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Abstrak 

Metaheuristik berasaskan kecerdasan kawanan berbilang objektif (MOSI) 
dicadangkan untuk menyelesaikan masalah pengoptimuman berbilang objektif (MOP) 
yang mempunyai objektif bercanggah. Algoritma berbilang objektif pengoptimuman 
Harris hawk (HHMO) adalah algoritma berasaskan MOSI yang dibangunkan 
berasaskan pendekatan titik rujukan. Titik rujukan ditentukan oleh pembuat keputusan 
untuk memandu proses pencarian ke kawasan tertentu di Pareto front yang sebenar. 
Walau bagaimanapun, algoritma HHMO menghasilkan penghampiran yang kurang 
baik untuk Pareto front kerana kekurangan perkongsian maklumat dalam strategi 
kemaskini populasinya, pembahagian parameter penumpuan yang sama rata dan 
populasi awal yang dihasilkan secara rawak. Algoritma dua langkah menyusun tidak 
dominasi HHMO yang dipertingkatkan (2S-ENDSHHMO) telah dicadangkan untuk 
menyelesaikan masalah ini. Algoritma tersebut merangkumi (i) strategi kemas kini 
penduduk yang meningkatkan pergerakan helang di ruang pencarian, (ii) strategi 
penyesuaian parameter untuk mengawal peralihan antara penerokaan dan eksploitasi, 
dan (iii) kaedah menjana populasi dalam menghasilkan penyelesaian calon awal. 
Strategi kemas kini penduduk menghitung kedudukan baru helang berasaskan teknik 
flush-and-ambush helang Harris, dan memilih helang terbaik berasaskan pendekatan 
menyususn yang tidak dominasi. Strategi penyesuaian membolehkan parameter 
berubah secara adaptif berasaskan keadaan ruang carian. Populasi awal dihasilkan 
dengan menjana nombor kuasi-rawak menggunakan R-sequence diikuti dengan 
menyesuaikan konsep pembelajaran berasaskan pembangkang separa untuk 
meningkatkan kepelbagaian separuh terburuk dalam populasi helang. Prestasi 2S-
ENDSHHMO telah diuji menggunakan 12 MOP dan tiga MOP kejuruteraan. 
Keputusan yang diperolehi dibandingkan dengan keputusan dari lapan algoritma 
pengoptimuman berbilang objektif yang terkini. Algoritma 2S-ENDSHHMO dapat 
menghasilkan penyelesaian yang tidak dikuasai dengan penumpuan dan kepelbagaian 
yang lebih besar dalam menyelesaikan kebanyakan MOP dan mempamerkan 
kemampuan yang hebat dalam melompat keluar dari optima tempatan. Ini 
menunjukkan kemampuan algoritma dalam meneroka ruang carian. Algoritma 2S-
ENDSHHMO dapat digunakan untuk meningkatkan proses pencarian algoritma 
berasaskan MOSI yang lain dan dapat diterapkan untuk menyelesaikan MOP dalam 
aplikasi seperti reka bentuk struktur dan pemprosesan isyarat. 
 
Kata kunci: Metaheuristik, Kepintaran kawanan, Eksplorasi dan eksplotasi, 
Pendekatan berasaskan keutamaan, Pareto front.  
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Abstract 

Multi-objective swarm intelligence-based (MOSI-based) metaheuristics were 
proposed to solve multi-objective optimization problems (MOPs) with conflicting 
objectives.  Harris’s hawk multi-objective optimizer (HHMO) algorithm is a MOSI-
based algorithm that was developed based on the reference point approach. The 
reference point is determined by the decision maker to guide the search process to a 
particular region in the true Pareto front. However, HHMO  algorithm produces a poor 
approximation to the Pareto front because lack of information sharing in its population 
update strategy, equal division of convergence parameter and randomly generated 
initial population. A two-step enhanced non-dominated sorting HHMO (2S-
ENDSHHMO) algorithm has been proposed to solve this problem. The algorithm 
includes (i) a population update strategy which improves the movement of hawks in 
the search space, (ii) a parameter adjusting strategy to control the transition between 
exploration and exploitation, and (iii) a population generating method in producing the 
initial candidate solutions. The population update strategy calculates a new position of 
hawks based on the flush-and-ambush technique of Harris’s hawks, and selects the 
best hawks based on the non-dominated sorting approach. The adjustment strategy 
enables the parameter to adaptively changed based on the state of the search space. 
The initial population is produced by generating quasi-random numbers using R-
sequence followed by adapting the partial opposition-based learning concept to 
improve the diversity of the worst half in the population of hawks. The performance 
of the 2S-ENDSHHMO has been evaluated using 12 MOPs and three engineering 
MOPs. The obtained results were compared with the results of eight state-of-the-art 
multi-objective optimization algorithms. The 2S-ENDSHHMO algorithm was able to 
generate non-dominated solutions with greater convergence and diversity in solving 
most MOPs and showed a great ability in jumping out of local optima. This indicates 
the capability of the algorithm in exploring the search space. The 2S-ENDSHHMO 
algorithm can be used to improve the search process of other MOSI-based algorithms 
and can be applied to solve MOPs in applications such as structural design and signal 
processing. 
 
Keywords: Metaheuristic, Swarm intelligence, Exploration and exploitation, 
Preference-based approach, Pareto front. 
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CHAPTER ONE 

INTRODUCTION 

Researchers in several scientific and technical fields often face problems of increasing 

complexity. Most of these problems are NP-Completes (a non-polynomial problem), 

in which the search space for solutions grows exponentially with the dimensions of the 

problem. These problems can be formulated as an optimization problem. Solving an 

optimization problem consists of finding a set of possible combinations for decision 

variables (parameters) that provides the best possible performance for a system. The 

best solution is determined according to the evaluation criteria given by an objective 

function (Andréasson, Evgrafov, & Patriksson, 2005; Talbi, 2009).  

 

Based on the type of decision variables in the search space, the optimization problem 

can be classified as continuous, discrete (integer), or mixed (Talbi, 2009). To solve an 

optimization problem, a wide range of optimization methods have been proposed 

(Kheiri, 2018; Li & Zheng, 2017; Pardo, Möller, Neunert, Winkler, & Buchli, 2016). 

These methods can be classified into two categories: exact and approximate methods 

(Talbi, 2009). 

 

The exact methods guarantee obtaining the optimal solution; however, they require a 

very long computation time, which exponentially increases with the size of the 

problem (Kuo & Zulvia, 2015; Lu et al., 2020). Furthermore, the scope of these 

methods is limited to certain types of problems. For example, linear programming is 

only applicable for the optimization of continuous problems whose cost function and 
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constraints are linear in nature (Momoh, 2015). The application of a simplified linear 

model for solving a nonlinear problem gives optimal results for the model but, often, 

does not reflect the real problem. The well-known Branch & Bound (B&B) method 

(Land & Doig, 1960) depends entirely on the type of optimization problem (Torbaghan 

& Gibescu, 2017). Furthermore, the algorithm cannot find the global optimum within 

a reasonable time. These are two examples of recognized conventional optimization 

methods that can only be used for certain types of problems. In addition, they are 

difficult to adapt from one problem to another; so, their development can be long and 

laborious. There is, therefore, a large family of problems difficult to optimize via exact 

methods. In this case, the use of methods that offer a good quality solution in a 

reasonable time, are required.  

 

Various approximate methods have been proposed to overcome the limitations of exact 

methods. In contrast to conventional exact optimization algorithms, the approximate 

methods, without guaranteeing the optimum, can provide a feasible solution in a 

reasonable time (Lu et al., 2020). The approximate solutions can be achieved by using 

heuristics or metaheuristics methods.  The heuristic methods require knowledge of the 

problem and are designed for a particular problem (Sörensen, Sevaux, & Glover, 

2018). Therefore, these methods are not general enough to be effective. On the other 

hand, metaheuristics are general optimization methods applicable to solve different 

optimization problems (Sörensen et al., 2018; Stojanović, Brajević, Stanimirović, 

Kazakovtsev, & Zdravev, 2017). In contrast to exact and heuristic methods, 

metaheuristics apply a stochastic approach to find a feasible solution among randomly 
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generated variables. The goal is to escape from local optima (minima or maxima) to 

find better solutions for an optimization problem, where the number of local optima 

exponentially increase by increasing the dimensions, of an optimization problem.  

 

Metaheuristics are simple to implement practically and they have proven their 

efficiency in solving optimization problems in different fields such as, operations 

research (Li et al., 2020), engineering (Dede, Grzywiński, & Venkata Rao, 2020; 

Sayed, Darwish, & Hassanien, 2018) and healthcare (Tsai, Chiang, Ksentini, & Chen, 

2016). These algorithms are very flexible, and they have the ability to deal with 

problems with objective functions of different properties. The strong point of 

metaheuristics is that it does not require a detailed knowledge of the problem, one can 

represent it by a black-box carrying entries (the variables) and outputs (according to 

the objective functions) (Talbi, 2009; Tamura & Gallagher, 2019). This only requires 

manipulation of the inputs, reading the outputs, and manipulating the inputs again in 

order to improve the outputs. 

 

Based on the number of solutions handled in the search space, metaheuristics can be 

classified into a single-solution (trajectory)-based and population-based metaheuristics  

(Blum & Roli, 2003a). Single-solution metaheuristics begin with a single initial 

solution and the search moves from a solution to a neighbouring solution, constructing 

a trajectory in the search space. Single solution-based methods include, essentially, the 

simulated annealing algorithm (Kirkpatrick, Gelatt, & Vecchi, 1983), tabu search 

(Glover, 1989), greedy randomized adaptive search procedure (Feo & Resende, 1989), 
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variable neighbourhood search (Hansen & Mladenović, 2018), iterated local search 

(Lourenço, Martin, & Stützle, 2019), and their variants .  

 

Contrary to the single-solution-based algorithms, population-based algorithms start 

with a set of potential solutions, which improve with iterations. Under this category, 

there are two main classes, namely, evolutionary algorithms (EAs) which are derived 

from evaluation by natural selection theory (Darwin, 1859), such as genetic algorithms 

(GAs) (Holland, 1973) and swarm intelligence (SI) algorithms which are developed 

based on the SI theory (Beni & Wang, 1993). The algorithms under SI class are 

composed of simple agents (individuals), which interact with each other and with their 

environment following simple rules. In general, SI algorithms, in the same way as EAs, 

come from mimicking the biological or physical phenomena, so-called nature-inspired 

metaheuristics (Boussaïd, Lepagnot, & Siarry, 2013). Several SI-based metaheuristics 

have been proposed and they have shown superior skills in solving various 

optimization  problems, such as, ant colony optimization (Dorigo, 1992), particle 

swarm optimization  (PSO) (Kennedy & Eberhar, 1995),  firefly algorithm (FA) 

(Yang, 2009), bat algorithm (BA) (Yang, 2010c), artificial bee colony (ABC) 

(Karaboga, 2005), and Grey wolf optimizer (GWO) (Mirjalili, Mirjalili, & Lewis, 

2014).  

 

The SI-based metaheuristics have been proposed to deal with single-objective 

problems (SOPs), where the goal is minimizing/maximizing a single criterion 

(objective), such as cost minimization. However, in real-world applications, usually 
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optimization problems tend to integrate several simultaneous criteria. This requires, 

finding a compromise. In this case, the optimal solution is no longer a single solution, 

but a set of non-dominated solutions. The problem with multiple objectives is known 

as the multi-objective optimization problem (MOP). Solving a MOP commonly called 

a multi-objective optimization (MOO), is to calculate a set of non-dominated solutions, 

known as the Pareto front.  

 

To solve a MOP, several multi-objective SI-based (MOSI-based) metaheuristics have 

been proposed. In general, the MOSI-based algorithm extends a single objective 

optimization algorithm to solve MOPs. Most of the MOSI-based algorithms integrate 

a single objective optimization algorithm with a MOO approach to handle multiple 

objectives, such as MOPSO Coello and Lechuga (2002), Akbari, Hedayatzadeh, 

Ziarati, and Hassanizadeh (2012), Yang (2013), Yang (2012a) and Mirjalili, Saremi, 

Mirjalili, and Coelho (2016).  

 

Metaheuristics, in principle, are based on the notion of exploitation and exploration. 

Exploration refers to the process of examining different regions in the search space 

and finding better potential solutions (Blum & Roli, 2003b). On the other hand, 

exploitation is the process of improving the best solutions found during the exploration 

process, with the aim of finding higher quality solutions (Blum & Roli, 2003b). One 

of the challenges in the implementation of metaheuristics is finding a balanced trade-

off between exploration and exploitation which, otherwise, leads to poor convergence 

(Blum & Roli, 2003b).  
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In the population-based metaheuristics, there are three components that affect the 

convergence, exploration, and exploitation of an optimization algorithm. These 

components are generation of a new population of solutions, parameters configuration 

(Huang, Li, & Yao, 2019) and initial population of candidate solutions (Poles, Fu, & 

Rigoni, 2009; Talbi, 2013; Tu, Chen, & Liu, 2019).  

 

The population updated strategy plays an important role in determining the quality of 

next generation (new candidate solutions). An inefficient positions update strategy will 

lead to the algorithm falling into local optima with a loss of population diversity, which 

leads to poor convergence toward the Pareto front (Tu et al., 2019).  

 

In metaheuristics, parameter configuration directly affects the processes of exploring 

and exploiting the search space, which determines the quality of the final solution. 

Therefore, it is necessary to understand the most promising configuration that should 

be used (Eiben, Michalewicz, Schoenauer, & Smith, 2007; Karafotias, Hoogendoorn, 

& Eiben, 2015; Parpinelli, Plichoski, Da Silva, & Narloch, 2019). Improper parameters 

create the risk of being easily trapped in local optima, due to loss of population 

diversity, which leads to premature convergence (Barbosa & Senne, 2017; Emary, 

Zawbaa, & Grosan, 2017; Yan, Xu, & Yun, 2019; Yang, Deb, Hanne, & He, 2019).  

 

The generation of the initial population also has an impact on the quality of the final 

solutions, in terms of convergence and diversity (Tu et al., 2019). If the initial 
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population is not well distributed in the search space, this will lead to a loss of 

population diversity and poor convergence toward the Pareto front (Tu et al., 2019).  

 

Furthermore, the ultima goal of MOO algorithms is to help the decision maker (DM) 

to find the most satisfactory solutions, rather than all Pareto optimal solutions (Li, 

Chen, Min, & Yao, 2018a; Thiele, Miettinen, Korhonen, & Molina, 2009; Yang, Li, 

Deutz, Back, & Emmerich, 2016). However, most MOSI-based optimization 

algorithms try to approximate the whole Pareto front and return a set of non-dominated 

solutions, which are evenly distributed across the whole Pareto front. In real situations, 

different regions of the Pareto front could be more preferred than others, and some 

regions could not be interesting at all. Therefore, the main drawbacks of the approach 

used by these algorithms are spending time in exploring undesired solutions and 

difficulties for the DM in determining the most preferred solution among huge 

numbers of non-dominated solutions (Li et al., 2018a). To overcome these limitations, 

the preference of DM is combined with the search process, to guide the search to the 

region of greatest interest to the DM. This helps to improve optimization  efficiency 

and reduce computational cost (Li et al., 2018a; Thiele et al., 2009; Yang et al., 2016).  

 

1.1 Problem Statement  

Several reference point-based MOSI-based algorithms have been proposed by 

integrating the preference information, represented by reference points with the search 

process (Allmendinger, Li, & Branke, 2008; Carrese & Li, 2015; DeBruyne & Kaur, 

2016; Wickramasinghe & Li, 2008). The reference point is determined by the DM and 
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are used to guide the search process toward a preferred region (Li et al., 2018a; Thiele 

et al., 2009; Yang et al., 2016). Therefore, these algorithms inherit the advantages of 

preference approach in terms of effectively finding the most satisfactory solutions and 

this can help in reducing the computational cost (Liu, Wang, Feng, Huang, & Jiao, 

2016; Mohammadi, Omidvar, & Li, 2012).  

 

To the best of the author’s knowledge, the current reference-point-based algorithms 

extended the standard PSO algorithm (Kennedy & Eberhar, 1995) to handle multiple 

objectives (Allmendinger et al., 2008; Carrese & Li, 2015; DeBruyne & Kaur, 2016; 

Wickramasinghe & Li, 2008). Furthermore, the reference point-based MOPSO 

algorithms inherit the disadvantages of PSO algorithm in terms of falling into local 

optima due to loss of population diversity which leads to premature convergence 

(Asih, Sopha, & Kriptaniadewa, 2017; Neumann, Gao, Doerr, Neumann, & Wagner, 

2018; Ni & Deng, 2014; Xu, Wu, & Jiang, 2015). 

 

In DeBruyne and Kaur (2016) another reference point-based multi-objective 

optimization algorithm has been proposed, which is called Harris’s hawk multi-

objective optimizer (HHMO). This algorithm is inspired by the hunting behaviour of 

the Harris’s hawk in nature (Bednarz, 1988; Dawson, 1988). This algorithm has a few 

parameters and it inherits the advantages of preference-based approaches in terms of 

effectively finding the most satisfactory solutions and this can help in reducing the 

computational cost (DeBruyne & Kaur, 2016).  
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The HHMO algorithm was developed based on the mathematical model of the 

MOGWO and GWO algorithm (DeBruyne & Kaur, 2016). Therefore, it inherits its 

advantages and disadvantages. The GWO has several parameters, easy to use, flexible, 

scalable, and has a special capability to escape out of local optima (Faris, Aljarah, Al-

Betar, & Mirjalili, 2018). The MOGWO has been successfully applied to solve 

different MOPs (Mirjalili & Dong, 2020) and has showed superior performance 

compare to other well-known MOSI-based algorithms, such as, MOPSO (Ni, Wang, 

Tang, & Wei, 2019; Xia et al., 2019; Zhao et al., 2020). However, in the MOGWO, 

the obtained solutions are evenly distributed across the Pareto front. Therefore, the 

HHMO can be considered as an improved version of MOGWO, in which it guides the 

search process toward a preferred region (Jakubovski Filho, Ferreira, & Vergilio, 

2019; Li et al., 2018a). Based on that, the HHMO algorithm (DeBruyne & Kaur, 2016) 

is of special interest for this work. 

 

The main problem that effects the performance of the MOSI-based metaheristics is the 

premature convergence, which caused by the improper balance between exploration 

and exploitation processes (Aguiar e Oliveira Junior, 2016). In general, this problem 

arises when every individual in the population is located at a sub-optimal area of the 

search space from which they cannot escape (Bhattacharya, 2016). After a local 

optimum is found, all individuals in the region that are attracted to it lose interest in 

optimization (Blum & Roli, 2003a). In other words, if the population is too similar, all 

individuals will be trapped at a Pareto local optimum set, which leads to premature 
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convergence (Cheng, Chen, Fleming, Yang, & Gan, 2017; Hancer, Xue, Zhang, 

Karaboga, & Akay, 2018; Khan & Li, 2017; Zhang, Zheng, Cheng, Qiu, & Jin, 2018). 

 

Some of the studies on the MOSI-based algorithms, overcame the problem of 

premature convergence by proposing different position update and parameter 

adjustment strategies (Chen, Qian, Zhang, & Sun, 2019; Wei, Li, Fan, Sun, & Hu, 

2018; Wei, Li, & Fan, 2019; Yang & Ji, 2016; Yu, Wang, & Xiao, 2020). However, 

these studies overlook the impact of initial population on the performance of the 

algorithm. They used the traditional RNG method to initialize the population of 

candidate solutions, which leads to the premature convergence problem.  

 

Other studies overcame the problem of premature convergence, by proposing 

parameter adjustment strategies to control the exploration and exploitation and 

prevent premature convergence (Mohamed, El-Gaafary, Mohamed, & Hemeida, 2016; 

Zellagui, Hassan, & Abdelaziz, 2017 ). However, these studies used same position 

update strategies of the standard single objective optimization algorithm and 

traditional RNG method to initialize the population of solutions.  

 

A number of studies have tried to prevent the premature convergence by improving 

the position update of strategy of the algorithm (Du, Wang, Hao, Niu, & Yang, 2019; 

Liu, Li, Kong, & Huang, 2019; Lv, Zhao, Wang, & Fan, 2019 ; Mellal & Zio, 2019). 

However, these studies did not take in consideration the parameters configuration and 

used RNG method to initialize the population. 
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Most of the MOSI-based algorithm used the traditional random number generator 

(RNG) to initialize the population of candidate solutions (Chen et al., 2019; DeBruyne 

& Kaur, 2016; J. Liu et al., 2019; Lv et al., 2019; Wei et al., 2018; Wei et al., 2019; 

Yang & Ji, 2016; Yu et al., 2020). However, with this method it is difficult to ensure 

the diversity of the initial population (Jana, Das, & Sil, 2018), which affects the search 

process of the algorithm to a certain extent (Altinoz, Yilmaz, & Weber, 2014) and 

leads to premature convergence (Digehsara, Chegini, Bagheri, & Roknsaraei, 2020; 

Jana et al., 2018; Poles et al., 2009).   

 

Although HHMO algorithm inherits the advantages of preference approach and GWO 

algorithm, it has limitations that degrade its performance, especially in solving 

complex MOPs, resulting in poor approximation for the Pareto front of a MOP. In the 

HHMO algorithm, the positions of hawk represent candidate solutions for a MOPs. 

The new position of hawks is updated based on the average positions of the three 

leaders (DeBruyne & Kaur, 2016). These leaders represent the first, second and third 

best solutions in the search space and the positions of other hawks are not considered 

in updating the position of hawks in the search space (Guo, Wang, Zhu, Guo, & Xie, 

2020; Long, Jiao, Liang, & Tang, 2018; Long et al., 2019). This indicates a lack of 

sharing the information between the hawks in the population.  

 

In this case, the HHMO algorithm will not be able to escape from local optima of the 

Pareto front, due to the loss of population diversity, especially, in solving complex 

MOPs (Guo et al., 2020; Long et al., 2018; Long et al., 2019). This, in turn, leads to 
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poor convergence toward the Pareto front (Abdou & Bloch, 2020; Khan & Li, 2017; 

Niyomubyeyi, Sicuaio, González, Pilesjö, & Mansourian, 2020). Sharing the 

information by utilizing the experiences of all hawks during the search process is very 

important to accelerate and ensure the convergence and the diversity of the obtained 

solutions (Akbari & Ziarati, 2011; Wang & Tan, 2017). The cooperation between the 

individuals during the searching process is one of the main concepts of the SI system 

(Beni & Wang, 1993). In this context, this study aims to improve the population update 

strategy of hawks, by proposing a new population update strategy, which takes into 

consideration the contribution of all hawks in updating the population. 

 

In the HHMO algorithm, half of the iterations are allocated for the exploration process 

while the other half deal with the exploitation (Aljarah, Mafarja, Heidari, Faris, & 

Mirjalili, 2020; Dadhich, Sharma, & Sharma, 2017; Dewangan, Shukla, & Godfrey, 

2019; Joshi & Arora, 2017), overlooking the impact of the right balance between them 

(Joshi & Arora, 2017; Majeed & Patri, 2018; Padhy, Panda, & Mahapatra, 2017). This 

transition between exploration and exploitation is controlled by adjusting the 

convergence parameter (DeBruyne & Kaur, 2016). This parameter decreases linearly 

with the number of iterations (DeBruyne & Kaur, 2016).  

 

In metaheuristics, the optimization process starts by exploring the search space to find 

more promising regions (Allawi, Ibraheem, & Humaidi, 2019; Moghaddam, 

Moghaddam, & Cheriet, 2012). Then, in the later stage of the optimization, the 

algorithm should be focused more on a particular region to find the best solutions 
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(Sahib, Abdulnabi, & Mohammed, 2018). In solving practical MOPs, the requirement 

for the ability to explore the algorithm is high due to the complexity of the search 

process (Yang, Deb, & Fong, 2014a). However, in the current adjustment strategy of 

the convergence parameter in HHMO algorithm, the exploration and exploitation are 

equally performed (Dewangan et al., 2019; Majeed & Patri, 2018), which is difficult 

to adapt to reflect the actual optimization process (Khanum et al., 2019; Long et al., 

2018; Padhy et al., 2017). Therefore, it is not easy to reach the Pareto optimal solutions 

when solving an optimization problem (Barbosa & Senne, 2017; Yan et al., 2019; X.-

S. Yang et al., 2019). 

 

 If the HHMO algorithm does not spend enough time on the exploration, it will fall 

into local optima because it will not be able to explore the search space for other 

promising regions to attainment the global optima (Hussain, Salleh, Cheng, & Shi, 

2019; Sahib et al., 2018; Wang & Li, 2019). On the other hand, too much exploration 

will lead to a decrease in its efficiency and slow convergence toward the global optima 

solution (Hussain et al., 2019; Sahib et al., 2018; Wang & Li, 2019). Moreover, if the 

exploitation power becomes strengthened the population of the hawks loses its 

diversity (Hussain et al., 2019; Sahib et al., 2018; Wang & Li, 2019). Focusing 

increasingly on the already discovered regions in the search space will lead to 

population diversity loss and attainment of a homogeneous state (Vasuki, 2020; Wang 

& Li, 2019). This, in turn, will lead to premature convergence (Jia et al., 2019; 

Neumann et al., 2018; Ni & Deng, 2014). To avoid premature convergence and 

improve the convergence of the HHMO algorithm, the parameter adjustment strategy 
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of the convergence parameter needs to be improved (Barbosa & Senne, 2017; Long et 

al., 2018; Yan et al., 2019; X.-S. Yang et al., 2019). This can be achieved by integrating 

an effective adjustment strategy for the convergence parameter with the HHMO 

algorithm (Barbosa & Senne, 2017; Emary et al., 2017; Isiet & Gadala, 2019; Long et 

al., 2018; Yan et al., 2019; X.-S. Yang et al., 2019). This aims to coordinate the 

proportional relationship between the exploration and exploitation of the search space 

during the optimization process. 

 

In the HHMO algorithm, the initial population of hawks is generated using a RNG 

method, within lower and upper bounds representing the limits for each decision 

variable in the search space (Talbi, 2009). The RNG methods produce points with the 

same probability on equal subintervals. These points are clustered in some regions and 

leave gaps in others (Digehsara et al., 2020; Jana et al., 2018; Maaranen, Miettinen, & 

Mäkelä, 2004). With this method, it is difficult to ensure the diversity of the initial 

population, which affects the search process of the algorithm to a certain extent 

(Altinoz et al., 2014). Since there is no prior knowledge of the global optimal solution 

to the optimization problem, the population of hawks should be distributed as evenly 

as possible in the search space (Altinoz et al., 2014; Kazemzadeh Azad, 2018). If an 

initial population is well generated, this will improve the convergence toward true 

Pareto front (Tu et al., 2019). Therefore, to improve the performance of the HHMO, it 

is important to ensure good distribution of the initial potential solutions (Talbi, 2013). 
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1.2 Research Questions 

This research aims to develope and enhance the Harris’s hawk multi-objective 

optimizer by answering the following questions:  

i. How can the population update strategy of hawks be improved in the search 

space?  

ii. How can the transition between the exploration and exploitation in the 

Harris’s hawk multi-Objective optimizer be improved? 

iii How can the distribution of initial population in the Harris’s hawk multi-

objective optimizer be improved? 

iv Can the enhanced Harris’s hawk multi-objective optimizer be used 

effectively to solve a MOO problem in the continuous domain? 

1.3 Research Objectives 

The main objective is to develop an enhanced Harris’s hawk multi-objective optimizer 

algorithm for the continuous optimization problem. Specific objectives are: 

i. To propose a population update strategy, which improves the movement of 

hawks in the search space. 

ii. To propose a parameter adjusting strategy to control the transition between 

exploration and exploitation in the Harris’s hawk multi-objective optimizer 

algorithm. 

iii. To propose a population generator method to be used in generating the 

initial candidate solutions in the search space.  
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iv. To evaluate the performance of the enhanced Harris’s hawk multi-objective 

optimizer algorithm.  

1.4 Significance of the Research    

This study is conducted to overcome the drawbacks of the HHMO algorithm by 

proposing a new population update strategy, parameter adjustment strategy and initial 

population generator method. The concept of the proposed population update and 

parameter adjustment strategies can be used to improve the search process of other 

MOSI-based algorithms. The initial population generator method can be used with 

other MOSI-based algorithm to initialize the population of candidate solutions. 

 

The proposed enhanced HHMO algorithm can be applied to solve MOPs in various 

applications. These problems include, but are not restricted to, structural design 

optimization, tuning the proportional-integral-derivative (PID) controller, signal 

processing, communication and networking, power generation and controlling and 

biomedical problems. 

1.5 Scope and Limitations of the Research 

This study was conducted to enhance the HHMO algorithm, which is considered as a 

MOSI-based algorithm. Therefore, this study focuses on MOSI-based optimization 

algorithms and omits other algorithms under the EA class. Initially, the HHMO is 

developed to solve MOPs with continuous search space. Therefore, MOPs with 

discrete and mixed integer decision variables are not considered in this study.  
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The proposed enhanced HHMO algorithm has been evaluated using two different 

approaches. The first approach is by using well-known test problems. These problems 

have certain characteristics that provide a good basis for testing the performance of 

MOO metaheuristics. The second approach is evaluating the performance of the 

enhanced HHMO algorithm by solving different engineering MOPs.  

 

Solving engineering MOPs requires a method to deal with the constraints of a problem. 

In this research, the penalty method is utilized to handle the constraints. Several 

constraints handling methods were proposed in the literature. However, most of these 

studies used the penalty method to solve constraint optimization problems. Finding out 

which one is the best is out of the scope of this study. The performance of the proposed 

enhanced HHMO algorithms were evaluated against other well-known algorithms, 

namely, HHMO, MOGWO (Mirjalili et al., 2016), multi-objective grasshopper 

optimization  algorithm (MOGOA) (Mirjalili, Mirjalili, Saremi, Faris, & Aljarah, 

2018), multi-objective dragonfly algorithm (MODA) (Mirjalili, 2016), multi-objective 

salp swarm algorithm (MOSSA) (Mirjalili et al., 2017), non-dominated sorting based 

multi-objective artificial bee colony (NSABC) algorithm (Kishor, Singh, & Prakash, 

2016), non-dominated sorting gravitational search algorithm (NSGSA) (Zellagui et al., 

2017) and reference point-based non-dominated sorting genetic algorithm (R-NSGA-

II) (Deb & Sundar, 2006).  
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1.6 Thesis Organization 

The remainder of this thesis is organized as follows. Chapter Two highlights the 

concept of optimization and the methods used to solve it and outlines the concept of 

SI and the state-of-the-art SI-based optimization algorithms. The chapter focuses on 

the MOO and the main concepts related to preference-based algorithms. The Harris’s 

hawk MOO algorithm is described in this chapter together with the parameter 

adjustment strategies and the initial population generating methods. Chapter Three 

describes the methodology used to conduct this research. The high level of research 

framework is presented followed by describing the proposed population update and 

parameter adjustment strategies and two-step initial population generating method. 

This chapter includes descriptions of the multi-objective test problems and engineering 

applications used in the evaluation followed by the performance metrics. Chapter Four 

describes the proposed two-step enhanced Harris’s hawk multi-objective optimizer 

(2S-ENDSHHMO) algorithm and implementation aspects. The chapter discusses in 

detail the population update and parameter adjustment strategies followed by 

describing the 2S-ENDSHHMO algorithm. Chapter Five presents the description of 

the experimental study performed as well as the results obtained and their discussion. 

Chapter Six presents the conclusions obtained, future work and contribution of this 

work. 
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CHAPTER TWO 

LITERATURE REVIEW  

2.1 Introduction 

This chapter outlines the main approaches to solve MOPs via metaheuristics. In 

addition, the basic idea of major emerging SI-based metaheuristics and their extension 

to solve MOPs is considered. Section 2.2 of this chapter discusses the MOO and 

focuses on the reference point-based approach and metaheuristic methods. Section 2.3 

presents the SI-based metaheuristics, focuses on MOSI-based algorithms and 

describes the Harris’s hawk multi-objective optimizer algorithm. The discussion on 

the population update strategies in SI-based metaheuristics is presented in Section 2.4. 

The parameters settings approaches are discussed in Section 2.5 followed by the 

adaptive parameter control approaches in the SI-based metaheuristics in Section 2.6. 

In Section 2.7, the population generator methods are presented, followed by discussion 

on the population initialization approaches in the SI-based metaheuristics in Section 

2.8. Finally, the chapter summary is presented in Section 2.9.  

2.2 Multi-objective Optimization   

According to the number of objective functions, optimization problems can be 

classified into SOPs and MOPs. The SOP consists of one objective. The goal of the 

single objective optimization process is to determine a solution with 

minimum/maximum cost for a given objective function. In this case, the input 

parameters (decision variables) of this function are manipulated within a predefined 

search space and provide only single best (optimal) solution. In the case of MOO, the 
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objective function returns multiple objectives related to a MOP. However, in the real-

world, most optimization problems consist of two or more conflicting objectives, in 

which improving an objective leads to the degradation of others.  

 

Compared to SOPs, solving a MOP is not a trivial task. The MOO can be defined as 

the process of simultaneously optimizing two or more objectives, subject to a set of 

constraints (Datta & Regis, 2016). Since these objectives conflict with each other, 

solving a MOP, generally, requires finding trade-off solutions. The trade-off solution 

is better in terms of one objective, and sacrifice on at least one other objective. The 

trade-off solutions, also called non-dominated solutions, form the Pareto front. In 

MOO, the solution A dominates B if A is not worse than B in all objectives and A is 

better than B in at least one objective (Emmerich & Deutz, 2018). In the set of non-

dominated solutions, no single solution is better than others for all the objectives. 

Therefore, the DM is responsible for choosing a solution that addresses the overall 

objectives of the problem. 

2.2.1 Classification of Multi-Objective Optimization Methods 

According to their way of dealing with objective functions, the MOO methods, can be 

divided into four main categories, namely, scalarization-based, Pareto-based, 

decomposition-based and indicator-based methods (Emmerich & Deutz, 2018), as 

shown in Figure 2.1 
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Figure 2.1. Classification of multi-objective optimization approaches 

Scalarization-based approaches transform a MOP problem into one or a set of SOP 

problems by grouping the criteria to be optimized into a single objective function. The 

simplest aggregation methods use a scaling function for each criterion, to be able to 

add (additive model) or multiply them (multiplicative model).  

 

The best-known and most widely used scalarization method is the weighted sum 

method. This method consists of adding all the objectives by assigning weight 

coefficients. These coefficients reflect the relative importance that the DM attributes 

to the objective (Emmerich & Deutz, 2018). The weighted-sum method is an approach 

developed to solve convex problems. However, the solutions obtained through this 

method are strongly dependent on the values of weights of each criterion. The choice 

of weights does not necessarily guarantee that the final solution will be accepted. In 

other words, these weights may not reflect, proportionally, the relative importance of 

the objectives and the problem with new weights will need to be resolved. Figure 2.2 

illustrates the concept of the WS method (Jakob & Blume, 2014). 

 

Indicator-based 

Multi-objective metaheuristic

Scalarization-based
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Decomposition-based - Weighted sum approach
- Tchebycheff approach

- Weighted sum approach
- ε-constraint approach
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Based on the Pareto-
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Figure 2.2. Geometric interpretation of the weighted-sum method with convex MOP 

In Figure 2.2, the continuous and dashed lines represent the convex Pareto front of a 

MOP and weights vector, of each objective respectively. In solving convex MOPs, the 

point P can be reached by using the weights w1 and w2. However, in solving problems 

with non-convex Pareto front, some solutions may not be accessible using the 

weighted sum method (Brück, Faßbender, & Waffenschmidt, 2018; Jakob & Blume, 

2014). Therefore, there is no guarantee that the Pareto curve will be well distributed, 

as shown in Figure 2.3 (Jakob & Blume, 2014). 

 
Figure 2.3. Non-convex MOP 

In Figure 2.3, the weighted sum method can find points A and B while the solutions 

between points A and B cannot be evaluated by this method. That is, there are no 
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weight coefficients that can locate the points in that region (Hunter et al., 2019; Jakob 

& Blume, 2014; Tawhid & Savsani, 2018a).  

 

Another scalarization-based method to solve MOPs was proposed by Vira and Haimes 

(1983), called the epsilon constraint (-constraint) method. In this method one 

objective is minimized while all other objective functions are used to form additional 

constraints. Solutions belonging to the Pareto boundary are obtained through a 

systematic variation of the boundary of these constraints. Compared to the weighted 

sum method, the -constraint method is able to handle a MOP with non-convex Pareto 

front. However, the main drawback of this method is determining the value of  , which 

requires a priori knowledge about the true Pareto front of a MOP, which represents the 

real trade-offs between the objectives (also known as real Pareto front). Improper 

selection of ε can result in a formulation with no feasible solution. Furthermore, its 

computational complexity exponentially increases with the number of objectives 

(Jakob & Blume, 2014; Laumanns, Thiele, & Zitzler, 2006; van der Plas, Tervonen, & 

Dekker, 2012). 

 

Pareto-dominance approach uses some form of Pareto dominance relationship among 

solutions to compare and assign them a score or select solutions. Based on the Pareto 

dominance relationship, a solution p is said to dominate q, if a solution p is better than 

q in at least one objective, and p is better than or equal to q in all objective functions 

(Emmerich & Deutz, 2018). In general, multi-objective optimization algorithms affect 

a score to a solution depending on whether it is dominated by other solutions of the 
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current population and possibly if it dominates other solutions. The main components 

of algorithms under this class are fitness assignment and diversity methods, such as 

sorting method, crowding distance and clustering methods (L. Li et al., 2016).   

 

The Pareto dominance is the most popular approach in the field of MOO. This 

approach has become the main approach in solving MOPs because of their ability to 

find a potentially effective set of research studies through a population of solutions. 

However, the algorithm is developed based on the Pareto-dominance may face the loss 

of a selection pressure (Ochoa, Harvey, & Buxton, 2000) towards the Pareto front in 

solving many-objective optimization problems (Coello, Brambila, Gamboa, Tapia, & 

Gómez, 2019; J. Liu et al., 2019).  

 

A decomposition-based approach decomposes the MOP into single objective 

optimization problems. Then, it uses a single-objective optimization algorithm to solve 

each sub-problem. The objective value of each sub-problem is a scalarization function 

of each objective. Each sub-problem corresponds to a weight vector (Dai & Lei, 2018; 

Tan, Lu, Liu, Wang, & Zhang, 2019). Many algorithms have been developed based on 

the decomposition approach. However, the decomposition-based algorithms still have 

challenges in obtaining a uniformly distributed solutions set (Coello et al., 2019). The 

decomposition-based approaches are strongly affected by the scalarization function 

that they adopt and are further sensitive to the method used to generate weights. If the 

weight vectors are not set properly, the algorithm will not be able to converge to the 

Pareto front (Weiszer, Chen, Stewart, & Zhang, 2018; Zhang, Zeng, Li, & Li, 2018). 
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Furthermore, the number of weight vectors grow exponentially with the number of 

objectives (Emmerich & Deutz, 2018).  

 

Indicator-based approach was first proposed as a general framework by Zitzler and 

Künzli (2004). This approach uses performance indicators, such as, the hypervolume 

(HV) (Zitzler & Thiele, 1999) to score solutions. The principle is to define the multi-

objective problem as a problem with the aim of maximizing the value of the indicator 

associated with the approximation (Emmerich & Deutz, 2018). Recently, 

the researchers started to get interested in indicator-based approach. However, it is not 

clear what were their advantages other than providing an alternative mechanism for 

selecting solutions (Coello et al., 2019). Based on the preference information provided 

by the DM, the MOO methods can be divided into three categories, namely a priori, 

progressive (interactive) and posteriori methods. 

 

A priori methods require the DM to represent preferences information before starting 

the process of finding a solution. In other words, initialization of the optimization 

process, where the user assigns weights to the criteria or at least ranks the objectives. 

However, the DM does not have prior knowledge about the behaviour of the problem. 

Thus, it is difficult for the DM to define the preferences (define its goals), before 

starting the search process (Xin et al., 2018). 

 

In the posteriori method class, the methods do not require the DM to provide 

preferences before, or during the optimization process. Instead, they are limited to 
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finding an approximation of the Pareto front, by modifying some of its parameters. 

Then, the DM chooses the most satisfied solution, according to its priorities. However, 

these methods are computationally expensive, because several runs are required before 

making a decision. Furthermore, the number of non-dominated solutions increases 

exponentially with the number of objective functions. This make it difficult for the 

DM to choose the most preferred solution (Xin et al., 2018). 

 

In the interactive methods, the preference information of the DM is specified 

interactively during the run of the algorithm. This allows the DM to adjust the 

preferences and guide the search towards the preferred regions. In each iteration, the 

DM can learn from the solution process. Thus, the DM does not need to compare many 

non-dominated solutions, and the computational complexity will be reduced. 

Therefore, methods under the interactive class overcome the limitations of both a priori 

and posteriori methods, because, the DM does not need a global preference structure 

and only Pareto-optimal solutions are generated that are interesting to the DM  (Xin et 

al., 2018). The preference information is usually provided in the form of reference 

points, reference areas and reference directions amongst others (L. Li et al., 2016). 

2.2.2 Reference Point Approach 

The reference point approach was first proposed by Wierzbicki (1980) and belongs to 

the family of interactive methods (Deb & Sundar, 2006). The reference point method 

uses the achievement scalarizing function (Thiele et al., 2009) to obtain solutions that 

fall closer to the True Pareto front in the preferred region of the search space. The 
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reference point, also called the aspiration level or goal vector, is determined by the 

DM, which includes the location of the reference point to guide the search process to 

a particular region in the True Pareto front and preference for different goals (Deb & 

Sundar, 2006). Figure 2.4 illustrates the concept of reference point method (Filatovas, 

Kurasova, Redondo, & Fernández, 2019). 

 
Figure 2.4. Reference point approach 

In Figure 2.4, the reference point is determined by the DM in the objective space that 

represents the DM’s aspiration level for each objective. The preferred region 

comprises a set of non-dominated solutions obtained by a reference point-based MOO 

algorithm.  

 

Solving a MOP by searching for non-dominated solutions is not a trivial task. This is 

mainly due to the high complexity of a problem, which generates a large number of 

possible solutions, making it impossible to enumerate all. Given this difficulty, there 

is a growing interest in using the metaheuristic methods combined with MOO 

approaches, to solve MOPs. This is due to the fact that metaheuristics reach feasible 

solutions without having to list all possibilities. This class of MOP solving methods 
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uses metaheuristics to generate different solutions, as well as to determine the 

approximations of the Pareto front.  

2.2.3 Metaheuristic Method  

Metaheuristics are grouped under several classes; each class is the result of a specific 

point of view. The most intuitive way to classify metaheuristics is based on the origins 

of inspiration of the algorithm, the number of initial solutions or the method of usage 

of the objective function (Blum & Roli, 2003a). Figure 2.5 shows the taxonomy of 

metaheuristics. 

 
Figure 2.5. Classification of metaheuristics 

Nature is a powerful source of inspiration for developing metaheuristics as it shows 

extremely diverse phenomena in biological and physical or chemical systems 

(Boussaïd et al., 2013; Dréo, Pétrowski, Siarry, & Taillard, 2006; Fister Jr, Yang, 

Fister, Brest, & Fister, 2013; Yang, 2010b).  Nature-inspired metaheuristics can be 

sub-divided into population-based and trajectory-based, also known as single-solution-

based metaheuristics (Blum & Roli, 2003a). These classes are based on the number of 
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solutions used in the search space. Basically, both single-solution-based and 

population-based metaheuristics aim to locate the global optimum in the search space 

through random moves (Adekanmbi & Green, 2015). However, single-solution-based 

metaheuristics start with a single solution and try iteratively to improve this solution 

by moving toward a local neighbourhood until reaching the best solution for the 

problem. These methods include but are not restricted to simulated annealing, tabu 

search, variable neighbourhood search (Mladenovic, 1995) guided local search 

(Voudouris, 1997) and iterated local search (Stützle, 1998). Population-based 

metaheuristics start from a set of initial potential solutions (initial population) and try 

to find a best solution by modifying solutions of that population (Blum & Roli, 2003a).  

 

Population-based are more popular than single-solution-based metaheuristics and they 

perform better than single-solution-based methods (Prugel-Bennett, 2010; Saremi, 

Mirjalili, & Lewis, 2017). Population-based metaheuristics, as their name indicates, 

work on a population of solutions, which improve during optimization. If a solution is 

trapped into local optima, it can be assisted by other solutions in the population, to 

escape from the local optima (Saremi et al., 2017). Furthermore, population-based 

metaheuristics have more ability to explore the search space than single-solution-based 

metaheuristics (Ganchev, Garcia, Dobre, Mavromoustakis, & Goleva, 2019; Saremi et 

al., 2017).  Therefore, there is a high probability of finding the global optimum solution 

for an optimization  problem (Saremi et al., 2017). Examples of population-based 

metaheuristics include PSO (Kennedy & Eberhar, 1995) genetic algorithm (GA) 

(Goldberg & Holland, 1988; Holland, 1992), and ant colony optimization (Dorigo, 
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1992). Therefore, in this study, population-based metaheuristics will be studied. Each 

of these metaheuristics is characterized by its own way of solving problems and its 

source of inspiration.  Basically, population-based metaheuristics, can be sub-divided 

into two main categories: Evolutionary Algorithms (EAs) (Back, 1996) and SI system 

(Blum & Li, 2008).  

 

Evolutionary algorithm metaheuristics are inspired in principle by Darwin's evolution 

theory (Darwin, 1859). Based on this theory, individuals in the population are 

characterized by their respective genotypes, which give them, via their phenotype, a 

certain adaptation to the domain considered. In order to promote adaptation to the 

domain, the most adapted individuals have more chances (in the probabilistic sense) 

to reproduce over generations (the iterations of the algorithm), in order to transmit 

their genotype within the population. In the literature, various evolutionary algorithms 

have been proposed, such as, GA (Holland, 1992), differential evolution (Huang, 

Wang, & He, 2007), evolutionary strategy (ES) (Rechenberg, 1989) and 

biogeography-based optimization (Simon, 2008).  

 

Most SI-based metaheuristics are inspired by the collective behaviour of groups in the 

biological systems, such as, fish schooling, bird flocking, ant colonies and animal 

herding (Yang, 2012c). However, not all SI-based metaheuristics are developed this 

way. Other algorithms have been developed using the inspiration of physical system, 

such as gravitational search algorithm (GSA) (Rashedi, Nezamabadi-Pour, & 

Saryazdi, 2009). Several SI-based algorithms have been proposed and successfully 
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applied to solve different optimization problems (Gogna & Tayal, 2013; Kar, 2016; 

Slowik & Kwasnicka, 2018; Yang, 2010a). In general, SI-based algorithms have 

earned more popularity over EAs (Del Ser et al., 2019) because, they provide effective 

strategies for solving complex optimization  problems. 

2.3 Swarm Intelligence-based Metaheuristic 

The swarm intelligence is an artificial intelligence technique which refers to the local 

interactions between agents or environment by following some simple rules. This 

collective behaviour between agents often leads to the emergence of a global self-

organized system, which can be considered as a kind of collective intelligence. The 

self-organizing properties of SI rely primarily on the interactions between its 

components. Many self-organized behaviours are based on direct interactions between 

members of a group. Probably the most obvious example is that of schools of fish and 

the flight of birds in which thousands or even millions of individuals move in a 

coherent way and change their direction synchronously (Hemelrijk, 2005; Pavlov & 

Kasumyan, 2000). Several SI-based metaheuristics were proposed. Figure 2.6 depicts 

the chronology of SI-based metaheuristics that have been proposed since 2010 until 

2019. 
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Figure 2.6. Chronology of SI-based metaheuristics 

Figure 2.6 shows that most proposed SI-based metaheuristics imitate the behaviour of 

creatures in nature. Some are inspired by the same creature. However, the key 

difference between the metaheuristics is in the moving strategies of individuals in the 

search space, therefore, developing reliable strategies is continually evolving to 

produce effective metaheuristics (Adekanmbi & Green, 2015). The above presented 

SI-based metaheuristics are not exhaustive because the purpose of this section is in 

understanding the methods and techniques used in the process of inspiration of 
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phenomena and natural systems. Furthermore, some have not attracted much attention 

in the research community. 

 

One of the most popular examples of the SI-based metaheuristic is the PSO algorithm. 

This algorithm was first proposed by Kennedy and Eberhar (1995), and quickly 

became one of the best metaheuristics in the field of optimization. The PSO was 

originally inspired by the social behaviour of swarming animals, such as schools of 

fish and flocks of birds. Since being proposed, the PSO algorithm has been applied in 

various applications in different fields (Babazadeh, Poorzahedy, & Nikoosokhan, 

2011; Kuo & Huang, 2009; Ma, Yu, & Hu, 2013; Nenortaite & Butleris, 2008; 

Pluhacek, Senkerik, Viktorin, Kadavy, & Zelinka, 2017). However, the main 

drawback of the PSO algorithm is that it becomes easily trapped in local optima which 

leads to premature convergence, (Larsen, Jouffroy, & Lassen, 2016; Xu et al., 2015), 

especially in solving complex high-dimensional optimization  problems (Xu et al., 

2015). The premature convergence occurs due to the decrease of diversity in the 

swarm, where it cannot escape from a local optima (Nezami, Bahrampour, & 

Jamshidlou, 2013). 

 

Cat swarm optimization has been proposed by Chu, Tsai, and Pan (2006) when 

observing the behaviour of cats. The cat swarm optimization algorithm, applied in 

various fields, provides satisfactory results compared to other algorithms, such as PSO, 

GSA (Rashedi et al., 2009) and GA (Kumar & Sahoo, 2016; Panda, Pradhan, & Majhi, 

2011; Santosa & Ningrum, 2009). The performance of cat swarm optimization 
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algorithm has been compared with PSO and PSO with weighting factor (PSO-WF), 

using six test functions (Chu et al., 2006). However, the paper does not provide any 

details regarding the parameters used in the test, such as the dimension, population 

size and the number of evaluations for each algorithm. According to the authors, the 

cat swarm optimization algorithm outperforms PSO and PSO-WF. However, based on 

the convergence graph provided in the paper, cat swarm optimization algorithm is 

prone to lose diversity, which leads to premature convergence. The cat swarm 

optimization algorithm uses velocity and the update formula of the PSO algorithm to 

move the individuals closer to the optimal solution. As in PSO, by increasing the 

number of iterations, the algorithm performance degrades significantly. This may lead 

to premature convergence, especially when dealing with high-dimensional multimodal 

functions (Nie, Wang, & Nie, 2017). 

 

Another popular SI-based algorithm is the artificial bee colony algorithm (Karaboga, 

2005) inspired by the behaviour of bee colonies. The artificial bee colony algorithm 

has advantages; it is robust and simple in concept, easy to use and has few control 

parameters. Moreover, the artificial bee colony algorithm has been successfully used 

in different applications (Kaswan, Choudhary, & Sharma, 2015). In Karaboga and 

Akay (2009), the performance of the artificial bee colony algorithm was compared 

with PSO, GA and differential evolution algorithms. As stated in Karaboga and Akay 

(2009), the artificial bee colony algorithm provided a superior performance in solving 

most test functions. However, the artificial bee colony algorithm has some 



 

 35 

disadvantages, such as poor population diversity, which makes it prone to premature 

convergence (Ng, Lee, Zhang, Wu, & Ho, 2017; Panniem & Puphasuk, 2018). 

 

In Yang (2009), the firefly algorithm was proposed. This algorithm was inspired by 

the light-emitting behaviour of fireflies. These insects use special organs to produce 

light inside their bodies. This light production is a form of chemical reaction called 

bioluminescence (Stanger-Hall, Lloyd, & Hillis, 2007). The basic functions of these 

flashes are to attract mating partners (communication), and a prey. In addition, 

blinking can also serve as a protection alert mechanism. The attraction between 

fireflies is proportional to brightness, and this decreases as the distance grows. So, for 

any two shining fireflies, the one of lesser intensity will move toward the greater one. 

If there is no brightness difference, the movement occurs at random. The main 

advantages of the FA are simple structure and less adjustment parameters. Therefore, 

the application of the algorithm is quite extensive. According to the author, the FA 

has superior performance compared to PSO and GA algorithms, in terms of both 

efficiency and success rate. However, FA not only has these advantages, but also has 

its own defects, such as it is easy to fall into local optima in high-dimensional, complex 

optimization problems and premature convergence (Kasdirin, Yahya, Aras, & Tokhi, 

2017).  

 

The gravitational search algorithm proposed by Rashedi et al. (2009), was inspired by 

the physical theory of Newton. In the gravitational search algorithm, the searcher 

agents consist of a collection of masses, and their interactions are based on Newton’s 
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laws of gravity and motion (Rashedi et al., 2009). The gravitational search algorithm 

has been evaluated using standard benchmark functions. The results were compared 

with real genetic algorithm and PSO. According to Rashedi et al. (2009), gravitational 

search algorithm outperforms other tested algorithms. However, gravitational search 

algorithm is prone to premature convergence problems due to the loss of diversity 

where all agents in the population converge to the same single point in the search space 

(Jiang, Wang, & Ji, 2014; Li & Dong, 2017). 

 

The bat algorithm (Yang, 2010c) mimics the echolocation behaviour of microbats, 

which allows them to efficiently locate and hunt their prey even in complete darkness 

(Jacobs & Bastian, 2017).  BA has been applied in different applications (Gandomi, 

Talatahari, Yang, & Deb, 2013; Yang & He, 2013) and produces reliable results. The 

performance of BA was tested and compared with the performance of PSO and GA. 

