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Local Energy Variability as a Generic  
Measure of Bottom-Up Salience 

Antón Garcia-Diaz, Xosé R. Fdez-Vidal, Xosé M. Pardo and Raquel Dosil 
Universidade de Santiago de Compostela 

Spain 

1. Introduction     
In image analysis, complexity reduction by selection of regions of interest is considered a 
biologically inspired strategy. In fact, Human Visual System (HVS) is constantly moving 
away less relevant information in favour of the most salient objects or features, by means of 
highly selective mechanisms forming an overall operation referred to as visual attention. 
This is the evolutionary solution to the well known complexity reduction problem (Tsotsos, 
2005), when dealing with the processing and interpretation of natural images; a problem 
that is a major challenge for technical systems devoted to the processing of images or video 
sequences in real time. Hence, attention seems to be an adequate bio-inspired solution 
which can be applied in a variety of computing problems. Along with available technical 
advances, this fact is key to explain why the description and computational modelling of the 
attentional function of the HVS has experienced an enormous increase in the last two 
decades. In fact, applications of computing visual conspicuity are already found in many 
different fields: image segmentation and object learning and recognition (Rutishauser et al., 
2004); vision system for robots (Witkowski & Randell, 2004) and humanoid robots (Orabona 
et al., 2005); visual behaviour generation in virtual human animation (Peters & O'Sullivan, 
2003); processing data from 3D laser scanner (Frintrop et al., 2003); content-based image 
retrieval (Marques et al., 2003), etc. 
In models of attention it is common to differentiate between two types of attention, the 
bottom-up from an image-based saliency, which accounts for features that stand out from 
the context, and the top-down attention as task-dependent and knowledge-based. These two 
kinds of attention are widely assumed to interact each other, delivering a global measure of 
saliency that drives visual selection. In fact, neurophysiological results suggest that these 
two mechanisms of attention take place in separate brain areas which interact in a visual 
task (Corbetta & Shulman, 2002) (Buschman & Miller 2007).  
Regarding bottom-up attention, there are both psychophysical and neurophysiological 
experiments supporting the existence of some kind of an image-based saliency map in the 
brain, and it can be also argued that understanding of bottom-up saliency should definitely 
help to elucidate the mechanisms of attention (Zhaoping, 2005). 
Moreover, from a technical point of view, mainly concerned with a generic approach to 
active vision tasks, the modelling of bottom-up component of attention can play a crucial 
role in the reduction of the amount of information to process, regardless of the knowledge 
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managed by a given system, providing salient locations (regions of interest) or salient 
features. But it can also be suitable to learn salient objects, to measure the low level salience 
of a given object in a scene, etc. Hence, improvements on generic approaches to the 
modelling of bottom-up, image-based saliency are of great importance for computer vision. 
The feature integration theory by Treisman & Gelade (1980) marked the starting point for 
the development of computational models of visual attention. Its main contribution lies on 
the proposal of parallel extraction of feature maps representing the scene in different feature 
dimensions and the integration of these maps in a central one, which would be responsible 
for driving attention. As a remarkable result from this parallel processing of few features 
proposed and maintained by Treisman in several works, arises the explanation of pop-out 
effects observed in visual search experiments with humans. It is well known that a stimulus 
that is clearly different from a homogeneous surrounding in a single feature rapidly attract 
our glance without the need to search the scene, regardless of the number of nearby objects 
acting as distractors. In contrast, when distractors are clearly heterogeneous, or when the 
target differs from all of them in a combination of features rather than in only one, subjects 
need to examine the scene object by object to check for a match with the target, so the time 
wasted in search linearly grows with the number of distractors. Treisman held that this can 
be understood if parallel processing of features exhibiting pop-out effects is assumed, and 
thus the feature map corresponding to the unique different feature in the first case will 
strongly respond in the location of the target attracting attention to it. On the other hand, in 
the heterogeneous and in the conjunctive cases none or several maps in different locations 
will fire, without provide for a clear salient location, so explaining the need for a serial 
search. 
These ideas were gathered by Koch & Ullman (1985), to conceive a saliency-based 
computational architecture, in which they also introduced a Winner Takes All (WTA) 
network to determine the next most salient region, combined with a mechanism of 
Inhibition Of Return (IOR) to allow for a dynamic selection of different regions of a scene in 
the course of time. This architecture is essentially bottom-up, although they pointed the 
possibility of introducing top-down knowledge through bias of the feature maps. 
An important subsequent psychophysical model of attention trying to explain more results 
on visual search experiments is the Guided Search Model, hold by Wolfe, in which feature 
dimensions (colour and orientation) rather than features (vertical, green, horizontal, etc.) are 
assumed to be processed in parallel and so to have an independent map of salience (Wolfe, 
1994). In this model also top-down influences are considered by means of top-down maps 
for each feature dimension. More recent psychophysical models of attention are focusing 
more on top-down than in bottom-up aspects of attention, introducing the reasoning on the 
gist of a scene and its layout as driving attention (Rensink, 2005) (Oliva, 2005). 
We have already mentioned the Guided Search Model by Wolfe, but we can cite a number 
of examples of computational models of bottom-up visual attention, many incorporating 
also a top-down component. Some of them are conceived more to explain psychophysical 
and neurophysiological results than to reach a performance in machine vision or other 
technical applications dealing with natural images. This is the case of the FeatureGate model 
by Cave (1999), the adaptive resonance theory to model attention proposed by Grossberg 
(2005), the neurodynamical approach hold by Deco et al. (2005), the model of bottom-up 
saliency coded in V1 cells by Zhaoping (2005), etc. Other models are motivated by the study 
of attention from an information theoretical point of view, trying to catch and describe the 
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strategy of information processing of the HVS with statistical and computational tools. This 
is the case of Tsotsos et al. (1995) who have hold the Selective Tuning Model exploiting the 
complexity analysis of the problem of viewing, and achieving by this way several 
predictions on the real behaviour of the HVS. It is also the case of Rajashekhar et al. (2006), 
who have studied the statistical structure of the points that attract the eye fixations of 
human observers in natural images, in surveillance and search task. From this study they 
have derived models for a set have modelled a set of low level gaze attractors, in the form of 
filter kernels. 
Focusing in the computational models that are the most relevant for our work, we find two 
particular previous implementations of the Koch and Ullman architecture being of special 
interest. The first was made by Milanese and was initially only bottom-up (Milanese, 1993), 
employing colour (or intensity), orientation and edge magnitude, in a centre-surround 
approach, as low level  conspicuity maps; and proposing a relaxation rule for the integration 
process in a final saliency map. In a later work (Milanese et al., 1993), a top-down 
component was added in the form of an object recognition system that, applied to a few 
small regions of interest provided by the bottom-up component, delivered a top-down map 
favouring regions of the recognized objects. This map was combined with the conspicuity  
maps to give a final saliency in which known objects were highlighted against unknown 
ones.  
The second implementation of the Koch and Ullman architecture was hold by Itti et al. 
(1998) who similarly made use of contrast, colour and orientation as features, in a centre-
surround approach, but introducing a simpler integration process of weighting and addition 
of maps at first and of iterative spatial competition and addition in a subsequent work (Itti & 
Koch 2000). These two approaches to integration were significantly faster than the relaxation 
rule proposed by Milanese. This model can be seen as the most developed and powerful 
among all models of bottom-up visual attention, considering the fact that its performance 
has been compared with human performance (Itti & Koch, 2000)(Itti, 2006)(Ouerhani et al., 
2006)(Parkhurst & Niebur, 2005), and tested in a variety of applications (Walther, 
2006)(Ouerhani & Hugli, 2006). Recently, Navalpakkam & Itti (2005) introduced a top-down 
module in the model, based on the learning of target features from training images. This 
produces a feature vector which is  subsequently used to bias the feature maps of the 
bottom-up component, hence speeding up the detection of a known object, in relation to the 
plain bottom-up model. 
Now turning back to the problem of modelling bottom-up attention, we still have to ask, as 
a first question to delimit, which guidelines or requirements are currently imposed to the 
modelling of early low level features?. An interesting and worthy approach to attentional 
relevant features can be found in a recent exhaustive review on psychophysical works 
dealing with pop-out generation in visual attention, where Wolfe & Horowitz (2004) have 
provided a list classifying a variety of features, from lowest level, like contrast, colour or 
orientation, to highest level, like words or faces, making the classification dependent on the 
evidence and probability of each feature being causing pop-out or not. Hence, there would 
be features with enough observed evidences of causing pop-out (as intensity contrast, 
orientation, colour, size), others with high probability, others with low probability and 
finally others without probability at all. Then, a model of visual attention should be able to 
account for at least those features which give rise to clear pop-out effects as deduced from 
all of these cumulated results. 
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strategy of information processing of the HVS with statistical and computational tools. This 
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provided a list classifying a variety of features, from lowest level, like contrast, colour or 
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evidence and probability of each feature being causing pop-out or not. Hence, there would 
be features with enough observed evidences of causing pop-out (as intensity contrast, 
orientation, colour, size), others with high probability, others with low probability and 
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A starting issue underlying the selection of low level features lies in the assumption of a 
basis of “receptive fields”, suitable to efficiently extract all the information needed from an 
image. Therefore, an obliged reference should be the cumulated knowledge about visual 
receptive fields in five decades, from the seminal work of Hubel and Wiesel in the  60's. In 
this sense, there is a general agreement in viewing the region V1 region of the visual cortex 
as a sort of Gabor-like filter bank. However, we also should to have in mind the shadows 
threatening this sight, as have been pointed out in a recent review by Olshausen and Field 
(2005) on the emerging challenges to the standard model of V1, to the point of assessing that 
we only understand up to a 15% of the V1 function.  
On the other hand, information theory has also provided a number of requirements for the 
construction and processing of early low level features. Hence many studies have oriented 
their work to discover the statistical structure of what we see and link it to the known 
neurological processing strategies of the HVS. The intrinsic sparseness of natural images has 
been pointed out by Olshausen & Field (1996) , who have demonstrated that an efficient 
coding maximizing sparseness is sufficient to account for neural receptive fields, because of 
the statistical structure of natural images. Likewise, Bell & Sejnowski (1997) found that the 
independent components of natural images were localised edge detectors, similar to neural 
receptive fields. Following this idea, Hoyer & Hyvärinen (2000) have applied the 
Independent Component Analysis (ICA) to the feature extraction on colour and stereo 
images, obtaining features resembling simple cell receptive fields, and thereby reinforcing 
this prediction.  
This idea has been strongly supported by parallel neurophysiological works, showing 
increased population sparseness as well as decorrelated responses during experiments of 
observation of natural scenes, or when non classical receptive fields receive natural-like 
stimuli as input (Weliky et al. 2003) (Vinje & Gallant 2000).  
Hence, what we can expect in a plausible, adapted to natural images, computing model of 
visual attention is that any representation of information to be processed, should be coded 
in a sparse way, and it should also lead to a decorrelation of the information captured by the 
vision system, in accordance with the structure of information in natural images and the 
results from neurophysiological experiments, as well as efficiency requirements. 
Other important reference more directly related to attention is the work of Zetzsche, who, 
with basis on the analysis of the statistical properties of fixated regions in natural images, 
hold that i2D signals are preferred by saccadic selection in comparison to i1D and i0D 
signals, that is, regions containing different orientations (corners, curves, etc) do attract 
attention much more than regions with little structural content (simple edges, constant 
luminance, etc) (Zetzsche, 2005). We find this approach to low level conspicuity very 
enlightening, and pointing in the direction of a more formal approach to the definition of 
what is a low level feature. 

1.1 Our approach 
Intensity contrast, orientation, symmetry, edges, corners, circles,... all designate different but 
overlapping concepts. Then, a question arises: is there a formal and more general low-level 
measure capable of retaining and managing with all of the information related to them? We 
consider that local energy meets this condition, and we hold that its relative variability in a 
given region can produce a pop-out effect. Moreover, we expect early unguided attention to 
be driven by any pop-out stimulus present in the scene, and this is the basis for our working 
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hypothesis: variability on local energy (as well as on colour) can be considered as driving 
attention by means of pop-out phenomena. 
Local energy has proved to be a powerful tool for the extraction and segmentation of a 
variety of perceived features related to phase -from edges and corners to Mach bands or 
motion- and, in general, regions exhibiting phase congruency and phase symmetry, be in 
space or in spacetime (Kovesi 1993; 1996), (Morrone & Owens 1987), (Dosil et al. 2008). 
In this chapter, exploiting the basic Koch and Ullman architecture, we present a saliency 
measure for the computational modelling of bottom-up attention, based on the detection of 
regions with maximum local energy variability, as a measure of local feature contrast and 
relative amount of structural content, which we have outlined in a previous brief paper 
(Garcia-Diaz et al. 2007). 
We hold that this way, regions with maximum feature contrast and maximum structural 
content are extracted from a given image, providing a suitable map of salience to drive 
bottom-up attention. 
We focus on local energy conspicuity computation in static scenes, while other relevant 
feature dimensions, like colour and motion, remain beyond the scope of this chapter. 
Likewise, we limit our study to the bottom-up component, without task or target 
constraints. 
Qualitative and quantitative observations on a variety of results on natural images, suggest 
that our model ensures reproduction of both sparseness population increase, decorrelated 
responses and pop-out phenomena deployment of orientation, size, shape, and contrast 
singletons, widely observed in the human visual system (Vinje & Gallant 2000),(Weliky et al. 
2003), (Zhaoping 2005), (Wolfe & Horowitz 2004). 
To provide for results comparable with those found in literature, we carry out here the 
reproduction of several experiments already published by Itti & Koch (2000), improving the 
performance achieved by them in the deployment of orientation pop-out,  and equalizing 
their results in the detection of military vehicles within cluttered natural scenes, in our case 
without the use of colour information. 
Beyond the success in these tests of technical performance, other relevant contribution of 
this work lies on the new elements provided for the computational interpretation of 
different observed psychophysical pop-out phenomena (intensity contrast, edge, shape, 
etc.), as probably different faces or appearances of a pop-out effect bound to a unique low 
level feature dimension (local energy). Unlike the extended use of intuitive features 
conceived from natural language, we think that the results achieved by our model help to 
highlight the importance of tackling the modelling of feature dimensions in a more formal 
way, thereby, avoiding misleading conclusions when we assess the results from 
psychophysical experimental observations, with the aim of translating them in 
computational constraints or requirements. 
This paper is organized as follows, in the section 2 we describe the model proposed; in 
section 3 we show the experimental results obtained and make a brief discussion of them; 
section 4 deals with conclusions; and finally an appendix offers a brief formal explanation of  
T2 Hotelling statistic. 

2. Extraction of salience and fixations 
The model of bottom-up attention presented here involves the extraction of local energy 
variability as a measure of salience and the subsequent selection of fixations.   
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Likewise, we limit our study to the bottom-up component, without task or target 
constraints. 
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Thus, we extract initial local energy maps obtaining by this way a multi-scale and multi-
oriented representation of the image. For each orientation we decorrelate the multi-scale 
information by means of a PCA. Next we fuse each of the new sets of principal scaled maps 
in corresponding oriented conspicuity measures, extracting variability with the computation 
of the statistical distance of each pixel from the centre of the distribution. Afterwards we 
locally excite and gather regions exhibiting maximum variability by a non-linear and centre-
surround spatial competition. Therefore we reach a unique and final saliency map, on which 
we perform fixations. The following subsections detail the process. 

