�  

 

Trid problem: It is continuous, unimodal and non-separable. It 

has no local optima except the global one. With d = 6, the global 

minimum�p���� � �50  but with d = 10, the global minimum �p���� � �200. Search pace is in [-d
2
,d

2
].  

 

Model: 

����� � F��2 � 1�� ��
2J� F�2�2=��

2J�  
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This paper experimentally investigates the effect of nine chaotic maps on the performance of two Particle Swarm Optimization
(PSO) variants, namely, Random Inertia Weight PSO (RIW-PSO) and Linear Decreasing Inertia Weight PSO (LDIW-PSO)
algorithms.The applications of logistic chaoticmap by researchers to these variants have led toChaotic Random InertiaWeight PSO
(CRIW-PSO) and Chaotic Linear Decreasing Inertia Weight PSO (CDIW-PSO) with improved optimizing capability due to better
global searchmobility. However, there are many other chaotic maps in literature which could perhaps enhance the performances of
RIW-PSO and LDIW-PSO more than logistic map. Some benchmark mathematical problems well-studied in literature were used
to verify the performances of RIW-PSO and LDIW-PSO variants using the nine chaotic maps in comparison with logistic chaotic
map. Results show that the performances of these two variants were improved more by many of the chaotic maps than by logistic
map in many of the test problems. The best performance, in terms of function evaluations, was obtained by the two variants using
Intermittency chaotic map. Results in this paper provide a platform for informative decision making when selecting chaotic maps
to be used in the inertia weight formula of LDIW-PSO and RIW-PSO.

1. Introduction

PSO algorithm is one of the many algorithms that have
been proposed over the years for global optimization. When
it was proposed in 1995 [1], swarm size, particle velocity,
acceleration coefficients, and random coefficients were the
associated parameters that controlled its operations. A close
look at the algorithm shows that randomness plays very
useful role in making the algorithm effectively solve opti-
mization problems. Randomness comes into play at the point
of initializing the particles in the solution space and in
updating the velocities of particles at each iteration of the
algorithm. This random feature has contributed immensely
to the performance of PSO [1–3]. To further enhance the
performance of PSO, inertia weight strategy (IWS) was
introduced into it by [4] to facilitate the intensification
and diversification characteristics of the algorithm. Inten-
sification searches around the current best solutions and
selects the best candidate, while diversification makes the

algorithm explore the search space more efficiently, mostly
by means of randomization. As a result, randomness has
been brought into the IWS by different researchers [5–8].
The important role of randomization can also be played
by using chaos theory. Chaos is mathematically defined as
randomness generated by simple deterministic system [2].
It is generally characterised by three dynamic properties,
namely, ergodicity, stochastic, and sensitivity, to its initial
conditions [2, 9].These characteristics can enhance the search
ability of PSO. This seems to be the motivation behind the
introduction of chaos feature into IWS in [10], which led to
improved optimizing capabilities of CDIW-PSO and CRIW-
PSO due to better global search mobility compared with
LDIW-PSO and RIW-PSO, respectively. Chaos optimizations
have been applied to different aspects of PSO by various
researchers over the years [9, 11–14]. In order to increase the
diversity of the swarm and prevent premature convergence
to local optimal, chaos mutation operator based on logistic
map was used in [13] and another based on zaslavskii was
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used in [11]. But in [14], PSOwas hybridizedwith chaotic local
search procedure based on logisticmap.TheLogistic andTent
chaotic maps were, respectively, used as inertial weight by [9]
in binary PSO to handle feature selection problem. In [12],
twelve different chaos maps were implemented to tune the
attraction parameter of accelerated PSO algorithm.

The aim of this paper is to further investigate the per-
formances of two PSO variants, LDIW-PSO and RIW-PSO
algorithms, with various chaoticmaps incorporated into their
IWSs. For this purpose, 9 additional chaotic maps along
with logistic map are introduced in this paper and used
with the two variants at different times. Some well-studied
benchmark mathematical problems in the literature were
used to test the algorithms using these maps.The outcome of
the experiments should help ascertain the chaotic maps that
contribute better to the performances of the algorithms in
comparison to logistic chaotic map in order to provide some
useful information regarding the usage of these maps in the
IWSs of the PSO variants.

In the sections that follow, the inertia weight PSO and its
variants considered in this paper are introduced in Section 2,
chaotic maps used in the experiments are described in
Section 3, setting of the experiments is given in Section 4,
and experimental results and discussions are presented in
Section 5, while Section 6 concludes the paper.

2. Inertia Weight PSO

PSO algorithm is a population-based evolutionary stochastic
technique made up of a swarm of particles which coexist
and evolve simultaneously based on knowledge shared with
neighbouring particles. The PSO process is initialized with
a swarm of random particles in the search space and the
algorithm is allowed to execute a number of times in order
to carry out a search for optimal solutions in the search
space. In inertia weight PSO, each particle is assumed to
have position and velocity in a physical n-dimensional search
space; the position and velocity of a particle 𝑖 in each iteration
𝑡 is represented as the vectors �⃗�

𝑖
= (𝑥

𝑖1
, . . . , 𝑥in) and

�⃗�
𝑖
= (V
𝑖1
, . . . , Vin), respectively. When the particles move in

the search space searching for the optimum solution for
a particular optimization problem, other particles follow
the current optimum particle by adjusting their velocities
and positions using (1). The positions and velocities of the
particles are confinedwithin [𝑋min, 𝑋max]

𝑛 and [𝑉min, 𝑉max]
𝑛,

respectively, as follows:

�⃗�
𝑡+1

𝑖
= 𝜔�⃗�
𝑡

𝑖
+ 𝑐
1
⃗𝑟
1
(

→

𝑝best𝑡
𝑖
− �⃗�
𝑡

𝑖
) + 𝑐
2
⃗𝑟
2
(

→

𝑔best𝑡 − �⃗�𝑡
𝑖
) ,

�⃗�
𝑡+1

𝑖
= �⃗�
𝑡

𝑖
+ �⃗�
𝑡+1

𝑖
.

(1)

A particle’s position is taken as possible solution for the
problem being optimized, while the fitness of this possible
solution is determined by evaluating the problem’s objective
function. The best position searched by the particle itself
so far (

→

𝑝best𝑡
𝑖
) and the optimization position searched by

the whole particle swarms so far (
→

𝑔best𝑡) are 𝑛-dimensional
vectors representing personal best position of particle 𝑖

at iteration 𝑡 and global best positions selected from the
personal best positions of all the particles in the swarm at
iteration 𝑡. whereas ⃗𝑟

1
and ⃗𝑟
2
are two 𝑛-dimensional vectors

of random numbers between 0 and 1, which introduces
randomness to the searching strategy, and the two positive
constants 𝑐

1
and 𝑐
2
are cognitive and social scaling parameters

that determine the magnitude of the random forces in the
direction of

→

𝑝best𝑡
𝑖
and

→

𝑔best𝑡.
The inertia weight (𝜔) strikes a balance between explo-

ration and exploitation characteristics of PSO and it deter-
mines the level of contribution of previous particle velocity
to the present velocity.

2.1. Linear Decreasing Inertia Weight PSO (LDIW-PSO). This
variant implements the linear decreasing IWS which has
greatly improved the algorithm [15, 16]. In this variant, the
inertia weight starts with a large initial value and then linearly
decreases to a smaller final value with the belief that a large
inertia weight facilitates a global search, while a small inertia
weight facilitates a local search. The commonly used initial
and final values are 0.9 and 0.4 [10, 17, 18]; other values have
also been used [19–21]. The inertia weight creates a means
of flexibility for the movements of particles in the search
space. According to [22], relatively high inertia weight value
(e.g., 0.9) creates a medium of low viscosity for the particles
to facilitate extensive exploration while gradually reducing
it to a much lower value (e.g., 0.4) creates a high viscosity
medium to facilitate exploitation. The experimental results
in [15] showed that using the linearly decreasing inertia
weight can make PSO suffer from premature convergence
due to lack of search ability towards the end of run to
jump out of the local minimum in some cases. Because of
this challenge, employing adapting strategy for adjusting the
inertia weight was suggested to improve the performance
PSOnear the optima [15].Many researchers havemade efforts
to achieve this through various improvements on LDIW-PSO
by introducing newparameters into its IWSor proposing new
IWS to generally improve the performance of PSO technique
[5, 10, 17, 19, 23, 24]. Equation (2) represents the commonly
used LDIW strategy:

𝜔
𝑡
= (𝜔start − 𝜔end) (

𝑇max − 𝑡

𝑇max
) + 𝜔end, (2)

where 𝜔start and 𝜔end are the initial and final values of
inertia weight, 𝑡 is the current iteration number, 𝑇max is the
maximum iteration number, and 𝜔

𝑡
∈ [0, 1] is the inertia

weight value in the 𝑡th iteration.

2.2. Random Inertia Weight PSO (RIW-PSO). There are
different IWSs with random features [5–8], but the one in
[5] is adopted in this paper for the experiments. With the
aim of using particle swarms to track and optimize dynamic
systems, a new way of calculating the inertia weight value
was proposed in [5] as shown in (3). The formula makes
the inertia weight change randomly and produces a number
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randomly varying between 0.5 and 1.0, with a mean value of
0.75. Consider

𝜔
𝑡
= 0.5 +

rand (⋅)
2

. (3)

In (3), rand(⋅) is a uniformly distributed random number
within the range [0, 1]. As a result of the difficulty in
predicting whether exploration (a larger inertia weight value)
or exploitation (a smaller inertia weight) will be better at any
given time in tracking a nonlinear dynamic system, the strat-
egy in (3) was introduced by [5] to address the inefficiency of
linearly decreasing inertia weight, which decreases from 0.9
to 0.4 during a run, in handling such a problem.

2.3. Chaotic Inertia Weight PSO. The chaotic inertia weights
PSO that were proposed in [10] are Chaotic Decreasing
Inertia Weight PSO (CDIW-PSO) and Chaotic Random
Inertia Weight PSO (CRIW-PSO) shown in (5) and (6),
respectively. The aim was to improve LDIW-PSO and RIW-
PSO using logistic map in order to avoid getting into local
optimum in searching process by utilizing the merits of
chaotic optimization. Logistic map, represented in (4), is one
of the simplest maps that appear in nonlinear dynamics of
biological population evidencing chaotic behavior. Consider

𝑧
𝑘+1

= 𝜇𝑧
𝑘
(1 − 𝑧

𝑘
) , (4)

where 𝑘 is the iteration number, 𝑥
𝑘
is the 𝑘th chaotic number,

and 𝜇 = 4.0. This map generates values between 0 and 1,
provided that the initial value 𝑧

0
∈ (0, 1) and that 𝑧

0
∉

(0.0, 0.25, 0.5, 0.75, and 1.0).

𝜔
𝑡
= (𝜔start − 𝜔end) (

(𝑇max − 𝑡)

𝑇max
) + 𝜔end × 𝑧𝑘+1, (5)

𝜔
𝑡
= 0.5 × rand (⋅) + 0.5 × 𝑧𝑘+1, (6)

where 𝜔start and 𝜔end are the initial and final values of
inertia weight, rand(⋅) is a uniform random number in
[0, 1], 𝑡 is the current iteration, and 𝑇max is the maximum
iteration.The results in [10] show that the PSO had preferable
convergence precision, quick convergence velocity, and better
global search ability. This is because, due to nonrepetition
of chaos, the algorithm could carry out overall searches at
higher speed, diversify the particles, and improve the algo-
rithm’s performance in preventing premature convergence
too quickly to local minima compared with RIW-PSO and
LDIW-PSO which have no chaos characteristics. No other
chaotic maps were implemented with the linear decreasing
and random IWSs to see if they could make the algorithms
perform better in comparison to using logistic map. Besides,
the results in [10] leave much room for further improvement
on the performance of RIW-PSO and LDIW-PSO.

3. Chaotic Maps

Chaos is a deterministic dynamic system that is very sensitive
to its initial conditions and parameters. The application
of chaotic maps instead of random sequence in PSO is a

powerful strategy to diversify the swarm and improve its
performance. There are various chaotic maps that exist in
the literature which could also be used with RIW-PSO and
LDIW-PSO apart from logistic map used in [10]. Introduced
below are some of these maps, adopted from [2, 12], and they
are described as used in the experiments conducted in this
paper.

3.1. Circle. This map has two parameters a (which can be
interpreted as the strength of nonlinearity) and 𝑏 (which can
be interpreted as externally applied frequency). It is a one-
dimensional map which maps a Circle into itself and it is
represented by (7):

𝑥
𝑘+1

= (𝑥
𝑘
+ 𝑏 −

𝑎

2𝜋

sin (2𝜋𝑥
𝑘
)) mod (1) . (7)

In this paper, 𝑎 = 0.5 and 𝑏 = 0.2.

3.2. Cubic. This map is somehow similar to Sine map, but it
generates values in the interval [−1.5, 1.5]. It is defined as

𝑥
𝑘+1

= 3𝑥
𝑘
(1 − 𝑥

2

𝑘
) . (8)

In this paper, the values generated were normalized
between 0 and 1.

3.3. Gaussian. This map is also known as Gauss or mouse
map. It is defined as

𝑥
𝑘+1

=

{
{
{

{
{
{

{

0, 𝑥
𝑘
= 0

1

𝑥
𝑘

mod (1) , 𝑥
𝑘
∈ (0, 1) ,

(9)

where (1/𝑥
𝑘
) mod (1) = (1/𝑥

𝑘
) − ⌊1/𝑥

𝑘
⌋ and ⌊𝑧⌋ denotes

the largest integer less than 𝑧 which acts as a shift on the
continued fraction representation of numbers.

3.4. Intermittency. This map is the extension of the Bernoulli
Shift inwhich one of the piecewise linear segments is replaced
by a nonlinear segment as shown below

𝑥
𝑘+1

=

{
{
{

{
{
{

{

𝜀 + 𝑥
𝑘
+ 𝑐𝑥
𝑚

𝑘
, 𝑥
𝑘
∈ (0, 𝑑]

(𝑥
𝑘
− 𝑑)

(1 − 𝑑)

, 𝑥
𝑘
∈ (𝑑, 1) ,

(10)

where 𝜀 = 10
−3,𝑚 = 2, 𝑑 = 0.7, and 𝑐 = (1 − 𝜀 − 𝑑)/𝑑

𝑚.

3.5. Iterative Chaotic Map with Infinite Collapses (ICMIC).
This map is represented by

𝑥
𝑘+1

= sin(𝑎𝜋
𝑥
𝑘

) , (11)

where 𝑎(0, 1), 𝑎 = 0.85 and the results were normalized
between 0 and 1.
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3.6. Piecewise. This map consists of line segments and is
defined as

𝑥
𝑘+1

=

{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

𝑥
𝑘

𝑝

, 𝑥
𝑘
∈ [0, 𝑝)

(𝑥
𝑘
− 𝑝)

(0.5 − 𝑝)

, 𝑥
𝑘
∈ [𝑝, 0.5)

(1 − 𝑝 − 𝑥
𝑘
)

(0.5 − 𝑝)

, 𝑥
𝑘
∈ [0.5, 1 − 𝑝)

(1 − 𝑥
𝑘
)

𝑝

, 𝑥
𝑘
∈ [1 − 𝑝, 1) ,

(12)

where 𝑝 is the control parameter between 0 and 0.5.

3.7. Sinusoidal. This map is represented by the following

𝑥
𝑘+1

= 𝛽 sin (𝜋𝑥
𝑘
) . (13)

This map is similar to logistic map in shape with 𝛽 = 1

and generates values in (0, 1). The values were normalized
between 0 and 1 for 𝛽 > 1.

3.8. Skew Tent. This map is a Tent map skewed to either left
or right controlled by the parameter 𝑝. The map is defined by

𝑥
𝑘+1

=

{
{
{
{

{
{
{
{

{

𝑥
𝑘

𝑝

, 𝑥
𝑘
∈ [0, 𝑝)

(1 − 𝑥
𝑘
)

(1 − 𝑝)

, 𝑥
𝑘
∈ [𝑝, 1] ,

(14)

where 𝑝 = 0.3.

3.9. Tent. The tent map is like the logistic map but has a “∧”
shape unlike logistic map which has a dome-like shape. It is
defined by

𝑥
𝑘+1

= {

2𝑝𝑥
𝑘
, 𝑥

𝑘
∈ [0, 0.5]

2𝑝 (1 − 𝑥
𝑘
) , 𝑥

𝑘
∈ (0.5, 1] ,

(15)

where 𝑘 is the iteration number, 𝑥
𝑘
is the 𝑘th chaotic number

and 𝑝 = 0.99. This map also generates values between 0 and
1, provided that the initial value 𝑥

0
∈ [0, 1].

4. Experimental Setup

To investigate the performance of RIW-PSO and LDIW-PSO
with the chaotic maps incorporated into them at different
times, five (5) well-studied benchmark problems described
below were used to validate them. The swarm size was set to
20 particles, while the number of variables (dimensions) for
all problems was set to 30 and 50 with respective maximum
number of iterations of 2000 and 3000. The algorithm was
allowed to run the maximum number of iterations and
number of successful runs recorded. A run is successful if
the mean fitness value obtained by an algorithm is less than
the success criterion after the maximum iteration. Values for
𝜔start and 𝜔end were set to 0.9 and 0.4 and 𝑐

1
and 𝑐
2
were set

to 2.0 as used in [10] and 𝑉max was clamped to be 15% of the
search space [25]. For fairness, the same random seeds were
used in all the experiments with 50 independent runs for
the test problems. The performance criteria were the mean
best solution, standard deviation, success rate, and number
of function evaluations of the algorithms. The simulation
programwas developed inMicrosoftVisual C# programming
language.

The success rate (SR) was computed according to (16) and
expected number of function evaluations (NFE) according to
(17):

SR =

𝐺times
𝑇runs

, (16)

where 𝐺times is the total number of times the set goal was
reached over 50 independent runs and 𝑇runs is the total
number of independent runs (i.e., 50, in our experiment):

NFE = 𝑆size ×
𝑡avg

SR
, (17)

where 𝑆size is the swarm size and 𝑡avg is the average number of
iterations the set goal was reached over 50 independent runs.

4.1. Test Problems. The test problems used in the experiments
are well studied in the literature [26–29]. They are Ackley,
Griewank, Rastrigin, Rosenbrock, and Sphere. All the prob-
lems are continuous, scalable, and multimodal except the last
two problems, which are unimodal. Each of these problems
is described below.

The Ackley problem is nonseparable. It is a widely used
test problem and it is defined in (18). The global minimum
𝑓
1
(�⃗�) = 0 is obtainable at �⃗� = 0 and the number of local

minima is not known. Consider

𝑓
1 (
�⃗�) = −20 exp(−0.2√

1

𝑛

𝑑

∑

𝑖=1

𝑥
2

𝑖
) − exp(1

𝑛

𝑑

∑

𝑖=1

cos (2𝜋𝑥
𝑖
))

+ 20 + 𝑒.

(18)

The Griewank problem is non-separable with many
widespread local minima regularly distributed.The complex-
ity of the problem decreases as the dimensionality increases.
Its global minimum 𝑓

2
(�⃗�) = 0 is obtainable at �⃗� = 0 and the

number of local minima in a two-dimensional case is about
500. This problem is represented by

𝑓
2 (
�⃗�) =

1

4000

(

𝑑

∑

𝑖=1

𝑥
2

𝑖
) − (

𝑑

∏

𝑖=1

cos(
𝑥
𝑖

√𝑖

)) + 1. (19)

The Rastrigin problem represented in (20) is separable
and hasmany local minima arranged in a lattice-like configu-
ration. It is based on the Sphere problem with the addition of
cosine modulation so as to produce frequent local minima.
There are about 50 local minima for two-dimensional case
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Table 1: Search ranges, optimal values, and success criteria for the test problems.

𝑓
1

𝑓
2

𝑓
3

𝑓
4

𝑓
5

Search range [−30, 30] [−600, 600] [−5.12, 5.12] [−30, 30] [−100, 100]
Optimal value 0 0 0 0 0
Success criteria 0.01 0.05 50.0 100.0 0.01

and its global minimum 𝑓
3
(�⃗�) = 0 is obtainable at �⃗� = 0.

Consider

𝑓
3 (
�⃗�) =

𝑑

∑

𝑖=1

(𝑥
2

𝑖
− 10 cos (2𝜋𝑥

𝑖
) + 10) . (20)

Shown in (21) is the Rosenbrock problem; it is non-
separable. It is a classic optimization problem also known
as banana function, the second function of De Jong, or
extended Rosenbrock function. Its global minimum 𝑓

4
(�⃗�) =

0 obtainable at �⃗� = 1, lies inside a long narrow, parabolic’s
shaped valley. Though it look-simple to solve, yet due to a
saddle points it is very difficult to converge to the global
optimum. Consider

𝑓
4 (
�⃗�) =

𝑑−1

∑

𝑖=1

(100(𝑥
𝑖+1

− 𝑥
2

𝑖
)

2

) + (𝑥
𝑖
− 1)
2
. (21)

The Sphere problem also known as the first De Jong
function is separable. It is one of the simplest test benchmark
problems. Its global minimum 𝑓

6
(�⃗�) = 0 is obtainable at

�⃗� = 0 and the problem is represented by

𝑓
6 (
�⃗�) =

𝑑

∑

𝑖=1

𝑥
2

𝑖
. (22)

4.2. Properties of the Test Problems. Shown in Table 1 are the
properties of the test problems.The success criteria are stated
here as used in [10].

5. Results and Discussions

Many researchers have measured the performance of PSO
algorithms using mean (average) fitness value and standard
deviation [17, 19, 30–35]. The number of iterations or evalua-
tions of the objective function that takes the algorithm to find
optimum solution with specified accuracy to an optimization
problemhas also been used.However, the number of function
evaluations appears to be more informative and popularly
used to measure the performance of optimization algorithms
[3, 25]. This is because it reflects the time or computational
complexity of optimization algorithms and takes into account
the swarm size, average number of algorithm iterations to
reach the set goal (e.g., success threshold), and the success
rate of the algorithm. In this paper, average fitness value,
standard deviation of fitness value, success rate, and number
of function evaluations were used for the performance mea-
surement of the two PSO variants.

Themean best fitness (mean) is ameasure of the precision
that an algorithm can get within a given number of iterations;

standard deviation (SD) is a measure of the algorithm’s
stability and robustness, while success rate (SR) is the number
of times an algorithm is able to meet success criterion out of
a specified number of independent runs, which is a reflection
of global search ability of the algorithm.

Tables 2–11 show the numerical results obtained in the
experiments when the various chaotic maps were incor-
porated into RIW-PSO and LDIW-PSO algorithms. In the
tables, “None” means that the algorithms were implemented
without any chaotic map. In Tables 5 and 10, “—” indicates
that no trial run satisfied the success criterion. The values in
bold are the best results obtained by the algorithms using the
corresponding chaotic map incorporated into it compared
with others. The values with asterik (∗) are the better results
obtained by the algorithms relative to the corresponding
chaotic maps, compared to Logistic map.

5.1. Results for LDIW-PSO Using the Various Chaotic Maps.
Presented in Tables 2–5 are the results with respect to mean
fitness value, standard deviation, success rate, and number of
function evaluations as obtained in the experiments.

Table 2 shows themean fitness values obtained by LDIW-
PSO using the various chaotic maps. None of the chaotic
maps used with the variants could enable it to perform best
in all test problems compared with other maps. Apart from
Sine, Intermittency and Cubic maps, the algorithm was able
to obtain best optimal fitness for different test problems using
other maps. Circle and Gaussian maps look more robust
than others, because with them the algorithm was able to
obtain the best optimal fitness for two test problems in the
two problem dimensions which shows better characteristics
for convergence precision. Besides 𝑓

3
, logistic map was

outperformed by othermaps as shown by the shaded portions
in obtaining better optimal fitness.

Table 3 shows the standard deviation (stability measure)
of LDIW-PSO using the various chaotic maps. As shown by
the results, none of the chaotic maps when used with the
variant could enable the algorithm to have the best stability
across the test problems.However, the algorithmachieved the
best stabilities with the various maps for different test prob-
lems, except with Sine, Intermittency, and Cubic maps. The
algorithm looks more stable using Piecewise and Gaussian
maps than others, because with them it was able to obtain
the best stability in two test problems with the two problem
dimensions. Other maps were able to facilitate better stability
than logistic map as shown by the shaded portions in the
table.