According to the author, BA outperforms other algorithms in terms of accuracy and 

efficiency.  

 

Grey wolf optimizer (GWO) (Mirjalili et al., 2014) is one of the recently proposed SI-

based optimization algorithms which mimics the hunting behaviour of the grey wolf. 

The GWO algorithm has the advantages of simple operation and less adjustment 

parameters. Furthermore, GWO has been used in different applications, and the results 

show that the GWO outperforms other well-known algorithms such as PSO (Precup, 

David, Szedlak-Stinean, Petriu, & Dragan, 2017), ABC (Mustaffa, Sulaiman, & 

Yusof, 2015) and GA (Siavash, Pfeifer, Rahiminejad, & Vahidi, 2017). In Mirjalili et 
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al. (2014) various benchmark functions were used to evaluate the performance of the 

GWO algorithm and compare it with PSO, GSA, differential evolution and fast 

evolutionary programing (Yao, Liu, & Lin, 1999). According to the authors, GWO 

outperforms other algorithms in terms of exploration, exploitation, local optima 

avoidance and convergence.  

 

Moth-flame optimization algorithm (Mirjalili, 2015) is one of the most recent SI-based 

metaheuristics. This algorithm inspired by the navigation behaviour of moths in nature. 

Moth-flame optimization was tested using a set of benchmark functions and the 

performance of the algorithm was compared with PSO, GSA, BA, and flower 

pollination algorithm (Yang, 2012b), state of matter search (Cuevas, Echavarría, & 

Ramírez-Ortegón, 2014), FA, and GA with a population size of 30 and 1,000 iterations 

for each algorithm. The results show that the moth-flame optimization algorithm has 

the ability to provide competitive results compared to other algorithms (Mirjalili, 

2015). However, this algorithm is prone to becoming trapped in local optima, 

especially in solving multimodal functions (Li, Zhou, Zhang, & Song, 2016). 

 

The monarch butterfly optimization (Wang, Deb, & Cui, 2015) algorithm simulates 

the migration of monarch butterflies. The main operators in the monarch butterfly 

optimization algorithm are adjusting and migration operators. These operators 

determine the search movement direction of the individuals in the search space. The 

main advantage of monarch butterfly optimization is that it is easy to implement 

because it only needs to fine-tune migration and adjusting operators. The performance 
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of monarch butterfly optimization is evaluated using various benchmark functions and 

compared with five optimization  algorithms, namely ABC, biogeography-based 

optimization,  ant colony optimization, stud GA (SGA) (Khatib & Fleming, 1998) and 

differential evolution. According to the authors, monarch butterfly optimization 

outperforms other tested algorithms in solving most benchmarks functions.   

 

The salp swarm algorithm is one of the most recent metaheuristics inspired by the 

swarming and foraging behaviour of salps (Mirjalili et al., 2017). Salps construct a 

swarm called a salp chain and move from one place to another using foraging and rapid 

coordinated changes, to achieve better locomotion (Anderson & Bone, 1980). The salp 

swarm is divided into a leader with follower groups. The followers follow each other 

and are guided by the leader. The salp swarm algorithm has been tested using a set of 

different benchmark functions. Furthermore, the performance of the algorithm has 

been compared with other algorithms, namely, PSO, flower pollination algorithm, 

state of matter search, GSA, FA, BA and GA. According to the authors, salp swarm 

algorithm is able to determine the global optima for most benchmark functions and 

outperform other optimization algorithms. However, the salp swarm algorithm is 

prone to fall into local optima and premature convergence (Sayed, Khoriba, & Haggag, 

2018).  

 

Another recent metaheuristic is the grasshopper optimization algorithm (GOA). This 

algorithm simulates the repulsion and attraction forces between grasshopper swarms 

(Saremi et al., 2017). The performance of the GOA has been compared with PSO, GA, 
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differential evolution, BA, FA and flower pollination algorithm using a set of 

benchmark functions and engineering problems (Saremi et al., 2017).  

2.3.1 MOSI-based Metaheuristics  

Several MOSI-based algorithms have been proposed. These algorithms were deduced 

by various existing single-objective algorithms. This section provides a review for the 

multi-objective PSO, ABC, FA, BA, GSA, GWO, BFO and moth-flame optimization 

algorithms. These algorithms are the most popular SI-based metaheuristics that have 

been successfully applied in solving different optimization problems in various fields 

(Lones, 2020). These algorithms are mainly developed to solve single objective 

optimization problems. Therefore, to solve MOPs, they are integrated with a MOO 

approach to handle multiple objectives. 

 

Scalarization-based approach 

In Yang (2012a), the proposed MOBA extends the BA algorithm to solve a MOP. This 

algorithm was developed based on the weighted sum approach. However, this 

approach cannot provide an efficient performance in solving complex and non-convex 

MOPs (refer Figure 2.3). In Yang (2013) the same author of MOBA proposed the 

multi-objective firefly algorithm (MOFA), which improves the firefly movement 

formula by using Lévy flights, which is used to maintain population diversity. The 

multi-objective firefly, as in MOBA, was developed based on the weighted sum 

approach. Therefore, it is not suitable for solving non-convex MOPs. Mellal and Zio 

(2019) proposed a MOPSO based on the weighted sum method. In the proposed 

algorithm, the Lévy flight is used to maintain the population diversity. The 
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performance of the algorithm is tested using a set of constraint numerical benchmark 

MOPs and compared with the PSO algorithm.  

 

Pareto-dominance-based approach 

In Coello and Lechuga (2002), the Pareto dominance approach was employed in the 

PSO algorithm (Kennedy & Eberhar, 1995) to make it capable of dealing with MOPs 

and guide the particles in the search space. Two approaches were introduced to the 

PSO, namely an external memory called repository to identify a leader that guides the 

particle and a geographically-based approach to maintain diversity (Coello & Lechuga, 

2002). Later on, Coello, Pulido, and Lechuga (2004) extended MOPSO (Coello & 

Lechuga, 2002) by integrating a mutation operator to improve the exploration ability 

of the algorithm. Several studies proposed modifications for the Pareto dominance-

based MOPSO by integrating different methods to maintain the population diversity 

and select the leaders (personal and global best solutions) (Coello et al., 2004; Man-

Im, Ongsakul, Singh, & Boonchuay, 2015; Sierra & Coello, 2005) 

 

Many others MOSI algorithms have been proposed based on the Pareto dominance 

approach. These algorithms used an external archive (Coello & Lechuga, 2002) to save 

non-dominated solutions and proposed different strategies to maintain the population 

diversity (Akbari et al., 2012; Bhowmik & Chakraborty, 2015; Hassanzadeh & 

Rouhani, 2010; Kumawat, Nanda, & Maddila, 2017; Mahmoodabadi & Shahangian, 

2019; Mirjalili et al., 2016; Mohamed et al., 2016; Niu, Wang, Wang, & Tan, 2013; 

Yang & Ji, 2016; Zhou & Yao, 2017). In many studies, the Pareto dominance-based 

MOSI algorithms employed the non-dominated sorting approach and crowding 
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distance to select the next generation and maintain the population diversity (Chen et 

al., 2019; Jangir & Jangir, 2018; Kishor et al., 2016; Lv et al., 2019; Prakash, Trivedi, 

& Ramteke, 2016; Savsani & Tawhid, 2017; Tsai, Huang, & Chiang, 2014; Zellagui 

et al., 2017) 

 

Decomposition-based approach 

Peng and Zhang (2008) proposed the first MOPSO algorithm based on the 

decomposition approach. They followed the same concept as the multi-objective 

evolutionary algorithm based on decomposition (Zhang & Li, 2007) and replaced the 

genetic algorithm with a standard PSO algorithm. In the proposed algorithm an 

external archive was used to store the non-dominated solutions found during the search 

process. Sapre and Mini (2020) followed the same concept and replace the GA with a 

moth flame optimization algorithm. Dai, Wang, and Ye (2015) propose a MOPSO 

based on the decomposition approach. In the proposed algorithm, the Pareto optimal 

solution was generated for each sub-region in the objective space. The elitist strategy 

was employed to maintain the population diversity. Furthermore, the crowding 

distance was used to improve the convergence of the proposed algorithm. Others 

studies proposed a decomposition-based MOSI algorithms by utilizing a penalty 

boundary intersection approach (Bai & Liu, 2016; Zapotecas Martínez & Coello 

Coello, 2011). The penalty boundary intersection approach calculates the weighted 

aggregate for a given weight vector and reference vector.  
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Indicator-based MOMH 

Compared to the Pareto dominance and decomposition-based approaches, the 

indicator-based approach has received relatively little attention in the area of the 

MOSI-based algorithms. García, Coello, and Arias-Montano (2014) proposed a 

MOPSO based on the HV (Zitzler & Thiele, 1999) indicator. The proposed algorithm 

uses of the HV contribution value to select the global and personal best solution from 

an external archive and as a mechanism for updating the external archive during the 

optimization process.  

 

Other studies followed the same concept by using the R2 indicator instead of the HV. 

Díaz-Manríquez, Toscano, Barron-Zambrano, and Tello-Leal (2016) proposed a 

MOPSO algorithm based on the R2-indicator. In the proposed algorithm, instead of 

Pareto dominance and the external archive, the proposed algorithm used the R2-

indicator to guide the search process. Wei et al. (2018) proposed a MOPSO algorithm 

based on R2 indicator. In the algorithm, an external archive is used to store non-

dominated solutions. The R2 indicator contribution value is used to select individual 

from the external archive instead of the crowding distance. The diversity of swarm in 

the archive is maintained through polynomial mutation (Deb, Pratap, Agarwal, & 

Meyarivan, 2002a).  

 

Others MOSI-based algorithms combined two or more MOO approaches to handle the 

multiple objectives. The combination of Pareto dominance and decomposition -based 

approaches was first proposed by Al Moubayed, Petrovski, and McCall (2014). Al 
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Moubayed et al. (2014) proposed a MOPSO by integrating both Pareto-dominance and 

decomposition approaches based on the penalty boundary intersection to transform a 

MOP into a set of SOPs. They introduce a mechanism to select the particle leaders and 

an archive technique to collect the non-dominance solutions based on the crowding-

distance. Lin, Li, Du, Chen, and Ming (2015), followed same concept and proposed a 

MOPSO by combining the Pareto-dominance and decomposition approaches.  

 

Some studies combined the R2-indicator and decomposition approaches. Li, Liu, Tan, 

and Yu (2015) proposed a MOPSO algorithm based on the R2-indicator and 

decomposition approaches. The R2-indicator contribution value is used to select the 

global best solution from the archive, whereas the personal best position is updated 

based on the scalarization approach, such as weighted sum, Tchebycheff and penalty 

boundary intersection. Inspired by R2-MOPSO which was earlier proposed in Li et al. 

(2015), J. Liu et al. (2019) proposed a MOPSO based on the R2-indicator and 

decomposition-based archiving pruning strategy. In this algorithm, the global-best 

leader is selected based on the R2 indicator and the personal-best leader is selected 

based on the Pareto dominance approach.  

 

The epsilon indicator and Pareto dominance approaches were used to extend the SI-

based single objective optimization algorithm to the MOO algorithm. Luo et al. (2017) 

proposed MOABC. In the proposed algorithm, the solutions are evaluated based on 

the epsilon indicator and the Pareto dominance approach is used to compare the 

solutions and an external archive to save the non-dominated solutions. Table 2.1 
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summarises the MOO approaches applied in some of the well-known SI-based 

metaheuristics. 

Table 2.1 
Summary of the MOSI-based metaheuristics 

Algorithm 
Reference Algorithm Approach Archive Application 

domain 
Coello and Lechuga 
(2002) MOPSO Pareto-

dominance ✓ - 

Coello et al. (2004) MOPSO Pareto-
dominance ✓ - 

Janga Reddy and 
Nagesh Kumar 
(2007) 

MOPSO Pareto-
dominance ✓ 

Engineering 
design 

 
Wickramasinghe 
and Li (2008) MOPSO Pareto-

dominance - - 

Hassanzadeh and 
Rouhani (2010) 

MOGSA 
 

Pareto-
dominance ✓ - 

 
Akbari et al. (2012) MOABC Pareto-

dominance ✓ - 

 
Niu et al. (2013) MOBFO Pareto-

dominance  - 

Yi, Huang, Fu, He, 
and Li (2015) 

MOBFO 
 

Pareto-
dominance ✓ 

Aluminium 
Electrolysis 
Production 

Process 
 
Carrese and Li 
(2015) 

MOPSO Pareto-
dominance ✓ Airfoil 

design 

Man-Im et al. (2015) MOPSO Pareto-
dominance - - 

Yang and Ji (2016) MOBFO 
 

Pareto-
dominance ✓ - 

Prakash et al. (2016) MOBA 
 

Pareto-
dominance ✓ - 

Bhowmik and 
Chakraborty (2015) 

MOGSA 
 

Pareto-
dominance ✓ 

Optimal 
power flow 

problem 
Mirjalili et al. 
(2016) 

MOGWO 
 

Pareto-
dominance ✓ - 

Mohamed et al. 
(2016) MOGWO Pareto-

dominance ✓ 
Optimal 

power flow 
problem 
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Mirjalili (2016) MODA Pareto-
dominance ✓  

Kishor et al. (2016) MOABC 
 

Pareto-
dominance ✓ - 

Savsani and Tawhid 
(2017) 

MOMFO 
 

Pareto-
dominance - - 

Kumawat et al. 
(2017) 

MOWOA 
 

Pareto-
dominance ✓ - 

 
Zellagui et al. 
(2017) 

MOGSA Pareto-
dominance ✓ 

Power 
transformer 

design 
Jangir and Jangir 
(2018) 

MOGWO 
 

Pareto-
dominance ✓ - 

Sun and Gao (2019) MOPSO Pareto-
dominance ✓ - 

Lv et al. (2019) MOFA Pareto-
dominance ✓ - 

Chen et al. (2019) MOIBA Pareto-
dominance  

Optimal 
power flow 

problem 
Yang (2012a) MOBA Scalarization - - 
Yang (2013) MOFA Scalarization - - 
 
Mellal and Zio 
(2019) 

MOPSO Scalarization - 
System 

reliability 
optimization 

DeBruyne and Kaur 
(2016) 

HHMO 
 Scalarization - - 

Peng and Zhang 
(2008) MOPSO Decomposition ✓ - 

Zapotecas Martínez 
and Coello Coello 
(2011) 

MOPSO Decomposition - - 

Dai et al. (2015) MOPSO Decomposition - - 
 
Bai and Liu (2016) MOABC Decomposition - - 

Sapre and Mini 
(2020) MOMFO Decomposition ✓ 

Placement 
of relay 
nodes in 
WSNs 

Sierra and Coello 
(2005) 

MOPSO 
 

Pareto- & -
dominance ✓ - 

D2MOPSO 
Al Moubayed et al. 
(2014) 

MOPSO 
Pareto-

dominance & 
decomposition 

✓ - 
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Lin et al. (2015) MOPSO 
Pareto-

dominance & 
decomposition 

✓ - 

García et al. (2014) MOPSO Indicator-
based ✓ - 

Díaz-Manríquez et 
al. (2016) MOPSO Indicator-

based - - 

Wei et al. (2018) MOPSO 
 

Indicator-
based ✓ - 

Luo et al. (2017) MOABC 
 

Indicator-
based & Pareto 

dominance 
✓ - 

Li et al. (2015) MOPSO 
 

R2 indicator, 
scalarizing 
approach & 

decomposition 

- - 

J. Liu et al. (2019) MOPSO 
 

R2 indicator, 
Pareto 

dominance & 
decomposition 

✓ - 

It can be concluded that most of the previous multi-objective SI-based algorithms were 

developed based on the Pareto dominance or decomposition approach. The non-

dominated sorting approach has been used with the Pareto-dominance approach in 

numerus algorithms to select the non-dominated solutions. In most of these algorithms, 

the crowding distance (Deb, 2014) is used with non-dominated sorting approach to 

estimate the density and maintain the diversity of population. However, in some cases, 

the crowding distance approach cannot be used to select appropriate solutions, which 

may affect the diversity of solutions (Vachhani, Dabhi, & Prajapati, 2016). Most of 

MOSI-based algorithms follow the approach of MOPSO (Coello et al., 2004) in which, 

they used an external archive (external memory) to store the non-dominance solutions.  
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2.3.2 Reference Point-based MOSI Optimization Algorithm 

The main goal of MOO is to support a DM to find his/her most preferred solution. 

However, most existing MOSI metaheuristics focus on approximating the whole 

Pareto front, as shown in Figure 2.7 (a). Approximating the whole Pareto front not 

only increases the computational cost (Qi, Li, Yu, & Miao, 2019), but also leads to 

difficulties in distinguishing a promising solution that is preferred by the DM, which 

increases exponentially with the number of objectives. To facilitate the DM procedure, 

preference information provided by the DM can be integrated with MOSI algorithms 

to guide the search process toward a preferred region, also called region of interest, as 

shown in Figure 2.7 (b). This leads to reduce the computational cost, improvement in 

the performance of an algorithm in solving MOPs and it helps the DM to make the 

final decision. Solutions outside the region of interest can be considered as noisy data 

and there is no guarantee of finding the preferred solutions when solving complex 

MOPs (Li et al., 2018a; Qi et al., 2019; Weiszer et al., 2018; Zhu, Gao, Du, Cheng, & 

Xu, 2018) . 

Figure 2.7. Non-dominated objective vectors: (a) evenly distributed across the whole 
Pareto front; (b) clustered near a reference point (near the region of interest) (Adapted 
from Filatovas, Kurasova, and Sindhya (2015)) 

Non-dominated solution Pareto front 

(a) (b) 

Reference point 
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By combining preference information from the DM with the optimization process, the 

search process is directed towards the region of interest. Among the approaches 

described to express DM preferences, this study highlights MOSI-based algorithms 

that make use of the reference point method.  

 

In the context of finding a set of non-dominated solutions within a region of interest, 

instead of the entire Pareto-optimal set, several MOSI-based algorithms have been 

proposed. In Wickramasinghe and Li (2008) proposed two MOPSOs based on the 

reference point approach. One of the algorithms performed the non-dominated sorting 

with the crowding distance to maintain the population diversity. In the second MOPSO 

algorithm, the fitness of a particle is calculated using the maximum of the minimum 

values between the particle and all other particles in the population. The ε-clearing 

strategy is included in both MPSOs to control the diversity of non-dominated 

solutions. 

 

Allmendinger et al. (2008) proposed a MOPSO based on the reference point approach. 

The algorithm uses reference information to select the leader and steady-state approach 

to compare the offspring with its parents. In the same paper, the author proposes an 

extended replacement strategy which allows the offspring to replace a particle that 

dominates the offspring and has a larger Euclidean distance to the reference point. The 

ε-clearing strategy (Deb & Sundar, 2006) is also used in the algorithm to maintain 

population diversity. According to Allmendinger et al. (2008), the proposed algorithm 
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showed good results in solving MOPs with two and three objectives. However, there 

were difficulties when solving highly multimodal problems test problem.  

 

In Carrese and Li (2015), the proposed MOPSO algorithm, the PSO algorithm is 

integrated with the reference point method. The non-dominated sorting approach with 

crowding distance is applied to maintain the population diversity. The external archive 

is used to save the non-dominated solutions that have minimum distance to the 

reference point. This algorithm was developed to solve a particular problem, and it 

was not tested in solving different MOPs with different characteristics. 

 

In DeBruyne and Kaur (2016), the HHMO algorithm was developed based on the 

reference point approach. The mathematical model of this algorithm is developed 

based on the GWO (Mirjalili et al., 2014) and MOGWO (Mirjalili et al., 2016) 

algorithms. Therefore, it has same advantages in terms of few parameters, easy to use, 

flexible, scalable, and has a special capability to escape out of local optima (Faris et 

al., 2018). However, the HHMO algorithm has limitations that degrade 

its effectiveness, especially in solving complex MOPs, resulting in poor 

approximation for the Pareto front of a MOP. 

 

In the literature, there are other SI-based algorithm that have been developed based on 

the behaviour of Harris’s hawk in nature (Bednarz, 1988). In Heidari et al. (2019), a 

single objective Harris’s hawk optimization algorithm mimics the cooperative 

behaviour and chasing style of Harris’s hawks in nature. The performance of the 
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algorithm has been compared with other algorithms, namely, PSO, differential 

evolution (Simon, 2008), FA (Gandomi, Yang, & Alavi, 2011), CS (Gandomi, Yang, 

& Alavi, 2013), biogeography-based optimization (Simon, 2008), BA/BAT (Mohan, 

Sivaraj, & Priya, 2016), GWO (Mirjalili et al., 2014), teaching learning-based 

optimization (Rao, Savsani, & Vakharia, 2012), flower pollination algorithm (X. S. 

Yang, M. Karamanoglu, & X. He, 2014b) and moth-flame optimization (Mirjalili, 

2015) algorithms.   

 

In Bairathi and Gopalani (2020) another single objective Harris’s hawk optimization 

algorithm was proposed based on the cooperative hunting behaviour of Harris’ hawks 

in nature. This algorithm includes two main phases, namely a non-hunting phase to 

perform the exploration process and a hunting phase to perform the exploitation 

process, which is further divided into local search and global attack phases. As in the 

PSO algorithm, the hawk in Harris’s hawk optimization algorithm has two main 

components, namely personal best and global best position. Updating the position of 

hawks mainly depends on these components, in addition to three controlling variables, 

which are used to control the exploration and exploitation. According to Bairathi and 

Gopalani (2020), the Harris’s hawk optimization algorithm showed superior 

performance compared to other algorithms, namely PSO, differential evolution, GWO 

and whale optimization  algorithm (Mirjalili & Lewis, 2016) in solving a set of 

benchmark functions. 

 

These algorithms by Heidari et al. (2019) and Bairathi and Gopalani (2020) 
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were initially developed to solve SOPs. However, as discussed in Section 2.2, there 

are fundamental differences between a SOP and MOP. Therefore, the basic 

metaheuristics cannot be used directly to solve the MOP. They require some 

modification/adaptation to handle MOPs. In Du et al. (2019) the multi-objective 

Harris’s hawks optimization algorithm extends the single objective Harris’s hawk 

optimization algorithm proposed by Heidari et al. (2019),  to solve MOPs. The multi-

objective Harris’s hawk optimization algorithm was developed based on the Pareto 

dominance approach and the external archive mechanism is used to store the non-

dominated solutions, as well as the roulette wheel selection which is utilized to carry 

out the optimization process. The performance of the multi-objective Harris hawks 

optimization algorithm is compared with MOGOA (Mirjalili et al., 2018), MOPSO 

(Coello & Lechuga, 2002) and MOSSA in solving four test problems with linear front. 

According to Du et al. (2019), the multi-objective Harris’s hawk optimization 

algorithm showed superior performance compared to other algorithms. However, the 

test did not include MOPs with non-uniform or multimodal Pareto front, and it 

restricted the solution of MOPs with only two objectives. Furthermore, as is the case 

in most MOSI-based optimization algorithms, the obtained non-dominated solutions 

are evenly distributed across the true Pareto front (Du et al., 2019). 

 

It is worth to mention that, the multi-objective Harris’s hawk optimization algorithm 

(Du et al., 2019) is not related to the HHMO proposed by DeBruyne and Kaur (2016), 

where, each algorithm has a different mathematical model. Furthermore, the new 

metaheuristics, like Heidari et al. (2019), Bairathi and Gopalani (2020) and (Du et al., 
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2019) algorithms, have not been applied in many applications, because they  remain 

under experiment. According to the no-free-lunch theorem, there is no single 

metaheuristic that can be used to solve all optimization problems. The HHMO 

proposed by DeBruyne and Kaur (2016) will be discussed in detail in Section 2.3.3. 

2.3.3 Reference point-based Harris’s Hawk Multi-objective optimizer 

Harris's hawk (Parabuteo unicinctus) is a raptor (bird of prey) that belongs to the 

Accipitridae family, a name given by the famous American ornithologist, 

James Audubon, in honour of the ornithologist Edward Harris, a friend and financial 

partner of various campaigns carried out together in North American. The Harris's 

hawk is a medium-sized raptor with exceptional flying ability and dexterity (Bednarz, 

1988).  

 

Harris’s hawks attacks are quite coordinated. In contrast to other raptors, Harris’s 

hawks tend to live in groups (Bednarz, 1988). They aggregate at one perch site and, 

once assembled, the hunting members split into two groups  (DeBruyne & Kaur, 2016). 

The first group consists of lookout hawks, which fly out on a series of short flights, 

then land on relatively high perches. Harris’s hawks have the ability to capture any 

prey from a long distance by homing in on it before the hunt. This is due to their 

excellent vision, possibly eight times greater than that of humans. This behaviour is 

most intense when the hawks seem to be actively searching for prey. Subsequently, 

the lookout hawks coordinate with a second group, which consists of ground hawks, 

to direct it toward the potential prey. Females will usually take the role of making the 
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final move to kill the prey, after the males have done all the work to flush out and tire 

the prey; the females will also be allowed to feed first and will even perch higher than 

the males to show their dominance. 

 

The HHMO (DeBruyne & Kaur, 2016) was developed based on the reference point 

approach. Instead of returning non-dominated solutions evenly distributed along the 

true Pareto front, as is the case in most classical MOSI-based metaheuristics, the 

HHMO algorithm returns clusters of solutions sets near the provided reference points 

(Deb & Sundar, 2006). This helps the DM in making a better and more reliable 

decision. Another advantage of HHMO is it requires low computational cost to return 

clusters of non-dominated solutions, based on reference points determined by the DM 

(DeBruyne & Kaur, 2016).  

 

In the HHMO, the hawks are subdivided into two distinct groups, based on their 

distance to the reference points. The first group consists of lookout hawks, which 

represents the reference points, while the second group consists of ground hawks, 

which represents the search for optimal solution sets. The best three hawks (alpha, 

beta, and delta) in each group are selected based on their distance to the reference 

points. These hawks represent the three best non-dominated solutions. However, the 

HHMO algorithm has some limitations which affect its performance.  

 

In the HHMO, the positions of hawks are updated based on the average position of 

first three best positions of hawks (leaders). This obliges other hawks to update their 
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positions according to the position of the first three best hawks in the search space 

(DeBruyne & Kaur, 2016). Therefore, the rest of the hawks do not play any role in 

updating the position of leaders, which leads to the algorithm becoming trapped in 

local optima.  

 

Furthermore, in the HHMO algorithm, if a convergence parameter is not set properly, 

the quality of the solution will become very poor and the HHMO algorithm requires a 

large amount of computation and takes a long time to solve the problem. The 

convergence parameter ensures that the algorithm performs the exploration process in 

the early period, and exploitation in the later period. However, in the MOO, the 

requirement for the exploration ability of the algorithm is high. Therefore, it is 

necessary to improve the adjustment strategy of a convergence parameter to improve 

the performance of the algorithm.  

 

Moreover, the existing HHMO algorithm uses the RNG method to initialize a 

population; however, this method does not guarantee that the initial population can be 

evenly distributed in the search space of the problem. This will affect the utilization of 

the initial population by the optimization process. Furthermore, in DeBruyne and Kaur 

(2016) the authors do not provide any test that shows the performance of HHMO in 

solving three or more objectives with high-dimensional MOPs. This algorithm is 

relatively new and, according to the no-free-lunch theorem, there is no single algorithm 

that can be efficiently used to solve all optimization problems. If the algorithm 

provides an efficient performance in solving a particular problem, this does not mean 
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it will be able to provide the same performance in solving other problems. This study 

will focus on addressing these limitations and finding proper methods to overcome 

them and improve the performance of the HHMO algorithm. 

2.4 Population Update Strategy in MOSI-based Metaheuristics 

In MOPSOs, the problem of premature convergence is still one of the main issue that 

affect the performance of MOPSO (Ünal & Kayakutlu, 2020). The premature 

convergence in the earlier stage is due to loss of population diversity which leads to 

the algorithm trapped in local optima and cause poor convergence toward the true 

Pareto front (Ünal & Kayakutlu, 2020). The population update strategy used by an 

algorithm plays an important role in determining the performance of the algorithm, in 

terms of producing new solutions that helps in maintaining the population diversity 

and prevent the premature convergence. 

 

Coello et al. (2004) extended the MOPSO proposed by Coello and Lechuga (2002) by 

integrating a mutation operator to improve the exploration ability of the algorithm. 

Sierra and Coello (2005) used uniform and non-uniform mutation schemes to preserve 

the population diversity in MOPSO. Peng and Zhang (2008) employed the polynomial 

mutation after calculating the new positions to maintain the population diversity in 

MOPSO. However, this algorithm is prone to fall in local optima due to the mutation 

operator (Sedarous, El-Gokhy, & Sallam, 2018). Mahmoodabadi, Bagheri, Nariman-

Zadeh, and Jamali (2012) integrated the MOPSO with convergence and divergence 

operators. The divergence operator is used as a simple controlled mutation. Leung, Ng, 
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Cheung, and Lui (2014) enhanced the exploration ability of the proposed MOPSO by 

using mutation operator. In Fan, Chang, and Chuang (2015) and Wei et al. (2019) the 

polynomial mutation was used to preserve the diversity of the swarm in MOPSO 

during the search process.  

 

Hassanzadeh and Rouhani (2010) integrated mutation operator with the proposed 

MOGSA to maintain the population diversity. In Bhowmik and Chakraborty (2015), 

the Opposition-based learning (OBL) approach introduced by (Tizhoosh, 2005) has 

been integrated with the proposed MOGSA to update the gravitational acceleration to 

improve the convergence of the solutions. To maintain the population diversity and 

prevent the algorithm from trapping in local optima, two mutation operators, namely, 

sign and reordering mutation has been used. In Zellagui et al. (2017), the same two 

mutation operators proposed in Bhowmik and Chakraborty (2015) have been used with 

the proposed MOGSA to maintain the population diversity. And the OBL approach 

has been omitted from the algorithm. 

 

In Al Moubayed, Petrovski, and McCall (2010), instead of mutation operator, they 

used an information exchange method with the MOPSO to help the algorithm escape 

from local optima and avoiding premature convergence. In Zhu et al. (2017) an 

immune-based evolutionary strategy is used to maintain the population diversity and 

improve the convergence of the algorithm. In Luo, Huang, Li, and Gao (2019) a 

personal best and multi-global best selection mechanism were used to exploration 

ability and balance convergence and diversity of the proposed MOPSO. In Pan, Wang, 
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Guo, and Wu (2018) the velocities of particles were analyzed during the optimization 

process. In the proposed MOPSO, the diversity of swarm was preserved by performing 

a diversity enhancing process based on the velocity analysis. In Mellal and Zio (2019), 

the Lévy flight was used with the MOPSO to maintain the population diversity. In 

Ünal and Kayakutlu (2020), instead of the mutation operator, the random immigrants 

method was used with the MOPSO to maintain the population diversity.  

 

Akbari et al. (2012) used a grid-based approach in the proposed MOABC to maintain 

the diversity of the population in the external archive. In Zhong, Xiang, and Liu (2014) 

a self-adaptive grid was used to preserve the population maintain diversity in the 

archive. The Lévy flight was used to improve the local search ability of the algorithm. 

In Bai and Liu (2016) the Boltzmann selection mechanism was used with the MOABC 

to adjust dynamically the probability of unemployed bees following (selecting) the 

employed bees. According to authors, this mechanism helps the algorithm to escape 

from local optima. In Mahmoodabadi and Shahangian (2019), the Euclidean distance 

was used to maintain the population diversity in the external archive. In the proposed 

MOABC, if the Euclidean distance between two individuals is less than a 

neighborhood radius, then one of them will be omitted. 

 

In Tsai et al. (2014), the MOFA has been integrated with the non-dominated sorting 

approach and an improved crowding distance to select best non-dominated solutions 

and maintain population diversity. In Kishor et al. (2016), the MOABC algorithm was 

proposed. The algorithm uses the non-dominated sorting approach (Deb et al., 2002a) 
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to maintain population diversity. In Zhou and Yao (2017) the non-dominated sorting 

approach (Deb et al., 2002a) with crowding distance was used with the MOABC to 

maintain the diversity of solutions in the external archive. Jangir and Jangir (2018) 

proposed a MOGWO and used the non-dominated sorting approach and crowding 

distance to maintain the population diversity. Chen et al. (2019) proposed a MOBA 

with the non-dominated sorting approach and crowding-distance to maintain the 

population diversity and guide the search process. Table 2.2 summarizes the methods 

that have been integrated with the population update strategy of a MOSI-based 

algorithm.  

Table 2.2  
Summary of the population update strategy in MOSI-based algorithms  

Reference Algorithm Diversity preservation method 
Coello et al. (2004) MOPSO Mutation 
Sierra and Coello (2005) MOPSO Mutation 
Peng and Zhang (2008) MOPSO Mutation 
Mahmoodabadi et al. (2012) MOPSO Mutation 
Leung et al. (2014) MOPSO Mutation 
Fan et al. (2015) MOPSO Mutation 
Wei et al. (2019) MOPSO Mutation 
Hassanzadeh and Rouhani (2010) MOGSA Mutation 
Bhowmik and Chakraborty (2015) MOGSA Mutation 
Zellagui et al. (2017) MOGSA Mutation 

Tsai et al. (2014) MOFA Non-dominated sorting approach 
with crowding distance 

Kishor et al. (2016) MOABC Non-dominated sorting approach 
with crowding distance 

Zhou and Yao (2017) MOABC Non-dominated sorting approach 
with crowding distance 

Jangir and Jangir (2018) MOGWO Non-dominated sorting approach 
with crowding distance 

Chen et al. (2019) MOBA Non-dominated sorting approach 
with crowding distance 

Al Moubayed et al. (2010) MOPSO information exchange method 

Zhu et al. (2017) MOPSO Immune-based evolutionary 
strategy   



 

 59 

Luo et al. (2019) MOPSO personal best and multi-global 
best selection mechanism 

Pan et al. (2018) MOPSO Diversity enhancing process 
based on the velocity analysis 

Mellal and Zio (2019) MOPSO Lévy flight 
Ünal and Kayakutlu (2020) MOPSO Random immigrants 
Akbari et al. (2012) MOABC Grid-based approach 
Zhong et al. (2014) MOABC Self-adaptive grid 
Bai and Liu (2016) MOABC Boltzmann selection mechanism 
Mahmoodabadi and Shahangian 
(2019) MOABC Euclidean distance 

Coello and Lechuga (2002) MOPSO - 
Yang (2012a) MOBA - 
Yang (2013) MOFA - 
Mirjalili (2016) MODA - 
Mirjalili et al. (2016) MOGWO - 
Mohamed et al. (2016) MOGWO - 
Mirjalili et al. (2017) MOSSA - 
Kumawat et al. (2017) MOWOA - 

Most of the studies improved the population update strategy of a MOSI-based 

algorithm by integrating a diversity preservation method, such as perturbation 

(mutation or disturbance) (Hu & Yen, 2013; Ünal & Kayakutlu, 2020)  and non-

dominated sorting approach with crowding distance. This integration aims to maintain 

the diversity of the population during the search process and overcome the premature 

convergence (Hu & Yen, 2013; Ünal & Kayakutlu, 2020). However, according to Al 

Moubayed et al. (2010), the usage of mutation operator leads to a very high 

convergence speed. However, such convergence speed could be a disadvantage in 

solving MOPs, because it may lead to a false Pareto front due to falling into local 

optima (Coello et al., 2004). 

 

Other MOSI-based algorithms integrate a single objective optimization algorithm with 

a MOO approach to handle multiple objectives, without any modification on the 
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original mathematical model, such as MOABC (Akbari et al., 2012), MOFA (Yang, 

2013), MOBA (Yang, 2012a), MODA (Mirjalili, 2016), MOGOA (Mirjalili et al., 

2018) and MOGWO (Mirjalili et al., 2016). Therefore, these algorithms inherit the 

disadvantages of a single objective optimization algorithm in terms of falling into local 

optima due to loss of population diversity which leads to premature convergence (Asih 

et al., 2017; Neumann et al., 2018; Ni & Deng, 2014; Xu et al., 2015). In this study, 

the Pareto dominance and non-dominated sorting approaches will be used in the 

proposed population update strategy to handle multiple objectives and preserve the 

population diversity. 

2.5 Classification of parameters adjustment strategies  

In any metaheuristic, the adjustment of its parameters plays an important role in 

controlling the search process. According to Eiben et al. (2007) parameter 

configuration directly affects the quality of the final solution. Therefore, it is necessary 

to determine the most promising parameters configuration of the algorithm being used. 

The proper parameters configuration helps the algorithm to avoid a risk of being 

trapped in local optima and the premature convergence (Huang et al., 2019; X.-S. Yang 

et al., 2019). 

 

In Eiben et al. (2007) a taxonomy of parameter adjustment is proposed. The parameter 

setting is divided into two main categories, namely, offline adjustment (parameter 

tuning) and online adjustment (parameter control), as shown in Figure 2.8.  
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Figure 2.8. Global taxonomy of parameter setting (Adapted from Kramer (2010)) 

Offline adjustment is characterized by strategies that use static and previously adjusted 

parameter values. This category includes manual tuning, design of experiments and 

meta-evolution tuning (Kramer, 2010). Manual adjustment depends on user 

experience, where it modifies the parameter values before each execution of the 

algorithm. In the design of experiments, a set of parameter values are tried and through 

analysis of the results obtained by combining the parameter values, the best 

configuration to be used is defined. However, the trial and error method to adjust the 

parameters and choose the best configuration to be used requires time and knowledge 

on both the optimization method and the problem addressed. The meta-evolution 

consists of applying an algorithm to evolve the parameter values. The goal is to obtain 

standard values for the parameters that can be recommended for future executions. 

However, such recommendations cannot be generalized to all types of problems, as 

the best parameters for one optimization problem may not necessarily be the best 

parameters for another optimization problem. Furthermore, these techniques require 

too many computing resources due to the large number of combinations (Marinakis, 

Marinaki, & Migdalas, 2015).  
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In online control, an important feature is that the value of a parameter varies according 

to the search stage. Having online control during the process of optimization can 

significantly improve the final result (Huang et al., 2019). In online control, the value 

of the parameters is modified during the execution of the algorithm. Online control is 

divided into three categories: deterministic, adaptive and self-adaptive.  

 

Deterministic control is performed through predetermined deterministic rules that 

update the value of the parameter during execution, without using any feedback from 

the search process. These methods depend on the time step, as an example for these 

methods, time varying strategies, such as random and linear decreasing strategies. In 

time-varying strategies, the value of a parameter changes constantly within a certain 

range and according to certain rules, during the whole iteration process, and thus 

presents different values. However, deterministic parameter control has similar 

limitations to parameter tuning where the rule of a control parameter has to be defined 

a priori and does not take any notion of the actual progress of the search. Furthermore, 

these methods lead to the loss of a lot of information gained during the search process. 

 

In the self-adaptive approach, the parameters are coded together with the solution 

vector. In other words, the parameters evolved at run time by the algorithm itself 

during the optimization  process (Eiben et al., 2007; Stützle et al., 2012). However, 

including a parameter values in the search space will lead to an increase in the size of 

the search space; thus causing an increase in the complexity of the optimization  

problem and slow convergence toward the global optima (Eiben et al., 2007). Another 
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drawback of self-adaptive control is that the search for optimal parameter values may 

be subject to premature convergence (Aleti & Moser, 2016).  

 

In the adaptive parameter control approach, parameters are adjusted according to the 

state of the search. This approach uses feedback from the search process to determine 

the value of parameters. These feedbacks include but are not limited to the fitness 

value, diversity of population and distance to the relative position (Zhang et al., 2012). 

The field of adaptive parameter control has become an active research area where 

different techniques have been proposed. The goal is to free the user from the task of 

selecting control parameters and, instead, entrust this responsibility to the algorithm 

itself, in which it can decide upon and adapt the appropriate values of the control 

parameters without user assistance. Therefore, many studies have been conducted to 

adjust the parameters of metaheuristics, based on this method (Parpinelli et al., 2019).  

2.6 Parameters adjustment strategies in MOSI-based metaheuristics 

In general, a MOSI-based algorithm extends a single objective optimization algorithm 

to simultaneously optimize multiple objectives (Alhammadi & Romagnoli, 2004). 

Therefore, they used same parameters to control the search process. Although the 

parameters configuration has a great impact on the performance of an algorithms, to 

the best knowledge of the author, it has received little attention in the MOSI-based 

algorithm literature. 
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Mohamed et al. (2016) proposed a nonlinear parameter adjustment strategy to control 

the value of parameter a in the MOGWO algorithm. However, the proposed strategy 

also depends on other parameters, which were used to control the convergence of the 

algorithm.  The value of these parameters is fixed during the optimization process. In 

Wei et al. (2019) an improved non-linear cosine-adjusted inertia weight was proposed. 

The proposed method is used to control the exploitation and exploration of MOPSO 

algorithm. This helps in preventing the algorithm from falling in local optima. Chen et 

al. (2019) proposed a nonlinear strategy to adjust the value of inertia weight coefficient 

to improve the convergence of the MOPSO algorithm. In Zellagui et al. (2017), a linear 

strategy to calculate the value of initial gravitational constant is proposed. The original 

GSA algorithm uses a fixed initial gravitational constant (Rashedi et al., 2009), which 

would lead to poor convergence. This parameter is used to calculate the gravitational 

constant, which play an important rule in controlling the exploration capabilities of the 

algorithm (de Moura Oliveira, Oliveira, & Cunha, 2017). However, the proposed 

strategy depends on two parameters, namely the initial value of inertial coefficient and 

final value of inertial coefficient, which were set as constant values. 

 

Yang and Ji (2016) proposed a method to dynamically update the step size along the 

swimming direction of the bacterium in multi-objective bacterial foraging 

optimization. According to  Yang and Ji (2016), the proposed algorithm helps in 

improving the convergence of the algorithm. Wei et al. (2018) proposed a method to 

adaptively adjust the inertia weight and acceleration coefficients based on the Sigmoid 

function. These parameters are used to control the exploration and exploitation process 
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in MOPSO (Wei et al., 2018). According to Wei et al. (2018)  this aims to improve the 

velocity update formula, which leads to improve the exploitation and exploration of 

the algorithm. Yu et al. (2020) proposed an adaptive parameter method to dynamically 

adjust the values of inertia weight and learning parameters in MOPSO algorithm which 

helps the algorithm to escape from local optima and avoid the premature convergence.  

 

In the adaptive parameter control approach, the parameters values are adjusted 

according to feedback represents the state of the search space (Eiben et al., 2007). 

However, in Wei et al. (2018); Yu et al. (2020),  the value of parameters were adjust 

based on a linear decreasing strategy, without receiving any feedback from the search 

space. Therefore, it cannot be considered as an adaptive strategy. Table 2.3 shows the 

parameters adjustment strategies used by the MOSI-based algorithms. 

Table 2.3 
Parameters adjustment strategies in MOSI-based algorithms 

Reference Algorithm Parameter 
adjustment strategy 

Coello et al. (2004) MOPSO x 
Sierra and Coello (2005) MOPSO x 
Peng and Zhang (2008) MOPSO x 
Mahmoodabadi et al. (2012) MOPSO x 
Leung et al. (2014) MOPSO x 
Fan et al. (2015) MOPSO x 
Wei et al. (2018)  Nonlinear 

Wei et al. (2019) MOPSO cosine-adjusted 
inertia weight 

Hassanzadeh and Rouhani (2010) MOGSA x 
Bhowmik and Chakraborty (2015) MOGSA x 
Zellagui et al. (2017) MOGSA Linear 
Tsai et al. (2014) MOFA x 
Kishor et al. (2016) MOABC x 
Zhou and Yao (2017) MOABC x 
Jangir and Jangir (2018) MOGWO x 
Chen et al. (2019) MOBA Nonlinear 
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Al Moubayed et al. (2010) MOPSO x 
Zhu et al. (2017) MOPSO x 
Luo et al. (2019) MOPSO x 
Pan et al. (2018) MOPSO x 
Mellal and Zio (2019) MOPSO x 
Ünal and Kayakutlu (2020) MOPSO x 
Akbari et al. (2012) MOABC x 
Zhong et al. (2014) MOABC x 
Bai and Liu (2016) MOABC x 
Mahmoodabadi and Shahangian 
(2019) MOABC x 

Coello and Lechuga (2002) MOPSO x 
Mirjalili et al. (2016) MOGWO x 
Mohamed et al. (2016) MOGWO Nonlinear 
Kumawat et al. (2017) MOWOA x 
Yang (2012a) MOBA x 
Mirjalili (2016) MODA x 

Yang and Ji (2016) 

bacterium in 
multi-objective 

bacterial foraging 
optimization 

Dynamic 

Yu et al. (2020)  Linear decrease 

In Table 2.3 the cross sign (X) indicates that the MOSI-based algorithm used the 

original parameter adjustment strategy of the single objective optimization algorithm. 

Most of the MOSI-based algorithms, used the same parameters adjustment strategy of 

the single objective optimization algorithm to change the value of parameters.  

In the MOSI-based algorithms, most of the proposed parameters adjustment strategy 

did not take in consideration the state of search space during the optimization process. 

Instead, a linear and non-linear decreasing strategy to adjust the values of parameters 

is used. However, these strategies may not reflect the requirements of actual 

optimization process, which leads to poor convergence toward the true Pareto front. 

This study, aims to improve the performance of HHMO algorithm by proposing an 

adaptive parameter adjustment strategy for the convergence parameter, a. The 
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proposed strategy aims to adaptively coordinate the transition between the exploration 

and exploitation of the search space during the optimization process. 

 

2.7 Classification of initial population generator methods 

All SI-based metaheuristics are population-based, which start by initialization of a set 

of search agents (potential solutions) for an optimization problem. In SI-based 

metaheuristics, the initial population affects the convergence toward global optima and 

the quality of the solution (Altinoz et al., 2014; Kazemzadeh Azad, 2018; Tu et al., 

2019). Therefore, the population initialization method is important in improving the 

performance of optimization algorithms (Altinoz et al., 2014; Kazemzadeh Azad, 

2018; Tu et al., 2019). The initialization method can be classified into three main 

classes, namely, randomness, compositionality and generality (Kazimipour, Li, & Qin, 

2014), as shown in Figure Error! Reference source not found.. 

 
Figure 2.9. Taxonomy of population initialization methods (Adapted from 
Kazimipour et al. (2014)) 
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Based on the more specific criteria, each category is further divided into several 

subcategories. These criteria are determined based on two facts. The first criterion is 

generality of a technique in which a technique can be applied to all types of 

optimization problems or is suitable for solving a specific problem. Second, a unique 

and independent aspect, such as whether a technique is random or not. 

2.7.1 Randomness  

Based on the degree of dependence on the initial seed, the random initialization 

techniques can be classified into stochastic and deterministic techniques. The 

stochastic techniques can be divided into two subgroups, namely pseudo random 

number generator and chaotic number generator (CNG).  

 

The pseudo random number generator is widely used in applications to generate 

random numbers due to implementation simplicity in any programming language. 

However, PRNGs suffer from the curse of dimensionality because they cannot produce 

a perfect uniform distribution of points, especially with an increase in size of the search 

space. This will affect the quality of the generated points (Kazimipour, Li, & Qin, 

2013).  

 

The CNG techniques mimic the behaviour of the dynamic system to produce 

unpredicted points in the search space and they are sensitive to initial conditions. 

ergodicity, randomness and regularity are the main characteristics of chaotic systems. 

The chaotic number generator techniques are configured through a chaotic map, built 
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by a set of user-defined parameters (Kazimipour et al., 2014). The main disadvantage 

of chaotic map techniques is they a parameter-depended and very sensitive to its initial 

conditions (Tian, 2017). 

 

In deterministic techniques, the initial method always produces the same population 

and ignores the initial seeds. Deterministic techniques, also known as low-discrepancy 

techniques, are designed to provide evenly distributed points in the entire search space. 

These techniques attract more attention due to uniformity and problem-independent 

characteristics, which leads to better convergence. In general, deterministic techniques 

are divided into two categories, namely, uniform experimental design and quasi-

random generator (QRNG) (Kazimipour et al., 2014).  

 

The uniform experimental design technique looks for points to be evenly distributed 

in a given interval. uniform experimental design is widely used in industrial and 

computer simulation design. The QRNGs are designed to produce low-discrepancy 

sequences with high levels of uniformity in high-dimensional space (Levy, 2002). 

Compared to PRNGs, the sequences generated by QRNGs are more evenly distributed 

within hypercube than sequences generated by PRNGs. Furthermore, the low-

discrepancy techniques are superior, in terms of discrepancy, over PRNGs. This is due 

to the high correlation between the generated points, where the next point "knows" 

where the previous points are. Examples for QRNG techniques include Sobol (Sobol', 

1967), Halton (Halton, 1960), Hammersley (Owen, 2019) and Kronecker (Larcher & 

Niederreiter, 1993) sequences.  
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Broadly, low-discrepancy techniques generalise the one-dimensional Van der Corput 

sequences, also known as radical inverse function (Faure, Kritzer, & Pillichshammer, 

2015). In a Halton sequence, each dimension is a bn Van der Corput sequence, 

where (b1, ... bn) is a prime number. The Hammersley sequence is very similar to 

Halton, except, the first dimension is changed to 𝑖

𝑁
, where i and N are the index and 

total number of sample points, respectively (Pharr, Jakob, & Humphreys, 2016). 

Discrepancy of Hammersley is slightly lower than Halton. However, Halton can 

generate an unlimited number of points without restriction, whereas the Hammersley 

point set can only generate a fixed number of points (Pharr et al., 2016). Unlike Halton 

and Hammersley, each dimension of the Sobol sequence consists of a radical inverse 

with a base of 2. The Sobol sequence can generate unlimited samples as needed, which 

is very suitable for progressive sampling.  

 

In Roberts (2018), another low-discrepancy quasi-random sequence, called R-

sequence, has been proposed. The R-sequence is developed based on extensions of the 

golden ratio (Slater, 2019). R-sequence is a method of constructing (infinite) sequence 

points in a deterministic manner that reduces the likelihood of clustering (discrepancy) 

whilst still ensuring that the entire space is uniformly covered. According to Roberts 

(2018), this sequence generates more evenly distributed points than any of the other 

state-of-the-art techniques, such as, Sobol, Halton and Kronecker sequences, as shown 

in Figure 2.10. 
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Figure 2.10. Comparison of various low discrepancy quasi-random sequences 
(Adapted from Roberts (2018)) 

As shown in Figure 2.10, the distributions of two-dimensional R-sequence and other  

QRNG are far more uniform than RNG. The discrepancy of R-sequences is lower than 

Halton, Sobol, Niederreiter, and Kronecker sequences. Furthermore, in contrast to 

other QRNG, the R-sequence does not require any selection of basis parameters. 

Improper selection of these parameters can lead to degeneracy (Roberts, 2018). 

2.7.2 Compositionality 

Compositionality techniques involve a number of standalone procedures. The 

population initialization techniques can be divided into composite and non-composite 

techniques. Non-composition techniques produce a population in a single step. The 

use of this technique can be stochastic, deterministic, generic or application-specific. 

The composition techniques produce populations in more than one step. These 
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techniques, in turn, can be divided into two categories, namely, multi-step and hybrid 

techniques. 

 

Multi-step techniques are composed of two or more techniques in which at least one 

of them cannot be used autonomously. These techniques generally refine the 

previously generated population in the subsequent steps. The two-step initialization 

technique includes two phases. In the first phase, an algorithm generates the initial 

population and then uses some criteria (such as the fitness function value) to improve 

it in the second phase. The hybrid technique is generally a combination of some basic 

techniques, where each procedure can be applied separately, as a non-compositional 

technique. However, in general, hybrid techniques theoretically inherit the advantages 

and disadvantages of the basic techniques from which they are adopted. 

2.7.3 Generality  

These population initialization techniques can be applied directly to various 

optimization problems. The population initialization techniques are again divided into 

two categories, namely, generic and application-specific techniques. 

 

The generic techniques assume that the given optimization problem is a black-box. 

Therefore, they can be applied in all types of optimization problems. In the absence of 

such prior knowledge about the problem, generic population initialization techniques 

can be used easily and effectively. All previously described techniques belong to the 

generic category. On the other hand, application-specific techniques are specifically 
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designed for particular real-world problems. This help in producing promising results 

and increasing convergence speed. However, they are not effective and applicable in 

other areas. Furthermore, these techniques require high levels of experience in the 

application domain (Kazimipour et al., 2014). 

2.8 Initial Population Generator methods in MOSI-based Metaheuristics 

In the area of MOSI-based metaheuristics, most of the studies have focused on 

introducing MOO algorithms based on the existing single-objective algorithms. In 

some of these algorithms, different MOO approaches have been used to handle 

multiple objectives. Other studies improved the performance of algorithms by 

integrating different methods that help in maintaining the population diversity during 

the optimization process. Initial population of candidate solutions can affect the 

performance of algorithm, in terms of convergence and the quality of the final solution 

(Tu et al., 2019).  To the best of the author’s knowledge, small effort has been given 

to study this field. Orouskhani, Teshnehlab, and Nekoui (2018) proposed the OBL 

(Tizhoosh, 2005) method to initialize the population of the multi-objective cat 

optimization algorithm.  In Wang, Li, Wang, and Li (2019b), the initial population of 

whales in the MOWOA was generated using OBL method. In the proposed method, 

the population is generated using RNG and divided into two halves. The OBL is 

applied on the second half. Then, the two subpopulations are combined to generate 

population with a specific size.  
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The OBL method by (Tizhoosh, 2005) has also been widely used with the RNG 

method to initialize the population of single objective optimization algorithms. Rashid 

and Baig (2010) integrated the OBL with the PSO algorithm to generate the population 

of a swarm. The study showed that the OBL-based PSO can deliver a better 

performance as compared to the standard PSO. In Farooq, Ahmad, and Hameed (2017) 

the OBL approach was used to initialize the population of a swarm in a PSO algorithm. 