2.1 Local energy from log Gabor receptive fields 
As we have previously pointed out, one first question to tackle is related to the starting basis 
of receptive fields. A variety of elections have been made on the subject in previous models 
of bottom-up attention: Gabor functions (Itti et al., 1998) (Torralba, 2005), Difference of 
oriented gaussians (Milanese et al. 1995), Oriented derivative of Gaussians (Rao & Ballard, 
1995), non linear i2D selective operators (Schill et al., 2001), etc... 
We use, instead, a bank of log Gabor filters (Field 1987), which besides a number of 
advantages against Gabor filters, have complex valued responses. Hence, they provide in 
each scale and orientation a pair of filters in phase quadrature (Kovesi 1996), an even 
symmetric -real part- filter and its Hilbert transform, an odd, antisymmetric -imaginary 
part- filter, allowing us to extract local energy as the modulus (Morrone & Burr 1988) of this 
filter vector. 
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All Gabor filters present a non-zero DC component, as well non-zero values for negative 
frequencies, which gives rise to artefacts. Field (1987) proposed to construct Gabors in a 
logarithmic frequency scale, the so called log Gabor filters, overcoming these pointed 
drawbacks. Besides this advantages the symmetric profile in a logarithmic frequency scale, 
characteristic of log Gabor filters, confers them one additional advantage: a long tail towards 
the high frequencies. Since natural images present scale invariance, this is, they present 
amplitude profiles that decay with the inverse of the frequency (Field, 1993), then a filter 
that presents a similar behaviour, should be able to properly encode those images (Kovesi, 
1996).  Moreover, they gain in biological plausibility respecto to Gabor, since they reproduce 
better the response of simple cells from cortex, logarithmic in the frequency domain. 
The fact that log Gabors have no analytic representation in the spatial domain, forces us to  
construct the bank of filters in the frequency domain, performing the inner product between 
their transfer functions and the Fourier transform of the intensity of the image. This should 
not be seen as a problem, as the use of Fast Fourier Transform and Inverse Fast Fourier 
Transform algorithms, speed up a filtering process respect to a convolution operation. 
Anyway the log Gabor are given by the expression: 

Local Energy Variability as a Generic Measure of Bottom-Up Salience 

 

7 

 

2 2

2 2
(log( / )) ( )

2(log( / )) 2( )log Gabor( , ; , )
i i

fi i

f f
f

i if f e e α

α α
σ σα α

−− −

=  (4) 

We have used 6 scales and the central frequencies of the filters were spaced by one octave; 
other parameters were the minimum wavelength (λmin = 2), the angular standard deviation 
(σα = 37.5º) or the frequency bandwidth (two octaves). This election of scales simply 
stretches the possible number of scales of the smallest images within the sets used in this 
work, and for simplicity it has not been modified for the rest of them since it has been 
observed to not significantly alter the results. In relation to the number of orientations the 
election accounts for the facts that pop-out effects are observed preferentially for deviations 
from four “canonical” orientations (Treisman 1993) -horizontal, vertical and right and left 
diagonal-, and is also needed a minimum difference of orientation angle of nearly 10º 
between distractors and target to generate a pop-out. 
Once the initial receptive field responses have been extracted, the next step is necessarily 
related to the feature to extract from them. Again, a number of combined possibilities have 
been explored on the matter in previous models: intensity contrast, orientations, edges, 
predefined shapes, etc. But we put in question here the suitability of dividing the non-colour 
information in a number of feature dimensions in an early - low level- approach to attention. 
We hold instead the extraction of a low level, structurally meaningful, and multifaceted 
feature as local energy has proven to be. We obtain it as the modulus of the log Gabor 
responses. 

2.2 Decorrelation and variability extraction 
The next step to take is related to the integration of the initial feature maps in a final 
measure of saliency, and here we find again a variety of approaches in previous models. 
Focusing in the mentioned implementations of the Koch and Ullman architecture, Milanese 
et al. (1995) implemented a relaxation process by means of a non-linear updating rule which 
updates all the feature maps to satisfy a convergence criterion, and defining a heuristic 
energy function to minimize; in the other hand Itti & Koch (2000) have proposed an 
integration process based on the summation after the filtering of maps with iterative DoG 
filters, providing local within-feature and inter-feature competition.  
Instead of convergence or summation for intra-feature integration we hold a relative 
variability hypothesis, by which one region is conspicuous as far as it contributes to the 
variability of responses in the ensemble of scales, leading to a measure of structural 
difference from the surround. So that, regarding local energy as a feature dimension split in 
oriented sub-dimensions, each characterized by a multi-scaled sub-feature vector, we 
propose a bottom-up attentional integration process based on the decorrelation of 
information and the subsequent extraction of the statistical distance from the average sub-
feature vector.  
A relevant point (or region) is expected to have a scale composition vector (structure) far from 
the mean. Given the huge number of samples (pixels) as well as the high dimensionality 
(number of scales) to manage, we propose to perform an information decorrelation process 
and the further gathering of the T2 value of each point, providing a measure of statistical 
distance in a space of decorrelated scales, as a measure of multi-scale relevance.  
Going more into detail, we start from six local energy scale maps for each of the four 
orientations computed. From them we define at each point four sub-feature vectors, one for 
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oriented sub-dimensions, each characterized by a multi-scaled sub-feature vector, we 
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A relevant point (or region) is expected to have a scale composition vector (structure) far from 
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and the further gathering of the T2 value of each point, providing a measure of statistical 
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each orientation, with six components corresponding to the local energy values at each of 
the scales. We have as many sample vectors for each orientation as pixels are in the single 
local energy maps, that is 

 ( )niisii xxx ,...,2,121 ;)',,,( ==ix  (5) 

Arranging these original vectors as columns -samples- in a matrix of data X for each 
orientation, we treat the rows -scales- as original -partially correlated- coordinates, and we 
perform a PCA on it. From the new -decorrelated- coordinates, we can extract the T2 
statistical distance of each sample -pixel- from the centre of the distribution. 
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where T2 is defined as: 
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being S the covariance matrix of the samples -pixels-, and xi a sample vector with the scale 
values as components. 
 

 
Fig. 1. T2 conspicuity from PCA on local energy. 

We take the resulting map of statistical distances as a relevance map for the analysed sub-
feature. In figure 1 we can observe the high selectivity of this process, leading to an 
enhancement in population sparseness, synonym for code efficiency. 

2.3 Local maxima excitation 
We combine the previous procedure with a local maxima excitation to provide for a more 
robust and locally reinforced conspicuity. Next, to further compose a final saliency from 
oriented conspicuities, we gather the maximum values from the previous maps. 
Local maxima excitation is addressed by means of a non-linear and centre-surround spatial 
competition. With preciseness, we apply iterative non-linear filtering of Difference of 
Gaussians (DoG), in a close but modified version of that implemented by Itti & Koch (2000). 
As well as minor differences in the inhibitory mechanisms, we reduce the number of 
iterations by modifying the last one. Thus, we take the excitatory signal (the response to the 
higher and narrower Gaussian) instead of the response to the difference (excitatory less 
inhibitory), avoiding the influence of the inhibitory signal, that is to say, achieving a 
strengthening of the regions with a high contribution to structure variability.  
Hence, the excitatory and the inhibitory gaussian filters hold the following expressions: 
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Where we have used the values σex = 2% and cex = 0.5 for the excitatory signal and σin = 25% 
and cin = 1.5 for the inhibitory signal. 
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We perform a number of iterations (two in all of the experiments described here) for the 
following non-linear transformation: 

 10 +> →−∗+ iinhii MCDoGMM  (11) 

where the non-linear inhibitory term Cinh is established to the 2% of the maximum of the map. 
So far we have essentially followed the proposal made by Itti & Koch (2000) but in addition 
to these intermediate steps we finally impose the convolution of the map with the excitation 
signal, without any kind of inhibition: 

 ExcMM ii ∗=+1   (12) 
 

 
Fig. 2. Example of spatial Competition Process. First row: evolution of the map; second row: 
excitatory signal in each iteration and final conspicuity map 
The overall effect of this spatial competition operation can be summarized in two main 
assessments, namely it favours small regions with many strong peaks, removing single 
isolated pixels and wide and constant regions, and it also reinforces the maxima, grading 
them in a conspicuity map. One example illustrates all of this in figure 2. 
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An example summarizing the whole integration process up to here can be seen in the figure 
3, where we can check how the resulting relevance maps are actually a representation of 
regions with maximum contribution to structural variability, which have proven 
perceptually relevant and are supposed to strongly attract gaze. Furthermore, the highly 
competitive character of this procedure removes most noise and irrelevant regions, and 
reaches an important gain in population sparseness, retaining one or very few relevant 
regions, depending on the variability and thus low level significance of the feature 
considered. Hence, it seems to perform an efficient within feature competition, and also set 
the basis for a good inter feature competition. 
 

 
Fig. 3. Effect of non-linear local maxima excitation 

After local maxima reinforcement, the next integration step is the obtaining of a final measure 
of saliency. This is done by taking the maximum values at each point from the previous 
conspicuity maps, giving rise to a horizontal competition between orientations, indeed 
reinforcing our strategy which aims to maximize the variability distance in structural content.  

Figure 4. Extraction of Saliency from Local Energy 
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In the figure 4 is shown a complete scheme of our approach to the extraction of a bottom-up 
saliency map. 

2.4 Fixations selection 
Finally, making use of the extracted saliency map, the model should deploy a series of 
ordered fixations on the image. To do this, we have implemented a simplified version of the 
WTA neural network used by Itti & Koch (2000) in their experiments, but maintaining the 
basic assumptions for the focus of attention (FOA) size and considering the target detected 
when the FOA intersects its mask.  This WTA is modelled by a two dimensional layer of 
integrate-and-fire neurons, with a mechanism of inhibition of return to prevent from 
attending always the same location. Therefore, neuron firing shifts the FOA to the 
correspondent location, and immediately afterwards a transient inhibitory feedback is 
applied to the surrounding region in the saliency map to allow for the subsequent selection 
of other salient locations. 

 
Fig. 5. Complete model of bottom-up attention based on local energy saliency 
In the figure 5 is shown a scheme summarizing our local energy-based model of bottom-up 
attention. 



 Pattern Recognition Techniques, Technology and Applications 

 

10 

An example summarizing the whole integration process up to here can be seen in the figure 
3, where we can check how the resulting relevance maps are actually a representation of 
regions with maximum contribution to structural variability, which have proven 
perceptually relevant and are supposed to strongly attract gaze. Furthermore, the highly 
competitive character of this procedure removes most noise and irrelevant regions, and 
reaches an important gain in population sparseness, retaining one or very few relevant 
regions, depending on the variability and thus low level significance of the feature 
considered. Hence, it seems to perform an efficient within feature competition, and also set 
the basis for a good inter feature competition. 
 

 
Fig. 3. Effect of non-linear local maxima excitation 

After local maxima reinforcement, the next integration step is the obtaining of a final measure 
of saliency. This is done by taking the maximum values at each point from the previous 
conspicuity maps, giving rise to a horizontal competition between orientations, indeed 
reinforcing our strategy which aims to maximize the variability distance in structural content.  

Figure 4. Extraction of Saliency from Local Energy 

Local Energy Variability as a Generic Measure of Bottom-Up Salience 

 

11 

In the figure 4 is shown a complete scheme of our approach to the extraction of a bottom-up 
saliency map. 

2.4 Fixations selection 
Finally, making use of the extracted saliency map, the model should deploy a series of 
ordered fixations on the image. To do this, we have implemented a simplified version of the 
WTA neural network used by Itti & Koch (2000) in their experiments, but maintaining the 
basic assumptions for the focus of attention (FOA) size and considering the target detected 
when the FOA intersects its mask.  This WTA is modelled by a two dimensional layer of 
integrate-and-fire neurons, with a mechanism of inhibition of return to prevent from 
attending always the same location. Therefore, neuron firing shifts the FOA to the 
correspondent location, and immediately afterwards a transient inhibitory feedback is 
applied to the surrounding region in the saliency map to allow for the subsequent selection 
of other salient locations. 

 
Fig. 5. Complete model of bottom-up attention based on local energy saliency 
In the figure 5 is shown a scheme summarizing our local energy-based model of bottom-up 
attention. 



 Pattern Recognition Techniques, Technology and Applications 

 

12 

3. Results 
In this section we present the results obtained with the described model of bottom-up 
attention. We start, in the following subsection, with a qualitative analysis of its 
performance in psychophysically relevant situations. Other two subsections deal with the 
reproduction of quantitative experiments with public sets of images to evaluate both the 
capability to capture pop-out, as well as the search performance in a general purpose images 
dataset containing military vehicles in a landscape. 

3.1 Reproduction of psychophysical phenomena and qualitative performance on 
natural scenes. 
In this section we tackle the qualitative description of the behaviour of the model, showing 
the accordance with a variety of psychophysical results. 
It is commonplace to relate the low-level saliency of a given target to the efficiency -in terms 
of wasted time- to find it. Thereby, a line for the qualitative analysis of a bottom-up 
attention model consists in checking the suitable reproduction of some relevant phenomena 
described in experiments of visual search. 
The main and most characteristic of these phenomena is the pop-out, produced by an 
element differing in one unique feature from all of the others, that is to say, when a 
singleton is present in the image. Thus, one important aspect in a visual attention system 
consists in explaining saliency for singletons showing a pattern or feature unique in the 
image, be by the orientation, the size, the frequency content, etc. This kind of phenomena 
are the basis of the Treisman's FIT, which explains them by a privileged parallel processing 
of certain features. 
Therefore, the pop-out of a target in a given image is strongly dependent on the context in 
which the target is present, and in the other hand it implies a behaviour highly non-linear: 
there is pop-out and the target is immediately found, or there is no pop-out and a serial  search 
takes place, in which each of several elements with similar relevance are checked until the 
target is found. In this paper we show a wide range of pop-out phenomena successfully 
reproduced by our model, from local maxima in the variability of a structure descriptor as 
local energy is. In figure 6 we can see two first examples in which an element with a differing 
size fires a pop-out effect and rapidly attracts attention.  It is not the size of the element itself, 
but the relative size respect to the others what causes a predominant salience. 

 
Fig. 6. Two examples of size pop-out 
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As we have seen, a singleton between many similar distractors shows a very high saliency, 
but what happens if distractors present differences themselves? As can be expected, 
differentiation of distractors leads to appearance of new singletons competing with the 
target, reducing its relative saliency. This effect of the distractor heterogeneity on target 
saliency, is well understood in our model as a reduction of the relative contribution to 
structure variability. In figure 7 we can see a meaningful example which illustrates well this 
question. 

 
Fig. 7. Distractor heterogeneity reduces saliency of the target up to prevent for pop-out. In 
the three images the unique feature of the target is the same, but in the left image the 
distractor heterogeneity makes less relevant the orientation than other structural features. 

Another factor reducing saliency is related to resemblance between the searched element 
and the surrounding ones, usually referred as the target-distractor similarity. Here it is this 
similarity with surrounds what threatens the status of singleton of the target. In the frame of 
our model, this can be explained again as a reduction in the local contribution to structure 
variability in the image. In figure 8 is shown how our model reproduces well this behaviour 
observed in psychophysical experiments. As can be seen there is no a linear relation 
between difference in size and relative saliency, since the model collects local variability 
maxima in a non-linear approach, aiming decorrelated and sparse responses. 
There is another important set of phenomena observed in visual searches, commonly 
denoted as “search asymmetries”. The related to visual search experiments designed on a 
given feature space, where target and distractors exchange its characterization, giving rise to 
different behaviours and therefore “asymmetric” attentional performance in such feature 
spaces. Disregarding the common discussion on the feature definitions involved, and on the 
suitability in talking of such asymmetries, we show the behaviour of our model in two 
typical situations and how it coincides basically with that described in psychophysical 
observations, providing with an simple explanation for them. The first of these cases has to 
see with the so called presence/absence asymmetry, in which target and distractors are the 
same element except by the presence or absence of an additional simple feature. What 
typically happens in these experiments is that the presence of the additional feature 
generates a pop-out while its absence remains unnoticed and does not fire any pop-out. 
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Fig. 8. Target-Distractor similarity reduces saliency of the target abruptly 

 
Fig. 9. Reproduction of the so called presence/absence asymmetry 
In figure 9 we can see two examples of this asymmetry,  in the left all the elements are circles 
which can have or not a vertical bar, in the rigth elements are horizontal bars and the 
aditional feature is again a vertical bar. As can be seen in both cases the model reproduces 
well psychophysical observations. In other hand the explanation is simple: the structure of 
the element(s) labelled by the “absence” is present in all the elements, so this contribution to 
structure variability in the image is equalled by all the other stimuli, while the element(s) 
with the additional feature present an additional contribution to structure variability, 
increasing its relative salience. Thus, such asymmetry is not an asymmetry in our model and 
the observed behaviour is perfectly understandable.  
Another classical example of search assymetry is found in experiments in which target and 
distractor differing only in orientation exchange the value of this feature. It has been 
observed in such cases that the threshold in orientation difference needed to fire pop-out 
varies in a significant amount between the two possibilities. Treisman & Gormican (1988) 
have explained this phenomenon with basis in a privileged treatment of certain “canonical” 
orientations which would break the expected symmetry. As figure 10 shows this is well 
reproduced by our model. This should not result surprising, as the model computes four 
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different orientations, which in spite of gathering all the possible orientations existing in the 
image, they make it in a unequal way. So, our low level descriptor makes use in fact of a set 
of canonical orientations and thus, is not symmetric respect to any orientation. But this 
seems to be in accordance with the performance observed for the HVS. 