Table 4 shows the global search ability of LDIW-PSO
using the various chaotic maps. The algorithm had the same
search ability using all the maps for 𝑓

5
in both dimensions
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Table 4: Success rate for test problems using LDIW-PSO.

Chaos maps Dimension = 30 Dimension = 50
𝑓
1

𝑓
2

𝑓
3

𝑓
4

𝑓
5

𝑓
1

𝑓
2

𝑓
3

𝑓
4

𝑓
5

None 50/50 25/50 32/50 38/50 50/50 37/50 34/50 1/50 17/50 50/50
Logistic 49/50 29/50 42/50 45/50 50/50 44/50 27/50 0/50 36/50 50/50
Tent 49/50 25/50 33/50 49/50∗ 50/50 41/50 30/50∗ 1/50∗ 41/50∗ 50/50
Skew Tent 48/50 23/50 43/50∗ 48/50∗ 50/50 45/50∗ 27/50 1/50∗ 30/50 50/50
Sine 49/50 25/50 38/50 48/50∗ 50/50 43/50 35/50∗ 1/50∗ 31/50 50/50
ICMIC 47/50 29/50 39/50 47/50∗ 50/50 41/50 28/50∗ 1/50∗ 34/50 50/50
Circle 48/50 24/50 36/50 48/50∗ 50/50 39/50 36/50∗ 0/50 37/50∗ 50/50
Piecewise 48/50 25/50 37/50 46/50∗ 50/50 47/50∗ 32/50∗ 1/50∗ 34/50 50/50
Gaussian 47/50 29/50 36/50 48/50∗ 50/50 44/50 31/50∗ 1/50∗ 37/50∗ 50/50
Intermittency 46/50 25/50 38/50 49/50∗ 50/50 36/50 33/50∗ 0/50 36/50 50/50
Cubic 49/50 25/50 42/50 46/50∗ 50/50 44/50 29/50∗ 0/50 36/50 50/50
The values in bold are the best results obtained by the algorithms using the corresponding chaotic map incorporated into it compared with others.
∗are the better results obtained by the algorithms relative to the corresponding chaotic maps, compared to Logistic map.

and performed poorly in 𝑓
3
under dimension 50. From the

results, the algorithm seems to have better global search
ability using Tentmap than othermaps, because with themap
it had the best search ability in both problem dimensions for
𝑓
4
. However, the algorithm could not demonstrate the best

global search ability across the test problems and dimensions
using any of the chaotic maps. Sine and Cubic maps had least
positive influence on the algorithm in terms of search ability.
Besides 𝑓

2
, other maps had better influence on the algorithm

in achieving better global search ability than logistic map as
shown by the shaded portions in the table.

Table 5 shows the number of function evaluations by the
algorithm, using the various chaos maps. When Intermit-
tencymapwas used and the problemdimensionwas set to 30,
the algorithm had the lowest number of function evaluations
in all the test problems except in two of the test problems
under dimension 50. As indicated by the shaded portions,
the algorithm executed lesser number of function evaluations
using other chaotic maps than logistic map.

Table 6 shows the average ranking of the performance of
LDIW-PSO when each of the chaotic maps was incorporated
into it to solve all the test problems. In otherwords, each value
in the table represents the average rank of the corresponding
map in comparison to others across the test problems for each
problem dimension. The least value indicates that the asso-
ciated map performed best, while the largest value indicates
that the associated map performed worst. Generally, when
the problem dimension was set to 30, the algorithm obtained
the best convergence precision using Sine map and was
more stable using Intermittency map. But it demonstrated
the best global search ability with Logistic, Skew Tent, Sine,
and cubic maps. Less computational effort was needed using
Intermittencymap comparedwith others.When the problem
dimension was set to 50, the algorithm obtained the best
convergence precision and was more stable when Gaussian
map was used. But it demonstrated the best global search
ability using Circle and Piecewise maps. Less computational
effort was needed using Gaussian and Intermittency maps in
comparison with others. On the average, Intermittency map

performed best when the problem dimension was 30, while
Gaussian map performed best when the problem dimension
was 50.

5.2. Results for RIW-PSO Using the Various Chaotic Maps.
Presented in Tables 7–10 are the results with respect to mean
fitness value, standard deviation, success rate, and number of
function evaluations as obtained in the experiments by RIW-
PSO.

Table 7 shows the mean fitness values obtained by RIW-
PSO using the various chaotic maps. None of the chaotic
maps could make the algorithm perform the best across the
test problems in both dimensions. Apart from Skew Tent,
Sine, and Gaussian maps, the algorithm was able to obtain
best optimal fitness for different test problems using other
maps. Intermittency map looks more effective than others,
because with it the algorithm was able to obtain best optimal
fitness for three test problems in the two problem dimensions
showing better characteristics for convergence precision.
Apart from 𝑓

2
, logistic map was less effective compared with

other maps as shown by the shaded portions.
Presented in Table 8 is the standard deviation (stability

measure) obtained by RIW-PSO using the various chaotic
maps. From the results, none of the chaotic maps could make
the algorithm have the best stability across the test problems.
However, the algorithm achieved the best stabilities with the
various maps for different test problems across the problem
dimensions, except with ICMIC, Gaussian, and Cubic maps.
The algorithm looks more stable using Logistic, Tent and
intermittency maps than others, because with them it was
able to obtain the best stability in two test problems. Besides
𝑓
2
and 𝑓

3
with dimension 30, other maps were able to

facilitate better stability than logistic map as shown by the
shaded portions in the table.

Table 9 shows the global search ability of RIW-PSO using
the various chaotic maps.The algorithm had the same search
ability using all themaps for𝑓

5
in both dimensions. As shown

in the results, the algorithm seems to have better global search
ability using Logistic, Tent, Sine and Cubic maps than other
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Table 9: Success rate for test function using RIW-PSO.

Chaos maps Dimension = 30 Dimension = 50
𝑓
1

𝑓
2

𝑓
3

𝑓
4

𝑓
5

𝑓
1

𝑓
2

𝑓
3

𝑓
4

𝑓
5

None 0/50 0/50 7/50 0/50 0/50 0/50 0/50 0/50 0/50 0/50
Logistic 50/50 26/50 43/50 46/50 50/50 50/50 29/50 4/50 27/50 50/50
Tent 50/50 29/50∗ 36/50 47/50∗ 50/50 50/50 34/50∗ 2/50 21/50 50/50
Skew Tent 49/50 21/50 41/50 48/50∗ 50/50 49/50 29/50 2/50 23/50 50/50
Sine 48/50 26/50 40/50 49/50∗ 50/50 50/50 33/50∗ 6/50∗ 29/50∗ 50/50
ICMIC 49/50 30/50∗ 39/50 47/50∗ 50/50 50/50 26/50 8/50∗ 30/50∗ 50/50
Circle 48/50 26/50 37/50 45/50 50/50 49/50 29/50 10/50∗ 31/50∗ 50/50
Piecewise 50/50 25/50 40/50 46/50 50/50 49/50 37/50∗ 8/50∗ 29/50∗ 50/50
Gaussian 49/50 23/50 39/50 48/50∗ 50/50 49/50 26/50 5/50∗ 35/50∗ 50/50
Intermittency 31/50 26/50 39/50 47/50∗ 50/50 37/50 25/50 5/50∗ 37/50∗ 50/50
Cubic 50/50 23/50 42/50 44/50 50/50 50/50 31/50∗ 7/50∗ 31/50∗ 50/50
The values in bold are the best results obtained by the algorithms using the corresponding chaotic map incorporated into it compared with others.
∗are the better results obtained by the algorithms relative to the corresponding chaotic maps, compared to Logistic map.

maps, because with the maps, the algorithm had the best
search ability in two or more test problems. However, the it
could not demonstrate the best global search ability across
the test problems and dimensions using any of the chaotic
maps. Apart from 𝑓

1
, 𝑓
3
, and 𝑓

5
(for dimension 30) and 𝑓

1

and 𝑓
5
(for dimension 50), other maps had better influence

on the algorithm in achieving better global search ability than
logistic map as shown by the shaded portions in the table.

Table 10 shows the number of function evaluations by
the algorithm, using the various chaos maps. When Inter-
mittency map was used and the problem dimension was
set to 30, the algorithm had the lowest number of function
evaluations in four of the test problems but in three of
the test problems under dimension 50, thereby making the
algorithm be more robust in terms of search ability than
other maps. The shaded portions indicate lower number
of function evaluations executed by the algorithm when
the corresponding chaotic maps were used compared with
logistic map.

Table 11 shows the average ranking of the performance of
RIW-PSO when each of the chaotic maps was incorporated
into it to solve all the test problems. Each value in the table
represents the average rank of the corresponding map in
comparison to others across the test problems for each prob-
lem dimension. The least value indicates that the associated
map performed best, while the largest value indicates that the
associated map is the least in performance. Generally, when
the problem dimension was set to 30, the algorithm obtained
the best convergence precision, demonstrated the best global
search ability and stability when logistic map was used. But
using Circle and Intermittency maps, less computational
effort was needed compared with others. When problem
dimension was set to 50, the algorithm obtained the best
convergence precision using ICMIC map and it was more
stable using Tent map; it did better global search using
Piecewise map and required less computational time using
Circle map. On the average, Intermittency map performed
best when the problem dimension was 30, while Piecewise
map performed best when the problem dimension = 50.

6. Conclusions

Chaotic features cause the values of inertia weight to fluctuate
between 0 and 1. It affects the velocities and positions of each
particle in each iteration to facilitate its local and global search
ability as theymove to new search regions in the search space.

In this paper, two PSO variants, LDIW-PSO and RIW-
PSO algorithms, were implemented with different chaotic
maps incorporated into their inertia weight strategies at
different times. Their performances were investigated based
on the results obtained from numerical simulations, using
some well-studied benchmark problems. Mean best solution,
standard deviation, success rate, and function evaluations
of the algorithms were the instruments of measurement.
Results show that, though logistic map could enhance the
performance of LDIW-PSO and RIW-PSO, there are other
chaotic maps that can make the variants perform better in
terms of convergence speed, accuracy, stability, and global
search ability.

In terms of average performance, LDIW-PSO performed
best using the Intermittency map when the problem dimen-
sion is 30. But it performed best using Gaussian map when
the problem dimension is 50. On the other hand, RIW-
PSO also performed best using the Intermittency map when
the problem dimension is 30. But it performed best using
Piecewise map when the problem dimension is 50. This is an
indication that the Intermittency chaotic map could enhance
the performance of the two PSO variants compared with
other maps, when the dimensionality of the problem is in the
neighbourhood of 30.

However, it should be noted that due to the different
search pattern of the chaotic maps, they could be problem
dependent. The results presented in this paper can also
serve as a platform for informative decision making by
practitioners in the process of selecting chaotic maps to be
used in the inertia weight formula of LDIW-PSO and RIW-
PSO. Further work will be done in applying these variants to
real-world problems to test their effectiveness relative to the
chaotic maps.
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Abstract 9 

 10 

This paper achieved two major goals. First, it experimentally showed that the Basic Particle 11 

Swarm Optimization (BPSO) technique can perform efficiently without using some (or any) 12 

of the control parameters in the particle velocity update formula. Second, the problem of 13 

premature convergence associated with PSO technique when optimizing high dimensional 14 

multi-modal optimization problems was ameliorated. In achieving these goals, some 15 

modifications were done to BPSO. Some of the modifications involved making the velocity 16 

limits of the particles to decrease dynamically depending on the progressive minimum and 17 

maximum dimensional values of the entire swarm. The decreasing nature of the velocity 18 

limits was used to control the exploration and exploitation activities of the modified BPSO 19 

(M-BPSO). Different experiments were carried out to ascertain the possibilities of 20 

implementing BPSO and M-BPSO without some and all of the control parameters in the 21 

particle's updating formula. Typical global optimization benchmark problems were used to 22 

validate the proposed modifications through empirical studies and results of M-BPSO were 23 

compared with BPSO. The results of some of the variants of M-BPSO were also compared 24 

with those of two other efficient optimization algorithms in literature. All the experimental 25 

results show that the proposed M-BPSO algorithm is very effective and was found superior in 26 
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performance to the other algorithms adopted for comparison in terms of solution quality, 1 

convergence speed, global-local search ability, and stability. 2 

 3 

Keywords:  Particle Swarm Optimization, Global Optimization, Parameter Control, 4 

Continuous Problems, Inertia weight 5 

 6 

1. Introduction 7 

The increase in computationally complex problems found in engineering, sciences, etc., is a 8 

source of continual motivations to researchers in the field of optimization. The outcome of 9 

such motivations is the development of efficient algorithms inspired by nature. Biologically 10 

inspired algorithms have proven to be efficient in handling computationally complex 11 

problems with competence and many successes have been recorded. Swarm intelligence, a 12 

class of biologically inspired algorithms, comprises algorithms that are population-based 13 

which do not depend on the gradient, continuity or differentiability for problem being 14 

optimized or solved. All that is required is the computability of the problem. Some of the 15 

algorithms which belong to the class of swarm intelligence are Ant Colony Optimization 16 

(ACO), Bees Algorithm (BA), Firefly Algorithm (FA) as well as Particle Swarm 17 

Optimization (PSO). 18 

 19 

Apart from being population-based, PSO is a stochastic and adaptive optimization technique 20 

which was inspired by the social interaction in human beings and animals like bird flocking 21 

or fish schooling. It was introduced by Kennedy and Eberhart in 1995 [7, 15]. To optimize a 22 

problem, the basic PSO (BPSO) technique is initialized by randomly distributing a set of 23 

particles (potential solutions) in a solution search space. The particles are made to fly through 24 

the problem space and allowed to repeatedly search for optimal solution over a period of 25 

time. In the process, other particles follow the current optimum particle while their positions 26 
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and velocities are updated in each iteration relative to the personal experience of each particle 1 

as well as that of the entire particles. The quality of the solution found by each particle is 2 

obtained using the objective function of the problem being optimized. Represented in 3 

equations (1) and (2) are the respective updating formulas for the velocity and position of 4 

each particle. In a physical d-dimensional search space, the particle’s position is represented 5 

as  ⃗  = (xi1, …, xid) while its velocity is represented as  ⃗⃗  = (vi1, …, vid). 6 

 7 
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 9 

From equation (1), it is clear that the velocity updating formula is made up of three different 10 

components. These components are briefly described as follows: 11 

(i) Inertia component: This component provides the necessary momentum for particles to 12 

roam across the search space. It is made up of the inertia weight parameter () which 13 

help to balance the exploration and exploitation activities of the algorithm; and the 14 

particle’s previous velocity at tth
 iteration ( ⃗⃗  ). In the original PSO technique, the value 15 

of 1 was used for. This component models the tendency of a particle to remain in the 16 

same direction it has been navigating. 17 

(ii) Cognitive component: This component represents the memory or personal thinking of 18 

the particle. It consists of a constant value c1 representing the self-confidence of a 19 

particle, a vector of random numbers ( ⃗ ) uniformly generated in the interval [0,1] and 20 

the distance between the best position the particle has ever visited known as personal 21 

best (  ⃗⃗⃗⃗⃗  ) and its current position ( ⃗  ). This component models the linear attraction of 22 

the particle towards its own best experience. 23 
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(iii) Social component: This component represents the knowledge and collaborative effect 1 

of the particles of the swarm, in finding the global optimal solution. It is made up of a 2 

constant value c2 representing the swarm confidence, another vector of random numbers 3 

( ⃗ ) uniformly generated in the interval [0,1] and the distance between the swarm’s best 4 

position known as global best (  ⃗⃗ ⃗⃗ ⃗ ) at tth iteration and the particle’s current position 5 

( ⃗  ). This component models the linear attraction of the particle towards the best 6 

experience of the swarm. 7 

 8 

During execution of the BPSO technique, there are possibilities that the design variables can 9 

go outside their lower (Xmin) and upper (Xmax) boundaries and take values which could lead to 10 

divergence. In such situations, the common practice is to artificially bring the affected 11 

particle back to the search space boundary. In the same vain, velocities of the particles are 12 

clamped within some specified maximum velocity bounds [Vmin, Vmax], where Vmin is the 13 

velocity lower bound and Vmax is the velocity upper bound. This is because the velocity 14 

updating formula is stochastic and the velocity may become too high which could lead the 15 

particles becoming uncontrolled and exceed the search space. 16 

If xi < xmin 

  xi  xmin 

else if xi > xmax 

  xi  xmax 

end if 

If vi < vmin 

  vi  vmin 

else if vi > vmax 

  vi  vmax 

end if 

Algorithm 1 Algorithm 2 
 17 

From the foregoing, two major observations can be made: 18 

(i) The BPSO consists of 3 major steps in sequential order of  generating positions and 19 

velocities for all the particles that make up the swarm; updating the velocities of the 20 

particles; and  updating the positions of the particles. 21 

(ii) The BPSO depends on some parameters which control its operations and efficiency 22 

namely:  Inertial weight parameter ();  Self-confidence of particle (c1) and swarm 23 
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confidence (c2), which are also known as acceleration constants (or coefficients); 1 

Cognitive and social random factors  ⃗  and  ⃗ ; Particles’ velocity clamping, [Vmin, 2 

Vmax]; and  Particles’ position clamping, [Xmin, Xmax]. 3 

Although, the topology of particle’s neighbourhood may also influence the trajectories of 4 

particles but this is not considered in this paper.  5 

 6 

Naturally, BPSO technique combines local search method (through self-experience) with 7 

global search methods (through neighbouring experience), attempting to balance exploration 8 

and exploitation. Exploration is the ability the algorithm to explore new regions of the search 9 

space, while exploitation is the ability to search a smaller region more thoroughly. It is 10 

widely accepted that BPSO technique has good global search ability but weak local search 11 

ability, because it can easily locate the good area of the solution space in which good 12 

solutions are located but finding the best solution proves difficult. This challenge has 13 

motivated many researchers to introduce many new BPSO variants while others tried to 14 

improve on existing variants. [1, 2, 11, 18]. This paper has made some improvements on the 15 

BPSO technique to make it simpler but more effective. It has been empirically shown that the 16 

algorithm can perform efficiently without some of the control parameters listed above. This 17 

was done by using some well-known benchmark problems extensively used in the literature 18 

for the evaluations of metaheuristics to validate the proposed modified BPSO (M-BPSO). 19 

The importance of BPSO to enhance its local search ability for computational effectiveness 20 

and efficiency is one of the things achieved by M-BPSO. 21 

 22 

The remaining part of the paper is organized as follows. In section 2, the control parameters 23 

in BPSO technique are reviewed. The proposed modification to BPSO algorithm is described 24 

in section 3. Sections 4 gives the methodological approach used in carrying out the numerical 25 
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simulations in the paper and Section 5 reports and discusses the numerical simulations and 1 

results. Finally, Section 6 concludes the paper. 2 

2. Control parameters in particle swarm optimization technique 3 

When PSO was proposed in 1995, a new world was opened to researchers in the field of 4 

optimization. Since then quite a number of researches have been done, with the singular focus 5 

to improve on the performance and robustness of the technique in handling optimization 6 

problems. These researches have been in terms of introducing velocity limit, Vmax [7] and 7 

inertia weight,  [23] into PSO and their various improvements [1, 3];  introduction of 8 

constriction factor [5], creating other variants of PSO [11] and hybridization of PSO with 9 

other algorithms [13]. Briefly reviewed below are the control parameters mentioned earlier. 10 

Inertia weight and its variants: 11 

This parameter, commonly represented as ω, was introduced into PSO by [23]. The 12 

inspiration behind its introduction was the desire to balance the scope of local and global 13 

searches and reduce the importance of velocity clamping during the optimization process. 14 

Over the years several inertia weight strategies have been proposed to dynamically adjust the 15 

value of  in each iteration [17 19, 20]. These strategies include random [8], chaotic random 16 

[10], linear decreasing [24, 28], and chaotic linear decreasing [10]. In [24, 28], the linear 17 

decreasing inertia weight strategy decreases from a value of 0.9 to 0.4, however there are 18 

cases where values other than 0.9 or 0.4 are used [16]. Though it enhanced the performance 19 

of PSO, it usually got into local optimum when solving functions with more apices [10]. In 20 

[8] it was experimentally found that random inertia weight strategy increases the convergence 21 

in PSO and could find good results with most functions. A chaotic term was included to the 22 

random as well as the linear decreasing inertia weight strategies in [10]. These strategies were 23 

experimentally proved to be superior to the random and linear decreasing strategies in terms 24 

of convergence speed, global search ability and convergence precision. Other inertia weight 25 

strategies include Fuzzy adaptive inertia weight which is dynamically adjusted on the basis of 26 
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fuzzy sets and rules in each iteration [25] and adaptive inertia weights which are dynamically 1 

adjusted based on some feedback parameters like swarm particle fitness, particle rank, 2 

distance to particle, global best positions, and particle success rate  [20]. All these inertia 3 

weight strategies have been experimentally proved to enhance the performance of PSO with 4 

varying degree of successes.  5 

Maximum velocity: 6 

The particle velocity based on equation (1), without restriction, can grow unbounded while 7 

the particle oscillates around an optimum, increasing its distance to the optimum on each 8 

iteration. This initiated the introduction of velocity clamping effect to avoid the phenomenon 9 

of "swarm explosion".  This idea was introduced by Eberhart and Kennedy in 1995 [9]. It 10 

improves the performance of PSO because it helps particles take reasonably sized steps so as 11 

to rake through the search space rather than bouncing about excessively. Efforts have been 12 

made in time past to eliminate the use of Vmax  but researches have shown that velocity 13 

clamping has become a standard feature of PSO [9].  14 

 15 

Wrong setting of maximum velocity bounds for particles could have negative affect on the 16 

performance of PSO algorithms because it may either make the particles do too much 17 

exploration or exploitation (if the value is too high or too low). Different efforts have been 18 

made by researchers to determine appropriate values for the velocity limits of particles in 19 

order to improve on the performance of PSO [1, 9, 24]. The three major methods that appear 20 

in literature, for computing the velocity clamping (Vmin and Vmax) are recorded in [1]:  21 

(i) multiplying the search space range with certain percentage ( ), i.e. Vmax = (Xmax – 22 

Xmin) and Vmin = -Vmax. 23 

(ii) multiplying both the minimum and maximum limits of the search space separately with 24 

certain percentage ( ), i.e. Vmax = max) and Vmin = min).  25 

(iii) assigning the search space upper limit to Vmax, i.e., Vmax = Xmax 26 
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 1 

Some of the different values used by different authors for   (0,1] to determine velocity 2 

clamping for particles are shown Table 1.   3 

Acceleration coefficients 4 

These parameters are commonly represented as c1 (cognitive scaling parameter) and c2 (social 5 

scaling parameter) and are positive values. The values of 2.0 as originally assigned to these 6 

parameters when PSO was introduced in [13], have been adopted by many researchers over 7 

the years [1, 4, 10, 11, 29]. As a result of the sensitive roles of these parameters in the 8 

performance of PSO, other researchers have attempted to adjust them through empirical 9 

studies. Such researches include [30 – 33]. In [33], the role acceleration coefficients play in 10 

the performance of PSO was investigated by using unsymmetrical transfer range of 11 

acceleration coefficients. The simulations that were carried out showed an improved optimum 12 

solution for most of the benchmarks that were used was observed when changing c1 from 13 

2.75 to 1.25 and changing c2 from 0.5 to 2.25, over the full range of the search. 14 

Table 1: Various values for  in the literature  
 Velocity clamping formula Reference 

0.2 Vmax =  * Xmax  [6] 

0.05 Vmax =  * Xmax  
Vmin =  * Xmin 

[1, 22] 

0.15 Vmax =  * (Xmax – Xmin) [1, 9, 29] 
0.5 Vmax =  * (Xmax – Xmin) [1, 3] 

 15 

In [31], New PSO (NPSO) was proposed. In it the cognitive acceleration coefficient c1 was 16 

split into good experience component c1g and bad experience component c1b to help the 17 

particles move towards their previous best positions and away from their previous worst 18 

positions in order to facilitate exploration capability. For the purpose of improvement Anti-19 

Predatory PSO (APSO) was proposed by [32], where the cognitive acceleration coefficients 20 

c1 was split into good experience component c1g and bad experience component c1b and c2 21 

was also split was split into good experience component c2g and bad experience component 22 

c2b. The bad experiences help particles to by-pass their previous worst positions while good 23 
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experiences help particles to move towards their previous best positions. Similarly in [30], 1 