According to Rashid and Baig (2010), the proposed algorithm significantly improved 

the performance of PSO and it became more robust when compared to other 

contending algorithms. Verma, Aggarwal, and Patodi (2016) incorporated OBL 

initialization to generate a candidate solution for the firefly algorithm. Wen (2016) 

utilized an OBL approach to initialize the population of GWO. The proposed algorithm 

is able to provide very competitive results compared to other algorithms. Bao, Jia, and 

Lang (2019) employed OBL to generate the initial population of dragonflies in the 

dragonfly algorithm. The results showed that the proposed method has superior 

performance compared with other algorithms.  In Jain and Saxena (2019), the OBL 

approach has been used in moth-flame optimization to initialize half of the population 

whereas the other half is initialized by using a classical RNG method.  

 

In other studies, the OBL and chaotic map have been used to initialize the population 

of single objective optimization algorithms. Gao, Liu, and Huang (2012) employed a 

chaotic OBL population initialization instead of a traditional random initialization for 

PSO to improve its performance. According to authors, the proposed method, to some 

extent can achieve certain success compared to the PSO algorithm with usual random 
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initialization under the same conditions. Kuang, Jin, Xu, and Zhang (2014) employed 

the tent chaos map and the OBL method to generate an initial population for the ABC 

algorithm. The results showed that the proposed method improved the performance of 

ABC, in terms of increasing the population diversity and accelerating the convergence 

rate. In Gao, Huang, Wang, Liu, and Qin (2016) a chaotic OBL approach is employed 

to generate a population of bees in ABC algorithm. Ibrahim, Elaziz, and Lu (2018) 

employed chaotic logistic map and the OBL to initialize the candidate solutions of a 

GWO algorithm. The results showed that the proposed approach provides an effective 

performance in solving optimization problems. 

 

Some studies used different types of chaotic map to initialize the population of 

algorithms. Tian (2017) utilized two types of chaotic map, namely tent map and 

logistic map to generate uniformly distributed particles in PSO. The proposed method 

provides good performance in terms of its stability, the quality of the final solutions 

and the convergence speed.   

 

The quasi-random sequences also have been used instead of the RNG method. In 

Weerasinghe, Chi, and Cao (2016), the population of swarm in PSO algorithm was 

initialized using scrambled optimal Halton sequence. The proposed method was 

compared with the Halton sequence and the scrambled optimal Halton sequence after 

dropping the first 5000 points. According to the authors, all sequences showed similar 

results. Bangyal, Ahmad, Rauf, and Pervaiz (2018) proposed an improved bat 

algorithm in which the population of bats is initialized using the torus quasi-random 
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sequence. According to Bangyal et al. (2018), the proposed algorithm outperforms the 

original BA algorithm.   

 

Other different methods have been employed to initialize the population of candidate 

solutions. In Zhou, Dai, Fang, Chen, and Tan (2008), the orthogonal design was used 

to generate the initial population of the proposed MOPSO. Cazzaniga, Nobile, and 

Besozzi (2015) proposed a strategy to initialize swarm of particles based on the 

logarithmic and lognormal distributions. According to the authors, the proposed 

strategy improves the performance of PSO, the results showed that lognormal and 

logarithmic distribution outperform other distributions, namely, uniform and normal 

distributions, which are commonly used in standard PSO. In Su et al. (2017), an 

orthogonal Latin squares approach is utilized to initialize a population of bees in a 

comprehensive learning artificial bee colony algorithm. Table  2.4 summarises the 

initial population generator methods applied in the MOSI and single objective SI-

based metaheuristics. 

Table 2.4 
Summary of initial population generator methods in MOSI and single objective-
based metaheuristics 

Reference Algorithm Method 
Rashid and Baig (2010) PSO OBL 
Verma et al. (2016) FA OBL 
Wen (2016) GWO OBL 
Farooq et al. (2017) PSO OBL 
Ibrahim et al. (2018) GWO OBL 

Orouskhani et al. (2018) Multi-objective cat 
swarm OBL 

Jain and Saxena (2019) moth-flame 
optimization OBL 

Bao et al. (2019) DA OBL 
W. L. Wang et al. (2019b) Multi-objective whale  OBL 
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Gao et al. (2012) PSO Chaotic OBL 
Kuang et al. (2014) ABC Chaos map & OBL 
Gao et al. (2016) ABC Chaotic OBL 
Tian (2017) PSO Chaotic map 
Yang, Gao, Liu, and Song (2015) PSO QRNG 
Weerasinghe et al. (2016) PSO QRNG 
Bangyal et al. (2018) BA QRNG 

Cazzaniga et al. (2015) PSO 
Logarithmic and 

lognormal 
distributions 

Zhou et al. (2008) MOPSO Orthogonal design 

Su et al. (2017) ABC Orthogonal Latin 
squares 

Coello and Lechuga (2002) MOPSO RNG 
Coello et al. (2004) MOPSO RNG 
Sierra and Coello (2005) MOPSO RNG 
Peng and Zhang (2008) MOPSO RNG 
Hassanzadeh and Rouhani (2010) MOGSA RNG 
Al Moubayed et al. (2010) MOPSO RNG 
Mahmoodabadi et al. (2012) MOPSO RNG 
Akbari et al. (2012) MOABC RNG 
Yang (2012a) MOBA RNG 
Zhong et al. (2014) MOABC RNG 
Leung et al. (2014) MOPSO RNG 
Tsai et al. (2014) MOFA RNG 
Fan et al. (2015) MOPSO RNG 
Bhowmik and Chakraborty (2015) MOGSA RNG 
Bai and Liu (2016) MOABC RNG 
Mirjalili (2016) MODA RNG 
Mirjalili et al. (2016) MOGWO RNG 
Kishor et al. (2016) MOABC RNG 
Zellagui et al. (2017) MOGSA RNG 
S/MOGWO Mohamed et al. 
(2016) MOGWO RNG 

Zhu et al. (2017) MOPSO RNG 
(Kumawat et al., 2017) MOWOA RNG 
Zhou and Yao (2017) MOABC RNG 
Jangir and Jangir (2018) MOGWO RNG 
Pan et al. (2018) MOPSO RNG 
Wei et al. (2019) MOPSO RNG 
Mahmoodabadi and Shahangian 
(2019) MOABC RNG 

Luo et al. (2019) MOPSO RNG 
Mellal and Zio (2019) MOPSO RNG 
Got, Moussaoui, and Zouache 
(2020) MOWOA RNG 
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Chen et al. (2019) MOBA RNG 
Ünal and Kayakutlu (2020) MOPSO RNG 

Most of the MOSI-based algorithms used the RNG method to initialize the population 

of candidate solutions. However, with this method the generated candidate solutions 

are not well distributed in the search space, which affect the performance of an 

algorithm (Digehsara et al., 2020; Jana et al., 2018; Maaranen et al., 2004). Since there 

is no a priori knowledge about the location and the number of local optima in the 

fitness space, the generated solutions should be distributed as much as possible in the 

search space. If the initial population is well distributed, then the possibility of finding 

a good solution will be increased (Hamdan & Qudah, 2015; Talbi, 2013).  

 

In the area of MOSI-based metaheuristics, several methods have been employed 

instead of the RNG, namely OBL and orthogonal design. However, the orthogonal 

design is a parameter-depended method (Kazimipour et al., 2014). The number of 

levels plays a very important role in determining the performance of the method 

(Kazimipour et al., 2014). The OBL method has been used with the RNG method to 

initialize the population of candidate solutions. However, the main disadvantage of 

this method is the computational complexity, which increases with the number of 

dimensions (Liu, Xu, Ding, & Li, 2015).  

 

Most of the single objective SI-based metaheuristics employed the RNG method with 

OBL method. The partial OBL has been used instead of full OBL to initialize the 

population. The partial OBL is a new form of OBL which was first proposed by Hu, 

Bao, and Xiong (2014) to improve the performance of differential evolution algorithm. 
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In the proposed algorithm, the partial OBL was used during the evolution process. 

However, according to Tizhoosh (2005), the usage of OBL is recommended only in 

the early stages of optimization because as the learning continues it becomes 

disadvantageous. In Si and Dutta (2019), the partial OBL was used to initialize the 

swarm of particles for PSO algorithm. The position of particles is first, initialize using 

RNG method. Then, the partial OBL is applied to calculate the opposites of position 

and velocity. 

 

Initialization methods based on the chaos map highly depends on the initial 

parameters, which significantly affect the performance of an algorithm. The QRNG 

method was employed in several algorithms to generate the population of solutions 

which showed superior performance compared to the algorithms with a classical 

method (Bangyal et al., 2018) Weerasinghe et al. (2016) Yang et al. (2015).   

 

The initializing methods in Table 2.4 were used to initialize the population of single 

objective optimization algorithm and these methods did not take into consideration the 

characteristics of the MOO.  In general, several studies have been conducted in the 

field of initial population for MOO (Hamdan & Qudah, 2015; Poles et al., 2009; Wang, 

Li, & Wang, 2019a; Yang, You, Zhao, Dou, & Guo, 2019). In most MOSI-based 

algorithms, the population of potential solutions is initialized by using the RNG 

method (Akbari et al., 2012; Coello & Lechuga, 2002; Du et al., 2019; Hassanzadeh 

& Rouhani, 2010; Kumawat et al., 2017; Mirjalili et al., 2016; Yang, 2012a, 2013). 
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In this context, this thesis aims to improve the performance of HHMO algorithm by 

proposing an initial population generator method. The proposed method will be 

developed based the two-step initialization technique. In the first step, instead of the 

RNG method, the R-sequence introduced by Roberts (2018); (Slater, 2019) will be 

used to generate a low discrepancy sequence. In the second step, a partial OBL method 

will be used to preserve the initial population diversity. The proposed initial population 

generator method also will take in consideration the characteristics of the MOO to 

ensure good convergence toward true Pareto front. 

2.9 Multi-objective Benchmark Optimization Problems 

Benchmark optimization problems with different features have been wildly used in the 

literature to evaluate the performance of MOO algorithms. These benchmark problems 

include test functions and real-world problems.  

2.9.1 Test functions 

The test functions are normally used in the literature to validate the performance of a 

MOO algorithm or to compare two or more algorithms. Compared to the real-world 

problems, the test functions has advantages of their true Pareto front is known, their 

difficulty degree can be controlled, and in most problems, the number of objectives 

and decision variables can also be controlled (Tanabe & Ishibuchi, 2020). Several test 

problems have been used in the literature over the years. The most widely used are the 

ZDT and DTLZ families (Elarbi, Bechikh, Ben Said, & Datta, 2017).  
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The ZDT family were developed by Zitzler, Deb, and Thiele (2000) and their names 

are derived from the initials of the authors’ names. This family includes ZDT1-ZDT6 

problems and their main features include, convexity, non-convexity, disconnected, and 

multi-modality boundaries. The problem of this family cannot be scalaraized to more 

than two objective functions (Meneghini, Alves, Gaspar-Cunha, & Guimarães, 2020). 

Another widely used test problem is the Deb, Thiele, Laumanns and Zitzler (DTLZ) 

(Deb, Thiele, Laumanns, & Zitzler, 2005) family, which includes the test problems 

names DTLZ1-DTLZ7. These test problems encapsulate special characteristics, such 

as multi-modality, non-convexity and discontinuity which are known to generally 

cause difficulties to most multi-objective metaheuristics (Coello, Lamont, & Van 

Veldhuizen, 2007; Radulescu, López-Ibánez, & Stützle, 2013). Compared to the ZDT 

family, the DTLZ family can be scaled to any number of objectives and decision 

variables and the desired Pareto fronts are known which can be analytically determined 

(Meneghini et al., 2020). Therefore, they represent a good basis for testing the 

credibility and efficiency of optimization algorithms in different situations (Coello et 

al., 2007).  

 

The Walking-Fish-Group (WFG) family is one of the test problems that is attracting 

the attention of the community (Huband, Hingston, Barone, & While, 2006). This 

family includes WFG1-WFG9 problems. The characteristics of these problems include 

connected, non-degenerate, degenerate, and disconnected Pareto front (Zapotecas-

Martínez, Coello, Aguirre, & Tanaka, 2018). The UF series proposed by Zhang et al. 

(2009) has been used in evaluating the performance of MOO algorithms. This family 
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includes UF1-UF10 MOPs that have convex, concave, disconnected, multi-modal and 

linear Pareto front characteristics. The UF1-UF7 involves two objectives and UF8-

UF10 are three objectives problems (Ergul & Eminoglu, 2014).  

These test problems have been widely used in in evaluating the performance of MOSI-

based algorithms, as shown in Table 2.5.  Most of the studies used ZDT, DTLZ and 

UF test problems in evaluating the performance of the MOSI-based optimization 

algorithms. The study presented in this thesis uses these problems to evaluate the 

performance of the proposed enhanced HHMO algorithm, and in the comparison with 

other algorithms.  

Table 2.5 
Test functions used in evaluating the performance of MOSI-based algorithms 

Reference Algorithm Test Function 
Zhou et al. (2008) MOPSO ZDT 
Mahmoodabadi et al. 
(2012) MOPSO ZDT 

Leung et al. (2014) MOPSO ZDT 
Mirjalili (2016) MODA ZDT 
Orouskhani et al. 
(2018) 

Multi-objective cat 
swarm ZDT 

Fan, Wang, Cheng, Li, 
and Gu (2017) MOPSO ZDT 

Acı and Gülcan 
(2019) MODA ZDT 

Luo et al. (2019) MOPSO DTLZ 
Allmendinger et al. 
(2008) MOPSO ZDT& DTLZ 

Qiao, Zhou, and Yang 
(2018) MOPSO ZDT& DTLZ 

Han, Sun, and Ling 
(2018) MOPSO ZDT& DTLZ 

Jia and Zhu (2017) MOPSO ZDT& DTLZ 
Yu and Zhang (2017) MOPSO ZDT& UF 
Mirjalili et al. (2018)  MOGOA ZDT& UF 
Liu, Jiao, Ma, Ma, and 
Shang (2016) MOPSO ZDT, DTLZ& UF 



 

 83 

Díaz-Manríquez et al. 
(2016) MOPSO ZDT, DTLZ& UF 

Zhou and Yao (2017) MOABC ZDT, DTLZ& UF 
W. L. Wang et al. 
(2019b) Multi-objective whale ZDT, DTLZ& UF 

Wei et al. (2019) MOPSO ZDT, DTLZ& UF 
AbdelAziz, Soliman, 
Ghany, and Sewisy 
(2019) 

Multi-objective whale ZDT, DTLZ& UF 

Fan et al. (2015) MOPSO ZDT, DTLZ& WFG 

Zhu et al. (2017) MOPSO ZDT, DTLZ, UF & WFG 
Pan et al. (2018) MOPSO DTLZ & WFG 
X. Zhang et al. (2018) MOPSO ZDT, DTLZ & WFG 
Luo et al. (2017) MOABC DTLZ & UF 
Kishor et al. (2016) MOABC UF 
Bai and Liu (2016) MOABC UF 
Mirjalili et al. (2016) MOGWO UF 

2.9.2 Real-world problem 

The real-word problems have been used by many researchers to determine the 

performance optimization algorithms. Most of the problems in the continuous domain 

are engineering problems (Stewart et al., 2008; Tanabe & Ishibuchi, 2020). Table 2.6 

shows different MOPs in various application domains. 

Table 2.6 
Summary of engineering applications 

Specific 
Applications Reference Variable 

Beam design 
(Deb & Sundar, 2006) 
(Coello Coello & 
Christiansen, 1999) 

Continuous 

Continuous 

Truss design  

(Coello et al., 2007; Keller, 
2019; Stadler & Dauer, 
1993) 
 

Continuous 

Continuous 

Disk brake design (Tawhid & Savsani, 
2018b) Mixed 

Optimal power 
flow (OPF) 

(Berrouk et al., 2018; 
Frank & Rebennack, 2016) Continuous 
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Gear train problem (Deb & Srinivasan, 2006) Integer 
Helical 
compression spring (Lampinen & Zelinka) Mixed 

Pressure vessel 
design (Kannan & Kramer, 1994) Mixed 

Speed reducer 
design 

(Coello et al., 2007; 
Farhang-Mehr & Azarm, 
2002) 

Mixed 

 

As shown in Table 2.6, the real-world applications include various optimization 

problems. The beam design includes problems such as welded beam (Deb & Sundar, 

2006) and I-beam (Coello Coello & Christiansen, 1999). Compared to the I-beam, the 

welded beam has been widely used in evaluation the performance of MOSI-based 

algorithms (Got et al., 2020; Janga Reddy & Nagesh Kumar, 2007; Kotinis, 2010; 

Kulkarni, 2017; Tawhid & Savsani, 2018b; X.-S. Yang, M. Karamanoglu, & X. He, 

2014).  

 

The truss design includes several problems (Coello et al., 2007; Keller, 2019; Stadler 

& Dauer, 1993), among them the two-bar and four-bat truss (Stadler & Dauer, 1993) 

have been used by many studies (Coello & Pulido, 2005; Got et al., 2020; Janga Reddy 

& Nagesh Kumar, 2007; Jangir & Trivedi, 2018; Kotinis, 2010; Tawhid & Savsani, 

2018b) in evaluation the performance of MOSI-based algorithm.  

 

The OPF is considered as one of the most important optimization problems in the area 

of power engineering (Frank & Rebennack, 2016). However, a few MOSI-based 

algorithms have been used to solve this problem (Mohamed et al., 2016).  
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The previous MOPS have continuous design variables, while other problems such as 

the pressure vessel, speed reducer (Coello et al., 2007; Farhang-Mehr & Azarm, 2002) 

and disk brake (Tawhid & Savsani, 2018b) design have integer and mixed variables.  

2.10 Performance Metric for MOO  

In general, the performance metrics in MOO is used to measure two criteria, namely 

the convergence and diversity of non-dominated solutions (Mohammadi, Omidvar, & 

Li, 2013).  Several metrics have been proposed to evaluate the performance of MOO 

algorithms. According to Riquelme, Von Lücken, and Baran (2015), the most widely 

used are the HV (Zitzler & Thiele, 1999), the generational distance (GD), the epsilon 

indicator (Zitzler, Thiele, Laumanns, Fonseca, & Da Fonseca, 2003) and the inverted 

generational distance (IGD) (Coello & Cortés, 2005).  

 

In  Li, Deb, and Yao (2018b) the R-metric was proposed based on the multi-criterion 

decision making approach.  The multi-criterion decision making approach is first used 

to pre-process the preferred efficient set, then the a regular performance metric, such 

as HV or IGD is used to evaluate the obtained solutions (Li et al., 2018b). Compared 

to regular performance metrics. the R-metric takes into consideration the preference 

information determined by the DM (Li et al., 2018b) and it has been used to evaluate 

the performance of both preference and non-preference based algorithms (Tang et al., 

2020). It is worth to mention that, in the literature other preference-based performance 

metrics have been proposed (Mohammadi et al., 2013; Wickramasinghe, Carrese, & 

Li, 2010). However, these metrics have limitations that make them provide misleading 
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information to the DM (Li et al., 2018b). In this study, the R-IGD, R-HV, and epsilon 

metrics will be used to evaluate the performance of the proposed 2S-ENDSHHMO 

algorithm. 

2.11 Summary 

In the real-world, most optimization problems consist of two or more conflicting 

objectives in which improving an objective leads to the degradation of others. 

Compared to SOPs, solving a MOP is not a trivial task. This is mainly due to the high 

complexity of a problem, which generates many possible solutions. Given this 

difficulty, there is a growing interest in using the metaheuristic methods combined 

with MOP approaches to solve MOPs. This is due to that metaheuristics reach feasible 

solutions without having to list all possibilities. This class of MOP solving methods 

uses metaheuristics to generate and analyse different solutions as well as to determine 

the approximations of the Pareto front.  

 

The HHMO algorithm is one of the recent MOSI-based algorithms, which have been 

developed based on a reference point approach. In this approach, instead of wasting 

time in exploring undesired regions, the algorithm focuses on a preferred region, 

determined by the DM. This helps reduce the computational cost and generate better 

solutions for a MOP. Although the HHMO algorithm can achieve good results for 

some MOP problems, its performance can be further improved. This can be achieved 

by enhancing the population update of hawks. The adaptive parameter control 

approach can be utilized to adjust the distance parameter control. Moreover, the 
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diversity of the initial population of hawks can be improved by employing another 

initial population generator method. 
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CHAPTER THREE 

RESEARCH METHODOLOGY 

3.1 Introduction  

The main goal of this study is to propose a two-step enhanced non-dominated sorting 

Harris’s hawk multi-objective optimizer (2S-ENDSHHMO) algorithm, with the aim 

to overcome the limitations of HHMO and provide an effiecient MOO method. In this 

context, it is appropriate to introduce a framework to carry out this study. In this 

chapter, the main research processes and research framework that is used to conduct 

this study are described in Section 3.2. Stages 1, 2 and 3 of the framework are presented 

in Section 3.3, Section 3.4, Section 3.5 and Section 3.6, respectively. Section 3.7 

describes the MOPs, followed by the application domain, which presented in Section 

3.8. The performance measure is described in Section 3.9 followed by chapter 

summary in Section 3.10. 

3.2 Research Framework  

Developing the 2S-ENDSHHMO algorithm requires a careful understanding of the 

HHMO algorithm and identification of its limitations. Overcoming these limitations 

will lead to an effective MOO algorithm. To achieve this goal, this research was 

performed, based on four main processes, as shown in Figure 3.1. 
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Figure 3.1. Main Research Processes 

The framework organizes this study into four main stages. In the first stage the main 

problems that affect the performance of HHMO algorithm have been identified. The 

proposed population update strategy, parameter adjustment strategy and initial 

population generator method are formulated in the second stage. These strategies and 

method are integrated with the HHMO algorithm to produce the 2S-ENDSHHMO 

algorithm in the third stage. Finally, in the fourth stage, the performance of the 2S-

ENDSHHMO algorithm has been evaluated. The research framework is illustrated in 

Figure 3.2.  
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Figure 3.2. Research Framework 
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In the research framework, each stage involves methods, which are performed to 

achieve the research objectives. Stages 1, 2, 3 and 4 are designed to achieve objectives 

1, 2, 3 and 4, respectively. The following sub-sections will elaborate further on each 

stage. 

3.3 Proposing an Improved Population Update Strategy of Hawks 

In this stage, the population update strategy is proposed to enhance sharing information 

between hawks in the population. This strategy involves updating the position of 

hawks with respect to the experience of all hawks and selecting the best hawks to 

produce the next generation. This can help in maintaining population diversity and 

reducing the probability of the algorithm falling into local optima. 

3.4 Proposing an Improved Parameter Adjustment Strategy 

There are two important components of metaheuristics: exploration and exploitation. 

To achieve a satisfactory performance, there should be a balance between these 

components. In the HHMO algorithm, the transit between exploration and exploitation 

are controlled by adjusting a convergence parameter, a. Therefore, to enhance these 

components, an adaptive parameter adjustment strategy was proposed to adjust the 

value of the convergence parameter. This strategy was used to alternate the exploration 

and exploitation during the optimization progress, with the aim to achieve an ideal 

balance between exploration and exploitation.  
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3.5 Proposing an Improved Initial Population Generator Method 

The performance of the HHMO algorithm depends significantly on the distribution of 

the initial population in the search space (Kazemzadeh Azad, 2018; Tu et al., 2019). 

In this stage, a two-step initial population generator method was proposed to generate 

the initial potential solutions (hawks), to improve the convergence of the algorithm 

toward the true Pareto front. 

3.6 Performance Evaluation of the 2S-ENDSHHMO Algorithm 

This stage involves the implementation of the 2S-ENDSHHMO algorithm, followed 

by how its performance is evaluated. Generally, SI-based metaheuristics have unified 

procedures, namely, initialization and solution update. The initialization involves 

problem representation and generation of potential solutions. Problem representation 

is an approach to construct a problem in the form of an objective function. Based on 

problem characteristics the candidate solutions can be binary, real number or mixed 

representation. Solutions update to generate a new population (Talbi, 2009).  

 

The improved population update strategy, adjustment strategy of the convergence 

parameter and two-step initial population generator method, proposed in Stages 1, 2 

and 3, respectively, were integrated with the unified procedures to develop the 2S-

ENDSHHMO algorithm.  

 

The performance of the 2S-ENDSHHMO was evaluated using a set of MOPs and 

through applying the 2S-ENDSHHMO to solve a set of well-known multi-objective 
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engineering optimization problems. The evaluation stage involved measuring the 

performance of the 2S-ENDSHHMO using performance matrices and statistical 

measures in the first stage. In the second stage, the obtained results were compared 

with state-of-the-art multi-objective SI-based algorithms. Figure 3.3 shows the stage 

of performance evaluation. 

 
Figure 3.3. Performance evaluation stage 

3.7 Multi-Objective Optimization Problem 

To evaluate the performance of the 2S-ENDSHHMO algorithm, the test functions 

namely, the ZDT (Zitzler et al., 2000) and DTLZ (Deb, Thiele, Laumanns, & Zitzler, 

2002b) have been used. 

3.7.1 ZDT Test Problems 

The ZDT MOPs (ZDT1, ZDT2, ZDT3, ZDT4 and ZDT6). Each of the test functions 

is constituted by a minimization problem with two objectives. The ZDT family 

characteristics and formulations can be found in Appendix A.1.  

Multi-objective optimization problems

Test problems Application domain

Performance measures

Performance metrics Statistical measure

Mean, standard 
deviation and best and 
worst values.

Inverted generational 
distance and hyper-volume.

Comparison with other multi-objective optimization algorithms

HHMO, MOGWO, MOGOA, MODA,  MOSSA, NSABC, NSGSA, R-NSGA-II

Engineering applications:
- Welded beam
- Four-bar truss
- OPF

A set of MOPs widely 
used in the literature.

Performance evaluation

Stage 1

Stage 2



 

 94 

 

The ZDT1 test problem has an optimal convex Pareto front and uniform distribution 

of solutions along the curve, as shown in Figure 3.4 (a). All variables are defined in 

the range [0,1]. The optimal region of Pareto corresponds to x1  (0, 1) and xi= 0 (i = 

2; …; d = 30), where d is the number of dimensions.  

 

The ZDT2 problem has an optimal nonconvex Pareto front, as shown in Figure 3.4 (b). 

All variables are set in the range [0,1]. The optimal region of Pareto corresponds to x1 

 (0, 1) and xi = 0 (i = 2,…, m = 30).  

 

The ZDT3 problem has a disconnected optimal Pareto boundary, caused by the 

presence of the sine function in h, , as shown in Figure 3.4 (c). The optimal region of 

Pareto corresponds to x1  (0, 1) and xi = 0 (i = 2,…, m = 30).  

 

The ZDT4 function is composed of 219 Pareto fronts' local optima, which represents a 

major difficulty in the search for the global optimal. Therefore, it tests the ability of an 

algorithm to deal with multi-frontality. The optimal region of Pareto corresponds to x1 

 (0, 1) and xi = 0 (i = 2,…, m = 10).  Figure 3.4 (d) shows the ZDT4 problem.  

 

The ZDT6 function has two difficulties caused by the non-uniformity of the search 

space: Pareto optimal solutions are not evenly distributed across the Pareto global 

boundary and the densities of the solutions are smaller near Pareto's optimal border 

and larger in the region away from it (Coello et al., 2007). The optimal region of Pareto 
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corresponds to x1  (0, 1) and xi = 0 (i = 2,…, m = 10). Figures 3.4 show the Pareto 

front of the ZDT problems.  

  
(a)  (b)  

  
(c)  (d)  
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(e)  

Figure 3.4.Two views of the true Pareto front of ZDT family (Adapted from Coello 
et al. (2007)) 

3.7.2 DTLZ Test Problems 

The DTLZ family includes DTLZ1, DTLZ2, DTLZ3, DTLZ4, DTLZ5, DTLZ6 and 

DTLZ7. These problems test the ability of the multi-objective algorithm to converge 

to the true Pareto front (Coello et al., 2007). For all DTLZ problems, the total number 

of variables is n = M + k − 1. The formulations and characteristics of the DTLZ family 

can be found in Appendix A.2.  

 

The DTLZ1 problem has a linear multimodal Pareto front. This problem can be used 

to test the ability of algorithms to convergence toward the true Pareto front (Coello et 

al., 2007). The DTLZ2 problem is a problem with a concave (spherical) and continuous 

Pareto-optimal front. The Pareto front of this problem represents only the positive 

octant of the hyper sphere, that is, the octant where the points forming the Pareto front 

have only positive values in their coordinates. This problem can be used to test the 

ability of algorithms to maintain their performance for a high number of objectives. 
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The optimal solutions of this problem correspond to 𝑥𝑀
∗ = 0.5 and its optimal Pareto 

boundary is defined with the objective values corresponding to ∑ (𝑓𝑖
∗)2𝑀

𝑖=1 = 1.  

 

The DTLZ3 has a concave, scalable, multimodal true Pareto front. The DTLZ4 

problem has a concave (spherical) Pareto front. This problem was created to evaluate 

the ability of algorithms to generate a well distributed set of solutions on the Pareto 

front. This problem has a natural tendency to attract solutions to a specific region of 

the Pareto front. 

 

The DTLZ5 problem tests the ability of an algorithm to converge to a True Pareto 

front. The DTLZ6 problem is similar to the DTLZ5 problem in terms of the number 

of decision variables. However, the DTLZ6 problem incorporates greater convergence 

difficulties by using different g functions. This change makes an algorithm difficult to 

converge to the true Pareto front. 

 

The DTLZ7 problem does not use the spherical coordinate system in M-dimensional 

space. The last objective fM(x) is the only one that depends on the other variables of 

the problem. This problem has 2M − 1 disconnected regions on the Pareto Border. The 

DTLZ7 problem tests the ability of algorithms to keep individuals in different regions 

of the True Pareto front. Figures 3.5 show the Pareto front of the DTLZ problems 

(Coello et al., 2007). 
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(a)  (b)  

  
(c)  (d)  

  
(e)  (f)  
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(g)  (h)  

  
  

  
(i)  (j)  

Figure 3.5.Two views of the true Pareto front of DTLZ family family (Adapted from 
Coello et al. (2007)) 
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In this study, twelve test problems were used, namely, ZDT1, ZDT2, ZDT3, ZDT4, 

ZDT6, DTLZ4, DTLZ5, DTLZ6 and DTLZ7 and DTLZ2 with three, five and 10 

objectives, problems. These problems were chosen because they present the Pareto-

optimal front continuum and the space of decision variables is continuous. These test 

problems were used in the comparison of the performance of 2S-ENDSHHMO with 

other algorithms, namely, HHMO, MOGWO, MOGOA, MODA, MOSSA, NSABC, 

NSGSA and R-NSGA-II. 

 

In addition to ZDT and DTLZ2 MOPs, the UF family proposed by Zhang et al. (2009) 

has been used in evaluating the performance of 2S-ENDSHHMO. This set includes 

UF1-UF10 MOPs that have convex, concave, disconnected and linear Pareto front 

characteristics. The UF1-UF7 involves two objectives and UF8-UF10 has three 

objectives problems. These sets are used in the second phase of comparison where the 

performance of 2S-ENDSHHMO is compared with the results of each algorithm 

collected from the original publications. 

3.8 Application Domain 

The evaluation of the 2S-ENDSHHMO algorithm was extended by applying it in 

solving three well-known multi-objective engineering problems, namely, welded 

beam (Ragsdell & Phillips, 1976) , four-bar truss (Coello & Pulido, 2005) and OPF 

MOPs. 
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3.8.1 Significant of Engineering Applications 

Structural engineering is a classic branch of civil engineering that responsible for 

economically designing buildings, bridges, warehouses, walls and other structures 

with sufficient strength to prevent collapse when they are loaded and protect them from 

extreme natural phenomena such as wind, snow, fire and earthquakes. They can also 

deal with the design and calculation of machinery, medical equipment, and vehicles 

where structural integrity affects functioning and safety. Any structure is essentially 

made up of only a small number of different types of elements, which include beams, 

trusses, columns, plates, arches, shells and catenaries.  

 

Welded beams are those whose sections are composed of several steel sheets welded 

together to achieve the desired geometry. The economic benefit of the use of welded 

beams for the construction of structures and buildings allows construction companies 

to reduce the cost of labour, while ensuring the unique reliability of buildings.  In 

structural engineering, trusses are structures formed by rigid elements composed of 

members or bars, whose ends are connected at joints or points known as nodes. In the 

trusses the loads (forces) are applied only to the nodes resulting in either a compression 

or tension force. They are commonly used in the design of bridges, overpasses and roofs. 

Trusses are an efficient way to cover long distances while minimizing the amount of 

material used, especially in the design of overpasses, as the force is distributed among a 

number of members.  

 

https://en.wikipedia.org/wiki/Beam_(structure)
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Electrical engineering is a branch of engineering that is responsible for studying and 

applying everything related to electricity. Power Engineering is a core sub-field 

of electrical engineering that plans, analyses and develops systems for generation, 

transportation, transmission, distribution and use of energy. In power engineering, the 

power system is a network of electrical components. The main components of a power 

system are, namely, the generators, transformers, transmission and distribution (power 

lines). The analysis of the power flow consists of determining the flows of active and 

reactive powers. This helps in the best operating condition of an electrical system, 

minimizing possible losses in transmission, as well as determining the energy planning 

for expansion, thus reducing economic costs. 

3.8.2 Engineering multi-objective optimization problem 

The engineering MOPs are usually used in the literature to show the effectiveness of 

algorithms. These problems are the most challenging, due to their diverse 

characteristics, most of which are constrained. In general, in constrained optimization  

problems, the number of linear and nonlinear constraints, objective function and the 

decision variables are major factors in determining the difficulty of the problem (Tuba, 

Bacanin, & Stanarevic, 2012). Table 3.1 summarises the characteristics of the welded 

beam, four-bar truss and OPF engineering MOPs. 
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Table 3.1 
Characteristics of engineering MOPs 

MOP Number of constraints Type of constraint Linear Nonlinear 

Welded 
beam 2 4 

- Four inequality 
constraints 
- Range of decision 
variables 

Four-bar 
truss 4 - Range of decision 

variables 

OPF 6 2 Six inequality constraints 
Two equality constraints 

In Table 3.1 M and D denote the number of objectives and the number of decision 

variables. The constrained optimization problem is a kind of mathematical 

programming problem that is often encountered in the field of engineering application. 

The general form of MOP can be written as shown in Equation (3.1). 

where 𝑋⃗ is the vector of solutions, F is the feasible region in the search space, S. There 

are q inequality and m-q equality constraints.  𝑓(𝑋⃗) is the objective function. 𝑋⃗ that 

satisfies all the constraints is a feasible solution to the problem. All of the feasible 

solutions constitute the feasible region. Inequality constraints that satisfy 𝑔𝑖(𝑋⃗) = 0 

are called active at X . Using these definitions, the nonlinear programming problem is 

Minimize 𝐹(𝑋⃗) = (𝑓1(𝑋⃗), 𝑓2(𝑋⃗), 𝑓3(𝑋⃗), … , 𝑓𝑀(𝑋⃗)) ;      

𝑋⃗ = (𝑥1, 𝑥2, 𝑥3, … 𝑥𝑛) ∈ 𝐹 ⊆ 𝑆 ⊆ 𝑅𝑛    

subject to: 

𝑔𝑖(𝑋⃗) ≤ 0        𝑖 = 1,2,3, … , 𝑞 

ℎ𝑗(𝑋⃗) = 0    𝑗 = 𝑞 + 1, … , 𝑚 

(3.1) 
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to find a point 𝑋̌ ∈ F such that 𝑓(𝑋̌) ≤ 𝑓(𝑋⃗) for all 𝑋⃗ ∈ 𝐹 (Bazaraa, Sherali, & Shetty, 

2013). 

 

The constrained optimization problem requires constraints handling method. The 

penalty function is a common method to deal with constrained optimization problems 

(Bassen, Vilkhovoy, Minot, Butcher, & Varner, 2017; Berrouk et al., 2018; bin Mohd 

Zain, Kanesan, Chuah, Dhanapal, & Kendall, 2018; Coello Coello, 2000; Ding et al., 

2017; Farnad & Jafarian, 2018; Kaveh & Mahdavi, 2019; Kohli & Arora, 2018; Mellal 

& Zio, 2019; Meng, Shen, & Jiang, 2014; Parsopoulos & Vrahatis, 2005; Savsani, 

2014; Tawhid & Savsani, 2018a; Tomassetti, 2010). The goal is to allow individuals 

in a group to violate the constraints to a certain extent, but the individual must be 

punished according to the degree of violation of the constraints to reduce its selection. 

The degree to which a probability individual violates a constraint is determined by a 

penalty function, and most methods construct a penalty function using the approach in 

Equation (3.2). 

where p is a penalty term. If no violation occurs, p will be zero and 

positive otherwise. Under this conversion, the overall objective function now is 

𝑒𝑣𝑎𝑙(𝑋⃗), which serves as an evaluation function in the algorithm. Figure 3.6 shows 

the main stages in solving a constraints MOP. Figure 3.6 shows the procedures of 

design MOPs. 

𝑒𝑣𝑎𝑙(𝑋⃗) = {
𝑓(𝑋⃗)                  ;    if 𝑋⃗ ∈ 𝐹

 𝑓(𝑋⃗)  + 𝑝(𝑋⃗)      ;    otherwise 
 (3.2) 
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Figure 3.6. Multi-objective optimization procedures for a design MOP 

As shown in Figure 3.6 solving a design MOP starts by defining the problem model. 

This includes defining the variables in the decision space, objective functions and the 

constraints of the MOP. The goal of optimization is to find the best combination of 

design variables that minimize (maximize) two or more objective functions, which is 

subject to constraints on its decision variables.  

3.8.3 Welded Beam Design Problem 

This optimization problem concerns the design and fabrication of welded joints. A 

beam is welded onto another beam and carries a certain load. The welded beam 

problem has been proposed as a SOP (Ragsdell & Phillips, 1976). For a more flexible 

design the welded beam problem has been transformed into a MOP (Deb & Sundar, 

2006). In the SOP the goal is to minimize the fabrication cost (f1(x)) of the joint. In a 

MOP, one more objective has been included, which is to minimize the end deflection 

(f2(x)) of the welded beam. Figure 3.7 shows a schematic of the welded beam MOP. 

MOP definition MOO process Decision making stage

Objective 
space 

definition

Decision 
space 

definition

Constraint 
definition

Multi-objective 
optimization 

algorithm

Non-
dominated 
solutions

Designer 
selection
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Figure 3.7. Schematic of welded beam MOP family (Adapted from Zheng and Zhou 
(2013)) 

The welded beam MOP has four continuous design variables, namely, weld thickness 

(h), weld length (l), beam height (t), and beam width (b) whose nonlinear constraints 

include normal and shear stress and a geometry constraint. The design variables can 

be formalized as: x1(h), x2(l), x3(t), and x4(b), while the objective function and 

constraints are as shown in Equations (3.3-3.6). 

min f1(𝑥⃗) = 1.10471𝑥1
2𝑥2 + 0.04811𝑥3𝑥4(14.0 + 𝑥2)  (3.3) 

min 𝑓2(𝑥⃗) =
2.1952

𝑥3𝑥4
 (3.4) 

Subject to: 

(3.5) 

𝑔1(𝑥⃗) = 𝑇(𝑥⃗) − 𝑇𝑚𝑎𝑥 ≤ 0  

𝑔2(𝑥⃗) = σ(𝑥⃗) − 𝜎𝑚𝑎𝑥 ≤ 0  

𝑔3(𝑥⃗) = 𝐹 − 𝑃𝑐(𝑥⃗) ≤ 0 

𝑔4(𝑥⃗) = 𝑥1 − 𝑥4 ≤ 0 

0.125 ≤  𝑥1, 𝑥4  ≤ 5 
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0.1 ≤  𝑥2, 𝑥3  ≤  10 

𝑇 = (𝑡𝑎𝑢12) + (𝑡𝑎𝑢22) + (𝑙𝑡𝑎𝑢1𝑡𝑎𝑢2)/√0.25(𝑙2 + (ℎ + 𝑡)2) 

(3.6) 

𝑡𝑎𝑢1 =
6000

√2ℎ𝑙
  

𝑡𝑎𝑢2 =
6000(14+0.5𝑙)√0.25(𝑙2+(𝑥1+𝑡)2)

2(0.707ℎ𝑙(
𝑙2

12+0.25(𝑥1+𝑡)2)
   

𝜎(𝑥⃗) =
504000

𝑡2𝑏
 

𝑃𝑐(𝑥⃗) = 64746.022(1 − 0.0282346𝑡)𝑡𝑏3  

where F = 6000 lb, Tmax = 13600 psi, 𝐸 = 3 × 106 psi, σmax = 30000 psi, umax = 0.25 

in and L = 14 in. In Equation (3.3), the coefficients 1.10471 and 0.04811 are related to 

the material cost per unit volume. The first two constraints ensure that the shear stress, 

T and the normal stress, 𝜎, developed along the beam support, are less than the 

allowable shear (Tmax) and normal (σmax) stresses of the material. The third constraint 

ensures that the tensile strength (along the t-direction) of the beam is greater than the 

applied load F. The fourth constraint ensures that the thickness of the beam is not less 

than the thickness of the weld. 

3.8.4 Four-bar Truss Design Problem 

The four-bar truss design problem was studied by (Stadler & Dauer, 1993). The goal 

is to design the truss with minimum volume and deflection of node C. Figure 3.8 shows 

the schematics of the four-bar truss structure. 
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Figure 3.8. Schematic of the four-bar truss MOP family (Adapted from Stadler and 
Dauer (1993)) 

In Figure 3.8, x1, x2, x3 and x4 are the cross-sectional areas of each member in cm2 and 

the objective function and constraints are as formulated in Equations (3.7 - 3.9). 

min 𝑓1(𝑥) = 𝐿 × 2𝑥1 + √2𝑥2 + √𝑥3 + 𝑥4 (3.7) 

min 𝑓2(𝑥) =
𝐹𝐿

𝐸
(

2

𝑥1
+

2√2

𝑥2
+

2√2

𝑥3
+

2

𝑥4
) (3.8) 

𝐹

𝜎
≤ 𝑥1 ≤ 3 ×

𝐹

𝜎
 

√2 × 𝐹

𝜎
≤ 𝑥2 ≤ 3 ×

𝐹

𝜎
 

√2 × 𝐹

𝜎
≤ 𝑥3 ≤ 3 ×

𝐹

𝜎
 

𝐹

𝜎
≤ 𝑥4 ≤ 3 ×

𝐹

𝜎
 

(3.9) 

where F=10 KN, E=2×106 KN/cm2 is the Young's modulus, L=200 cm, =10 KN/cm3 

D 
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3.8.5 Optimal Power Flow  

The OPF refers to the optimization process of objective function by adjusting the 

parameters of various control devices in the electrical power system, with respect to 

the constraints of network and equipment (Bouchekara, 2014; Chen, Yi, Zhang, & Lei, 

2018; Ebeed, Kamel, & Jurado, 2018; Kahourzade, Mahmoudi, & Mokhlis, 2015). The 

OPF is a highly nonlinear, non-convex and complex problem with several constraints 

and decision variables. 

 

In general, flow optimization is divided into two types: active and reactive power 

optimization. The objective function of active power optimization is the generating 

cost or power consumption, and the objective function of reactive power optimization 

is the transmission active power losses of the entire network. In this study, the 

objective functions of optimal power flow are formulated as shown in Equation (3.9). 

cosmin ( ( ), ( ))
. . ( , ) 0

( , ) 0

t lossF f X f X
s t g x u

h x u


=  

(3.10) 

where fcost(x,u) and floss(x,u) are the objective functions to be optimized, which includes 

minimizing the operating cost of generators (minimize generation fuel cost) and 

transmission active power loss. The mathematical model is formulated as in Equation 

(3.11). 

( )2
cos

1
( )

NG

t i i Gi i Gi
i

f X a b P c P
=

= + +
 

(3.11) 

where fcost(X) is the total fuel cost function ($/h). ai, bi, ci are the cost coefficients of 

generator i and NG is the number of generators. X = [PG, VG, Ttap, QC] is the control 
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variables. PG = [PG1, PG2, … PG(NG-1)] is the active power output of the generators. VG 

= [VG1, VG2, …. VG(NG)] and Ttap = [Ttrans1, Ttrans1, …, Ttrans1(NT)] are the generator voltage 

and the tap-settings of transformers, respectively. whereas NT is the number of tap 

transformers. Qc = [QC1, QC2, …, QC(NC)] is the reactive power compensation power. 

NC is the number of compensator units. 

 

Minimizing the transmission active power loss of the system is to determine the active 

power output of each unit under various constraints. This can be achieved by adjusting 

the generator output and configuring reactive power compensation equipment. In this 

case, the voltage level can be effectively improved, and the system loss reduced. 

Therefore, the active power loss of the whole system can be expressed as shown in 

Equation (3.12). 

1

NB NB

loss Gi Di
i i

P P P
=

= − 
 

(3.12) 

where PD is real load demand and NB denotes the total number of busses. 

The control variable u, in Equation (3.10), can be expressed as in Equation (3.13)  

2 3 1 2 1 2 1 2 ( )[ , ,... , , ,..., , , ,... , , ,..., ]G G Gm G G Gm NT C C C NCu P P P U U U T T T Q Q Q=  (3.13) 

where PG is the active output of other generators except the balancer node. UG is the 

terminal voltage at the bus connected to the generator. T is the adjustable transformer 

ratio. QC is reactive power compensation. 

 

For the system, to operate in a safe and stable environment, the parameters of the 

system must also meet certain constraints, including inequality, g and equality, h 
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constraints. The equality constraint is the power flow equation of the power system, as 

formulated in Equations (3.14 and 3.15), respectively. 

Real power constraints 

[ cos( ) sin( )] 0
NB

Gi Di j ij ij ij ij
j i

P P V G B 
=

− − + =
 

(3.14) 

Reactive power constraints  

[ ( ) cos( )] 0
NB

Gi Di i j ij ij ij ij
j i

Q Q V V G sin B 
=

− − − =
 

(3.15) 

where Gij and Bij are the conductance and susceptance, respectively, between bus i and 

bus j. θij = θi - θj is the phase angle between θi and θj. The inequality constraints refer 

to controlling the adjustable variables to change within a certain allowable range to 

meet the safety of power system operation. The main inequality constraints include 

constraints on power and voltage, as described in Equations (3.16-3.21). 

Generator voltage limits  

min max , 1, ,Gi Gi GiV V V i NG  =  

(3.16) 
 

Active power generated at slack bus 

min max , 1, ,Gi Gi GiP P P i NG  =  
(3.17) 

Generated reactive power 

min max , 1, ,Gi Gi GiQ Q Q i NG  =  
(3.18) 

Transformer constraints 

min max , 1, ,i i iT T T i NT  =  
(3.19) 

Shunt VAR compensator constraints 

min max , 1, ,Ci Ci CiQ Q Q i NC  =  
(3.20) 
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Load bus voltage 

min max , 1, ,Li Li LiV V V i NL  =  
(3.21) 

To verify, the effectiveness of the proposed 2S-ENDSHHMO algorithm is used to 

solve the multi-objective OPF problem, and the obtained results are compared with 

other algorithms. The OPF calculation is performed for the IEEE 30-node system.  

 

IEEE 30-bus system  

The IEEE30 system consists of 30 buses, 41 transmission lines and four automatically 

controlled tap transformers, namely, 6–9, 6–10, 4–12 and 27–28. The 30 busses consist 

of six generator buses and 24 load buses. The generator buses, consist of thermal 

generators, which are connected at bus numbers 1, 2, 5, 8, 11 and 13. The 24 load 

buses have 283.4 MW demand power (Chakraborty & Chakrabarti, 2015; Hoque, 

Hoque, & Sinha, 2019). The one-line diagram of the IEEE 30-bus system is shown in 

Figure 3.9.  
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Figure 3.9. IEEE 30-bus system (Adapted from Christie (1993)) 

Bus data: 
Bus 
no 

Bus 
code 

V In 
p.u 

<δ 
radian 

Pa 
MW 

Qd 
MVar 

Pg 
MW 

Qg 
MVar 

Qmin 
MVar 

Qmax 
MVar 

Q 
MVar 

1 1 1.06 0 0 0 0 0 0 0 0 
2 2 1.043 0 21.7 12.7 40 0 –40 50 0 
3 0 1 0 2.4 1.2 0 0 0 0 0 0 
4 0 1.06 0 7.6 1.6 0 0 0 0 0 
5 2 1.01 0 94.2 19 0 0 –40 40 0 
6 0 1 0 0 0 0 0 0 0 0 
7 0 1 0 22.8 10.9 0 0 0 0 0 
8 2 1.01 0 30 30 0 0 –10 60 0 
9 0 1 0 0 0 0 0 0 0 0 
10 0 1 0 5.8 2 0 0 –6 24 19 
11 2 1.082 0 0 0 0 0 0 0 0 
12 0 1 0 11.2 7.5 0 0 0 0 0 
13 2 1.071 0 0 0 0 0 –6 24 0 



 

 114 

14 0 1 0 6.2 1.6 0 0 0 0 0 
15 0 1 0 8.2 2.5 0 0 0 0 0 
16 0 1 0 3.5 1.8 0 0 0 0 0 
17 0 1 0 9 5.8 0 0 0 0 0 
18 0 1 0 3.2 0.9 0 0 0 0 0 
19 0 1 0 9.5 3.4 0 0 0 0 0 
20 0 1 0 2.2 0.7 0 0 0 0 0 
21 0 1 0 17.5 11.2 0 0 0 0 0 
22 0 1 0 0 0 0 0 0 0 0 
23 0 1 0 3.2 1.6 0 0 0 0 0 
24 0 1 0 8.7 6.7 0 0 0 0 4.3 
25 0 1 0 0 0 0 0 0 0 0 
26 0 1 0 3.5 2.3 0 0 0 0 0 
27 0 1 0 0 0 0 0 0 0 0 
28 0 1 0 0 0 0 0 0 0 0 
29 0 1 0 2.4 0.9 0 0 0 0 0 
30 0 1 0 10.6 1.9 0 0 0 0 0 

Bus code: 1=Slack bus, 2= Generator bus (PV) and 0= Load bus (PQ)  
Base MVA = 100. 

 

Line data: 

Bus no Bus no Resistance 
(R.-in p.u) 

Reactance 
(X-in p.u) 

Line charging 
admittance 

(1/2 B) 
Transformer tapping 

1 2 0.0192 0.0575 0.0264 1 
1 3 0.0452 0.1852 0.0204 1 
2 4 0.057 0.1737 0.0l84 1 
3 4 0.0132 0.0379 0.0042 1 
2 5 0.0472 0.1983 0.0209 1 
2 6 0.0581 0.1763 0.0187 1 
4 6 0.0119 0.0414 0.0045 1 
5 7 0.046 0.116 0.0102 1 
6 7 0.0267 0.082 0.0085 1 
6 8 0.012 0.042 0.0045 1 
6 9 0 0.208 0 0.987 
6 10 0 0.556 0 0.969 
9 11 0 0.208 0 1 
9 10 0 0.11 0 1 
4 12 0 0.256 0 0.932 
12 13 0 0.14 0 1 
12 14 0.1231 0.2559 0 1 
12 15 0.0662 0.1304 0 1 
12 16 0.0945 0.1987 0 1 
14 15 0.221 0.1997 0 1 
16 17 0.0824 0.1923 0 1 
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Line data: 

Bus no Bus no Resistance 
(R.-in p.u) 

Reactance 
(X-in p.u) 

Line charging 
admittance 

(1/2 B) 
Transformer tapping 

15 18 0.1073 0.2185 0 1 
18 19 0.0639 0.1292 0 1 
19 20 0.034 0.068 0 1 
10 20 0.0936 0.209 0 1 
10 17 0.0324 0.0845 0 1 
10 21 0.0348 0.0749 0 1 
10 22 0.0727 0.1499 0 1 
21 22 0.0116 0.0236 0 1 
15 23 0.1 0.202 0 1 
22 24 0.115 0.179 0 1 
23 24 0.132 0.27 0 1 
24 25 0.1885 0.3292 0 1 
25 26 0.2544 0.38 0 1 
25 27 0.1093 0.2087 0 1 
28 27 0 0.396 0 0.968 
26 29 0.2198 0.4153 0 1 
27 30 0.3202 0.6027 0 1 
29 30 0.2399 0.4533 0 1 
8 28 0.0636 0.2 0.0214 1 
6 28 0.0169 0.0599 0.065 1 

3.9 Performance Measure 

In this section, the performance measures are presented to evaluate the performance of 

the 2S-ENDSHHMO algorithm. Measuring the performance of MOO is more complex 

than in the case of single objective optimization. In general, the main goal of all multi-

objective metaheuristics involves minimizing the distance from the set of dominant 

solutions found to the true Pareto front and obtaining good diversity of the generated 

solutions (H. Chen et al., 2018; Dai & Lei, 2019; Li et al., 2018a; Monsef, 

Naghashzadegan, Jamali, & Farmani, 2019; Wang, Liu, Ma, Wong, & Li, 2019; Zou 

et al., 2019).  
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It should be noted that convergence and diversity can be conflicting goals, so using 

only one of the metrics does not fully evaluate the performance of an algorithm (Deb, 

2001).  Therefore, in this study, different performance metrics were utilized to measure 

the convergence and diversity of the obtained solutions. To statically measure the 

performance of multi-objective metaheuristics, statistical measures are normally used. 