 
Fig. 10. Asymmetry in orientation pop-out threshold 

 
Fig. 11. Performance on natural scenes. Top: original image; centre: saliency map; bottom: 
first fixation. 
Finally, to complete this qualitative description of the performance of the model figure 11 
shows the saliency map and the first fixation for five cluttered natural scenes with different 
relevant objects, different visibilities, and different contexts. We should remember at this 
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point that colour information was discarded in this work. As we can appreciate saliency 
maps are sparse, present few concentrated salient regions, corresponding in all cases to 
elements of obvious relevance. Therefore, the capability of the model to reproduce pop-out 
phenomena is not limited to artificial stimuli in synthetic images but it is also confirmed 
with different targets in natural scenes.  

3.2 Performance on orientation pop-out  
In this section we dealt with the reproduction of the orientation pop-out effects observed in 
the human visual system, parallel to that already carried out by Itti & Koch (2000). All the 
images, and their respective binary versions with the masks for target detection, are public 
and can be found in (http://ilab.usc.edu). 
In the figure 12 we can see twenty examples of the obtained results, with the saliency map 
obtained and the correspondent fixations performed, they can give an idea of the robustness 
of the model in capturing orientation pop-out. 
 

 
Fig. 12. Twenty examples of results in the pop-out orientation experiment.. For each case, 
fixations (top) and saliency (bottom) are shown. 
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In figure 11, the overall results are shown as the mean number of false fixations before target 
detection faced to the number of distractors present in the image. The dashed line represents 
the chance value corresponding to a pure serial search without any orientation pop-out 
effect (supposed half of distractors visited before the detection), and the blue points 
connected by a solid line, the average performance of our model, with the error bars being 
one standard deviation. 
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Fig. 13. Number of fixations against number of distractors. The dashed green line represents 
what could be expected in a serial search (half of distractors attended before target 
detection). Blue points connected by a blue solid line, and black bars, show  the 
correspondent average and standard deviation values obtained. 

We can assess that the model assures for a robust capture of orientation pop-out, 
independently of the number of distractors, since we obtained a flat slope in the number of 
false fixations. The performance became slightly poorer when the number of distractors was 
very small, which can be explained in terms of a reduction of the pop-out effect by the 
expectable reduction in the relative contribution of the target to structure variability in the 
image. 
Our results clearly improve those obtained by Itti & Koch (2000), regarding the visible 
reduction of the mean value and even more important, the remarkable reduction of the 
standard deviation values; giving account for the fact that with our procedure there are not 
cases with a large number of false detections, thereby achieving a more robust performance. 
They haven't published numerical results so we can't carry out a numerical comparison. 

3.3 Search performance on natural scenes 
In this section we handle with target detection within natural scenes in a set of images 
containing a military vehicle in a landscape, again parallel to that already carried out by Itti 
& Koch (2000).  The images from this set were sub sampled versions of images belonging to 
the search_2 database described by Toet et al. (2001). They correspond to 44 natural scenes 
containing a military vehicle of variable relative dimensions, identical to those used by Itti & 
Koch, except for the resolution of the images: ours had the fourth part size (1536x1024 
pixels).  Some of these images can be seen in figure 14. 
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We also assumed the same relative size for the FOA, which would imply a mean result of 
61.5 fixations for random target detection. 
One interesting feature of this database is the availability of the search time distribution 
curves obtained for human observers for each of the 44 images, allowing for a comparison 
with human performance in a search task in natural scenes. Simulated search times have 
been calibrated so that a mean of 330 ms elapse between two fixations, and an additional 
time of 1.5 s has then added to account for human motor response time. 
 

 
Fig. 14. Examples of natural images from the military vehicles set. As can be seen many of 
them present a very low visibility of the target. 

The main results take the very close overall values than Itti & Koch (2000), and so the model 
found the target with the first fixation in seven of the 44 images, and with fewer than twenty 
fixations in 23 images. The model has failed in two cases. Figure 13 shows the saliency map 
and the correspondent fixations performed for five images of high visibility of the target. 
As Itti’s model did, our model reached a poor correlation with human, and can also be 
considered faster than them finding the target, under the exposed search time calibration 
assumptions. In any case, this is a very inaccurate approach, because of the fact that search 
time distributions for humans are not well represented by the mean value. 
But in other hand, qualitative analysis allows to see an agreement on the classification of an 
image, when it is considered as one with a high visibility of the target. This classification in 
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humans has been done by comparison of the curves of search time distribution, and in the 
model selecting those images with less of 6s of search time. This comparison yields the 
result of eleven images classified like showing high visibility both by humans and the 
model, and only two images classified with medium visibility by the model while showing 
high visibility for humans. 
 

 
 

Fig. 15. Six examples of high visibility of the target, where a bottom-up approach makes 
sense. Left: original image; centre: saliency map; right: fixations performed. 
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In images with poor visibility for humans the agreement didn’t exist, but these images, 
without a conspicuous target are expected to be processed by humans in a top-down 
manner, not bottom-up, the only one that is being modelled here. 
Another comment to be made is related to the sparse maps obtained, particularly when a 
pop-out effect is clear. In the other hand, when the visibility of the target is lower, more 
elements from the landscape gain relative salience. 

4. Conclusions 
In this chapter we have exposed a particular approach to model bottom-up saliency, based 
in the hypothesis that variability of local energy is capable of capture the pop-out produced 
by the local contrast in a variety of non-colour features. 
Hence, we have employed local energy as a suitable general descriptor of non-colour 
structure in the image, combined with information decorrelation, statistical distance 
computation and non-linear maxima excitation to detect local maxima of structure 
variability. The biological plausibility of the model arises from the combination of known 
features from V1 behaviour with a highly non-linear and collective performance, as well as 
assumptions based on psychophysical considerations (e.g. election of orientations). 
The model is implemented in a meaningful and understandable fashion, thereby providing 
for a complete and robust computational frame to reproduce and formally explain the main 
observed features of static and non-colour bottom-up attention in humans. 
Tested in synthetic as well as natural images, this approach gives rise to a simple model of 
bottom-up attention with a high performance, which accounts for pop-out effects and other 
psychophysical phenomena, and also solves conspicuity-driven search tasks more efficiently 
and robustly than a powerful state of art approach to bottom-up attention as it is that hold 
by Itti and colleagues. All of this is achieved with a simple scheme: while other models need 
for the separate use of intensity contrast and orientation (Itti et al. 2000), edges and 
orientation (Milanese 1993), and other combinations, we only make use of local energy as 
low-level descriptor to characterize non-colour structure. 
It is important to remark that the model makes a generic approach to bottom-up saliency, 
without the use of any kind of knowledge or feature constraints, related to the target nor the 
task, and it is expected to reproduce human performance in corresponding situations, as 
unguided surveillance or conspicuity-driven visual search, on non-colour scenes or when 
relevance does not lie in colour.  
Although local energy is not an intuitive feature from common language, it can account for 
many of these perceived intuitive features in a more reliable way for computational 
modelling purposes. In fact, it is underlying them. Moreover, conceived as a descriptor of 
structure is a powerful tool to understand a variety of features and the phenomena related 
to them without loss of meaning.  
Furthermore, this approach takes into account and incorporates important features of HVS 
as expected and observed increased population sparseness and response decorrelation in 
comparison to previous Gabor-like and feature extraction models of saliency computation. 
In progress and future work will deal with other feature dimensions, like colour and 
motion, in order to allow the model to work with real dynamic scenes; and also with a more 
depth study on the comparison with human performance. 
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1. Introduction     
The pressing demand to improve quality of manufactured products requires the use of the 
latest technologies in order to enhance the control systems that adjust manufacturing 
parameters. Computer vision inspection and control are already standard technologies 
which are frequently used to improve the quality of manufactured products. Recently, due 
to the availability of fast and affordable infrared acquisition devices, computer vision 
beyond the spectrum is also becoming an essential technology for quality control and 
improvement. For example, during steel strips manufacturing, uneven temperature across 
the width of the strips during rolling generates defects, due to differences in the contraction 
of the longitudinal fibers that make up a strip. Detecting the infrared profile pattern of the 
strip which is being manufactured makes it possible to use this information to modify the 
manufacturing parameters to compensate for the temperature differences in the strip 
(Gonzalez et al., 2002). 
This work proposes a robust method to detect infrared profile patterns in real-time. The 
proposed method is based on the acquisition and processing of infrared profiles using an 
infrared line scanner. The detection of infrared patterns, and the change of pattern which 
occur during manufacturing, need to be carried out online with the production process in 
order to use this information to enhance the control systems during manufacturing. The 
method proposed to detect these patterns in real-time is based on the segmentation of the 
stream of infrared profiles acquired from the infrared line scanner. The segmentation aims 
to find regions of homogeneous temperature, that is, regions formed by a set of adjacent 
profiles which have a similar temperature pattern. The proposed method to segment 
infrared images into regions of common temperature patterns is by means of boundary 
detection, which, in this case, is accomplished through edge detection. The first step of the 
segmentation is the calculation of the gradient, which is obtained as the result of the 
convolution of the image with a gradient operator. Two different gradient operators, 
Gaussian and difference, are evaluated to test which one is best suited to solve the current 
problem. The next step is the projection of the gradient, which simplifies the thresholding 
that must be carried out to eliminate noise from the gradient. Once the projection of the 
gradient is available, it is thresholded. The objective of the thresholding is to differentiate 
noise from real edges. An edge is found when there is data in the projection over the 
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threshold. All these processes are designed to require low computational power, which 
makes a real-time implementation possible. The information about the current infrared 
profile pattern and about the changes in the infrared pattern obtained in real-time can be 
used to improve the quality of the product during manufacturing. 
In addition to real-time detection of infrared profile patterns, methods to extract 
distinguishing features from infrared patterns are explored in this work. These features aim 
to characterize infrared patterns to be recognized by measurements whose values are very 
similar for patterns in the same category, and very different from patterns in different 
categories. Polynomial fit using orthogonal polynomials is studied as a method capable of 
providing a compact and meaningful description of infrared profile patterns. 

2. Infrared images 
Temperature in infrared images is computed from the measured radiation, according to 
Planck’s law. The conversion is affected by the emissivity of the object radiating energy, 
which is a parameter of the device used to acquire infrared images. Among infrared 
acquisition devices, infrared line scanners are the most commonly used to measure the 
temperature of very long moving objects, such as steel strips. Image acquisition using these 
devices is carried out by capturing infrared profiles from objects which move forward along 
a track. The repetitive line-scanning (≈100Hz) and the movement of the object make the 
acquisition of a rectangular image possible. Fig. 1 shows a diagram of the operation of an 
infrared line scanner. 
 

 
Fig. 1. Operation of an infrared line scanner 

The resulting infrared image consists of a sequence of infrared profiles, each of which is 
made up of a set of pixels which represent temperature.  Fig. 2 shows an example of infrared 
image acquired from a hot steel strip. Infrared images acquired from steel strips using 
infrared line scanners have an approximated resolution of 130 rows and 10,000 columns, 
where each pixel of the image represents a temperature value in the range [100, 200ºC]. 
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Fig. 2. Example of infrared image acquired from a steel strip 

2.1 Infrared profile patterns 
One of the objectives of this work is the detection of infrared profile patterns. This means 
detection regions of homogeneous temperature, that is, regions formed by a set of adjacent 
profiles which have a similar temperature pattern.  
Different regions in the infrared image appear as a consequence of the changes of the 
manufacturing conditions over time.  The following is an example of how different regions can 
appear in an image acquired from a steel strip. For an instant during a strip manufacturing 
(Fig. 3, moment A) the speed is reduced, which produces a decrement in the temperature of 
the strip.  Before the speed reduction, the profiles acquired show a high infrared profile pattern 
(Fig. 3, pattern 1), and after the speed reduction they show a lower one (Fig. 3, pattern 2). Later 
(Fig. 3, moment B), the speed strip is recovered and the pattern is again high (Fig. 3, pattern 3). 
After this, a typical change in the manufacturing conditions is produced (Fig. 3, moment C), 
which consists of the application of excessive pressure on one part of the strip. The excess of 
pressure generates heat and the infrared pattern rises where high pressure is applied to the 
strip (Fig. 3, pattern 4). When the excess of pressure disappears (Fig. 3, moment D) a flat 
infrared pattern appears again (Fig. 3, pattern 5). Finally, a new decrement of the speed (Fig. 3, 
moment E) produces a new infrared pattern (Fig. 3, pattern 6). 
In the case of steel strips, information about the current temperature pattern can be used 
during the manufacturing process to activate the cooling nozzles where the temperature is 
higher.  However, to do this, infrared profile patterns must be detected in real-time with the 
manufacturing process, making the real-time adjustment of the cooling feedback possible. 

3. Detection of infrared profile patterns 
The method proposed to detect these infrared profile patterns in real-time is based on the 
segmentation of the stream of infrared profiles acquired from the infrared line scanner. The 
proposed method to segment infrared images into regions of common temperature patterns is 
by means of boundary detection, which, in this case, is accomplished through edge detection. 
Segmentation techniques based on edge detection rely on edges found in an image by edge 
detection operators. These edges mark image discontinuities regarding some image attribute. 
Usually, the attribute is the luminance level; in this case, the temperature level will be used. 
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Fig. 2. Example of infrared image acquired from a steel strip 

2.1 Infrared profile patterns 
One of the objectives of this work is the detection of infrared profile patterns. This means 
detection regions of homogeneous temperature, that is, regions formed by a set of adjacent 
profiles which have a similar temperature pattern.  
Different regions in the infrared image appear as a consequence of the changes of the 
manufacturing conditions over time.  The following is an example of how different regions can 
appear in an image acquired from a steel strip. For an instant during a strip manufacturing 
(Fig. 3, moment A) the speed is reduced, which produces a decrement in the temperature of 
the strip.  Before the speed reduction, the profiles acquired show a high infrared profile pattern 
(Fig. 3, pattern 1), and after the speed reduction they show a lower one (Fig. 3, pattern 2). Later 
(Fig. 3, moment B), the speed strip is recovered and the pattern is again high (Fig. 3, pattern 3). 
After this, a typical change in the manufacturing conditions is produced (Fig. 3, moment C), 
which consists of the application of excessive pressure on one part of the strip. The excess of 
pressure generates heat and the infrared pattern rises where high pressure is applied to the 
strip (Fig. 3, pattern 4). When the excess of pressure disappears (Fig. 3, moment D) a flat 
infrared pattern appears again (Fig. 3, pattern 5). Finally, a new decrement of the speed (Fig. 3, 
moment E) produces a new infrared pattern (Fig. 3, pattern 6). 
In the case of steel strips, information about the current temperature pattern can be used 
during the manufacturing process to activate the cooling nozzles where the temperature is 
higher.  However, to do this, infrared profile patterns must be detected in real-time with the 
manufacturing process, making the real-time adjustment of the cooling feedback possible. 

3. Detection of infrared profile patterns 
The method proposed to detect these infrared profile patterns in real-time is based on the 
segmentation of the stream of infrared profiles acquired from the infrared line scanner. The 
proposed method to segment infrared images into regions of common temperature patterns is 
by means of boundary detection, which, in this case, is accomplished through edge detection. 
Segmentation techniques based on edge detection rely on edges found in an image by edge 
detection operators. These edges mark image discontinuities regarding some image attribute. 
Usually, the attribute is the luminance level; in this case, the temperature level will be used. 
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Fig. 3. Infrared profile patterns 

The general edge-based segmentation process consists of several steps. It starts by applying 
a convolution kernel (or gradient operator) over an image (Pratt, 2001). The result obtained 
from the convolution is the gradient of the image, which is obviously dependent on the 
gradient operator used. The next step involves the analysis of the gradient in order to 
eliminate the noise while keeping the real edges. Usually, this process is carried out by 
using thresholding techniques or morphological operators. The last step consists of linking 
the edges in order to determine the boundary of the regions, and in this way, to accomplish 
the segmentation of the image into regions. 
The steps for the proposed edge-based segmentation method for the infrared images 
considered in this work are described below. 