Time-Varying Acceleration Coefficients PSO (PSO-TVAC) was introduced to enhance the 2 

global search in the early part of the optimization and to encourage the particles to converge 3 

toward the global optimum at the end of the search. This was achieved by linearly decreasing 4 

the cognitive parameter c1 from a high value c1max to a low value c1min but the social 5 

parameter c2 linearly increased from a low value c2min to a high value of c2max. 6 

 7 

Relationships among the control parameters in the velocity update formula 8 

The importance of parameter selection in PSO algorithm has drawn attention from many 9 

researchers. However, the general belief in PSO community has been that the inertia weight 10 

balances exploration and exploitation activities in PSO algorithm. Researches have shown 11 

that that inertia weight cannot balance exploration and exploitation by itself in PSO algorithm 12 

but in cooperation with some other (control) parameters [12, 24]. Different researchers have 13 

proposed and used different sets of control parameter values which are presented in Table 2.  14 

 15 

Table 2: Various BPSO values for inertia weight and acceleration constants parameters in the literature  
Inertia weight  

() 
Cognitive component acceleration 

constant ( c1) 
Social component acceleration 

constant (c2) 
Reference 

0.729 1.494 1.494 [5] 
0.6 1.7 1.7 [27] 

0.729 2.041 0.948 [12] 
0.715 1.7 1.7 [12] 
0.72 1.49 1.49 [18] 
0.6 1.8 1.8 [14, 21] 

Computed using 
formula 2.8 1.3 [3] 

 16 

3. The proposed modifications in PSO technique 17 

The efficient optimizing power of PSO lies in the balancing of exploration and exploitation 18 

activities. As earlier established, the inertia weight, acceleration constants, random factors 19 

and velocity threshold play important roles in the exploration and exploitation ability of PSO 20 

algorithm, though their selections could be problem-dependent, laborious and time 21 
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consuming except the random factors. The following observation motivated and facilitated 1 

the proposed modification done to the basic PSO in this paper. 2 

 3 

(i) Experimental studies in [24] show that large Vmax enhances exploration while small Vmax 4 

enhances exploitation. The implication of this is that, if Vmax can be dynamically varied 5 

from some large value to some small value, then it can solely play the role of the inertia 6 

weight parameter. Besides, clamping the velocity of a particle can change the step size 7 

and direction of the particle. As each dimension is optimized independently, the particle 8 

moves toward the global best on each dimension with a speed depending on the velocity 9 

limits, thereby creating opportunities for particles to comb the search space a bit more 10 

thoroughly than when their velocities are unclamped [9]. Above all, exploration and 11 

exploitation in PSO could better be addressed by working directly with the velocities of 12 

the particles because it is the direct determinant of the particles' step sizes. 13 

(ii) Without doubt, the appropriate selection of c1 and c2 can accelerate convergence and 14 

avoid being trapped in local optimums. Combining them with the random factors (r1 and 15 

r2) to weight the cognitive and social components as shown in equation (1) make particles 16 

to base their searches in the interval [0,2] centred on particle’s personal best and swarm 17 

global best. This could lead a problem of particles jumping over the optimal solution if 18 

large weighting factors are generated or the number of iterations to locate the optimal 19 

solution may be increased if small weighting factors are generated [2, 15]. Some efforts 20 

could be saved if c1 and c2 are eliminated (i.e., they are allowed to take the value of 1). 21 

(iii)The purpose why r1 and r2 was included into PSO algorithm was to make it stochastic to 22 

facilitate exploration. Despite the good roles they play, it is possible that PSO can still 23 

perform well if they are not included in the velocity formula. To compensate for this 24 

exploration could be initiated in some other part (e.g., position clamping, etc.) of the 25 

algorithm.  26 
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Based on these observations, the modifications were done to the basic PSO algorithms are 1 

now described as follows: 2 

(i) During each iteration, the largest dimension value (Ld) and the smallest dimension value 3 

(Sd) among the dimensions of all the particles, were obtained according to equations (3) 4 

and (4), where,   
  is the ith particle with jth

 dimension. 5 

      
 
(   

 
(  
 
)) (3) 

      
 
(   

 
(  
 
)) (4) 

(ii) The upper limit xmax and lower limit xmin of the solution search space for the particles 6 

were obtained according to equations (5) and (6), where | . | means absolute value. 7 

        (|  | |  |) (5) 

           (6) 

(iii)After obtaining xmax and xmin, they are used to compute the upper (vmax) and lower (vmin) 8 

particle velocity limits as defined in equations (7) and (8). 9 

           (7) 

           (8) 

where,  is a velocity clamping percentage. It serves as a scaling factor of the upper and 10 

lower solution space limits to help reduce the velocity range for particles. As the 11 

algorithm progresses, the velocity range of the particles decreases, thereby reducing the 12 

distance each particle should exploit for better solution and the smaller the velocity range 13 

the higher the exploitation by the particles. 14 

(iv) Next, an integer random number p is generated in the interval [1, S] where S is the swarm 15 

size and out of the swarm, p number of particles are randomly selected 16 
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(v) A value h was obtained by dividing the problem dimension by 2, after which h number of 1 

dimensions were randomly selected for each particle picked in (iv). The position and 2 

velocity for each of the dimension are uniformly re-initialized based on the new xmin, xmax, 3 

vmin, and vmax obtained from equations (5) – (8). This process is represented by equations 4 

(9) – (11). 5 

  (
                 

 
) (9) 

  
 
 (         )      [   ]       (10) 

  
 
 (         )      [   ]       (11) 

where i and j are the index and dimension respectively, of a randomly selected particle in 6 

(iv). This method help the algorithm achieve some level of exploration by providing it 7 

with the particles opportunities of leaving their current positions to other parts of the 8 

search space, thus helping to escape getting stuck in local optimum. This happens 9 

throughout the process of the algorithm. 10 

(vi) When the particles' positions are being updated, contrary to the common method 11 

(Algorithm 1) of forcing the particles that obtain values outside the search space to the 12 

search boundaries, they are adjusted using Algorithm 3. This method can also enable the 13 

algorithm jump out of local optimum and does some exploration to search other parts of 14 

the search space. This also happens throughout the process of the algorithm. 15 

If xi < xmin 

  xi  xmin + (xmin – xi)* 

random(0,1) 

else if xi > xmax 

  xi  xmax - (xi – xmax)* 

random(0,1) 

end if 

Algorithm 3 
 16 
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The algorithm for the proposed modified basic PSO (M-BPSO) is presented in Algorithm 4. 1 

The shaded portions show the modifications that have been incorporated into BPSO.  2 

Begin M-BPSO Algorithm 

Input:  f: the function to optimize 

 s: the swarm size 

 d: the problem dimension 

 Xmin, Xmax : decision variable search range 

 Vmin, Vmax : particle velocity limits 

Output: x*: the best particle position found (global 

best) 

 f*: the best fitness value found 

Initialize: position xi = (xi1, …, xid) and velocity vi = (vi1, 

…, vid), for all particles in problem space 

evaluate f(xi) in d variables and get pbesti, (i = 1, …, s)  

gbest  best of pbesti  

While stopping criteria is false do 

if it is necessary, compute inertia weight (ω) if it is not 

a constant 

compute new Xmin, Xmax using equations (3) – (6) 

compute new Vmin, Vmax using equations (7) and (8) 

generate an integer random value p  U[1,S] and randomly 

pick p particles from the swarm 

compute h using Equation (9) 

using Equations (10) and (11) randomly re-initialize the 

positions and corresponding velocities of h randomly 

selected dimensions of the p particles, based on the new 

Xmin, Xmax, Vmin and Vmax  

randomly reinitialize velocities for particles using the 

new vr 

Repeat for s times 

Repeat for d times 

update vi for particle using equation (1)  

validate for velocity boundaries using Algorithm 2 

update xi for particle using equation (2) 

validate for position boundaries using Algorithm 3 

compute f(xi) 

End Repeat for d 

compute f(xi) 

obtain new pbesti 

If f(xi) < f(pbesti) then pbesti  xi  

If f(xi) < f(gbest) then 

gbest  xi  

f(gbest)  f(xi) 

end if 

End Repeat for s 

End while 

x*  gbest  

f*  f(gbest) 

Return x* and f* 

End M-BPSO Algorithm 

Algorithm 4  

4. Methodology 3 

The methods enumerated below were applied to systematically achieve the set goals in this 4 

paper. 5 
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(i) Obtain good values from the literature for the parameters (, c1, c2, Vmin and Vmax) to 1 

implement BPSO .  2 

(ii) Create different variants for BPSO and M-BPSO as shown Table 3. 3 

Table 3: Different variants for BPSO and M-BPSO 

Variants of 
BPSO 

Variants of M-
BPSO Variants were implemented with these parameters in velocity updating formula 

BPSO1 M-BPSO1 , c1, c2, r1 and r2 (i.e. all parameters were used) 

BPSO2 M-BPSO2 c1, c2, r1 and r2 (i.e. inertia weight parameters was not used) 

BPSO3 M-BPSO3 , c1 and c2 (i.e. random factors  parameters were  not used) 

BPSO4 M-BPSO4 , r1 and r2 (i.e. acceleration constants parameters were not  used) 

BPSO5 M-BPSO5 r1 and r2 (i.e. inertia weight& acceleration constants parameters were not used) 

BPSO6 M-BPSO6 c1 and c2(i.e. inertia weight& random factor parameters were not used) 

BPSO7 M-BPSO7 None of the parameters (i.e. no parameters  were used) 

 4 

(iii) Implement the various variants in Table 3 using some selected well-studied benchmark 5 

continuous optimization problems in ithe literature and compare results between the 6 

respective variants of BPSO and M-BPSO. This stage will ascertain the possibilities of 7 

implementing BPSO and M-PSO without some (or all) of the control parameters as well 8 

as their corresponding performances 9 

(iv) If any of the M-BPSO variants perform better, select among them those with few 10 

number of parameters and validate their performance against the following algorithms – 11 

modified attractive repulsive PSO (MARPSO) [11] and another swarm intelligence 12 

technique, Bioluminescent swarm optimization algorithm (BSO) [21]. 13 

(v) Measure the performances of all the algorithms using the following criteria [1,34,35]: 14 

a. Best fitness solution: This is the best fitness solution among all the best fitness 15 

solutions obtained by an algorithm in all the specified independent runs  16 

b. Mean best fitness solution: This is the average of all the best fitness solutions. It is a 17 

measure of the precision (quality) of the result that the algorithm can get within 18 

given iterations in all the specified independent runs 19 
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c. Standard deviation (Std. Dev.) of mean best fitness solution over 50 runs: This 1 

measures the algorithm's stability and robustness  2 

d. Average number of iteration an algorithm met the specified success criteria. This 3 

was mainly used to judge the performance of the variants when there is a tie in 4 

success rate (SR) between the respective competing variants 5 

e. Success rate (SR) =                          
                    

    : This is the rate at which the 6 

success criteria is met during the independent number of runs and is a reflection of 7 

the global search ability and robustness of the algorithm 8 

 9 

5. Numerical simulations 10 

Two sets of experiments were conducted in this study. In the first set, all the variants of M-11 

BPSO and BPSO as defined in Table 3, was implemented using the same testing conditions 12 

and their performances were compared. The essence of this set of experiments is to test the 13 

effects of the various control parameters in the particle's velocity updating formula in 14 

Equation (1) on the respective variants. In the second sets of experiments, some of the 15 

variants of M-BPSO that that are independent on the inertia weight parameter (ω) were 16 

selected and tested against two existing optimization algorithms that are very efficient, 17 

Modified Attractive-Repulsive PSO (MARPSO) in [11] and Bioluminescent Swarm 18 

Optimization (BSO) algorithm in [21]. The essence of this set of experiments was to test if 19 

the proposed algorithm (M-BPSO) could favourably compete with existing optimization 20 

algorithms. The application software was developed in Microsoft Visual C# programming 21 

language. 22 

5.1. Test problems 23 

For the first set of experiments, a total of 6 scalable test problems in Table 4 and 4 non-24 

scalable problems in Table 5 were used. These problems adapted from [1, 14, 20], have 25 
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diverse complexities and multimodality common among many complex global optimization 1 

problems. They have different characteristics (US – unimodal separable, UN – unimodal non-2 

separable, MS – multimodal separable, MN – multimodal non-separable). For the second set 3 

of experiments, the test problems and other testing conditions were used as recorded in [11, 4 

21].  5 

5.2. Parameter setting 6 

For the first set of experiments, the maximum number of iterations allowed was 3000. The 7 

dimension for the problems in Table 4 was 30 while in Table 5 the dimensions of Easom, 8 

Schaffer's f6 and Shubert were each set to 2, but that of Salomon was 5. A swarm size of 20 9 

was used in all the experiments and 50 independent runs were conducted to collect data for 10 

analysis. The termination criteria for all the algorithms were set to be the maximum number 11 

of iterations relative. A run by any of the algorithms was recorded successful when the mean 12 

best fitness value at the end of the maximum iteration was less than -0.999999 (for Easom), -13 

186.7308 (for Shubert) and less than 10-5 for other problems.  The velocity clamping 14 

percentage parameter ( ) was 0.25 for M-BPSO; ω = 0.715 and c1 = c2 = 1.7 for both M-15 

BPSO and BPSO based on the findings in the experimental studies in [12]; velocity 16 

thresholds (Vmin and Vmax) were dynamically obtained using equations (7) and (8) for M-17 

BPSO; while for BPSO, maxmax 05.0 XV  , minmin 05.0 XV   based on the findings in some of 18 

our experiments that they make BPSO perform efficiently, where Xmin and Xmax are the fixed 19 

minimum and maximum values of the domain for the decision variables. The parameters r1 20 

and r2 were randomly generated using the uniform random number generator.  21 

Table 4: Scalable Benchmark problems 

No. Problem Formulation Feature Search 
range 

1 Ackley   ( ⃗)        

(

     √
 

 
∑  

 

 

   
)

     (
 

 
∑   (    )

 

   

)      MN 32 

2 Griewank  ( ⃗)  
 

    
(∑  

 

 

   

) (∏   (
  

√ 
)

 

   

)   MN 600 
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3 Levy 
 ( ⃗)      (   )  ∑(    )

 (        (     ))

   

   

 

 (    )
 (      (    ))            

    

 
               

MN 10 

4 Noisy Quadric  ( ⃗)  ∑   
        (   )

 

   

 US 1.28 

5 Rastrigin  ( ⃗)  ∑(  
       (    )    )

 

   

 MS 5.12 

6 Rosenbrock   ( ⃗)  ∑(   (       
 )
 
)  

   

   

(    )
  UN 30 

 1 

Table 5: Nonscalable Benchmark problems 

No. Problem Formulation Feature Search 
range 

1 Easom  ( ⃗)      (  )    (  )     ( (    )
  (    )

 ) UN 100 

2 Salomon  ( ⃗)      (  ∑  
 

 

   

)     √∑  
 

 

   

   MN 100 

3 Schaffer's f6   ( ⃗)      
    (√    

    
 )     

(     (    
    

 )   ) 
 MN 100 

4 Shubert  ( ⃗)  ∏(∑    ((   )    )

 

   

)

 

   

 MN 10 

 2 

5.3. Experimental results and discussions 3 

Results obtained from all the experiments are presented in Tables (6) – (24) and discussed in 4 

this sub-section to show the overall computational effectiveness and efficiencies of all the 5 

algorithms that were compared in the paper. The measurement criteria stated in Section 4 6 

were used. In all the tables “*” means no result was computed because the algorithm could 7 

not meet the success criteria in all the runs for the particular test problem. Bold values 8 

indicate best results obtained among the competing algorithms. 9 

 10 

5.3.1. Results for the non-scalable test problems 11 

Tables (6) – (12) show the results obtained by the respective variants of BPSO and M-BPSO 12 

for the low-scaled benchmark problems. The results reflect their performances when all, 13 

some and none of the control parameters were used in the particles' velocity update formula. 14 
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For Schaffer's f6 and Salomon problems, all the variants of the proposed M-PSO not only 1 

outperformed those of BPSO, but were able to obtain the global minimum and 100% success 2 

rate for the problems. The consistencies in their performances and the successfulness of M-3 

BPSO7 show that the control parameters have no significant effects on the computational 4 

effectiveness and efficiency of the proposed algorithm. For Easom problem, four variants of 5 

M-BPSO (i.e., M-BPSO3, M-BPSO5, M-BPSO6 and M-BPSO7) performed better than their 6 

respective counterpart of BPSO variants. On the other hand three of the variants of BPSO 7 

(i.e., BPSO1, BPSO2 and BPSO4) performed better than their respective counterpart of M-8 

PSO variants. From the results obtained as Best fitness, Mean fitness and standard deviation 9 

by M-BPSO variants in terms of magnitude, it was observed that the proposed algorithm was 10 

consistent in its performance irrespective of the presence of all, some or none of the control 11 

parameters in the velocity formula. For Salomon problem, four variants of M-BPSO (i.e., M-12 

BPSO1, M-BPSO3, M-BPSO6 and M-BPSO7) performed better than their respective 13 

counterpart of BPSO variants, but were unable to meet the success criteria like BPSO 14 

variants. On the other hand three of the variants of BPSO (i.e., BPSO2, BPSO4 and BPSO5) 15 

performed better than their respective counterpart of M-PSO variants. Another interesting 16 

observation that was made is that, M-BPSO variants were consistent in their performances in 17 

terms of magnitude, irrespective of the presence of any or none of the control parameters in 18 

the velocity formula. 19 

 20 

The inconsistencies of the performances of BPSO variants in all the results presented in the 21 

tables show that the presence of some or none of the control parameters in the particle 22 

velocity update formula have some significant effects on it. Surprisingly, BPSO6 obtained 23 

better results than BPSO1 in Schaffer's f6, BPSO4 obtained better results than BPSO1 in 24 

Shubert, and BPSO4 had equal performance with BPSO1 in Easom problems. All these are 25 

clear indications that there are possibilities for BPSO algorithm to perform better when some 26 
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of the control parameters are not used in the particle's velocity update formula than when all 1 

the parameters are used. These show that the insensitivity to the effects of the control 2 

parameters exhibited by the proposed algorithm (M-BPSO) is reasonable. In fact, it can be 3 

clearly stated that the inertia weight parameter (ω) was not responsible for the exploration 4 

and exploitation activities of M-PSO, but the dynamically decreased of the particle's velocity 5 

limits. 6 

5.3.2. Results for the high-scaled test problems 7 

To further validate the computational effectiveness and efficiencies of M-BPSO and BPSO 8 

algorithms and study their reactions to the absence of some or all the control parameters in 9 

the particle's velocity update formula, they were tested using 6 scaled test problems with 10 

higher dimension. Presented in Tables (13) – (19) are the results obtained by all the variants 11 

of both algorithms optimizing these problems. In all the results, except Table 16 where 12 

BPSO4 obtained better Best fitness and Mean fitness values, all the variants of M-PSO clearly 13 

outperformed their respective counterpart in all the test problems. In Rastrigin (Tables 14 and 14 

15), Ackley and Griewank problems in all the tables, M-BPSO variants were able to obtain 15 

100% success rate and global minimum, satisfying the success criteria which BPSO variants 16 

could not achieve. The results further revealed that BPSO can only obtain better results when 17 

all the control parameters are used in the particles’ velocity updating formula, showing that it 18 

is sensitive to the parameters and that the inertia weight parameter (ω) was responsible for its 19 

exploration and exploitation activities (since the variants of BPSO that seems to perform 20 

better than their fellow variants, for example BPSO1 and BPSO4, contain the inertia weight 21 

parameter); whereas the inertia weight parameter has little or no effects on the variants of M-22 

BPSO (since there are some of its variants without the inertial weight parameters, for 23 

example M-BPSO6 and M-BPSO7, which performed better than their fellow variants that 24 

have). Also, from the results, there are evidences of consistent successful performances by 25 

the variants of M-BPSO compared with those of BPSO. 26 
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 1 

From the results, it can be observed that it is only M-PSO2 and M-BPSO3 in Tables (14) and 2 

(15) that could obtain 100% success rate optimizing Rastrigin problem. On investigation it 3 

was experimentally discovered that all the M-BPSO variants could obtain 100% success rate 4 

for Rastrigin when the parameter  was set to 0.15. This value was discovered, through 5 

further experiments, to be efficient for these variants optimizing the other problems with 6 

100% success rate as well. With this discovery, it was clear that further experiments will 7 

prove the optimal value for  to improve on the current performance of M-BPSO.   8 

5.3.3. Comparison of M-BPSO with some existing optimization algorithms 9 

When it became clear that M-BPSO could perform efficiently without the inertia weight 10 

parameter ( ), its variants without this parameter (M-BPSO2, M-BPSO5, M-BPSO6 and M-11 

BPSO7) were selected for further comparisons with Modified Attractive-Repulsive PSO 12 

(MARPSO) [11] and Bioluminescent Swarm Optimization (BSO) algorithm [21]. The results 13 

for the two competing algorithms were obtained from the respective referenced literature. 14 

Presented in Table 20 are the results for MARPSO and the selected 4 M-BPSO variants while 15 

the results in Tables (21) – (24) are for BSO and the 4 M-BPSO variants. In these 16 

comparisons,  was set to 0.15 as a result of the discovery explained before. 17 

 18 

Table 20 shows the mean best fitness values obtained by the algorithms for all the 4 testing 19 

problems. The solution error tolerance, according to [11], was set to 1.0e-10. Meaning that, 20 

any solution obtained that was lower than the error tolerance was taken to be zero (global 21 

minimum). From the results, all the algorithms performed equally in Ackley (when the 22 

problem dimension was 20), Griewank (when the problem dimension was 100) and Rastrigin 23 

(when the problem dimensions were 50 and 100). But all the M-BPSO variants outperformed 24 

MARPSO in Ackley (when the problem dimensions were 50 and 100) and in Griewank (when 25 

the problem dimensions were 20 and 50); in Rastrigin, when the problem dimension was 20, 26 
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only 2 of M-BPSO variants could outperform MARPSO. This is a clear indication that M-1 

BPSO is better-off in global search and local refinement operations than MARPSO. 2 

However, M-BPSO variants were outperformed by MARPSO in Rosenbrock across the three 3 

different problem dimensions. These results equally show that M-BPSO is more efficient 4 

optimizing multimodal problems.  5 

 6 

In comparison with BSO, all the selected variants of M-BPSO performed better being able to 7 

obtain global minimum and better stability in Griewank problem across the problem 8 

dimensions as shown in Table 21. The same thing was repeated in Table 22 for Rastrigin 9 

problem except M-BPSO7 that could not meet up when the problem dimension was 50. In 10 

Table 23, BSO was better solution accuracy, while M-BPSO was better in algorithm stability 11 

(better standard deviation). For the Generalized Schaffer's f6 problem, when the problem 12 

dimension was 10, all the variants of M-BPSO obtained global minimum and better stability 13 

compared with BSO. When the dimension was 30, all the variants of M-BPSO except M-14 

BPSO7, performed better than BSO in solution quality only. However, none of the variants 15 

could succeed over BSO when the dimension was increased to 50. From all these results, it is 16 

still very clear that, though simpler in nature, M-BPSO algorithm has the capability of 17 

efficient performance without some or all the control parameters in the velocity update 18 

formula. 19 

Table 6: Results of B-PSO1 and M-BPSO1 for the 4 non-scaled problems (Parameters used  in velocity formula = ω, c1, c2, r1, and r2)   
Problem Easom Schaffer's f6 Salomon Shubert 
Algorithm B-PSO1 M-BPSO1 B-PSO1 M-BPSO1 B-PSO1 M-BPSO1 B-PSO1 M-BPSO1 

Best Fitness -9.999989e-01 -9.999880e-01 0.000000e+00 0.000000e+00 9.983321e-02 0.000000e+00 -1.867309e+02 -1.867233e+02 
Mean Fitness -9.999989e-01 -9.998001e-01 3.497728e-03 0.000000e+00 9.983321e-02 0.000000e+00 -1.845845e+02 -1.855964e+02 
Std. Dev. 1.221245e-15 2.408844e-04 4.663637e-03 0.000000e+00 7.076311e-18 0.000000e+00 1.502480e+01 1.809705e+00 
Av. Iteration * * 712.72 173.20 * 919.10 69.67 * 
SR (%) 0 0 64 100 0 100 98 0 

 