The performance metrics and statistical measures will be discussed in detail in the next 

sections. 

3.9.1 Performance Metrics 

In this work, R-metrics proposed by Li et al. (2018b) were used to assess the 

performance of a 2S-ENDSHHMO algorithm.  The general idea of this metric is to 

pre-process the preferred solutions according to a multi-criterion decision making 

approach before using a regular performance metric to evaluate the obtained solutions 

(Li et al., 2018b). In this study, the regular metrics that were utilized are the IGD and 

HV. Figure 3.10 shows the high level flowchart of the R-Metric calculation.  

 
Figure 3.10. Flowchart of R-metric calculation (Adapted from Li et al. (2018b)) 

In Figure 3.10, five steps are performed for the calculation of the R-metric. The first 

step (Pre-screening) is to remove all dominated and duplicated solutions and keep only 

the non-dominated. The second step (Pivot point Identification) is responsible for 

identifying a representative point that reflects the overall satisfaction of the solutions 

in relation to the reference point provided by the DM, for which the closest solution is 

 Prescreening Pivot point 
identification Trimming Solution 

transfer
R-Metric 

calculation
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used in relation to the reference point. In the third step (Trimming), the points outside 

the region of interest are eliminated to have a fair comparison between different sets. 

In other words, only solutions located in the approximate region of interest are valid 

for performance evaluation. The fourth stage (Solution transfer) is the core of the R-

metric, where the cut points are transferred to a virtual position. Finally, the last step 

(Calculate R-metric) is to apply the regular a performance metric (the IGD and HV in 

this study) to the solutions processed by the R-metric.  

 

The HV (Zitzler & Thiele, 1999) is used when the optimal Pareto solutions are 

unknown, where the larger value of HV indicates a better result. Mathematically, the 

HV is described by equation (3.22).  

The HV is denoted as the hyper-volume of a space that is dominated by a set of solution 

A and is bounded by a reference point, 𝑟 = (𝑟1, 𝑟2, 𝑟3, … 𝑟𝑘) ∈ 𝑅𝑘. (S) is the Lebesgue 

measure of a set S. [𝑓1(𝑎), 𝑟1] × [𝑓2(𝑎), 𝑟2] × … × [𝑓𝑘(𝑎), 𝑟𝑘]) includes all points that 

are dominated by the point a but not dominated by the reference point (Brockhoff, 

Friedrich, & Neumann, 2008). Figure 3.11 illustrates the HV metric. 

 

 

HV(A) = (∪𝑎∈𝐴 [𝑓1(𝑎), 𝑟1] × [𝑓2(𝑎), 𝑟2] × … × [𝑓𝑘(𝑎), 𝑟𝑘]) (3.22) 
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Figure 3.11. Hyper-volume indicator for a set of non-dominated solutions with 
respect to the reference point (Adapted from Ayari, Nikdast, Hafnaoui, Beltrame, and 
Nicolescu (2017)) 

The inverted generational distance (Coello & Cortés, 2005) measures the average 

distance between the solutions of the set Pareto front (Pareto Front approximation) 

obtained by the algorithm and the point closest to each one in the True Pareto front. 

The IGD allows to observe if the Pareto border converges to the Pareto optimal set. 

Equation (3.23) defines the IGD metric. 

𝐼𝐺𝐷 =
√∑ 𝑑𝑖

2𝑛
𝑖=1

𝑝

𝑛
 

(3.23) 

where n is the number of solutions belonging to True Pareto front, p = 2 and 𝑑𝑖
2 is the 

minimum Euclidean distance between point i and the nearest point of the Pareto front. 

A smaller value for this indicator means that Approximate Pareto front is a better 

approximation of True Pareto front, IGD=0 means that, all the generated elements are 

in the True Pareto front of the problem (Coello & Cortés, 2005).  
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The epsilon metric (Zitzler et al., 2003) is one of the most-used metrics in measuring 

the performance of MOO algorithm. It determines which approximation set is better 

than another  (Riquelme et al., 2015). This epsilon metric compares two sets of non-

dominated solutions A and B by calculating the lowest translation value  of A in such 

a way that B is fully dominated by A in at least one solution, as shown in Equation 

(3.24). 

(𝐴, 𝐵) = min{R |bBa𝐴: a ≻ 𝑏} (3.24) 

where A is approximated Pareto front and True Pareto front. The smaller value for this 

metric indicates better approximation for the Pareto front of the problem. 

3.9.2 Statistical Measure 

For fair comparison, the statistical measures for 10 independent runs is calculated. 

These measures include, the mean, standard deviation (SD), best and worst values of 

the performance metrics. These measures were calculated for the 2S-ENDSHHMO 

and the other algorithms used in the comparison, namely, HHMO, MOGWO, 

MOGOA, MODA, MOSSA, NSGSA, NSABC and R-NSGA-II. To make the 

conclusions statistically reasonable and reliable, the Wilcoxon rank sum test 

(Wilcoxon, 1992) is used to check that the results obtained by the 2S-ENDSHHMO 

algorithm and other comparison algorithms have a significant difference at the 

significance level, . If null hypothesis is rejected, when p-value < , this indicates 

that a given algorithm outperforms the other one with the associated p-value  (Derrac, 

García, Molina, & Herrera, 2011). 
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3.9.3 Comparison with Other Algorithms    

The performance of a 2S-ENDSHHMO algorithm were determined by comparing it 

with other multi-objective SI-based metaheuristics, namely, HHMO, MOGWO, 

MOGOA, MODA, MOSSA, NSGSA, NSABC and R-NSGA-II algorithms, in solving 

the same MOPs presented in Section 3.7. These algorithms were chosen because they 

are state-of-the-art algorithms for dealing with MOPs. The performance metrics 

presented in Section 3.9.1, are utilized in this comparison, under the same common 

parameters, namely, population size, dimension and maximum number of iterations.  

 

The 2S-ENDSHHMO algorithm and the other algorithms were implemented using 

MATLAB v.2018b, which is a technical computing platform, produced by Mathworks 

Inc. The platform is used for high-performance numeric computation and 

visualization, where it integrates numerical analysis, matrix calculation, signal 

processing and graphics processes in one environment.  

 

In these experiments, the True Pareto front for each test problem is used as the 

reference set. For HHMO and 2S-ENDSHHMO algorithms, a set of reference points 

are used as an inspiration level determined by the DM. For HV calculation, the 

reference points are set as the nadir vectors taken from the reference set of each test 

problems (Li et al., 2018b). 
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3.10 Summary 

The experimental method has been adopted in conducting this research to achieve the 

research objectives. The main goal of this study is to develop a 2S-ENDSHHMO 

algorithm with effective exploration and exploitation to improve the convergence 

toward the True Pareto front. To achieve this goal, the research framework started by 

determining the main limitations of the HHMO algorithm. To overcome these 

limitations, several improvements were proposed including proposing an improved 

population update strategy in Stage 1. Then, in Stage 2, an improved parameter 

adjustment strategy was proposed. This was followed by Stage 3, the where two-step 

initial population generator method was proposed, with the aim of more improvement 

in the search ability of the HHMO algorithm. The methods and strategies, proposed in 

Stages 1, 2 and 3, were integrated with other processes to design the 2S-ENDSHHMO 

algorithm in Stage 4. The 2S-ENDSHHMO was implemented using the 

MATLAB2018b platform. To check the effectiveness of the solutions generated by 

the 2S-ENDSHHMO algorithm, the ZDT, DTLZ and structural design engineering 

MOPs were used as a test basis, and the results of these algorithms compared with 

those of the multi-objective SI-based MHs, namely HHMO, MOGWO, MOGOA, 

MODA, MOSSA, NSGSA, NSABC and R-NSGA-II. The performance of the 

algorithms was evaluated in terms of convergence toward the True Pareto front and 

diversity of the non-dominated solutions obtained by the algorithms. This was 

achieved by using two well-known performance metrics, namely epsilon, IGD and HV 

integrated with R-metrics approach. 
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CHAPTER FOUR 

DEVELOPMENT OF TWO-STEP ENHANCED HARRIS’S HAWK 

MULTI-OBJECTIVE OPTIMIZER 

4.1 Introduction 

This chapter presents the development steps of the proposed enhanced Harris’s hawk 

MOO algorithm. The HHMO algorithm is improved by integrating several methods 

and strategies. In this context, this chapter is organized as follows: Section 4.2 presents 

the original HHMO algorithm which has been used as the base for the proposed 

algorithm. This is followed by introducing the two-step enhanced non-dominated 

sorting Harris’s hawk multi-objective optimizer (2S-ENDSHHMO) algorithm in 

Section 4.3. Section 4.4 describes the population update strategy. Section 4.5 presents 

the parameter adjustment strategy. Section 4.6 describes the proposed two-step initial 

population generator method. and the summary is presented in Section 4.7. 

4.2 Harris’s Hawk Multi-Objective Optimizer Algorithm 

The HHMO algorithm (DeBruyne & Kaur, 2016) is a kind of SI-based optimization  

algorithm proposed by mimicking the social hierarchy and hunting behaviour of the 

Harris’s hawk predator in nature (Bednarz, 1988). In the social hierarchy of the 

Harris’s hawk, there are four social ranks, from high to low, alpha (α), beta (β), delta 

(δ) and gamma () hawks. The hunting process is divided into two main stages, namely 

encircling and attacking, which closely resemble the encircling and attacking 

behaviour of grey wolves (DeBruyne & Kaur, 2016).  

 



 

 123 

In the HHMO algorithm there are two types of hawks, namely lookouts and ground 

hawks. The former represents the reference points and the latter represents the 

potential solutions in the search space (search agents). The population of hawks is 

divided into sub-groups according to the number of reference points. In each group, 

the leaders Xα, Xβ and Xδ are the hawks that have the three shortest distances to a 

reference point and they represent the first best three non-dominated solutions, 

respectively. The remaining hawks are represented by X. The main steps of HHMO 

algorithm are illustrated in Figure 4.1. 

 
Figure 4.1. Flowchart of HHMO algorithm (Adapted from DeBruyne and Kaur 
(2016))  
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The HHMO algorithm starts by defining reference points for the sub-group and their 

search radius r. The population of hawks in each sub-group is initialized using the 

RNG method. The position of each hawk is evaluated by using multiple objective 

functions, 𝐹(𝑋𝑖) = [𝑓1(𝑋𝑖), 𝑓2(𝑋𝑖), … , 𝑓𝑀(𝑋𝑖)]. In the HHMO algorithm, a 

scalarization method, such as the weighted sum and -constraint methods has been 

used to calculate the fitness values of each hawk (DeBruyne, 2018). Next, the 

Euclidean distances to the reference points are calculated for all 𝑓(𝑋). During the 

optimization process, the position of the hawks is updated based on the position of 

leaders Xα, Xβ and Xδ. For each hawk, the objective functions and fitness values are 

calculated at each iteration. The best solutions are selected using the (µ+λ)-ES 

technique (DeBruyne & Kaur, 2016; DeBruyne, 2018) to be used in the next 

generation. The new leaders, Xα, Xβ and Xδ, are selected for each sub-group and the 

hawks are relocated based on their distances to the reference points. These processes 

are iterated until they meet the termination condition.  According to DeBruyne (2018) 

the main advantage of the HHMO algorithm consists of dividing the populations of 

hawks into sub-groups, which helps in improving the exploration and decreases the 

computational time and the complexity of the algorithm (DeBruyne, 2018). However, 

the performance of the HHMO algorithm can be improved further. This will be 

discussed in the next sections. 
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4.3 Two-step Enhanced Non-dominated Sorting Harris’s Hawk Multi-objective 

Optimizer 

The 2S-ENDSHHMO algorithm is developed based on the initial HHMO algorithm 

(DeBruyne & Kaur, 2016) with several improvements  as follows: 

a) Improved population update strategy of hawks. 

b) Improved convergence parameter adjustment strategy. 

c) Improved initial population generator method. 

The 2S-ENDSHHMO algorithm is as depicted in Figure 4.2. The highlighted parts are 

the enhancement of HHMO algorithm.   

 
Figure 4.2. Main steps of 2S-ENDSHHMO algorithm 
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The enhancements are described in the following sections.  

4.4 Population Update Strategy  

In any optimization algorithm, the population update strategy can be considered as the 

core of the algorithm, which is used to produce new solutions. This section discusses 

the population updated in the HHMO algorithm and introduces the proposed strategy.  

4.4.1 Population Update Strategy in HHMO  

In the HHMO algorithm (DeBruyne & Kaur, 2016 ), the position of hawks represents 

candidate solutions in the decision space. To simulate the collective hunting behaviour 

of the Harris’s hawks, it is assumed that Xα, Xβ and Xδ hawks have a better 

understanding of the potential position of the prey. Therefore, during each iteration, 

their positions are saved and used to comprehensively determine the direction of the 

X hawks and their positions are updated to move toward the prey. The behaviour of 

the group approaching and surrounding the prey is formulated as shown in Equation 

(4.1) (DeBruyne & Kaur, 2016 ). 

𝐷⃗⃗⃗ is the distance between the hawk and the prey, which is calculated for each group; t 

is the number of current iterations, and Xp = (xp1, xp2;…, xpd) is the position vector of 

the prey, while X = ( x1, x2, · · · , xd) represents the position vector of the hawks in d 

dimension. 𝐴 and 𝐶 are adjustment factors, calculated for each group and formulated 

as shown in Equation (4.3) and (4.4) (DeBruyne & Kaur, 2016 ), respectively. 

𝑋⃗(𝑡 + 1) = 𝑋⃗𝑝(𝑡) − 𝐴 ∗ 𝐷⃗⃗⃗ (4.1) 
𝐷⃗⃗⃗ = 𝐶 ∗ 𝑋⃗𝑝(𝑡) − 𝑋⃗(𝑡) (4.2) 
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where r1 and r2 are random vectors in interval [0,1]. a is the control parameter, in the 

range [0,2] and decreases linearly during the optimization process, with the number of 

iterations t. The average position of Xα, Xβ and Xδ hawks is used to calculate a new 

position of hawks, for each group, as shown in Equations (4.5) (DeBruyne & Kaur, 

2016).  

 

According to the Equations (4.5), the HHMO algorithm only considers the position 

information of the three leaders, Xα, Xβ and Xδ, and does not consider the positions of 

X in calculating the new position of hawks (DeBruyne & Kaur, 2016; Long et al., 

2019). This leads to a loss of population diversity due to high selection pressure in 

which the algorithm depends only on the three best solutions to guide the search 

process (Al-Betar, Awadallah, Faris, Aljarah, & Hammouri, 2018). The high selection 

pressure and loss of population diversity leads to poor convergence toward the Pareto 

front (Hussain & Muhammad, 2019).  

4.4.2 Proposed population update strategy 

This section presents the proposed population update strategy integrated with the 

HHMO algorithm to produce a non-dominated sorting Harris’s hawk multi-objective 

𝐴 = 2𝑎⃗ ∗ 𝑟1 − 𝑎⃗ (4.3) 
𝐶 = 2 ∗ 𝑟2 (4.4) 

𝑋⃗(𝑡 + 1) =
(𝑋⃗𝛼(𝑡) + 𝑋⃗𝛽(𝑡) + 𝑋⃗𝛿(𝑡))

3
 

𝑋⃗𝛼(𝑡 + 1) = 𝑋⃗𝛼(𝑡) − 𝐴𝛼 ∗ 𝐷⃗⃗⃗𝛼  

𝑋⃗𝛽(𝑡 + 1) = 𝑋⃗𝛽(𝑡) − 𝐴𝛼 ∗ 𝐷⃗⃗⃗𝛽  

𝑋⃗𝛿(𝑡 + 1) = 𝑋⃗𝛿(𝑡) − 𝐴𝛼 ∗ 𝐷⃗⃗⃗𝛿 

(4.5) 
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optimization (NDSHHMO) algorithm. The proposed population update strategy of 

hawks consists of two main stages. The first stage is to calculate the new position of 

hawks by using a new movement strategy and the second stage is to select the hawks 

to be used in the next generation. Figure 4.3 shows the stages of the proposed 

population update strategy.  

 
Figure 4.3. Proposed population update strategy 

As shown in Figure 4.3 the NDSHHMO algorithm starts by initializing the population 

of hawks using the random number generator method. Each hawk is evaluated using 
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The new proposed movement strategy is developed based on the hunting behaviour 

employed by Harris’s hawks in nature. The Harris’s hawk attacks are quite 

coordinated. According to (Bednarz, 1988), who observed Harris's hawks over a 

period of years, the hunting behaviour of Harris’s hawks involves different tactics. 

These tactics are often intermixed and intensity varies in an unpredictable sequence, 

apparently dependent on the changing circumstances that occur during pursuit of prey. 

One of these tactics is called the flush-and-ambush (Bednarz, 1988). This tactic is 

employed when a prey finds temporary refuge or cover, as illustrated in Figure 4.4. 

 
Figure 4.4. Flush-and-ambush tactic: the prey finds temporary refuge or cover 

In the flush-and-ambush tactic, the hawks are alert in watching the location where the 

prey disappeared; meanwhile, one or possibly two hawks attempt to penetrate the 
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cover. Then, when the prey is flushed, one or more of the hawks pounce and kill the 

prey (Bednarz, 1988). Based on the hunting tactics of hawks, the proposed movement 

strategy is formulated as shown in Equation (4.6). 

where p is a random value in interval [0,1]. In the proposed movement strategy, the 

new position, 𝑋⃗(𝑡 + 1) is calculated based on the random-proportional rule. This rule 

is an action choice rule typically used in Q-learning (Dorigo & Gambardella, 1996).  

With this rule, the action is chosen randomly with a probability of 50%. This means 

that the old and proposed position update strategy have exactly the same probability 

to be chosen to calculate new position of hawks. The random-proportional rule, also 

has been used in other algorithms, such as the single objective whale (Mirjalili & 

Lewis, 2016) and Harris’s hawk (Heidari et al., 2019) optimization algorithms. Figure 

4.5 illustrates the proposed movement strategy. 

𝑋⃗(𝑡 + 1) = {

(𝑋⃗α(𝑡) + 𝑋⃗β(𝑡) + 𝑋⃗δ(𝑡))

3
       ;    if 𝑝 ≥ 0.5

   𝑋⃗FA                                               ;    otherwise

 (4.6) 
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Figure 4.5. Proposed flush-and-ambush movement strategy 
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If 𝑝 ≥ 0.5, this indicates that Xα, Xβ and Xδ hawks have spotted the location of prey. In 

this case, Equations (4.5) in the original update strategy has been be employed to 

update the positions of hawks according to the positions of leaders. Otherwise, if the 

pray escapes away, the positions of hawks will be updated based on the proposed flush-

and-ambush movement strategy, which is represented by 𝑋⃗FA value, as shown in 

Equation (4.7). 

The value of 𝑋⃗FA is proportional to the value of |𝐴| where |  | is the absolute value. In 
the proposed flush-and-ambush movement strategy, the same approach based on the 
variation of the A vector can be utilized to search for a prey (Mirjalili et al., 2014).  
In this approach, the hawks move forward and backward from the prey based on the 
value of A, as shown in Figure 4.6.  

Figure 4.6. Direction of hawk based on the value of A. If |𝐴| < 1, a hawk moves 
toward a prey; If |𝐴| > 1, a hawk moves far away from a prey position (Adapted 
from Mirjalili et al. (2014)). 

If |𝐴| ≥ 1, the hawks will explore the desert site looking for a potential prey 

(DeBruyne & Kaur, 2016). If |𝐴| < 1 forces the hawks to move towards the prey.  In 

the proposed flush-and-ambush movement strategy, Equation (4.7), if |𝐴| ≥ 1, this 

𝑋⃗FA(𝑡 + 1) = {
𝑋⃗𝑟(𝑡) − 𝐴 ∗ 𝐷⃗⃗⃗𝑟      ;    if |𝐴| ≥ 1

𝑋⃗𝛼(𝑡) − 𝐴 ∗ 𝐷⃗⃗⃗𝛼      ;   otherwise
 (4.7) 

|A|>1 

|A|<1 

Prey Harris’s hawk 
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indicates the prey has successfully escaped from the hawks and found a temporary 

cover (refer Figure 4.5). In this case, 𝑋⃗FA is calculated using a random hawk, 𝑋⃗𝑟, which 

is selected from the current population, represented by X hawks, to guide the search 

process. The random position of the hawk represents the exploration of different 

regions to find the location of the covered prey. If |𝐴| < 1, this represents penetrating 

the cover of the prey. In this case, the X hawk makes the final move to kill the prey. 

In other words, the position of the hawk is calculated according to the position of 𝑋⃗, 

in a group, which represents nearest Hawks to the prey position.  

 

The second stage of updating the population of hawks requires selecting the non-

dominated solution to be used in the next generation. To select the non-dominated 

solutions, the non-dominated sorting approach is used (Deb & Sundar, 2006). In this 

approach, the population of parent and offspring are combined to produce a population 

of size 2N. This population is sorted and classified according to the Pareto-dominance 

relation between the solutions, forming several front levels. Figure 4.7 illustrates the 

principle of non-dominated sorting. 
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Figure 4.7. Dividing a population into four levels of front (F1, F2, F3, F4) by the non-
dominated sorting approach (Adapted from Sadatsakkak, Ahmadi, Bayat, Pourkiaei, 
and Feidt (2015)) 

In Figure 4.7, the individuals that have the best quality in the population are considered 

as a first level of frontier, F1 and assigned the rank 1. Subsequently, these individuals 

are temporarily eliminated from the competition. The non-dominated individuals in 

the remaining population are selected to construct the second level of frontier, F2 and 

assigned the rank 2. These processes are repeated until there is no individual left. In 

this way, the population is divided into multiple non-dominated frontiers, each 

defining a specific quality level. Figure 4.8. shows the main steps of non-dominated 

sorting  approach (Deb et al., 2002a). 
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Figure 4.8. Concept of non-dominated sorting approach (Adapted from Deb et al. 
(2002a)) 

To perform non-dominated sorting, the two population parents, Pt and off-spring, Qt 

are combined into a single Rt population composed of 2N individuals. To select the 

best solutions, the elements of the Rt population are sorted and classified according to 

the Pareto dominance relation between the solutions, forming several front levels, 

namely F1, F2 and F3.  

 

The first front level, F1, corresponds to the non-dominated solutions of the entire 

population, the second, F2, to all non-dominated solutions, after the removal of the 

solutions from the first front, the third, F3, to non-dominated solutions after removing 

the first and second fronts, and so on until all solutions are sorted into several fronts.  
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In general, with non-dominated sorting-based algorithms, when making survival 

choices, if the number of solutions in F1 is less than the predefined population size, the 

rest will be selected from the next front, F2. If the total number of selected solutions 

exceeded the population size, N, the solutions of F1 will be moved to the next 

generation and the rest will be selected from F2 based on another quality criterion.   

 

Several studies have proved the effectiveness of the non-dominated sorting (Deb et al., 

2002a)with many MOO algorithms (Cai, Li, Fan, & Zhang, 2015; Chen et al., 2019; 

Deb et al., 2002a; Jangir & Jangir, 2018; Tian, Wang, Zhang, & Jin, 2017; Tian, Zhang, 

Cheng, & Jin, 2016; Zhou & Yao, 2017). The non-dominated sorting  approach helps 

in improving the convergence of the algorithm towards the true Pareto front, especially 

for dealing with complex MOPs with a large number of local PFs (Tian et al., 2017).  

 

In the non-dominated sorting approach (Deb et al., 2002a), the crowding distance is 

used to determine which individuals will survive for the next generation. The crowding 

distance value of a particular solution represents the average distance of its two 

neighbouring solutions. Solutions that are on the edge of the search space (extreme 

solutions) have only one neighbour, but they are the most diverse of the border, so they 

obtain high values and, consequently, are at the top of the order. The solutions with 

bigger crowding distance are preferred. However, in some cases, the crowding distance 

approach cannot be used to select appropriate solutions, which may affect the diversity 

of solutions. Figure 4.9 illustrates the limitation of the crowding distance approach.  
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Figure 4.9. Drawback of the crowding distance approach (Adapted from Vachhani et 
al. (2016)) 

In Figure 4.9, A, B, C, D, E and F represents non-dominated solutions in the Pareto 

front. The cuboids represents the crowding distance of all solutions except, the extreme 

solutions, namely F and A, which have an infinite crowding-distance (Deb, 2014). Five 

out of six solutions should be selected. To maintain population diversity, solution B 

should be selected with any one out of solution number D and E (Vachhani et al., 

2016). However, based on the concept of crowding distance, solutions D and E are 

selected instead of solution B because they have larger crowding distance values. In 

this case, the diversity of the selected solutions is not preserved and leads to poor 

population diversity (Vachhani et al., 2016).  

 

In this study, the crowding distance measure is replaced by an epsilon-clearing (-

clearing) strategy, as suggested by Deb and Sundar (2006). This strategy is used as a 

second quality criterion to select between individuals that belong to the same front 

(have the same rank). This strategy divides the objective space into grids of size, . 
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Solutions with a difference less than  in the i-th objective are not allowed to be non-

dominated with each other. This helps in preserving diversity among solutions of the 

same front. If there are more than enough points to complement the new population, 

the Euclidean distance is used to select the individual with minimum distance to the 

reference points. The population update strategy of hawks aims to improve the 

algorithm in terms of convergence toward the true Pareto front and maintain 

population diversity. It is worth mentioning that the value of  in the -clearing strategy 

allows the DM to control the density of the Approximated Pareto front. by choosing an 

appropriate value (Laumanns, Thiele, Deb, & Zitzler, 2002).  

 

In DeBruyne and Kaur (2016); DeBruyne (2018), to enhance the performance of the 

HHMO algorithm, the authors integrated the selection of the best (µ+λ)-ES 

(Rechenberg, 1989; Schwefel, 1993), with HHMO. In this strategy, the parent and 

offspring populations are combined, then the best individuals are selected to produce 

the next generation. The best hawks are selected based on the fitness value, which is 

calculated using the weighted sum or -constraint method. However, these methods 

have limitations, as discussed in chapter two. To overcome these limitations, another 

method is required to select non-dominated solutions and improve the convergence 

toward the true Pareto front. Compared to the position update strategy in the HHMO 

algorithm, the proposed position update strategy takes in consideration the positions 

of other hawks, X, in updating the position of hawks in the search space. This aims to 

promote sharing the information between the hawks in the population. Sharing the 

information preserves the population diversity, prevent the HHMO algorithm from 
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trapping in local optima and improve the convergence toward the Pareto front (Allawi 

et al., 2019; Zhang, Liu, Yang, & Dai, 2016). 

 

In the NDSHHMO, the calculation of fitness value by using the scalarization method 

has been eliminated. Instead, the normalized Euclidean distance (Deb & Sundar, 2006) 

from each solution in the objective space to the reference points is calculated and used 

as a fitness value for each hawk. The main advantages of this process are reducing the 

number of parameters, represented by the  value in the -constraint method and the 

weight vector in the weighted sum method, which significantly affects the performance 

of the algorithm. Inappropriate selection of these parameters may lead to poor 

convergence toward the True Pareto front. To produce the next generation of hawks, 

first, the new position of hawks is updated using the proposed movement strategy. 

Then, these hawks are evaluated using the objective function. This is followed by 

performing the non-dominated sorting approach to select the best hawks that will be 

moved to the next generation.  

4.5 Parameter Adjustment Strategy 

The parameter of an algorithm plays an important role in controlling its performance. 

According to Eiben et al. (2007), parameter setting/configuration directly affects the 

quality of the final solution and it is necessary to know the most promising 

configuration that should be used. The convergence parameter, a, affects hawks in the 

process of updating their position. Therefore, in this study, an improved parameter 
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adjustment strategy is proposed to improve the performance of the HHMO algorithm. 

This algorithm is called enhanced HHMO (EHHMO). 

4.5.1 Parameter Adjustment Strategy in HHMO 

According to Equation (4.3), the control parameter a is mainly used to generate the 

coefficient vector, A which, in turn, affects the exploration and exploitation of the 

algorithm. If |𝐴| > 1, the hawks group will expand the encirclement to explore the 

search space for a more promising region; when |𝐴| < 1, the hawks will narrow the 

search range in a promising region to find the best non-dominated solutions (refer to 

Section 4.4) (Mirjalili et al., 2014). Therefore, the global exploration and local 

exploitation ability of the HHMO algorithm depends to a large extent on the value of 

convergence parameter a. The adjustment strategy of the convergence parameter a is 

as shown in Equation (4.8) (DeBruyne & Kaur, 2016). 

where t current iteration and the value of 𝑡/𝑀𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 increases on interval [0,1]. 

In general, in metaheuristics, the optimization process starts by exploring the search 

space, to find a promising region. Then, in the later stage of optimization, the algorithm 

should be focused more on a particular region to find the best set of solutions. In the 

HHMO, according to the adjustment strategy of convergence parameter a in Equation 

(4.8), the first half of the iteration is allocated for the global search to find a promising 

region followed by local search within a promising region in the second half. This 

strategy overlooks the state of search space and the right balance between exploration 

and exploitation (Yan et al., 2019), which leads to a loss of population diversity and 

𝑎 = 2 − 𝑡(2/𝑀𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛) (4.8) 
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poor approximation for the Pareto front (Barbosa & Senne, 2017; Huang et al., 2019; 

Yan et al., 2019; X.-S. Yang et al., 2019).  

4.5.2 Improved Parameter Adjustment Strategy  

The balanced trade-off between the exploration and exploitation processes is important 

to achieve an effective performance for the EHHMO algorithm. The balanced trade-

off does not mean a 50:50 split (Hussain et al., 2019). According to X. S. Yang et al. 

(2014a), an effective optimization algorithm consists of balanced trade-off with a 

global search, which is often slow, and a fast local search. In general, in solving a 

complex optimization problem an optimization algorithm is required to perform more 

exploitation to find the global optimal solution. For example, solving a multimodal 

problem, requires more exploration than solving a unimodal problem (Črepinšek, Liu, 

& Mernik, 2013). Therefore, since a MOP is more complex than a SOP, in MOO, the 

requirement for the ability to explore the search space by an algorithm is high (Oliva 

& Elaziz, 2020). In this context, the proposed parameter adjustment strategy is 

developed to give more chance for the EHHMO algorithm to explore the search space 

in the early stage of the optimization process followed by fast exploitation in the later 

stage.  

 

In the proposed parameter adjustment strategy, the value of the convergence parameter 

a is adjusted by adaptively controlling the decremented steps of the convergence 

parameter a. Several studies have demonstrated the feasibility of the adaptive 

adjustment strategy of control parameters in improving the performance of SI-based 
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optimization  algorithms (Amoshahy, Shamsi, & Sedaaghi, 2016; Liu, Lu, Cheng, & 

Shi, 2019; Parpinelli et al., 2019; Song, Liu, & Cheng, 2019; Wang, 2015). Inspired 

by these studies, in this thesis, an adaptive adjustment strategy is proposed to control 

the parameter a. Equation (4.9) shows the proposed parameter adjustment strategy of 

the convergence parameter a. 

where the diversity factor (DF) is calculated based on the pure diversity (PD) method 

(Wang, Jin, & Yao, 2016). This method was developed based on the dissimilarity 

measure represented by Lp-norm-based distance, where p=0.1, as suggested in the 

paper (Wang et al., 2016). The main advantages of the PD method is parameter-free 

and does not require a reference set to calculate the diversity of solutions (Wang et al., 

2016). In Equation (4.10), the value of DF is adaptively adjusted based on the diversity 

of the population in the current iteration, t and 𝑀𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 represent the total 

number of iterations. Score represents the diversity value calculated by using the PD 

method. The input of PD is f(X), which represents the objective values of the current 

population. During the iterative search process, the value of parameter a decreases 

based on the DF value, as shown in Figure 4.10 which describes the difference between 

the original and improved adjustment strategies.  

𝑎 = 2 − 2 (
𝑡

𝑀𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
)

𝐷𝐹

 (4.9) 

𝐷𝐹 =
1

√𝑆𝑐𝑜𝑟𝑒
+ 2 

𝑆𝑐𝑜𝑟𝑒 = 𝑃𝐷(𝑓(𝑋)); 
(4.10) 
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Figure 4.10. Original and proposed improved parameter adjustment strategies.   

Difference between original and proposed improved parameter adjustment strategies:  

The dashed line and continuous line in Figure 4.10 represent the fluctuations of 

convergence parameter a value with number of iterations in the original and proposed 

adjustment strategy, respectively. In the original parameter adjustment strategy, the 

first half of the iterations are allocated for the global search to find a promising region 

followed by local search within a promising region in the second half. In other words, 

exploration and exploitation perform equaly with an increasing number of iterations. 

However, the balance between exploration and explotation does not imply that the 

exploration and exploitation processes ane equally performed (Hussain et al., 2019). 

Therefore, this strategy overlooks the balanced trade-off between the exploration and 

exploitation, which leads to a loss of population diversity and poor approximation for 
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the Pareto front (Barbosa & Senne, 2017; Huang et al., 2019; Yan et al., 2019; X.-S. 

Yang et al., 2019).  

 

On the other hand, the proposed parameter adjustment strategy of the convergence 

parameter a is developed to gives more chance to explore the search space in the early 

stage of the optimization process. In the later stage, the value of convergence 

parameter a decreases rapidly to perform the exploitation process. This aims to 

maintain population diversity and avoid being trapped in local optima, which leads to 

premature convergence. During the optimization process of the algorithm, the value of 

A changes continuously with the change of the convergence parameter a. Figure 4.11 

shows the difference between the fluctuations of the A value obtained using original 

and improved adjustment strategies, respectively.  

 
Figure 4.11. Original and proposed parameter adjustment strategies with respect to A 
value. 

In Figure 4.11, the parameter adjustment strategies in the HHMO and EHHMO 

algorithms are run three times. In each run the values of A are calculated using 



 

 145 

Equation (4.3). The value of the convergence factor, A, changes according to the value 

of the parameter, a. If |𝐴| ≥ 1, the hawks will explore the desert site looking for a 

potential prey (DeBruyne & Kaur, 2016). If |𝐴| < 1  the hawks are forced to move 

towards the prey.  

 

In the proposed parameter adjustment strategy, the value of A, in the first half or 

iterations (T/2), is bigger than one which helps the EHHMO algorithm to spend more 

time on exploring the search space at the early stage of optimization process. On the 

other hand, in the original parameter adjustment strategy, the value of A becomes less 

than one in the first half which indicates poor exploration the early stage. Integrating 

the proposed adjustment strategy of the convergence parameter, a with HHMO aims 

to increase the proportion of the exploration to search for more feasible solutions. To 

ensure better convergence toward the Pareto front, the values of parameter a change 

rapidly in the later stages of the algorithm, thereby, obtaining better solutions accuracy.   

4.6 Initial Population Generator Method in HHMO 

In the MOSI-based metaheuristic, the definition of the initial population has a 

significant impact on the performance of the algorithm (Digehsara et al., 2020; 

Kazemzadeh Azad, 2018; Talbi, 2013). In the generation of the initial population, the 

main criterion to be considered is distribution of the solutions in the search space 

(Digehsara et al., 2020). If an initial population is well distributed, this will lead to 

improve the convergence of the solutions during the optimization process (Cruz-

Chávez & Martínez-Oropeza, 2016; Digehsara et al., 2020). 



 

 146 

4.6.1 Initial Population Generator Method in HHMO 

The HHMO algorithm uses the RNG method to initialize the population of solutions 

(DeBruyne & Kaur, 2016). In this method, the individuals are randomly generated 

within pre-determined boundaries (domain of the problem) and the search space is 

sampled approximately uniformly. In other words, the initial population is generated 

using a RNG between two boundaries, as shown in Equation (4.10) (Talbi, 2009).  

where r is a random number in interval [0,1]. lb and ub are lower and upper bounds of 

the decision variables, respectively. However, as shown in Figure 4.12, the RNG 

method does not guarantee that the solutions can be evenly distributed in the search 

space of the problem, which may affect the efficiency of the HHMO algorithm (Jana 

et al., 2018). 

 
Figure 4.12. Sampling using random number generator method 

𝑋⃗ = 𝑙𝑏⃗⃗⃗⃗ + 𝑟 ∗ (𝑢𝑏⃗⃗ ⃗⃗⃗ − 𝑙𝑏⃗⃗⃗⃗ ) (4.10) 
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In Figure 4.12, the simple random sampling of a point inside a unit square exhibits a 

clustering of points and that there are also regions that contain no points at all (‘white 

noise’). Therefore, in this study, the R-sequence method (Roberts, 2018; Slater, 2019) 

will be used instead of the RNG to generate random numbers. 

4.6.2 Proposed Two-step Initial Population Generator Method 

In this study, the proposed initial population generator is developed based on the Multi-

step technique. This technique composes of two or more techniques in which at least 

one of them cannot be used autonomously (Kazimipour et al., 2014). The proposed 

initial population generator method consists of two steps. The first step consists of the 

generation of random numbers using the R-sequence (Roberts, 2018). In the second 

step, the proposed partial OBL approach is applied on the generated random numbers 

to produce the initial population. Figure 4.13 illustrates the proposed two-step initial 

population generation method. 
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Figure 4.13. High level flowchart of the proposed two-step initial generator methods 

i. Step one: R-sequence  

In this step, the R-sequence is used to generate low-discrepancy sequences with high 

levels of uniformity. The n-th terms of R-sequence in d dimension are generated as 

shown in Equation (4.11) (Roberts, 2018; Slater, 2019). 
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where  is any irrational number. ∅ =
1+√5

2
 is the golden ratio. The generalized version 

of ∅𝑑 is defined as the unique positive root of 𝑥𝑑+1=x+1 and 0=0.5  (Roberts, 2018; 

Slater, 2019). 

The calculation of R-sequence for 3-d is as follow: 

For d=1,  ∅1 =1.618033989, which is the canonical golden ratio. 

For d=2,  ∅2 =1.3247179572, which is often called the plastic constant. 

For d=3,  ∅3 = 1.2207440846 

 = (0.819173, 0.671044, 0.549700) 

𝑅𝑑(∅𝑑) =  

(0.319173, 0.171044, 0.0497005);  

(0.138345, 0.842087, 0.599401);  

(0.957518, 0.513131, 0.149101);  
(0.77669, 0.184174, 0.698802) 

(0.595863, 0.855218, 0.248502) ... 
 

ii. Step two: Partial opposition-based learning 

The main idea of OBL is to calculate a solution located in the opposite direction, 𝑋̌ of 

a candidate solution, 𝑋⃗ . Figure 4.14 illustrates the concept of OBL.  

 
Figure 4.14. Concept of OBL in one dimension (Adapted from Tizhoosh (2005)) 
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Both, 𝑋⃗ and 𝑋̌, simultaneously, give a higher chance to find the promising region 

(Mahdavi, Rahnamayan, & Deb, 2018). The opposite point in the d-dimension space 

is calculated as shown in Equation (4.13) (Tizhoosh, 2005) . 

where ub and lb are upper and lower bounds, respectively. In the partial OBL a solution 

located in the opposite direction contains opposite numbers to the original numbers in 

some dimensions with respect the degree of partial opposition (Hu et al., 2014). 

The partial OBL strategy proposed in this thesis is different from the traditional partial 

OBL (Hu et al., 2014; Si & Dutta, 2019). The tradition partial OBL is developed to 

work with single objective optimization algorithm. The partial OBL in the proposed 

two-step method is developed to initialize the population for the reference-point based 

MOO algorithms. In the tradition partial OBL, the opposite population is calculated 

for all solutions in the population. However, in the two-step initial population 

generator method, the population is first divided into two subpopulations and the 

opposition value of a randomly selection dimension is calculated. Then, Pareto-

dominance relation is applied to compare and select the solutions. Figure 4.15 

illustrates the partial OBL. 

𝑋̌ = 𝑙𝑏⃗⃗⃗⃗ + 𝑢𝑏⃗⃗ ⃗⃗⃗ − 𝑋⃗ (4.13) 
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Figure 4.15. Partial OBL in the 2S-ENDSHHMO algorithm 

In the proposed partial OBL concept, the population of hawks, P is sorted based on the 

fitness value and divided into two halves, P1 and P2. The fitness value represents the 

normalized Euclidean distance (Deb & Sundar, 2006) between each point in the 

objective space, f(X) and the reference point Z, calculated as shown in Equation (4.14) 

(Deb & Sundar, 2006).  
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where M is the number of objectives.  

In P1, the population is kept without any change. The position of hawks in the P2 

(worse positions) becomes partially opposite. Thus, the hawk becomes opposite in just 

one dimension. This dimension is selected randomly to ensure that partial useful 

information of the position is kept. The positions of hawks in the P2 are calculated 

using Equation (4.15). The difference between this equation and Equation (4.13) is 

that, Equation (4.15) has been applied only on a randomly selected dimension. 

where 𝑋⃗ is the position of hawk i in the P2 of the population. d is a randomly selected 

dimension. This aims to increase the diversity of the P2 and generate better solutions. 

The outcomes of this step is a partial OBL population, 𝑃̌. The solutions in P and 𝑃̌ are 

compared using Pareto-dominance approach to select non-dominated solutions among 

them. In other words, if Xi in 𝑃̌ dominates Yj in P, then, the solution Yj will be replaced 

by Xi.  

 

Definition 1 (Pareto-dominance) Assume that p and q are any two feasible solutions 

for the MOP; p is said to dominate q, written as p ≺ q if fi(p)< fi(q) ∃j ∈ 1, 2, . . . , M 

and fi(p) ≤ fi(q) ∀i ∈ 1, 2, . . . , M. where M is the number of objective functions. In 

other words, solution p is better than q in at least one objective, and p is better than or 

equal to q in all objective functions (Emmerich & Deutz, 2018). 

 

𝑋̌𝑖𝑑 = 𝑙𝑏⃗⃗⃗⃗ + 𝑢𝑏⃗⃗ ⃗⃗⃗ − 𝑋⃗𝑖𝑑 (4.15) 
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The proposed two-step population initialization method aims to improve the quality of 

the initial population by distributing the solutions as evenly as possible in the search 

space. This leads to effectively improve the performance of the HHMO algorithm.  

Figure 4.16 shows the main steps of the initial population generator method. 

Algorithm 1: Two-step initial population generator method 
1  Generation a set of quasi-random numbers using the R-sequence. 
2  Calculate the fitness value of each X in the population using Equation (4.14) 

3  Sort the population based on the fitness values. 
Divide the population into two halves 

4  For each X in the second half 
5   Randomly select a dimension d 
6   Calculate  𝑋̌ using Equation (4.15) 
7  End For 
8  Perform Pareto-dominance relation to eliminate the dominated solutions 
9  Return the initial population of hawks 

Figure 4.16. Pseudo code of the two-step initial population generator method 

The 2S-ENDSHHMO algorithm integrates all improvements discussed in the previous 

sections to produce a multi-objective SI-based optimization algorithm with better 

convergence. The pseudo code of the proposed 2S-ENDSHHMO is shown in Figure 

4.17. 

Algorithm 2: 2S- ENDSHHMO 
1 Given the set of objective functions 𝐹(𝑋) = (𝑓1(𝑋), 𝑓2(𝑋), … 𝑓𝑀(𝑋)) 

2 
Initialize the population of hawk, X using the proposed two-steps initial 
population generator method, within the boundaries of the decision space 
(Algorithm 1). 

3 Evaluate each hawk in the population according to objective functions 
4 Divide the search agents into groups based on  number of reference points  
5 while ( t <= maximum number of iterations) 
6  For each reference point group 
7   Select leaders (α, β and ) (Algorithm 4). 

8   
  

 i. Calculate the Euclidean distances to a reference point, Zi for each 
hawk, Xi, on all objectives F(X). 

9                     ii. Select first three hawks that have a shortest distance to a reference 
point, Zi, to be α, β and . 

10   Update the population of hawks 
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11   For each hawk in the group 
12    Calculate the new position of a hawk based on Equations set (4.6) 
13   end for 
14   For each hawks in the group 
15    Calculate fitness values for all hawks in a group 
16   end for 

17   Select the next generation of hawks using non-dominated sorting 
(Algorithm 3). 

18  end for   
19  Evaluate each hawk in the population according to objective functions 
20  t = t+1 
21 end while 
22 Return the best non-dominated solutions 
Figure 4.17. Pseudo code of the 2S-ENDSHHMO optimization algorithm 

In the proposed 2S-ENDSHHMO algorithm, the optimization process starts by 

initializing the population of hawks using the two-step population generator method. 

Then, each hawk, Xi, is evaluated by calculating all objectives, fm(Xi). The population 

of hawks is subsequently divided into groups based on the number of reference points, 

as illustrated in Figure 4.18.  

 
Figure 4.18. Divide the population of hawks into groups based on the number of 
reference points 
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In Figure 4.18, each group has a three leaders, Xα, Xβ and Xδ and the rest are the X  

hawks. At each iteration, the population of hawks is updated using the proposed 

population update strategy, which includes two stages as described in Section 4.4. In 

the first stage, the position of hawks is updated using the proposed movement strategy. 

In the second stage, the best hawks are selected to be used in the next generation. 

Figure 4.19 shows the selection procedure. 

Algorithm 3: Selection 
1 Combine P and O to generate R 
2 Calculate the Euclidean distance, between fm(Xi) and Zi 
3 Performs non-dominated sorting to produce the front levels. 
4  Select individual from the fronts to produce next generation: 
5  If number of individuals in the current front > N, perform -clearing strategy. 

6 
  i.   Not enough individuals? move to the next front. 

ii. There is more than enough individuals, chooses the ones with the 
minimum Euclidean distance. 

7  end if 
Figure 4.19. Main steps of selection procedure 

In the selection procedure, the populations P and O are combined to produce R, where 

the size of R is 2N. This followed by calculating the Euclidean distance between each 

solution in the objective space, fm(Xi), and reference point, Zi. Then, the best hawks are 

selected by performing the non-dominated sorting with -clearing strategy to produce 

a population of size N. The new positions are evaluated using the objective function 

and the new leaders are selected from the new population based on the shortest 

Euclidean distance to the reference point. Figure 4.20 shows the procedure of selecting 

leaders. 

Algorithm 4: Select_Leaders 
8 For each hawk in a group 

9  Calculate the Euclidean distance between a hawk in the objective space, 
fm(Xi), and reference point Z , Equation (4.14). 

10 end for 
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11 Sort the Euclidean distances 
12 Find minimum first three values to be Xα, Xβ and X, respectively. 
Figure 4.20. Main steps of Select_Leaders procedure 

These processes are repeated until the loop termination condition is met and, finally, 

output of the non-dominated solutions is set. The basic procedures of the proposed 2S-

ENDSHHMO algorithm are:  

a) Initialize a population of hawks. 

b) Evaluate each hawk in the population. 

c) Select the leaders, α, β and   from the initial population, based on the smallest 

Euclidean distance to a reference point. 

d) Update the population of hawks. 

e) Evaluate each hawk. 

4.7 Summary 

In this chapter, three main improvements have been proposed and integrated with 

HHMO to enhance its performance. The population update strategy of the HHMO 

algorithm is improved by proposing a new update strategy. This strategy consists of 

calculating a new position of hawks using the proposed formulation based on the 

tactics used by the Harris’s hawks in nature and incorporating the non-dominated 

sorting and –clearing strategy to produce a new generation of hawks. This helped in 

maintaining the population diversity and convergence toward True Pareto front. The 

convergence parameter adjustment strategy of the HHMO algorithm is improved by 

introducing an improved adjustment strategy, which helps in improving the 

exploration of the algorithm. The initial population generation method is improved by 
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utilizing a two-step method, which includes two techniques, namely the R-sequence 

to generate the quasi-random sequence and partial OBL to maintain the initial 

population diversity. The improved proposed algorithm is called the 2S-ENDSHHMO 

algorithm, which will be evaluated in the next chapter.  
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CHAPTER FIVE 

PERFORMANCE EVALUATION OF THE 

TWO-STEP ENHANCED NON-DOMINATED SORTING 

HARRIS’S HAWK MULTI OBJECTIVE OPTIMIZER 

5.1 Introduction 

Experimentation is an important step used to evaluate whether a particular algorithm 

fits with the purpose created for it. This chapter presents how the experimentation 

phases of the 2S-ENDSHHMO algorithm are organized to compare its results and 

performance with other state-of-the-art MOO algorithms. To achieve this, this chapter 

is organized as follows. In Section 5.2, the main phases of the experiment design are 

presented, while the experimental design of solving test MOPs are presented in Section 

5.3. In Section 5.4 the results of integrating the HHMO algorithm with the proposed 

population update strategy are considered. Section 5.5 discusses the results of 

integrating the parameter adjustment strategy with the HHMO algorithm. Section 5.6 

presents the results of integrating the proposed initial population generation method 

with the HHMO algorithm. In Section 5.7, the results of evaluating the proposed 2S-

ENDSHHMO algorithm are presented and compared with the original HHMO and 

other MOSI-Based algorithms. Section 5.8 presents the engineering applications. 

Followed by the experimental design and results of 2S-ENDSHHMO and other state-

of-the-art MOO algorithms, in solving well-known real-world engineering MOPs, in 

Section 5.9. Section 5.10 presents the solution correspond to the extreme points. 

Section 5.11 presents a method to select a compromise solution from the Pareto set. 

This is followed by the summary in Section 5.12. 
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5.2 Experiment Design 

In the experiments, a set of 12 test problems and three engineering MOPs, namely, 

welded beam, four-bar truss and OPF MOPs, presented in Chapter 3, were used to 

evaluate the performance of each algorithm, with respect to convexity, non-convexity 

multimodality and non-uniformity. Different performance metrics and statistical 

measures were used to measure the performance of each algorithm.  

 

The performance of NDSHHMO, EHHMO, introduced in Chapter 4, were compared 

with the original HHMO. The 2S-HHMO has been compared with  five initial 

population generator methods namely, RNG, which is used in the HHMO, and other 

QRNG methods, namely, OBL, Sobol and Latin hypercube sampling (LHS) sequences 

(McKay, Beckman, & Conover, 1979) and Hammersley, which, also, were integrated 

with HHMO algorithms to initialize the populations of hawks. For simplicity, these 

methods will be called OBL-HHMO, Sobol-HHMO, LHS-HHMO and Hammersley-

HHMO algorithms, in the remaining part of this thesis. 

 

The proposed 2S-ENDSHHMO algorithm was compared with the original HHMO and 

state-of-the-art MOO algorithms, namely MOGWO, MOGOA, MODA, MOSSA, 

NSABC, NSGSA and R-NSGA-II.  The first four are state-of-the-art MOSI-based 

algorithms, which were developed based on the archive approach and widely applied 

in solving different MOPs (Falehi, 2020; Falehi & Rafiee, 2019; Jiang, Li, & Li, 2019; 

Mahmoodabadi & Rezaee Babak, 2020; Rahman & Rashid, 2020; Vikram, Ratnam, 

Lakshmi, Kumar, & Ramakanth, 2018). The others, namely, NSGSA and NSABC, are 
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MOSI optimization algorithms incorporated with the non-dominated sorting approach. 

The R-NSGA-II algorithm is an EA developed based on the reference-point approach, 

which extends the well-known NSGA-II algorithm (Deb et al., 2002a). Figure 5.1 

shows the structure of experimental design.  

 
Figure 5.1. Main phases of the experiment 
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5.3 Experimental design of test problems 

For fair comparison the performance experiments of the 2S-ENDSHHMO, HHMO, 

MOGWO, MOGOA, MODA, MOSSA, NSABC, NSGSA and R-NSGA-II algorithms 

were compared under the same conditions. For each algorithm, the maximum number 

of iterations (MaxIteration) was set at 300, with a population size of 100 individuals 

for each problem. Each algorithm was run independently 10 times (Mellal & Salhi, 

2020; Mirjalili, 2016; Mirjalili et al., 2016; Mirjalili et al., 2018) and the algorithm 

stopped when the number of iterations of each run reached the maximum number of 

iterations. In solving MOPs using reference-point-based algorithms, different 

reference points (Deb & Sundar, 2006; Li & Deb, 2016) were used with each test 

problem, as shown in Table 5.1 

Table 5.1 
Settings of reference points  

Problem M Reference point 
ZDT1 

2 

(0.8 0.2); (0.2 0.8) 
ZDT2 (0.2 0.8); (0.9 0.4) 
ZDT3 (0.15 0.4); (0.4 0.0) 
ZDT4 (0.1 0.6);(0.5 0.2) 
ZDT6 (0.90,0.3); (0.5,0.7) 

DTLZ2  

3 (0.2,0.2,0.6); (0.8,0.6,1.0) 

5 (0.5, 0.5, 0.5, 0.5, 0.5);  
(0.2 0.2 0.2 0.2 0.8) 

10 0.25  [1,M] 
DTLZ4 

3 

(0.2 0.5 0.6); (0.7 0.8 0.5) 
DTLZ5 (0.1 0.3 0.5); (0.6 0.7 0.5) DTLZ6 
DTLZ7 (0.165 0.71 4.678); (0.6 0.6 4.0) 

 

The parameters for all algorithms are set as recommended by their respective authors. 