3.1 Calculation of the gradient 
The gradient of an image is obtained as the result of the convolution of the image with a 
gradient operator, also called convolution kernel (Canny, 1986). 
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When choosing a gradient operator, three important issues must be carefully selected: the 
direction, the size, and the shape. The fact that the edges will only be searched in the 
direction of the object movement makes the selection of direction and size easier. The 
direction of the operator will be the same as the object movement, that is, longitudinal. 
Furthermore, the size, normally defined as A rows x B columns, can be simplified as 1xB, 
since only the modification of the number of columns of the operator (B) will make 
significant changes to the resulting gradient. To simplify the next operations, N, defined as 
(B-1)/2, will be used when referring to the operator length. 
In order to decide which operator shape best fits the images considered, two operators were 
analyzed: the difference operator and the FDoG (first derivative of Gaussian). The difference 
operator consists of a convolution kernel where the first N coefficients are -1, the next is 0, 
and the last N are 1. Summarizing, this operator calculates the difference between the next 
and the previous window (both of size N) of the current pixel. On the other hand, the FDoG 
operator consists of the derivative of a Gaussian function. The representation of both 
operators can be seen in Fig. 4. 
 

N

 
(a) (b) 

Fig. 4. Gradient operators. (a) difference, (b) FDoG 

To apply the FDoG operator, a convolution operation must be carried out. This operation 
can be calculated using (1), where LS[i, j] is the pixel j of the infrared profile i, and FDoG[i] is 
the ith coefficient of the FDoG operator. 

 [ ] [ ] ( )_ , ,
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To apply the difference operator (Dif), the same convolution operation with different 
coefficients can be used. However, since the application of the difference operator in one 
pixel corresponds to the calculation of the difference between two averages, it can also be 
applied in Eq. (2).  
Eq. (2) can also be seen as (3), the difference between the next and previous window (size 
N), where ALS[f, t, j] is the average pixel j from the profile f to t. 
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The average of a signal from point a to point b can be calculated using Eq. (4), which can be 
transformed into a recursive equation as seen in Eq. (5). 
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Using the recursive definition of the average given in Eq. (5), Eq. (6) can be proposed for the 
calculation of ALS, which makes it possible to calculate the operator recursively, therefore 
requiring a lower number of operations. 

 
[ , ] [ 1, ][ , , ] [ 1, 1, ]

1
LS b j LS a jALS a b j ALS a b j

b a
− −

= − − +
− +

 (6) 

The segmentation method must be applied in real-time. This means that the time necessary 
to calculate the gradient in a profile will be a part of the total time necessary to process a 
new acquired profile (maximum of 10ms using an infrared line-scanner of 100Hz). Applying 
a convolution operation with an operator of window size N, and a profile of length L 
requires the operations included in Table 1. The recursive version is seen to need far fewer 
mathematical operations than the convolution. For example, the calculations of the gradient 
using an operator of window size 100 over a profile of 100 points, would need 40,000 
mathematical operations using the convolution, but only 700 using the recursive approach. 
This difference makes the recursive approach 57 times faster than the convolution, which, 
depending on the computation speed, could represent the difference between being able to 
calculate the gradient before the deadline or not. 
 

 Convolution Recursive 
Multiplications: 2*N*L 0 

Additions: 2*N*L 2*L 
Subtraction: 0 3*L 
Divisions: 0 2*L 

Total: 4*N*L 7*L 

Table 1. Number of operations required to calculate the gradient 

Fig. 5 shows the gradient produced by the difference and FDoG operators (both using 
N=100) when applied to the infrared image shown in Fig. 2. 
Taking the previous considerations into account, the most suitable operator in this case is 
the difference, for three reasons: 
• The multiple response effect in the produced gradient is not avoided by any of the 

operators (Canny, 1986). 
• The gradient produced by the difference operator maximizes the SNR (signal to noise 

ratio) (Canny, 1986). 

Real-Time Detection of Infrared Profile Patterns and Features Extraction 

 

31 

• Since the difference operator can be applied recursively, its implementation is much 
faster than the convolution operation. This constitutes a significant advantage when 
designing a segmentation method to work in real time. 
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Fig. 5. Gradient produced by the difference (a) and FDoG (b) operators 

3.2 Projection of the gradient 
The next step is the projection of the gradient, which simplifies the thresholding that must 
be carried out to eliminate noise from the gradient. This projection is carried out using Eq. 
(7), where LSL is the profile length (number of pixels in the profile), and P is a parameter of 
the projection. 

 [ ] [ ]( )
1

1 ,
PLSL

j
GradProj i Grad i j

LSL =

= ∑  (7) 

Fig. 6 shows the projection (using P=2) of the gradients obtained using the difference and 
FDoG gradient operators, which can be seen in Fig. 5. This figure shows that the 
difference operator identifies the edges of the image more clearly and with more 
responses per edge, which corroborates the conclusions drawn in Canny’s work (Canny, 
1986) on the proper gradient operator under his constraints of SNR (signal to noise ratio) 
and simple response. 
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Using the recursive definition of the average given in Eq. (5), Eq. (6) can be proposed for the 
calculation of ALS, which makes it possible to calculate the operator recursively, therefore 
requiring a lower number of operations. 
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• Since the difference operator can be applied recursively, its implementation is much 
faster than the convolution operation. This constitutes a significant advantage when 
designing a segmentation method to work in real time. 
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Fig. 5. Gradient produced by the difference (a) and FDoG (b) operators 

3.2 Projection of the gradient 
The next step is the projection of the gradient, which simplifies the thresholding that must 
be carried out to eliminate noise from the gradient. This projection is carried out using Eq. 
(7), where LSL is the profile length (number of pixels in the profile), and P is a parameter of 
the projection. 

 [ ] [ ]( )
1

1 ,
PLSL

j
GradProj i Grad i j

LSL =

= ∑  (7) 

Fig. 6 shows the projection (using P=2) of the gradients obtained using the difference and 
FDoG gradient operators, which can be seen in Fig. 5. This figure shows that the 
difference operator identifies the edges of the image more clearly and with more 
responses per edge, which corroborates the conclusions drawn in Canny’s work (Canny, 
1986) on the proper gradient operator under his constraints of SNR (signal to noise ratio) 
and simple response. 
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(b) 

Fig. 6. Projection of the gradient. (a) using difference operator, (b) using FDoG operator 

3.3 Thresholding of the projection 
Once the projection of the gradient is available, it is thresholded. The objective of the 
thresholding is to differentiate noise from real edges. An edge is found when there is data in 
the projection over the threshold value T. When adjacent edges are found (adjacent values of 
the projection over the threshold), only the edge with the higher value in the projection of all 
of the adjacent positions will be considered. This can be interpreted as a morphological 
operator. 
Fig. 7a shows an example of the thresholding (T=25) carried out over the projection (P=2) of 
the gradient produced by the difference operator (N=100, shown in Fig. 6a) over the image 
in Fig. 2. As can be seen, the noise is below the threshold value and edges are obtained from 
the peaks above it (Fig. 7b). Only the highest value of each peak will be considered to 
establish the longitudinal position of its corresponding edge. The segmented image consists 
of the set of regions bounded by the found edges (Fig. 7c).  

3.4 Summary of the segmentation method 
The proposed segmentation method for infrared images is based on edge detection. Edges 
are detected by means of the thresholding of the projection of the gradient calculated with 
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(c) 

Fig. 7. Final steps of the detection process. (a) thresholding of the projection, (b) resulting 
position of the edges as the maximums of every peak, (c) segmented image 
the difference operator. This process is carried out in real time with the infrared profile 
acquisition, detecting changes in the temperature pattern shortly after they appear. 
The implementation of the segmentation method was successfully tested to fit the real time 
requirements imposed by a line acquisition rate of 100 Hz (10 ms period).  
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Fig. 6. Projection of the gradient. (a) using difference operator, (b) using FDoG operator 

3.3 Thresholding of the projection 
Once the projection of the gradient is available, it is thresholded. The objective of the 
thresholding is to differentiate noise from real edges. An edge is found when there is data in 
the projection over the threshold value T. When adjacent edges are found (adjacent values of 
the projection over the threshold), only the edge with the higher value in the projection of all 
of the adjacent positions will be considered. This can be interpreted as a morphological 
operator. 
Fig. 7a shows an example of the thresholding (T=25) carried out over the projection (P=2) of 
the gradient produced by the difference operator (N=100, shown in Fig. 6a) over the image 
in Fig. 2. As can be seen, the noise is below the threshold value and edges are obtained from 
the peaks above it (Fig. 7b). Only the highest value of each peak will be considered to 
establish the longitudinal position of its corresponding edge. The segmented image consists 
of the set of regions bounded by the found edges (Fig. 7c).  

3.4 Summary of the segmentation method 
The proposed segmentation method for infrared images is based on edge detection. Edges 
are detected by means of the thresholding of the projection of the gradient calculated with 
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Fig. 7. Final steps of the detection process. (a) thresholding of the projection, (b) resulting 
position of the edges as the maximums of every peak, (c) segmented image 
the difference operator. This process is carried out in real time with the infrared profile 
acquisition, detecting changes in the temperature pattern shortly after they appear. 
The implementation of the segmentation method was successfully tested to fit the real time 
requirements imposed by a line acquisition rate of 100 Hz (10 ms period).  
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The configuration parameters of the algorithm are the following: 
• Operator length (N). 
• Projection power (P). 
• Threshold level (T). 
The results of the segmentation depend on the use of the proper values for these 
configuration parameters. 

4. Tuning of the pattern detector 
In order to tune the pattern detection process the best configuration for the parameters N, P, 
and T must be found. 
The approach proposed to carry out automatic tuning of the pattern detection process is by 
means of evolutionary computation. This kind of computation method encompasses a 
variety of population-based problem solving techniques that mimic the biological process of 
Darwinian evolution, based on the principle of natural selection. Evolutionary algorithms 
provide versatile problem-solving mechanisms for search, adaptation, learning, and 
optimization in a variety of application domains (Bhandarkar & Zhang, 1999). The 
automatic segmentation tuning proposed in this work uses a genetic algorithm (Holland, 
1992; Goldberg, 1989), an important member of the wider class of evolutionary algorithms 
which has been successfully used in the image processing field (Chun & Yang, 1996; Bhanu 
at al., 1995; Andrey, 1999; Pignalberi et al., 2003). 
A genetic algorithm (GA) is an adaptive procedure that searches for viable solutions using a 
collection of search points, known as population, in order to maximize desirable criterion 
(Chun & Yang, 1996). Each search point, or member of the population, is known as an 
individual, and is represented as a chromosome encoded as a string of genes which are used 
to codify parameters. During iterations, each individual is evaluated and combined with 
others on the basis of its overall quality.  
In this case, each chromosome contains the information about a configuration for the 
parameters of the segmentation algorithm. The quality of the chromosome is defined as the 
result provided by the combined objective function. 
The first issue which must be defined in order to apply the genetic algorithm is the way the 
chromosomes are codified. Chromosomes contain information about parameters of the 
problem whose optimal values must be found. In this case, these values are the parameters 
of the segmentation process: N, P, and T. Each parameter is codified as a floating point 
number, thus, the chromosome is a vector of three numbers, as is represented in (8) for a 
generic chromosome i. 

 [ ], ,i i i iC N P T=  (8) 

It is interesting to note that chromosomes are usually codified using binary methods; 
however, the use of floating point numbers has proved to provide similar or even better 
results than the binary codification for classical problems (Haupt & Haupt, 2003). 
In this case, the population is defined as an array of 100 individuals, each represented by a 
chromosome which is initially filled with random numbers. Individuals are the search 
points of the genetic algorithm, and their quality is evaluated through Eq. (9), where C is a 
chromosome, which codifies the information about N, P and T, and OF is the objective 
function which indicates the success level of the segmentation using that parameter set. 

Real-Time Detection of Infrared Profile Patterns and Features Extraction 

 

35 

 ( ) ( ), ,i i iQuality C OF N P T=  (9) 

The genetic algorithm used is an iterative process which repeats the following four steps: 
natural selection, pairing, crossing, and mutation. These steps are described below. 

4.1 Natural selection 
The natural selection process decides which chromosomes in the population are fit enough 
to survive and possibly produce offspring in the next generation. To carry out this task, the 
quality of every chromosome in the population is calculated. Then, the array of 
chromosomes is sorted. Only the best half of the chromosomes survives (elitism), the rest are 
discarded to make room for the new offspring. 

4.2 Pairing 
The surviving chromosomes form the mating pool. The pairing process randomly creates 
pairs of fathers and mothers from this pool. Each pair produces two offspring which inherit 
traits from each parent. Enough pairs are created to fill the room left by the discarded 
chromosomes. In addition, the parents survive to form part of the next generation.  

4.3 Crossing 
Crossing is the process which produces offspring as a combination of the parents. Many 
different approaches for crossing have been tested (Michalewicz, 1994). In this case, a 
combination of blending (Radcliff, 1991) and extrapolation (Wright, 1991) is applied. The 
pseudocode of the crossing method can be seen in Algorithm 1. 
 

      
Algorithm 1. Crossover strategy 
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The configuration parameters of the algorithm are the following: 
• Operator length (N). 
• Projection power (P). 
• Threshold level (T). 
The results of the segmentation depend on the use of the proper values for these 
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provide versatile problem-solving mechanisms for search, adaptation, learning, and 
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1992; Goldberg, 1989), an important member of the wider class of evolutionary algorithms 
which has been successfully used in the image processing field (Chun & Yang, 1996; Bhanu 
at al., 1995; Andrey, 1999; Pignalberi et al., 2003). 
A genetic algorithm (GA) is an adaptive procedure that searches for viable solutions using a 
collection of search points, known as population, in order to maximize desirable criterion 
(Chun & Yang, 1996). Each search point, or member of the population, is known as an 
individual, and is represented as a chromosome encoded as a string of genes which are used 
to codify parameters. During iterations, each individual is evaluated and combined with 
others on the basis of its overall quality.  
In this case, each chromosome contains the information about a configuration for the 
parameters of the segmentation algorithm. The quality of the chromosome is defined as the 
result provided by the combined objective function. 
The first issue which must be defined in order to apply the genetic algorithm is the way the 
chromosomes are codified. Chromosomes contain information about parameters of the 
problem whose optimal values must be found. In this case, these values are the parameters 
of the segmentation process: N, P, and T. Each parameter is codified as a floating point 
number, thus, the chromosome is a vector of three numbers, as is represented in (8) for a 
generic chromosome i. 
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It is interesting to note that chromosomes are usually codified using binary methods; 
however, the use of floating point numbers has proved to provide similar or even better 
results than the binary codification for classical problems (Haupt & Haupt, 2003). 
In this case, the population is defined as an array of 100 individuals, each represented by a 
chromosome which is initially filled with random numbers. Individuals are the search 
points of the genetic algorithm, and their quality is evaluated through Eq. (9), where C is a 
chromosome, which codifies the information about N, P and T, and OF is the objective 
function which indicates the success level of the segmentation using that parameter set. 
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The genetic algorithm used is an iterative process which repeats the following four steps: 
natural selection, pairing, crossing, and mutation. These steps are described below. 

4.1 Natural selection 
The natural selection process decides which chromosomes in the population are fit enough 
to survive and possibly produce offspring in the next generation. To carry out this task, the 
quality of every chromosome in the population is calculated. Then, the array of 
chromosomes is sorted. Only the best half of the chromosomes survives (elitism), the rest are 
discarded to make room for the new offspring. 

4.2 Pairing 
The surviving chromosomes form the mating pool. The pairing process randomly creates 
pairs of fathers and mothers from this pool. Each pair produces two offspring which inherit 
traits from each parent. Enough pairs are created to fill the room left by the discarded 
chromosomes. In addition, the parents survive to form part of the next generation.  

4.3 Crossing 
Crossing is the process which produces offspring as a combination of the parents. Many 
different approaches for crossing have been tested (Michalewicz, 1994). In this case, a 
combination of blending (Radcliff, 1991) and extrapolation (Wright, 1991) is applied. The 
pseudocode of the crossing method can be seen in Algorithm 1. 
 