Table 7: Results of B-PSO2 and M-BPSO2 for the 4 non-scaled problems (Parameters used  in velocity formula = c1, c2, r1, and r2)  
Problem Easom Schaffer's f6 Salomon Shubert 
Algorithm B-PSO2 M-BPSO2 B-PSO2 M-BPSO2 B-PSO2 M-BPSO2 B-PSO2 M-BPSO2 

Best Fitness -9.999788e-01 -9.999989e-01 2.325063e-05 0.000000e+00 9.983322e-02 0.000000e+00 -1.867308e+02 -1.867262e+02 
Mean Fitness -9.995661e-01 -9.994382e-01 2.928990e-04 0.000000e+00 1.030151e-01 0.000000e+00 -1.867242e+01 -1.847963e+02 
Std. Dev. 4.707143e-04 7.567356e-04 2.307922e-04 0.000000e+00 6.221797e-03 0.000000e+00 7.596182e-03 2.432173e+00 
Av. Iteration * * * 182.84 * 939.44 2429 * 
SR (%) 0 0 0 100 0 100 2 0 
 20 
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Table 8: Results of B-PSO3 and M-BPSO3 for the 4 non-scaled problems (Parameters used  in velocity formula = ω, c1 and c2)  
Problem Easom Schaffer's f6 Salomon Shubert 

Algorithm B-PSO3 M-BPSO3 B-PSO3 M-BPSO3 B-PSO3 M-BPSO3 B-PSO3 M-BPSO3 

Best Fitness -9.999989e-01 -9.999841e-01 0.000000e+00 0.000000e+00 9.983321e-02 0.000000e+00 -1.867309e+02 -1.867240e+02 
Mean Fitness -9.798395e-01 -9.996697e-01 3.362930e-03 0.000000e+00 9.983321e-02 0.000000e+00 -1.836850e+02 -1.849065e+02 
Std. Dev. 1.399807e-01 4.013006e-04 4.556663e-03 0.000000e+00 1.952778e-17 0.000000e+00 1.277241e+01 3.854876e+00 
Av. Iteration * * 263.89 174.68 * 832.02 389.32 * 
SR (%) 0 0 18 100 0 100 88 0 
 1 

Table 9: Results of B-PSO4 and M-BPSO4 for the 4 non-scaled problems (Parameters used in velocity formula  = ω, r1, and r2)  
Problem Easom Schaffer's f6 Salomon Shubert 
Algorithm B-PSO4 M-BPSO4 B-PSO4 M-BPSO4 B-PSO4 M-BPSO4 B-PSO4 M-BPSO4 

Best Fitness -9.999989e-01 -9.999978e-01 0.000000e+00 0.000000e+00 9.983321e-02 0.000000e+00 -1.867309e+02 -1.867052e+02 
Mean Fitness -9.999989e-01 -9.998524e-01 7.739937e-03 0.000000e+00 1.917962e-01 0.000000e+00 -1.867309e+02 -1.847786e+02 
Std. Dev. 1.221245e-15 2.101345e-04 5.981072e-03 0.000000e+00 1.338715e-01 0.000000e+00 7.605131e-14 4.099844e+00 
Av. Iteration * * 148.23 167.82 * 946.68 77.28 * 
SR (%) 0 0 26 100 0 100 100 0 

 2 

Table 10: Results of B-PSO5 and M-BPSO5 for the 4 non-scaled problems (Parameters used  in velocity formula = r1, and r2)   
Problem Easom Schaffer's f6 Salomon Shubert 
Algorithm B-PSO5 M-BPSO5 B-PSO5 M-BPSO5 B-PSO5 M-BPSO5 B-PSO5 M-BPSO5 

Best Fitness -9.999936e-01 -9.999887e-01 1.200820e-06 0.000000e+00 9.983594e-02 0.000000e+00 -1.867307e+02 -1.867269e+02 
Mean Fitness -9.991236e-01 -9.994715e-01 3.977075e-04 0.000000e+00 1.106470e-01 5.493292e-134 -1.867190e+02 -1.855022e+02 
Std. Dev. 9.938748e-04 4.613385e-04 3.636144e-04 0.000000e+00 1.686063e-02 3.719269e-133 1.282698e-02 1.493956e+00 
Av. Iteration * * 2639.00 203.72 * 978.42 * * 
SR (%) 0 0 2 100 0 100 0 0 
 3 

Table 11: Results of B-PSO6 and M-BPSO6 for the 4 non-scaled problems (Parameters used in velocity formula  = c1 and c2)   
Problem Easom Schaffer's f6 Salomon Shubert 
Algorithm B-PSO6 M-BPSO6 B-PSO6 M-BPSO6 B-PSO6 M-BPSO6 B-PSO6 M-BPSO6 

Best Fitness -9.999987e-01 -9.999945e-01 4.941064e-08 0.000000e+00 9.983321e-02 0.000000e+00 -1.867309e+02 -1.867231e+02 
Mean Fitness -9.571209e-01 -9.994552e-01 3.833779e-06 0.000000e+00 9.983498e-02 0.000000e+00 -1.848939e+02 -1.849871e+02 
Std. Dev. 1.588489e-01 5.335085e-04 6.687517e-06 0.000000e+00 1.051058e-05 0.000000e+00 9.329951e+00 3.460685e+00 
Av. Iteration * * 1359.16 173.20 * 913.24 1540.59 * 
SR (%) 0 0 90 100 0 100 34 0 
 4 

Table 12: Results of B-PSO7 and M-BPSO7 for the 4 non-scaled problems (Parameters used  in velocity formula = none)   
Problem Easom Schaffer's f6 Salomon Shubert 
Algorithm B-PSO7 M-BPSO7 B-PSO7 M-BPSO7 B-PSO7 M-BPSO7 B-PSO7 M-BPSO7 

Best Fitness -9.005780e-01 -9.999899e-01 9.715912e-03 0.000000e+00 2.080237e-01 0.000000e+00 -1.860328e+02 -1.867299e+02 
Mean Fitness -2.606330e-01 -9.995850e-01 1.944057e-02 0.000000e+00 5.581529e-01 0.000000e+00 -1.670202e+02 -1.855301e+02 
Std. Dev. 3.234060e-01 3.777628e-04 1.421977e-02 0.000000e+00 2.198294e-01 0.000000e+00 1.813388e+01 1.827537e+00 
Av. Iteration * * * 176.40 * 1005.18 * * 
SR (%) 0 0 0 100 0 100 0 0 
 5 

6. Conclusion 6 

In this paper, the basic particle swarm optimization (BPSO) was modified with no additional 7 

complex computational efforts to form another PSO variant (M-BPSO). The modifications 8 

were inspired by the drawbacks of BPSO with respect to premature convergence, weak local 9 

search ability and the desire to make the algorithm simpler but more efficient. Instead of 10 

using the inertia weight parameter, M-BPSO uses a dynamically decreased particle velocity 11 

limits to balance its global and local search activities. This is an indication that the inertia 12 
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weight parameter may not always be necessary for PSO algorithms to work effectively. Also, 1 

it was discovered form the experiments that with proper modifications to some other parts of 2 

PSO algorithms, the acceleration coefficients and random factors may not to be necessary in 3 

the particle velocity updating equation to obtain global optimal solutions to optimization 4 

problems. With the extensive numerical simulations carried out to test the computational 5 

effectiveness and efficiencies of the different variants of the proposed algorithm, it was 6 

discovered that the strength of the algorithm lies on the ability to quickly explore the search 7 

space to locate a near optimal solution and then begin to exploit the neighbourhood for 8 

refinement of the result with the help of dynamically decreased velocity limits.  9 

 10 

The proposed algorithm could not obtain global minimum for Rosenbrock problem, therefore 11 

further study is needed to find out the cause. More work is needed to obtain an appropriate or 12 

optimized value for the parameter  because it is very important to the proposed algorithm. 13 

Another area worth investigating is the effects of using the velocity updating formula without 14 

each of the three components (inertia, cognitive and social) in turn, would have on the 15 

proposed algorithm. Finally, application of the algorithm to real-world problems needs to be 16 

investigated.17 
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 1 

Table 13: Results of B-PSO1 and M-BPSO1 for the 6 scaled benchmark problems (Parameters used in velocity formula  = ω, c1, c2, r1, and r2)  

Problem Ackley Griewank Levy Noisy Quatic Rastrigin Rosenbrock 
Algorithm B-PSO1 M-BPSO1 B-PSO1 M-BPSO1 B-PSO1 M-BPSO1 B-PSO1 M-BPSO1 B-PSO1 M-BPSO1 B-PSO1 M-BPSO1 

Best Fitness 1.465494e-14 4.440892e-16 0.000000e+00 0.000000e+00 2.395702e-29 7.601640e-03 3.225468e-03 1.436999e-06 1.789493e+01 0.000000e+00 1.371127e+00 2.866977e+01 
Mean Fitness 1.261062e-01 1.936229e-15 1.302722e-02 0.000000e+00 1.907781e+00 8.762036e-02 7.897280e-03 2.326464e-05 3.576993e+01 8.255920e+00 2.926283e+01 2.869272e+01 
Std. Dev. 3.808949e-01 1.753472e-15 1.424598e-02 0.000000e+00 1.603408e+00 8.436275e-02 2.687338e-03 1.776083e-05 9.996110e+00 1.340263e+01 2.125632e+01 9.794859e-03 
Av. Iteration 1129.04 143.56 763.75 155.78 640.5 * * 2064.0 * 1456.79 * * 
SR (%) 90 100 40 100 4 0 0 28 0 66 0 0 

 2 
Table 14: Results of B-PSO2 and M-BPSO2 for the 6 scaled benchmark problems (Parameters used  in velocity formula = c1, c2, r1, and r2)  

Problem Ackley Griewank Levy Noisy Quatic Rastrigin Rosenbrock 
Algorithm B-PSO2 M-BPSO2 B-PSO2 M-BPSO2 B-PSO2 M-BPSO2 B-PSO2 M-BPSO2 B-PSO2 M-BPSO2 B-PSO2 M-BPSO2 

Best Fitness 3.318493e+00 4.440892e-16 1.690147e+00 0.000000e+00 4.086332e-01 1.146486e-02 2.633765e-03 1.348283e-06 5.621073e+01 0.000000e+00 8.970409e+02 2.868996e+01 
Mean Fitness 3.745884e+00 3.215206e-15 1.830453e+00 0.000000e+00 3.436966e+00 2.612111e-02 5.335727e-03 2.164105e-05 7.379167e+01 0.000000e+00 1.231009e+03 2.869612e+01 
Std. Dev. 1.034941e-01 1.471699e-15 6.485999e-02 0.000000e+00 1.979661e+00 1.701562e-02 1.606380e-03 1.810866e-05 9.393737e+00 0.000000e+00 1.771140e+02 1.545186e-03 
Av. Iteration * 206 * 209.74 * * * 2172.0 * 909.4 * * 
SR (%) 0 100 0 100 0 0 0 32 0 100 0 0 

 3 
Table 15: Results of B-PSO3 and M-BPSO3 for the 6 scaled benchmark problems (Parameters used  in velocity formula = ω, c1 and c2)   

Problem Ackley Griewank Levy Noisy Quatic Rastrigin Rosenbrock 
Algorithm B-PSO3 M-BPSO3 B-PSO3 M-BPSO3 B-PSO3 M-BPSO3 B-PSO3 M-BPSO3 B-PSO3 M-BPSO3 B-PSO3 M-BPSO3 

Best Fitness 1.941143e+00 4.440892e-16 1.053085e+00 0.000000e+00 2.007583e-01 1.311926e-02 2.543067e-02 7.404291e-07 2.590078e+01 0.000000e+00 1.915256e+02 2.865088e+01 
Mean Fitness 2.793210e+00 4.440892e-16 1.148693e+00 0.000000e+00 2.508899e+00 2.031907e-01 7.404169e-02 2.639914e-05 4.469248e+01 1.421085e-16 4.345740e+02 2.869382e+01 
Std. Dev. 5.910545e-01 0.000000e+00 6.096850e+00 0.000000e+00 2.005186e+00 1.530039e-01 3.418975e-02 2.429079e-05 1.401771e+01 9.947598e-16 2.657047e+02 1.058605e-02 
Av. Iteration * 104.06 * 110.3 * * * 2055.07 * 841 * * 
SR (%) 0 100 0 100 0 0 0 30 0 100 0 0 

 4 
Table 16: Results of B-PSO4 and M-BPSO4 for the 6 scaled benchmark problems (Parameters used in velocity formula  = ω, r1, and r2)  

Problem Ackley Griewank Levy Noisy Quatic Rastrigin Rosenbrock 
Algorithm B-PSO4 M-BPSO4 B-PSO4 M-BPSO4 B-PSO4 M-BPSO4 B-PSO4 M-BPSO4 B-PSO4 M-BPSO4 B-PSO4 M-BPSO4 

Best Fitness 2.407427e+00 4.440892e-16 1.706413e-13 0.000000e+00 4.476413e-01 4.838234e-03 5.177056e-02 7.665106e-07 1.590765e+01 0.000000e+00 4.052000e+00 2.866791e+01 
Mean Fitness 4.726894e+00 2.362555e-15 8.358146e-02 0.000000e+00 2.595458e+00 1.478970e-01 1.583305e-01 2.873640e-05 3.016323e+01 9.325919e+00 2.433012e+01 2.869451e+01 
Std. Dev. 1.210246e+00 1.770663e-15 8.793192e-02 0.000000e+00 1.737213e+00 1.077346e-01 6.860169e-02 2.517682e-05 9.267444e+00 1.182169e+01 2.210057e+01 1.085634e-02 
Av. Iteration * 159.92 777.67 169.68 * * * 2069.17 * 1737.29 * * 
SR (%) 0 100 12 100 0 0 0 24 0 56 0 0 

 5 

 6 
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Table 17: Results of B-PSO5 and M-BPSO5 for the 6 scaled benchmark problems (Parameters used  in velocity formula = r1, and r2)  

Problem Ackley Griewank Levy Noisy Quatic Rastrigin Rosenbrock 
Algorithm B-PSO5 M-BPSO5 B-PSO5 M-BPSO5 B-PSO5 M-BPSO5 B-PSO5 M-BPSO5 B-PSO5 M-BPSO5 B-PSO5 M-BPSO5 

Best Fitness 3.344808e+00 4.440892e-16 1.481730e+00 0.000000e+00 4.798298e-01 1.394459e-02 3.298895e-03 7.663106e-07 5.995154e+01 0.000000e+00 8.185073e+02 2.869521e+01 
Mean Fitness 3.964400e+00 3.854694e-15 2.034272e+00 0.000000e+00 3.244917e+00 2.887764e-02 6.407808e-03 2.823978e-05 8.641181e+01 1.286435e-05 1.901100e+03 2.869590e+01 
Std. Dev. 1.762065e-01 6.961869e-16 1.640075e-01 0.000000e+00 1.881748e+00 2.789996e-03 1.751897e-03 2.197213e-05 1.297889e+01 9.005045e-05 6.210673e+02 5.868816e-04 
Av. Iteration * 277.04 * 274.68 * * * 2256.0 * 1229.39 * * 
SR (%) 0 100 0 100 0 0 0 26 0 98 0 0 

 1 

Table 18: Results of B-PSO6 and M-BPSO6 for the 6 scaled benchmark problems  (Parameters used in velocity formula  = c1 and c2) 

Problem Ackley Griewank Levy Noisy Quatic Rastrigin Rosenbrock 
Algorithm B-PSO6 M-BPSO6 B-PSO6 M-BPSO6 B-PSO6 M-BPSO6 B-PSO6 M-BPSO6 B-PSO6 M-BPSO6 B-PSO6 M-BPSO6 

Best Fitness 1.774445e+00 4.440892e-16 1.091267e+00 0.000000e+00 3.969549e-02 1.485857e-02 2.727736e-03 1.826915e-06 3.425003e+01 0.000000e+00 1.833782e+02 2.866868e+01 
Mean Fitness 2.771661e+00 9.414691e-16 1.312471e+00 0.000000e+00 2.292549e+00 1.040067e-01 5.931060e-03 2.735918e-05 5.564719e+01 9.576085e-01 7.435443e+02 2.869606e+01 
Std. Dev. 4.115397e-01 1.232746e-15 1.182277e-01 0.000000e+00 1.605766e+00 1.191236e-01 2.276012e-03 2.420559e-05 1.615439e+01 6.703259e+00 4.269498e+02 7.175068e-03 
Av. Iteration * 115.32 * 114.38 * * * 2117.2 * 905.08 * * 
SR (%) 0 100 0 100 0 0 0 30 0 98 0 0 

 2 

Table 19: Results of B-PSO7 and M-BPSO7 for the 6 scaled benchmark problems (Parameters used  in velocity formula = none)  

Problem Ackley Griewank Levy Noisy Quatic Rastrigin Rosenbrock 
Algorithm B-PSO7 M-BPSO7 B-PSO7 M-BPSO7 B-PSO7 M-BPSO7 B-PSO7 M-BPSO7 B-PSO7 M-BPSO7 B-PSO7 M-BPSO7 

Best Fitness 6.408485e+00 4.440892e-16 6.394065e+00 0.000000e+00 2.733269e+00 1.390444e-02 2.987741e-02 1.452023e-06 1.418611e+02 0.000000e+00 3.412631e+04 2.867724e+01 
Mean Fitness 9.025067e+00 3.641532e-15 1.185077e+01 0.000000e+00 7.539175e+00 6.907410e-02 8.506966e-02 3.242492e-05 1.862238e+02 1.995969e+01 1.232955e+05 2.869711e+01 
Std. Dev. 1.159080e+00 1.065814e-15 3.358921e+00 0.000000e+00 3.967178e+00 9.854786e-02 5.146707e-02 3.143463e-05 2.269556e+01 3.175845e+01 9.131989e+04 6.736141e-03 
Av. Iteration * 134.22 * 139.20 * * * 2367.7 * 1433.06 * * 
SR (%) 0 100 0 100 0 0 0 20 0 66 0 0 

 3 



26 
 

Table 20: Comparison between MARPSO and proposed variants 

Problem 
Dimension Algorithm Problem 

Ackley Griewank Rastrigin Rosenbrock 

20 

MARPSO 0.00e+00 4.03e-03 0.00e+00 0.13 
M-BPSO2 0.00e+00 0.00e+00 0.00e+00 1.879e+01 
M-BPSO5 0.00e+00 0.00e+00 0.00e+00 1.879e+01 
M-BPSO6 0.00e+00 0.00e+00 1.33e-03 1.879e+01 
M-BPSO7 0.00e+00 0.00e+00 3.11e-07 1.879e+01 

50 

MARPSO 2.39e-10 1.97e-04 0.00e+00 1.28 
M-BPSO2 0.00e+00 0.00e+00 0.00e+00 4.850e+01 
M-BPSO5 0.00e+00 0.00e+00 0.00e+00 4.850e+01 
M-BPSO6 0.00e+00 0.00e+00 0.00e+00 4.851e+01 
M-BPSO7 0.00e+00 0.00e+00 0.00e+00 4.850e+01 

100 

MARPSO 3.99e-09 0.00e+00 0.00e+00 16.93 
M-BPSO2 0.00e+00 0.00e+00 0.00e+00 9.802e+01 
M-BPSO5 0.00e+00 0.00e+00 0.00e+00 9.800e+01 
M-BPSO6 0.00e+00 0.00e+00 0.00e+00 9.809e+01 
M-BPSO7 0.00e+00 0.00e+00 0.00e+00 9.803e+01 

 1 

Table 21: Comparison between BSO and the proposed variants in Griewank problem  

Dimension Measurement BSO M-BPSO2 M-BPSO5 M-BPSO6 M-BPSO7 

10 Mean Fitness 0.03465 0.00000 0.00000 0.00000 0.00000 
Std. Dev. 0.02183 0.00000 0.00000 0.00000 0.00000 

30 Mean Fitness 0.02628 0.00000 0.00000 0.00000 0.00000 
Std. Dev. 0.02542 0.00000 0.00000 0.00000 0.00000 

50 Mean Fitness 0.02919 0.00000 0.00000 0.00000 0.00000 
Std. Dev. 0.01673 0.00000 0.00000 0.00000 0.00000 

 2 

Table 22: Comparison between BSO and the proposed variants in Rastrigin problem  

Dimension Measurement BSO M-BPSO2 M-BPSO5 M-BPSO6 M-BPSO7 

10 Mean Fitness 0.00005 0.00000 0.00000 0.00000 0.00000 
Std. Dev. 0.00004 0.00000 0.00000 0.00000 0.00000 

30 Mean Fitness 0.14368 0.00000 0.00000 0.00000 0.00000 
Std. Dev. 0.38712 0.00000 0.00000 0.00000 0.00000 

50 Mean Fitness 0.32219 0.00000 0.00000 0.00000 1.80655 
Std. Dev. 0.80927 0.00000 0.00000 0.00000 17.9749 

 3 

Table 23: Comparison between BSO and the proposed variants in Rosenbrock problem  

Dimension Algorithm BSO M-BPSO2 M-BPSO5 M-BPSO6 M-BPSO7 

10 Mean Fitness 0.72827 8.80651 8.80144 8.73759 8.78180 
Std. Dev. 1.52126 0.09826 0.09900 0.20571 0.12739 

30 Mean Fitness 27.0083 28.69899 28.6980 28.70292 28.70190 
Std. Dev. 1.75217 0.00657 0.00512 0.01177 0.00958 

50 Mean Fitness 47.0415 48.49819 48.4961 48.51395 48.50054 
Std. Dev. 0.79140 0.00340 0.00145 0.02086 0.00620 

 4 

Table 24: Comparison between BSO and the proposed variants in Generalized Schaffer's f6 problem  

Dimension Algorithm BSO M-BPSO2 M-BPSO5 M-BPSO6 M-BPSO7 

10 Mean Fitness 0.07870 0.00000 0.00000 0.00000 0.00000 
Std. Dev. 0.02445 0.00000 0.00000 0.00000 0.00000 

30 Mean Fitness 0.50525 0.08966 0.22178 0.14591 0.78340 
Std. Dev. 0.18516 0.50456 0.87080 0.72556 1.61286 

50 Mean Fitness 1.39567 7.85840 9.92779 7.62957 10.92979 
Std. Dev. 0.55424 5.09182 3.52718 4.94611 1.79961 

 5 
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A new local search technique is proposed and used to improve the performance of particle swarm optimization algorithms by
addressing the problem of premature convergence. In the proposed local search technique, a potential particle position in the
solution search space is collectively constructed by a number of randomly selected particles in the swarm.The number of times the
selection is made varies with the dimension of the optimization problem and each selected particle donates the value in the location
of its randomly selected dimension from its personal best. After constructing the potential particle position, some local search is
done around its neighbourhood in comparison with the current swarm global best position. It is then used to replace the global best
particle position if it is found to be better; otherwise no replacement is made. Using some well-studied benchmark problems with
low and high dimensions, numerical simulations were used to validate the performance of the improved algorithms. Comparisons
were made with four different PSO variants, two of the variants implement different local search technique while the other two
do not. Results show that the improved algorithms could obtain better quality solution while demonstrating better convergence
velocity and precision, stability, robustness, and global-local search ability than the competing variants.

1. Introduction

Optimization comes to focus when there are needs to plan,
take decisions, operate and control systems, designmodels, or
seek optimal solutions to varieties of problems faced fromday
to day by different people. Anumber of these problems,which
can be formulated as continuous optimization problems, are
often approached with limited resources. Dealing with such
problems, most especially when they are large scale and
complex, has attracted the development of different nature-
inspired optimization algorithms. These algorithms display
problem-solving capabilities for researchers to solve complex
and challenging optimization problems with many success
stories. Swarm-based techniques are a family of nature-
inspired algorithms and are population-based in nature; they
are also known as evolutionary computation techniques.
Particle swarm optimization (PSO) technique is a member
of swarm-based techniques which is capable of producing
low cost, fast, and robust solutions to several complex

optimization problems. It is a stochastic, self-adaptive, and
problem-independent optimization technique and was orig-
inally proposed in 1995 by Eberhart and Kennedy as sim-
ulation of a flock of bird or the sociological behavior of a
group of people [1, 2]. From the time this concept was brought
into optimization, it has been used extensively in many fields
which include function optimization and many difficult real-
world optimization problems [3–5].