The detailed configuration for each algorithm is as shown in Table 5.2. 
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Table 5.2 
Parameter settings of optimization  algorithms 

Algorithm Parameter Value 

MOGOA 
Mirjalili et al. (2018) 

cMax 1 
cMin 0.00001 
Archive size 100 

MODA 
Mirjalili (2016) 

s: separation weight 
a: alignment weight 
c: cohesion weight 
f: food factor 
e: enemy factor 
w: inertia weight 

0.1 
0.1 
0.7 
1 
1 
0.9 

Archive size 100 
MOSSA 
Mirjalili et al. (2017) Archive size 100 

NSABC 
Kishor et al. (2016) 

Archive size 
limit 

100 
(NP *D /2) 

NSGSA 
Zellagui et al. (2017) 

Percent of elitism 0.5 
Coefficient of search interval 2.5 
Sign mutation probability 0.9 
Uniform mutation probability 0.01 
Reordering mutation probability 0.4 

Initial value of inertial coefficient (W0) 0.9 

Final value of inertial coefficient (W1) 0.5 

Archive size 100 

HHMO 
DeBruyne and Kaur (2016) Radius 0.2 

R-NSGA-II 
Deb et al. (2002a) 

Crossover factor 
Mutation factor 

0.9 
1/N 

5.4 Results of Integrating the Proposed Population Update Strategy with HHMO 

Algorithm 

This section presents the results of the NDSHHMO algorithm. In this version the 

proposed population update strategy is integrated with the HHMO algorithm to 

produce the NDSHHMO algorithm. The test problems are used to evaluate the HHMO 

and NDSHHMO algorithms. The mean, SD, best and worst values of R-IGD and R-
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HV metrics are calculated to be used in the comparison. Table 5.3 shows the results of 

HHMO and NDSHHMO algorithms. 

Table 5.3 
Mean, SD, best and worst R-IGD and R-HV values of non-dominated solutions, 
obtained by using HHMO and NDSHHMO algorithms 

MOP Algorithm Metric Mean SD Best Worst 

ZDT1 
HHMO R-IGD 2.2409E-01 2.0820E-01 3.7968E-03 4.3617E-01 

R-HV 3.3826E+00 6.0412E-01 4.0466E+00 2.7423E+00 

NDSHHMO R-IGD 3.7907E-03 4.6473E-05 3.7132E-03 3.8689E-03 
R-HV 4.0476E+00 2.6139E-03 4.0531E+00 4.0461E+00 

ZDT2 
HHMO R-IGD 1.3763E-01 1.3700E-01 1.4112E-02 4.8704E-01 

R-HV 3.3518E+00 3.8325E-01 3.8114E+00 2.5300E+00 

NDSHHMO R-IGD 1.4150E-02 4.7178E-04 1.3336E-02 1.4839E-02 
R-HV 3.8102E+00 3.6586E-03 3.8136E+00 3.8005E+00 

ZDT3 
HHMO R-IGD 1.7811E-01 1.1515E-01 1.5740E-02 2.9921E-01 

R-HV 3.3721E+00 3.5069E-01 3.9525E+00 2.9929E+00 

NDSHHMO R-IGD 1.5436E-02 3.5459E-04 1.4570E-02 1.5775E-02 
R-HV 3.9505E+00 3.6598E-03 3.9529E+00 3.9402E+00 

ZDT4 
HHMO R-IGD 7.8105E-02 9.3784E-02 2.9646E-03 2.8425E-01 

R-HV 3.8259E+00 3.5263E-01 4.1340E+00 3.1398E+00 

NDSHHMO R-IGD 2.7136E-03 3.3463E-05 2.6358E-03 2.7618E-03 
R-HV 4.1342E+00 6.5459E-04 4.1358E+00 4.1336E+00 

ZDT6 
HHMO R-IGD 4.2760E-01 4.8118E-01 4.5574E-03 1.0499E+00 

R-HV 3.2860E+00 1.2621E+00 4.4118E+00 1.6868E+00 

NDSHHMO R-IGD 6.3356E-02 1.7179E-01 4.4646E-03 5.5084E-01 
R-HV 4.2348E+00 4.8357E-01 4.4121E+00 2.8741E+00 

DTLZ2 
(3) 

HHMO R-IGD 1.5596E-01 2.8048E-02 1.2197E-01 2.1355E-01 
R-HV 8.5351E+00 2.3963E-01 8.8669E+00 8.1150E+00 

NDSHHMO R-IGD 3.0220E-01 1.9630E-01 1.6491E-01 5.8838E-01 
R-HV 7.5001E+00 1.2408E+00 8.4029E+00 5.6880E+00 

DTLZ2 
(5) 

HHMO R-IGD 1.8237E-01 7.2567E-02 1.1081E-01 3.7323E-01 
R-HV 3.0502E+01 2.3642E+00 3.2860E+01 2.4449E+01 

NDSHHMO R-IGD 1.1351E-01 1.8309E-03 1.1115E-01 1.1745E-01 
R-HV 3.2511E+01 1.1083E-01 3.2690E+01 3.2252E+01 

DTLZ2 
(10) 

HHMO R-IGD 6.9929E-01 1.0747E-01 6.0993E-01 9.6582E-01 
R-HV 7.2149E+02 1.4911E+02 8.8498E+02 3.8534E+02 

NDSHHMO R-IGD 5.7162E-01 1.2627E-03 5.7011E-01 5.7339E-01 
R-HV 1.0402E+03 2.7635E+00 1.0449E+03 1.0366E+03 

DTLZ4 
HHMO R-IGD 5.7004E-01 3.3366E-01 7.9573E-02 1.1994E+00 

R-HV 4.2076E+00 1.5124E+00 6.8459E+00 1.7029E+00 

NDSHHMO R-IGD 8.0168E-02 2.5488E-02 5.3741E-02 1.1646E-01 
R-HV 7.0354E+00 2.0318E-01 7.2861E+00 6.7035E+00 

DTLZ5 
HHMO R-IGD 3.3389E-01 9.5281E-02 2.3352E-01 4.8342E-01 

R-HV 4.1879E+00 5.0189E-01 4.7658E+00 3.4364E+00 

NDSHHMO R-IGD 1.7126E-01 3.3195E-03 1.6824E-01 1.7992E-01 
R-HV 5.3365E+00 4.9218E-02 5.4000E+00 5.2357E+00 

DTLZ6 
HHMO R-IGD 2.2187E-01 1.9510E-03 2.1707E-01 2.2336E-01 

R-HV 4.8669E+00 1.7625E-02 4.9089E+00 4.8524E+00 

NDSHHMO R-IGD 2.0957E-01 1.3234E-02 1.8424E-01 2.2259E-01 
R-HV 4.9698E+00 1.1173E-01 5.1900E+00 4.8599E+00 

DTLZ7 HHMO R-IGD 4.2128E+00 4.1361E-01 3.7130E+00 4.9373E+00 
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R-HV 4.7921E+00 2.5149E+00 8.2216E+00 1.3925E+00 

NDSHHMO R-IGD 3.7949E+00 2.1625E-01 3.7163E+00 4.4103E+00 
R-HV 7.6049E+00 1.5372E+00 8.1700E+00 3.2312E+00 

The results in Table 5.3 show that, in terms of convergence toward the true Pareto front 

and diversity of non-dominated solutions, the NDSHHMO algorithm has the lowest 

mean R-IGD and highest mean R-HV values in solving 11 out of 12 problems. The 

HHMO has produced the lowest mean R-IGD and highest mean R-HV values for four 

problems. Thus, NDSHHMO has managed to achieve lowest mean R-IGD and highest 

mean R-HV values in solving 91.7% of the problems. while the HHMO algorithm 

achieved highest diversity in solving 8.3 % of the problems.  

  
Figure 5.2. Summary of mean R-IGD and R-HV values of obtained solutions, for 
both HHMO and NDSHHMO algorithms 

In Figure 5.2, the square and circle shapes represent the mean R-metric obtained by 

HHO and EHHMO, respectively. In general terms, the results obtained for the 

experiments carried out (refer to Table 5.3), indicate that the use of the proposed 

population update strategy can significantly improve the distribution of the solutions 

in the objective space, while preserving other characteristics of the algorithm, namely 

the convergence ability toward the True Pareto front and diversity of obtained 
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solutions. The results emphasize that the population update strategy has the advantage 

of solving problems with multiple local fronts, such as the ZDT4 problem, and non-

uniform front, such as, ZDT3 and ZDT6 problems. Furthermore, the results imply the 

ability of the NDSHHMO algorithm in solving many-objective optimization problems, 

such as DTLZ2 with five and 10 objectives. However, the NDSHHMO algorithm can 

be further improved by improving the exploration ability of the algorithm. This will 

be discussed in the next section. 

5.5 Results of Integrating the Proposed Parameter Adjustment Strategy with 

HHMO Algorithm 

This section presents the experimental results of the EHHMO algorithm, which 

involves integration between the proposed parameter adjustment strategy and the 

HHMO algorithm to control the value of the convergence parameter a. The MOPs are 

used to evaluate the performance of the EHHMO algorithm and to verify the 

effectiveness of the proposed parameter adjustment strategy. To measure the 

performance of EHHMO, the mean, SD, best and worst values of R-IGD and R-HV 

metrics are calculated and compared with the results of HHMO, as shown in Table 5.4. 

Table 5.4 
Mean, SD, best and worst R-IGD and R-HV values of non-dominated solutions, 
obtained by using HHMO and EHHMO algorithms 

MOP Algorithm Metric Mean SD Best Worst 

ZDT1 
HHMO R-IGD 1.7452E-01 2.0812E-01 3.7968E-03 4.1923E-01 

R-HV 3.5292E+00 6.0766E-01 4.0553E+00 2.7423E+00 

EHHMO R-IGD 5.1506E-02 1.2814E-01 3.7798E-03 4.1520E-01 
R-HV 3.9048E+00 3.6633E-01 4.0468E+00 2.8663E+00 

ZDT2 
HHMO R-IGD 7.3419E-02 6.8278E-02 1.4112E-02 1.5239E-01 

R-HV 3.5628E+00 2.8573E-01 3.8114E+00 3.2328E+00 

EHHMO R-IGD 8.4402E-02 7.1699E-02 1.3586E-02 1.5239E-01 
R-HV 3.5167E+00 2.9941E-01 3.8129E+00 3.2328E+00 

ZDT3 HHMO R-IGD 1.9808E-01 1.2774E-01 1.3844E-02 2.9921E-01 
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R-HV 3.3364E+00 4.2821E-01 3.9525E+00 2.9929E+00 

EHHMO R-IGD 4.9940E-02 9.8103E-02 1.4240E-02 3.2789E-01 
R-HV 3.8301E+00 3.2199E-01 3.9520E+00 2.9224E+00 

ZDT4 
HHMO R-IGD 6.4837E-02 9.3394E-02 2.7279E-03 2.7911E-01 

R-HV 3.8912E+00 3.4153E-01 4.1350E+00 3.2041E+00 

EHHMO R-IGD 6.3138E-02 5.9699E-02 2.7249E-03 1.5940E-01 
R-HV 3.8762E+00 2.5768E-01 4.1345E+00 3.5010E+00 

ZDT6 
HHMO R-IGD 3.5845E-01 4.5463E-01 4.5574E-03 1.0481E+00 

R-HV 3.4636E+00 1.1987E+00 4.4118E+00 1.6900E+00 

EHHMO R-IGD 2.9750E-01 4.6272E-01 4.4870E-03 1.0508E+00 
R-HV 3.6352E+00 1.2144E+00 4.4122E+00 1.6850E+00 

DTLZ2 
(3) 

HHMO R-IGD 1.5363E-01 2.7041E-02 1.2197E-01 2.1466E-01 
R-HV 8.5393E+00 2.4574E-01 8.8531E+00 8.0152E+00 

EHHMO R-IGD 2.1878E-01 1.3667E-01 1.5610E-01 6.0430E-01 
R-HV 8.0849E+00 8.7308E-01 8.5050E+00 5.6207E+00 

DTLZ2 
(5) 

HHMO R-IGD 2.5236E-01 2.8999E-01 1.1081E-01 1.0739E+00 
R-HV 2.9048E+01 6.8342E+00 3.2860E+01 9.8213E+00 

EHHMO R-IGD 2.4552E-01 3.2791E-01 1.1744E-01 1.1774E+00 
R-HV 2.9476E+01 7.4170E+00 3.2446E+01 8.4729E+00 

DTLZ2 
(10) 

HHMO R-IGD 6.9927E-01 1.0747E-01 6.0993E-01 9.6582E-01 
R-HV 7.2157E+02 1.4914E+02 8.8498E+02 3.8534E+02 

EHHMO R-IGD 6.9314E-01 1.1821E-01 5.7317E-01 9.6495E-01 
R-HV 7.5245E+02 1.8779E+02 9.7198E+02 3.8310E+02 

DTLZ4 
HHMO R-IGD 5.1482E-01 3.2072E-01 7.9573E-02 1.1994E+00 

R-HV 4.4052E+00 1.4413E+00 6.8459E+00 1.7029E+00 

EHHMO R-IGD 2.4016E-01 1.3019E-01 9.8085E-02 4.4414E-01 
R-HV 5.7653E+00 8.2673E-01 6.7687E+00 4.5332E+00 

DTLZ5 
HHMO R-IGD 2.2587E-01 8.8818E-02 1.7362E-01 4.5742E-01 

R-HV 4.9333E+00 5.9407E-01 5.3636E+00 3.4859E+00 

EHHMO R-IGD 2.4192E-01 1.3106E-01 1.7048E-01 4.8727E-01 
R-HV 4.8883E+00 8.0739E-01 5.4118E+00 3.3568E+00 

DTLZ6 
HHMO R-IGD 2.2187E-01 1.9510E-03 2.1707E-01 2.2336E-01 

R-HV 4.8669E+00 1.7625E-02 4.9089E+00 4.8524E+00 

EHHMO R-IGD 2.1932E-01 4.2563E-03 2.1247E-01 2.2295E-01 
R-HV 4.8880E+00 3.4597E-02 4.9448E+00 4.8563E+00 

DTLZ7 
HHMO R-IGD 4.2089E+00 4.1834E-01 3.7130E+00 4.9373E+00 

R-HV 4.8098E+00 2.5388E+00 8.2216E+00 1.3925E+00 

EHHMO R-IGD 4.2722E+00 5.0057E-01 3.7129E+00 4.9425E+00 
R-HV 4.6123E+00 2.8789E+00 8.2197E+00 1.3746E+00 

Results in Table 5.4 proved that, in terms of the convergence toward the true Pareto 

front, the EHHMO algorithm has the lowest mean R-IGD values in solving nine out 

of 12 problems. HHMO has produced the lowest values for three problems. Thus, 

EHHMO has managed to achieve lower mean R-IGD value in solving 75% of the 

problems.  
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In terms of the diversity of obtained non-dominated solutions, highest values of mean 

R-HV have been obtained by the EHHMO algorithm for eight out of 12 problems 

while HHMO has only obtained highest values for four problems. Thus, for diversity 

test, EHHMO algorithm has higher mean R-HV values in solving 66% of the 

problems, while the HHMO algorithm achieved higher diversity in solving 33% of the 

problems. Figure 5.3 shows a comparison between the mean R-IGD and R-HV values 

obtained by EHHMO and HHMO algorithms. The square and circle shapes represent 

the mean R-metric obtained by HHO and EHHMO, respectively. Based on the mean 

R-IGD values, the proposed parameter adjustment strategy has improved the 

performance of the HHMO algorithm, in terms of convergence toward True Pareto 

front in solving 75% of the problems. Based on mean R-HV values, the EHHMO 

algorithm is managed to produce non-dominated solutions with higher diversity in 

solving 66% of the problems. This is due to the proposed parameter adjustment 

strategy improves the ability of HHMO algorithm in exploring and exploiting the 

search space, which leads to an improvement in convergence toward the True Pareto 

front and diversity of the obtained solutions.  

 



 

 168 

  
Figure 5.3. Summary of mean R-IGD and R-HV values of obtained solutions, for 
both HHMO and EHHMO algorithms 

5.6 Results of Integrating Proposed Two-step Initial Population Generator 

Method with HHMO Algorithm 

The proposed two-step initial population generator method is integrated with the 

HHMO algorithm to produce the 2S-HHMO algorithm. To validate the effectiveness 

of the proposed algorithm, the 2S-HHMO algorithm is used to solve the test problems. 

The obtained results are compared with the original HHMO, OBL-HHMO, Sobol-

HHMO, LHS-HHMO and Hammersley-HHMO algorithms.  

5.6.1 Comparing the Two-step Initial Population Generator and Random 

Number Generator Methods   

This section presents the result of comparing the two-step initial population generator 

and traditional RNG methods in terms of convergence and diversity of the solutions in 

the search space. Additionally, it presents the results of comparing the two-step initial 

population generator with RNG and other methods in solving MOPs. The proposed 
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two-step initial population generator method has been compared against other 

techniques, in solving MOPs.  

Table 5.5 shows the results of mean, SD, best and worst values of the R-IGD and R-

HV metrics. In terms of the convergence toward the true Pareto front, the 2S-HHMO 

algorithm has the lowest mean R-IGD values in solving eight out of 12 problems. 

HHMO has produced the lowest values for four problems. Thus, 2S-HHMO has 

managed to achieve lowest mean R-IGD value in solving 66% of the problems. In 

terms of the diversity of obtained non-dominated solutions, highest values of mean R-

HV have been obtained by the 2S-HHMO algorithm for eight out of 12 problems while 

HHMO has only obtained highest values for four problems. Thus, for diversity test, 

2S-HHMO algorithm has highest mean R-HV values in solving 66% of the problems, 

while the HHMO algorithm achieved highest diversity in solving 33% of the problems.  

Table 5.5 
Mean, SD, best and worst R-IGD and R-HV values of non-dominated solutions 
obtained by using HHMO and 2S-HHMO algorithms 

MOP Algorithm Metric Mean SD Best Worst 

ZDT1 
HHMO R-IGD 1.6962E-01 2.1162E-01 3.3871E-03 4.1902E-01 

R-HV 3.5708E+00 6.0937E-01 4.0553E+00 2.8555E+00 

2S-HHMO R-IGD 7.2087E-02 1.2672E-01 4.3569E-03 4.1809E-01 
R-HV 3.7976E+00 3.7624E-01 4.0482E+00 2.8568E+00 

ZDT2 
HHMO R-IGD 9.0407E-02 6.6643E-02 1.4001E-02 1.5239E-01 

R-HV 3.4833E+00 2.8253E-01 3.8114E+00 3.2328E+00 

2S-HHMO R-IGD 7.4865E-02 6.4853E-02 1.4444E-02 1.5239E-01 
R-HV 3.5450E+00 2.7892E-01 3.8101E+00 3.2329E+00 

ZDT3 
HHMO R-IGD 1.1269E-01 1.1974E-01 1.4769E-02 2.9921E-01 

R-HV 3.5773E+00 3.7627E-01 3.9525E+00 2.9929E+00 

2S-HHMO R-IGD 6.9168E-02 1.0577E-01 1.3770E-02 2.9476E-01 
R-HV 3.7632E+00 3.4370E-01 3.9524E+00 3.0708E+00 

ZDT4 
HHMO R-IGD 7.8035E-02 9.3771E-02 2.7279E-03 2.8425E-01 

R-HV 3.8258E+00 3.5249E-01 4.1341E+00 3.1398E+00 

2S-HHMO R-IGD 2.6615E-02 4.8944E-02 2.3182E-03 1.4011E-01 
R-HV 4.0331E+00 2.1961E-01 4.1557E+00 3.5371E+00 

ZDT6 
HHMO R-IGD 4.2760E-01 4.8118E-01 4.5574E-03 1.0499E+00 

R-HV 3.2860E+00 1.2621E+00 4.4118E+00 1.6868E+00 

2S-HHMO R-IGD 4.2721E-01 4.8087E-01 4.5270E-03 1.0481E+00 
R-HV 3.2869E+00 1.2614E+00 4.4117E+00 1.6900E+00 
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DTLZ2 
(3) 

HHMO R-IGD 1.6218E-01 3.2397E-02 1.2197E-01 2.1363E-01 
R-HV 8.4735E+00 2.8706E-01 8.8669E+00 8.0957E+00 

2S-HHMO R-IGD 2.1125E-01 1.7138E-01 1.4206E-01 6.9711E-01 
R-HV 8.1508E+00 1.0856E+00 8.6657E+00 5.0891E+00 

DTLZ2 
(5) 

HHMO R-IGD 1.8453E-01 7.6561E-02 1.1081E-01 3.8688E-01 
R-HV 3.0359E+01 2.6035E+00 3.2860E+01 2.3636E+01 

2S-HHMO R-IGD 1.2495E-01 1.2722E-02 1.0524E-01 1.4682E-01 
R-HV 3.2388E+01 6.7974E-01 3.3867E+01 3.1514E+01 

DTLZ2 
(10) 

HHMO R-IGD 6.9927E-01 1.0747E-01 6.0993E-01 9.6582E-01 
R-HV 7.2157E+02 1.4914E+02 8.8498E+02 3.8534E+02 

2S-HHMO R-IGD 6.6107E-01 5.6263E-02 5.9793E-01 7.4668E-01 
R-HV 7.9489E+02 1.1116E+02 9.3754E+02 6.0796E+02 

DTLZ4 
HHMO R-IGD 4.0738E-01 2.4392E-01 7.9573E-02 7.4640E-01 

R-HV 4.9124E+00 1.2691E+00 6.8459E+00 3.3358E+00 

2S-HHMO R-IGD 3.0510E-01 1.0056E-01 2.0025E-01 4.5295E-01 
R-HV 5.3792E+00 6.0560E-01 6.0512E+00 4.4726E+00 

DTLZ5 
HHMO R-IGD 2.0055E-01 4.4899E-02 1.7362E-01 3.1669E-01 

R-HV 5.0877E+00 3.5670E-01 5.3636E+00 4.2632E+00 

2S-HHMO R-IGD 2.1152E-01 1.0613E-01 1.7057E-01 5.1307E-01 
R-HV 5.0757E+00 6.3882E-01 5.3988E+00 3.2763E+00 

DTLZ6 
HHMO R-IGD 2.2187E-01 1.9510E-03 2.1707E-01 2.2336E-01 

R-HV 4.8669E+00 1.7625E-02 4.9089E+00 4.8524E+00 

2S-HHMO R-IGD 2.6441E-01 1.3624E-01 2.2080E-01 6.5216E-01 
R-HV 4.6582E+00 6.7807E-01 4.8771E+00 2.7284E+00 

DTLZ7 
HHMO R-IGD 4.2089E+00 4.1834E-01 3.7130E+00 4.9373E+00 

R-HV 4.8098E+00 2.5388E+00 8.2216E+00 1.3925E+00 

2S-HHMO R-IGD 4.3358E+00 3.0774E-01 3.7504E+00 4.6299E+00 
R-HV 3.8626E+00 1.9232E+00 7.7278E+00 2.4360E+00 

5.6.2 Comparing the Two-Step Initial Population Generator and OBL Methods 

This section presents the results obtained by the 2S-HHMO and OBL-HHMO 

algorithms. Table 5.6 shows the results of mean, SD, best and worst values of the R-

IGD and R-HV metrics. The convergence toward the true Pareto front and diversity of 

non-dominated solutions, the 2S-HHMO algorithm has the lowest mean R-IGD and 

highest mean R-HV values in solving eight out of 12 problems. OBL-HHMO has 

produced the lowest mean R-IGD and highest mean R-HV values for four problems. 

Thus, 2S-HHMO has managed to achieve lowest mean R-IGD and highest mean R-

HV values in solving 75% of the problems. while the OBL-HHMO algorithm achieved 

highest diversity in solving 25% of the problems. 
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Table 5.6 
Mean, SD, best and worst R-IGD and R-HV values of non-dominated solutions 
obtained by using OBL-HHMO and 2S-HHMO algorithms 

MOP Algorithm Metric Mean SD Best Worst 

ZDT1 
OBL-HHMO R-IGD 2.1102E-01 2.4384E-01 4.8293E-03 6.7192E-01 

R-HV 3.4310E+00 6.8307E-01 4.0428E+00 2.1663E+00 

2S-HHMO R-IGD 1.1230E-01 1.7003E-01 4.2603E-03 4.2355E-01 
R-HV 3.6949E+00 4.9801E-01 4.0482E+00 2.8423E+00 

ZDT2 
OBL-HHMO R-IGD 1.2133E-01 5.7144E-02 1.3707E-02 1.5239E-01 

R-HV 3.3585E+00 2.4019E-01 3.8127E+00 3.2328E+00 

2S-HHMO R-IGD 9.6648E-02 1.5028E-01 1.4444E-02 4.1834E-01 
R-HV 3.5507E+00 4.2434E-01 3.8103E+00 2.7116E+00 

ZDT3 
OBL-HHMO R-IGD 2.4370E-01 2.7992E-01 1.5537E-02 7.5374E-01 

R-HV 3.2703E+00 7.5165E-01 3.9514E+00 1.9797E+00 

2S-HHMO R-IGD 6.9398E-02 1.0568E-01 1.4646E-02 2.9476E-01 
R-HV 3.7624E+00 3.4377E-01 3.9524E+00 3.0708E+00 

ZDT4 
OBL-HHMO R-IGD 5.6352E-02 5.9711E-02 2.6610E-03 1.4504E-01 

R-HV 3.9047E+00 2.5913E-01 4.1352E+00 3.5313E+00 

2S-HHMO R-IGD 2.2318E-02 3.6836E-02 2.3182E-03 9.9553E-02 
R-HV 4.0452E+00 1.7485E-01 4.1557E+00 3.6881E+00 

ZDT6 
OBL-HHMO R-IGD 2.2447E-01 2.8390E-01 4.5302E-03 5.5563E-01 

R-HV 3.7932E+00 7.9816E-01 4.4116E+00 2.8626E+00 

2S-HHMO R-IGD 4.2721E-01 4.8087E-01 4.5270E-03 1.0481E+00 
R-HV 3.2869E+00 1.2614E+00 4.4117E+00 1.6900E+00 

DTLZ2 
(3) 

OBL-HHMO R-IGD 1.9768E-01 3.5392E-02 1.4868E-01 2.6980E-01 
R-HV 8.1673E+00 2.8015E-01 8.5637E+00 7.6858E+00 

2S-HHMO R-IGD 1.5638E-01 1.2850E-02 1.4206E-01 1.8293E-01 
R-HV 8.4890E+00 1.1925E-01 8.6657E+00 8.2896E+00 

DTLZ2 
(5) 

OBL-HHMO R-IGD 2.3493E-01 2.9443E-01 1.1003E-01 1.0711E+00 
R-HV 2.9610E+01 6.9905E+00 3.2798E+01 9.8223E+00 

2S-HHMO R-IGD 1.2449E-01 1.2984E-02 1.0524E-01 1.4682E-01 
R-HV 3.2406E+01 6.8418E-01 3.3867E+01 3.1514E+01 

DTLZ2 
(10) 

OBL-HHMO R-IGD 7.0322E-01 6.8352E-02 6.0501E-01 8.2131E-01 
R-HV 7.2338E+02 1.1957E+02 9.4341E+02 5.3300E+02 

2S-HHMO R-IGD 6.6107E-01 5.6263E-02 5.9793E-01 7.4668E-01 
R-HV 7.9489E+02 1.1116E+02 9.3754E+02 6.0796E+02 

DTLZ4 
OBL-HHMO R-IGD 3.6054E-01 1.4981E-01 1.4212E-01 5.7983E-01 

R-HV 5.0600E+00 8.3535E-01 6.3145E+00 3.9093E+00 

2S-HHMO R-IGD 3.2770E-01 1.0906E-01 1.8121E-01 4.6086E-01 
R-HV 5.1876E+00 6.9183E-01 6.1569E+00 4.3831E+00 

DTLZ5 
OBL-HHMO R-IGD 2.4369E-01 1.0833E-01 1.6907E-01 4.5971E-01 

R-HV 4.8275E+00 6.8385E-01 5.4041E+00 3.5364E+00 

2S-HHMO R-IGD 2.3808E-01 1.2092E-01 1.7057E-01 4.9179E-01 
R-HV 4.8901E+00 7.5974E-01 5.3988E+00 3.3871E+00 

DTLZ6 
OBL-HHMO R-IGD 2.2218E-01 1.0475E-03 2.2081E-01 2.2345E-01 

R-HV 4.8648E+00 9.5497E-03 4.8770E+00 4.8516E+00 

2S-HHMO R-IGD 2.6441E-01 1.3624E-01 2.2080E-01 6.5216E-01 
R-HV 4.6582E+00 6.7807E-01 4.8771E+00 2.7284E+00 

DTLZ7 
OBL-HHMO R-IGD 4.2358E+00 4.5405E-01 3.7203E+00 4.9392E+00 

R-HV 4.7384E+00 2.6822E+00 8.0469E+00 1.3823E+00 

2S-HHMO R-IGD 4.3431E+00 3.0969E-01 3.7504E+00 4.6299E+00 
R-HV 3.8050E+00 1.9393E+00 7.7278E+00 2.4360E+00 
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5.6.3 Comparing the Two-Step Initial Population Generator Method and Sobol 

Sequence 

This section presents the results obtained by the 2S-HHMO and Sobol-HHMO 

algorithms. Table 5.7 shows the results of mean, SD, best and worst values of the R-

IGD and R-HV metrics. 

Table 5.7 
Mean, SD, best and worst R-IGD and R-HV values of non-dominated solutions 
obtained by using Sobol-HHMO and 2S-HHMO algorithms 

MOP Algorithm Metric Mean SD Best Worst 

ZDT1 
Sobol-HHMO R-IGD 1.4572E-01 1.8949E-01 3.7948E-03 4.1589E-01 

R-HV 3.5915E+00 5.6091E-01 4.0505E+00 2.7370E+00 

2S-HHMO R-IGD 1.1879E-01 2.0445E-01 4.3569E-03 5.5964E-01 
R-HV 3.6951E+00 5.8596E-01 4.0482E+00 2.4669E+00 

ZDT2 
Sobol-HHMO R-IGD 8.3027E-02 7.2591E-02 1.3352E-02 1.5240E-01 

R-HV 3.5219E+00 3.0321E-01 3.8140E+00 3.2328E+00 

2S-HHMO R-IGD 1.0956E-01 1.3401E-01 1.4444E-02 4.2355E-01 
R-HV 3.4631E+00 4.3208E-01 3.8104E+00 2.5587E+00 

ZDT3 
Sobol-HHMO R-IGD 2.1466E-01 1.8647E-01 1.3288E-02 5.2920E-01 

R-HV 3.3213E+00 5.7013E-01 3.9520E+00 2.4530E+00 

2S-HHMO R-IGD 9.3185E-02 1.1794E-01 1.4646E-02 2.9476E-01 
R-HV 3.6831E+00 3.8334E-01 3.9524E+00 3.0708E+00 

ZDT4 
Sobol-HHMO R-IGD 7.3961E-02 1.1122E-01 2.7011E-03 3.2243E-01 

R-HV 3.8678E+00 3.8759E-01 4.1343E+00 3.0594E+00 

2S-HHMO R-IGD 2.7541E-02 4.8722E-02 2.3182E-03 1.4011E-01 
R-HV 4.0247E+00 2.1775E-01 4.1557E+00 3.5371E+00 

ZDT6 
Sobol-HHMO R-IGD 4.2729E-01 4.8090E-01 4.5386E-03 1.0481E+00 

R-HV 3.2867E+00 1.2616E+00 4.4118E+00 1.6900E+00 

2S-HHMO R-IGD 4.2721E-01 4.8087E-01 4.5270E-03 1.0481E+00 
R-HV 3.2869E+00 1.2614E+00 4.4117E+00 1.6900E+00 

DTLZ2 
(3) 

Sobol-HHMO R-IGD 1.8411E-01 2.9148E-02 1.3409E-01 2.2175E-01 
R-HV 8.2505E+00 2.4992E-01 8.7037E+00 7.9118E+00 

2S-HHMO R-IGD 1.5942E-01 2.2306E-02 1.4206E-01 2.1743E-01 
R-HV 8.4722E+00 2.2336E-01 8.6657E+00 7.9036E+00 

DTLZ2 
(5) 

Sobol-HHMO R-IGD 3.2212E-01 2.5073E-01 1.2758E-01 1.0132E+00 
R-HV 2.6577E+01 5.9673E+00 3.2286E+01 1.0658E+01 

2S-HHMO R-IGD 1.2449E-01 1.2984E-02 1.0524E-01 1.4682E-01 
R-HV 3.2412E+01 6.8429E-01 3.3867E+01 3.1514E+01 

DTLZ2 
(10) 

Sobol-HHMO R-IGD 6.7440E-01 5.7426E-02 5.8231E-01 7.6012E-01 
R-HV 7.4518E+02 1.1588E+02 9.2994E+02 5.8450E+02 

2S-HHMO R-IGD 6.6107E-01 5.6263E-02 5.9793E-01 7.4668E-01 
R-HV 7.9489E+02 1.1116E+02 9.3754E+02 6.0796E+02 

DTLZ4 
Sobol-HHMO R-IGD 2.3128E-01 9.3218E-02 1.3096E-01 3.9010E-01 

R-HV 5.7741E+00 5.9071E-01 6.3963E+00 4.7182E+00 

2S-HHMO R-IGD 3.4114E-01 1.8432E-01 1.8121E-01 7.1312E-01 
R-HV 5.2054E+00 1.0080E+00 6.1569E+00 3.2910E+00 

DTLZ5 Sobol-HHMO R-IGD 2.6670E-01 1.4099E-01 1.6959E-01 5.1751E-01 
R-HV 4.7127E+00 8.4487E-01 5.4245E+00 3.3548E+00 
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2S-HHMO R-IGD 2.0042E-01 5.0364E-02 1.7057E-01 3.3180E-01 
R-HV 5.0880E+00 4.1448E-01 5.3988E+00 4.0863E+00 

DTLZ6 
Sobol-HHMO R-IGD 2.6242E-01 1.2840E-01 2.2085E-01 6.2784E-01 

R-HV 4.6663E+00 6.3733E-01 4.8766E+00 2.8526E+00 

2S-HHMO R-IGD 2.6441E-01 1.3624E-01 2.2080E-01 6.5216E-01 
R-HV 4.6582E+00 6.7807E-01 4.8771E+00 2.7284E+00 

DTLZ7 
Sobol-HHMO R-IGD 4.3763E+00 2.6809E-01 3.7279E+00 4.7489E+00 

R-HV 3.7361E+00 1.6197E+00 7.9961E+00 2.0127E+00 

2S-HHMO R-IGD 4.3438E+00 3.0983E-01 3.7504E+00 4.6385E+00 
R-HV 3.8013E+00 1.9403E+00 7.7278E+00 2.3651E+00 

The results in Table 5.7 show that forthe convergence and diversity, the 2S-HHMO 

algorithm has the lowest mean R-IGD and highest mean R-HV values in solving nine 

out of 12 problems. Sobol-HHMO has produced the lowest mean R-IGD and highest 

mean R-HV values for four problems. Thus, 2S-HHMO has managed to achieve 

lowest mean R-IGD and highest mean R-HV values in solving 75% of the problems 

while the Sobol-HHMO achieved highest convergence and diversity in solving 25% 

of the problems.  

5.6.4 Comparing the Two-Step Initial Population Generator Method and LHS 

Sequence 

This section presents the results obtained by the 2S-HHMO and LHS-HHMO 

algorithms. Table 5.8 shows the results of mean, SD, best and worst values of the R-

IGD and R-HV metrics. 

Table 5.8 
Mean, SD, best and worst R-IGD and R-HV values of non-dominated solutions 
obtained by using LHS-HHMO and 2S-HHMO algorithms 

MOP Algorithm Metric Mean SD Best Worst 

ZDT1 
LHS-HHMO R-IGD 2.0610E-01 1.9693E-01 7.6789E-03 4.1516E-01 

R-HV 3.4261E+00 5.4476E-01 4.0374E+00 2.8657E+00 

2S-HHMO R-IGD 5.0148E-02 1.3133E-01 4.2603E-03 4.2356E-01 
R-HV 3.9127E+00 3.7659E-01 4.0482E+00 2.8423E+00 

ZDT2 
LHS-HHMO R-IGD 8.3594E-02 7.2033E-02 1.2880E-02 1.5240E-01 

R-HV 3.5190E+00 3.0038E-01 3.8142E+00 3.2328E+00 

2S-HHMO R-IGD 1.1536E-01 1.5775E-01 1.4444E-02 4.9778E-01 
R-HV 3.4561E+00 4.8084E-01 3.8103E+00 2.4042E+00 
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ZDT3 
LHS-HHMO R-IGD 3.1969E-02 2.6474E-02 1.4701E-02 8.6623E-02 

R-HV 3.8539E+00 1.4988E-01 3.9525E+00 3.5692E+00 

2S-HHMO R-IGD 1.0540E-01 1.3128E-01 1.4975E-02 3.2647E-01 
R-HV 3.6316E+00 4.2325E-01 3.9524E+00 2.9258E+00 

ZDT4 
LHS-HHMO R-IGD 7.6815E-02 7.4391E-02 2.3524E-03 1.5866E-01 

R-HV 3.8219E+00 3.1495E-01 4.1524E+00 3.5014E+00 

2S-HHMO R-IGD 3.0926E-02 5.7993E-02 2.3182E-03 1.4170E-01 
R-HV 4.0169E+00 2.5316E-01 4.1557E+00 3.5366E+00 

ZDT6 
LHS-HHMO R-IGD 5.2891E-01 4.8909E-01 4.4910E-03 1.0481E+00 

R-HV 3.0198E+00 1.2798E+00 4.4119E+00 1.6900E+00 

2S-HHMO R-IGD 4.2721E-01 4.8087E-01 4.5270E-03 1.0481E+00 
R-HV 3.2869E+00 1.2614E+00 4.4117E+00 1.6900E+00 

DTLZ2 
(3) 

LHS-HHMO R-IGD 1.7510E-01 2.8732E-02 1.2499E-01 2.2996E-01 
R-HV 8.3542E+00 2.7135E-01 8.8550E+00 7.8618E+00 

2S-HHMO R-IGD 1.5522E-01 9.3412E-03 1.4206E-01 1.6712E-01 
R-HV 8.5075E+00 1.0532E-01 8.6657E+00 8.3749E+00 

DTLZ2 
(5) 

LHS-HHMO R-IGD 1.7211E-01 7.0780E-02 9.8325E-02 3.2204E-01 
R-HV 3.0737E+01 2.2567E+00 3.3381E+01 2.5946E+01 

2S-HHMO R-IGD 1.2505E-01 1.2532E-02 1.0524E-01 1.4682E-01 
R-HV 3.2338E+01 6.8578E-01 3.3867E+01 3.1514E+01 

DTLZ2 
(10) 

LHS-HHMO R-IGD 6.9443E-01 5.5138E-02 6.2432E-01 8.1699E-01 
R-HV 7.1939E+02 8.8647E+01 8.2352E+02 5.2590E+02 

2S-HHMO R-IGD 6.6107E-01 5.6263E-02 5.9793E-01 7.4668E-01 
R-HV 7.9484E+02 1.1115E+02 9.3754E+02 6.0796E+02 

DTLZ4 
LHS-HHMO R-IGD 3.9232E-01 1.7187E-01 8.1885E-02 6.5949E-01 

R-HV 4.9138E+00 9.1491E-01 6.8194E+00 3.7493E+00 

2S-HHMO R-IGD 3.3989E-01 1.5636E-01 1.8121E-01 6.5762E-01 
R-HV 5.2203E+00 8.4311E-01 6.1569E+00 3.7380E+00 

DTLZ5 
LHS-HHMO R-IGD 2.1123E-01 8.2719E-02 1.7067E-01 4.3551E-01 

R-HV 5.0219E+00 5.7321E-01 5.4192E+00 3.5785E+00 

2S-HHMO R-IGD 2.7318E-01 1.3629E-01 1.7057E-01 5.3443E-01 
R-HV 4.6520E+00 8.3100E-01 5.3988E+00 3.2199E+00 

DTLZ6 
LHS-HHMO R-IGD 2.2229E-01 7.2036E-04 2.2082E-01 2.2332E-01 

R-HV 4.8652E+00 6.7378E-03 4.8770E+00 4.8530E+00 

2S-HHMO R-IGD 2.6441E-01 1.3624E-01 2.2080E-01 6.5216E-01 
R-HV 4.6582E+00 6.7807E-01 4.8771E+00 2.7284E+00 

DTLZ7 
LHS-HHMO R-IGD 3.9762E+00 3.3870E-01 3.6972E+00 4.6471E+00 

R-HV 6.2031E+00 2.1103E+00 8.2955E+00 2.3822E+00 

2S-HHMO R-IGD 4.3374E+00 3.0916E-01 3.7504E+00 4.6299E+00 
R-HV 3.8415E+00 1.9395E+00 7.7278E+00 2.4022E+00 

For the convergence and diversity, results of the 2S- HHMO algorithm has the lowest 

mean R-IGD and highest mean R-HV values in solving seven out of 12 problems. 

LHS-HHMO has produced the lowest mean R-IGD and highest mean R-HV values 

for four problems. Thus, 2S-HHMO has managed to achieve lowest mean R-IGD and 

highest mean R-HV values in solving 60% of the problems while the LHS-HHMO 

achieved highest convergence and diversity in solving 40% of the problems.  



 

 175 

5.6.5 Comparing the Two-Step Initial Population Generator Method and 

Hammersley Sequence 

This section presents the results obtained by the 2S-HHMO and Hammersley-HHMO 

algorithms. Table 5.9 shows the results of mean, SD, best and worst values of the R-

IGD and R-HV metrics. 

Table 5.9 
Mean, SD, best and worst R-IGD and R-HV values of non-dominated solutions 
obtained by using Hammersley-HHMO and 2S-HHMO algorithms 

MOP Algorithm Metric Mean SD Best Worst 

ZDT1 

Hammersley-
HHMO 

R-IGD 9.8198E-02 1.7899E-01 3.8128E-03 4.1944E-01 
R-HV 3.7743E+00 5.1495E-01 4.0529E+00 2.8511E+00 

2S-HHMO R-IGD 1.1246E-01 1.6827E-01 4.3219E-03 4.2355E-01 
R-HV 3.6952E+00 4.9262E-01 4.0479E+00 2.8424E+00 

ZDT2 

Hammersley-
HHMO 

R-IGD 8.0921E-02 7.0708E-02 1.3311E-02 1.5240E-01 
R-HV 3.5300E+00 2.9742E-01 3.8143E+00 3.2328E+00 

2S-HHMO R-IGD 1.6299E-01 1.9161E-01 1.4899E-02 4.9583E-01 
R-HV 3.3418E+00 5.3884E-01 3.8099E+00 2.4306E+00 

ZDT3 

Hammersley-
HHMO 

R-IGD 2.1628E-01 2.5231E-01 1.4186E-02 6.4622E-01 
R-HV 3.3455E+00 6.8738E-01 3.9521E+00 2.2410E+00 

2S-HHMO R-IGD 5.1783E-02 8.7024E-02 1.4646E-02 2.9476E-01 
R-HV 3.8103E+00 2.7850E-01 3.9524E+00 3.0708E+00 

ZDT4 

Hammersley-
HHMO 

R-IGD 7.5237E-02 1.1067E-01 2.6950E-03 3.3565E-01 
R-HV 3.8548E+00 3.9606E-01 4.1364E+00 3.0184E+00 

2S-HHMO R-IGD 3.9029E-02 5.9179E-02 2.3182E-03 1.4170E-01 
R-HV 3.9780E+00 2.6260E-01 4.1557E+00 3.5366E+00 

ZDT6 

Hammersley-
HHMO 

R-IGD 1.6402E-01 3.5565E-01 4.5430E-03 1.0481E+00 
R-HV 3.9845E+00 9.4177E-01 4.4119E+00 1.6900E+00 

2S-HHMO R-IGD 4.2721E-01 4.8087E-01 4.5270E-03 1.0481E+00 
R-HV 3.2869E+00 1.2614E+00 4.4117E+00 1.6900E+00 

DTLZ2 
(3) 

Hammersley-
HHMO 

R-IGD 1.7577E-01 2.7187E-02 1.4053E-01 2.2024E-01 
R-HV 8.3484E+00 2.8217E-01 8.7483E+00 7.8824E+00 

2S-HHMO R-IGD 1.5455E-01 1.0498E-02 1.4206E-01 1.7545E-01 
R-HV 8.5108E+00 1.0904E-01 8.6657E+00 8.3163E+00 

DTLZ2 
(5) 

Hammersley-
HHMO 

R-IGD 2.4925E-01 6.2743E-02 1.6696E-01 3.5052E-01 
R-HV 2.8074E+01 2.1185E+00 3.0564E+01 2.4558E+01 

2S-HHMO R-IGD 1.2449E-01 1.2984E-02 1.0524E-01 1.4682E-01 
R-HV 3.2412E+01 6.8429E-01 3.3867E+01 3.1514E+01 

DTLZ2 
(10) 

Hammersley-
HHMO 

R-IGD 6.9418E-01 4.8060E-02 6.2572E-01 7.6212E-01 
R-HV 6.9518E+02 7.9710E+01 8.2674E+02 5.8797E+02 

2S-HHMO R-IGD 6.6107E-01 5.6263E-02 5.9793E-01 7.4668E-01 
R-HV 7.9489E+02 1.1116E+02 9.3754E+02 6.0796E+02 

DTLZ4 

Hammersley-
HHMO 

R-IGD 3.0354E-01 1.7250E-01 1.2119E-01 6.6433E-01 
R-HV 5.3975E+00 9.2517E-01 6.4506E+00 3.6348E+00 

2S-HHMO R-IGD 3.5796E-01 1.9453E-01 2.0025E-01 7.9367E-01 
R-HV 5.0842E+00 1.0435E+00 6.0512E+00 2.9208E+00 

DTLZ5 Hammersley-
HHMO 

R-IGD 2.6708E-01 1.2189E-01 1.7144E-01 4.9533E-01 
R-HV 4.6553E+00 7.6107E-01 5.3302E+00 3.4036E+00 
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2S-HHMO R-IGD 1.7907E-01 8.4864E-03 1.7058E-01 1.9950E-01 
R-HV 5.2561E+00 1.2368E-01 5.3982E+00 4.9791E+00 

DTLZ6 

Hammersley-
HHMO 

R-IGD 2.2123E-01 2.9337E-03 2.1328E-01 2.2335E-01 
R-HV 4.8731E+00 2.3638E-02 4.9365E+00 4.8526E+00 

2S-HHMO R-IGD 2.6441E-01 1.3624E-01 2.2080E-01 6.5216E-01 
R-HV 4.6582E+00 6.7807E-01 4.8771E+00 2.7284E+00 

DTLZ7 

Hammersley-
HHMO 

R-IGD 4.1824E+00 4.9758E-01 3.7050E+00 4.9456E+00 
R-HV 5.1489E+00 2.7809E+00 8.0539E+00 1.3751E+00 

2S-HHMO R-IGD 4.3374E+00 3.0916E-01 3.7504E+00 4.6299E+00 
R-HV 3.8415E+00 1.9395E+00 7.7278E+00 2.4022E+00 

The results in Table 5.9 show that in terms of the convergence and diversity, the 2S- 

HHMO algorithm has the lowest mean R-IGD and highest mean R-HV values in 

solving seven out of 12 problems. Hammersley-HHMO has produced the lowest mean 

R-IGD and highest mean R-HV values for four problems. Thus, 2S-HHMO has 

managed to achieve lowest mean R-IGD and highest mean R-HV values in solving 

60% of the problems while the Hammersley-HHMO achieved highest convergence 

and diversity in solving 40% of the problems. Appendix B displays the comparison of 

the mean values of R-IGD, R-HV and epsilon obtained by each algorithm in solving 

MOPs.  

5.7 Comparison of the Performance of 2S-ENDSHHMO with MOSI-Based 

Algorithms  

This section presents the results of integrating the proposed population update and 

parameter adjustment strategies and the two-step initial population generator method, 

with the HHMO algorithm to produce the 2S-ENDSHHMO algorithm. To have 

statistical validity, it is necessary to use an appropriate number of algorithms and test 

problems in the performance comparisons. In doing so, the performance of the 2S-

ENDSHHMO algorithm is compared with HHMO algorithm and eight other state-of-

the-art algorithms. In the first phase, the algorithms are used to solve a set of MOPs 
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and their performances are compared with the 2S-ENDSHHMO algorithm in terms of 

the convergence and diversity of the obtained solutions. In the second phase, the 

performance 2S-ENDSHHMO algorithm is compared with the results of each 

algorithm based on the original publications. Appendix B.1 shows the distribution of 

non-dominated solutions obtained by the 2S-ENDSHHMO, HHMO and other 

algorithms. 

 

The obtained distribution for the non-dominated solutions indicates that the 2S-

ENDSHHMO algorithm can better handle concave, disconnected, multimodal, and 

degenerated MOPs. However, the distribution does not show how much better. 

Therefore, different performance metrics were used to quantitatively measure the 

performance of the algorithms. The mean, SD, best, worst R-IGD, R-HV and epsilon 

values of the non-dominated solutions obtained by each algorithm on all MOPs can be 

found in Appendix B.2.  

 

Based on the mean R-IGD, the 2S-ENDSHHMO algorithm shows competitive 

performance compared to the other algorithms in solving eight out of 12 problems, 

which represents 66.7% of the problems. The lower value of R-IGD indicates that the 

2S-ENDSHHMO algorithm have better convergence toward the true Pareto front in 

solving most MOPs compared to other algorithms. The second best convergence 

achieved by the R-NSGA-II algorithm, which have lower mean R-IGD values in 

solving 4 out of 12, which represents 33.3% of the problems. According to the mean 

epsilon values, the 2S-ENDSHHMO algorithm achieved lower epsilon values in 
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solving 50% of the problems. The second best performance achieved by the R-NSGA-

II algorithm which have lowest epsilon values in solving 25% of the problems. 

 

Based on the mean R-HV, the R-NSGA-II algorithm have highest R-HV values in 

solving 58.3% of the MOPs compared to other algorithms. The second best diversity 

achieved by the 2S-ENDSHHMO algorithm, in solving 41.6% of the MOPs. Although 

the R-NSGA-II algorithm outperformed the 2S-ENDSHHMO algorithm in terms of 

R-HV values, 2S-ENDSHHMO algorithm showed superior performance in terms of 

R-IGD and epsilon metrics. Figure 5.4 shows the average of R-IGD, R-HV and epsilon 

ranks obtained by the 2S-ENDSHHMO, MOGWO, MOGOA, MODA, MOSSA, 

NSGSA, NSABC and R-NSGA-II algorithms, with respect to each MOPs. The ranks 

are calculated based on the results in Appendix C. 

 
Figure 5.4. Average of R-IGD, R-HV and epsilon ranks obtained by the 2S-
ENDSHHMO, MOGWO, MOGOA, MODA, MOSSA, NSGSA, NSABC and R-
NSGA-II algorithms, in solving MOPs 
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In Figure 5.4, the striped and solid and dotted bars show the average of R-IGD, R-HV 

and epsilon ranks, respectively. The lower rank indicates better performance. Based 

on the results, the 2S-ENDSHHMO algorithm has achieved lowest rank in terms of R-

IGD (1.33%) and epsilon (1.9%), in solving all MOPs.  

In terms of R-HV, 2S-ENDSHHMO algorithm has achieved the lower rank of 2.4% 

and the second best performance achieved by NSABC with rank 2.5%. Based on the 

R-IGD and epsilon metrics, the second best performance achieved by R-NSGA-II with 

rank 2.5% and 2.3%, respectively.  

 

In general, the results imply that the 2S-ENDSHHMO algorithm outperforms most of 

other algorithms, in terms of convergence toward the Pareto front and diversity of the 

non-dominated solution, in solving more than half of the MOPs. This indicates that the 

2S-ENDSHHMO algorithm has a stronger ability to jump out of local optima and 

higher efficiency in solving complex MOPs with different PFs. This is due to the 

strategies used in the algorithm which show a balanced trade-off between exploration 

and exploitation, and ability in maintaining diversity of population. The general results 

of comparing the 2S-ENDSHHMO algorithm with other algorithms in terms of 

convergence and diversity by using mean R-IGD, R-HV and epsilon metrics are 

presented in Table 5.10. 
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Table 5.10 
ZDT and DTLZ2 MOPs results based on the mean R-IGD, R-HV and epsilon values 

MOP Algorithm 

2S-ENDSHHMO 

MOP Algorithm 

2S-ENDSHHMO 

R
-I

G
D

 

R
-H

V
 

E
ps

ilo
n 

R
-I

G
D

 

R
-H

V
 

E
ps

ilo
n 

ZDT1 

HHMO + + + 

DTLZ2 
(5) 

HHMO + + + 
MOGWO + + + MOGWO + + + 
MOGOA + + + MOGOA + + + 
MODA + + + MODA + + + 
MOSSA + + + MOSSA + + + 
NSGSA + + + NSGSA + + + 
NSABC + + + NSABC + + + 
R-NSGA-II - - + R-NSGA-II + + - 

ZDT2 

HHMO + + + 

DTLZ2 
(10) 

HHMO + + + 
MOGWO + + + MOGWO + + + 
MOGOA + + + MOGOA + + + 
MODA + + + MODA + + + 
MOSSA + + + MOSSA + + + 
NSGSA + + + NSGSA + + + 
NSABC + + + NSABC + + + 
R-NSGA-II - - + R-NSGA-II - - - 

ZDT3 

HHMO + + + 

DTLZ4 

HHMO + + + 
MOGWO + + + MOGWO + + + 
MOGOA + + + MOGOA + + + 
MODA + + + MODA + + + 
MOSSA + + + MOSSA + + + 
NSGSA + + + NSGSA + + + 
NSABC + + + NSABC + + + 
R-NSGA-II + - + R-NSGA-II + - + 

ZDT4 

HHMO + + + 

DTLZ5 

HHMO + + + 
MOGWO + + + MOGWO + + + 
MOGOA + + + MOGOA + + + 
MODA + + + MODA + + + 
MOSSA + + + MOSSA + + + 
NSGSA + + + NSGSA + + + 
NSABC + + + NSABC + + - 
R-NSGA-II + + + R-NSGA-II + - + 

ZDT6 

HHMO + + + 

DTLZ6 

HHMO + + + 
MOGWO + + + MOGWO + + + 
MOGOA + + + MOGOA + + + 
MODA + + + MODA + + + 
MOSSA + + + MOSSA + + + 
NSGSA + + + NSGSA + + + 
NSABC + + + NSABC + + - 
R-NSGA-II + + - R-NSGA-II + - + 

DTLZ2 
(3) 

HHMO + + + 

DTLZ7 

HHMO + + + 
MOGWO + + + MOGWO + + + 
MOGOA + + + MOGOA + + + 
MODA + + + MODA + + + 
MOSSA + + + MOSSA + + + 
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NSGSA + + + NSGSA + + + 
NSABC + + + NSABC + + - 
R-NSGA-II + + + R-NSGA-II - + + 

In Table 5.10, green cells (+) denote cases where the 2S-ENDSHHMO algorithm 

statistically is better than the other algorithms. Cells marked in red cells (-) are cases 

where the algorithm yielded better results when compared to the 2S-ENDSHHMO 

algorithm.  