      
Algorithm 1. Crossover strategy 
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4.4 Mutation 
A common problem in any optimization technique setting out to find the global optimum is 
how to deal with local maximums. To avoid this problem, genetic algorithms force the 
exploration of other areas of the solution space by randomly introducing changes or 
mutations, in some of the chromosomes. The mutation method applied in this case mutates 
5% of the population per iteration. The mutated chromosomes are selected randomly from 
the new generation resulting from the crossing process. The mutation process of a 
chromosome consists of the modification of one of its genes.  

4.5 Objective function 
Different evaluation methods for image segmentation which could be used as an objective 
function for the segmentation method have been proposed. (Zhang, 1996) proposes a 
classification of existing methods as “analytical”, “empirical goodness”, and “empirical 
discrepancy”. The empirical discrepancy methods provide a value which indicates the 
similarity between the segmentation results and the ground truth. It is esteemed to be the 
most suitable method to be used as the objective function. 
Jaccard (Sneath & Sokal, 1973) proposed a metric (JC) for classification purposes which has 
also been used as an empirical discrepancy method (Rosin & Ioannidis, 2003). This metric is 
defined in Eq. (10), where NTP is the number of true positive detections, that is, the number 
of pixels correctly defined as edge pixels, NFP is the number of false positive detections, that 
is, the number of pixels erroneously defined as edge pixels, and NFN is the number of false 
negative detections, that is, the number of pixels erroneously defined as non-edge pixels. 

 TP

TP FP FN

NJC
N N N

=
+ +

 (10) 

JC is a suitable method to be used as the objective function; therefore it will be used in this 
work. 
The ground truth, necessary to determine the effectiveness of a detection method, is created 
by manually segmenting the images in a test set. This ground truth will be used to calculate 
the objective function (JC) during the tuning of the parameters of the pattern detector. 

4.6 Results 
After 250 iterations the best chromosome codifies the following parameter set: 
• N: 118. 
• P: 13.810. 
• T: 5.869e12. 
Fig. 8 and Fig. 9 show the infrared profile patterns detected in two images using the 
configuration obtained in the tuning procedure. 

5. Feature extraction 
Features extracted from an object aim to characterize the object to be recognized by 
measurements whose values are very similar for objects in the same category, and very 
different from objects in different categories (Duda et al., 2001). This leads to the idea of 
seeking distinguishing features. 
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Fig. 8. Infrared profile patterns detected in image 1. (a) Segmented image, (b) infrared 
profile patterns for each segmented region 

The proposed approach in this work is to extract features is by means of a polynomial fit. In 
particular, the shape of the infrared profile will be approximated by orthogonal polynomials 
(Abramowitz & Stegun, 1972). This approach has several advantages, including the 
elimination of the low frequency components of the signal (noise), and a reduction of the 
amount o information about the profile (Mukundan, 2004). However, the most important 
advantage of this approach is that the coefficients of the polynomials can be used to 
effectively describe the shape of the profile pattern. 
To carry out the polynomial fit, several alternatives are available, including Chebyshev or 
Hermite orthogonal polynomials. However, in this case, Gram polynomials (sometimes 
called discrete Legendre orthogonal polynomials), are used due to their simplicity and 
accuracy. 
Gram polynomials can be calculated using Eq. (11). 
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exploration of other areas of the solution space by randomly introducing changes or 
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function for the segmentation method have been proposed. (Zhang, 1996) proposes a 
classification of existing methods as “analytical”, “empirical goodness”, and “empirical 
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of pixels correctly defined as edge pixels, NFP is the number of false positive detections, that 
is, the number of pixels erroneously defined as edge pixels, and NFN is the number of false 
negative detections, that is, the number of pixels erroneously defined as non-edge pixels. 
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JC is a suitable method to be used as the objective function; therefore it will be used in this 
work. 
The ground truth, necessary to determine the effectiveness of a detection method, is created 
by manually segmenting the images in a test set. This ground truth will be used to calculate 
the objective function (JC) during the tuning of the parameters of the pattern detector. 

4.6 Results 
After 250 iterations the best chromosome codifies the following parameter set: 
• N: 118. 
• P: 13.810. 
• T: 5.869e12. 
Fig. 8 and Fig. 9 show the infrared profile patterns detected in two images using the 
configuration obtained in the tuning procedure. 

5. Feature extraction 
Features extracted from an object aim to characterize the object to be recognized by 
measurements whose values are very similar for objects in the same category, and very 
different from objects in different categories (Duda et al., 2001). This leads to the idea of 
seeking distinguishing features. 
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Fig. 8. Infrared profile patterns detected in image 1. (a) Segmented image, (b) infrared 
profile patterns for each segmented region 

The proposed approach in this work is to extract features is by means of a polynomial fit. In 
particular, the shape of the infrared profile will be approximated by orthogonal polynomials 
(Abramowitz & Stegun, 1972). This approach has several advantages, including the 
elimination of the low frequency components of the signal (noise), and a reduction of the 
amount o information about the profile (Mukundan, 2004). However, the most important 
advantage of this approach is that the coefficients of the polynomials can be used to 
effectively describe the shape of the profile pattern. 
To carry out the polynomial fit, several alternatives are available, including Chebyshev or 
Hermite orthogonal polynomials. However, in this case, Gram polynomials (sometimes 
called discrete Legendre orthogonal polynomials), are used due to their simplicity and 
accuracy. 
Gram polynomials can be calculated using Eq. (11). 
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(b) 

Fig. 9. Infrared profile patterns detected in image 2. (a) Segmented image, (b) infrared 
profile patterns for each segmented region 

Gram polynomials, with cmN=1, are constructed, for N equally spaced points in the interval 
[-1, 1] by the recurrence relationship shown in Eq. (12). 
The matrix, X, consisting of the first p orthogonal polynomials evaluated at N points can be 
seen in (13). The profile or shape, Ω, can be expressed as (14), where ε consists of terms of 
order p+1 and higher (as a polynomial of order N–1 will match the measurements at the N 
data points), and c is the vector of coefficients of the orthogonal polynomials. 
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The least-squares estimate of the parameter vector c can be seen in (15). 

 ( ) 1Tˆ
−

= ≡c XX XΩ QΩ  (15) 

 

Thus, the Gram polynomial approximation of the profile shape can be given by (16), where 
XT is a diagonal matrix. 

 Tˆ =Ω X QΩ  (16) 
 

The main advantage of the representation using orthogonal polynomials is that the 
polynomial coefficients, Cj, can be calculated independently of each other. If more 
coefficients are needed, the next (p+1) coefficient can be determined from Eq. (17), hence 
more coefficients can be added without affecting those already calculated. 

 T
1T

1 1

1ˆ( 1) p
p p

c p +
+ +

+ = P Ω
P P

 (17) 

 

From the Gram Polynomial, coefficients Ci can be used as features to describe effectively the 
shape of the profile. C0 is the constant coefficient and describes the average of the profile. C1 
is the coefficient of the first order polynomial and describes the leveling of the profile, and 
thus, the symmetry when it is null. C1 will be positive when the temperature on the left 
border is higher than the one on the right border and negative otherwise. C2 is the 
coefficient of the second order polynomial and describes the curvature of the profile, which 
will be positive when the temperature of the borders is higher than the temperature in the 
middle or negative otherwise. Depending on the applications, more coefficients could be 
used, but these three coefficients are enough to describe common features of infrared 
profiles patterns. 
Before extracting features from infrared profiles patterns, background and foreground 
need to be separated to avoid an incorrect fit. This process can be carried out using any 
thresholding technique (Sezgin & Sankur, 2004). In this work, the limits of the 
foreground were calculated using the zero crossing positions of the second derivative of 
the profile.  
Fig. 10 shows the representation of the Gram polynomial fit for the infrared profile 
patterns detected in Fig 8 and Fig. 9. Table 2 shows the features extracted from these 
patterns. 
Features shown in Table 2 contain very interesting information. For example, the right 
border in pattern 3 of image 1 has higher temperature than the left border. Pattern 2 of 
image 2 has the left border with higher temperature than the right border, and also, the 
temperature in the middle is higher than in the borders. Many other conclusions could be 
easily drawn form the extracted features. 
These features make it possible to develop a pattern classifier. They can also be used 
directly by the manufacturing control systems to correct anomalous situations in real-
time. 
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Fig. 9. Infrared profile patterns detected in image 2. (a) Segmented image, (b) infrared 
profile patterns for each segmented region 

Gram polynomials, with cmN=1, are constructed, for N equally spaced points in the interval 
[-1, 1] by the recurrence relationship shown in Eq. (12). 
The matrix, X, consisting of the first p orthogonal polynomials evaluated at N points can be 
seen in (13). The profile or shape, Ω, can be expressed as (14), where ε consists of terms of 
order p+1 and higher (as a polynomial of order N–1 will match the measurements at the N 
data points), and c is the vector of coefficients of the orthogonal polynomials. 
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 ( ) 1Tˆ
−

= ≡c XX XΩ QΩ  (15) 

 

Thus, the Gram polynomial approximation of the profile shape can be given by (16), where 
XT is a diagonal matrix. 
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The main advantage of the representation using orthogonal polynomials is that the 
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coefficients are needed, the next (p+1) coefficient can be determined from Eq. (17), hence 
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From the Gram Polynomial, coefficients Ci can be used as features to describe effectively the 
shape of the profile. C0 is the constant coefficient and describes the average of the profile. C1 
is the coefficient of the first order polynomial and describes the leveling of the profile, and 
thus, the symmetry when it is null. C1 will be positive when the temperature on the left 
border is higher than the one on the right border and negative otherwise. C2 is the 
coefficient of the second order polynomial and describes the curvature of the profile, which 
will be positive when the temperature of the borders is higher than the temperature in the 
middle or negative otherwise. Depending on the applications, more coefficients could be 
used, but these three coefficients are enough to describe common features of infrared 
profiles patterns. 
Before extracting features from infrared profiles patterns, background and foreground 
need to be separated to avoid an incorrect fit. This process can be carried out using any 
thresholding technique (Sezgin & Sankur, 2004). In this work, the limits of the 
foreground were calculated using the zero crossing positions of the second derivative of 
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Fig. 10 shows the representation of the Gram polynomial fit for the infrared profile 
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Fig. 10. Gram polynomial fit. (a) patterns in image 1, (b) patterns in image 2 
 

Image Pattern Average (C0) Leveling (C1) Curvature (C2) 
1 1 124.851 2.438 -1.150 
1 2 138.424 0.632 0.481 
1 3 150.616 -2.355 2.818 
2 1 149.077 0.621 1.566 
2 2 135.296 3.633 -4.637 
2 3 154.526 1.023 -2.636 

Table 2. Features extracted from the detected patterns 

6. Conclusions 
In this work, a method to detect infrared profiles patterns in real-time is proposed. The 
method is based on real-time segmentation of infrared images acquired using an infrared 
line-scanner. The segmentation is based on the detection of edges which indicate the change 
of the current infrared profile pattern. The segmentation consists of the calculation of the 
gradient, its projection, and its thresholding. These three steps are designed to be applied in 
real-time. Therefore, the information about the current infrared profile pattern can be used 
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during manufacturing. A procedure to tune the pattern detector based on evolutionary 
computation is also proposed. The procedure produced the best configuration parameters of 
the proposed detector. The results of the pattern detector meet the functional and the real-
time requirements. 
Methods to extract distinguishing features from infrared patterns are also explored in this 
work. The results obtained indicate that polynomial fit using Gram orthogonal polynomials 
provide a compact and meaningful description of infrared profile patterns. The coefficients 
of the polynomials can describe interesting features, such as average, levelling, or curvature. 
These features could be easily used in many types of applications which aim to classify the 
patterns in different groups. These features are also an excellent method to describe images 
with only a few numbers, which can make the analysis or the storage of the information 
much more effective. 
The proposed methods are very likely to find potential applications in a number of different 
areas, such as robotics, manufacturing control, or any other applications based on the 
processing of a stream of infrared profiles in real-time. Furthermore, even if the proposed 
method has been described for infrared images, its use with images taken from the visible 
spectrum is straightforward. 
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1. Introduction 
"A picture is worth one thousand words". This proverb comes from Confucius - a Chinese 
philosopher about 2500 years ago. Now, the essence of these words is universally 
understood. A picture can be magical in its ability to quickly communicate a complex story 
or a set of ideas that can be recalled by the viewer later in time. 
Visual information plays an important role in our society, it will play an increasingly 
pervasive role in our lives, and there will be a growing need to have these sources processed 
further. The pictures or images are used in many application areas like architectural and 
engineering design, fashion, journalism, advertising, entertainment, etc. Thus it provides the 
necessary opportunity for us to use the abundance of images. However, the knowledge will 
be useless if one can't find it. Face to the substantive and increasing apace images, how to 
search and to retrieve the images that we are interested in facility is a fatal problem: it brings 
a necessity for image retrieval systems. As we know, visual features of the images provide a 
description of their content. Content-based image retrieval (CBIR), emerged as a promising 
mean for retrieving images and browsing large images databases. CBIR has been a topic of 
intensive research in recent years. It is the process of retrieving images from a collection 
based on automatically extracted features from those images. 
This paper focuses on presenting a survey of the existing approaches of shape-based feature 
extraction. Efficient shape features must present some essential properties such as: 
• identifiability: shapes which are found perceptually similar by human have the same 

features that are different from the others. 
• translation, rotation and scale invariance: the location, the rotation and the scaling 

changing of the shape must not affect the extracted features. 
• affine invariance: the affine transform performs a linear mapping from coordinates 

system to other coordinates system that preserves the "straightness" and "parallelism" of 
lines. Affine transform can be constructed using sequences of translations, scales, flips, 
rotations and shears. The extracted features must be as invariant as possible with affine 
transforms. 

• noise resistance: features must be as robust as possible against noise, i.e., they must be 
the same whichever be the strength of the noise in a give range that affects the pattern. 
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1. Introduction 
"A picture is worth one thousand words". This proverb comes from Confucius - a Chinese 
philosopher about 2500 years ago. Now, the essence of these words is universally 
understood. A picture can be magical in its ability to quickly communicate a complex story 
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a necessity for image retrieval systems. As we know, visual features of the images provide a 
description of their content. Content-based image retrieval (CBIR), emerged as a promising 
mean for retrieving images and browsing large images databases. CBIR has been a topic of 
intensive research in recent years. It is the process of retrieving images from a collection 
based on automatically extracted features from those images. 
This paper focuses on presenting a survey of the existing approaches of shape-based feature 
extraction. Efficient shape features must present some essential properties such as: 
• identifiability: shapes which are found perceptually similar by human have the same 

features that are different from the others. 
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changing of the shape must not affect the extracted features. 
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system to other coordinates system that preserves the "straightness" and "parallelism" of 
lines. Affine transform can be constructed using sequences of translations, scales, flips, 
rotations and shears. The extracted features must be as invariant as possible with affine 
transforms. 

• noise resistance: features must be as robust as possible against noise, i.e., they must be 
the same whichever be the strength of the noise in a give range that affects the pattern. 
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• occultation invariance: when some parts of a shape are occulted by other objects, the 
feature of the remaining part must not change compared to the original shape. 

• statistically independent: two features must be statistically independent. This 
represents compactness of the representation. 

• reliability: as long as one deals with the same pattern, the extracted features must 
remain the same. 

In general, shape descriptor is a set of numbers that are produced to represent a given shape 
feature. A descriptor attempts to quantify the shape in ways that agree with human intuition 
(or task-specific requirements). Good retrieval accuracy requires a shape descriptor to be able 
to effectively find perceptually similar shapes from a database. Usually, the descriptors are in 
the form of a vector. Shape descriptors should meet the following requirements: 
• the descriptors should be as complete as possible to represent the content of the 

information items. 
• the descriptors should be represented and stored compactly. The size of a descriptor 

vector must not be too large. 
• the computation of the similarity or the distance between descriptors should be simple; 

otherwise the execution time would be too long. 
Shape feature extraction and representation plays an important role in the following 
categories of applications: 
• shape retrieval: searching for all shapes in a typically large database of shapes that are 

similar to a query shape. Usually all shapes within a given distance from the query are 
determined or the first few shapes that have the smallest distance. 