PSO technique was initially implemented with few lines
of codes using basic mathematical operations with no major
adjustment needed to adapt it to new problems and it was
almost independent of the initialization of the swarm [6].
It needs few parameters to operate with for successful and
efficient behavior in order to obtain quality solutions. To
implement this technique, a number of particles, which are
characterized by positions and velocities, called swarm are
required to be randomly distributed in a solution search
space depending on the boundaries defined for the design
variables of the problem being optimized. The number of

Hindawi Publishing Corporation
e Scientific World Journal
Volume 2014, Article ID 798129, 23 pages
http://dx.doi.org/10.1155/2014/798129

http://dx.doi.org/10.1155/2014/798129


2 The Scientific World Journal

design variables determines the dimensionality of the search
space. If 𝑑-dimensional space is considered, the position
and velocity of each particle are represented as the vectors
𝑋
𝑖
= (𝑥

𝑖1
, . . . , 𝑥

𝑖𝑑
) and 𝑉

𝑖
= (V
𝑖1
, . . . , V

𝑖𝑑
), respectively.

Every particle has a memory of its personal experience which
is communicated to all reachable neighbours in the search
space to guide the direction of movement of the swarm.
Also, the quality of each particle (solution) is determined by
the objective function of the problem being optimized and
the particle with best quality is taken as the global solution
towards which other particles will converge. The common
practice is for the technique to maintain a single swarm of
particles throughout its operation. This process of seeking
optimal solution involves the adjustments of the position and
velocity of each particle in each iteration using

𝑉
𝑖 (
𝑡 + 1) = 𝜔𝑉

𝑖 (
𝑡) + coeff
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(1)

𝑋
𝑖 (
𝑡 + 1) = 𝑋 (𝑡) + 𝑉𝑖 (

𝑡 + 1) . (2)

In (1), 𝑃
𝑖
and 𝑃

𝑔
are vectors representing the 𝑖th particle

personal best and swarm global best positions, respectively;
coeff
1
= 𝑐
1
𝑟
1
and coeff

2
= 𝑐
2
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2
; 𝑐
1
and 𝑐
2
are acceleration

factors known as cognitive and social scaling parameters
that determine the magnitude of the random forces in the
direction of𝑃

𝑖
and𝑃
𝑔
; 𝑟
1
and 𝑟
2
are randomnumbers between

0 and 1; 𝑡 is iteration index.The symbol 𝜔 is the inertia weight
parameter which was introduced into the original PSO in [7].
Thepurpose of its introductionwas to help the PSOalgorithm
balance its global and local search activities.

There are possibilities of the positions and velocities of the
particles in the swarm increasing in value beyond necessary
when they are updated. As a measure, the positions are
clamped in each dimension to the search range [𝑋min, 𝑋max]
of the design variables, where 𝑋min and 𝑋max represent the
lower and upper bounds of a particle’s position, respectively,
while their velocities are controlled to be within a specified
range [𝑉min, 𝑉max], where 𝑉min and 𝑉max represent the lower
and upper bounds of a particle’s velocity, respectively. The
idea of velocity clamping which was introduced by [1, 2,
8] and extensively experimented with in [9] has led to
significant improvement as regards the performance of PSO.
This is so because the particles could concentrate, taking
reasonably sized steps to search through the search space
rather than bouncing about excessively. A major feature
that characterizes an efficient optimization algorithm is the
ability to strike a balance between local and global search.
Global search involves the particles being able to advance
from a solution to other parts of the search space and locate
other promising candidates while local search means that the
particle is capable of exploiting the neighbourhood of the
present solution for other promising candidates. In PSO, as
the rate of information sharing increases among the particles
they migrate towards the same direction and region in the
search space. If any of the particles could not locate any
better global solution after some time, they will eventually
converge about the existing one which may not be the global
minimum due to lack of exploration power; this is known

as premature convergence. This type of behaviour is more
likely when the swarm of particles is overconcentrated. It
could also occur when the optimization problem is of high
dimension and/or nonconvex. One of the possible ways to
prevent this premature convergence is to embed a local
search technique into PSO algorithm to help improve the
quality of each solution by searching its neighbourhood.
After the improvement, better information is communicated
among the particles thereby increasing the algorithm’s ability
to locate better global solution in course of optimization.
Hill climbing, modified Hooke and Jeeves, gradient descent,
golden ratio, Stochastic local search, adaptive local search,
local interpolation, simulated annealing, and chaotic local
search are different local search techniques that have been
combined with PSO to improve its local search ability [10–
18].

In this paper, a different local search technique was
proposed to harness the global search ability of PSO and
improve on its local search efforts. This technique is based
on the collective efforts of randomly selected (with replace-
ment) particles a number of times equal to the size of
the problem dimension. When a particle is selected, it is
made to contribute the value in the position of its randomly
selected dimension from its personal best. The contributed
values are then used to form a potential global best solution
which is further refined. This concept could offer PSO the
ability to enhance its performance in terms of convergence
speed, local search ability, robustness, and increased solution
accuracy. The local search technique was hybridized with
two of the existing PSO variants, namely, random inertia
weight PSO (RIW-PSO) and linear decreasing inertia weight
PSO (LDIW-PSO), to form two new variants. Numerical
simulations were performed to validate the efficiencies of
each of them and some statistical analyses were performed
to ascertain any statistically significant difference in perfor-
mance between the proposed variants and the old ones. From
the results obtained it was shown that the proposed variants
are very efficient.

In the sections that follow, RIW-PSO and LDIW-PSO are
briefly described in Section 2; themotivation and description
of the proposed local search technique are presented in
Section 3 while the improved PSO with local search tech-
nique is described in Section 4. Numerical simulations are
performed in Section 5 and Section 6 concludes the paper.

2. The Particle Swarm Optimization
Variants Used

Two PSO variants were used to validate the proposed
improvement of the performance of PSO technique. The
variants are LDIW-PSO and RIW-PSO. These were chosen
because of the evidence available in the literature that they
are less efficient in optimizingmany continuous optimization
problems [19–21]. These variants are succinctly described
below.

2.1. PSO Based on Linear Decreasing Inertia Weight (LDIW-
PSO). This variant was proposed in [9] after the inertia
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weight parameter was introduced into the original PSO
by [7]. It implements the linear decreasing inertia weight
strategy represented in (3) which decreases from some high
which facilitates exploration to a low value which on the
other hand promotes exploitation. This greatly improved the
performance of PSO. LDIW-PSO does global search at the
beginning and converges quickly towards optimal positions
but lacks exploitation power [9] and the ability required to
jump out of the local minimum most especially when being
in themultimodal landscape. Some improvements on LDIW-
PSO exist in the literature [6, 9, 22]:

𝜔i = (𝜔start − 𝜔stop) (
MAXitr − i
MAXitr

) + 𝜔stop, (3)

where 𝜔start and 𝜔stop are the initial and final values of inertia
weight, 𝑖 is the current iteration number, MAXitr is the
maximum iteration number, and 𝜔i ∈ [0, 1] is the inertia
weight value in the 𝑖th iteration. Apart from the problem of
premature convergence, this variant was found inefficient in
tracking a nonlinear dynamic system because of the difficulty
in predicting whether exploration (a larger inertia weight
value) or exploitation (a smaller inertia weight) will be better
at any given time in the search space of the nonlinear dynamic
system [23].

2.2. PSO Based on Random Inertia Weight (RIW-PSO). Due
to the improved performance of PSO when the constant
inertia weight was introduced into it [7], a new era of research
was indirectly initiated and this has attracted the attentions
of many researchers in the field. The inefficiency of linear
decreasing inertia weight, which linearly decreases from 0.9
to 0.4, in tracking a nonlinear dynamic system prompted the
introduction of RIW which randomly varies within the same
range of values. Random adjustment is one of the strategies
that have been proposed to determine the inertia weight value
to further improve on the performance of PSO. This strategy
is nonfeedback in nature and the inertia weight takes different
value randomly at each iteration, from a specified interval. In
line with this, random inertia weight strategy represented in
(4) was introduced into PSO by [23] to enable the algorithm
track and optimize dynamic systems. In the equation, rand()
is a uniform random number in the interval [0, 1] which
make the formula generate a number randomly varying
between 0.5 and 1.0, with a mean value of 0.75. When c

1
and

c
2
are set to 1.494, the algorithm seems to demonstrate better

optimizing efficiency. The motivation behind the selection of
these values was Clerc’s constriction factor [23]:

𝜔 = 0.5 +

rand ()
2

. (4)

Not much is recorded in the literature regarding the imple-
mentation of this variant of PSO. Some of the few implemen-
tations found in the literature are recorded in [6, 20–22].

3. Proposed Local Search Technique

Thebasic principle underlying the optimizing strategy of PSO
technique is that each particle in the swarm communicates

their discoveries to their neighbours and the particle with the
best discovery attracts others. While this strategy looks very
promising, there is the risk of the particles being susceptible
to premature convergence, especially when the problem to
be optimized is multimodal and high in dimensionality. The
reason is that the more the particles share their discoveries
among themselves, the higher their identical behaviour is
until they converge to the same area in the solution search
space. If none of the particle could discover better global
best, after some time all the particles will converge about the
existing global best which may not be the global minimizer.

One of the motivations for this local search technique
is the challenge of premature convergence associated with
PSO technique which affects its reliability and efficiency.
Another motivation is the decision-making strategy used by
the swarm in searching for optimal solution to optimization
problems. The decision is dictated by a single particle in the
swarm; that is, other particles follow the best particle among
them to search for better solution. Involving more than one
particle in the decision making could lead to a promising
region in the search space where optimal solution could be
obtained.

The description of the local search technique is as follows:
after all the particles have obtained their various personal best
positions, each particle has an equal chance of being selected
to contribute its idea towards how a potential location in
the search space where better global best could be obtained.
As a result, a number of particles equal to the dimension
of the problem being optimized are randomly selected (with
replacement). Each selected particle contributes an idea by
donating the value in the location of its randomly selected
dimension from its personal best. All the ideas contributed
by the selected particles are collectively used (hybridized) to
construct a potential solution in the solution search space.
After constructing the potential solution, some searches are
locally done around its neighbourhood with the hope of
locating a better solution in comparison with the current
global solution. If a better solution is found, it is then used to
replace the current global solution; otherwise no replacement
is made.

In this local search, the potential new position is denoted
by →𝑦 and is sampled from the neighbourhood of the collec-
tively constructed potential global solution represented as →𝑃
by

→
𝑦 ←

→

𝑃 +
→
𝑎 , (5)

where →𝑎 ∼ 𝑈[−
→
𝑟 ,
→
𝑟 ] is a random vector picked uniformly

from the range [−→𝑟 , →𝑟 ] and →𝑟 is the search radius which is
initially set to max𝑅 (maximum radius for local search). The
local search technique moves from position →

𝑃 to position
→
𝑦 when there is improvement to the fitness. If there is no
improvement on the fitness of →𝑃 by →𝑦 , the search radius is
linearly decreased by multiplying it with a factor 𝑞 using

→
𝑟 ← 𝑞 ×

→
𝑟 ,

𝑞 ← (maxR −minR) × 𝑡

maxT
+minR,

(6)
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→
𝑟 ,
→
𝑎 ,
→
𝑦 ← new arrays, each of length Dim

→
𝑟 ← max𝑅
𝑡 ← 0

While (𝑡 < max𝑇) do
𝑡 ← 𝑡 + 1

→
𝑎 ← 𝑈(−

→
𝑟 ,→𝑟 )

for 𝑗 ← 1 to problem Dimension
randomly select any particle 𝑖
randomly select a dimension 𝑑 from the personal best 𝑃 of the selected particle 𝑖

→
𝑦

𝑗

←

→

𝑃

𝑑

𝑖
+
→
𝑎

𝑗

end for
validate for search space boundary
𝐼𝑓𝑓(

→
𝑦) < 𝑔Fit

→

𝑔Pos ← →
𝑦

𝑔Fit ← 𝑓(
→
𝑦)

else
𝑞 ← (max𝑅 −min𝑅) × 𝑡

max𝑇
+min𝑅

→
𝑟 ← 𝑞 ×

→
𝑟

end if
end while
Return →

𝑔Pos and 𝑔Fit

Algorithm 1: Collective local unimodal search.

Begin PSOCLUS Algorithm
Step 1.Definition Phase

(1.1) function to optimize as 𝑓
(1.2) Parameter

(1.2.1) swarm size
(1.2.2) problem dimension
(1.2.3) solution search space
(1.2.4) particle velocity range

Step 2. Initialized phase
For all particles randomly initialized in search space
(2.1) position𝑥

𝑖
← (𝑥
𝑖1
, . . . , 𝑥

𝑖𝑑
)

(2.2) velocity V
𝑖
← (V
𝑖1
, . . . , V

𝑖𝑑
),

(2.3) 𝑝best
𝑖
← (𝑥
𝑖1
, . . . , 𝑥

𝑖𝑑
)

(2.4) 𝑔best← best of 𝑝best
𝑖

(2.5) evaluate 𝑓(𝑥
𝑖
) using objective function of problem

Step 3.Operation Phase
Repeat until a stopping criterion is satisfied
(3.1). Compute inertia weight using any inertia weight formula
(3.2). For each particle 𝑖

(3.2.1). update V
𝑖
for particle using (1)

(3.2.2). validate for velocity boundaries
(3.2.3). update𝑥

𝑖
for particle using (2)

(3.2.4). validate for position boundaries
(3.2.5). If 𝑓(𝑥

𝑖
) < 𝑓(𝑝best

𝑖
) then 𝑝best

𝑖
← 𝑥
𝑖

(3.3). 𝑔best ← best of 𝑝best𝑖
(3.4). Implement local search using CLUS in Algorithm 1

Step 4. Solution Phase
(4.1). 𝑥∗ ← 𝑔best
(4.2). 𝑓∗ ← 𝑓(𝑔best)
(4.3). Return 𝑥∗ and 𝑓

∗

End PSOCLUS Algorithm

Algorithm 2: Algorithm for PSOCLUS.
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Table 1: Parameter settings for experiment.

Parameter 𝜔min 𝜔max 𝑐
1
= 𝑐
2

𝑉min 𝑉max minR maxR maxT
Value 0.9 0.4 1.494 0.05 ∗𝑋min 0.05 ∗𝑋max 0.01 2.0 100

where max𝑇 is the maximum number of times the neigh-
bourhood of →𝑃 is to be sampled, 𝑡 is the current time the
neighbourhood is being sampled, and min𝑅 is the minimum
radius for the local search.

This proposed local search technique has been named
collective local unimodal search (CLUS) technique. It has
some trace of similarity in operation with local unimodal
sampling (LUS) technique [24]. But they are quite different in
the sense that, while LUS randomly picks a potential solution
from the entire population, CLUS constructs a potential
solution using the collective efforts of a randomly selected
number of particles from the swarm. Also, CLUS uses a linear
method to decrease the search radius (step size) in the neigh-
bourhood of the potential solution which is different from
the method applied by LUS during optimization. The CLUS
technique is presented in Algorithm 1. In the technique, 𝑔Fit
and →

𝑔Pos represent the current global fitness value and its
corresponding position in the search space.

4. Improved PSO with Collective Unimodal
Local Search (PSOCLUS)

The RIW-PSO increases convergence in early iterations and
does more of global search activities but soon gets stuck
in local optima because of lack of local search ability. Also,
LDIW-PSO does global search at earlier part of its iteration
but lacks enough momentum to do local search as it gets
towards its terminal point of execution.The aim of this paper
is to make a general improvement on the performance of
PSO which can be applied to any of its variants. To achieve
this, the two PSO variants were hybridized with the proposed
collective local unimodal search (CLUS) technique which
takes advantage of their global search abilities to do some
neighbourhood search for better results. The improved PSO
algorithm is presented in Algorithm 2.

5. Numerical Simulations

In this section, the improved algorithm (PSOCLUS) was imple-
mented using the inertia weight strategy of RIW-PSO and
the variant was labeled R-PSOCLUS. It was also implemented
using the inertia weight strategy of LDIW-PSO and the vari-
ant was labeled L-PSOCLUS. The performances of R-PSOCLUS
and L-PSOCLUS were experimentally tested against those
of RIW-PSO and LDIW-PSO, respectively. The maximum
number of iterations allowed was 1000 for problems with
dimensions less than or equal to 10, 2000 for 20-dimensional
problems, and 3000 for 30-dimensional problems. A swarm
size of 20 was used in all the experiments and twenty-
five independent runs were conducted to collect data for
analysis. The termination criteria for all the algorithms were
set to be as maximum number of iterations relative to the

problems’ dimensions. A run, in which an algorithm is able
to satisfy the set success criteria (see Table 1) before or at the
maximum iteration, is considered to be successful. To further
prove the efficiency of the proposed local search technique,
the proposed PSO variants were also compared with some
existing PSO variants hybridized with different local search
techniques. They are PSO with golden ratio local search [15]
and PSO with local interpolation search [18]. A total of 6
different experiments were conducted.

(i) R-PSOCLUS was comparedwith PSOwith golden ratio
local search (GLSPSO);

(ii) R-PSOCLUS was compared with PSO with local inter-
polation search (PSOlis);

(iii) R-PSOCLUS was compared with RIW-PSO;
(iv) L-PSOCLUS was compared with PSOwith golden ratio

local search (GLSPSO);
(v) L-PSOCLUS was compared with PSO with local inter-

polation search (PSOlis);
(vi) L-PSOCLUS was compared with LDIW-PSO.

The application software was developed in Microsoft Visual
C# programming language.

5.1. Test Problems. A total of 21 problems were used in
the experiments. These problems have different degrees
of complexity and multimodality which represents diverse
landscapes enough to cover many of the problems which
can arise in global optimization problems. Shown in Table 2
are the problems dimensions, optimal fitness values, and
success thresholds. Presented in Table 3 are the definitions,
characteristics (US: unimodal separable, UN: unimodal non-
separable, MS: multimodal separable, and MN: multimodal
nonseparable), and search ranges of the problems. More
details on the benchmark problems can be found in [22, 25–
27].

5.2. Parameter Setting. The additional parameters that were
set in the experiment are inertia weight threshold for LDIW-
PSO (𝜔min and 𝜔max), acceleration coefficients (𝑐

1
and 𝑐
2
),

velocity thresholds (𝑉min and𝑉max),minimumradius (min𝑅),
and maximum radius (max𝑅) for local search as well as
the maximum number of neighbourhood sampling (max𝑇)
during the local search. The respective settings of these
parameters are shown in Table 1. The parameters 𝑟

1
and 𝑟
2

were randomly generated using the uniform randomnumber
generator. The values of 𝜔min and 𝜔max were chosen for
LDIW-PSO based on the experiments conducted in [9];
values for 𝑐

1
and 𝑐
2
were chosen for RIW-PSO based on the

recommendation in [23] and it was also used for LDIW-PSO
because it was discovered in course of the experiments in this
paper that these valuesmake LDIW-PSO perform better than
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Table 2: Benchmark problems.

Number Problem Dimensions Optimal
value

Success
threshold

1 Ackley 10, 20, 30 0 10
−5

2 Booth 2 0 10
−5

3 Easom 2 −1 −1
4 Griewank 10, 20, 30 0 10

−5

5 Dixon-Price 10, 20, 30 0 10
−5

6 Levy 10, 20, 30 0 10
−5

7 Michalewicz 5 −4.687 −4.687
8 Noisy Quartic 10, 20, 30 0 10

−5

9 Noncontinous
Rastrigin 10, 20, 30 0 20

10 Rastrigin 10, 20, 30 0 20
11 Rosenbrock 10, 20, 30 0 20

12 Rotated
Ellipsoid 10, 20, 30 0 10

−5

13 Salomon 5 0 10
−5

14 Schaffer’s f6 2 0 10
−5

15 Schwefel 10, 20, 30
16 Schwefel P2.22 10, 20, 30 0 10

−5

17 Shubert 2 −186.7309 −186.7309
18 Sphere 10, 20, 30 0 10

−5

19 Step 10, 20, 30 0 10
−5

20 Sum Squares 10, 20, 30 0 10
−5

21 Trid 6 −50 −50

the commonly used value of 2.0. The settings for 𝑉min and
𝑉max were done based on the outcome of experimental studies
in [8].

5.3. Performance Measurement. The efficiency of the algo-
rithms was tested against the set of benchmark problems
given inTable 2 andnumerical results obtainedwere analyzed
using the criteria that are listed below. All the results are
presented in Tables 4 to 20.

(i) Best fitness solution: the best of the fitness solution
among the solutions obtained during the runs.

(ii) Mean best fitness solution: this is a measure of the
precision (quality) of the result that the algorithm can
get within given iterations in all the 25 runs.

(iii) Standard deviation (Std. Dev.) of mean best fitness
solution over 25 runs: this measures the algorithm’s
stability and robustness.

(iv) Average number of iterations an algorithm was able
to reach the success threshold.

(v) Success rate (SR) = (Number of successful runs/
Total number of runs) × 100: this is the rate at which
the success threshold is met during the independent
number of runs and is a reflection of the global search
ability and robustness of the algorithm.

Statistical analysis using the Wilcoxon signed rank non-
parametric test with 0.05 level of significance [28, 29] was
also performed using the numerical results obtained by
the algorithms, while box plots were used to analyze their
variability in obtaining fitness values in all the runs.

5.4. Results and Discussions. Results obtained from all the
experiments are discussed in this subsection to show the
overall performance of the various algorithms. Presented
in Tables 4, 5, 6, 7, 8, and 9 are the numerical results
obtained and used to compare R-PSOCLUS and L-PSOCLUS
with GLSPSO. R-PSOCLUS and L-PSOCLUS were also com-
pared with PSOlis using the results presented in Table 10.
The results in Tables 11–18 were obtained for the scaled and
nonscaled test problems listed in Table 3; the results were
used to validate RIW-PSO, R-PSOCLUS, LDIW-PSO, and L-
PSOCLUS. In each of the tables, for ease of observation, bold
values represent the better results and “–” means that the
algorithm could not satisfy the success threshold in any of
the runs. The Wilcoxon sign rank nonparametric test, which
is used as an alternative to the paired 𝑡-test when the results
cannot be assumed to be normally distributed, was applied to
test the statistical significance differences between RIW-PSO
and R-PSOCLUS as well as LDIW-PSO and L-PSOCLUS.

5.4.1. Comparison of R-PSO
𝐶𝐿𝑈𝑆

and Golden Ratio Local
Search Based PSO (GLSPSO). The results in Tables 4–6 show
the performance and abilities of R-PSOCLUS and GLSPSO
optimizing the test problems over three different problem
dimensions. The results of GLSPSO were obtained from
[15]. A large problem space was used for all the problems
to verify the superiority between the two different local
search techniques hybridizedwith the PSOvariants. From the
results it is evident that R-PSOCLUS is superior to GLSPSO.
Apart fromAckley problem (across the three dimensions) and
Rosenbrock (in dimension 100), R-PSOCLUS outperformed
GLSPSO. It was able to obtain optimal minimum for some
of the problems, demonstrating better exploitation ability,
convergence precision, and solution quality.

5.4.2. Comparison between L-PSO
𝐶𝐿𝑈𝑆

and GLSPSO. To fur-
ther demonstrate the efficiency of the proposed local search
technique, L-PSOCLUS was also implemented and results were
compared with the results of GLSPSO obtained from [15].
Three different types of dimensions were also used for the
problems. As can be observed in Tables 7–9, across the three
dimensions, GLSPSOwas only able to perform better than L-
PSOCLUS in Ackley problem. Apart from Griewank problem
(dimension 10), GLSPSOwas outperformed by L-PSOCLUS in
the remaining four problems. L-PSOCLUS was able to obtain
global optimum for Griewank and Sphere problems across
the three dimensions, but, for Rastrigin, it was able to get
global minimum for dimension 10. Again, the proposed local
search technique demonstrates better exploitation ability
than GLSPSO.

5.4.3. Comparison of R-PSO
𝐶𝐿𝑈𝑆

and L-PSO
𝐶𝐿𝑈𝑆

with PSOlis.
Presented in Table 10 is the result obtained by L-PSOCLUS
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Table 3: Benchmark problems.