 

For further evaluate the performance of the 2S-ENDSHHMO algorithm, it has been 

executed according to the parameters, performance metrics and MOPs used in the 

original publication of each algorithm, namely MOGWO (Mirjalili et al., 2016), 

MODA (Mirjalili, 2016), MOGOA (Mirjalili et al., 2018), MOSSA (Mirjalili et al., 

2017), NSABC algorithm (Kishor et al., 2016) and R-NSGA-II (Deb & Sundar, 2006; 

Filatovas, Lančinskas, Kurasova, & Žilinskas, 2017) algorithms.  

 

The  metrics that have been used to measure the performance of the algorithms are  

IGD, GD, maximum spread (MS) and spacing (SP) metrics (Mirjalili et al., 2016). The 

MS and SP metrics are used to measure the diversity of the obtained non-dominated 

solutions., while the convergence is measured by using the GD and IGD metrics. Table 

5.11 shows the performance metrics, parameter configuration and MOPs used with 

each algorithm. 
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Table 5.11 
Summary of the performance metrics, parameters configurations and MOPs based 
on each publication 

Algorithm 
Reference MOP Population 

size MaxIteration  Metric Number 
of Runs 

MOGWO 
Mirjalili et al. (2016) 

UF1-
UF10 100 3000 

 

IGD 
MS 
SP 

10 

MODA 
Mirjalili (2016)  

ZDT1, 
ZDT2, 
ZDT3 

30 500 IGD 10 

MOGOA 
Mirjalili et al. (2018) 

UF1- 
UF9 30 500 

IGD 
MS 
SP 

10 

MOSSA 
Mirjalili et al. (2017), 

UF1- 
UF10 60 1000 IGD 30 

NSABC 
Kishor et al. (2016) 

UF1 
UF10 100 3000 IGD 30 

R-NSGA-II 
Filatovas et al. (2017) 

ZDT1, 
ZDT2, 
ZDT3, 
ZDT4, 
ZDT6 

100 100 GD 

100 DTLZ2, 
DTLZ4, 
DTLZ5, 
DTLZ6 

150 150 HV 

 

Comparisons of results have been performed. Tables 5.12-5.17 show the values of 

performance metrics in solving MOPs, with respect to each algorithm.  

Table 5.12 
2S-ENDSHHMO vs. MOGWO in solving UF1, UF2, UF3, UF4, UF5, UF6, UF7, 
UF8, UF9 and UF10 MOPs  

MOP Algorithm Metric Mean SD Best Worst 

UF1 

2S-ENDSHHMO 
IGD 0.0008 0.0001 0.0006 0.0010 
SP 0.0148 0.0052 0.0061 0.0271 
MS 1.2280 0.0462 1.1610 1.3660 

MOGWO 
IGD 0.1144 0.0195 0.0802 0.1577 
SP 0.0124 0.0054 0.0146 0.0008 
MS 0.9268 0.9327 0.0688 0.8180 

UF2 

2S-ENDSHHMO 
IGD 0.0008 0.0001 0.0006 0.0010 
SP 0.0136 0.0031 0.0082 0.0206 
MS 1.3380 0.0775 1.2200 1.4770 

MOGWO 
IGD 0.0583 0.0074 0.0498 0.0732 
SP 0.0111 0.0095 0.0036 0.0076 
MS 0.9097 0.9104 0.0287 0.8470 

UF3 2S-ENDSHHMO IGD 0.0019 0.0002 0.0015 0.0024 
SP 0.0362 0.0263 0.0069 0.1119 
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MS 1.4230 0.2033 1.1230 1.8420 

MOGWO 
IGD 0.1223 0.0107 0.1049 0.1437 
SP 0.0459 0.0486 0.0145 0.0155 
MS 0.8720 0.8744 0.0056 0.8599 

UF4 

2S-ENDSHHMO 
IGD 0.0008 0.0000 0.0008 0.0008 
SP 0.0109 0.0074 0.0053 0.0348 
MS 1.4150 0.0046 1.4090 1.4270 

MOGWO 
IGD 0.0587 0.0005 0.0580 0.0594 
SP 0.0097 0.0086 0.0039 0.0058 
MS 0.9424 0.0009 0.9433 0.9410 

UF5 

2S-ENDSHHMO 
IGD 0.0665 0.0098 0.0507 0.0886 
SP 0.0310 0.0181 0.0093 0.0728 
MS 1.5350 0.1986 1.2840 1.9950 

MOGWO 
IGD 0.7971 0.3786 0.4680 1.7386 
SP 0.1523 0.0878 0.1625 0.0084 
MS 0.3950 0.1749 0.6104 0.0301 

UF6 

2S-ENDSHHMO 
IGD 0.0034 0.0006 0.0024 0.0045 
SP 0.0228 0.0315 0.0038 0.1789 
MS 1.1380 0.2228 0.8979 2.1000 

MOGWO 
IGD 0.2794 0.1045 0.1934 0.5504 
SP 0.0145 0.0111 0.0125 0.0019 
MS 0.6736 0.1232 0.8149 0.3884 

UF7 

2S-ENDSHHMO 
IGD 0.0032 0.0011 0.0009 0.0043 
SP 0.0154 0.0187 0.0048 0.0849 
MS 1.1090 0.3648 0.8078 2.0600 

MOGWO 
IGD 0.1604 0.1391 0.0628 0.4014 
SP 0.0082 0.0055 0.0086 0.0003 
MS 0.8013 0.3087 0.9875 0.0225 

UF8 

2S-ENDSHHMO 
IGD 0.0017 0.0000 0.0016 0.0018 
SP 0.0047 0.0008 0.0037 0.0062 
MS 1.0060 0.0682 0.9167 1.1090 

MOGWO 
IGD 2.0578 1.1455 0.4613 3.8789 
SP 0.0069 0.0047 0.0047 0.0037 
MS 0.4457 0.1857 0.8638 0.1886 

UF9 

2S-ENDSHHMO 
IGD 0.0020 0.0002 0.0016 0.0024 
SP 0.0044 0.0008 0.0034 0.0063 
MS 1.0140 0.1293 0.7491 1.4180 

MOGWO 
IGD 0.1917 0.0925 0.1291 0.4479 
SP 0.0174 0.0183 0.0063 0.0065 
MS 0.8399 0.1976 0.9375 0.2875 

UF10 

2S-ENDSHHMO 
IGD 0.0023 0.0003 0.0017 0.0027 
SP 0.0135 0.0092 0.0043 0.0428 
MS 0.9923 0.2121 0.7186 1.7780 

MOGWO 
IGD 3.5945 3.4883 1.0431x4 12.9564 
SP 0.0252 0.0150 0.0154 0.0000 
MS 0.2972 0.3465 0.9283 0.0319 

Table 5.13 
2S-ENDSHHMO vs. MOGOA in solving UF1, UF2, UF3, UF4, UF5, UF6, UF7, 
UF8, UF9 and UF10 MOPs  

MOP Algorithm Metric Mean SD Best Worst 

UF1 2S-ENDSHHMO 
IGD 0.0004 0.0001 0.0004 0.0006 
SP 0.0079 0.0037 0.0023 0.0146 
MS 1.1518 0.0282 1.1177 1.1929 

MOGOA IGD 0.1811 0.0250 0.1430 0.1811 



 

 184 

SP 0.0012 0.0011 0.0000 0.0012 
MS 0.7270 0.1507 0.9120 0.7270 

UF2 

2S-ENDSHHMO 
IGD 0.0004 0.0000 0.0004 0.0005 
SP 0.0097 0.0033 0.0051 0.0149 
MS 1.2046 0.0949 1.1315 1.4069 

MOGOA 
IGD 0.0959 0.0386 0.0488 0.0959 
SP 0.0007 0.0011 0.0000 0.0007 
MS 0.8845 0.0353 0.9360 0.8845 

UF3 

2S-ENDSHHMO 
IGD 0.0010 0.0001 0.0008 0.0013 
SP 0.0111 0.0051 0.0040 0.0192 
MS 1.1164 0.0696 1.0177 1.2335 

MOGOA 
IGD 0.2380 0.0662 0.1682 0.2380 
SP 0.0019 0.0024 0.0000 0.0019 
MS 0.1100 0.7060 0.4026 0.1100 

UF4 

2S-ENDSHHMO 
IGD 0.0005 0.0001 0.0004 0.0006 
SP 0.0122 0.0185 0.0047 0.0647 
MS 1.4060 0.0054 1.4000 1.4186 

MOGOA 
IGD 0.0702 0.0048 0.0639 0.0702 
SP 0.0001 0.0002 0.0000 0.0001 
MS 0.9050 0.0139 0.9310 0.9050 

UF5 

2S-ENDSHHMO 
IGD 0.1599 0.0266 0.1260 0.2023 
SP 0.0465 0.0837 0.0085 0.2799 
MS 1.3437 0.1943 1.0214 1.6659 

MOGOA 
IGD 1.1559 0.1661 0.8978 1.1559 
SP 0.0007 0.0005 0.0001 0.0007 
MS 0.2379 0.1131 0.4894 0.2379 

UF6 

2S-ENDSHHMO 
IGD 0.0020 0.0002 0.0017 0.0025 
SP 0.0181 0.0112 0.0057 0.0364 
MS 1.0662 0.2298 0.8901 1.5261 

MOGOA 
IGD 0.7771 0.2769 0.4939 0.7771 
SP 0.0003 0.0004 0.0000 0.0003 
MS 0.1294 0.4600 0.0695 0.1294 

UF7 

2S-ENDSHHMO 
IGD 0.0011 0.0002 0.0007 0.0013 
SP 0.0064 0.0039 0.0035 0.0170 
MS 0.8998 0.1138 0.6866 1.0897 

MOGOA 
IGD 0.1726 0.0633 0.1150 0.1726 
SP 0.0001 0.0001 0.0000 0.0001 
MS 0.8460 0.0792 0.9570 0.8460 

UF8 

2S-ENDSHHMO 
IGD 0.0018 0.0002 0.0016 0.0021 
SP 0.0072 0.0030 0.0026 0.0127 
MS 1.0460 0.1105 0.8264 1.2318 

MOGOA 
IGD 0.2805 0.0749 0.2154 0.2805 
SP 0.0175 0.0085 0.0069 0.0175 
MS 0.4417 0.1586 0.6342 0.4417 

UF9 

2S-ENDSHHMO 
IGD 0.0027 0.0003 0.0021 0.0029 
SP 0.0080 0.0023 0.0045 0.0104 
MS 0.9440 0.2261 0.6343 1.4248 

MOGOA 
IGD 0.4885 0.1445 0.3336 0.4885 
SP 0.0234 0.0041 0.0172 0.0234 
MS 0.1635 0.6424 0.0677 0.1635 
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Table 5.14 
2S-ENDSHHMO vs. NSABC in solving UF1, UF2, UF3, UF4, UF5, UF6, UF7, 
UF8, UF9 and UF10 MOPs  

MOP Algorithm Metric Mean SD Best Worst 

UF1 2S-ENDSHHMO IGD 0.0008 0.0001 0.0006 0.0008 
NSABC IGD 0.0085 0.0036 0.0035 0.0085 

UF2 2S-ENDSHHMO IGD 0.0008 0.0001 0.0006 0.0008 
NSABC IGD 0.0070 0.0008 0.0059 0.0070 

UF3 2S-ENDSHHMO IGD 0.0019 0.0002 0.0015 0.0019 
NSABC IGD 0.0482 0.0311 0.0081 0.0482 

UF4 2S-ENDSHHMO IGD 0.0008 0.0000 0.0008 0.0008 
NSABC IGD 0.0220 0.0197 0.0266 0.0220 

UF5 2S-ENDSHHMO IGD 0.0665 0.0098 0.0507 0.0665 
NSABC IGD 1.8896 0.8852 0.8137 1.8896 

UF6 2S-ENDSHHMO IGD 0.0034 0.0006 0.0024 0.0034 
NSABC IGD 0.1836 0.1499 0.0258 0.1836 

UF7 2S-ENDSHHMO IGD 0.0032 0.0011 0.0009 0.0032 
NSABC IGD 0.0146 0.0315 0.0037 0.0146 

UF8 2S-ENDSHHMO IGD 0.0017 0.0000 0.0016 0.0017 
NSABC IGD 0.0502 0.0123 0.0522 0.0502 

UF9 2S-ENDSHHMO IGD 0.0020 0.0002 0.0016 0.0020 
NSABC IGD 0.0608 0.0619 0.0345 0.0608 

UF10 2S-ENDSHHMO IGD 0.0023 0.0003 0.0017 0.0023 
NSABC IGD 0.1167 0.1156 0.0542 0.1167 

Table 5.15 
2S-ENDSHHMO vs. MOSSA in solving UF1, UF2, UF3, UF4, UF5, UF6, UF7, 
UF8, UF9 and UF10 MOPs  

MOP Algorithm Metric Mean SD Best Worst 

UF1 2S-ENDSHHMO IGD 0.0003 0.0000 0.0002 0.0004 
MOSSA IGD 0.1024 0.0062 0.0897 0.1093 

UF2 2S-ENDSHHMO IGD 0.0003 0.0000 0.0002 0.0004 
MOSSA IGD 0.0576 0.0048 0.0479 0.0657 

UF3 2S-ENDSHHMO IGD 0.0008 0.0001 0.0006 0.0011 
MOSSA IGD 0.2628 0.0727 0.1711 0.4005 

UF4 2S-ENDSHHMO IGD 0.0003 0.0000 0.0003 0.0003 
MOSSA IGD 0.0902 0.004 0.0855 0.0984 

UF5 2S-ENDSHHMO IGD 0.0975 0.0195 0.0720 0.1451 
MOSSA IGD 0.6659 0.0986 0.4495 0.7914 

UF6 2S-ENDSHHMO IGD 0.0015 0.0002 0.0011 0.0020 
MOSSA IGD 0.1903 0.0457 0.1163 0.2666 

UF7 2S-ENDSHHMO IGD 0.0010 0.0004 0.0003 0.0014 
MOSSA IGD 0.069 0.0059 0.061 0.0796 

UF8 2S-ENDSHHMO IGD 0.0017 0.0001 0.0016 0.0018 
MOSSA IGD 0.2743 0.0447 0.2249 0.3794 

UF9 2S-ENDSHHMO IGD 0.0023 0.0002 0.0020 0.0027 
MOSSA IGD 0.4441 0.1084 0.2849 0.6422 

UF10 2S-ENDSHHMO IGD 0.0021 0.0004 0.0017 0.0027 
MOSSA IGD 0.9769 0.2189 0.6082 1.3142 
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Table 5.16 
2S-ENDSHHMO vs. MODA in solving the ZDT1, ZDT2, ZDT3 MOPs  

MOP Algorithm Metric Mean SD Best Worst 

ZDT1 2S-ENDSHHMO IGD 0.0006 0.0000 0.0006 0.0006 
MODA IGD 0.00612 0.002863 0.0024 0.0096 

ZDT2 2S-ENDSHHMO IGD 0.0006 0.0003 0.0005 0.0015 
MODA IGD 0.00398 0.00160424 0.0023 0.006 

ZDT3 2S-ENDSHHMO IGD 0.0016 0.0000 0.0016 0.0016 
MODA IGD 0.02794 0.004021 0.02 0.0304 

Table 5.17 
2S-ENDSHHMO vs. R-NSGA-II in solving the ZDT1, ZDT2, ZDT3, ZDT4, ZDT6, 
DTLZ2 DTLZ4, DTLZ5 and DTLZ6 MOPs   

MOP Algorithm Metric Mean 

ZDT1 
2S-ENDSHHMO GD 1.62E-04 

HV 5.19E-01 

R-NSGA-II GD 4.54E-04 
HV 1.13E-01 

ZDT2 
2S-ENDSHHMO GD 2.73E-03 

HV 2.77E-01 

R-NSGA-II GD 1.05E-03 
HV 2.74E-02 

ZDT3 
2S-ENDSHHMO GD 4.39E-03 

HV 6.31E-01 

R-NSGA-II GD 8.62E-03 
HV 3.61E-02 

ZDT4 
2S-ENDSHHMO GD 1.15E-04 

HV 4.86E-01 

R-NSGA-II GD 5.37E-02 
HV 1.13E-01 

ZDT6 
2S-ENDSHHMO GD 3.74E-07 

HV 2.44E-01 

R-NSGA-II GD 3.41E-04 
HV 7.28E-02 

DTLZ2 (3) 
2S-ENDSHHMO GD 1.56E-03 

HV 1.68E-01 

R-NSGA-II GD 4.92E-03 
HV 3.61E-03 

DTLZ4 
2S-ENDSHHMO GD 6.95E-03 

HV 4.26E-01 

R-NSGA-II GD 2.52E-03 
HV 4.43E-04 

DTLZ5 
2S-ENDSHHMO GD 5.73E-04 

HV 2.48E-01 

R-NSGA-II GD 5.32E-04 
HV 1.58E-03 

DTLZ6 
2S-ENDSHHMO GD 4.59E-07 

HV 1.48E-01 

R-NSGA-II GD 9.87E-04 
HV 2.98E-02 
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In general, the results in Tables 5.12-5.17 support the results of experiment in the first 

phase. The 2S-ENDSHHMO showed superior performance compared to each 

algorithm in solving different MOPs and based on different performance metrics.  

 

Compared to the MOGWO, the 2S-ENDSHHMO algorithm showed lower mean IGD 

and higher MS values in solving all UF problems. The lower value of IGD indicates 

the 2S-ENDSHHMO algorithm have better convergence, while the higher MS 

indicates the 2S-ENDSHHMO algorithm have better diversity compared to the 

MOGWO. Based on the SP metric, the 2S-ENDSHHMO algorithm achieved lower 

values in solving 50% of the problems.  

Although, the MOGOA achieved lower SP values in solving 7 out of 9 problems, 

which represents 77.9% of the problems, the 2S-ENDSHHMO algorithm showed 

lower mean IGD and higher MS values in solving all UF problems. 

 

Compared to the NSABC, MOSSA and MODA, the 2S-ENDSHHMO algorithm 

showed lower mean IGD values in solving all UF problems. The lower value of IGD 

indicates the 2S-ENDSHHMO algorithm have better convergence compared to the 

NSABC, MOSSA and MODA. Compared to the R-NSGA-II, the 2S-ENDSHHMO 

algorithm showed lower mean GD values in solving seven out of nine, which 

represents 77.8% of the problems. However, based on the HV values, the 2S-

ENDSHHMO algorithm showed higher HV values in solving all problems. 
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The general results indicate that the integration of the proposed population update and 

parameter adjustment strategies and the two-step initial population method with 

HHMO algorithm has improved its performance in solving most MOPs. The 

population update strategy includes the non-dominated sorting, which effectively 

reduces the number of non-dominated solutions in the high-dimensional space, 

enhances the selection pressure of the non-dominated solutions and improves the 

convergence of the algorithm. The parameter adjustment strategy helped improve 

exploration and exploitation of the algorithm, especially in solving MOPs with many 

objectives. The two-step initial population generator method initializes the population 

with candidate solutions, evenly distributed in the search space. 

 

To statically measure the degree of differences in terms of convergence and diversity 

between the 2S-ENDSHHMO and other algorithms, the Wilcoxon rank sum test has 

been utilized. The p-values of mean R-IGD, R-HV and epsilon metrics in solving 

MOPs were calculated to perform pairwise comparison between the 2S-ENDSHHMO 

and each algorithm. The desired level of significance () is set to 0.05 (Roque, Fontes, 

& Fontes, 2017; Wang & Sun, 2018). The assumption is that there is no difference 

between the performance of the two algorithms. This represents the null hypothesis 

(Derrac et al., 2011). Table 5.18 shows the p-value obtained by 2S-ENDSHHMO 

compared to each algorithm.  
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Table 5.18   
p-values of the Wilcoxon rank sum test on R-IGD,R-HV and epsilon values of 2S-
ENDSHHMO and other algorithms 

MOP Algorithm 
 2S-ENDSHHMO 
R-IGD R-HV Epsilon 

H p-value H p-value H p-value 

ZDT1 

HHMO + 2.57E-02 + 1.83E-04 + 1.83E-04 
MOGWO + 1.83E-04 + 1.83E-04 + 1.83E-04 
MOGOA + 2.17E-05 + 2.17E-05 + 2.17E-05 
MODA + 2.17E-05 + 2.17E-05 + 2.17E-05 
MOSSA + 2.17E-05 + 2.17E-05 + 2.17E-05 
NSGSA + 1.83E-04 - 7.57E-02 + 1.83E-04 
NSABC - 1.00E+00 - 3.07E-01 - 8.50E-01 

R-NSGA-II + 2.20E-03 - 8.50E-01 - 5.21E-01 

ZDT2 

HHMO + 1.83E-04 + 1.83E-04 + 1.83E-04 
MOGWO + 1.83E-04 + 1.83E-04 + 1.83E-04 
MOGOA + 1.83E-04 + 2.17E-05 + 1.83E-04 
MODA + 1.83E-04 + 2.17E-05 + 1.83E-04 
MOSSA + 1.83E-04 + 2.17E-05 + 1.83E-04 
NSGSA + 1.79E-04 + 7.57E-02 + 1.79E-04 
NSABC - 8.90E-02 - 3.07E-01 + 1.73E-02 

R-NSGA-II + 1.71E-03 - 8.50E-01 - 3.45E-01 

ZDT3 

HHMO + 4.57E-05 + 9.14E-05 + 9.14E-05 
MOGWO + 1.83E-04 + 3.30E-04 + 3.30E-04 
MOGOA + 1.83E-04 + 1.73E-04 + 1.83E-04 
MODA + 1.83E-04 + 6.39E-05 + 1.83E-04 
MOSSA + 1.83E-04 + 1.73E-04 + 1.83E-04 
NSGSA + 1.83E-04 + 1.83E-04 + 1.83E-04 
NSABC + 1.83E-04 + 1.83E-04 + 1.83E-04 

R-NSGA-II + 1.31E-03 + 2.83E-03 + 2.83E-03 

ZDT4 

HHMO - 7.20E-01 + 2.17E-05 + 2.17E-05 
MOGWO + 1.83E-04 + 2.83E-03 + 1.83E-04 
MOGOA + 1.83E-04 + 6.39E-05 + 1.83E-04 
MODA + 1.83E-04 + 6.39E-05 + 1.83E-04 
MOSSA + 1.83E-04 + 1.83E-04 + 1.83E-04 
NSGSA + 2.83E-03 + 2.57E-02 + 1.83E-04 
NSABC + 2.83E-03 + 2.57E-02 + 1.83E-04 

R-NSGA-II + 2.57E-02 - 6.78E-01 + 2.57E-02 

ZDT6 

HHMO + 1.82E-04 + 1.82E-04 + 1.82E-04 
MOGWO + 1.83E-04 + 1.83E-04 + 1.83E-04 
MOGOA + 1.83E-04 + 1.83E-04 + 1.83E-04 
MODA + 1.83E-04 + 1.49E-04 + 1.83E-04 
MOSSA + 1.83E-04 + 1.83E-04 + 1.83E-04 
NSGSA + 1.82E-04 + 1.82E-04 + 1.82E-04 
NSABC + 1.83E-04 + 1.83E-04 + 1.83E-04 

R-NSGA-II - 6.78E-01 - 1.86E-01 - 1.62E-01 

DTLZ2 
(3) 

HHMO + 1.83E-04 + 1.83E-04 + 1.83E-04 
MOGWO + 2.57E-02 - 1.00E+00 + 2.83E-03 
MOGOA + 1.83E-04 + 1.83E-04 + 1.83E-04 
MODA + 1.83E-04 + 1.83E-04 + 1.83E-04 
MOSSA + 1.83E-04 - 1.40E-01 + 2.46E-04 
NSGSA + 1.83E-04 + 1.83E-04 + 1.83E-04 
NSABC + 1.83E-04 - 4.27E-01 + 1.83E-04 

R-NSGA-II - 9.10E-01 - 6.78E-01 + 9.11E-03 
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DTLZ2 
(5) 

HHMO + 1.83E-04 + 1.83E-04 + 1.83E-04 
MOGWO + 1.83E-04 + 1.83E-04 + 1.83E-04 
MOGOA + 1.83E-04 + 1.83E-04 + 1.83E-04 
MODA + 3.30E-04 - 1.40E-01 + 1.83E-04 
MOSSA + 1.83E-04 + 2.57E-02 + 1.83E-04 
NSGSA + 1.83E-04 + 1.83E-04 + 1.83E-04 
NSABC - 8.90E-02 + 1.83E-04 + 1.40E-02 

R-NSGA-II + 1.83E-04 + 1.83E-04 + 2.83E-03 

DTLZ2 
(10) 

HHMO + 1.83E-04 + 1.83E-04 + 1.83E-04 
MOGWO + 1.83E-04 + 1.83E-04 + 1.83E-04 
MOGOA + 1.83E-04 + 1.83E-04 + 1.83E-04 
MODA + 1.83E-04 + 1.83E-04 + 1.83E-04 
MOSSA + 1.83E-04 + 1.83E-04 + 1.83E-04 
NSGSA + 1.83E-04 + 1.83E-04 + 1.83E-04 
NSABC + 1.83E-04 + 2.57E-02 - 1.40E-01 

R-NSGA-II + 1.23E-03 + 1.03E-04 + 7.20E-04 

DTLZ4 

HHMO + 1.03E-04 + 1.03E-04 + 1.03E-04 
MOGWO - 2.12E-01 - 8.90E-02 - 8.50E-01 
MOGOA + 1.83E-04 + 1.83E-04 + 1.83E-04 
MODA + 1.83E-04 + 1.83E-04 + 1.83E-04 
MOSSA + 1.83E-04 + 1.83E-04 + 1.83E-04 
NSGSA + 1.71E-03 + 1.01E-03 + 1.01E-03 
NSABC + 1.83E-04 + 1.83E-04 + 1.83E-04 

R-NSGA-II + 1.83E-04 + 1.83E-04 + 1.83E-04 

DTLZ5 

HHMO + 1.83E-04 + 1.83E-04 + 1.83E-04 
MOGWO + 2.83E-03 + 2.20E-03 + 1.83E-04 
MOGOA + 2.46E-04 + 3.12E-02 + 4.52E-02 
MODA + 1.83E-04 + 2.46E-04 + 5.80E-03 
MOSSA + 2.57E-02 - 9.10E-01 + 2.57E-02 
NSGSA + 1.83E-04 + 1.83E-04 + 1.83E-04 
NSABC + 1.83E-04 + 1.83E-04 + 1.83E-04 

R-NSGA-II + 2.83E-03 + 2.83E-03 + 2.83E-03 

DTLZ6 

HHMO + 1.83E-04 + 1.83E-04 + 1.31E-03 
MOGWO + 1.83E-04 + 1.83E-04 + 1.83E-04 
MOGOA - 1.40E-01 - 1.40E-01 - 4.73E-01 
MODA + 1.83E-04 + 1.11E-04 + 1.83E-04 
MOSSA + 1.83E-04 + 1.83E-04 + 1.83E-04 
NSGSA + 1.83E-04 + 1.83E-04 + 1.83E-04 
NSABC + 1.83E-04 + 1.83E-04 + 1.83E-04 

R-NSGA-II + 1.83E-04 + 1.83E-04 + 1.83E-04 

DTLZ7 

HHMO + 1.83E-04 + 1.83E-04 + 1.83E-04 
MOGWO - 4.73E-01 - 1.00E+00 - 4.73E-01 
MOGOA + 1.83E-04 + 1.49E-04 + 1.83E-04 
MODA + 1.83E-04 + 6.39E-05 + 1.83E-04 
MOSSA + 1.83E-04 + 1.83E-04 + 1.83E-04 
NSGSA + 2.83E-03 + 2.57E-02 + 2.83E-03 
NSABC + 1.83E-04 + 1.83E-04 + 1.83E-04 

R-NSGA-II + 1.83E-04 + 1.83E-04 + 1.83E-04 

In Table 5.18, the p-values less than 0.05 are marked with sign (+). The sign "+" and 

"-" indicate that the 2S-ENDSHHMO algorithm is superior to or inferior to other 

algorithm, respectively. According to the results, the approximation of 2S-
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ENDSHHMO is significantly different than the other algorithm. Furthermore, the null 

hypothesis is rejected in most MOPs, denoted by the sign (+), which indicates that the 

2S-ENDSHHMO outperforms the other algorithm with p-value.  

5.8 Engineering Applications 

The performance of the proposed 2S-ENDSHHMO algorithm is further evaluated 

using constraint engineering MOPs, namely, i) welded beam, ii) four-bar truss design, 

and iii) OPF problems. To solve the constrained optimization problems, the proposed 

2S-ENDSHHMO algorithm is tested according to several studies that use penalty 

functions to handle constraints (Bassen et al., 2017; bin Mohd Zain et al., 2018; Farnad 

& Jafarian, 2018; Kohli & Arora, 2018; Savsani, 2014; Tawhid & Savsani, 2018a).  

The obtained results of the 2S-ENDSHHMO algorithm are compared with the results 

of other algorithms using R-IGD and R-HV performance metrics.  

5.9 Experimental Design for Engineering problems 

In solving the engineering problems, the performance of the 2S-ENDSHHMO 

algorithm is compared with the MOGWO, MOGOA, MODA, MOSSA, NSABC, 

NSGSA and R-NSGA-II algorithms. For each algorithm, the MaxIteration is set at 

100, with a population size of 100 individuals. The control parameters of each 

algorithm are set as in Table 5.19. Each algorithm is run 10 times, producing 10 results. 

The mean, SD, best and worst R-IGD, R-HV and epsilon values of the obtained 

solutions are calculated for all algorithms. The algorithm stops if the number of 

iterations exceeds MaxIteration.  
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Table 5.19 
Parameter settings of the optimization algorithms 

Algorithm Parameter Value 

MOGOA 
Mirjalili et al. (2018) 

cMax 1 
cMin 0.00001 
Archive size 100 

MODA 
Mirjalili (2016) 

s: separation weight, 
a: alignment weight, 
c: cohesion weight, 
f: food factor, 
e: enemy factor, 
w: enemy factor 

(Mirjalili, 
2016) 

Archive size 100 
MOSSA 
Mirjalili et al. (2017) Archive size 100 

NSABC 
Kishor et al. (2016) Archive size 100 

NSGSA 
Zellagui et al. (2017) 

Percent of elitism 0.5 
Coefficient of search interval 2.5 
Sign mutation probability 0.9 
Uniform mutation probability 0.01 
Reordering mutation probability 0.4 
Initial value of inertial coefficient 
(W0) 

0.9 

Final value of inertial coefficient 
(W1) 

0.5 

Archive size 100 
HHMO 
DeBruyne and Kaur 
(2016) 

Radius 5 

R-NSGA-II 
Deb et al. (2002a) 

Crossover factor 
Mutation factor 

0.9 
1/N 

5.9.1 Welded Beam Optimization Problem 

The goal of optimizing the welded beam design is to find the best values for the design 

variables that minimize the end deflection and fabrication cost of the design. Apart 

from the parameter in Table 5.19, the reference points for the 2S-ENDSHHMO, 

HHMO and R-NSGA-II algorithms are set as (1.9,0.01); (9,0.0025); (37, 1.0000e-05). 

The optimization phases of the welded beam design are shown in Figure 5.5. 
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Figure 5.5. Optimization phases of the welded beam design MOP 

Figure 5.5 shows that the welded beam design consists of four design variables (h, l, t, 

b); to find the best combination of these design variables, the optimization process 

starts by initializing the population with a set of potential solutions with four 

dimensions. Each algorithm is iterated several times (depending upon the number of 

MaxIteration); when the termination condition is met, the algorithm returns a set of 

non-dominated solutions. From this set, a compromise solution is selected manually 

by the DM or by using a post-Pareto analysis method. In solving the welded beam 

MOP, the mean, SD, best and worst R-IGD and R-HV values of the obtained solutions 

are calculated for all algorithms, as shown in Tables 5.20. 

Trade-off Pareto-optimal solutions

Multi-objective 
optimization 

algorithm

Fabrication cost

End defection

Thickness of the welds, h

Width of the beam, b

Length of the welds, l

Height of the beam, t

Optimization phase

Design variables

Objectives, minimize:

Decision phase

Select a compromise solution

Optimized welded beam

Decision maker
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Table 5.20 
Mean, SD, best and worst R-IGD and R-HV values of non-dominated solutions, 
obtained by 2S-ENDSHHMO and MOGWO, MOGOA, MODA, MOSSA, NSABC, 
NSGSA and R-NSGA-II algorithms, in solving welded beam optimization problem 

MOP Algorithm Metric Mean SD Best Worst 

Welded 
beam 

2S-
ENDSHHMO 

R-IGD 3.5057E-01 1.2190E-01 2.5219E-01 6.8329E-01 
R-HV 3.8620E+00 7.1879E-01 4.1809E+00 1.8487E+00 

HHMO 
 

R-IGD 9.5566E-01 1.7482E+00 2.7613E-01 5.2809E+00 
R-HV 2.8853E+00 1.2879E+00 4.1772E+00 0.0000E+00 

MOGWO R-IGD 5.6968E-01 2.5026E-01 2.3801E-01 1.0851E+00 
R-HV 2.6064E+00 1.1024E+00 4.0168E+00 1.1207E+00 

MOGOA R-IGD 3.8356E+00 6.1679E+00 2.3638E-01 2.0041E+01 
R-HV 1.4396E+00 1.4774E+00 4.0334E+00 0.0000E+00 

MODA R-IGD 2.4432E+01 9.8502E+00 1.0915E+01 3.7613E+01 
R-HV 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

MOSSA R-IGD 2.1849E+01 9.6645E+00 1.2866E+01 4.1401E+01 
R-HV 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

NSGSA R-IGD 4.0732E+00 2.0506E+00 6.5731E-01 7.4301E+00 
R-HV 2.2326E-01 5.9942E-01 1.9037E+00 0.0000E+00 

NSABC R-IGD 1.7462E+01 1.3396E+01 3.9063E+00 4.3908E+01 
R-HV 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

RNSGAII R-IGD 2.0872E+00 2.7068E+00 2.7456E-01 9.4519E+00 
R-HV 1.0981E+00 9.9856E-01 3.0964E+00 0.0000E+00 

In solving the welded beam MOP, in terms of convergence, the solution obtained by 

the 2S-ENDSHHMO algorithm has a lower mean R-IGD value of 3.5057E-01, which 

is 63.32%, 38.46%, 90.86%, 98.57%, 98.40%, 91.39%, 97.99% and 83.20% lower 

than HHMO, MOGWO, MOGOA, MODA, MOSSA, NSGSA, NSABC and R-

NSGA-II algorithms, respectively. This indicates that the non-dominated solutions 

obtained by the 2S-ENDSHHMO algorithm have better convergence. In terms of 

diversity of the non-dominated solutions, the mean R-HV values obtained by HHMO, 

MOGWO, MOGOA, MODA, MOSSA, NSGSA, NSABC and R-NSGA-II algorithms 

are 25.29%, 32.51%, 62.72%, 100.00%, 100.00%, 94.22%, 100.00% and 71.57% 

lower than 2S-ENDSHHMO algorithm. The higher mean R-HV value (3.8620E+00) 

indicates that the 2S-ENDSHHMO algorithm has better diversity. 
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5.9.2 Four-Bar Truss Design Optimization Problem 

The goal is to optimize the four-bar truss design by finding the best values for the 

design variables that minimize the volume and deflection of the design. The same 

parameters presented in Table 5.19 are used apart from the reference points for the 2S-

ENDSHHMO and HHMO algorithms which are set as (1120, 0.075); (1460, 0.05); 

(1860, 0.03). The optimization phases of the four-bar truss design are shown in Figure 

5.6. 

 
Figure 5.6. Optimization phases of the four-bar truss design MOP 

Multi-objective 
optimization 

algorithm

Volume

Stress

Cross-sectional area of 
x1, x2, x3 and x4

Optimization phase

Optimized four-bar truss

Design variables
Objectives, minimize:

Schematic view of 4-bar truss

Trade-off Pareto-optimal solutions

Decision phase

Select a compromise solution

Decision maker
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The experiments are carried out to compare the performance of the 2S-ENDSHHMO 

algorithm to other algorithms. The mean, SD, best and worst R-IGD and R-HV values 

of the obtained solutions are calculated for all algorithms, as shown in Table 5.21. 

Table 5.21 
Mean, SD, best and worst R-IGD and R-HV values of non-dominated solutions, 
obtained by 2S-ENDSHHMO and MOGWO, MOGOA, MODA, MOSSA, NSABC, 
NSGSA and R-NSGA-II algorithms, in solving four-bar truss optimization problem 

MOP Algorithm Metric Mean SD Best Worst 

Welded 
beam 

2S-
ENDSHHMO 

R-IGD 8.5352E-02 2.7544E-02 1.0767E-02 9.6641E-02 
R-HV 4.0502E+00 5.5279E-02 4.1999E+00 4.0275E+00 

HHMO 
 

R-IGD 9.9625E-02 1.9236E-03 9.7674E-02 1.0274E-01 
R-HV 4.0158E+00 7.4669E-03 4.0234E+00 4.0037E+00 

MOGWO R-IGD 9.8391E-02 1.1656E-03 9.7517E-02 1.0053E-01 
R-HV 4.0206E+00 4.5661E-03 4.0240E+00 4.0122E+00 

MOGOA R-IGD 9.9196E-02 2.3676E-03 9.7448E-02 1.0533E-01 
R-HV 4.0175E+00 9.0939E-03 4.0243E+00 3.9940E+00 

MODA R-IGD 8.4688E-02 2.9352E-02 1.9467E-02 1.1338E-01 
R-HV 4.0374E+00 6.0789E-02 4.1742E+00 3.9649E+00 

MOSSA R-IGD 1.0040E-01 1.9406E-02 4.9005E-02 1.1860E-01 
R-HV 3.9976E+00 4.1206E-02 4.0976E+00 3.9467E+00 

NSGSA R-IGD 9.7377E-02 3.6225E-04 9.6794E-02 9.7773E-02 
R-HV 4.0246E+00 1.4450E-03 4.0269E+00 4.0230E+00 

NSABC R-IGD 9.7664E-02 9.7093E-04 9.6764E-02 9.9757E-02 
R-HV 4.0234E+00 3.8332E-03 4.0270E+00 4.0152E+00 

RNSGAII R-IGD 9.6656E-02 1.5517E-05 9.6633E-02 9.6667E-02 
R-HV 4.0274E+00 6.2411E-05 4.0275E+00 4.0274E+00 

For the  convergent result, the 2S-ENDSHHMO algorithm has a lower mean R-IGD 

value of 8.5352E-02, which is 14.33%, 13.25%, 13.96%,  14.99%, 12.35%, 12.61% 

and 11.70% lower than HHMO, MOGWO, MOGOA, MOSSA, NSGSA, NSABC and 

R-NSGA-II algorithms, respectively. This indicates that the non-dominated solutions 

obtained by the 2S-ENDSHHMO algorithm have better convergence. In terms of 

diversity of the non-dominated solutions, the mean R-HV values obtained by HHMO, 

MOGWO, MOGOA, MOSSA, NSGSA, NSABC and R-NSGA-II algorithms are 

0.85%, 0.73%,  0.81%,  1.30%,  0.63%, 0.66% and 0.56% which are lower than 2S-

ENDSHHMO algorithm. Although the mean R-IGD value of the MODA algorithm is 
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0.78% lower than algorithm. in terms of diversity, the mean R-HV value obtained by 

the MODA algorithm is 0.32% lower than 2S-ENDSHHMO algorithm, which 

indicates that the 2S-ENDSHHMO algorithm has better diversity compared to the 

MODA.   

5.9.3 Optimal Power Flow Optimization Problem 

Solving the OPF problem aims to show the performance of the proposed algorithm 

when considering the minimization of the generating cost of the system and active 

power losses in the transmission lines. The parameters of algorithms are set as 

presented in Table 5.19 apart from the MaxIteration which is set to 200 and the 

reference points for 2S-ENDSHHMO and HHMO algorithms set as (788, 8.4); (880, 

4.5); (948, 2.5). The optimization phases of the OPF problem are shown in Figure 5.7. 
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Figure 5.7. Optimization phases of the OPF design MOP 

In general, solving the OPF problem through the optimization algorithm requires that 

the algorithm find the best combination control parameters of the system. The control 

variables are 24, that is, the active output of five generators (except the balance node), 

six generator bus voltage amplitudes, four transformer ratios, and nine reactive power 

compensation devices. The experiments are carried out to compare the 2S-

ENDSHHMO algorithm to other algorithms. The mean, SD, best and worst R-IGD 

and R-HV values of the obtained solutions are calculated for all algorithms, as shown 

in Table 5.22. 
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Table 5.22 
Mean, SD, best and worst R-IGD and R-HV values of non-dominated solutions, 
obtained by 2S-ENDSHHMO and MOGWO, MOGOA, MODA, MOSSA, NSABC, 
NSGSA and R-NSGA-II algorithms, in solving OPF optimization problem 

MOP Algorithm Metric Mean SD Best Worst 

Welded 
beam 

2S-
ENDSHHMO 

R-IGD 1.6703E+00 2.2317E+00 4.3557E-01 5.9707E+00 
R-HV 4.8328E+00 2.7786E+00 6.6653E+00 0.0000E+00 

HHMO 
 

R-IGD 3.6196E+00 6.1134E-01 2.6424E+00 4.7844E+00 
R-HV 2.2100E-01 2.9925E-01 9.6287E-01 0.0000E+00 

MOGWO R-IGD 1.5468E+00 4.7642E-01 7.7052E-01 2.2992E+00 
R-HV 3.2112E+00 1.2063E+00 5.3959E+00 1.5007E+00 

MOGOA R-IGD 3.6861E+00 0.0000E+00 3.6861E+00 3.6861E+00 
R-HV 5.8086E-02 0.0000E+00 5.8086E-02 5.8086E-02 

MODA R-IGD 5.8936E+00 6.9916E-01 9.0426E-01 8.8348E+00 
R-HV 2.3569E+00 3.0931E+00 3.8574E+00 2.8802E-01 

MOSSA R-IGD 3.1130E+00 2.2062E+00 1.5530E+00 4.6731E+00 
R-HV 1.5430E+00 2.1822E+00 3.0860E+00 0.0000E+00 

NSGSA R-IGD 4.5185E+00 1.0263E+01 3.5927E-01 3.2689E+01 
R-HV 5.3563E+00 2.8275E+00 7.0138E+00 0.0000E+00 

NSABC R-IGD 3.0522E+00 6.0970E-01 2.6211E+00 3.4834E+00 
R-HV 5.7047E-01 5.9727E-01 9.9280E-01 1.4814E-01 

RNSGAII R-IGD 2.7747E+00 1.9828E+00 1.7255E+00 6.8035E+00 
R-HV 1.7940E+00 9.6021E-01 2.6728E+00 0.0000E+00 

The R-IGD values in Table 5.22 show that the non-dominated solutions obtained by 

the 2S-ENDSHHMO algorithm has a lower mean R-IGD value of 8.5352E-02, which 

is 53.85%, 7.39%, 54.69%, 100.00%, 46.34%, 45.28% and 39.80% lower than 

HHMO, MOGWO, MOGOA, MOSSA, MODA, NSABC and R-NSGA-II algorithms, 

respectively. This indicates that the non-dominated solutions obtained by the 2S-

ENDSHHMO algorithm has better convergence. In terms of diversity of the non-

dominated solutions, the mean R-HV values obtained by HHMO, MOGWO, 

MOGOA, MODA, MOSSA, NSABC and R-NSGA-II algorithms are 95.43%, 

33.55%, 98.80%, 100.00%, 68.07%, 88.20% and 62.88%  lower than 2S-

ENDSHHMO algorithm. The mean R-HV value of the 2S-ENDSHHMO algorithm is 

9.77% lower than NSGSA algorithm. The higher mean R-HV value (5.3563E+00) 

indicates that the NSGSA algorithm has better diversity. However, in terms of 

convergence, the R-IGD value obtained by the 2S-ENDSHHMO algorithm is 63.03% 
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lower than NSGSA algorithm, which indicates that the 2S-ENDSHHMO algorithm 

has better convergence compared to the MODA.  

5.9.4 Overall results of the engineering problems 

Figures 5.8 shows the average of R-IGD and R-HV ranks obtained by the 2S-

ENDSHHMO, MOGWO, MOGOA, MODA, MOSSA, NSGSA, NSABC and R-

NSGA-II algorithms, in solving welded beam, four-bar truss and OPF MOPs. 

 
Figure 5.8. Average of R-IGD and R-HV ranks obtained by the 2S-ENDSHHMO, 
MOGWO, MOGOA, MODA, MOSSA, NSGSA, NSABC and R-NSGA-II 
algorithms, in solving welded beam, four-bar truss and OPF optimization problems 

In Figure 5.80, the striped and solid bars show the average of R-IGD and R-HV rank, 

respectively. The lower rank indicates better performance. Based on the results, the 

2S-ENDSHHMO algorithm has achieved lowest rank in terms of R-IGD (1.66%)  and 
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R-HV (1.33%), in solving all engineering MOPs. In terms of R-IGD, the second best 

performance achieved by MOGWO (3%), while the second best R-HV rank (3.66%) 

achieved by NSGSA. In general, the results demonstrate the search ability of the 2S-

ENDSHHMO algorithm in solving complex MOPs with no-convex boundary and 

several linear and nonlinear constraints.  

5.10 Solutions Correspond to the Extreme Points 

If the DM is interested in optimizing a single objective, then the decision variables 

corresponding to the extreme points in the objective space can be used.  The extreme 

points correspond to decisions in which only one of the objectives is optimized. 

However, based on the definition of MOO, solving MOPs aims to simultaneously 

optimize all objectives. The results in Appendices D.1-D.27 show the selected solution 

based on the extreme points which achieves the best value for one objective and worst 

value for the other in solving welded beam, four-bar truss and OPF MOPs.  

5.10.1 Welded Beam Design MOP 

In solving the welded beam MOP using the 2S-ENDSHHMO algorithm, the minimum 

fabrication cost of 1.7916 units is obtained with design variables (h, l, t, b) = (0.2061, 

3.3382, 9.4437, 0.2075) (inches), and the end deflection of the beam for these design 

variables is 0.0126 inch. Similarly, the minimum deflection, found to be 0.0004 inch, 

is obtained by using these design variables (1.6511, 0.3012, 10.0, 5.0) (inches). For 

this minimum deflection, the cost is found to be 35.3087 units. Appendix D.1 shows 

the decision variables corresponding to extreme points, obtained by using 2S-

ENDSHHMO algorithm in solving welded beam MOP.   
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By using the HHMO algorithm, the minimum cost of 1.8964 units is obtained by using 

these design variables (0.2530, 2.9645, 8.1542, 0.2535) (inches). For this minimum 

cost, the deflection is found to be 0.0160 inch. Similarly, the minimum deflection is 

0.0005 inch for design variables (0.5717, 1.1301, 10.0, 4.7485) (inches). The 

fabrication cost of this design is 34.9732 units. Appendix D.2 shows the decision 

variables corresponding to extreme points, obtained by using HHMO algorithm in 

solving welded beam MOP.  

 

The MOGWO is able to achieve a minimum deflection of 0.00044 inch by using these 

design variables (1.1416, 1.5903, 10.0, 5.0) (inches). For this minimum deflection, the 

cost is 39.7919 units. The minimum fabrication cost was obtained by using these 

design variables (0.2572, 2.7264, 9.1473, 0.2678) (inches) is 2.1702 units. The 

deflection with this cost is 0.01071 inch. Appendix D.3 shows the decision variables 

corresponding to extreme points, obtained by using MOGWO algorithm in solving 

welded beam MOP. 

 

The minimum cost of welded beam design obtained by using the MOGOA algorithm 

is 2.4140 units with the design parameters to be (0.2575, 3.4483, 6.8986, 0.3732) 

(inches). With these parameters the deflection of the beam obtained is 0.0179inch. 

Similarly, the minimum deflection obtained is 0.00044inch with these design variables 

(3.20830, 0.18628, 10.0, 5.0) (inches) and the cost is 36.2433 units. Appendix D.4 

shows the decision variables corresponding to extreme points, obtained by using 

MOGOA algorithm in solving welded beam MOP. 
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The solutions obtained by the MODA algorithm show the minimum cost of 3.7029 

units, obtained by using these design variables (0.3132, 3.1707, 6.7287, 0.6044) 

(inches). For this minimum cost, the deflection is found to be 0.01192inch. Similarly, 

the minimum deflection is 0.0004 inch for design variables (4.7797, 0.1015, 10.0 

4.9413). The fabrication cost of this design is 36.0834 units. Appendix D.5 shows the 

decision variables corresponding to extreme points, obtained by using MODA 

algorithm in solving welded beam MOP. 

 

The MOSSA achieving a minimum cost of 2.4198 units is obtained with design 

variables (0.1250, 6.6276, 10.0, 0.2323) (inches). With this set of design variables, the 

end deflection of the beam is 0.0094 inch. The minimum deflection obtained is 0.0005 

inch, with design variables (4.7387, 0.1382, 9.5608, 5.0) (inches) and cost 35.9447 

units. Appendix D.6 shows the decision variables corresponding to extreme points, 

obtained by using MOSSA algorithm in solving welded beam MOP. 

 

The NSGSA algorithm is able to achieve a minimum cost of 2.2046 units by using 

these design variables (0.1250, 6.3094, 10.0, 0.2145) (inches). For this minimum cost, 

the deflection is 0.01023 inch. The minimum deflection of 0.00044 inch is obtained 

by using these design variables (1.4979, 0.3582, 10.0, 5.0) (inches). Appendix D.7 

shows the decision variables corresponding to extreme points, obtained by using 

NSGSA algorithm in solving welded beam MOP. 
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The minimum fabrication cost of welded beam design obtained using the NSABC 

algorithm is 4.4035 units with the design variables (0.4721, 1.4589, 8.5756, 0.6341) 

(inches). With these design variables the deflection of the beam obtained is 0.0055 

inch. Similarly, the minimum deflection obtained is 0.0004 inch with these design 

variables (4.0123, 1.1024, 0.5123, 0.9073) and the cost is 36.0379 units. Appendix D.8 

shows the decision variables corresponding to extreme points, obtained by using 

NSABC algorithm in solving welded beam MOP. 

 

The minimum fabrication cost of welded beam design obtained using the R-NSGA-II 

algorithm is 1.8924 units with the design variables (0.1937, 3.6330, 10.0,0.2053) 

(inches). With these design variables the deflection of the beam obtained is 0.0107 

inch. Similarly, the minimum deflection obtained is 0.0004 inch with these design 

variables (1.6125, 0.3090, 10.0, 5.0) (inches) and the cost is 35.3079 units. The 

decision variables corresponding to extreme points, obtained by using R-NSGA-II 

algorithm in solving welded beam MOP can be found in Appendix D.9. Figure 5.9 

shows the minimum fabrication cost and deflection obtained by each algorithm in 

solving welded beam MOPs.  
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Figure 5.9. Solutions correspond to extreme points obtained by HHMO, MOGWO, 
MOGOA, MODA, MOSSA, NSGSA and NSABC and R-NSGA-II algorithms in 
solving welded beam MOP. 

In Figure 5.9 the left and right y-axes show the values of the fabrication cost and 

deflection, respectively, obtained by each algorithm. In solving the welded beam 

MOP, the solution obtained by the 2S-ENDSHHMO algorithm has a minimum 

fabrication cost of 1.7916 units, which is 5.53%, 17.45%, 25.78%, 51.62%, 25.96%, 

18.74%, 59.31% and 5.33% lower than HHMO, MOGWO, MOGOA, MODA, 

MOSSA, NSGSA, NSABC and R-NSGA-II algorithms, respectively. The minimum 

deflection of 0.0004 inch, obtained by the 2S-ENDSHHMO algorithm, is 5.03%, 

1.17% and 12.61% lower than HHMO, MODA and MOSSA algorithms, respectively. 
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With other algorithms, namely MOGWO, MOGOA, NSGSA, NSABC and R-NSGA-

II, the minimum deflection is similar to that obtained by the 2S-ENDSHHMO 

algorithm. 