• shape recognition and classification: determining whether a given shape matches a 
model sufficiently, or which of representative class is the most similar. 

• shape alignment and registration: transforming or translating one shape so that it best 
matches another shape, in whole or in part. 

• shape approximation and simplification: constructing a shape with fewer elements 
(points, segments, triangles, etc.), so that it is still similar to the original. 

Many shape description and similarity measurement techniques have been developed in the 
past. A number of new techniques have been proposed in recent years. There are 3 main 
classification methods as follows: 
• contour-based methods and region-based methods [1]. This is the most common and 

general classification and it is proposed by MPEG-7. It is based on the use of shape 
boundary points as opposed to shape interior points. Under each class, different 
methods are further divided into structural approaches and global approaches. This 
sub-class is based on whether the shape is represented as a whole or represented by 
segments/sections (primitives). 

• space domain and transform domain [2]. Methods in space domain match shapes on 
point (or point feature) basis, while feature domain techniques match shapes on feature 
(vector) basis. 

• information preserving (IP) and non-information preserving (NIP). IP methods allow an 
accurate reconstruction of a shape from its descriptor, while NIP methods are only 
capable of partial ambiguous reconstruction. For object recognition purpose, IP is not a 
requirement. 

Unlike the traditional classification, the approaches of shape-based feature extraction and 
representation are classified according to their processing approaches: One-dimensional 
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function for shape representation, Polygonal approximation, Spatial interrelation feature, 
Moments, Scale space approaches, Shape transform domains. The figure 1 shows the 
hierarchy of the classification of shape feature extraction approaches. 
 

 
Fig. 1. An overview of shape description techniques 

Without being complete, in the following sections, we will describe and group a number of 
these methods together. 

2. Shape parameters 
Basically, shape-based image retrieval consists of measuring the similarity between shapes 
represented by their features. Some simple geometric features can be used to describe 
shapes. Usually, the simple geometric features can only discriminate shapes with large 
differences; therefore, they are usually used as filters to eliminate false hits or combined 
with other shape descriptors to discriminate shapes. They are not suitable to be stand alone 
shape descriptors. A shape can be described by different aspects. These shape parameters 
are Center of gravity, Axis of least inertia, Digital bending energy, Eccentricity, Circularity 
ratio, Elliptic variance, Rectangularity, Convexity, Solidity, Euler number, Profiles, Hole 
area ratio. They will be introduced in this section. 
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2.1 Center of gravity 
The center of gravity is also called centroid. Its position should be fixed in relation to the shape. 
In shape recognition field, it is of particular interest to consider the case where the general 
function f(x, y) is 

 
(1)

where D is the domain of the binary shape. Its centroid (gx, gy) is: 

 
(2)

where N is the number of point in the shape, (xi, yi) ∈ {(xi, yi) | f(xi, yi) = 1}. 
A contour is a closed curve, the discrete parametric equation in Cartesian coordinate system is 

 (3)

where n ∈ [0, N - 1]; a contour may be parametrized with any number N of vertices and  
Γ(N) = Γ(0). The position of its centroid is given below: 

 
(4)

where A is the contour's area given by 

 
(5)

The position of shape centroid is fixed with different points distribution on a contour. One 
can notice that the position of the centroid in Figure 2 is fixed no matter how the points 
distribution is. 

 
                                                         (a)                                          (b) 
Fig. 2. Centroid of contour. The dots are points distributed on the contour uniformly (a) and 
non-uniformly (b). The star is the centroid of original contour and the inner dot is the 
centroid of sampled contour. 
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So using Eq. 4, we can obtain the genuine centroid of a contour under whatever the contour 
is normalized. 

2.2 Axis of least inertia 
The axis of least inertia is unique to the shape. It serves as a unique reference line to 
preserve the orientation of the shape. The axis of least inertia (ALI) of a shape is defined as 
the line for which the integral of the square of the distances to points on the shape boundary 
is a minimum. 
Since the axis of inertia pass through the centroid of a contour, to find the ALI, transfer the 
shape and let the centroid of the shape be the origin of Cartesian coordinates system. Let  
xsinθ - ycosθ = 0 be the parametric equation of ALI. The slope angle θ is estimated as follows: 
Let α be the angle between the axis of least inertia and the x-axis. The inertia is given by [3, 4]: 

 
where  
Hence, 

 
Let dI/dα = 0, we obtain 

 
The slope angle θ is given by 
 

 

2.3 Average bending energy 
Average bending energy BE is defined by 

 
where K(s) is the curvature function, s is the arc length parameter, and N is the number of 
points on a contour [5]. In order to compute the average bending energy more efficiently, 
Young et. al. [6] did the Fourier transform of the boundary and used Fourier coefficients and 
Parseval's relation. 
One can prove that the circle is the shape having the minimum average bending energy. 

2.4 Eccentricity 
Eccentricity is the measure of aspect ratio. It is the ratio of the length of major axis to the 
length of minor axis. It can be calculated by principal axes method or minimum bounding 
rectangle method. 
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2.1 Center of gravity 
The center of gravity is also called centroid. Its position should be fixed in relation to the shape. 
In shape recognition field, it is of particular interest to consider the case where the general 
function f(x, y) is 

 
(1)

where D is the domain of the binary shape. Its centroid (gx, gy) is: 

 
(2)

where N is the number of point in the shape, (xi, yi) ∈ {(xi, yi) | f(xi, yi) = 1}. 
A contour is a closed curve, the discrete parametric equation in Cartesian coordinate system is 

 (3)

where n ∈ [0, N - 1]; a contour may be parametrized with any number N of vertices and  
Γ(N) = Γ(0). The position of its centroid is given below: 

 
(4)

where A is the contour's area given by 

 
(5)

The position of shape centroid is fixed with different points distribution on a contour. One 
can notice that the position of the centroid in Figure 2 is fixed no matter how the points 
distribution is. 

 
                                                         (a)                                          (b) 
Fig. 2. Centroid of contour. The dots are points distributed on the contour uniformly (a) and 
non-uniformly (b). The star is the centroid of original contour and the inner dot is the 
centroid of sampled contour. 
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2.4.1 Principal axes method 
Principal axes of a given shape can be uniquely defined as the two segments of lines that 
cross each other orthogonally in the centroid of the shape and represent the directions with 
zero cross-correlation [7]. This way, a contour is seen as an instance from a statistical 
distribution. Let us consider the covariance matrix C of a contour: 

 
(6)

where 

 
G(gx, gy) is the centroid of the shape. Clearly, here cxy = cyx. 
The lengths of the two principal axes equal the eigenvalues λ1 and λ2 of the covariance 
matrix C of a contour, respectively. 
So the eigenvalues λ1 and λ2 can be calculated by 

 
So 

 
 

Then, eccentricity can be calculated: 

 (7)

2.4.2 Minimum bounding rectangle 
Minimum bounding rectangle is also called minimum bounding box. It is the smallest 
rectangle that contains every point in the shape. For an arbitrary shape, eccentricity is the 
ratio of the length L and width W of minimal bounding rectangle of the shape at some set of 
orientations. Elongation, Elo, is an other concept based on eccentricity (cf. Figure 3): 

 (8)

Elongation is a measure that takes values in the range [0,1]. A symmetrical shape in all axes 
such as a circle or square will have an elongation value of 0 whereas shapes with large 
aspect ratio will have an elongation closer to 1. 

2.5 Circularity ratio 
Circularity ratio represents how a shape is similar to a circle [2]. There are 3 definitions: 
• Circularity ratio is the ratio of the area of a shape to the area of a circle having the same 

perimeter: 
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(9)

where As is the area of the shape and Ac is the area of the circle having the same 
perimeter as the shape. Assume the perimeter is O, so Ac = O2/4π. Then C1

 = 4π·As= O2. 
As 4π is a constant, we have the second circularity ratio definition. 

 

 
Fig. 3. Minimum bounding rectangle and corresponding parameters for elongation 

• Circularity ratio is the ratio of the area of a shape to the shape's perimeter square: 

 
(10)

• Circularity ratio is also called circle variance, and defined as: 

 
(11)

where μR and R are the mean and standard deviation of the radial distance from the 
centroid (gx, gy) of the shape to the boundary points (xi, yi), i ∈ [0,N-1]. They are the 
following formulae respectively: 

 
where  
The most compact shape is a circle. See Figure 4. 

2.6 Ellipse variance 
Ellipse variance Eva is a mapping error of a shape to fit an ellipse that has an equal 
covariance matrix as the shape: Cellipse = C (cf. Eq.6). It is practically effective to apply the 
inverse approach yielding. 
We assume 
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Fig. 4. Circle variance 

 

 
Then 

 
(12)

Comparing with Eq. 11, intuitively, Eva represents a shape more accurately than Cva, cf. 
Figure 5. 

 
Fig. 5. Ellipse variance 

2.7 Rectangularity 
Rectangularity represents how rectangular a shape is, i.e. how much it fills its minimum 
bounding rectangle: 

 
where AS is the area of a shape; AR is the area of the minimum bounding rectangle. 
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2.8 Convexity 
Convexity is defined as the ratio of perimeters of the convex hull OConvexhull over that of the 
original contour O [7]: 

 
(13)

 
Fig. 6. Illustration of convex hull 

The region R2
 is a convex if and only if for any two points P1, P2 ∈ R2, the entire line segment 

P1P2 is inside the region. The convex hull of a region is the smallest convex region including 
it. In Figure 6, the outline is the convex hull of the region. 
In [7], the authors presented the algorithm for constructing a convex hull by traversing the 
contour and minimizing turn angle in each step. 

2.9 Solidity 
Solidity describes the extent to which the shape is convex or concave [8] and it is defined by 

 
where, As is the area of the shape region and H is the convex hull area of the shape. The 
solidity of a convex shape is always 1. 

2.10 Euler number 
Euler number describes the relation between the number of contiguous parts and the 
number of holes on a shape. Let S be the number of contiguous parts and N be the number 
of holes on a shape. Then the Euler number is: 

 
For example 

 
 

Euler Number equal to 1, -1 and 0, respectively. 
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Fig. 4. Circle variance 
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For example 

 
 

Euler Number equal to 1, -1 and 0, respectively. 
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2.11 Profiles 
The profiles are the projection of the shape to x-axis and y-axis on Cartesian coordinates 
system. We obtain two one-dimension functions: 

 
where f(i, j) represents the region of shape Eq. 1. See Figure 7. 
 

 
Fig. 7. Profiles 

2.12 Hole area ratio 
Hole area ratio HAR is defined as 

 
where As is the area of a shape and Ah is the total area of all holes in the shape. Hole area 
ratio is most effective in discriminating between symbols that have big holes and symbols 
with small holes [9]. 

3. One-dimensional function for shape representation 
The one-dimensional function which is derived from shape boundary coordinates is also 
often called shape signature [10, 11]. The shape signature usually captures the perceptual 
feature of the shape [12]. Complex coordinates, Centroid distance function, Tangent angle 
(Turning angles), Curvature function, Area function, Triangle-area representation and 
Chord length function are the commonly used shape signatures. 
Shape signature can describe a shape all alone; it is also often used as a preprocessing to 
other feature extraction algorithms, for example, Fourier descriptors, wavelet description. In 
this section, the shape signatures are introduced. 

3.1 Complex coordinates 
A complex coordinates function is simply the complex number generated from the 
coordinates of boundary points, Pn(x(n), y(n)), n ∈[1,N]: 

 
where (gx, gy) is the centroid of the shape, given by Eq. 4. 
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3.2 Centroid distance function 
The centroid distance function is expressed by the distance of the boundary points from the 
centroid (gx, gy) (Eq. 4) of a shape 

 
Due to the subtraction of centroid, which represents the position of the shape, from 
boundary coordinates, both complex coordinates and centroid distance representation are 
invariant to translation. 

3.3 Tangent angle 
The tangent angle function at a point Pn(x(n), y(n)) is defined by a tangential direction of a 
contour at that point [13]: 

 
since every contour is a digital curve; w is a small window to calculate θ(n) more accurately. 
Tangent angle function has two problems. One is noise sensitivity. To decrease the effect of 
noise, a contour is filtered by a low-pass filter with appropriate bandwidth before 
calculating the tangent angle function. The other is discontinuity, due to the fact that the 
tangent angle function assumes values in a range of length 2π, usually in the interval of  
[-π, π] or [0, 2π]. Therefore θn in general contains discontinuities of size 2π. To overcome the 
discontinuity problem, with an arbitrary starting point, the cumulative angular function φn 

is defined as the angle differences between the tangent at any point Pn along the curve and 
the tangent at the starting point P0 [14, 15]: 

 
In order to be in accordance with human intuition that a circle is “shapeless”, assume  
t = 2πn/N, then φ(n) = φ(tN/2π). A periodic function is termed as the cumulative angular 
deviant function  (t) and is defined as 

 
where N is the total number of contour points. 
In [16], the authors proposed a method based on tangent angle. It is called tangent space 
representation. A digital curve C simplified by polygon evolution is represented in the 
tangent space by the graph of a step function, where the x-axis represents the arc length 
coordinates of points in C and the y-axis represents the direction of the line segments in the 
decomposition of C. Figure 8 shows an example of a digital curve and its step function 
representation in the tangent space. 

3.4 Contour curvature 
Curvature is a very important boundary feature for human to judge similarity between 
shapes. It also has salien perceptual characteristics and has proven to be very useful for 
shape recognition [17]. In order to use curvature for shape representation, we quote the 
function of curvature, K(n), from [18, 19] as: 
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Fig. 8. Digital curve and its step function representation in the tangent space 

 
(14)

Therefore, it is possible to compute the curvature of a planar curve from its parametric 
representation. If n is the normalized arc length parameter s, then Eq. 14 can be written as: 

 (15)

As given in Eq. 15, the curvature function is computed only from parametric derivatives, 
and, therefore, it is invariant under rotations and translations. However, the curvature 
measure is scale dependent, i.e., inversely proportional to the scale. A possible way to 
achieve scale independence is to normalize this measure by the mean absolute curvature, 
i.e., 

 
 

where N is the number of points on the normalized contour. 
When the size of the curve is an important discriminative feature, the curvature should be 
used without the normalization; otherwise, for the purpose of scale-invariant shape analysis, 
the normalization should be performed. 
An approximate arc length parametrization based on the centripetal method is given by the 
following [19]: 
Let  dn be the perimeter of the curve and  where dn is the length of 
the chord between points Pn and Pn+1, n=1, 2, . . . , N-1. The approximate arc length 
parametrization relations are following: 

 
 

Starting from an arbitrary point and following the contour clockwise, we compute the 
curvature at each interpolated point using Eq. 15. Convex and concave vertices will imply 
negative and positive values, respectively (the opposite is verified for counterclockwise 
sense). Figure 9 is an example of curvature function. Clearly, as a descriptor, the curvature 
function can distinguish different shapes. 
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                                            (a)                                                     (b) 

Fig. 9. Curvature function (a) Contour normalized to 128 points; the dot marked with a star 
is the starting point on the contour; (b) curvature function; the curvature is computed 
clockwise. 

3.5 Area function 
When the boundary points change along the shape boundary, the area of the triangle 
formed by two successive boundary points and the center of gravity also changes. This 
forms an area function which can be exploited as shape representation. Figure 10 shows an 
example. Let S(n) be the area between the successive boundary points Pn, Pn+1 and the center 
of gravity G. 
 

 
Fig. 10. Area function (a) Original contour; (b) the area function of (a). 

The area function is linear under affine transform. However, this linearity only works for 
shape sampled at its same vertices. 

3.6 Triangle-area representation 
The triangle-area representation (TAR) signature is computed from the area of the triangles 
formed by the points on the shape boundary [20, 21]. The curvature at the contour point  
(xn, yn) is measured using the TAR as follows. 
For each three points  where  
n ∈[1,N] and ts ∈ [1, N/2 - 1], N is assumed to be even. The signed area of the triangle formed 
by these points is given by: 

 
(16)
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Fig. 8. Digital curve and its step function representation in the tangent space 
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(16)
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When the contour is traversed in counter clockwise direction, positive, negative and zero 
values of TAR mean convex, concave and straight-line points, respectively. Figure 11 
demonstrates these three types of the triangle areas and the complete TAR signature for the 
hammer shape. 
 