Number Problem Formulation Feature Search range

1 Ackley 𝑓 (
→
𝑥) = −20 exp(−0.2√ 1

𝑛

𝑑

∑

𝑖=1

𝑥
2

𝑖
) − exp(1

𝑛

𝑑

∑

𝑖=1

cos (2𝜋𝑥
𝑖
)) + 20 + 𝑒 MN ±32

2 Booth 𝑓 (
→
𝑥) = (𝑥

1
+ 2𝑥
2
− 7)
2

+ (2𝑥
1
+ 𝑥
2
− 5)
2 MN ±10

3 Easom 𝑓 (
→
𝑥) = − cos (𝑥

1
) cos (𝑥

2
) exp (−(𝑥

1
− 𝜋)
2
− (𝑥
2
− 𝜋)
2
) UN ±100

4 Griewank 𝑓 (
→
𝑥) =

1

4000

(

𝑑

∑

𝑖=1

𝑥
2

𝑖
) − (

𝑑

∏

𝑖=1

cos(
𝑥
𝑖

√𝑖

)) + 1 MN ±600

5 Dixon-Price 𝑓 (
→
𝑥) = (𝑥

1
− 1)
2

+

𝑑

∑

𝑖=2

𝑖(2𝑥
2

𝑖
− 𝑥
𝑖−1
)

2

UN ±10

6 Levy
𝑓 (

→
𝑥) = sin2 (𝜋𝑦

1
) +

𝑑−1

∑

𝑖=1

(𝑦
𝑖
− 1)
2
(1 + 10 sin2 (𝜋𝑦

𝑖
+ 1)) + (𝑦

𝑑
− 1)
2

(1 + sin2 (2𝜋𝑥
𝑑
)) ,

where 𝑦
𝑖
= 1 +

𝑥
𝑖
− 1

4

, and 𝑖 = 1, 2, . . . , 𝑑

MN ±10

7 Michalewicz 𝑓 (
→
𝑥) = −

𝑑

∑

𝑖=1

sin (𝑥
𝑖
) [sin(

𝑖𝑥
2

𝑖

𝜋

)]

2𝑚

, where 𝑚 = 10 MS [0, 𝜋]

8 Noisy Quartic 𝑓 (
→
𝑥) =

𝑑

∑

𝑖=1

𝑖𝑥
4

𝑖
+ random(0, 1) US ±1.28

9 Noncontinous
Rastrigin

𝑓 (
→
𝑥) =

𝑑

∑

𝑖=1

(𝑦
2

𝑖
− 10 cos (2𝜋𝑦

𝑖
) + 10)

𝑦
𝑖
=

{

{

{

𝑥
𝑖

if 

𝑥
𝑖





< 0.5

round(2𝑥
𝑖
)

2

if 

𝑥
𝑖





≥ 0.5

}

}

}

MS ±5.12

10 Rastrigin 𝑓 (
→
𝑥) =

𝑑

∑

𝑖=1

(𝑥
2

𝑖
− 10 cos (2𝜋𝑥

𝑖
) + 10) MS ±5.12

11 Rosenbrock 𝑓 (
→
𝑥) =

𝑑−1

∑

𝑖=1

(100 (𝑥
𝑖+1

− 𝑥
2

𝑖
)

2

) + (𝑥
𝑖
− 1)
2 UN ±30

12 Rotated
Ellipsoid 𝑓 (

→
𝑥) =

𝑑

∑

𝑖=1

(

𝑖

∑

𝑗=1

𝑥
𝑗
)

2

UN ±100

13 Salomon 𝑓 (
→
𝑥) = − cos(2𝜋

𝑑

∑

𝑖=1

𝑥
2

𝑖
) + 0.1√

𝑑

∑

𝑖=1

𝑥
2

𝑖
+ 1 MN ±100

14 Schaffer’s f6 𝑓 (
→
𝑥) =

𝑑−1

∑

𝑖=1

(0.5 +

sin2 (√𝑥2
𝑖+1

+ 𝑥
2

𝑖
) − 0.5

(0.001 (𝑥
2

𝑖+1
+ 𝑥
2

𝑖
) + 1)

2
) MN ±100

15 Schwefel 𝑓 (
→
𝑥) =

𝑛

∑

𝑖=1

− 𝑥
𝑖
sin(√


𝑥
𝑖





) MS ±500

16 Schwefel P2.22 𝑓 (
→
𝑥) =

𝑑

∑

𝑖=1





𝑥
𝑖





+

𝑑

∏

𝑖=1





𝑥
𝑖






UN ±10

17 Shubert 𝑓 (
→
𝑥) =

𝑑

∏

𝑖=1

(

5

∑

𝑗=1

𝑗 cos ((𝑗 + 1) 𝑠𝑥
𝑖
+ 𝑗)) MN ±10

18 Sphere 𝑓 (
→
𝑥) =

𝑑

∑

𝑖=1

𝑥
2

𝑖
US ±100

19 Step 𝑓 (
→
𝑥) =

𝑑

∑

𝑖=1

(⌊𝑥
𝑖
+ 0.5⌋)

2 US ±10

20 SumSquares US ±10

21 Trid 𝑓 (
→
𝑥) =

𝑑

∑

𝑖=1

(𝑥
𝑖
− 1)
2

−

𝑑

∑

𝑖=2

𝑥
𝑖
𝑥
𝑖−1 UN ±d2
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Table 4: Comparison between GLSPSO and 𝑅-PSOCLUS for problems with dimension of 10.

Problem Ackley Griewank Rastrigin Rosenbrock Sphere
Algorithm GLSPSO 𝑅-PSOCLUS GLSPSO 𝑅-PSOCLUS GLSPSO 𝑅-PSOCLUS GLSPSO 𝑅-PSOCLUS GLSPSO 𝑅-PSOCLUS

Best fitness 0.0364 0.0000 4.2879𝑒 −

04

0.0000e +
00 8.8062 0.0000 2.6188 0.0000 4.7832𝑒 −

04

3.1461e −
43

Mean
fitness 0.3413 17.1371 0.0041 0.0016 29.4936 0.0000 9.0025 1.9971 0.0142 0.0000

Worst
fitness 1.2653 20.0888 0.0419 0.0791 50.4781 0.0000 18.9887 3.1444 0.0476 0.0000

Std. Dev. 0.2762 6.7543 0.0061 0.0111 10.4372 0.0000 0.034 0.7262 0.0123 0.0000

Table 5: Comparison between GLSPSO and 𝑅-PSOCLUS for problems with dimension of 30.

Problem Ackley Griewank Rastrigin Rosenbrock Sphere
Algorithm GLSPSO R-PSOCLUS GLSPSO 𝑅-PSOCLUS GLSPSO 𝑅-PSOCLUS GLSPSO 𝑅-PSOCLUS GLSPSO 𝑅-PSOCLUS

Best fitness 2.2784 20.3075 0.0897 0.0000 109.5946 13.9247 175.8785 22.7589 1.9123 0.0000
Mean
fitness 2.8398 20.4778 0.1257 0.0000 185.5221 36.3715 218.4976 27.5147 2.7449 0.0000

Worst
fitness 3.2952 20.5792 0.2074 0.0000 229.6229 72.6581 259.2466 76.7433 3.9559 0.0000

Std. Dev. 0.2273 0.0574 0.0274 0.0000 24.9829 16.4882 21.8027 9.9182 0.4840 0.0000

Table 6: Comparison between GLSPSO and 𝑅-PSOCLUS for problems with dimension of 100.

Problem Ackley Griewank Rastrigin Rosenbrock Sphere
Algorithm GLSPSO 𝑅-PSOCLUS GLSPSO 𝑅-PSOCLUS GLSPSO 𝑅-PSOCLUS GLSPSO 𝑅-PSOCLUS GLSPSO 𝑅-PSOCLUS

Best fitness 3.5148 20.9666 0.3195 0.0022 792.004 293.5795 1378.0 1867.2669 23.0614 0.1970
Mean
fitness 3.6709 21.0691 0.4242 0.0230 881.0822 688.0048 1602.0 24909.8486 27.2534 4.7232

Worst
fitness 3.7664 21.1306 0.4992 0.0923 934.9773 848.9927 1763.0 95519.4585 29.1615 16.1174

Std. Dev. 0.0551 0.0316 0.0303 0.0255 35.2341 103.1854 90.2874 21083.5791 1.2253 4.2498

Table 7: Comparison between GLSPSO and 𝐿-PSOCLUS for problems with dimension of 10.

Problem Ackley Griewank Rastrigin Rosenbrock Sphere
Algorithm GLSPSO 𝐿-PSOCLUS GLSPSO 𝐿-PSOCLUS GLSPSO 𝐿-PSOCLUS GLSPSO 𝐿-PSOCLUS GLSPSO 𝐿-PSOCLUS

Best fitness 0.0364 0.0000 4.2879𝑒 −

04

0.0000e +
00 8.8062 0.0000 2.6188 0.0000 4.7832𝑒 −

04

6.4151e −
76

Mean
fitness 0.3413 18.2504 0.0041 0.0042 29.4936 0.0000 9.0025 1.0516 0.0142 0.0000

Worst
fitness 1.2653 20.0771 0.0419 0.1008 50.4781 0.0000 18.9887 2.8033 0.0476 0.0000

Std. Dev. 0.2762 5.4640 0.0061 0.0186 10.4372 0.0000 0.034 0.6449 0.0123 0.0000

Table 8: Comparison between GLSPSO and 𝐿-PSOCLUS for problems with dimension of 30.

Problem Ackley Griewank Rastrigin Rosenbrock Sphere
Algorithm GLSPSO 𝐿-PSOCLUS GLSPSO 𝐿-PSOCLUS GLSPSO 𝐿-PSOCLUS GLSPSO 𝐿-PSOCLUS GLSPSO 𝐿-PSOCLUS

Best fitness 2.2784 20.3184 0.0897 0.0000 109.5946 0.1444 175.8785 0.0000 1.9123 0.0000
Mean
fitness 2.8398 20.4631 0.1257 0.0000 185.5221 18.7372 218.4976 25.1359 2.7449 0.0000

Worst
fitness 3.2952 20.5734 0.2074 0.0000 229.6229 38.8433 259.2466 77.4444 3.9559 0.0000

Std. Dev. 0.2273 0.0615 0.0274 0.0000 24.9829 8.4570 21.8027 13.2536 0.4840 0.0000
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Table 9: Comparison between GLSPSO and 𝐿-PSOCLUS for problems with dimension of 100.

Problem Ackley Griewank Rastrigin Rosenbrock Sphere
Algorithm GLSPSO 𝐿-PSOCLUS GLSPSO 𝐿-PSOCLUS GLSPSO 𝐿-PSOCLUS GLSPSO 𝐿-PSOCLUS GLSPSO 𝐿-PSOCLUS

Best fitness 3.5148 20.2136 0.3195 0.0000 792.004 212.0416 1378.0 93.7390 23.0614 0.0000
Mean
fitness 3.6709 21.0491 0.4242 0.0000 881.0822 366.6521 1602.0 107.2300 27.2534 0.0000

Worst
fitness 3.7664 21.1152 0.4992 0.0000 934.9773 504.2204 1763.0 428.1758 29.1615 0.0000

Std. Dev. 0.0551 0.1254 0.0303 0.0000 35.2341 68.2009 90.2874 56.9231 1.2253 0.0000

Table 10: Comparison between PSOlis, 𝑅-PSOCLUS and 𝐿-PSOCLUS.

Problem Algorithm
PSOlis 𝑅-PSOCLUS 𝐿-PSOCLUS

Ackley 4.081𝑒 − 03 9.263e − 13 3.7135e − 15
Griewank 2.673𝑒 − 02 6.921e − 03 2.945e − 07
Rastrigin 2.005 1.948e − 09 8.893e − 06
Rosenbrock 3.987 5.180e − 01 2.338e − 01
Sphere 6.137𝑒 − 14 2.197e − 27 2.401e − 54

in comparison with result for PSOlis from [18]. Again, the
outstanding performance of L-PSOCLUS over its competitor
is evidence that the proposed local search technique is very
efficient and capable of complementing the global search
ability of PSO to obtain quality results by making it overcome
premature convergence.

5.4.4. Comparison between RIW-PSO and R-PSO
𝐶𝐿𝑈𝑆

. The
results presented in Table 11 are for the nonscaled test prob-
lems as optimized by the two algorithms while those in
Tables 12–14 are for the scaled problems with 10, 20, and 30
dimensions, respectively. In Table 19 are the results obtained
using the Wilcoxon sign rank nonparametric test.

(1) Results for the Nonscaled Problems. For the 7 nonscaled
problems, Table 11 shows that there are no performance
differences between the two algorithms in optimizing Booth,
Easom, Shubert, and Trid problems. For Michalewicz, Schaf-
fer’s f6, and Salomon, R-PSOCLUS obtained more quality
solutions and demonstrated better global search ability than
RIW-PSO. The convergence curves in Figures 1(c) and 1(d)
show that R-PSOCLUS has faster and better convergence.
However, the 𝑃 value (0.190) obtained from the Wilcoxon
sign test shown in Table 19 revealed that there is no statistical
difference in the performance between the two algorithms for
the nonscaled problems. Also, the two algorithms have equal
median fitness.

(2) Results for 10-Dimensional Problems. For the scaled prob-
lems with 10 dimensions, Table 12 clearly reveals great dif-
ferences in performance between RIW-PSO and R-PSOCLUS.
The two algorithms successfully optimized Rastrigin, Rosen-
brock, Rotated Ellipsoid, Schwefel 2.22, Sphere, and Sum
Squares problems with equal success rate of 100%, but
R-PSOCLUS obtained significantly better mean fitness and

standard deviation with fewer number of iterations. R-
PSOCLUS was able to obtain the minimum optima for both
Rastrigin and Step problems. For the other problems, R-
PSOCLUS clearly outperformed RIW-PSO in solution quality,
convergence precision, global search ability, and robustness,
though none of them could meet the success threshold in
optimizing the Noisy Quartic problem. The 𝑃 value (0.001)
obtained from the Wilcoxon sign test presented in Table 19
indicates that there is statistically significant difference in
performance between the two algorithms with a large effect
size of 𝑟 = 0.6 in favour of R-PSOCLUS. The median fitness is
also an evidence of this.

(3) Results for 20-Dimensional Problems. The same set of
experiments was performed using the same scaled problems
but with their dimensions increased to 20, which also
increased their complexities exceptGriewank. The numerical
results in Table 13 also show that there are great differences
in performance between RIW-PSO and R-PSOCLUS. The two
algorithms had equal success rate of 100% in optimizing
Rosenbrock, Schwefel 2.22, Sphere, and Sum Squares prob-
lems with R-PSOCLUS obtaining significantly better mean
fitness (except Rosenbrock), standard deviation, and fewer
number of iterations. Out of the remaining 10 problems R-
PSOCLUS outperformed RIW-PSO in 9 of them with better
solution quality, convergence precision, global search ability,
and robustness; it also had success rate of 100% in 6 of
the problems compared with RIW-PSO and was able to
obtain global minimum forGriewank and Step problems.The
algorithms could not meet the success criteria in optimizing
theDixon-Price,Noisy Quartic, and Schwefel problems, butR-
PSOCLUS still performed better than RIW-PSO. The 𝑃 value
(0.023) from Wilcoxon sign test as shown in Table 19 also
indicates that there is statistically significant difference in
performance between the two algorithms with a medium
effect size of 𝑟 = 0.43 in favour of R-PSOCLUS. The median
fitness value of R-PSOCLUS is smaller than that of RIW-PSO.

(4) Results for 30-Dimensional Problems. Table 14 represents
the experimental results obtained by the two algorithms using
the same scaled problems but with their dimensions scaled
to 30, which further increased their complexities except
Griewank. The results further show the great differences
in performance between RIW-PSO and R-PSOCLUS. Out of
the 14 problems R-PSOCLUS had 100% success rate in 7 of
them (4 multimodal and 3 unimodal) while RIW-PSO could
only have in 3 of them (all unimodal). The two algorithms
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Table 19: Wilcoxon signed rank test on mean fitness obtained by RIW-PSO and 𝑅-PSOCLUS for the test problems.

Measurement Scaled problems Nonscaled problems
Dim = 10 Dim = 20 Dim = 30

𝑅-PSOCLUS < RIW-PSO 13 11 12 3
𝑅-PSOCLUS > RIW-PSO 0 2 2 0
𝑅-PSOCLUS = RIW-PSO 1 1 0 4
𝑧 −3.190 −2.274 −2.606 −1.604
𝑃 value 0.001 0.023 0.009 0.190
𝑟 0.600 0.430 0.490 —
Median

RIW-PSO 0.847 0.144 0.272 −1.000
𝑅-PSOCLUS 0.000 0.000 0.000 −1.000

Table 20: Wilcoxon signed rank test on mean fitness obtained by LDIW-PSO and 𝐿-PSOCLUS for the test problems.

Measurement Scaled problems Nonscaled
Dim = 10 Dim = 20 Dim = 30

𝐿-PSOCLUS < LDIW-PSO 12 12 13 3
𝐿-PSOCLUS > LDIW-PSO 1 1 0 0
𝐿-PSOCLUS = LDIW-PSO 1 1 1 4
𝑧 −2.988 −2.552 −3.181 −1.604
𝑃 value 0.003 0.011 0.001 0.190
𝑟 0.565 0.482 0.601 —
Median

LDIW-PSO 0.044 0.021 0.029 −1.000
𝐿-PSOCLUS 0.000 0.000 0.000 −1.000

had equal success rate of 100% in optimizing Schwefel 2.22,
Sphere, and Sum Squares problemswithR-PSOCLUS obtaining
significantly bettermean fitness standard deviation and fewer
number of iterations. OptimizingDixon-Price,Noisy Quartic,
Rotated Ellipsoid, and Schwefel problems, none of the algo-
rithms could meet the success criteria, yet R-PSOCLUS still
obtained better results than RIW-PSO. In all the 14 problems
exceptRotated Ellipsoid,R-PSOCLUS outperformedRIW-PSO
and was able to obtain global minimum for Griewank and
Step problems. The 𝑃 value (0.009) from Wilcoxon sign test
in Table 19 is a confirmatory evidence that there is statistically
significant difference in performance between RIW-PSO and
R-PSOCLUS with a large effect size of 𝑟 = 0.49 in favour of
R-PSOCLUS. The median fitness value of R-PSOCLUS is also
smaller than that of RIW-PSO.The convergence graphs of six
30-dimensional test problems shown in Figure 2 demonstrate
the speed and ability of convergence of the two algorithms.
From the graphs it is clear that R-PSOCLUS demonstrates
better convergence and global search ability than RIW-PSO.
Besides it also possesses better ability to get out of local
optima.

5.4.5. Comparison between LDIW-PSO and L-PSO
𝐶𝐿𝑈𝑆

. Pre-
sented in Table 15 are the results for the nonscaled test
problems as optimized by the two algorithms while those
in Tables 16–18 are for the scaled problems with 10, 20, and
30 dimensions, respectively. The statistical analysis done by

applyingWilcoxon sign rank nonparametric test is presented
in Table 20.

(1) Results for the Nonscaled Problems. Results in Table 15
show that there are no clear performance differences between
LDIW-PSO and L-PSOCLUS in optimizing Booth, Easom,
Shubert, and Trid problems; however, there are some not too
significant differences in their average number of iterations
to reach the success thresholds and standard deviation; in
Shubert, LDIW-PSO obtained 100% success but L-PSOCLUS
could not. Figures 1(a), 1(b), 1(e), and 1(f) show their con-
vergence behaviour. Optimizing Michalewicz, Schaffer’s f6,
and Salomon, L-PSOCLUS obtained better quality solutions
and has better search ability than LDIW-PSO. Also, the
convergence graphs in Figures 1(c) and 1(d) show that L-
PSOCLUS have faster and better convergence in Schaffer’s f6
and Salomon. The curves show that the two algorithms were
trapped in local optima as shown by the flat parts of their
curves and were able to escape from some of them. The
𝑃 value (0.190) in Table 20, obtained from the Wilcoxon
sign test, indicates that there is no statistically significant
difference between the two algorithms in performance.

(2) Results for 10-Dimensional Problems. Optimizing the 10-
dimensional scaled problems, L-PSOCLUS had 100% success
in 10 of the 14 problems (4multimodal and 6 unimodal) while
LDIW-PSO had 100% success in 6 problems (1 multimodal
and 5 unimodal) as shown in Table 16. It is only L-PSOCLUS
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Figure 1: Convergence graphs for 6 of the nonscaled benchmark problems.
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Figure 2: Convergence graphs for 6 of the scaled benchmark problems with dimension of 30.
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Figure 3: Box plots for 6 of the scaled test problems.

that could successfully obtain the minimum optima for
both Rastrigin and Step problems but none could reach the
success threshold for Dixon-Price and Noisy Quartic. In all
the problems except Dixon-Price (where they have approx-
imately equal performance) and Sum Squares, L-PSOCLUS

clearly outperformed LDIW-PSO in obtaining better solution
quality, convergence precision, global search ability, and
robustness as well as fewer number of iterations. To confirm
this, Wilcoxon sign test was performed on the mean best
fitness over all the problems and results are presented in
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Table 20; the 𝑃 value (0.003) obtained indicates that there is
statistically significant difference in performance between the
two algorithmswith a large effect size of 𝑟 = 0.565 in favour of
L-PSOCLUS which also has a lower median value for the mean
best fitness.

(3) Results for 20-Dimensional Problems. The numerical
results in Table 17 also show that there are great differences
in performance between LDIW-PSO and L-PSOCLUS per-
forming the same set of experiments but with the problems
dimensions increased to 20. The two algorithms had equal
success rate of 100% in optimizingAckley, Rosenbrock, Schwe-
fel 2.22, Sphere, and Sum Squares problems with L-PSOCLUS
obtaining significantly better mean fitness (except Rosen-
brock), standard deviation, and fewer number of iterations.
L-PSOCLUS outperformed LDIW-PSO in 7 (5 multimodal
and 2 unimodal) of the rest 9 problems and obtained better
solution, convergence precision, global search ability, and
robustness; it was also able to obtain global minimum for
Step problem. The algorithms could not reach the success
thresholds for Dixon-Price, Noisy Quartic, and Schwefel
problems. The nonparametric test that was performed using
Wilcoxon sign test, with results shown in Table 20, also
confirms statistically significant difference in performance
between the two algorithms with 𝑃 value (0.011) and a large
effect size of 𝑟 = 0.482 in the direction of L-PSOCLUS. The
median fitness value of L-PSOCLUS is also smaller than that of
LDIW-PSO.

(4) Results for 30-Dimensional Problems. Scaling the dimen-
sions of test problems to 30 to further increase their complex-
ities, except Griewank which decreases in complexity with
increased dimension, did not affect the better performance
of L-PSOCLUS over LDIW-PSO. Presented in Table 18 are
the experimental results obtained by the two algorithms
optimizing the same scaled problems. The results indicate
that there are great differences between LDIW-PSO and L-
PSOCLUS in performance. Out of the 14 problems L-PSOCLUS
had 100% success rate in 6 of them (3 multimodal and 3 uni-
modal) while LDIW-PSO could only have in 3 (1 multimodal
and 2 unimodal). They had equal success rate of 100% in
optimizing Ackley, Sphere, and Sum Squares problems and
92% in Rosenbrock with L-PSOCLUS obtaining significantly
better results. Optimizing Dixon-Price, Noisy Quartic, and
Schwefel problems, none of the algorithms could reach the
success threshold, yet L-PSOCLUS still obtained better results
than LDIW-PSO, except in Dixon-Price where they had
approximately the same performance. LDIW-PSO was not
able to reach success threshold for Noncontinuous Rastrigin
and Rotated Ellipsoid problems unlike L-PSOCLUS. In all the
14 problems L-PSOCLUS conceded in none to LDIW-PSO and
it was able to obtain global minimum for Griewank and Step
problems. The 𝑃 value (0.001) in Table 20 further confirms
that there is statistically significant difference between LDIW-
PSO and L-PSOCLUS with a large effect size of 𝑟 = 0.601 in
the direction of L-PSOCLUS. The median value for the mean
fitness of L-PSOCLUS is also smaller than that of RIW-PSO.
Figure 1 shows the convergence graphs of the two algorithms.

From the graphs it is clear that L-PSOCLUS demonstrates
better convergence speed, better ability to escape premature
convergence, and global search ability than LDIW-PSO.

5.4.6. Box Plots Analysis. Other than using statistical test to
observe the performance of RIW-PSO, R-PSOCLUS, LDIW-
PSO, and L-PSOCLUS, box plots analysis was also performed
for 6 of the scaled test problems with 30 dimensions; the
results are presented in Figures 3(a)–3(f). Box plots give a
direct visual comparison of both location and the dispersion
of data. The four algorithms are plotted together to optimize
space. In each of the plot, RIW-PSO is compared with R-
PSOCLUS while LDIW-PSO is comparedwith L-PSOCLUS.The
plots strengthen and justify the better performance of PSO
when used with the proposed local search technique.