5.10.2 Four-bar Truss 

The minimum volume of the four-bar truss obtained using the 2S-ENDSHHMO 

algorithm is 1174.20 cm3, obtained by using the solution (x1, x2, y) = (1.0, 1.4142, 

1.4142, 1.0, 1174.200) (cm2). The deflection for this solution is 0.0741 KPa. The 

minimum deflection is found to be 0.0322 KPa obtained by using these design 

variables (1.0, 3.0, 3.0, 3.0) (cm2). For this minimum deflection, the volume is found 

to be 1836.3081 cm3. Appendix D.10 shows the decision variables corresponding to 

extreme points, obtained by using 2S-ENDSHHMO algorithm in solving four-bar truss 

MOP.  

 

The HHMO algorithm is able to achieve a minimum volume of 1174.2000 cm3 by 

using these design variables (1.0, 1.4142, 1.4142, 1.0) (cm2). For this minimum 

volume, the deflection is 0.0741 KPa. The minimum deflection of 0.0322 KPa was 

obtained by using these design variables (1.0, 3.0, 3.0, 3.0) (cm2). The volume with 

this deflection is 1836.3081 cm3. Appendix D.11 shows the decision variables 

corresponding to extreme points, obtained by using HHMO algorithm in solving four-

bar truss MOP. 
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The MOGWO algorithm achieving a minimum volume of 1174.2000 cm3 is obtained 

with design variables (1.0, 1.4142, 1.4142, 1.0) (cm2). With this set of design variables, 

the deflection of the truss is 0.0741KPa. The minimum deflection obtained is 0.0324 

KPa, with design variables (1.0397, 3.0, 3.0, 2.9164) (cm2) and volume 1835.4688 

cm3. Appendix D.12 shows the decision variables corresponding to extreme points, 

obtained by using MOGWO algorithm in solving four-bar truss MOP. 

 

The solutions obtained by the MOGOA algorithm show that the minimum volume of 

1188.4886 cm3 is obtained by using these design variables (1.0, 1.4142, 1.5892, 1.0) 

(cm2). For this minimum volume, the deflection is found to be 0.0719 KPa. Similarly, 

the minimum deflection is 0.0326 KPa for design variables (1.0, 3.0, 2.8880, 2.9894) 

(cm2). The volume of this design is 1827.6524 cm3. Appendix D.13 shows the decision 

variables corresponding to extreme points, obtained by using MOGOA algorithm in 

solving four-bar truss MOP. 

 

The minimum volume obtained by using the MODA algorithm is 1177.7307 cm3 with 

the design variables of (1.0005, 1.4142, 1.4540, 1.0) (cm2). With these design 

variables, the deflection obtained is 0.0736 KPa. Similarly, the minimum deflection 

obtained is 0.0322 KPa with these design variables (1.0, 3.0, 3.0, 2.9828) (cm2) and 

the volume of this design is 1832.8669 cm3. Appendix D.14 shows the decision 

variables corresponding to extreme points, obtained by using MODA algorithm in 

solving four-bar truss MOP. 
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The MOSSA was able to achieve a minimum volume of 1183.2001 cm3 by using these 

design variables (1.4909, 1.4143, 1.0, 1183.2001) (cm2). For this minimum volume, 

the deflection is 0.0724 KPa. The minimum deflection obtained using these design 

variables (1.0, 3.0, 2.9942, 2.9156) (cm2) is 0.0324KPa. The volume with this 

deflection is 1819.0943 cm3. Appendix D.15 shows the decision variables 

corresponding to extreme points, obtained by using MOSSA algorithm in solving four-

bar truss MOP. 

  

By using NSGSA algorithm, the minimum volume is 1174.2000 cm3, obtained by 

using these design variables (1.0, 1.4142, 1.4142, 1.0) (cm2). For this minimum 

volume, the deflection is found to be 0.0741 KPa. Similarly, the minimum deflection 

is 0.0322 KPa for design variables (1.0, 3.0, 3.0, 3.0) (cm2). The volume of this design 

is 1836.3081 cm3. Appendix D.16 shows the decision variables corresponding to 

extreme points, obtained by using NAGSA algorithm in solving four-bar truss MOP. 

 

In solving the four-bar truss MOP using the NSABC algorithm, the minimum volume 

of 1245.4801 cm3 and deflection of 0.0632 KPa are obtained with design variables 

(1.0, 2.0457, 1.4264, 1.0104) (cm2). Appendix D.17 shows the decision variables 

corresponding to extreme points, obtained by using NSABC algorithm in solving four-

bar truss MOP. 
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By using R-NSGA-II algorithm, the minimum volume is 1174.2000 cm3, obtained by 

using these design variables (1.0, 1.4142, 1.4142, 1.0) (cm2). For this minimum 

volume, the deflection is found to be 0.0741 KPa. Similarly, the minimum deflection 

is 0.0322 KPa for design variables (1.0, 3.0, 3.0, 3.0) (cm2). The volume of this design 

is 1836.3081 cm3. Appendix D.18 shows the decision variables corresponding to 

extreme points, obtained by using R-NSGA-II algorithm in solving four-bar truss 

MOP. Figure 5.10 shows the minimum volume and deflection obtained by each 

algorithm in solving four-bar truss MOPs.  

 
Figure 5.10. Solutions correspond to extreme points obtained by HHMO, MOGWO, 
MOGOA, MODA, MOSSA, NSGSA and NSABC and R-NSGA-II algorithms in 
solving four-bar truss MOP 
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In Figure 5.10 the left and right y-axes show the values of the volume and deflection, 

respectively, obtained by each algorithm. The minimum volume of 1174.2000 cm3 

achieved by 2S-ENDSHHMO, HHMO, MOGWO, NSGSA and R-NSGA-II 

algorithms, is 1.20%, 0.30%, 0.76% and 5.72% lower than the volume of MOGOA, 

MODA, MOSSA and NSABC algorithms. The minimum deflection of 0.0322 KPa is 

obtained by 2S-ENDSHHMO, HHMO, NSGA and R-NSGA-II algorithms. This value 

is 0.59%, 1.20%, 0.12%, 0.65% and 4.42% lower than MOGWO, MOGOA, MODA, 

MOSSA and NSABC algorithms, respectively. 

5.10.3 Optimal Power Flow 

In solving the OPF by using 2S-ENDSHHMO, the solution A has a minimum 

generating cost of 799.4458 units, and the transmission loss of the line for solution A 

is 8.5986 MW. Similarly, the minimum transmission loss found to be 2.9759 MW is 

obtained by using solution B. For this minimum transmission loss, the generating cost 

is found to be 967.1640 units. Appendix D.19 shows the control variables 

corresponding to extreme points, obtained by using 2S-ENDSHHMO algorithm in 

solving OPF MOP. 

 

By using the HHMO algorithm, the minimum generating cost of 799.5767 units is 

obtained by using solution A. The transmission loss of the line for solution A is 8.3032 

MW. Similarly, the minimum transmission loss is found to be 3.4145 MW, obtained 

using solution B. For this minimum transmission loss, the generating cost is found to 
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be 948.2577 units. Appendix D.20 shows the control variables corresponding to 

extreme points, obtained by using HHMO algorithm in solving OPF MOP. 

 

By using the MOGWO algorithm, the minimum generating cost of 800.7885 units is 

obtained by using solution A. For this minimum cost, the transmission loss is found to 

be 8.3282 MW. Similarly, the minimum transmission loss is 3.0389 MW for solution 

B. The generating cost of this solution is 967.5126 units. Appendix D.21 for control 

variables corresponding to extreme points, obtained by using MOGWO algorithm in 

solving OPF MOP. 

  

The MOGOA algorithm is able to achieve minimum generating cost of 815.8582 units 

by using solution A. For this minimum cost, the transmission loss is 8.3707 MW. The 

minimum loss is obtained by using the solution B is 4.1514 MW. The cost with this 

solution is 899.4137 MW. Appendix D.22 shows the control variables corresponding 

to extreme points, obtained by using MOGOA algorithm in solving OPF MOP. 

 

The solutions obtained by the MODA algorithm show that the minimum generating 

cost of 806.8893 units is obtained by using solution A. For this minimum cost, the loss 

is found to be 8.4853 MW. Similarly, the minimum loss is 4.4897 MW for solution B. 

The generating cost of this design is 880.6957 units. Appendix D.23 shows the control 

variables corresponding to extreme points, obtained by using MODA algorithm in 

solving OPF MOP. 
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In solving the OPF problem, the minimum generating cost of 805.3594 units is 

obtained by solution A. With this solution, the transmission loss is 8.3973 MW. The 

minimum loss obtained is 3.6307 MW with solution B and the cost is 912.3605 units. 

Appendix D.24 shows the control variables corresponding to extreme points, obtained 

by using MOSSA algorithm in solving OPF MOP. 

 

The NSGSA algorithm is able to achieve a minimum generating cost of 803.0399 units 

by using solution A. For this minimum cost, the loss is 9.2673 MW. The minimum loss 

of 2.9666 MW is obtained by using solution B. The cost with this loss is 958.5062 

units. Appendix D.25 shows the control variables corresponding to extreme points, 

obtained by using NSGSA algorithm in solving OPF MOP. 

 

In solving OPF by using the NSABC algorithm, the minimum generating cost obtained 

by using solution A is 804.5842 units. With this solution, the loss is found to be 9.7718 

MW. Similarly, the minimum loss obtained is 3.3845 MW with solution B and the cost 

of this solution is 960.1727 units. Appendix D.26 shows the control variables 

corresponding to extreme points, obtained by using NSABC algorithm in solving OPF 

MOP. 

 

The R-NSGA-II algorithm is able to achieve a minimum generating cost of 799.7188 

units by using solution A. For this minimum cost, the loss is 8.7950 MW. The 

minimum loss of 3.0058 MW is obtained by using solution B. The cost with this loss 

is 949.4215 units. Appendix D.27 shows the control variables corresponding to 
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extreme points, obtained by using R-NSGA-II algorithm in solving OPF MOP. Figure 

5.11 shows the minimum generating cost and transmission loss obtained by each 

algorithm in solving OPF MOPs.   

 
Figure 5.11. Solutions correspond to extreme points obtained by HHMO, MOGWO, 
MOGOA, MODA, MOSSA, NSGSA and NSABC and R-NSGA-II algorithms in 
solving OPF MOP. 

In Figure 5.11 the left and right y-axes show the values of the minimum generating 

cost per hour and minimum active power transmission loss of the system, respectively, 

obtained by each algorithm. The minimum generating cost obtained by the 2S-

ENDSHHMO algorithm is 799.4458 units. This cost is 0.02%, 0.17%, 2.01%, 0.92%, 

0.73%, 0.45%, 0.64% and 0.03% lower than HHMO, MOGWO, MOGOA, MODA, 
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MOSSA, NSGSA, NSABC and R-NSGA-II algorithms. The minimum transmission 

loss of 2.9759 MW, obtained by 2S-ENDSHHMO algorithm, is 12.85%, 2.07%, 

28.32%, 33.72%, 18.04%, 12.07% and 1.00 lower than HHMO, MOGWO, MOGOA, 

MODA, MOSSA, NSABC and R-NSGA-II algorithms, respectively. According to the 

results, However, the minimum transmission loss of NSGSA is and 0.31% lower than 

the 2S-ENDSHHMO algorithm. However, the minimum generating cost of this 

algorithms is higher than 2S-ENDSHHMO algorithm.  

 

The general results of optimizing single objectives in solving welded beam, four-bar 

truss and OPF MOPs, indicates that the performance of the 2S-ENDSHHMO 

algorithm is superior compared to most MOSI-based algorithms. This means that 

solutions corresponding to the extreme points obtained by the 2S-ENDSHHMO 

algorithm are more attractive than solutions of other algorithms.   

5.11 Select a Compromise Solution from the Pareto Set 

In MOO, there is no single solution that optimizes all objectives at the same time but, 

rather, a set of effective solutions in which no solution is better than another for all 

objectives. In other words, solutions that are good compromises (trade-offs) instead of 

a single optimal global solution. The decision maker is responsible for choosing a a 

solution that addresses the overall objectives of the problem. This solution can be 

selected manually by the DM or by using a particular method, such as the grey 

relational analysis (GRA) technique for order of preference by similarity to ideal 

solution, linear programming technique for multidimensional analysis of preference, 
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simple additive weighting, faire un choix adeq́uat, which means making an adequate 

choice, and multiplicative exponent weighting (Wang & Rangaiah, 2017). In this 

study, the GRA was employed due to its simplicity and, in contrast to other methods 

such as the technique for order of preference by similarity to ideal solution and simple 

additive weighting, it does not require any inputs which may affect the selection of the 

compromise solution. 

5.11.1 Grey Relation Analysis 

The GRA method is considered as a core branch of the grey system theory (Julong, 

1989). In general, the GRA is an effective multi-criterion decision making approach 

to analyse the degree of correlation between various factors in the system. This method 

has been widely used in several applications, such as environmental pollution 

assessment (Shao, Weng, Liou, Lo, & Jiang, 2019), portfolio management (Škrinjarić 

& Šego, 2019)  and process parameter optimization (Mian, Umer, & Alkhalefah, 2019; 

Mishra, Das, Ukamanal, Routara, & Sahoo, 2015). The steps of the GRA method are 

as follows: 

Step 1: normalizes the objective values of Pareto-optimal solutions based on the 
smaller-the-better, as shown in Equation (5.1) (Wang & Rangaiah, 2017). 

Step 2: calculation of grey relational coefficient (GRC), as shown in Equation (5.2) 
(Panda, Sahoo, & Rout, 2016). 

max
max min

i m ij ij
ij

i m ij i m ij

f f
F

f f


 

−
=
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min max

0 max
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 + 
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where, 0 0 ( ) ( )i ix k x k = −  is the deviation sequence of the reference sequence, x0(k) 

and comparability sequence, xi(k); i=1,2,…,M; k=1,2,…n, M and n are the 

experimental data and number of responses, respectively. min and max are the 

minimum and maximum values of the absolute differences (0i) of all comparing 

sequences. The value of  is set to 0.5 (Panda et al., 2016). 

Step 3: calculation of grey relational grades (GRG), which is the weighted sum of the 

GRC, and its calculation formula as shown in Equation (5.3) (Panda et al., 2016). 

Step 4:  Find the highest GRGi, the corresponding solution is the recommended 
optimal solution. 

In this study, the GRA method is applied to select one of the non-dominated solutions 

obtained by using MOO of the welded beam, four-bar truss design and OPF problems. 

To perform the GRA, first, the objective matrix (also known as decision matrix) is 

created. This matrix consists of M objectives (columns) and their values at n Pareto-

optimal (non-dominated) solutions (rows), found by an optimization algorithm. This 

is followed by calculating the GRG values to determine the compromise solution. 

5.11.2 Welded Beam Design 

The results of the GRA consist of 100 solutions for each algorithm. Each solution is 

obtained by using 2S-ENDSHHMO, HHMO, MOGWO, MOGOA, MODA, MOSSA, 

NSGSA, NSABC and R-NSGA-II algorithms and selected according to the GRA 

value. Table 5.23 shows the selected solutions by using GRA method. The GRA of the 

GRG𝑖 =
1

𝑛
∑ GRC(𝑘)

𝑛

𝑘=1

 (5.3) 
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non-dominated solutions obtained by 2S-ENDSHHMO in solving welded beam MOP 

can be found in Appendix E. The Decision variables corresponding to the compromise 

solutions is presented in Table 5.24. 

Table 5.23 
GRA of selected compromise solutions obtained by using 2S-ENDSHHMO, 
MOGWO, MOGOA, MODA, MOSSA, NSGSA, NSABC and R-NSGA-II algorithms in 
solving welded beam problem 

Algorithm No. 
Objectives Normalized Objectives Highest 

GRG Fabrication 
cost 

Deflection of 
the beam 

Fabrication 
cost 

Deflection of 
the beam 

2S-
ENDSHHMO 47 8.5575 0.0019 0.7981 0.8778 0.7580 

HHMO 2 6.4658 0.0026 0.8619 0.8600 0.7824 
MOGWO 10 8.3400 0.0020 0.8360 0.8491 0.7606 
MOGOA 17 6.2355 0.0031 0.8870 0.8466 0.7905 
MODA 3 6.9759 0.0026 0.8989 0.8117 0.7791 
MOSSA 13 12.2287 0.0015 0.7074 0.8877 0.7237 
NSGSA 11 7.3507 0.0023 0.8451 0.8124 0.7453 
NSABC 18 4.9464 0.0035 0.9828 0.9060 0.9043 

R-NSGA-II 60 8.8183 0.0019 0.7927 0.8608 0.7446 

Table 5.24 
Decision variables corresponding to compromise solution, obtained by using 2S-
ENDSHHMO, MOGWO, MOGOA, MODA, MOSSA, NSGSA, NSABC and R-NSGA-
II algorithms in solving welded beam problem 

Algorithm Solution h l t b 

Fa
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n 
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n 
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 th

e 
be

am
 

2S-ENDSHHMO 47 0.6350 0.8612 10.0000 1.1433 8.5575 0.0019 
HHMO 2 0.5105 1.2494 10.0000 0.8323 6.4658 0.0026 

MOGWO 10 0.6637 0.8896 10.0000 1.1038 8.3400 0.0020 
MOGOA 17 0.5985 1.8258 9.8579 0.7345 6.2355 0.0031 
MODA 3 0.3218 2.5043 10.0000 0.8425 6.9759 0.0026 
MOSSA 13 0.5716 2.1890 9.9591 1.4747 12.2287 0.0015 
NSGSA 11 0.5407 1.0481 9.9781 0.9707 7.3507 0.0023 
NSABC 18 0.4552 1.2652 10.0000 0.6341 4.9464 0.0035 

R-NSGA-II 60 0.5712 0.9670 9.9998 1.1763 8.8183 0.0019 

In solving welded beam MOPs using 2S-ENDSHHMO, the solution, (0.6350, 0.8612, 

10.0, 1.1433) (inches) is selected by using the GRA method. The optimal objectives 

optimization value and its corresponding decision variable are obtained based on the 
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highest GRG value (0.7580) (refer Table 5.23). The cost and deflection values 

corresponding to the highest GRG are 8.5575 units and 0.0019 inch, respectively. By 

using the HHMO algorithm, the solution (0.5105, 1.2494, 10.0, 0.8323) (inches) 

obtained by using the GRA method produces a welded beam with the cost = 6.4658 

units and deflection = 0.0026 inch. The solution (0.6637, 0.8896, 10.0) (inches) 

obtained by MOGWO is able to achieve cost = 8.3400 units and deflection = 0.0020 

inch. The MOGOA produces the solution (00.5985, 1.8258, 9.8579, 0.7345) (inches), 

which is able to achieve the cost and deflection = 6.2355 units and 0.0031 inch, 

respectively. The solution (0.3218, 2.5043, 10.0, 0.8425) (inches) obtained by using 

MODA is able to achieve cost = 6.9759 units and deflection = 0.0026 inch, 

respectively. By using MOSSA, the cost and deflection obtained by using the GRA 

method, using the solution (0.5716, 2.1890, 9.9591, 1.4747) (inches) are 12.2287 units 

and 0.0015 inch, respectively. Using the GRA solution (0.5407, 1.0481, 9.9781, 

0.9707) (inches) obtained by using the NSGSA algorithm, the cost and deflection 

values are found to be 7.3507 units and 0.0023 inch, respectively. The GRA solution 

of the NSABC algorithm achieves the cost and deflection values of 4.9464 units and 

0.0035 inch, respectively. In the R-NSGA-II, the cost and deflection values obtained 

by using the GRA method are 8.8183 units and 0.0019 inch, respectively, for the 

solution (0.5712, 0.9670, 9.9998, 1.1763) (inches). 
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5.11.3 Four-Bar Truss Design 

This section presents the results of selecting a compromise solution for the four-bar 

truss design problem. The selected compromise solutions by using GRA and the 

corresponding decision variables are shown in Tables 5.25-5.26, respectively.  

Table 5.25 
GRA of selected compromise solutions obtained by using 2S-ENDSHHMO, 
MOGWO, MOGOA, MODA, MOSSA, NSGSA, NSABC and R-NSGA-II algorithms in 
solving four-bar truss problem 

Algorithm No. Objectives Normalized Objectives Highest 
GRG Volume Deflection Volume Deflection 

2S-
ENDSHHMO 1 1174.2000 0.0741 1.0000 0.0000 0.6667 

HHMO 80 1836.3081 0.0322 0.0233 1.0000 0.6693 
MOGWO 2 1818.6926 0.0324 0.0254 0.9998 0.6693 
MOGOA 85 1777.5842 0.0329 0.0783 0.9915 0.6675 
MODA 1 1832.8669 0.0322 0.0000 1.0000 0.6667 
MOSSA 1 1819.0943 0.0324 0.0000 1.0000 0.6667 
NSGSA 1 1174.2000 0.0741 1.0000 0.0000 0.6667 
NSABC 2 1245.4801 0.0632 1.0000 0.0000 0.6667 

R-NSGA-II 1 1174.2000 0.0741 1.0000 0.0000 0.6667 

Table 5.26  
Decision variables corresponding to the compromise solution, obtained by using 2S-
ENDSHHMO, MOGWO, MOGOA, MODA, MOSSA, NSGSA, NSABC and R-NSGA-
II algorithms in solving four-bar truss problem 

Algorithm Solution x1(cm2) x2 (cm2) x3(cm2) x4(cm2) Volume 
(cm3) 

Deflection 
(KPa) 

2S-
ENDSHHMO 1 1.0000 1.4142 1.4142 1.0000 1174.2000 0.0741 

HHMO 80 1.0000 3.0000 3.0000 3.0000 1836.3081 0.0322 
MOGWO 2 1.0000 3.0000 3.0000 2.9119 1818.6926 0.0324 
MOGOA 85 1.0000 2.9999 3.0000 2.7064 1777.5842 0.0329 
MODA 1 1.0000 3.0000 3.0000 2.9828 1832.8669 0.0322 
MOSSA 1 1.0000 3.0000 2.9942 2.9156 1819.0943 0.0324 
NSGSA 1 1.0000 1.4142 1.4142 1.0000 1174.2000 0.0741 
NSABC 2 1.0000 2.0457 1.4264 1.0104 1245.4801 0.0632 

R-NSGA-II 1 1.0000 1.4142 1.4142 1.0000 1174.2000 0.0741 

From Tables 5.25-5.26, in solving the four-bar truss problem using 2S-ENDSHHMO, 

the objectives value corresponding to the higher GRG (0.6667) are (1174.20006 cm3, 

0.0741 KPa), and the decision variables are (1.0, 1.4142, 1.4142, 1.0) (cm2). By using 

the HHMO algorithm, the solution is (1.0, 3.0, 3.0, 3.0) (cm2). The volume and 
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deflection values for this solution are found to be 1836.3081 cm3 and 0.0322 KPa, 

respectively. The MOGWO algorithm produces the solution (1.0, 3.0, 3.0, 2.9119) 

(cm2). The volume and deflection for this solution are 1818.6926 cm3 and 0.0324KPa, 

respectively. The volume and deflection obtained by using the MOGOA algorithm are 

1777.5842 cm2 and 0.0329 KPa, respectively using the solution (1.0, 2.9999, 3.0, 

2.7064) (cm2). By using MODA, the volume and deflection values are found to be 

1832.8669 cm3 and 0.0322 KPa, respectively. By using MOSSA, the volume and 

deflection values obtained by using the GRA method are found to be 1819.0943 cm3, 

0.0324 KPa, respectively. By using NSGSA, the GRA solution (1.0, 1.4142, 1.4142, 

1.0) (cm2), volume and deflection are found to be 1174.20 cm3 and 0.0741 Kpa, 

respectively. By using NSABC, the volume and deflection obtained by using the GRA 

method are 1245.4801 cm3, 0.0632 KPa, respectively. By using R-NSGA-II, the GRA 

solution is (1.0, 1.4142, 1.4142, 1.0) (cm2). The volume and deflection for this solution 

are 1174.2000 cm3 and 0.0741 Kpa, respectively.  

5.11.4 Optimal Power Flow 

This section presents the results of selecting a compromise solution for the OPF MOP 

using the GRA method and the corresponding decision variables. The GRA calculation 

of the selected solutions are shown in Tables 5.28-5.27. 

Table 5.27 
GRA of selected compromise solutions obtained by using 2S-ENDSHHMO, 
MOGWO, MOGOA, MODA, MOSSA, NSGSA, NSABC and R-NSGA-II algorithms in 
solving OPF problem 

Algorithm No. 

Objectives Normalized Objectives 
HIGHEST 

GRG Cost 
Active Power 

Loss 
Cost 

Active Power 

Loss 
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2S-

ENDSHHMO 
31 800.9602 7.9018 0.9910 0.1239 0.6728 

HHMO 23 802.0559 7.4339 0.9833 0.1778 0.6729 

MOGWO 78 804.7520 7.0039 0.9762 0.2504 0.6774 

MOGOA 15 899.4137 4.1514 0.0000 1.0000 0.6667 

MODA 2 806.8893 8.4853 1.0000 0.0000 0.6667 

MOSSA 6 808.9586 7.0976 0.9664 0.2727 0.6722 

NSGSA 4 809.6164 7.3430 0.9577 0.3054 0.6703 

NSABC 34 808.9318 7.7637 0.9721 0.3144 0.6844 

R-NSGA-II 34 799.8664 8.5059 0.9990 0.0499 0.6714 

Table 5.28 
Decision variables corresponding to the compromise solution, obtained by using 2S-
ENDSHHMO, MOGWO, MOGOA, MODA, MOSSA, NSGSA, NSABC and R-NSGA-
II algorithms in solving OPF problem 

Control 
variables 

Algorithm 

2S
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H
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P G
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W
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PG1 164.80 159.44 152.93 90.63 159.19 150.47 147.53 156.71 173.16 
PG2 49.09 48.83 48.22 67.89 47.89 47.57 52.59 47.83 48.74 
PG5 21.88 22.62 24.02 46.09 23.56 27.33 25.70 28.39 21.81 
PG8 26.11 30.66 33.06 18.02 24.82 28.20 27.21 21.95 23.58 
PG11 14.39 15.19 15.54 30.00 18.49 20.12 18.69 15.87 12.62 
PG13 15.03 14.08 16.63 34.92 17.83 16.82 19.03 20.41 12.00 

V
 (p

.u
) 

VG1 1.10 1.10 1.10 1.10 1.04 1.10 1.06 1.06 1.09 
VG2 1.09 1.09 1.09 1.09 1.02 1.08 1.05 1.04 1.07 
VG5 1.07 1.06 1.06 1.07 0.99 1.04 1.01 1.01 1.04 
VG8 1.07 1.08 1.07 1.07 1.01 1.06 1.03 1.02 1.05 
VG11 1.10 1.10 1.09 1.09 1.04 1.07 1.06 1.06 1.10 
VG13 1.10 1.09 1.09 1.10 1.04 1.05 1.05 1.06 1.10 

Ta
p 

(p
.u

) T11 0.98 1.03 0.97 1.02 0.98 1.04 1.04 1.01 1.00 
T12 0.96 0.98 1.03 0.95 1.00 0.90 0.93 0.96 0.92 
T15 1.00 1.03 1.04 0.99 0.98 0.96 1.00 1.02 0.98 
T36 0.98 0.99 0.99 0.97 0.98 1.02 0.96 0.97 0.95 

C
ap

ac
ito

r b
an

k 
(M

V
ar

) QC10 1.50 4.71 4.23 4.17 5.00 4.83 3.09 5.00 4.92 
QC12 0.49 3.68 3.15 0.01 2.94 4.57 2.70 2.77 4.81 
QC15 0.21 1.70 3.44 0.01 2.57 4.60 3.44 4.61 4.83 
QC17 4.40 2.37 4.09 0.75 2.00 1.54 4.80 5.00 4.58 
QC 20 1.16 2.84 3.70 4.91 2.46 1.03 2.92 4.57 4.94 
QC 21 1.33 4.71 1.75 2.94 3.00 0.72 3.86 5.00 5.00 
QC 23 4.87 4.64 2.94 2.79 4.00 4.11 2.26 4.31 4.29 
QC 24 0.02 4.45 4.62 3.88 2.00 0.63 2.88 5.00 5.00 
QC29 4.02 2.35 3.75 4.96 2.95 2.20 3.27 2.45 3.41 
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800.96 802.06 804.75 899.41 806.89 808.96 809.62 808.93 799.87 
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ss

 
(M

W
) 

7.90 7.43 7.00 4.15 8.49 7.10 7.34 7.76 8.51 

In solving the OPF MOP using 2S-ENDSHHMO, the optimal objectives optimization 

value and its corresponding control variables are obtained based on the highest GRG 

value (0.6728). The generating cost and transmission loss values corresponding to the 

selected solution are 800.9602 units and 7.9018 MW, respectively. By using the 

HHMO algorithm, the optimal objectives optimization value and its corresponding 

control variables are obtained based on the highest GRG value (0.6729). The 

generating cost and transmission loss values corresponding to the selected solution are 

802.0559 units and 7.4339 MW, respectively. By using MOGWO, the selected 

solution has a generating cost = 804.7520 units and transmission loss = 7.0039 MW. 

By using MOGOA, the cost and loss values obtained by using the GRA method are 

899.4137 units and 4.1514 MW, respectively. By using MODA, For the GRA solution, 

the cost and loss are 806.8893 units and 8.4853 MW, respectively. By using the 

MOSSA, the cost and loss obtained by using GRA solution are 808.9586 units and 

7.0976 MW, respectively. By using the NSGSA, the GRA solution, the cost and 

transmission loss values are found to be 809.6164 units and 7.3430 MW, respectively. 

By using the NSABC algorithm, for the GRA solution, the cost and loss values are 
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found to be 808.9318 units and 7.7637 MW, respectively. The solution obtained by 

using R-NSGA-II produced cost and transmission loss values of 799.8664 units and 

8.5059 MW, respectively. 

5.11.5 The Compromise Solutions of the Engineering MOPs 

Comparison of the compromise solution obtained by the 2S-ENDSHHMO algorithm 

with solutions obtained by using other algorithms in solving welded beam, four-bar 

truss and OPF MOPs are shown in Figures 5.12-5.14. 

 
Figure 5.12. Compromise solutions obtained by HHMO, MOGWO, MOGOA, 
MODA, MOSSA, NSGSA and NSABC and R-NSGA-II algorithms in solving 
welded beam MOP. 
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In solving welded beam MOPs, the solution obtained by the 2S-ENDSHHMO 

algorithm has a fabrication cost of 8.5575 units which is 30.02% and 2.96% lower than 

the solutions of MOSSA and R-NSGA-II algorithms, respectively. The solutions 

obtained by HHMO, MOGWO, MOGOA, MODA, NSGSA and NSABC algorithms 

have a fabrication cost of 24.44%, 2.54%, 27.13%, 18.48%, 14.10% and 42.20% lower 

than the 2S-ENDSHHMO algorithm. However, the solution obtained by the 2S-

ENDSHHMO algorithm has a deflection of 27.20%, 3.45%, 38.45%, 26.31%, 15.65% 

and 44.54% lower than the solution obtained by using HHMO, MOGWO, MOGOA, 

MODA, NSGSA and NSABC algorithms, respectively. 

 
Figure 5.13. Compromise solutions obtained by HHMO, MOGWO, MOGOA, 
MODA, MOSSA, NSGSA and NSABC and R-NSGA-II algorithms in solving four-
bar truss MOP 
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In solving the four-bar truss MOP, the solution obtained by the 2S-ENDSHHMO 

algorithm has a volume of 36.06%, 35.44%, 33.94%, 35.94%, 35.45% and 5.72% 

lower than the solutions of HHMO, MOGWO, MOGOA, MODA and NSABC 

algorithms. However, the deflection of solutions of these algorithms is 56.58%, 

56.31%, 55.61%, 56.53%, 56.30% and 14.72% which is lower than the solution of 2S-

ENDSHHMO algorithm. 

 
Figure 5.14. Compromise solutions obtained by HHMO, MOGWO, MOGOA, 
MODA, MOSSA, NSGSA and NSABC and R-NSGA-II algorithms in solving OPF 
MOP. 

In solving the OPF MOP, the solution obtained by the 2S-ENDSHHMO algorithm has 

a generating cost of 0.14%, 0.47%, 10.95%, 0.73%, 0.99%, 1.07%, and 0.99% lower 
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than the solution obtained by HHMO, MOGWO, MODA, MOSSA, NSGSA and 

NSABC, respectively. The solution obtained by R-NSGA-II algorithm has a 

generating cost of 0.14% lower than 2S-ENDSHHMO. However, the active 

transmission loss of this solution is 7.102% higher than the solution of 2S-

ENDSHHMO. The transmission loss of HHMO, MOGWO, MODA, NSGSA, 

NSABC is 5.9219%, 11.3640%, 47.4628%, 6.8764%, 7.0725%, 1.7475% and 7.1020 

lower than 2S-ENDSHHMO algorithm, respectively. However, the generating cost of 

these algorithms is high compared to the 2S-ENDSHHMO. The MOSSA and R-

NSGA-II algorithms have a transmission loss of 7.102% and 10.1783% higher than 

the 2S-ENDSHHMO algorithm. This makes the compromise solution obtained by the 

2S-ENDSHHMO algorithm more economically than solutions of other algorithms. 

 

Since the objectives are conflicting with each other, improving one of the them leads 

to degradation of the other. In  Figures 5.1-5.14, the lower value of an objective does 

not mean the corresponding compromise solution is the better. Because the value of 

the other objective became higher. In MOO we need to take all objective in 

consideration. The calculation of compromise solutions helps the DM to choose one 

of the acceptable solutions belonging to the Pareto front. According to Chiandussi, 

Codegone, Ferrero, and Varesio (2012), the DM usually selects a compromise solution 

satisfying all the objectives as better as possible. 
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5.12 Summary 

In this chapter the experiments have been conducted to evaluate the performance of 

the proposed 2S-ENDSHHMO algorithm and compare it with other algorithms in 

solving different MOPS. The results show that the 2S-ENDSHHMO algorithm 

promises to be a competitive metaheuristic in the field of MOO due to its high 

performance compared to the state-of-the-art algorithms used in the experiments. The 

2S-ENDSHHMO algorithm was able to generate a set of non-dominated solutions with 

greater convergence and diversity to the true Pareto front. of most MOPs used in the 

experiments and showed a great ability in jumping out of local optima, which indicates 

the ability of the algorithm in exploration of the search space. Moreover, the 2S-

ENDSHHMO algorithm was able to achieve competitive results in solving real-world 

MOPs compared to other algorithms. 
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CHAPTER SIX 

CONCLUSION AND FUTURE WORKS 

 

Most real-world optimization problems consist of two or more conflicting objectives, 

in which improving an objective leads to the degradation of others. This type of 

problem is known as a MOP. Several methods have been proposed to solve MOPs. 

This study has focused on MOSI-based metaheuristics. In general, the MOSI-based 

algorithms integrate a single objective optimization algorithm with a MOO approach 

to handle multiple objectives. In most of the MOSI-based algorithms, the non-

dominated solutions are evenly distributed along the Pareto front. However, in MOO, 

normally, the DM is interested in a particular region of the Pareto front. In this case, 

the solutions outside the region of interest can be considered as noisy data.  

 

One of the recently proposed reference-point-based MOSI algorithms is the HHMO 

algorithm. This algorithm is inspired by the social hierarchy and hunting behaviour of 

the Harris’s hawk predator in nature. The HHMO algorithm is developed based on the 

MOGWO and GWO algorithms, which show superior performance compared to other 

SI and MOSI-based algorithms. Furthermore, the integration of the preference 

information with the HHMO algorithm helps in directing the search to the region of 

interest. In this way, the algorithm, can ignore the calculation of other solutions and 

only needs to process the optimal solution in the region of interest. Thereby the 

performance of the algorithm is improved, and computational cost reduced, which 
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helps decision makers to make better decisions. However, the HHMO algorithm has 

drawbacks which degrade its performance.  

 

The population of hawks is updated based on the position of the first three best 

solutions and it does not consider the positions of other hawks. This leads to the loss 

of population diversity. In this case, the HHMO algorithm will not be able to escape 

from local optima, especially in solving complex MOPs which leads to premature 

convergence. To overcome this limitation, a new population update strategy has been 

proposed. The proposed strategy was integrated with the HHMO to produce the 

NDSHHMO algorithm. The performance of the NDSHHMO has been evaluated and 

compared with the HHMO using different MOPs. Results of the experiments showed 

that the NDSHHMO algorithm outperforms the HHMO algorithm in terms of the 

convergence toward the Pareto front and diversity of the obtained solutions.  

 

In the HHMO, the exploration and exploitation processes are equally performed 

according to the value of convergence parameter, a. The adjustment strategy of the 

convergence parameter overlooks the balanced trade-off between exploration and 

exploitation. This leads to poor approximation of the Pareto front and low diversity of 

non-dominated solutions. In this study, a new parameter adjustment strategy for the 

convergence parameter has been proposed. The proposed strategy was integrated with 

the HHMO to produce the EHHMO algorithm. This algorithm has been evaluated 

using a set of MOPs and compared with the HHMO. Experimental results showed that 

the adaptive parameter adjustment strategy can effectively improve the global search 
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ability of the EHHMO algorithm. This leads to improved convergence toward the 

Pareto front with better diversity of non-dominated solutions. 

 

The initial population of hawks is generated using the random number generator 

method. The solution produced by this method is not well distributed in the search 

space which leads to poor convergence toward the Pareto front. To improve the initial 

population generator method in the HHMO, a new two-step method has been 

proposed. This method was integrated with the HHMO to produce the 2S-HHMO 

algorithm. This algorithm was evaluated by solving MOPs and the performance were 

compared with the other different initial population generator methods, namely RNG 

method in the original HHMO, OBL-HHMO, Sobol-HHMO, LHS-HHMO and 

Hammersley-HHMO algorithms. The experiment results demonstrated that the 2S-

HHMO provides a competitive performance compared to the HHMO and other 

algorithms. This implies that the proposed two-step initial population method can 

effectively improve the performance of the HHMO algorithm in terms of both 

convergence and diversity compared to the uniform random number generator method. 

 

This study has focused on improving the performance of the HHMO algorithm by 

solving these drawbacks. These improvements mainly include the following three 

aspects: updating the population of hawks, adjusting the convergence parameter value 

and the initial population of hawks. The results in Chapter Five proved that integrating 

the proposed population update strategy, convergence parameter adjustment strategy 

and two-step initial population generator method with HHMO led to better 



 

 231 

performance in terms of convergence toward the Pareto font and diversity of 

nondominated solutions. 

6.1 Research Contributions 

This study has introduced the 2S-ENDSHHMO algorithm, which is an improved 

version of the HHMO algorithm in terms of the convergence toward the Pareto front 

and diversity of the obtained non-dominated solutions. The main contributions of the 

study are those of a new population update strategy, a new convergence parameter 

adjustment strategy and a new initial population generator method.  

 

In the first contribution, the update population strategy is introduced. This strategy 

includes two stages. In the first stage, a new position of hawks is calculated using the 

new proposed movement strategy which is inspired by the flush-and-ambush 

technique of Harris’s hawks in nature. In this technique, the position of hawks is 

updated with respect to the positions of all hawks in the population. This leads to an 

improvement in the hawks’ exploration. In the second stage, the non-dominated 

sorting approach is used to select the best hawks to be used in the next generation, 

which helped in maintaining population diversity and prevent the premature 

convergence.  

 

In the second contribution, the transition between exploration and exploitation 

processes is improved by using the proposed parameter adjustment strategy of the 

convergence parameter, a. In this strategy, the convergence parameter is adaptively 
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change based on the state of the search space. Furthermore, this strategy allows the 

algorithm to spend more time on exploration in the early stages of the optimization 

process and intensify the search within a particular promising region in the later stage.  

 

In the third contribution, the two-step initial population method is proposed to initialize 

the population of hawks. This method consists of two steps. In the first step, the R-

sequence is used to generate quasi-random numbers. In the second step, the partial 

OBL concept is applied to improve the diversity of the worst half in the population of 

hawks.  

 

The proposed population update strategy, convergence parameter adjustment strategy 

and two-step initial population generator method are integrated to produce the 2S-

ENDSHHMO algorithm.  This algorithm has been tested to solve different well-known 

MOPs. The experiment results showed that the 2S-ENDSHHMO algorithm is superior 

compared to other state-of-the-art MOSI-based algorithms.  Finally, the proposed 2S-

ENDSHHMO algorithm has been verified by solving engineering MOPs. The 

experiment results showed that the 2S-ENDSHHMO algorithm outperformed other 

algorithms in terms of convergence toward the Pareto front and diversity of solutions. 

6.2 Limitation and Future Work 

During the development of this thesis some future lines of research have emerged. 

These lines remain open and are expected to be addressed in the future. Some are more 
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directly related to this study and others are more general lines. These lines can be 

summarised in the following points. 

 

i. The 2S-ENDSHHMO algorithm is mainly developed to work with the continuous 

search space. It is possible to integrate it with an appropriate discretization method to 

solve combinatorial MOPs.  

 

ii. The Euclidean distance is used in 2S-ENDSHHMO algorithm as a distance measure. 

However, there are many other distance measures, which need to be investigated, such 

as harmonic and Manhattan distances. 

 

iii. In the 2S-ENDSHHMO algorithm, the best three solutions (leaders) plays an 

important role in guiding the hawks in the search space. Therefore, it will be useful to 

apply another technique to selection the leaders. 

 

v. The 2S-ENDSHHMO algorithm has been used to solve constraint optimization 

problems with two objectives. It is possible to apply it to solve constraint optimization 

problems with many objectives.  

 

iv. In the 2S-ENDSHHMO algorithm, the Pareto dominance approach has been used 

to compare the solutions and select the non-dominated solutions. It would be 

interesting to explore the possibility of comparing the solutions using different 

approach. 
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Based on the results and discussion presented in Chapter Five, the proposed the 2S-

ENDSHHMO is proven to be more superior in terms of convergence and diversity as 

compared to the other MOSI-based algorithms. This indicates that the 2S-

ENDSHHMO possess significant implication to the problem of interest. However, 

according to no-free-lunch theorem there is no a single algorithm that provides good 

performance in solving all optimization problems. Therefore, it is possible to explore 

other MOPs in the future and improve the 2S-ENDSHHMO limitations. 
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Formulations and Characteristics of The Benchmark Functions 

A.1 Formulations and Characteristics of The ZDT family. 

Characteristics of ZDT problems  
Problem Pareto border Formulation 

ZDT1 Convex 

𝑓1(𝑥) = 𝑥1

𝑓2(𝑥) = 𝑔(𝑥) × ℎ(𝑥)

𝑔(𝑥) = 1 +
9

𝑛 − 1
∑ 𝑥𝑖

𝑛

𝑖=2

ℎ(𝑓1, 𝑔) = 1 − √𝑓1 𝑔⁄

 

ZDT2 Concave 

𝑓1(𝑥) = 𝑥1

𝑓2(𝑥) = 𝑔(𝑥) × ℎ(𝑥)

𝑔(𝑥) = 1 +
9

𝑛 − 1
∑ 𝑥𝑖

𝑛

𝑖=2

ℎ(𝑓1, 𝑔) = 1 − (𝑓1 𝑔⁄ )2

 

ZDT3 disconnected 

𝑓1(𝑥) = 𝑥1

𝑓2 = 𝑔(𝑥) × ℎ(𝑥)

𝑔(𝑥) = 1 +
9

𝑛 − 1
∑ 𝑥𝑖

𝑛

𝑖=2

ℎ(𝑓1, 𝑔) = 1 − √𝑓1 𝑔(𝑥)⁄ − (𝑓1 𝑔(𝑥)⁄ ) sin(10𝜋𝑓1)

 

ZDT4 Multimodal 

𝑓1(𝑥) = 𝑥1

𝑓2(𝑥) = 𝑔(𝑥) × ℎ(𝑥)

𝑔(𝑥) = 1 + 10(𝑛 − 1) + ∑ (𝑥𝑖
2

𝑛

𝑖=2
− 10 cos(4𝜋𝑥𝑖))

ℎ(𝑓1, 𝑔) = 1 − √𝑓1 𝑔⁄

 

ZDT6 Concave 

𝑓1(𝑥) = 1 − exp(−4𝑥1) sin6(6𝜋𝑥1)

𝑓2(𝑥) = 𝑔(𝑥) × ℎ(𝑥)

𝑔(𝑥) = 1 + 9 [(∑ 𝑥𝑖

10

𝑖=2
) 9⁄ ]

0.25

ℎ(𝑓1, 𝑔) = 1 − (𝑓1 𝑔⁄ )2

 

 

A.2 Formulations and Characteristics of The DTLZ family. 

Characteristics of DTLZ problems 
Problem Pareto border Formulation 

DTLZ2 Concave 
𝑓1(𝑥) = 1 + 𝑔(𝑥) cos (𝑥1

𝜋

2
) 

𝑓2(𝑥) = 1 + 𝑔(𝑥) sin (𝑥1

𝜋

2
) 
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𝑔(𝑥) = ∑ (𝑥𝑖 − 0.5)2

𝑥𝑖∈𝑥
 

DTLZ4 

𝑓1(𝑥) = 1 + 𝑔(𝑥) cos (𝑥1


𝜋

2
) 

𝑓2(𝑥) = 1 + 𝑔(𝑥) sin (𝑥1


𝜋

2
) 

𝑔(𝑥) = ∑ (𝑥𝑖
 − 0.5)2

𝑥𝑖∈𝑥
 

 = 100 

DTLZ5 

Degenerated 

𝑓1(𝑥) = 1 + 𝑔(𝑥) cos (
1 + 2𝑔𝑥

4(1 + 𝑔(𝑥))
.
𝜋

2
) 

𝑓2(𝑥) = 1 + 𝑔(𝑥) sin (𝑥1

𝜋

2
) 

𝑔(𝑥) = ∑ (𝑥𝑖 − 0.5)2

𝑥𝑖∈𝑥
 

DTLZ6 

𝑓1(𝑥) = 1 + 𝑔(𝑥) cos (
1 + 2𝑔𝑥

4(1 + 𝑔(𝑥))
.
𝜋

2
) 

𝑓2(𝑥) = 1 + 𝑔(𝑥) sin (𝑥1

𝜋

2
) 

𝑔(𝑥) = ∑ 𝑥𝑖
0.1

𝑛

𝑖=𝑚
 

DTLZ7 Disconnected 

𝑓1(𝑥) = 𝑥1 
𝑓2(𝑥) = 𝑥2 
𝑓𝑀(𝑥) = 1 + 𝑔(𝑥𝑀) ). ℎ(𝑓1, 𝑓2, … , 𝑓𝑀−1𝑔(𝑥)) 

𝑔(𝑥) = 1 +
9

|𝑥𝑀|
∑ 𝑥𝑖

𝑥𝑖𝑥𝑚

 

h(𝑓1, 𝑓1, … , 𝑓𝑀−1, 𝑔)
= M

− ∑ (
𝑓𝑖

|1 + 𝑔(𝑥)|
(1 + sin(3𝑓𝑖)))

𝑀−1

𝑖=1
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Distribution of the Non-dominated Solutions Obtained by MOSI-

based Algorithms   

B.1: The distribution of the approximated Pareto front obtained by using 2S-
ENDSHHMO, HHMO, MOGWO, MOGOA, MODA, MOSSA, NSGSA, NSABC 
and R-NSGA-II in solving the test functions 
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B.2: The results of HHMO, 2S-HHMO, OBL-HHMO, Sobol-HHMO, LHS-HHMO 
and Hammersley-HHMO algorithms in solving test functions. 
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The Results of Solving Test Function Obtained by Using MOSI-

Based Algorithms   

C.1: Mean, SD, best, worst R-IGD, R-HV and epsilon values in solving the ZDT1 
problem 

MOP Algorithm Metric Mean SD Best Worst 

ZDT1 

2S-ENDSHHMO 
R-IGD 5.6533E-03 6.2151E-05 5.5497E-03 5.7316E-03 
R-HV 4.0560E+00 7.7556E-03 4.0707E+00 4.0519E+00 

Epsilon 1.2489E-02 1.7361E-03 9.1853E-03 1.3537E-02 

HHMO 
R-IGD 1.7578E-01 2.0731E-01 3.9839E-03 4.1901E-01 
R-HV 3.5367E+00 5.8494E-01 4.0465E+00 2.8585E+00 

Epsilon 1.6344E-01 1.6673E-01 1.9181E-02 3.5811E-01 

MOGWO 
R-IGD 2.1932E-02 6.9049E-03 1.1696E-02 3.6331E-02 
R-HV 4.0017E+00 4.4822E-02 4.0424E+00 3.9110E+00 

Epsilon 3.9243E-02 9.8950E-03 2.2672E-02 5.7439E-02 

MOGOA 
R-IGD 1.8471E+00 6.5981E-01 9.9156E-01 2.9222E+00 
R-HV 6.1001E-01 6.0848E-01 1.5677E+00 0.0000E+00 

Epsilon 1.3938E+00 4.7224E-01 7.8519E-01 2.1644E+00 

MODA 
R-IGD 3.9270E+00 7.6875E-01 2.2648E+00 4.6178E+00 
R-HV 1.3736E-02 4.1208E-02 1.2362E-01 0.0000E+00 

Epsilon 2.8725E+00 5.4841E-01 1.6817E+00 3.3654E+00 

MOSSA 
R-IGD 1.9638E+00 2.6132E-01 1.6923E+00 2.5700E+00 
R-HV 3.4141E-01 1.6552E-01 5.6947E-01 1.6349E-02 

Epsilon 1.4866E+00 1.8669E-01 1.2834E+00 1.9171E+00 

NSGSA 
R-IGD 1.3675E-02 9.3208E-03 6.7432E-03 3.1761E-02 
R-HV 4.0226E+00 4.7315E-02 4.0783E+00 3.9228E+00 

Epsilon 3.0952E-02 1.7982E-02 1.5093E-02 7.2797E-02 

NSABC 
R-IGD 1.3679E-01 4.4568E-02 7.5396E-02 1.8018E-01 
R-HV 3.5691E+00 1.0270E-01 3.7721E+00 3.4600E+00 

Epsilon 1.2766E-02 3.8367E-03 7.7160E-03 2.0508E-02 

R-NSGA-II 
R-IGD 5.2558E-03 5.8714E-04 4.8554E-03 6.5586E-03 
R-HV 4.1561E+00 1.3436E-02 4.1679E+00 4.1212E+00 

Epsilon 1.3114E-02 1.7344E-03 9.7937E-03 1.5524E-02 

 
C.2: Mean, SD, best, worst R-IGD, R-HV and epsilon values in solving the ZDT2 
problem 

MOP Algorithm Metric Mean SD Best Worst 

ZDT2 

2S-ENDSHHMO 
R-IGD 5.9105E-03 1.5228E-04 5.6203E-03 6.0517E-03 
R-HV 3.8653E+00 9.6061E-03 3.8769E+00 3.8577E+00 

Epsilon 1.2445E-02 1.5170E-03 1.0505E-02 1.3679E-02 

HHMO 
R-IGD 1.1792E-01 1.4844E-01 1.4071E-02 4.9398E-01 
R-HV 3.4469E+00 4.2979E-01 3.8114E+00 2.5232E+00 

Epsilon 1.4848E-01 1.2708E-01 4.9511E-02 4.4751E-01 

MOGWO 
R-IGD 3.1017E-02 2.0845E-02 7.9890E-03 6.8484E-02 
R-HV 3.7312E+00 1.1214E-01 3.8857E+00 3.5361E+00 

Epsilon 6.0671E-02 3.7037E-02 2.0442E-02 1.1122E-01 

MOGOA 
R-IGD 3.6416E+00 3.4330E+00 5.0505E-01 1.0077E+01 
R-HV 7.3508E-01 8.2651E-01 2.3759E+00 0.0000E+00 

Epsilon 2.6678E+00 2.4315E+00 4.5227E-01 7.2229E+00 
MODA R-IGD 6.1061E+01 3.3025E+01 5.4427E+00 1.0267E+02 
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R-HV 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 
Epsilon 4.3275E+01 2.3352E+01 3.9465E+00 7.2694E+01 

MOSSA 
R-IGD 2.9267E+00 1.7482E+00 1.8378E-01 6.2258E+00 
R-HV 4.8290E-01 1.0066E+00 3.1470E+00 0.0000E+00 

Epsilon 2.1660E+00 1.2375E+00 2.1970E-01 4.5002E+00 

NSGSA 
R-IGD 8.6036E-02 5.9997E-02 7.5630E-03 1.4984E-01 
R-HV 3.5109E+00 2.5676E-01 3.8635E+00 3.2400E+00 

Epsilon 1.2188E-01 7.2425E-02 1.3998E-02 1.9368E-01 

NSABC 
R-IGD 4.9043E-01 1.5503E-01 2.3447E-01 7.8454E-01 
R-HV 2.4358E+00 3.4429E-01 3.0570E+00 1.8027E+00 

Epsilon 1.7627E-02 5.6174E-03 1.2766E-02 3.0807E-02 

R-NSGA-II 
R-IGD 3.9049E-03 1.1619E-04 3.7084E-03 4.0528E-03 
R-HV 4.6164E+00 4.5989E-03 4.6257E+00 4.6129E+00 

Epsilon 1.3568E-02 1.1140E-04 1.3311E-02 1.3650E-02 

 
C.3: Mean, SD, best, worst R-IGD, R-HV and epsilon values in solving the ZDT3 
problem 