 
Fig. 11. Three different types of the triangle-area values and the TAR signature for the 
hammer shape 

By increasing the length of the triangle sides, i.e., considering farther points, the function of 
Eq. 16 will represent longer variations along the contour. The TARs with different triangle 
sides can be regarded as different scale space functions. The total TARs, ts ∈ [1, N/2 - 1], 
compose a multi-scale space TAR. 
In [21], authors show that the multi-scale space TAR is relatively invariant to the affine 
transform and robust to non-rigid transform. 

3.7 Chord length function 
The chord length function is derived from shape boundary without using any reference point. 
For each boundary point P, its chord length function is the shortest distance between P and 
another boundary point P’ such that line PP’ is perpendicular to the tangent vector at P [10]. 
The chord length function is invariant to translation and it overcomes the biased reference 
point (which means the centroid is often biased by boundary noise or defections) problems. 
However, it is very sensitive to noise, so that there may be drastic burst in the signature of 
even smoothed shape boundary. 

3.8 Discussions 
A shape signature represents a shape by a 1-D function derived from shape contour. To 
obtain the translation invariant property, they are usually defined by relative values. To 
obtain the scale invariant property, normalization is necessary. In order to compensate for 
orientation changes, shift matching is needed to find the best matching between two shapes. 
Having regard to occultation, Tangent angle, Contour curvature and Triangle-area 
representation have invariance property. In addition, shape signatures are computationally 
simple. 
Shape signatures are sensitive to noise, and slight changes in the boundary can cause large 
errors in matching procedure. Therefore, it is undesirable to directly describe shape using a 
shape signature. Further processing is necessary to increase its robustness and reduce the 
matching load. For example, a shape signature can be simplified by quantizing the signature 
into a signature histogram, which is rotationally invariant. 
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4. Polygonal approximation 
Polygonal approximation can be set to ignore the minor variations along the edge, and 
instead capture the overall shape information. This is useful because it reduces the effects of 
discrete pixelization of the contour. In general, there are two ways to realize it: one is 
merging methods and the other is splitting ones [22]. 

4.1 Merging methods 
Merging methods add successive pixels to a line segment if each new pixel that is added 
doesn't cause the segment to deviate too much from a straight line. 

4.1.1 Distance threshold method 
Choose a point of the contour as a starting point. For each new point that we add, let a line 
go from the starting point to this new point. Then, compute the squared error for every 
point along the segment/line. If the error exceeds some threshold, we keep the line from the 
starting point to the previous point and start a new line at the current point. 
In practice, the most of practical error measures in use are based on distance between 
vertices of the input curve and the approximation linear segments. The distance dk(i, j) from 
curve vertex Pk = (xk, yk) to the corresponding approximation linear segments (Pi, Pj) is 
defined as follows (cf. Figure 12): 

 
 

 
Fig. 12. Illustration of the distance from a point on the boundary to a linear segment 

4.1.2 Tunneling method 
If we have thick boundaries rather than single-pixel thick ones, we can still use a similar 
approach called tunneling. Imagine that we’re trying to lay straight rods along a curved 
tunnel, and that we want to use as few as possible. We can start at any point and lay as long 
a straight rod as possible. Eventually, the curvature of the “tunnel” won't let us go any 
further, so we lay another rod and another until we reach the end. 
Both the distance threshold and tunneling methods can do polygonal approximation 
efficiently. However, the great disadvantage is that the position of the starting point will 
affect greatly the approximate polygon. 

4.1.3 Polygon evolution 
The basic idea of polygons evolution in [23] is very simple: in every evolution step, a pair of 
consecutive line segments (the line segment is the line between two consecutive vertices) 
s1,s2  is substituted with a single line segment joining their farther endpoints of s1 and s2. 
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When the contour is traversed in counter clockwise direction, positive, negative and zero 
values of TAR mean convex, concave and straight-line points, respectively. Figure 11 
demonstrates these three types of the triangle areas and the complete TAR signature for the 
hammer shape. 
 

 
Fig. 11. Three different types of the triangle-area values and the TAR signature for the 
hammer shape 
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4. Polygonal approximation 
Polygonal approximation can be set to ignore the minor variations along the edge, and 
instead capture the overall shape information. This is useful because it reduces the effects of 
discrete pixelization of the contour. In general, there are two ways to realize it: one is 
merging methods and the other is splitting ones [22]. 
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doesn't cause the segment to deviate too much from a straight line. 
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In practice, the most of practical error measures in use are based on distance between 
vertices of the input curve and the approximation linear segments. The distance dk(i, j) from 
curve vertex Pk = (xk, yk) to the corresponding approximation linear segments (Pi, Pj) is 
defined as follows (cf. Figure 12): 
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The key property of this evolution is the order of the substitution. The substitution is done 
according to a relevance measure K given by 

 
where β(s1, s2) is the turn angle at the common vertex of segments s1, s2 and l(α ) is the length of 
α, α = s1 or s2, normalized with respect to the total length of a polygonal curve. The evolution 
algorithm is assuming that vertices which are surrounded by segments with a high value of 
K(s1, s2) are important while those with a low value are not. Figure 13 is an example. 
 

 
Fig. 13. Few stages of polygon evolution according to a relevant measure 

The curve evolution method achieves the task of shape simplification, i.e., the process of 
evolution compares th significance of vertices of the contour based on a relevance measure. 
Since any digital curve can be regarded as a polygon without loss of information (with 
possibly a large number of vertices), it is sufficient to study evolutions of polygonal shapes 
for shape feature extraction. 

4.2 Splitting methods 
Splitting methods work by first drawing a line from one point on the boundary to another. 
Then, compute the perpendicular distance from each point along the boundary segment to 
the line. If this exceeds some threshold, break the line at the point of greatest distance. 
Repeat the process recursively for each of the two new lines until no longer need to break 
any more. See Figure 14 for an example. 
 

 
Fig. 14. Splitting method for polygonal approximation 
This is sometimes known as the ‘fit and split” algorithm. For a closed contour, we can find 
the two points that lie farthest apart and fit two lines between them, one for one side and 
one for the other. Then, we can apply the recursive splitting procedure to each side. 
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4.3 Discussions 
Polygonal approximation technique can be used as a simple method for contour 
representation and description. The polygon approximation have some interesting 
properties: 
• it leads to simplification of shape complexity with no blurring effects. 
• it leads to noise elimination. 
• although irrelevant features vanish after polygonal approximation, there is no 

dislocation of relevant features. 
• the remaining vertices on a contour do not change their positions after polygonal 

approximation. 
Polygonal approximation technique can also be used as preprocessing method for further 
extracting features from a shape. 

5. Spatial interrelation feature 
Spatial interrelation feature describes the region or the contour of a shape by the relation of 
their pixels or curves. In general, the representation is done by using their geometric 
features: length, curvature, relative orientation and location, area, distance and so on. 

5.1 Adaptive grid resolution 
The adaptive grid resolution (AGR) was proposed by [24]. In the AGR, a square grid that is 
just big enough to cover the entire shape is overlaid on a shape. A resolution of the grid cells 
varies from one portion to another according to the content of the portion of the shape. On 
the borders or the detail portion on the shape, the higher resolution, i.e. the smaller grid 
cells, are applied; on the other hand, in the coarse regions of the shape, lower resolution, i.e. 
the bigger grid cells, are applied. 
To guarantee rotation invariance, it is necessary to convert an arbitrarily oriented shape into 
a unique common orientation. First, find the major axis of the shape. The major axis is the 
straight line segment joining the two points P1 and P2 on the boundary farthest away from 
each other. Then we rotate the shape so that its major axis is parallel to the x-axis. This 
orientation is still not unique as there are two possibilities: P1 can be on the left or on the 
right. This problem is solved by computing the centroid of the polygon and making sure 
that the centroid is below the major axis, thus guaranteeing a unique orientation. 
Let us now consider scale and translation invariance. We define the bounding rectangle (BR) 
of a shape as the rectangle with sides parallel to the x and y axes just large enough to cover 
the entire shape (after rotation). Note that the width of the BR is equal to the length of the 
major axis. To achieve scale invariance, we proportionally scale all shapes so that their BRs 
have the same fixed width (pixels). 
The method of computation of the AGR representation of a shape applies quad-tree 
decomposition on the bitmap representation of the shape. The decomposition is based on 
successive subdivision of the bitmap into four equal-size quadrants. If a bitmap-
quadrant does not consist entirely of part of shape, it is recursively subdivided into 
smaller and smaller quadrants until we reach bitmap-quadrants, i.e., termination 
condition of the recursion is that the predefined resolution is reached. Figure 15(a) is an 
example of AGR. 



 Pattern Recognition Techniques, Technology and Applications 

 

58 

The key property of this evolution is the order of the substitution. The substitution is done 
according to a relevance measure K given by 

 
where β(s1, s2) is the turn angle at the common vertex of segments s1, s2 and l(α ) is the length of 
α, α = s1 or s2, normalized with respect to the total length of a polygonal curve. The evolution 
algorithm is assuming that vertices which are surrounded by segments with a high value of 
K(s1, s2) are important while those with a low value are not. Figure 13 is an example. 
 

 
Fig. 13. Few stages of polygon evolution according to a relevant measure 

The curve evolution method achieves the task of shape simplification, i.e., the process of 
evolution compares th significance of vertices of the contour based on a relevance measure. 
Since any digital curve can be regarded as a polygon without loss of information (with 
possibly a large number of vertices), it is sufficient to study evolutions of polygonal shapes 
for shape feature extraction. 

4.2 Splitting methods 
Splitting methods work by first drawing a line from one point on the boundary to another. 
Then, compute the perpendicular distance from each point along the boundary segment to 
the line. If this exceeds some threshold, break the line at the point of greatest distance. 
Repeat the process recursively for each of the two new lines until no longer need to break 
any more. See Figure 14 for an example. 
 

 
Fig. 14. Splitting method for polygonal approximation 
This is sometimes known as the ‘fit and split” algorithm. For a closed contour, we can find 
the two points that lie farthest apart and fit two lines between them, one for one side and 
one for the other. Then, we can apply the recursive splitting procedure to each side. 

A Survey of Shape Feature Extraction Techniques 

 

59 
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their pixels or curves. In general, the representation is done by using their geometric 
features: length, curvature, relative orientation and location, area, distance and so on. 
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The adaptive grid resolution (AGR) was proposed by [24]. In the AGR, a square grid that is 
just big enough to cover the entire shape is overlaid on a shape. A resolution of the grid cells 
varies from one portion to another according to the content of the portion of the shape. On 
the borders or the detail portion on the shape, the higher resolution, i.e. the smaller grid 
cells, are applied; on the other hand, in the coarse regions of the shape, lower resolution, i.e. 
the bigger grid cells, are applied. 
To guarantee rotation invariance, it is necessary to convert an arbitrarily oriented shape into 
a unique common orientation. First, find the major axis of the shape. The major axis is the 
straight line segment joining the two points P1 and P2 on the boundary farthest away from 
each other. Then we rotate the shape so that its major axis is parallel to the x-axis. This 
orientation is still not unique as there are two possibilities: P1 can be on the left or on the 
right. This problem is solved by computing the centroid of the polygon and making sure 
that the centroid is below the major axis, thus guaranteeing a unique orientation. 
Let us now consider scale and translation invariance. We define the bounding rectangle (BR) 
of a shape as the rectangle with sides parallel to the x and y axes just large enough to cover 
the entire shape (after rotation). Note that the width of the BR is equal to the length of the 
major axis. To achieve scale invariance, we proportionally scale all shapes so that their BRs 
have the same fixed width (pixels). 
The method of computation of the AGR representation of a shape applies quad-tree 
decomposition on the bitmap representation of the shape. The decomposition is based on 
successive subdivision of the bitmap into four equal-size quadrants. If a bitmap-
quadrant does not consist entirely of part of shape, it is recursively subdivided into 
smaller and smaller quadrants until we reach bitmap-quadrants, i.e., termination 
condition of the recursion is that the predefined resolution is reached. Figure 15(a) is an 
example of AGR. 
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To represent the AGR image, in [24], quad-tree method is applied. Each node in the quad-
tree covers a square region of the bitmap. The level of the node in the quad-tree determines 
the size of the square. The internal nodes (shown by gray circles) represent “partially 
covered” regions; the leaf nodes shown by white boxes represent regions with all 0s while 
the leaf nodes shown by black boxes represent regions with all 1s. The “all 1s” regions are 
used to represent the shape, Figure 15(b). Each rectangle can be described by 3 numbers: its 
center C = (Cx,Cy) and its size (i.e. side length) S. So each shape can be mapped to a point in 
3n-dimensional space (n is the number of the rectangles occupied by the shape region). 
 

 
                  (a)                                                                              (b) 

Fig. 15. Adaptive resolution representations (a) Adaptive Grid Resolution (AGR) image; (b) 
quad-tree decomposition of AGR. 

Due to the fact that the normalization before computing AGR, AGR representation is 
invariant under rotation, scaling and translation. It is also computationally simple. 

5.2 Bounding box 
Bounding box computes homeomorphisms between 2D lattices and its shapes. Unlike many 
other methods, this mapping is not restricted to simply connected shapes but applies to 
arbitrary topologies [25]. 
To make bounding box representation invariant to rotation, a shape should be normalized 
by the same method as for AGR (Subsection 5.1) before further computation. After the 
normalization, a shape S is a set of L pixels, S = {pk ∈ R2|k = 1, 2,… ,L} and also write |S| = 
L. The minimum bounding rectangle or bounding box of S is denoted by B(S); its width and 
height, are called w and h, respectively. 
Figure 16 shows the algorithm flowchart based on bounding box that divides a shape S into 
m(row) × n (column) parts. The output B is a set of bounding boxes. 
An illustration of this procedure and its result is shown in Figure 17. 
To represent each bounding box, one method is that partial points of the set of bounding 
boxes are sampled. Figure 18 shows an example. 
If v = (vx, vy)T denotes the location of the bottom left corner of the initial bounding box of S, 
and  denotes the center of sample box Bij , then the coordinates 
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provide a scale invariant representation of S. Sampling k points of an m×n lattice therefore 
allows to represent S as a vector 

 
where i(α ) < i(β) if α < β and likewise for the index j. 
Bounding box representation is a simple computational geometry approach to compute 
homeomorphisms between shapes and lattices. It is storage and time efficient. It is invariant 
to rotation, scaling and translation and also robust against noisy shape boundaries. 
 

 
Fig. 16. Flowchart of shape divided by bounding box 
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          (a)                             (b)                               (c)                              (d)                             (e) 

Fig. 17. Five steps of bounding box splitting (a) Compute the bounding box B(S) of a pixel 
set S; (b) subdivide S into n vertical slices; (c) compute the bounding box B(Sj) of each 
resulting pixel set Sj , where j = 1, 2,... , n, (d) subdivide each B(Sj) into m horizontal slices; (e) 
compute the bounding box B(Sij) of each resulting pixel set Sij , where i = 1, 2, ...,m. 

 
Fig. 18. A sample points on lattice and examples of how it is mapped onto different shapes 

5.3 Convex hull 
The approach is that the shape is represented by a serie of convex hulls. The convex region 
has be defined in Sebsection 2.8. The convex hull H of a region is its smallest convex region 
including it. In other words, for a region S, the convex hull conv(S) is defined as the smallest 
convex set in R2 containing S. In order to decrease the effect of noise, common practice is to 
first smooth a boundary prior to partitioning. 
The representation of the shape may be obtained by a recursive process which results in a 
concavity tree. See Figure 19. Each concavity can be described by its area, chord (the line 
connecting the cut of the concavity) length, maximum curvature, distance from maximum 
curvature point to the chord. The matching between shapes becomes a string or a graph 
matching. 
 

 
                                             (a)                                                                           (b) 

Fig. 19. Illustrates recursive process of convex hull (a) Convex hull and its concavities; (b) 
concavity tree representation of convex hull. 

Convex hull representation has a high storage efficiency. It is invariant to rotation, scaling and 
translation and also robust against noisy shape boundaries (after filtering). However, extracting 
the robust convex hulls from the shape is where the shoe pinches. [26, 27] and [28] gave the 
boundary tracing method and morphological methods to achieve convex hulls respectively. 
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5.4 Chain code 
Chain code is a common approach for representing different rasterized shapes as line-
drawings, planar curves, or contours. Chain code describes an object by a sequence of unit-
size line segments with a given orientation [2]. Chain code can be viewed as a connected 
sequence of straight-line segments with specified lengths and directions [29]. 