6. Conclusion

A new local search technique has been proposed in this
paper with the goal of addressing the problem of premature
convergence associated with particle swarm optimization
algorithms. The proposed local search was used to efficiently
improve the performance of two existing PSO variants, RIW-
PSO and LDIW-PSO. These variants have been known to be
less efficient optimizing continuous optimization problems.
In this paper they were hybridized with the local search to
form two other variants R-PSOCLUS and L-PSOCLUS. Some
well-studied benchmark problems with low and high dimen-
sions were used to extensively validate the performance of
these new variants and comparisons were made with RIW-
PSO and LDIW-PSO. They were also compared with two
other PSO variants in the literature, which are hybridized
with different local search techniques. The experimental
results obtained show that the proposed variants successfully
obtain better results with high quality while demonstrating
better convergence velocity and precision, stability, robust-
ness, and global-local search ability than the competing
variants. This therefore shows that the local search tech-
nique proposed can help PSO algorithms execute effective
exploitation in the search space to obtain high quality results
for complex continuous optimization problems. This local
search technique can be used with any population-based
optimization algorithms to obtain quality solutions to simple
and complex optimization problem.

Further study is needed on the parameter tuning of the
proposed local search technique. Empirical investigation of
the behaviour of the technique in optimizing problems with
noise needs further study.The scalability of the algorithms for
problems with higher dimension greater than 100 is essential.
Finally, the proposed algorithm can be applied to real-world
optimization problems.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.



The Scientific World Journal 23

Acknowledgment

The authors acknowledge College of Agriculture, Engineer-
ing and Sciences, University of Kwazulu-Natal, South Africa,
for their support towards this work.

References

[1] R. Eberhart and J. Kennedy, “New optimizer using particle
swarm theory,” in Proceedings of the 6th International Sympo-
sium on Micro Machine and Human Science (MHS ’95), pp. 39–
43, Nagoya, Japan, October 1995.

[2] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,”
in Proceedings of the IEEE International Conference on Neural
Networks, vol. 4, pp. 1942–1948, Perth, Australia, December
1995.

[3] V. N. Dieu, P. Schegner, and W. Ongsakul, “A newly improved
particle swarm optimization for economic dispatch with valve
point loading effects,” in Proceedings of the IEEE Power and
Energy Society General Meeting, pp. 1–8, July 2011.

[4] J. Bai, X. Zhang, and Y. Guo, “Different inertia weight PSO algo-
rithm optimizing SVM kernel parameters applied in a speech
recognition system,” in Proceedings of the IEEE International
Conference on Mechatronics and Automation (ICMA ’09), pp.
4754–4759, August 2009.

[5] M. M. Mansour, S. F. Mekhamer, and N. E.-S. El-Kharbawe,
“A modified particle swarm optimizer for the coordination
of directional overcurrent relays,” IEEE Transactions on Power
Delivery, vol. 22, no. 3, pp. 1400–1410, 2007.

[6] A. M. Arasomwan and A. O. Adewumi, “An adaptive velocity
particle swarm optimization for high-dimensional function
optimization,” in Proceedings of the IEEE Congress Evolutionary
Computation (CEC ’13), pp. 2352–2359, 2013.

[7] Y. Shi and R. C. Eberhart, “A modified particle swarm opti-
mizer,” in Proceedings of the IEEE International Conference on
Evolutionary Computation (ICEC ’98), pp. 69–73, Anchorage,
Alaska, USA, May 1998.

[8] G. I. Evers, An automatic regrouping mechanism to deal with
stagnation in particle swarm optimization [M.S. thesis], Grad-
uate School of the University of Texas-Pan American, 2009.

[9] Y. Shi and R. Eberhart, “Parameter selection in particle swarm
optimization,” in Proceedings of the 7th International Conference
on Evolutionary Programming (EP ’98), vol. 1447, pp. 591–600,
San Diego, Calif, USA, March 1998.

[10] R. Akbari and K. Ziarati, “Combination of particle swarm opti-
mization and stochastic local search for multimodal function
optimization,” in Proceedings of the Pacific-Asia Workshop on
Computational Intelligence and Industrial Application (PACIIA
’08), vol. 2, pp. 388–392, December 2008.

[11] C. Junying, Q. Zheng, L. Yu, and L. Jiang, “Particle swarm opti-
mization with local search,” in Proceedings of the International
Conference on Neural Networks and Brain (ICNNB ’05), pp. 481–
484, October 2005.

[12] B. Liu, L.Wang, Y.-H. Jin, F. Tang, and D.-X. Huang, “Improved
particle swarm optimization combined with chaos,” Chaos,
Solitons and Fractals, vol. 25, no. 5, pp. 1261–1271, 2005.

[13] A. A. Mousa, M. A. El-Shorbagy, and W. F. Abd-El-Wahed,
“Local search based hybrid particle swarm optimization algo-
rithm for multiobjective optimization,” Swarm and Evolution-
ary Computation, vol. 3, pp. 1–14, 2012.

[14] H. Pan, X. Han, and M. Zheng, “Particle swarm-simulated
annealing fusion algorithm and its application in function

optimization,” in Proceedings of the International Conference on
Computer Science and Software Engineering (CSSE ’08), vol. 21,
pp. 78–81, December 2008.

[15] Y. Sun, B. J. Wyk, and Z. Wang, “A new golden ratio local
search based particle swarm optimization,” in Proceedings of the
International Conference on Systems and Informatics (ICSAI ’12),
pp. 754–757, 2012.

[16] J. Tang and X. Zhao, “Particle swarm optimization using adap-
tive local search,” in Proceedings of the International Conference
on Future BioMedical Information Engineering (FBIE ’09), pp.
300–303, December 2009.

[17] Y.-J. Wang, “Improving particle swarm optimization perfor-
mance with local search for high-dimensional function opti-
mization,” Optimization Methods and Software, vol. 25, no. 5,
pp. 781–795, 2010.

[18] W.-B. Zhang, J.-Y. Chen, and Y.-Q. Ye, “Study on particle
swarm optimization algorithm with local interpolation search,”
in Proceedings of the 2nd International Asia Conference on
Informatics in Control, Automation and Robotics (CAR ’10), vol.
1, pp. 345–348, March 2010.

[19] A. M. Arasomwan and A. O. Adewumi, “On the performance
of linear decreasing inertia weight particle swarm optimization
for global optimization,” The Science World Journal, vol. 2013,
Article ID 860289, 2013.

[20] J. Ememipour, M. M. S. Nejad, M. M. Ebadzadeh, and J.
Rezanejad, “Introduce a new inertia weight for particle swarm
optimization,” in Proceedings of the IEEE 4th International
Conference on Computer Sciences and Convergence Information
Technology (ICCIT ’09), pp. 1650–1653, November 2009.

[21] Y. Feng, G.-F. Teng, A.-X.Wang, andY.-M. Yao, “Chaotic inertia
weight in particle swarmoptimization,” inProceedings of the 2nd
International Conference on Innovative Computing, Information
and Control (ICICIC ’07), September 2007.

[22] A. Nickabadi, M. M. Ebadzadeh, and R. Safabakhsh, “A novel
particle swarm optimization algorithm with adaptive inertia
weight,”Applied Soft Computing Journal, vol. 11, no. 4, pp. 3658–
3670, 2011.

[23] R. C. Eberhart and Y. Shi, “Tracking and optimizing dynamic
systems with particle swarms,” in Proceedings of the of the
Congress on Evolutionary Computation, vol. 1, pp. 94–100, Seoul,
Korea, May 2001.

[24] M. E. H. Pedersen,Tuning& simplifying heuristical optimization
[Ph.D. thesis], School of Engineering Sciences, University of
Southampton, Southampton, UK, 2010.

[25] S. Chetty and A. O. Adewumi, “Three new stochastic local
search algorithms for continuous optimization problems,”Com-
putational Optimization andApplications, vol. 56, no. 3, pp. 675–
721, 2013.

[26] D. Karaboga and B. Akay, “A comparative study of Artificial Bee
Colony algorithm,” Applied Mathematics and Computation, vol.
214, no. 1, pp. 108–132, 2009.

[27] B. A. Sawyerr, M. M. Ali, and A. O. Adewumi, “A comparative
study of some real-coded genetic algorithms for unconstrained
global optimization,” Optimization Methods and Software, vol.
26, no. 6, pp. 945–970, 2011.

[28] C. Dytham, Choosing and Using Statistics: A Biologist’s Guide,
Wiley-blackwell, Malaysia, 3rd edition, 2011.

[29] J. Pallant, SPSS Survival Manual, McGraw-Hill, Singapore, 4th
edition, 2010.



Submit your manuscripts at
http://www.hindawi.com

International Journal of
Computer Games
Technology
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied 
Computational 
Intelligence and Soft 
Computing

 Advances in 

Artificial 
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in Software 
Engineering

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Journal of

Computer Networks 
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in 

Multimedia

 International Journal of 

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence &
Neuroscience

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014



An Adaptive Velocity Particle Swarm Optimization 
for High-Dimensional Function Optimization 

1Arasomwan Akugbe Martins and 2Adewumi Aderemi Oluyinka 
School of Mathematics, Statistics and Computer Science 

University of Kwazulu-Natal 
Durban, South Africa 

1accuratesteps@yahoo.com, 2adewumia@ukzn.ac.za 
 
 

Abstract—Researchers have achieved varying levels of 
successes in proposing different methods to modify the particle's 
velocity updating formula for better performance of Particle 
Swarm Optimization (PSO). Variants of PSO that solved high-
dimensional optimization problems up to 1,000 dimensions 
without losing superiority to its competitor(s) are rare. 
Meanwhile, high-dimensional real-world optimization problems 
are becoming realities hence PSO algorithm therefore needs 
some reworking to enhance it for better performance in handling 
such problems. This paper proposes a new PSO variant called 
Adaptive Velocity PSO (AV-PSO), which adaptively adjusts the 
velocity of particles based on Euclidean distance between the 
position of each particle and the position of the global best 
particle. To avoid getting trapped in local optimal, chaotic 
characteristics was introduced into the particle position updating 
formula. In all experiments, it is shown that AV-PSO is very 
efficient for solving low and high-dimensional global 
optimization problems. Empirical results show that AV-PSO 
outperformed AIWPSO, PSOrank, CRIW-PSO, def-PSO, e1-PSO 
and APSO. It also performed better than LSRS in many of the 
tested high-dimensional problems. AV-PSO was also used to 
optimize some high-dimensional problems with 4,000 dimensions 
with very good results. 

Keywords—adaptive; global optimization; high dimension; 
optimization problems; particle swarm optimization; velocity 
updating 

I. INTRODUCTION 
It is almost two decades since PSO algorithm was 

introduced in [14] as a technique for solving optimization 
problems. It is one of the two fundamental mainstreams of 
swarm intelligence and it is driven by the simulation of a 
sociological metaphor inspired by collective behaviour of 
birds and other social organisms. Over the years, many 
researchers have made tremendous efforts to improve on the 
effectiveness, efficiency and robustness of PSO technique in 
solving optimization problems. Researches in this direction 
are the introduction of Vmax [6], inertia weight [23], 
constriction factor [4] into PSO, as well as improvements on 
the inertia weight [1, 3, 7, 8, 11, 17, 18, 22, 24], PSO with 
mutation operators [2, 5, 11, 15, 16], hybridization of PSO 
with other algorithms [19] and development of other variants 
of PSO [21].  Despite these improvements on PSO, virtually 
none of the existing variants of PSO have been able to solve 
optimization problems with high dimension up to 2000. In 
[13] an improved PSO (IPSO) was used to solve Ackley's 

function with 100 dimensions and Sphere's function with 150 
dimensions with evidences of superiority over the standard 
PSO. In [20] parallel PSO was used to optimize Griewank's 
function with 128 dimensions and there was evidence of 
success too. However in [12], a PSO algorithm was compared 
with Line Search Restart (LSRS) technique in solving some 
high-dimensional global optimization problems of dimension 
50 to 2,000.  In all the dimensions PSO lost its superiority to 
LSRS. Moreover, due to the fact that high dimensional real-
world optimization problems is a possibility, PSO algorithm 
therefore need some reworking to enhance it for better 
performance in handling high-dimensional global optimization 
problems. 

In this paper a very simple PSO algorithm (AV-PSO) is 
proposed. This work is different from existing ones in three 
major ways: firstly, it implemented the PSO algorithm without 
using any of inertia weight, acceleration coefficients and 
random coefficients to compute velocity for any particle in the 
swarm; secondly, chaotic characteristics was introduced into 
the particle's position formula to promote some stochasticity 
in order to facilitate good exploitation; thirdly, the proposed 
algorithm is used to favourably compete with another 
optimization algorithm (e.g. LSRS) to solve some 
optimization problems up to at least 2,000 dimensions. The 
rest of the paper is structured as follows: Section 2 succinctly 
looked at PSO. In section 3, the proposed simple PSO 
algorithm is described, while section 4 focuses on the 
numerical simulations. Section 5 briefly looked at the 
optimization characteristics of AV-PSO. Section 6 concludes 
this work summarizing the contributions made in this paper 
and future work. 

II. PARTICLE SWARM OPTIMIZATION 
A swarm of particles is involved in PSO. This swarm is 

randomly initialized as candidate solutions over the fitness 
landscape to start the process of optimizing a problem. Each 
particle is assumed to have position and velocity in a physical 
d-dimensional search space, the position and velocity of a 
particle i in each iteration t is represented as the vectors  ⃗  = 
(xi1, …, xin) and  ⃗⃗  = (vi1, …, vin), respectively. When the 
particles move in the search space looking for the optimum 
solution for a particular optimization problem, other particles 
follow the current optimum particle by adjusting their 
velocities and positions using (1) and (2). 
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 where,  ⃗⃗ 

  and  ⃗ 
  are the velocity and position of particle i at 

iteration t. A particle's position is taken as possible solution of 
the function being optimized while the fitness of this possible 
solution is determined by evaluating the function. The best 
position searched by the particle itself so far (     ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

 
 ) and the 

optimization position searched by the whole particles swarm 
so far (     ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

 
 ) are d-dimension vectors representing personal 

best position of particle i at iteration t and global best 
positions selected from the personal best positions of all the 
particles in the swarm at iteration t. Whereas,  ⃗  and  ⃗  are two 
d-dimensional vectors of random numbers between 0 and 1, 
which introduces randomness to the searching strategy and the 
two positive constants c1 and c2 are cognitive and social 
scaling parameters that determine the magnitude of the 
random forces in the direction of      ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

 
  and      ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

 
  . 

With the introduction of inertia weight by [23] into PSO, 
(1) was upgraded to become (3). 
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Equation (3) is made up of inertia weight component   ⃗⃗ 
 , 

cognitive component    ⃗ (     ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
 
   ⃗ 

 ) and social 
component    ⃗ (     ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

 
   ⃗ 

 ). The inertia weight strikes a 
balance between exploration and exploitation characteristics 
of PSO and it determines the level of contribution of previous 
particle velocity to the present velocity. It is a common idea 
among many researchers that, large inertia weight facilitates 
exploration while a small inertia weight facilitates 
exploitation; however there are cases where this may not hold 
[18]. 

The common practice has been to update particle velocity 
and position using (3) and (2) respectively. The goal of this 
research work is to propose very simple variants of PSO with 
fewer parameters to adjust, but with improved performance to 
achieve better convergence in few numbers of iterations 
compared with existing variants, without compromising 
quality results. In achieving this goal, the velocity for each 
particle was computed without using inertia weight (), 
acceleration coefficients (c1 and c2) and random parameters 
( ⃗  and  ⃗ ) in equation (3). Rather, the velocity was adaptively 
adjusted based on Euclidean distance between the position of 
each particle and the position of the global best particle.   To 
avoid getting trapped in local optimal, chaotic characteristics 
was introduced into (2). It is evident from experimental results 
that the proposed PSO variants, though simple in nature than 
many existing PSO variants, have tremendous performance in 
finding better global solutions to low and high-dimensional 
continuous optimization problems and achieves outstanding 
accuracy level of convergence in fewer numbers of iterations. 

A. PSO Variants 

Since the inception of PSO, quite a number of its variants 
have been proposed over the years. A comprehensive list of 
many of the variants can be found in [21]. The variants 
adopted for comparison in this work are Rank based PSO 
(PSOrank) in [1], Adaptive Inertia Weight PSO (AIWPSO) in 
[18], Adaptive PSO (APSO) in [2], Natural Exponential 
inertia weight PSO (e1-PSO) in [7], Decreasing exponential 
function PSO (def-PSO) in [8] and Chaotic Random Inertia 
Weight PSO (CRIW-PSO) in [10]. All these variants have 
proved to be superior to their competitors in their various 
capacities. 

PSOrank is based on cooperative behavior of particles. The 
local search and convergence to global optimum solution is 
controlled by selecting some number (which decreases with 
increased iteration) of best particles proportionate to their 
respective strengths, to contribute to the updating of the 
position of a candidate particle. The strength of each 
contributing particle is a function of strivness, immediacy and 
number of contributed particles. A time-varying inertia weight 
decreasing non-linearly was used to improve its performance. 
Experimental evidences show that PSOrank is superior to its 
competitors [1]. 

AIWPSO uses the swarm success rate parameter to 
determine the inertia weight value. It monitors the search 
situation using the success rate to adapt the value of the inertia 
weight in the static and dynamic environment to improve its 
performance in dynamic environments. In this variant at the 
end of each iteration, the worst particle is replaced by mutated 
best particle. The mutation is done by adding a Gaussian noise 
with zero mean standard deviation  to one of the randomly 
chosen dimension of the best particle to improve on 
exploration of the method. AIWPSO also outperformed its 
competitors virtually in all the tests [18] 

The goal of APSO as proposed in [2] was to address the 
problem of unknown parameters estimation in nonlinear 
systems. It introduced an adaptive mutation mechanism and a 
dynamic inertia weight into the conventional PSO to enhance 
global search ability and to increase accuracy and was found 
to be more successful than the competing algorithms. 

e1-PSO is one of the two proposed natural exponential 
functions inertia weight strategies (which has some evidences 
of better performance than the other) in [3]. It is based on the 
basic idea of decreasing inertia weight. It was experimentally 
proved to converge faster in early stage of the search process 
and performed better in most continuous optimization 
problems than linear decreasing inertia weight PSO.  

def-PSO adjusts the inertia weight based on decreasing 
exponential functions. The function is made up of two parts 
(base and power) and the algorithm's iteration was used in 
these parts. As the iteration increases, the inertia weight 
decreases from one towards zero. Graphical results in [8] 
show evidences of its superiority to the competitors. 

In CRIW-PSO, two inertia weights (chaotic linear 
descending and chaotic random) based on the concept of 
linear descending and random inertia weights were proposed 
by introducing chaotic (using logistic mapping) optimization 
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mechanism into them. The purpose was to enhance the 
performance of PSO using linear descending and random 
inertia weights in terms of convergence precision, quick 
convergence velocity and better global search ability. Results 
in [10] show their outstanding performances. 

Despite the various successes recorded by PSO variants, 
none of them have solved problems with up to 2000 
dimensions. Besides, their results show that there are still needs 
for improvements on the convergence precision, quick 
convergence velocity, better global search ability, and further 
reduction of the possibilities of getting trapped in local optima 
by PSO algorithms. The goal of this paper is to experimentally 
address these issues by proposing another PSO variant. 

III. PROPOSED PSO VARIANT 
The velocity updating formula is a very important aspect 

of PSO algorithms. It determines the flying speed of particles 
in the search space when they are searching for optimal 
solutions to optimization problems. The proposed PSO 
algorithm in this paper updates the particle velocity and 
position using (4) and (7) respectively. It can quickly and 
efficiently locate better global optimal results for optimization 
problems without getting stuck in local optimal. 

  

      
        

        
 (4) 

 

where          is the current Euclidean distance of particle 
i from the global best, at iteration t as shown in (5). 
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and           is the maximum distance, shown in (6), of 
a particle from the global best, at iteration t. 
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where             is a logistic mapping and z is a 
random number in the interval (0,1). The chaotic mapping 
provides chaotic characteristics for the algorithm to escape 
premature convergence. 

When any component of the position of any particle falls 
outside the search space, it is forced to take the value maxX 
(upper limit of search space) or minX (lower limit of search 
space) as the case may be. 

The proposed PSO algorithm as is shown in Figure 1. The 
bold lines indicate the reworking done on the standard PSO 
algorithm. 

 
 

Begin PSO Algorithm 
Input:  f: the function to optimize 
 ps: the swarm size 
 d: the problem dimension 
Output: x*: the best fitness value found 
Initialize: xi = (xi1, …, xid) and vi = (vi1, …, vid), for all 
particles in problem space 
evaluate f(xi) in d variables and get pbesti, (i = 1, …, ps)  
gbest  best of pbesti  
While stopping criteria is false do 

compute particles velocities using equation (4) 
Begin Loop for ps times 

do chaotic mapping 
update xi for particle using equation (7)  
validate for position boundaries 

End 
If f(xi) < f(pbesti) then  

pbesti  xi  
end if 
If f(xi) < f(gbesti) then  

gbesti  xi  
end if 

End while 
x*  gbest  
Return x* 
End PSO Algorithm 
 
Fig. 1. Pseudocode for the proposed PSO algoithm. 
 

IV. NUMERICAL SIMULATION 
Different test problems with varied difficulties were used to 

verify the performance of AV-PSO with its competitors. The 
simulations were carried out in four stages to test its 
convergence speed, accuracy, robustness, stability and global 
search ability in locating optimal values. In stage 1, AV-PSO 
was used to solve the test problems listed in [1, 2, 18] with 
same experimental settings, and results were compared with 
the existing results of PSOrank, AIWPSO and APSO recorded 
in literature. In stage 2, e1-PSO, def-PSO and CRIW-PSO 
were implemented and their performances compared with that 
of AV-PSO, using the same experimental settings and test 
problems. In stage 3, AV-PSO was compared with LSRS using 
several high-dimensional benchmark problems with 
dimensions from 50 to 2000 [12]. Finally in stage 4, AV-PSO 
was used to optimize the some problems with dimensions up to 
4,000. A search goal of 0.0000000001 (10-10) was used to test 
its efficiency relative to very high problems dimensionality. 

The simulations were done on a laptop computer with a 
2.0GHz Intel Pentium dual-core processor, 2.0GB of RAM, 
running Windows Vista Home Basic. The simulation program 
was developed using Microsoft Visual C# programming 
language, 2008 Express Edition.  

A. Parameter settings 
Refer to [1, 2, 18] for parameter settings for PSOrank, 

AIWPSO and APSO and [12] for LSRS. In stage 2 of 
experiments, swarm size = 10, dimension = 2 for Schaffer's f6 

2354



and 40 for others, maximum iterations = 3000 and random runs = 
50. In comparison with AIWPSO, AV-PSO used 60,000 
function evaluations (FEs). The parameter settings for AV-
PSO to test against LSRS are shown in Table I. 

TABLE I.  SETTINGS FOR AV-PSO IN COMPARISON WITH LSRS  

Parameter Number of dimensions 
50 100 500 1000 2000 

Swarm size 50 50 50 50 50 
Maximum number of iterations 1000 1000 1000 1000 1000 
Number of independent runs 25 25 25 25 25 

 

B. Test problems 
 The test problems used in the experiments are made up of 
some standard continuous functions widely used in the 
literature. They were adopted from [1, 2, 12, 18] and any 
further details about them could be obtained from these 
references. Their characteristics are diverse enough to cover 
many of the problems which can arise in global optimization 
problems. AV-PSO was used to optimize these problems along 
with its competitors. All the problems were of dimension 40 
with asymmetric initialization ranges. This dimension was 
chosen because test problems in stage 1 ended with dimension 
of 30 while stage 3 starts with 50.  

1) Test problems of stage 1 of experiment 
The test problems and their respective search as well as 

initialization ranges that were used to test whether AV-PSO 
could compete with existing PSO variants in literature were 
adopted from [1, 2, 18]. They have dimensions ranging from 2 
– 30. 

2) Test problems of stage 2 of experiment 
To test the convergence speed, robustness as well as the 

global search ability of AV-PSO, the test problems given 
below were used. The performance of AV-PSO was compared 
with that of CRIW-PSO, def-PSO and e1-PSO which were 
adopted for comparison. 