MOP Algorithm Metric Mean SD Best Worst 

ZDT3 

2S-ENDSHHMO 
R-IGD 2.4479E-03 6.7881E-05 2.4006E-03 2.6238E-03 
R-HV 3.9684E+00 5.9268E-03 3.9711E+00 3.9516E+00 

Epsilon 2.6548E-03 2.8317E-03 1.5941E-03 1.0660E-02 

HHMO 
R-IGD 1.9888E-01 2.0830E-01 1.5067E-02 5.8388E-01 
R-HV 3.3788E+00 6.0141E-01 3.9525E+00 2.3330E+00 

Epsilon 1.9080E-01 1.8764E-01 1.0340E-02 5.1088E-01 

MOGWO 
R-IGD 1.6595E-02 9.0443E-03 5.5936E-03 3.3225E-02 
R-HV 3.8859E+00 7.2366E-02 3.9639E+00 3.7743E+00 

Epsilon 4.1603E-02 3.5429E-02 3.8871E-03 9.6867E-02 

MOGOA 
R-IGD 3.2415E+00 2.1386E+00 7.6807E-01 7.6261E+00 
R-HV 3.8803E-01 6.8126E-01 1.9528E+00 0.0000E+00 

Epsilon 2.3910E+00 1.5125E+00 6.4145E-01 5.4917E+00 

MODA 
R-IGD 6.8899E+01 1.3639E+01 4.1858E+01 8.3183E+01 
R-HV 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

Epsilon 4.8818E+01 9.6442E+00 2.9697E+01 5.8919E+01 

MOSSA 
R-IGD 2.9327E+00 2.1638E+00 8.6916E-01 5.9600E+00 
R-HV 6.4365E-01 7.3252E-01 1.7567E+00 0.0000E+00 

Epsilon 2.1726E+00 1.5303E+00 7.1304E-01 4.3136E+00 

NSGSA 
R-IGD 1.8155E-01 2.8549E-01 7.2512E-03 8.2928E-01 
R-HV 3.4398E+00 7.3321E-01 3.9429E+00 1.8536E+00 

Epsilon 1.7585E-01 2.2105E-01 1.3602E-02 6.3721E-01 

NSABC 
R-IGD 5.4984E-01 8.1710E-02 3.7493E-01 6.2900E-01 
R-HV 2.4123E+00 1.8528E-01 2.8087E+00 2.2363E+00 

Epsilon 3.0175E-02 2.6325E-02 1.1979E-02 1.0251E-01 

R-NSGA-II 
R-IGD 3.5202E-02 1.0165E-01 2.8174E-03 3.2450E-01 
R-HV 3.9875E+00 3.1224E-01 4.0905E+00 3.0989E+00 

Epsilon 9.2610E-03 4.2335E-04 8.6339E-03 9.8482E-03 

 

C.4: Mean, SD, best, worst R-IGD, R-HV and epsilon values in solving the ZDT4 
problem 

MOP Algorithm Metric Mean SD Best Worst 

ZDT4 2S-ENDSHHMO 
R-IGD 5.0082E-03 7.7101E-06 4.9952E-03 5.0185E-03 
R-HV 4.1564E+00 2.3014E-04 4.1569E+00 4.1562E+00 

Epsilon 7.7062E-03 5.1414E-05 7.6552E-03 7.8243E-03 
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HHMO 
R-IGD 4.3117E-02 5.7142E-02 2.7345E-03 1.5176E-01 
R-HV 3.9498E+00 2.4825E-01 4.1342E+00 3.4984E+00 

Epsilon 7.4713E-02 7.3575E-02 1.3438E-02 1.9567E-01 

MOGWO 
R-IGD 2.7842E-02 1.2659E-02 1.0843E-02 5.3222E-02 
R-HV 4.0476E+00 8.7156E-02 4.1602E+00 3.8900E+00 

Epsilon 5.2254E-02 2.3044E-02 2.2817E-02 8.9581E-02 

MOGOA 
R-IGD 6.7458E+00 1.9786E+00 4.2296E+00 8.9919E+00 
R-HV 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

Epsilon 4.8702E+00 1.3991E+00 3.0909E+00 6.4585E+00 

MODA 
R-IGD 5.7661E+00 2.3054E+00 3.2902E+00 1.0999E+01 
R-HV 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

Epsilon 4.1774E+00 1.6303E+00 2.4264E+00 7.8776E+00 

MOSSA 
R-IGD 7.4892E-01 1.0744E+00 2.9453E-02 2.9653E+00 
R-HV 2.7139E+00 1.6781E+00 4.0189E+00 0.0000E+00 

Epsilon 5.9747E-01 7.8088E-01 4.8498E-02 2.1966E+00 

NSGSA 
R-IGD 1.0291E-02 8.1070E-03 4.9933E-03 3.2113E-02 
R-HV 4.1361E+00 2.6953E-02 4.1704E+00 4.0782E+00 

Epsilon 2.0131E-02 1.0115E-02 9.6700E-03 4.3893E-02 

NSABC 
R-IGD 5.1382E-01 4.3659E-01 3.3444E-02 1.2071E+00 
R-HV 2.7297E+00 1.0458E+00 4.0554E+00 1.2487E+00 

Epsilon 3.6123E-02 3.1670E-02 9.4745E-03 1.1284E-01 

R-NSGA-II 
R-IGD 3.8590E-02 1.0436E-01 5.5525E-03 3.3561E-01 
R-HV 3.9603E+00 3.1055E-01 4.0636E+00 3.0766E+00 

Epsilon 7.1269E-02 1.3427E-01 7.4856E-03 3.2604E-01 

 

C.5: Mean, SD, best, worst R-IGD, R-HV and epsilon values in solving the ZDT6 
problem 

MOP Algorithm Metric Mean SD Best Worst 

ZDT6 

2S-ENDSHHMO 
R-IGD 2.5867E-03 7.7699E-05 2.4822E-03 2.6690E-03 
R-HV 4.4545E+00 6.2963E-03 4.4620E+00 4.4494E+00 

Epsilon 9.7824E-03 1.3105E-04 9.5260E-03 9.9504E-03 

HHMO 
R-IGD 4.2760E-01 4.8118E-01 4.5574E-03 1.0499E+00 
R-HV 3.2860E+00 1.2621E+00 4.4118E+00 1.6868E+00 

Epsilon 3.6691E-01 3.7357E-01 3.3946E-02 8.4102E-01 

MOGWO 
R-IGD 1.7475E-01 1.1547E-02 1.6181E-01 1.9315E-01 
R-HV 3.7302E+00 5.0942E-02 3.7922E+00 3.6555E+00 

Epsilon 2.0099E-01 6.2944E-03 1.9610E-01 2.1585E-01 

MOGOA 
R-IGD 1.3721E+00 9.2924E-01 1.6912E-01 2.6192E+00 
R-HV 1.5504E+00 1.5514E+00 3.7503E+00 3.5517E-02 

Epsilon 1.0740E+00 6.7052E-01 1.9868E-01 1.9516E+00 

MODA 
R-IGD 7.5319E+00 5.6976E+00 9.7107E-01 1.3229E+01 
R-HV 7.2620E-01 9.3780E-01 1.8391E+00 0.0000E+00 

Epsilon 5.4403E+00 4.0103E+00 8.3098E-01 9.4541E+00 

MOSSA 
R-IGD 1.3112E+00 1.7543E+00 1.5985E-01 5.9299E+00 
R-HV 2.1829E+00 1.4531E+00 3.8069E+00 0.0000E+00 

Epsilon 1.0207E+00 1.2447E+00 1.9488E-01 4.2930E+00 

NSGSA 
R-IGD 3.3436E-01 3.3599E-01 1.6009E-01 9.7127E-01 
R-HV 3.3564E+00 8.0277E-01 3.8045E+00 1.8384E+00 

Epsilon 3.3224E-01 2.6346E-01 1.9429E-01 8.3101E-01 

NSABC 
R-IGD 1.6359E-01 2.3880E-03 1.6090E-01 1.6812E-01 
R-HV 3.7813E+00 1.4058E-02 3.7979E+00 3.7553E+00 

Epsilon 1.9684E-01 9.3502E-04 1.9565E-01 1.9845E-01 

R-NSGA-II R-IGD 2.8213E-03 1.7476E-05 2.8024E-03 2.8514E-03 
R-HV 4.2682E+00 1.0119E-04 4.2683E+00 4.2680E+00 
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Epsilon 8.8925E-03 1.8335E-03 6.2315E-03 1.0216E-02 

 

C.6: Mean, SD, best, worst R-IGD, R-HV and epsilon values in solving the DTLZ2 
with three objective problem  

MOP Algorithm Metric Mean SD Best Worst 

DTLZ2 
(3) 

2S-
ENDSHHMO 

R-IGD 5.9549E-02 2.3553E-03 5.6725E-02 6.2936E-02 
R-HV 9.5813E+00 3.4719E-02 9.6307E+00 9.5159E+00 

Epsilon 9.3292E-02 4.7400E-03 8.7793E-02 1.0443E-01 

HHMO 
R-IGD 6.0026E-01 2.1995E-01 2.1479E-01 8.0993E-01 
R-HV 5.6807E+00 1.2562E+00 8.0106E+00 4.5061E+00 

Epsilon 4.4202E-01 1.3158E-01 2.1195E-01 5.7064E-01 

MOGWO 
R-IGD 1.0205E-01 4.0249E-02 3.7206E-02 1.8057E-01 
R-HV 9.5112E+00 4.0018E-01 1.0049E+01 8.9110E+00 

Epsilon 1.4109E-01 2.6621E-02 8.7672E-02 1.8525E-01 

MOGOA 
R-IGD 2.9055E-01 7.0896E-02 1.5081E-01 3.8570E-01 
R-HV 7.5175E+00 5.2667E-01 8.4426E+00 6.7484E+00 

Epsilon 2.5980E-01 4.6728E-02 1.7181E-01 3.1871E-01 

MODA 
R-IGD 2.5222E-01 5.6295E-02 1.4158E-01 3.1011E-01 
R-HV 7.7335E+00 4.4477E-01 8.7542E+00 7.2628E+00 

Epsilon 2.1343E-01 3.2858E-02 1.7374E-01 2.6945E-01 

MOSSA 
R-IGD 1.5843E-01 7.3946E-02 6.2990E-02 3.0614E-01 
R-HV 8.9404E+00 7.3812E-01 9.9391E+00 7.6117E+00 

Epsilon 1.7325E-01 5.0972E-02 1.0279E-01 2.6363E-01 

NSGSA 
R-IGD 1.5671E-01 2.9675E-02 1.1367E-01 2.1107E-01 
R-HV 8.6085E+00 3.0912E-01 8.9140E+00 7.9518E+00 

Epsilon 1.7697E-01 2.1174E-02 1.4449E-01 2.1208E-01 

NSABC 
R-IGD 9.3907E-02 2.5399E-02 6.5924E-02 1.4782E-01 
R-HV 9.3911E+00 3.7595E-01 9.8107E+00 8.7152E+00 

Epsilon 1.2847E-01 2.0941E-02 1.0489E-01 1.7087E-01 

R-NSGA-II 
R-IGD 6.8791E-02 1.9271E-04 6.8488E-02 6.9211E-02 
R-HV 6.7764E+00 3.3680E-03 6.7841E+00 6.7709E+00 

Epsilon 9.8999E-02 4.7192E-03 9.3145E-02 1.0855E-01 

 

C.7: Mean, SD, best, worst R-IGD, R-HV and epsilon values in solving the DTLZ2 
with five objective problem  

MOP Algorithm Metric Mean SD Best Worst 

DTLZ2 
(5) 

2S-
ENDSHHMO 

R-IGD 7.6619E-02 1.4910E-02 3.9975E-02 9.3158E-02 
R-HV 3.4787E+01 6.3405E-01 3.5930E+01 3.3869E+01 

Epsilon 4.5117E-01 2.0801E-01 2.7440E-01 6.9515E-01 

HHMO 
R-IGD 7.5021E-01 4.9654E-01 1.5725E-01 1.1974E+00 
R-HV 1.7566E+01 1.1041E+01 3.1327E+01 8.1699E+00 

Epsilon 5.9848E-01 2.2674E-01 3.2685E-01 8.0195E-01 

MOGWO 
R-IGD 5.0390E-01 3.3021E-01 1.9233E-01 1.1900E+00 
R-HV 2.1884E+01 7.4073E+00 2.9984E+01 8.1736E+00 

Epsilon 4.8267E-01 1.4808E-01 3.4274E-01 7.9020E-01 

MOGOA 
R-IGD 9.2398E-01 2.4648E-01 6.3277E-01 1.4459E+00 
R-HV 1.2796E+01 3.8648E+00 1.8854E+01 6.1193E+00 

Epsilon 6.7128E-01 1.1300E-01 5.3950E-01 9.1598E-01 

MODA 
R-IGD 5.6361E-01 2.2428E-01 1.6053E-01 8.8449E-01 
R-HV 1.9573E+01 5.6045E+00 3.0508E+01 1.2500E+01 

Epsilon 4.9022E-01 8.0117E-02 3.6950E-01 6.5527E-01 
MOSSA R-IGD 6.2771E-01 3.0728E-01 2.1831E-01 1.0895E+00 
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R-HV 1.9881E+01 8.1059E+00 3.2297E+01 9.4042E+00 
Epsilon 5.4123E-01 1.3804E-01 3.5415E-01 7.4377E-01 

NSGSA 
R-IGD 7.6097E-01 1.3977E-01 5.8356E-01 1.0552E+00 
R-HV 1.4904E+01 2.5729E+00 1.8470E+01 9.8739E+00 

Epsilon 5.9684E-01 6.2505E-02 5.1750E-01 7.2843E-01 

NSABC 
R-IGD 2.1415E-01 6.4732E-02 8.9990E-02 3.1737E-01 
R-HV 2.9652E+01 2.7828E+00 3.5493E+01 2.6142E+01 

Epsilon 3.3848E-01 4.4323E-02 2.5862E-01 3.9845E-01 

R-NSGA-II 
R-IGD 3.7859E-01 2.3095E-04 3.7830E-01 3.7893E-01 
R-HV 2.5925E+01 1.4108E-02 2.5950E+01 2.5898E+01 

Epsilon 2.8268E-01 2.1529E-03 2.7973E-01 2.8530E-01 

 

C.8: Mean, SD, best, worst R-IGD, R-HV and epsilon values in solving the DTLZ2 
with 10 objective problem  

MOP Algorithm Metric Mean SD Best Worst 

DTLZ2 
(10) 

2S-ENDSHHMO 
R-IGD 5.6874E-01 2.5620E-03 5.6503E-01 5.7213E-01 
R-HV 1.0563E+03 6.0745E+00 1.0644E+03 1.0495E+03 

Epsilon 4.4814E-01 3.6988E-03 4.4218E-01 4.5381E-01 

HHMO 
R-IGD 6.9929E-01 1.0747E-01 6.0993E-01 9.6582E-01 
R-HV 7.2147E+02 1.4911E+02 8.8498E+02 3.8534E+02 

Epsilon 5.1777E-01 4.6457E-02 4.7342E-01 6.2113E-01 

MOGWO 
R-IGD 1.2643E+00 3.8482E-01 8.8009E-01 2.1023E+00 
R-HV 2.5682E+02 1.5359E+02 4.6246E+02 3.3480E+01 

Epsilon 7.4469E-01 1.3402E-01 6.0589E-01 1.0299E+00 

MOGOA 
R-IGD 2.7689E+00 9.0655E-01 1.6289E+00 4.5560E+00 
R-HV 2.5465E+01 3.4631E+01 9.3847E+01 9.9364E-03 

Epsilon 1.2450E+00 2.9265E-01 8.7179E-01 1.8181E+00 

MODA 
R-IGD 1.3347E+00 1.6284E-01 1.1595E+00 1.6843E+00 
R-HV 1.8650E+02 5.8551E+01 2.6693E+02 8.3273E+01 

Epsilon 7.5077E-01 8.7501E-02 5.3867E-01 8.3335E-01 

MOSSA 
R-IGD 1.8581E+00 7.1830E-01 9.9909E-01 2.8972E+00 
R-HV 1.3480E+02 1.4522E+02 3.7465E+02 4.6708E+00 

Epsilon 9.1429E-01 2.4828E-01 5.5960E-01 1.2351E+00 

NSGSA 
R-IGD 5.0583E+00 6.1075E-01 3.5306E+00 5.7540E+00 
R-HV 6.5051E-02 2.0399E-01 6.4563E-01 9.1424E-07 

Epsilon 1.9794E+00 1.9428E-01 1.4928E+00 2.2010E+00 

NSABC 
R-IGD 8.6878E-01 9.8349E-02 6.1804E-01 9.6330E-01 
R-HV 4.7561E+02 1.2133E+02 7.9915E+02 3.7452E+02 

Epsilon 4.9936E-01 7.3545E-02 4.0907E-01 6.3009E-01 

R-NSGA-II 
R-IGD 5.6030E-01 6.9578E-03 5.4934E-01 5.7162E-01 
R-HV 1.1331E+03 6.9625E+00 1.1438E+03 1.1222E+03 

Epsilon 4.3551E-01 5.8464E-03 4.2780E-01 4.4685E-01 

 

C.9: Mean, SD, best, worst R-IGD, R-HV and epsilon values in solving the DTLZ4 
problem 

MOP Algorithm Metric Mean SD Best Worst 

DTLZ4 

2S-ENDSHHMO 
R-IGD 3.8053E-02 8.8330E-03 2.7184E-02 5.5236E-02 
R-HV 7.3875E+00 1.1352E-01 7.5483E+00 7.2267E+00 

Epsilon 2.6143E-01 1.7387E-02 2.3765E-01 2.9575E-01 

HHMO 
R-IGD 5.7950E-01 3.4731E-01 1.3918E-01 1.1994E+00 
R-HV 4.1206E+00 1.4373E+00 6.0592E+00 1.7029E+00 

Epsilon 6.3221E-01 2.0358E-01 3.6165E-01 9.9056E-01 
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MOGWO 
R-IGD 1.2659E-01 1.2395E-01 5.8057E-02 4.7243E-01 
R-HV 6.5341E+00 8.0114E-01 7.0502E+00 4.4304E+00 

Epsilon 2.8752E-01 1.0754E-01 2.0477E-01 5.6700E-01 

MOGOA 
R-IGD 3.2835E-01 9.8024E-02 1.1637E-01 4.6030E-01 
R-HV 5.1429E+00 6.2712E-01 6.6862E+00 4.5712E+00 

Epsilon 4.8586E-01 6.1939E-02 3.5177E-01 5.7331E-01 

MODA 
R-IGD 6.2549E-01 1.6480E-01 3.8460E-01 9.2714E-01 
R-HV 3.6139E+00 6.7265E-01 4.6480E+00 2.4711E+00 

Epsilon 6.5886E-01 9.4707E-02 5.1585E-01 8.3277E-01 

MOSSA 
R-IGD 5.3334E-01 1.6000E-01 2.5805E-01 8.2889E-01 
R-HV 4.0771E+00 6.8682E-01 5.3146E+00 2.9401E+00 

Epsilon 6.0461E-01 9.4156E-02 4.3961E-01 7.7694E-01 

NSGSA 
R-IGD 9.9507E-02 3.1256E-02 6.2453E-02 1.7586E-01 
R-HV 6.6878E+00 3.6003E-01 6.9985E+00 5.8068E+00 

Epsilon 3.1995E-01 3.6730E-02 2.6412E-01 3.8729E-01 

NSABC 
R-IGD 3.1561E-01 4.8231E-02 2.1301E-01 3.8375E-01 
R-HV 5.0484E+00 2.5911E-01 5.5758E+00 4.6522E+00 

Epsilon 4.7701E-01 3.0485E-02 4.1147E-01 5.1535E-01 

R-NSGA-II 
R-IGD 2.2783E-01 6.9314E-03 2.1622E-01 2.3768E-01 
R-HV 9.6024E+00 8.4958E-02 9.7438E+00 9.4849E+00 

Epsilon 3.0701E-01 1.3558E-03 3.0457E-01 3.0825E-01 

 

C.10: Mean, SD, best, worst R-IGD, R-HV and epsilon values in solving the DTLZ5 
problem 

MOP Algorithm Metric Mean SD Best Worst 

DTLZ5 

2S-ENDSHHMO 
R-IGD 1.6876E-01 6.6029E-04 1.6793E-01 1.6985E-01 
R-HV 5.4548E+00 1.7573E-02 5.4946E+00 5.4279E+00 

Epsilon 3.9142E-01 1.3145E-02 3.6415E-01 4.0844E-01 

HHMO 
R-IGD 3.3653E-01 3.1601E-02 3.0120E-01 4.0039E-01 
R-HV 4.1184E+00 1.6014E-01 4.2984E+00 3.8123E+00 

Epsilon 5.6209E-01 3.5722E-02 4.9721E-01 6.2420E-01 

MOGWO 
R-IGD 2.3035E-01 2.7160E-02 1.8966E-01 2.7284E-01 
R-HV 4.9623E+00 2.2504E-01 5.3912E+00 4.6664E+00 

Epsilon 2.5849E-01 3.2786E-02 2.1593E-01 3.1466E-01 

MOGOA 
R-IGD 3.1746E-01 4.5262E-02 2.8066E-01 4.4190E-01 
R-HV 4.3132E+00 2.6629E-01 4.5156E+00 3.5993E+00 

Epsilon 3.5447E-01 9.4083E-02 2.7092E-01 5.2824E-01 

MODA 
R-IGD 3.5391E-01 2.2466E-02 3.1868E-01 3.9900E-01 
R-HV 4.0891E+00 1.5334E-01 4.2919E+00 3.7923E+00 

Epsilon 5.1701E-01 1.1219E-01 3.4092E-01 6.2134E-01 

MOSSA 
R-IGD 2.9086E-01 3.1527E-02 2.5321E-01 3.4472E-01 
R-HV 4.5039E+00 2.3231E-01 4.7619E+00 4.0113E+00 

Epsilon 3.4816E-01 9.9156E-02 2.5201E-01 5.9869E-01 

NSGSA 
R-IGD 1.7278E-01 6.5315E-03 1.6842E-01 1.8988E-01 
R-HV 5.5379E+00 9.6315E-02 5.6158E+00 5.2875E+00 

Epsilon 2.1184E-01 6.9203E-03 2.0322E-01 2.2437E-01 

NSABC 
R-IGD 1.6904E-01 1.1792E-03 1.6789E-01 1.7188E-01 
R-HV 5.5980E+00 1.8782E-02 5.6265E+00 5.5663E+00 

Epsilon 2.0560E-01 2.1782E-03 2.0254E-01 2.0930E-01 

R-NSGA-II 
R-IGD 1.8483E-01 6.8477E-03 1.7431E-01 1.9332E-01 
R-HV 8.3792E+00 6.6564E-02 8.4857E+00 8.2837E+00 

Epsilon 3.7102E-01 2.0183E-03 3.6753E-01 3.7232E-01 
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C.11: Mean, SD, best, worst R-IGD, R-HV and epsilon values in solving the DTLZ6 
problem 

MOP Algorithm Metric Mean SD Best Worst 

DTLZ6 

2S-ENDSHHMO 
R-IGD 1.6895E-01 9.8350E-04 1.6753E-01 1.7077E-01 
R-HV 5.4428E+00 1.8243E-02 5.4773E+00 5.4096E+00 

Epsilon 4.0093E-01 5.2802E-03 3.9267E-01 4.1120E-01 

HHMO 
R-IGD 2.2187E-01 1.9510E-03 2.1707E-01 2.2336E-01 
R-HV 4.8669E+00 1.7625E-02 4.9089E+00 4.8524E+00 

Epsilon 4.1018E-01 3.3325E-03 4.0167E-01 4.1275E-01 

MOGWO 
R-IGD 1.7768E-01 8.0905E-03 1.6968E-01 1.9037E-01 
R-HV 5.4374E+00 1.0926E-01 5.5922E+00 5.2749E+00 

Epsilon 2.3067E-01 2.4750E-02 2.0533E-01 2.8999E-01 

MOGOA 
R-IGD 9.7233E-01 8.1519E-01 1.7361E-01 1.8806E+00 
R-HV 2.7454E+00 2.4244E+00 5.4467E+00 3.1413E-01 

Epsilon 8.4654E-01 5.6825E-01 2.3034E-01 1.4931E+00 

MODA 
R-IGD 3.9933E+00 7.7837E-01 2.6549E+00 5.1273E+00 
R-HV 1.7957E-03 4.0342E-03 1.1936E-02 0.0000E+00 

Epsilon 2.7329E+00 4.4999E-01 1.9591E+00 3.3883E+00 

MOSSA 
R-IGD 1.3178E+00 7.1206E-01 2.3362E-01 1.8984E+00 
R-HV 1.5933E+00 1.8819E+00 4.6838E+00 2.9705E-01 

Epsilon 1.1711E+00 4.2547E-01 5.1448E-01 1.5195E+00 

NSGSA 
R-IGD 1.7035E-01 1.4058E-03 1.6755E-01 1.7224E-01 
R-HV 5.5818E+00 2.1884E-02 5.6181E+00 5.5527E+00 

Epsilon 2.0932E-01 4.2590E-03 2.0329E-01 2.1573E-01 

NSABC 
R-IGD 1.6977E-01 1.0703E-03 1.6831E-01 1.7119E-01 
R-HV 5.5846E+00 2.2729E-02 5.6203E+00 5.5486E+00 

Epsilon 2.0914E-01 3.7789E-03 2.0356E-01 2.1329E-01 

R-NSGA-II 
R-IGD 1.7178E-01 1.8877E-05 1.7173E-01 1.7180E-01 
R-HV 8.5256E+00 3.1757E-04 8.5260E+00 8.5251E+00 

Epsilon 3.7082E-01 2.2418E-03 3.6754E-01 3.7232E-01 

 

C.12: Mean, SD, best, worst R-IGD, R-HV and epsilon values in solving the DTLZ7 
problem 

MOP Algorithm Metric Mean SD Best Worst 

DTLZ7 

2S-
ENDSHHMO 

R-IGD 3.6730E+00 3.2276E-03 3.6669E+00 3.6754E+00 
R-HV 8.3501E+00 1.5098E-02 8.3776E+00 8.3337E+00 

Epsilon 3.7011E+00 4.1768E-03 3.6942E+00 3.7084E+00 

HHMO 
R-IGD 4.2125E+00 4.1372E-01 3.7309E+00 4.9373E+00 
R-HV 4.7775E+00 2.4937E+00 8.1092E+00 1.3925E+00 

Epsilon 4.1236E+00 3.1164E-01 3.7595E+00 4.6684E+00 

MOGWO 
R-IGD 3.8823E+00 2.2863E-01 3.6607E+00 4.2969E+00 
R-HV 6.7901E+00 1.7096E+00 8.3633E+00 3.8053E+00 

Epsilon 3.6900E+00 1.9904E-01 3.4992E+00 3.9675E+00 

MOGOA 
R-IGD 7.2160E+00 1.7599E+00 4.9161E+00 1.0791E+01 
R-HV 1.8381E-01 4.6458E-01 1.4948E+00 0.0000E+00 

Epsilon 6.1277E+00 1.0933E+00 4.6524E+00 8.3168E+00 

MODA 
R-IGD 1.0543E+01 1.3830E+00 7.4492E+00 1.1962E+01 
R-HV 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

Epsilon 8.1665E+00 8.3053E-01 6.2916E+00 9.0125E+00 

MOSSA 
R-IGD 5.1444E+00 6.6167E-01 4.5534E+00 6.2381E+00 
R-HV 1.3980E+00 1.1383E+00 2.6047E+00 1.4433E-02 

Epsilon 4.7826E+00 4.6587E-01 4.2298E+00 5.5290E+00 
NSGSA R-IGD 3.7647E+00 4.5984E-02 3.6884E+00 3.8205E+00 
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R-HV 7.6655E+00 3.6355E-01 8.4147E+00 7.1367E+00 
Epsilon 3.5684E+00 6.3018E-02 3.5249E+00 3.7304E+00 

NSABC 
R-IGD 3.7577E+00 3.4435E-02 3.7044E+00 3.8053E+00 
R-HV 7.8401E+00 2.5986E-01 8.2173E+00 7.4277E+00 

Epsilon 3.5461E+00 4.4666E-02 3.4936E+00 3.6363E+00 

R-NSGA-II 
R-IGD 3.1946E+00 5.7905E-03 3.1887E+00 3.2023E+00 
R-HV 7.0641E+00 2.1187E-02 7.0916E+00 7.0396E+00 

Epsilon 3.7437E+00 5.1019E-04 3.7427E+00 3.7443E+00 
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Solutions corresponding to the extreme points obtained by each 

algorithm in solving engineering MOPs  

 
Welded beam MOP 
D.1: Decision variables corresponding to extreme points, obtained by using 2S-
ENDSHHMO algorithm in solving welded beam MOP 

Solution No. h l t b Fabrication cost Deflection of the beam 
1  0.2061 3.3382 9.4437 0.2075 1.7916 0.0126 
2  1.6511 0.3012 10.0000 5.0000 35.3087 0.0004 

 
D.2: Decision variables corresponding to extreme points, obtained by using HHMO 
algorithm in solving welded beam MOP 

Solution No. h l t b Fabrication cost Deflection of the beam 
1  0.2530 2.9645 8.1542 0.2535 1.8964 0.0160 
2  0.5717 1.1301 10.0000 4.7485 34.9732 0.0005 

 
D.3: Decision variables corresponding to extreme points, obtained by using MOGWO 
algorithm in solving welded beam MOP 

Solution h l t b Fabrication cost Deflection of the beam 
1  0.2572 2.7264 9.1473 0.2678 2.1702 0.0107 
2  1.1416 1.5903 10.0000 5.0000 39.7919 0.0004 

 
D.4: Decision variables corresponding to extreme points, obtained by using MOGOA 
algorithm in solving welded beam MOP 

Solution h l t b Fabrication cost Deflection of the beam 
1  0.2575 3.4483 6.8986 0.3732 2.4140 0.0179 
2  3.2083 0.1863 10.0000 5.0000 36.2433 0.0004 

  

D.5: Decision variables corresponding to extreme points, obtained by using MODA 
algorithm in solving welded beam MOP 

Solution h l t b Fabrication cost Deflection of the beam 
1  0.3132 3.1707 6.7287 0.6044 3.7029 0.0119 
2  4.7797 0.1015 10.0000 4.9413 36.0834 0.0004 

  

D.6: Decision variables corresponding to extreme points, obtained by using MOSSA 
algorithm in solving welded beam MOP 

Solution h l t b Fabrication cost Deflection of the beam 
1  0.1250 6.6276 10.0000 0.2323 2.4198 0.0094 
2  4.7387 0.1382 9.5608 5.0000 35.9447 0.0005 
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D.7: Decision variables corresponding to extreme points, obtained by using NSGSA 
algorithm in solving welded beam MOP 

Solution h l t b Fabrication cost Deflection of the beam 
1  0.1250 6.3094 10.0000 0.2145 2.2046 0.0102 
2  1.4979 0.3582 10.0000 5.0000 35.4265 0.0004 

 
D.8: Decision variables corresponding to extreme points, obtained by using NSABC 
algorithm in solving welded beam MOP 

Solution h l t b Fabrication cost Deflection of the beam 
1  0.4721 1.4589 8.5756 0.6341 4.4035 0.0055 
2  4.0123 1.1024 0.5123 0.9073 36.0379 0.0004 

 
D.9: Decision variables corresponding to extreme points, obtained by using R-NSGA-
II algorithm in solving welded beam MOP 

Solution h l t b Fabrication cost Deflection of the beam 
1  0.1937 3.6330 10.0000 0.2053 1.8924 0.0107 
2  1.6125 0.3090 10.0000 5.0000 35.3079 0.0004 

  

Four-bar Truss 
D.10: Decision variables corresponding to extreme points, obtained by using 2S-
ENDSHHMO algorithm in solving four-bar truss MOP 

Solution x1(cm2) x2 (cm2) x3(cm2) x4(cm2) Volume (cm3) Deflection (KPa) 
1  1.0000 1.4142 1.4142 1.0000 1174.2000 0.0741 
2  1.0000 3.0000 3.0000 3.0000 1836.3081 0.0322 

 
D.11: Decision variables corresponding to extreme points, obtained by using HHMO 
algorithm in solving four-bar truss MOP 

Solution x1(cm2) x2 (cm2) x3(m2) x4(cm2) Volume (cm3) Deflection (KPa) 
1  1.0000 1.4142 1.4142 1.0000 1174.2000 0.0741 
2  1.0361 3.0000 3.0000 3.0000 1850.7469 0.0322 

  

D.12: Decision variables corresponding to extreme points, obtained by using 
MOGWO algorithm in solving four-bar truss MOP 

Solution x1(cm2) x2 (cm2) x3(m2) x4(cm2) Volume (cm3) Deflection (KPa) 
1  1.0000 1.4142 1.4142 1.0000 1174.2000 0.0741 
2  1.0397 3.0000 3.0000 2.9164 1835.4688 0.0324 

D.13: Decision variables corresponding to extreme points, obtained by using MOGOA 
algorithm in solving four-bar truss MOP 

Solution x1(cm2) x2 (cm2) x3(m2) x4(cm2) Volume (cm3) Deflection (KPa) 
1  1.0000 1.4142 1.5892 1.0000 1188.4886 0.0719 
2  1.0000 3.0000 2.8880 2.9894 1827.6524 0.0326 
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D.14: Decision variables corresponding to extreme points, obtained by using MODA 
algorithm in solving four-bar truss MOP 

Solution x1(cm2) x2 (cm2) x3(m2) x4(cm2) Volume (cm3) Deflection (KPa) 
1  1.0005 1.4142 1.4540 1.0000 1177.7307 0.0736 
2  1.0000 3.0000 3.0000 2.9828 1832.8669 0.0322 

 

D.15: Decision variables corresponding to extreme points, obtained by using MOSSA 
algorithm in solving four-bar truss MOP 

Solution x1(cm2) x2 (cm2) x3(m2) x4(cm2) Volume (cm3) Deflection (KPa) 
1  1.0000 1.4909 1.4143 1.0000 1183.2001 0.0724 
2  1.0000 3.0000 2.9942 2.9156 1819.0943 0.0324 

 

D.16: Decision variables corresponding to extreme points, obtained by using NSGSA 
algorithm in solving four-bar truss MOP 

Solution x1(cm2) x2 (cm2) x3(m2) x4(cm2) Volume (cm3) Deflection (KPa) 
1  1.0000 1.4142 1.4142 1.0000 1174.2000 0.0741 
2  1.0000 3.0000 3.0000 3.0000 1836.3081 0.0322 

 

D.17: Decision variables corresponding to extreme points, obtained by using NSABC 
algorithm in solving four-bar truss MOP 

Solution x1(cm2) x2 (cm2) x3(m2) x4(cm2) Volume (cm3) Deflection (KPa) 
1  1.0000 2.0457 1.4264 1.0104 1245.4801 0.0632 
2  1.0000 3.0000 2.6807 2.8440 1786.1606 0.0337 

 
D.18: Decision variables corresponding to extreme points, obtained by using R-
NSGA-II algorithm in solving four-bar truss MOP 

Solution x1(cm2) x2 (cm2) x3(m2) x4(cm2) Volume (cm3) Deflection (KPa) 
1  1.0000 1.4142 1.4142 1.0000 1174.2000 0.0741 
2  1.0000 3.0000 3.0000 3.0000 1836.3081 0.0322 

 

Optimal Power Flow 

D.19: Control variables corresponding to extreme points, obtained by using 2S-
ENDSHHMO algorithm in solving OPF MOP 

Control variables Solutions 
A B 

PG (MW) 

PG1 175.56 51.42 
PG2 48.50 80.00 
PG5 21.27 49.96 
PG8 22.84 35.00 
PG11 11.83 30.00 

V  
(p.u) 

PG13 12.00 40.00 
VG1 1.10 1.10 
VG2 1.09 1.09 
VG5 1.06 1.08 
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VG8 1.07 1.08 
VG11 1.10 1.10 
VG13 1.10 1.10 

Tap  
(p.u) 

T11 0.99 0.98 
T12 0.96 0.97 
T15 1.01 1.00 
T36 0.97 0.98 

Capacitor bank  
(MVar) 

QC10 1.37 0.33 
QC12 0.44 4.61 
QC15 0.26 1.49 
QC17 4.80 2.36 
QC 20 1.76 0.48 
QC 21 4.31 3.00 
QC 23 4.75 4.42 
QC 24 0.02 0.18 
QC 29 3.91 4.45 

Generating cost (Unit/h) 799.4458 967.1640 
Transmission loss (MW) 8.5986 2.9759 

  

D.20: Control variables corresponding to extreme points, obtained by using HHMO 
algorithm in solving OPF MOP 

Control variables Solutions 
A B 

PG (MW) 

PG1 171.72 61.91 
PG2 49.48 72.43 
PG5 22.19 50.00 
PG8 22.31 35.00 
PG11 13.90 27.47 

V  
(p.u) 

PG13 12.10 40.00 
VG1 1.10 1.08 
VG2 1.09 1.08 
VG5 1.06 1.04 
VG8 1.07 1.07 
VG11 1.10 1.09 
VG13 1.09 1.10 

Tap  
(p.u) 

T11 1.03 1.03 
T12 0.98 1.09 
T15 1.03 1.08 
T36 1.00 1.01 

Capacitor bank  
(MVar) 

QC10 4.73 4.93 
QC12 3.81 2.46 
QC15 3.18 4.11 
QC17 2.63 4.96 
QC 20 2.28 5.00 
QC 21 4.65 2.94 
QC 23 4.97 2.24 
QC 24 4.31 3.62 
QC 29 2.50 1.68 

Generating cost (Unit/h) 799.5767 948.2577 
Transmission loss (MW) 8.3032 3.4145 
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D.21: Control variables corresponding to extreme points, obtained by using MOGWO 
algorithm in solving OPF MOP 

Control variables Solutions 
A B 

PG (MW) 

PG1 169.51 51.44 
PG2 47.77 80.00 
PG5 21.78 50.00 
PG8 26.36 35.00 
PG11 12.56 30.00 

V  
(p.u) 

PG13 13.75 40.00 
VG1 1.09 1.10 
VG2 1.08 1.10 
VG5 1.04 1.09 
VG8 1.05 1.09 
VG11 1.07 1.10 
VG13 1.08 1.10 

Tap  
(p.u) 

T11 0.97 0.97 
T12 1.00 1.06 
T15 1.02 1.10 
T36 0.99 1.02 

Capacitor bank  
(MVar) 

QC10 3.45 2.26 
QC12 2.77 4.90 
QC15 3.09 5.00 
QC17 3.55 5.00 
QC 20 2.74 4.94 
QC 21 1.33 3.92 
QC 23 2.48 5.00 
QC 24 4.23 5.00 
QC 29 3.20 4.69 

Generating cost (Unit/h) 800.7885 967.5126 
Transmission loss (MW) 8.3282 3.0389 

 

D.22: Control variables corresponding to extreme points, obtained by using MOGOA 
algorithm in solving OPF MOP 

Control variables Solutions 
A B 

PG (MW) 

PG1 161.40 90.63 
PG2 45.53 67.89 
PG5 31.42 46.09 
PG8 11.99 18.02 
PG11 23.49 30.00 

V  
(p.u) 

PG13 17.94 34.92 
VG1 1.08 1.10 
VG2 1.06 1.09 
VG5 1.03 1.07 
VG8 1.02 1.07 
VG11 0.99 1.09 
VG13 1.00 1.10 

Tap  
(p.u) 

T11 1.00 1.02 
T12 1.05 0.95 
T15 1.00 0.99 
T36 0.93 0.97 

QC10 3.72 4.17 



 

 289 

Capacitor bank  
(MVar) 

QC12 0.58 0.01 
QC15 0.00 0.01 
QC17 0.67 0.75 
QC 20 3.97 4.91 
QC 21 1.52 2.94 
QC 23 2.69 2.79 
QC 24 4.66 3.88 
QC 29 4.89 4.96 

Generating cost (Unit/h) 815.8582 899.4137 
Transmission loss (MW) 8.3707 4.1514 

 

D.23: Control variables corresponding to extreme points, obtained by using MODA 
algorithm in solving OPF MOP 

Control variables Solutions 
A B 

PG (MW) 

PG1 159.19 90.33 
PG2 47.89 59.25 
PG5 23.56 37.21 
PG8 24.82 32.69 
PG11 18.49 28.42 

V  
(p.u) 

PG13 17.83 40.00 
VG1 1.04 1.10 
VG2 1.02 1.08 
VG5 0.99 1.05 
VG8 1.01 1.06 
VG11 1.04 1.05 
VG13 1.04 1.01 

Tap  
(p.u) 

T11 0.98 1.05 
T12 1.00 0.97 
T15 0.98 0.97 
T36 0.98 0.97 

Capacitor bank  
(MVar) 

QC10 5.00 1.59 
QC12 2.94 2.06 
QC15 2.57 2.01 
QC17 2.00 0.06 
QC 20 2.46 2.08 
QC 21 3.00 5.00 
QC 23 4.00 4.87 
QC 24 2.00 0.87 
QC 29 2.95 2.90 

Generating cost (Unit/h) 806.8893 880.6957 
Transmission loss (MW) 8.4853 4.4897 

  

D.24: Control variables corresponding to extreme points, obtained by using MOSSA 
algorithm in solving OPF MOP 

Control variables Solutions 
A B 

PG (MW) 

PG1 160.60 79.70 
PG2 49.42 61.81 
PG5 23.79 48.67 
PG8 25.77 35.00 
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PG11 17.73 29.81 

V  
(p.u) 

PG13 14.48 32.05 
VG1 1.07 1.10 
VG2 1.06 1.10 
VG5 1.05 1.09 
VG8 1.03 1.09 
VG11 1.05 1.05 
VG13 1.07 1.05 

Tap  
(p.u) 

T11 1.04 1.05 
T12 0.90 0.90 
T15 0.96 1.02 
T36 1.03 1.04 

Capacitor bank  
(MVar) 

QC10 4.99 0.93 
QC12 3.68 2.70 
QC15 3.38 3.73 
QC17 0.79 2.63 
QC 20 0.34 4.12 
QC 21 1.33 0.09 
QC 23 3.58 3.29 
QC 24 1.25 0.77 
QC 29 2.64 1.62 

Generating cost (Unit/h) 805.3594 912.3605 
Transmission loss (MW) 8.3973 3.6307 

 

D.25: Control variables corresponding to extreme points, obtained by using NSGSA 
algorithm in solving OPF MOP 

Control variables Solutions 
A B 

PG (MW) 

PG1 173.46 55.57 
PG2 46.46 75.91 
PG5 21.57 49.97 
PG8 24.54 34.98 
PG11 13.33 29.99 

V  
(p.u) 

PG13 13.32 39.95 
VG1 1.05 1.10 
VG2 1.03 1.10 
VG5 1.00 1.08 
VG8 1.01 1.09 
VG11 1.04 1.10 
VG13 1.04 1.08 

Tap  
(p.u) 

T11 1.04 1.06 
T12 0.92 0.96 
T15 1.01 1.02 
T36 0.94 1.01 

Capacitor bank  
(MVar) 

QC10 2.93 3.44 
QC12 2.38 2.15 
QC15 3.15 5.00 
QC17 4.25 3.17 
QC 20 2.78 3.13 
QC 21 3.85 3.27 
QC 23 1.48 3.41 
QC 24 2.36 5.00 
QC 29 4.03 3.28 
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Generating cost (Unit/h) 803.0399 958.5062 
Transmission loss (MW) 9.2673 2.9666 

 

D.26: Control variables corresponding to extreme points, obtained by using NSABC 
algorithm in solving OPF MOP 

Control variables Solutions 
A B 

PG (MW) 

PG1 176.45 55.69 
PG2 44.91 77.16 
PG5 20.46 50.00 
PG8 21.56 35.00 
PG11 14.76 28.93 

V  
(p.u) 

PG13 15.03 40.00 
VG1 1.04 1.04 
VG2 1.02 1.03 
VG5 0.98 1.01 
VG8 1.01 1.01 
VG11 1.03 1.08 
VG13 1.04 1.08 

Tap  
(p.u) 

T11 0.90 0.99 
T12 1.05 0.93 
T15 1.02 0.99 
T36 0.99 0.98 

Capacitor bank  
(MVar) 

QC10 4.62 3.55 
QC12 3.07 0.00 
QC15 4.87 5.00 
QC17 3.41 4.85 
QC 20 1.05 2.00 
QC 21 1.94 4.10 
QC 23 4.55 4.81 
QC 24 3.78 4.00 
QC 29 3.91 4.19 

Generating cost (Unit/h) 804.5842 960.1727 
Transmission loss (MW) 9.7718 3.3845 

 
 
D.27: Control variables corresponding to extreme points, obtained by using R-NSGA-
II algorithm in solving OPF MOP 

Control variables Solutions 
A B 

PG (MW) 

PG1 177.00 60.55 
PG2 48.73 70.87 
PG5 21.62 50.00 
PG8 21.00 34.99 
PG11 11.83 30.00 

V  
(p.u) 

PG13 12.02 40.00 
VG1 1.09 1.08 
VG2 1.07 1.08 
VG5 1.04 1.06 
VG8 1.05 1.07 
VG11 1.10 1.10 
VG13 1.10 1.10 
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Tap  
(p.u) 

T11 1.00 1.01 
T12 0.90 0.91 
T15 0.97 0.97 
T36 0.95 0.96 

Capacitor bank  
(MVar) 

QC10 5.00 4.98 
QC12 5.00 4.91 
QC15 5.00 4.99 
QC17 5.00 5.00 
QC 20 4.88 4.77 
QC 21 5.00 5.00 
QC 23 4.27 3.56 
QC 24 4.98 4.91 
QC 29 3.00 2.55 

Generating cost (Unit/h) 799.7188 949.4215 
Transmission loss (MW) 8.7950 3.0058 
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Grey Relational Analysis   

GRA of the non-dominated solutions obtained by 2S-ENDSHHMO in solving welded 
beam multi-objective optimization problem 

No. 
Objectives Normalized Objectives HIGHEST 

GRG Rank Fabrication 
cost 

Deflection 
of the beam 

Fabrication 
cost 

Deflection 
of the beam 

1 1.9048 0.0103 0.9966 0.1890 0.687338 62 
2 1.8951 0.0103 0.9969 0.1854 0.687101 63 
3 1.9116 0.0102 0.9964 0.1912 0.687453 61 
4 1.9211 0.0102 0.9961 0.1979 0.688161 60 
5 1.8799 0.0106 0.9974 0.1621 0.684235 64 
6 1.9364 0.0101 0.9957 0.2034 0.688529 59 
7 1.8487 0.0107 0.9983 0.1505 0.683551 65 
8 1.9613 0.0100 0.9949 0.2114 0.688994 58 
9 1.8331 0.0115 0.9988 0.0870 0.675696 66 

10 1.9701 0.0099 0.9947 0.2197 0.690004 57 
11 1.9802 0.0098 0.9944 0.2247 0.690462 56 
12 1.8100 0.0117 0.9995 0.0744 0.674819 67 
13 1.9956 0.0098 0.9939 0.2304 0.690905 55 
14 2.0059 0.0097 0.9936 0.2383 0.691835 54 
15 1.7916 0.0126 1.0000 0.0000 0.666667 100 
16 2.0219 0.0096 0.9931 0.2433 0.692149 53 
17 2.0351 0.0095 0.9927 0.2488 0.692651 52 
18 2.0444 0.0095 0.9925 0.2514 0.692799 51 
19 2.0502 0.0095 0.9923 0.2531 0.692901 50 
20 2.0655 0.0094 0.9918 0.2611 0.693754 49 
21 2.0864 0.0093 0.9912 0.2685 0.694356 48 
22 2.0989 0.0092 0.9908 0.2731 0.69477 47 
23 2.1469 0.0089 0.9894 0.3016 0.698231 45 
24 2.2055 0.0088 0.9877 0.3091 0.697874 46 
25 2.2202 0.0086 0.9872 0.3269 0.700646 43 
26 2.2336 0.0085 0.9868 0.3325 0.701279 42 
27 2.2917 0.0085 0.9851 0.3371 0.700492 44 
28 2.3034 0.0084 0.9847 0.3454 0.701704 41 
29 2.3165 0.0083 0.9843 0.3484 0.701912 40 
30 2.3310 0.0081 0.9839 0.3642 0.70452 38 
31 2.3614 0.0081 0.9830 0.3707 0.704936 37 
32 2.3885 0.0081 0.9822 0.3710 0.704241 39 
33 2.4550 0.0078 0.9802 0.3957 0.707341 36 
34 2.4759 0.0076 0.9796 0.4065 0.709002 35 
35 9.0277 0.0018 0.7841 0.8858 0.756248 22 
36 9.0345 0.0018 0.7839 0.8859 0.756227 23 
37 8.9369 0.0018 0.7868 0.8845 0.756744 18 
38 9.1197 0.0018 0.7814 0.8876 0.756097 27 
39 8.8474 0.0019 0.7895 0.8831 0.757113 12 
40 8.7698 0.0019 0.7918 0.8814 0.75716 9 
41 8.7361 0.0019 0.7928 0.8804 0.757017 13 
42 9.3807 0.0017 0.7736 0.8920 0.755318 31 
43 9.4076 0.0017 0.7728 0.8921 0.754998 34 
44 8.5745 0.0019 0.7976 0.8779 0.757776 5 
45 8.5657 0.0019 0.7979 0.8778 0.757894 3 
46 9.4416 0.0017 0.7718 0.8928 0.755006 33 
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47 8.5575 0.0019 0.7981 0.8778 0.757986 1 
48 8.5376 0.0019 0.7987 0.8773 0.757964 2 
49 9.1314 0.0018 0.7810 0.8879 0.756119 26 
50 9.3180 0.0018 0.7754 0.8911 0.75561 29 
51 8.9690 0.0018 0.7859 0.8855 0.756873 14 
52 8.9523 0.0018 0.7864 0.8850 0.756843 17 
53 9.0512 0.0018 0.7834 0.8863 0.756206 24 
54 9.0646 0.0018 0.7830 0.8866 0.756251 21 
55 8.9112 0.0018 0.7876 0.8841 0.756855 15 
56 9.0946 0.0018 0.7821 0.8876 0.75644 20 
57 8.8275 0.0019 0.7901 0.8829 0.757274 7 
58 9.1956 0.0018 0.7791 0.8893 0.756127 25 
59 8.8017 0.0019 0.7908 0.8821 0.75712 10 
60 8.7866 0.0019 0.7913 0.8818 0.757162 8 
61 9.2212 0.0018 0.7783 0.8896 0.756012 28 
62 9.2837 0.0018 0.7765 0.8900 0.755356 30 
63 8.6969 0.0019 0.7940 0.8800 0.757301 6 
64 9.3522 0.0018 0.7744 0.8913 0.75529 32 
65 8.6194 0.0019 0.7963 0.8789 0.757787 4 
66 8.9788 0.0018 0.7856 0.8856 0.756844 16 
67 8.8017 0.0019 0.7908 0.8821 0.75712 11 
68 8.9857 0.0018 0.7854 0.8856 0.756743 19 
69 35.3087 0.0004 0.0000 1.0000 0.666667 101 
70 35.2989 0.0004 0.0003 1.0000 0.666662 102 
71 35.2487 0.0004 0.0018 0.9999 0.666778 99 
72 35.2160 0.0004 0.0028 0.9999 0.666867 98 
73 35.1778 0.0004 0.0039 0.9999 0.666953 97 
74 35.1681 0.0004 0.0042 0.9998 0.666972 96 
75 35.1435 0.0004 0.0049 0.9998 0.666993 95 
76 35.0485 0.0004 0.0078 0.9997 0.667258 94 
77 34.8762 0.0004 0.0129 0.9995 0.667634 93 
78 34.8199 0.0004 0.0146 0.9995 0.667781 92 
79 34.7996 0.0004 0.0152 0.9994 0.667806 91 
80 34.7475 0.0004 0.0167 0.9994 0.667915 90 
81 34.7377 0.0004 0.0170 0.9993 0.667916 89 
82 34.6743 0.0004 0.0189 0.9993 0.668107 88 
83 34.5779 0.0004 0.0218 0.9992 0.668332 87 
84 34.5661 0.0004 0.0222 0.9992 0.668333 86 
85 34.5169 0.0004 0.0236 0.9991 0.668477 85 
86 34.4712 0.0005 0.0250 0.9991 0.668584 84 
87 34.3604 0.0005 0.0283 0.9990 0.668833 83 
88 34.3488 0.0005 0.0286 0.9990 0.668873 82 
89 34.3113 0.0005 0.0298 0.9989 0.668941 81 
90 34.1357 0.0005 0.0350 0.9987 0.66935 80 
91 34.0809 0.0005 0.0366 0.9987 0.6695 79 
92 33.9964 0.0005 0.0392 0.9985 0.669654 78 
93 33.9720 0.0005 0.0399 0.9985 0.669737 77 
94 33.9422 0.0005 0.0408 0.9985 0.669827 76 
95 33.9140 0.0005 0.0416 0.9984 0.669857 75 
96 33.9090 0.0005 0.0418 0.9984 0.669863 74 
97 33.7901 0.0005 0.0453 0.9983 0.670184 73 
98 33.7826 0.0005 0.0455 0.9983 0.670198 72 
99 33.7614 0.0005 0.0462 0.9983 0.670217 71 

100 33.4669 0.0005 0.0550 0.9979 0.670923 70 
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