Ackley (f1): ex
n

x
n

xf
d

i
i

d

i
i 























 



20)2cos(1exp12.0exp20)(
11

2
1 

 

Search range: [-30,30], Initialization range: [15,30], 
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Search range: [-600,600], Initialization range: [300,600], 
Optimal value = 0 
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Search range: [-10,10], Initialization range: [5,10], 
Optimal value = 0 

Rastrigin (f4):  
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Search range: [-5.12,5.12], Initialization range: [2.56,5.12], 
Optimal value = 0 

Rosenbrock (f5):  
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Search range: [-30,30], Initialization range: [15,30], 
Optimal value = 0 
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Search range: [-100,100], Initialization range: [50,100], 
Optimal value = 0 

 
3) Test problems of stage 3 of experiment 
To test the capability of AV-PSO in solving high-

dimensional problems, the test problems used by LSRS in [12] 
were also used. The performances of AV-PSO were compared 
with that of LSRS. 

4) Test problems of stage 4 of experiment 
In this stage, AV-PSO was used to optimize problems with 

the same search ranges in [12] with dimensions up to 4,000; 
but the Rastrigin of the test problems at stage 2 was used, 
while Quadric function was replaced with Griewank.   

C. Experimental results and comparison 
 Shown in Tables II – XI are the numerical results for all the 
experiments that were performed in this work. The results for 
PSOrank, AIWPSO and APSO were obtained from literature [1, 
2, 18] while that of LSRS was adapted from [12] as recorded 
by the researchers, but the ones for CRIW-PSO, def-PSO, e1-
PSO and AV-PSO were obtained after the implementation of 
each of the algorithms. 

1) Experimental results for stage 1 

The experimental results are shown in Tables II – IV with 
Test problems (TP), Population size (PS), Problem dimension 
(PD) and Iteration (ITR).  Best optimal results appear in bold. 

Table II reflects the performance measurement of PSOrank 
and AV-PSO in six test problems with three different problem 
dimensions over 100 independent runs. From results in the 
table, the two algorithms had equal performances in f3 across 
the three dimensions in both average fitness and standard 
deviation as well as in f6. In all other test problems across the 
dimensions, AV-PSO extremely outperformed PSOrank in 
convergence speed, accuracy, robustness and stability with 
better global search ability and location of optimal values. 
Except f2, AV-PSO obtained the minimum value for all the 
test problems. Also the performance of PSOrank decreases with 
increasing problem dimension in f1, f2, and f4, but AV-PSO do 
not which is an indication that it is less sensitive to increase in 
problem dimensionality compared with PSOrank. The two 
algorithms had equal success rates in other test problems 
except in f2 where AV-PSO outperformed PSOrank in all 
dimensions. After the maximum number of iterations, an 
algorithm was considered successful if the minimum value 
reached was below 0.000001 (10-6) for f6, and 0.01 (10-2) for 
others. 

From the results in Table III, it is clear that AV-PSO is 
superior in all the test problems to APSO in performance. The 
performance measurements are in term of average fitness 
values of the best particle and standard deviation. The 
standard deviation was computed for dimension 10 across the 
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population sizes for the three test problems [2]. The results 
show that AV-PSO demonstrates superiority over APSO in 
global searching abilities, stability and robustness. Also, the 
convergence velocity and precision of AV-PSO within the 
given iterations are far higher than that of APSO. The results 
reveal that APSO is sensitive to problems dimensions and 
swarm sizes in all the test problems because as the number of 
particles increases the quality of fitness also increase across 
the dimensions, but the case of AV-PSO is not so as the 
results obtained by it remain stable and the minimum optimal 
value for all the test problems which is a clear indication of its 
stability and robustness.  

TABLE II.  PERFORMANCE COMPARISON BETWEEN PSORANK AND         
AV-PSO  

PD TP Average fitness Standard deviation Success rate 
PSOrank AV-PSO PSOrank AV-PSO PSOrank AV-PSO 

10 

f1 1.21E-10 0.00E+00 8.36E-10 0.00E+00 1 1 
f2 9.14E-03 2.37E-11 1.42E-02 8.78E-11 0.96 1 
f3 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1 1 
f4 1.31E-06 0.00E+00 6.54E-06 0.00E+00 1 1 
f5 2.53E-05 0.00E+00 3.47E-05 0.00E+00 1 1 
f6 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1 1 

20 

f1 1.08E-09 0.00E+00 3.76E-09 0.00E+00 1 1 
f2 1.61E+00 1.75E-11 2.04E+00 1.35E-10 0.56 1 
f3 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1 1 
f4 4.22E-06 0.00E+00 9.11E-06 0.00E+00 1 1 
f5 4.47E-07 0.00E+00 7.69E-07 0.00E+00 1 1 

30 

f1 2.05E-08 0.00E+00 6.41E-08 0.00E+00 1 1 
f2 1.27E+01 1.83E-12 1.39E+01 5.01E-12 0.19 1 
f3 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1 1 
f4 3.12E-05 0.00E+00 8.35E-05 0.00E+00 1 1 
f5 2.73E-08 0.00E+00 5.24E-08 0.00E+00 1 1 

Note: Sphere (f1), Rosenbrock (f2), Rastrigin (f3), Ackley (f4), 
Griewank (f5), Schaffer's f6 (f6).  

TABLE III.  PERFORMANCE COMPARISON BETWEEN APSO AND AV-PSO  

TP PS PD ITR Average fitness Standard deviation 
APSO AV-PSO APSO AV-PSO 

f1 

20 
10 1 000 0.0983 0.0000 0.0054 0.0000 
20 1 500 0.0237 0.0000   
30 2 000 0.0117 0.0000   

40 
10 1 000 0.0952 0.0000 0.0036 0.0000 
20 1 500 0.0201 0.0000   
30 2 000 0.0105 0.0000   

80 
10 1 000 0.0689 0.0000 0.0029 0.0000 
20 1 500 0.0199 0.0000   
30 2 000 0.0102 0.0000   

f2 

20 
10 1 000 5.1565 0.0000 0.1358 0.0000 
20 1 500 16.0456 0.0000   
30 2 000 42.2325 0.0000   

40 
10 1 000 2.9468 0.0000 0.1064 0.0000 
20 1 500 15.3678 0.0000   
30 2 000 33.7538 0.0000   

80 
10 1 000 2.0457 0.0000 0.1084 0.0000 
20 1 500 10.0563 0.0000   
30 2 000 25.3473 0.0000   

f3 

20 
10 1 000 5.8467 0.0000 1.3471 0.0000 
20 1 500 47.9842 0.0000   
30 2 000 100.4528 0.0000   

40 
10 1 000 4.5431 0.0000 1.2376 0.0000 
20 1 500 38.3464 0.0000   
30 2 000 72.5473 0.0000   

80 
10 1 000 4.1680 0.0000 1.1450 0.0000 
20 1 500 27.9547 0.0000   
30 2 000 69.0609 0.0000   

Note: Griewank (f1), Rastrigin (f2), Rosenbrock (f3) 
 

Shown in Table IV is the performance measurement of 
AIWPSO and AV-PSO in thirteen test problems over 30 

independent runs. Better optimal values appear in bold. From 
results, the two algorithms had equal performances in f7 in 
both mean fitness and standard deviation. In all other test 
problems, AV-PSO extremely outperformed AIWPSO in 
convergence speed, accuracy, robustness and stability with 
better global search ability and location of optimal values 
except f8 and f13. Out of the thirteen problems, AV-PSO 
obtained outright minimum values for eight while AIWPSO 
obtained for only one. 

TABLE IV.  PERFORMANCE COMPARISON BETWEEN AIWPSO AND       
AV-PSO 

TP 
Mean fitness Standard deviation 

AIWPSO AV-PSO AIWPSO AV-PSO 
f1 3.3703E-134 0.0000E+000 5.1722E-267 0.0000E+000 
f2 1.8317E-137 0.0000E+000 3.4534E-273 0.0000E+000 
f3 1.6534E-062 0.0000E+000 7.7348E-123 0.0000E+000 
f4 1.9570E-010 0.0000E+000 1.2012E-019 0.0000E+000 
f5 5.5241E-003 1.2186E-003 1.5358E-005 5.4511E-003 
f6 2.5003E+000 6.9252E-013 1.5978E+001 1.7255E-012 
f7 0.0000E+000 0.0000E+000 0.0000E+000 0.0000E+000 
f8 -1.1732E+004 -1.9669E+003 1.1409E-025 5.0474E+002 
f9 1.6583E-001 0.0000E+000 2.1051E-001 0.0000E+000 
f10 1.1842E-016 0.0000E+000 4.2073E-031 0.0000E+000 
f11 6.9870E-015 4.4409E-016 4.2073E-031 0.0000E+000 
f12 2.8524E-002 0.0000E+000 7.6640E-004 0.0000E+000 
f13 1.4998E-032 1.1570E-014 1.2398E-094 3.1485E-014 

Note: Sphere (f1), Sphere (f2), Schwefel P2.22 (f3), Rotated hyper-
ellipsoid (f4), Noisy Quadric (f5), Rosenbrock (f6), Step (f7), Schwefel 
(f8), Rastrigin (f9), Non continuous Rastrigin (f10), Ackley (f11), 
Griewank (f12), Levy (f13). 

 
2) Expeimental results for stage 2 
In this section, the performance of AV-PSO is further 

tested to prove its superiority in convergence speed, accuracy, 
robustness, stability, and global search ability in locating 
optimal values. Table V with Test problems (TP), Population 
size (PS), Problem dimension (PD), Iteration (ITR) shows the 
results of all the algorithms after implementing them. The 
comparisons criterions are mean fitness value, Standard 
deviation (SD) and Success rate. After the maximum number 
of iterations, an algorithm was considered successful if the 
minimum value reached was below 0.00000001 (10-8) for all 
the test problems. 

The results in Table V indicate that AV-PSO is extremely 
superior to its competitors in all the test problems in every 
way. Again, it is superior in convergence speed, accuracy, 
robustness, stability and global search ability in locating 
optimal values. In f1 – f5, it is only AV-PSO that met the 
success criterion in all the runs. Though, in f6 two of the 
competitors were able to meet the success criterion but with 
lower SR compared with AV-PSO. 

3) Experimental results for stage 3 

After subjecting AV-PSO to various swarm sizes, problem 
dimensionality, iterations and independent runs to prove its 
performance in the preceding tests, it is finally compared with 
LSRS using various high-dimensional problems with varying 
complexities to test its capability in solving such problems. 
The results are categorized in problem dimensions in Tables 
VI – X. 
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TABLE V.  RESULTS OF AV-PSO AND THE COMPETING VARIANTS OVER 
50 INDEPENDENT RUNS. "X" INDICATES NO RESULT 

TP Comparison index CRIW-
PSO def-PSO e1-PSO AV-PSO 

f1 Fitness 
value 

Best 1.92E+01 1.97E+01 1.95E+01 4.44E-16 
Worst 1.99E+01 2.03E+01 1.99E+01 4.44E-16 
Mean 1.98E+01 1.99E+01 1.98E+01 4.44E-16 
SD 1.15E-01 1.18E-01 8.20E-02 0.00E+00 

Iterations to 
achieve set 
goal 

Best x x x 6 
Worst x x x 18 
Mean x x x 11 

Success Rate 0 0 0 100% 
f2 Fitness 

value 
Best 1.80E+02 3.30E+02 2.70E+02 0.00E+00 
Worst 9.91E+02 9.37E+02 1.08E+03 0.00E+00 
Mean 5.79E+02 6.07E+02 6.53E+02 0.00E+00 
SD 1.94E+02 1.38E+02 1.73E+02 0.00E+00 

Iterations to 
achieve set 
goal 

Best x x x 3 
Worst x x x 10 
Mean x x x 6 

Success Rate 0 0 0 100% 
f3 Fitness 

value 
Best 3.68E+01 8.35E+01 1.77E+01 4.99E-22 
Worst 2.16E+02 2.40E+02 2.25E+02 5.87E-13 
Mean 1.02E+02 1.47E+02 1.06E+02 2.18E-14 
SD 4.39E+01 4.48E+01 4.87E+01 8.81E-14 

Iterations to 
achieve set 
goal 

Best x x x 4 
Worst x x x 205 
Mean x x x 56 

Success Rate 0 0 0 100% 
f4 Fitness 

value 
Best 2.93E+02 3.63E+02 2.90E+02 0.00E+00 
Worst 5.11E+02 6.52E+02 5.23E+02 0.00E+00 
Mean 3.81E+02 4.93E+02 4.09E+02 0.00E+00 
SD 5.46E+01 6.12E+01 5.12E+01 0.00E+00 

Iterations to 
achieve set 
goal 

Best x x x 3 
Worst x x x 19 
Mean x x x 9 

Success Rate 0 0 0 100% 
f5 Fitness 

value 
Best 3.95E+01 3.88E+07 6.40E+02 3.31E-18 
Worst 4.00E+08 3.61E+08 4.80E+08 7.72E-11 
Mean 1.83E+08 1.67E+08 2.67E+08 3.00E-12 
SD 1.14E+08 7.23E+07 1.05E+08 1.14E-11 

Iterations to 
achieve set 
goal 

Best x x x 1 
Worst x x x 1,052 
Mean x x x 216 

Success Rate 0 0 0 100% 
f6 Fitness 

value 
Best 0.00E+00 2.28E-01 0.00E+00 0.00E+00 
Worst 9.72E-03 5.00E-01 4.98E-01 1.49E-02 
Mean 4.66E-03 4.52E-01 3.55E-01 2.98E-04 
SD 4.85E-03 8.40E-02 1.70E-01 2.08E-03 

Iterations to 
achieve set 
goal 

Best 122 x 221 3 
Worst 2,184 x 2,504 2,091 
Mean 843 x 842 54 

Success Rate 52% 0 12% 98% 

From the results in Tables VI – X, it can be seen that 
LSRS and the proposed PSO algorithm (AV-PSO) put up a 
good competition solving some high-dimensional optimization 
problems. In all the dimensions, AV-PSO performed better 
than LSRS in 4 out of the 7 problems because it was able to 
obtain the minimum optimal values for Quadric, Schwefel, 
Sphere and Sum squares problems. However, in Ackley, Levy 
and Rosenbrock problems, the results obtained by LSRS were 
higher in magnitude compared with AV-PSO which also 
obtained good results. AV-PSO obtained its results with a 
small swarm size and fewer numbers of iterations compared 
with LSRS. It is very possible that AV-PSO could outsmart 
LSRS solving Ackley, Levy and Rosenbrock problems if AV-
PSO uses some larger population size than 50 and maximum 
iterations than 1,000 used in this experiment. These results 
obtained at this stage 3 are indications that PSO algorithm has 
the potentials to solve many high-dimensional optimization 
problems without losing its superiority to its competitor(s). 

4) Experimental esults for stage 4 

In Table XI are the results of AV-PSO when it was used to 
optimize high-dimensional optimization problems with 4,000 
dimensions over 25 independent runs, to show that it can 
handle more than 2,000 dimensions. This also help to find out 
the effect of further increase in problem dimensions would 
have on its performance. Best, worst and average numbers of 
iterations and Function Evaluations were rounded up to the 
nearest integer values. 

From the results shown in Tables XI, it is evident that the 
proposed algorithm (AV-PSO) can efficiently optimize high-
dimension optimization problems up to 4,000 dimensions. The 
best, worst and average number of iterations the algorithm 
obtained optimal values less than 10-10 shows that AV-PSO 
has a very high convergence speed and accuracy. It was able 
to the minimum optimal results for 5 out of the 8 problems, 
even with such a high criterion of 10-10. The algorithm is still 
very strong enough to handle dimensions greater than 4000 
with very good results. The algorithm is robust, efficient and 
has very good global search ability despite the fact that the 
solution spaces of the problems increased exponentially with 
their problem sizes 

TABLE VI.  THE PERFORMANCE OF LSRS AND AV-PSO FOR 50 DIMENSIONS 

Algorithm Comparison 
index 

Test Problems 
Ackley Levy Quadric Rosenbrock Schwefel Sphere Sum 

squares 
LSRS Best −6.50E−19 2.90E−39 6.27E−19 2.47E−28 1.86E−11 1.34E−22 9.86E−21 

Average −6.50E−19 2.90E−39 2.33E−18 1.38E−18 1.91E−11 1.38E−18 1.42E−18 
SD 0.00E+00 0.00E+00 8.11E−19 1.29E−18 4.15E−12 1.29E−18 1.25E−18 

AV-PSO Best 4.44E−16 4.75E−20 0.00E+00 1.55E−17 0.00E+00 0.00E+00 0.00E+00 
Average 5.86E−16 4.87E−13 0.00E+00 6.70E−11 0.00E+00 0.00E+00 0.00E+00 
SD 6.96E−16 1.32E−12 0.00E+00 2.51E−10 0.00E+00 0.00E+00 0.00E+00 

TABLE VII.  THE PERFORMANCE OF LSRS AND AV-PSO FOR 100 DIMENSIONS 

Algorithm Comparison 
index 

Test Problems 
Ackley Levy Quadric Rosenbrock Schwefel Sphere Sum 

squares 
LSRS Best −6.50E−19 2.90E−39 9.20E−16 5.83E−28 7.81E−19 5.34E−19 4.68E−18 

Average −6.50E−19 2.90E−39 1.15E−15 6.94E−16 3.98E−10 6.94E−16 6.98E−16 
SD 0.00E+00 0.00E+00 4.38E−16 6.63E−16 4.97E−10 6.63E−16 6.58E−16 

AV-PSO Best 4.44E−16 3.60E−28 0.00E+00 1.60E−25 0.00E+00 0.00E+00 0.00E+00 
Average 4.44E−16 3.03E−13 0.00E+00 6.33E−10 0.00E+00 0.00E+00 0.00E+00 
SD 0.00E+00 7.37E−13 0.00E+00 2.71E−10 0.00E+00 0.00E+00 0.00E+00 
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TABLE VIII.  THE PERFORMANCE OF LSRS AND AV-PSO FOR 500 DIMENSIONS 

Algorithm Comparison 
index 

Test Problems 
Ackley Levy Quadric Rosenbrock Schwefel Sphere Sum 

squares 
LSRS Best −4.30E−19 2.90E−39 2.12E−11 3.40E−27 2.91E−19 4.54E−16 4.05E−35 

Average −4.30E−19 2.90E−39 4.31E−11 2.61E−11 4.08E−19 9.00E−16 7.96E−35 
SD 0.00E+00 0.00E+00 1.14E−11 2.32E−11 3.62E−20 1.52E−16 1.95E−35 

AV-PSO Best 4.44E−16 1.53E−21 0.00E+00 1.66E−17 0.00E+00 0.00E+00 0.00E+00 
Average 5.06E−16 5.28E−13 0.00E+00 7.45E−11 0.00E+00 0.00E+00 0.00E+00 
SD 6.96E−16 1.71E−12 0.00E+00 1.67E−10 0.00E+00 0.00E+00 0.00E+00 

TABLE IX.  THE PERFORMANCE OF LSRS AND AV-PSO FOR 1000 DIMENSIONS 

Algorithm Comparison 
index 

Test Problems 
Ackley Levy Quadric Rosenbrock Schwefel Sphere Sum 

squares 
LSRS Best 1.30E−18 2.90E−39 5.34E−30 6.84E−27 9.30E−18 7.97E−19 3.78E−33 

Average 1.30E−18 2.90E−39 1.38E−29 7.41E−27 1.12E−17 1.25E−18 7.35E−33 
SD 4.80E−33 0.00E+00 3.68E−30 1.66E−28 7.33E−19 2.05E−19 1.49E−33 

AV-PSO Best 4.44E−16 2.58E−18 0.00E+00 7.63E−18 0.00E+00 0.00E+00 0.00E+00 
Average 5.86E−16 4.40E−12 0.00E+00 1.47E−10 0.00E+00 0.00E+00 0.00E+00 
SD 6.96E−16 1.43E−11 0.00E+00 3.23E−10 0.00E+00 0.00E+00 0.00E+00 

TABLE X.  THE PERFORMANCE OF LSRS AND AV-PSO FOR 2000 DIMENSIONS 

Algorithm Comparison 
index 

Test Problems 
Ackley Levy Quadric Rosenbrock Schwefel Sphere Sum 

squares 
LSRS Best −4.30E−19 2.9E−39 9.37E−08 1.40E−26 2.41E−17 9.97E−34 7.58E−31 

Average −4.30E−19 2.9E−39 1.69E−07 1.48E−26 3.08E−17 2.35E−33 1.27E−30 
SD 9.60E−35 0.00E+00 3.42E−08 2.44E−28 2.31E−18 6.91E−34 2.02E−31 

AV-PSO Best 4.44E−16 8.11E−19 0.00E+00 2.49E−15 0.00E+00 0.00E+00 0.00E+00 
Average 7.28E−16 2.54E−11 0.00E+00 1.68E−09 0.00E+00 0.00E+00 0.00E+00 
SD 9.64E−16 7.31E−11 0.00E+00 5.83E−09 0.00E+00 0.00E+00 0.00E+00 

TABLE XI.  THE PERFORMANCE OF AV-PSO FOR 4000 DIMENSIONS OVER 25 RUNS WITH SIZE = 50, MAXIMUM ITERATION = 1,000 

Algorithm Measurement Index Test Problems 
Ackley Griewank Levy Rastrigin Rosenbrock Schwefel Sphere Sum squares 

AV-PSO 

Fitness Values 

Best 4.44E−16 0.00E+00 3.17E−19 0.00E+00 3.25E−14 0.00E+00 0.00E+00 0.00E+00 
Worst 4.00E−15 0.00E+00 3.00E−10 0.00E+00 2.80E−08 0.00E+00 0.00E+00 0.00E+00 
Average 7.28E−16 0.00E+00 2.62E−11 0.00E+00 1.41E−09 0.00E+00 0.00E+00 0.00E+00 
SD 9.64E−16 0.00E+00 6.80E−11 0.00E+00 5.47E−09 0.00E+00 0.00E+00 0.00E+00 

Iterations to obtain 
fitness values 
( less than 10-10) 

Best 8 3 18 4 56 11 3 6 
Worst 18 14 940 16 977 23 14 17 
Average 12 7 213 9 582 16 8 11 

Success Rate 100% 100% 92% 100% 68% 100% 100% 100% 
Function Evaluations 620 328 11,550 470 42,772 798 424 534 

 

V. THE OPTIMIZATION CHARACTERISTICS OF AV-PSO 
Fig. 2 and 3, show the adaptive nature of the rate at which 

each particle moves towards the global best and chaotic 
weighting values (1 – Z) of each particle's position when 
optimizing Rastrigin function with 30 dimensions and 30 
particles. In iteration 1, particle 4 is the global best and 
because others are far away from it they need high velocity 
relative to their positions to move towards particle 4. Their 
velocity reduces relative to their positions as they all converge 
towards the optimal point while exploiting their 
neighbourhoods for better results during iterations 40 and 200. 
The possibilities of moving too fast and jumping over the 
global best or moving too slow and not reaching the global 
best is not experienced because of the adaptivity. The chaotic 
weighting helps the particles for better 
exploration/exploitation and escape from local optimal. These 
are the reasons behind the outstanding successes of AV-PSO. 

 
Fig. 2. Velocity of each particle during iterations 
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Fig. 3. Chaotic weighting of each particle during iterations 

VI. CONCLUSION AND FUTURE WORK 
A very simple but effective PSO variant (AV-PSO) was 

proposed in this paper. The inertia weight, acceleration 
coefficients and random factors were found not to be 
necessary in the particle velocity updating equation for the 
algorithm to obtain outstanding and accurate global optimal 
solutions for low and high-dimensional test problems. In all 
the experiments AV-PSO extremely outperformed all its 
competitors, solving continuous optimization problems with 
low (10 – 30) and high (50 – 4,000) dimensions. With the 
algorithm, this work has experimentally shown that PSO is 
very much suitable for large-scale global optimization 
problems involving very high dimensions, with very good 
performance in locating quality global optimal solutions with 
few numbers of iterations without getting stuck in local 
optimal. 

The algorithms have the potentiality to solve problems 
with higher number of variables greater 4,000 without any 
modifications. Further work shall be done by applying the 
proposed algorithm to more difficult continuous problems and 
discrete problems. Also, various information through 
numerical experiments shall be retrieved for analysis to find 
further reasons for the outstanding performances of the 
proposed PSO variant. 
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