5.4.1 Basic chain code 
Freeman [30] first introduced a chain code that describes the movement along a digital 
curve or a sequence of border pixels by using so-called 8-connectivity or 4-connectivity. The 
direction of each movement is encoded by the numbering scheme {i|i = 0, 1, 2, … , 7} or {i|i 
= 0, 1, 2, 3} denoting a counter-clockwise angle of 45° × i or 90° × i regarding the positive x -
axis, as shown in Figure 20. 
 

 
                                                         (a)                                         (b) 

Fig. 20. Basic chain code direction (a) Chain code in eight directions (8-connectivity); (b) 
chain code in four directions (4-connectivity). 

By encoding relative, rather than absolute position of the contour, the basic chain code is 
translation invariant. We can match boundaries by comparing their chain codes, but with 
the two main problems: 1) it is very sensitive to noise; 2) it is not rotationally invariant. To 
solve these problems, differential chain codes (DCC) and resampling chain codes (RCC) 
were proposed. 
Differential chain codes (DCC) is encoding differences in the successive directions. This can 
be computed by subtracting each element of the chain code from the previous one and 
taking the result modulo n, where n is the connectivity. This differencing allows us to rotate 
the object in 90-degree increments and still compare the objects, but it doesn’t get around the 
inherent sensitivity of chain codes to rotation on the discrete pixel grid. 
Re-sampling chain codes (RCC) consists in re-sampling the boundary onto a coarser grid 
and then computing the chain codes of this coarser representation. This smoothes out small 
variations and noise but can help compensate for differences in chain-code length due to the 
pixel grid. 

5.4.2 Vertex chain code (VCC) 
To improve chain code efficiency, in [29] the authors proposed a chain code for shape 
representation according to vertex chain code (VCC). An element of the VCC indicates the 
number of cell vertices, which are in touch with the bounding contour of the shape in that 
element’s position. Only three elements “1”, “2” and “3” can be used to represent the 
bounding contour of a shape composed of pixels in the rectangular grid. Figure 21 shows 
the elements of the VCC to represent a shape. 
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Fig. 21. Vertex chain code 

5.4.3 Chain code histogram (CCH) 
Iivarinen and Visa derive a chain code histogram (CCH) for object recognition [31]. The 
CCH is computed as hi = #{i∈M, M is the range of chain code}, #{α} denotes getting the 
number of the value α. 
The CCH reflects the probabilities of different directions present in a contour. 
If the chain code is used for matching it must be independent of the choice of the starting 
pixel in the sequence. The chain code usually has high dimensions and is sensitive to noise 
and any distortion. So, except the CCH, the other chain code approaches are often used as 
contour representations, but is not as contour attributes. 

5.5 Smooth curve decomposition 
In [32], the authors proposed smooth curve decomposition as shape descriptor. The segment 
between the curvature zero-crossing points from a Gaussian smoothed boundary are used 
to obtain primitives, called tokens. The feature for each token is its maximum curvature and 
its orientation. In Figure 22(b), the first number in the parentheses is its maximum curvature 
and the second is its orientation. 
 

 
                              (a)                                                                                      (b) 

Fig. 22. Smooth curve decomposition (a) θis the orientation of this token; (b) an example of 
smooth curve decomposition. 
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The similarity between two tokens is measured by the weighted Euclidean distance. The 
shape similarity is measured according to a non-metric distance. Shape retrieval based on 
token representation has shown to be robust in the presence of partially occulted objects, 
translation, scaling and rotation. 

5.6 Symbolic representation based on the axis of least inertia 
In [33], a method of representing a shape in terms of multi-interval valued type data is 
proposed. The proposed shape representation scheme extracts symbolic features with 
reference to the axis of least inertia, which is unique to the shape. The axis of least inertia 
(ALI) of a shape is defined as the line for which the integral of the square of the distances to 
points on the shape boundary is a minimum (cf. Subsection 2.2). 
Once the ALI is calculated, each point on the shape curve is projected on to ALI. The two 
farthest projected points say E1 and E2 on ALI are chosen as the extreme points as shown in 
Figure 23. The Euclidean distance between these two extreme points defines the length of 
ALI. The length of ALI is divided uniformly by a fixed number n; the equidistant points are 
called feature points. At every feature point chosen, an imaginary line perpendicular to the 
ALI is drawn. It is interesting to note that these perpendicular lines may intersect the shape 
curve at several points. The length of each imaginary line in shape region is computed and 
the collection of these lengths in an ascending order defines the value of the feature at the 
respective feature point. 
 

 
Fig. 23. Symbolic features based axis of least inertia 

Let S be a shape to be represented and n the number of feature points chosen on its ALI. 
Then the feature vector F representing the shape S, is in general of the form F = [f1, f2, …, 
ft,…,fn ], where ft = {d
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kt
} for some tk ≥ 1. 

The feature vector F representing the shape S is invariant to image transformations viz., 
uniform scaling, rotation, translation and flipping (reflection). 

5.7 Beam angle statistics 
Beam angle statistics (BAS) shape descriptor is based on the beams originating from a 
boundary point, which are defined as lines connecting that point with the rest of the points 
on the boundary [34]. 



 Pattern Recognition Techniques, Technology and Applications 

 

64 

 
Fig. 21. Vertex chain code 
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                              (a)                                                                                      (b) 

Fig. 22. Smooth curve decomposition (a) θis the orientation of this token; (b) an example of 
smooth curve decomposition. 
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Let B be the shape boundary. B = {P1, P2,.. , PN} is represented by a connected sequence of 
points, Pi = (xi, yi), i = 1, 2,… ,N, where N is the number of boundary points. For each point 
Pi, the beam angle between the forward beam vector  and backward beam 
vector  in the kth order neighborhood system, is then computed as (see Figure 
24, k=5 for example) 

 

 
 

 
Fig. 24. Beam angle in the 5th neighborhood system for a boundary point 

For each boundary point Pi of the contour, the beam angle Ck(i) can be taken as a random 
variable with the probability density function P(Ck(i)). Therefore, beam angle statistics 
(BAS), may provide a compact representation for a shape descriptor. For this purpose, mth 

moment of the random variable Ck(i) is defined as follows: 

 
In the above formula E indicates the expected value. See Figure 25 as an example. 
Beam angle statistics shape descriptor captures the perceptual information using the statistical 
information based on the beams of individual points. It gives globally discriminative features 
to each boundary point by using all other boundary points. BAS descriptor is also quite stable 
under distortions and is invariant to translation, rotation and scaling. 

5.8 Shape matrix 
Shape matrix descriptor is an M × N matrix to represent a shape region. There are two basic 
modes of shape matrix: Square model [35] and Polar model [36]. 

5.8.1 Square model shape matrix 
Square model of shape matrix, also called grid descriptor [37, 35], is constructed by the 
following: for the shape S, construct a square centered on the center of gravity G of S; the 
size of each side is equal to 2L, L is the maximum Euclidean distance from G to a point M on 
the boundary of the shape. Point M lies in the center of one side and GM is perpendicular to 
this side. 
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Fig. 25. The BAS descriptor for original and noisy contour (a) Original contour; (b) noisy 
contour; (c), (d) and (e) are the BAS plot 1st, 2nd and 3rd moment, respectively. 
Divide the square into N × N subsquares and denote Skj , k, j = 1, … ,N, the subsquares of the 
constructed grid. Define the shape matrix SM = [Bkj], 

 
where μ(F) is the area of the planar region F. Figure 26 shows an example of square model of 
shape matrix. 

 
                                 (a)                                                         (b)                                           (c) 
Fig. 26. Square model shape matrix (a) Original shape region; (b) square model shape 
matrix; (c) reconstruction of the shape region. 
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For a shape with more than one maximum radius, it can be described by several shape 
matrices and the similarity distance is the minimum distance between these matrices. In 
[35], authors gave a method to choose the appropriate shape matrix dimension. 

5.8.2 Polar model shape matrix 
Polar model of shape matrix is constructed by the following steps. Let G be the center of 
gravity of the shape, and GA is the maximum radius of the shape. Using G as center, draw n 
circles with radii equally spaced. Starting from GA, and counterclockwise, draw radii that 
divide each circle into m equal arcs. The values of the matrix are same as in square model 
shape matrix. Figure 27 shows an example, where n = 5 and m =12. Its polar model of shape 
matrix is 

 
 

 
Fig. 27. Polar model shape 

Polar model of shape matrix is simpler than square model because it only uses one matrix 
no matter how many maximum radii are on the shape. However, since the sampling density 
is not constant with the polar sampling raster, a weighed shape matrix is necessary. For the 
detail, refer to [36]. 
The shape matrix exists for every compact shape. There is no limit to the scope of the shapes 
that the shape matrix can represent. It can describe even shapes with holes. Shape matrix is 
also invariant under translation, rotation and scaling of the object. The shape of the object 
can be reconstructed from the shape matrix; the accuracy is given by the size of the grid 
cells. 

5.9 Shape context 
In [38], the shape context has been shown to be a powerful tool for object recognition tasks. 
It is used to find corresponding features between model and image. 
Shape contexts analysis begins by taking N samples from the edge elements on the shape. 
These points can be on internal or external contours. Consider the vectors originating from a 
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point to all other sample points on the shape. These vectors express the appearance of the 
entire shape relative to the reference point. The shape context descriptor is the histogram of 
the relative polar coordinates of all other points: 

 
An example is shown in Figure 28. (c) is the diagram of log-polar histogram that has 5 bins 
for the polar direction and 12 bins for the angular direction. The histogram of a point Pi is 
formed by the following: putting the center of the histogram bins diagram on the point Pi, 
each bin of this histogram contains a count of all other sample points on the shape falling 
into that bin. Note on this figure, the shape contexts (histograms) for the points marked by ○ 
(in (a)), ◊ (in (b)) and  (in (a)) are shown in (d), (e) and (f), respectively. It is clear that the 
shape contexts for the points marked by ○ and ◊, which are computed for relatively similar 
points on the two shapes, have visual similarity. By contrast, the shape context for  is quite 
different from the others. Obviously, this descriptor is a rich description, since as N gets 
large, the representation of the shape becomes exact. 

 
Fig. 28. Shape context computation and graph matching (a) and (b) Sampled edge points of 
two shapes; (c) diagram of log-polar histogram bins used in computing the shape contexts; 
(d), (e) and (f) shape contexts for reference sample points marked by ○, ◊ and  in (a) and 
(b), respectively. (Dark=large value). 

Shape context matching is often used to find the corresponding points on two shapes. It has 
been applied to a variety of object recognition problems [38, 39, 40, 41]. The shape context 
descriptor has the following invariance properties: 
• translation: the shape context descriptor is inherently translation invariant as it is based 

on relative point locations. 
• scaling: for clutter-free images the descriptor can be made scale invariant by 

normalizing the radial distances by the mean (or median) distance between all point 
pairs. 
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• rotation: it can be made rotation invariant by rotating the coordinate system at each 
point so that the positive x-axis is aligned with the tangent vector. 

• shape variation: the shape context is robust against slight shape variations. 
• few outliers: points with a final matching cost larger than a threshold value are 

classified as outliers. Additional ‘dummy’ points are introduced to decrease the effects 
of outliers. 

5.10 Chord distribution 
The basic idea of chord distribution is to calculate the lengths of all chords in the shape (all 
pair-wise distances betwee boundary points) and to build a histogram of their lengths and 
orientations [42]. The “lengths” histogram is invariant to rotation and scales linearly with 
the size of the object. The “angles” histogram is invariant to object size and shifts relative to 
object rotation. Figure 29 gives an example of chord distribution. 
 

 
                         (a)                                                 (b)                                                    (c) 

Fig. 29. Chord distribution (a) Original contour; (b) chord lengths histogram; (c) chord 
angles histogram (each stem covers 3 degrees). 

5.11 Shock graphs 
Shock graphs is a descriptor based on the medial axis. The medial axis is the most popular 
method that has been proposed as a useful shape abstraction tool for the representation and 
modeling of animate shapes. Skeleton and medial axes have been extensively used for 
characterizing objects satisfactorily using structures that are composed of line or arc 
patterns. Medial axis is an image processing operation which reduces input shapes to axial 
stick-like representations. It is as the loci of centers of bi-tangent circles that fit entirely 
within the foreground region being considered. Figure 30 illustrates the medial axis for a 
rectangular shape. 
 

 
Fig. 30. Medial axis of a rectangle defined in terms of bi-tangent circles 

We notice that the radius of each circle is variable. This variable is a function of the loci of 
points on the medial axis. This function is called radius function. 
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A shock graph is a shape abstraction that decomposes a shape into a set of hierarchically 
organized primitive parts. Siddiqi and Kimia define the concept of a shock graph [43] as an 
abstraction of the medial axis of a shape onto a directed acyclic graph (DAG). Shock 
segments are curve segments of the medial axis with monotonic flow, and give a more 
refined partition of the medial axis segments. Figure 31 is for example. 
 

 
Fig. 31. Shock segments 

The skeleton points are first labeled according to the local variation of the radius function at 
each point. Shock graph can distinguish the shapes but the medial axis cannot. Figure 32 
shows two examples of shapes and their shock graphs. 
 

 
Fig. 32. Examples of shapes and their shock graphs 

To calculate the distance between two shock graphs, in [44], the authors employ a 
polynomial-time edit-distance algorithm. This algorithm is shown to have the good 
performances for boundary perturbations, articulation and deformation of parts, 
segmentation errors, scale variations, viewpoint variations and partial occultation. However 
the authors also indicate that the computation complexity is very high. The matching shape 
typically takes about 3-5 minutes on an SGI Indigo II (195 MHz), which limits the number of 
shapes that can be practically matched. 

5.12 Discussions 
Spacial feature descriptor is a direct method to describe a shape. These descriptors can apply 
the theory of tree-based (Adaptive grid resolution and Convex hull), statistic (Chain code 
histogram, Beam angle statistics, Shape context and Chord distribution) or syntactic analysis 
(Smooth curve decomposition) to extract or represent the feature of a shape. This 
description scheme not only compresses the data of a shape, but also provides a compact 
and meaningful form to facilitate further recognition operations. 

6. Moments 
The concept of moment in mathematics evolved from the concept of moment in physics. It is 
an integrated theory system. For both contour and region of a shape, one can use moment's 
theory to analyze the object. 
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6.1 Boundary moments 
Boundary moments, analysis of a contour, can be used to reduce the dimension of boundary 
representation [28]. Assume shape boundary has been represented as a 1-D shape 
representation z(i) as introduced in Section 3, the rth moment mr and central moment μr can 
be estimated as 

 
where N is the number of boundary points. 
The normalized moments  are invariant to shape 
translation, rotation and scaling. Less noise-sensitive shape descriptors can be obtained from 

 
The other approaches of boundary moments treats the 1-D shape feature function z(i) as a 
random variable v and creates a K bins histogram p(vi) from z(i). Then, the rth central 
moment is obtained by 

 
The advantage of boundary moment descriptors is that it is easy to implement. However, it 
is dificult to associate higher order moments with physical interpretation. 

6.2 Region moments 
Among the region-based descriptors, moments are very popular. These include invariant 
moments, Zernike moments Radial Chebyshev moments, etc. 
The general form of a moment function mpq of order (p + q) of a shape region can be given as: 

 
where Ψpq is known as the moment weighting kernel or the basis set; f(x, y) is the shape region 
Eq. 1. 

6.2.1 Invariant moments (IM) 
Invariant moments (IM) are also called geometric moment invariants. Geometric moments, 
are the simplest of the moment functions with basis Ψpq = xpyq, while complete, it is not 
orthogonal [30]. Geometric moment function mpq of order (p + q) is given as: 

 
The geometric central moments, which are invariant to translation, are defined as: 
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A set of 7 invariant moments (IM) are given by [30]: 

 
IM are computationally simple. Moreover, they are invariant to rotation, scaling and 
translation. However, they have several drawbacks [45]: 
• information redundancy: since the basis is not orthogonal, these moments suffer from a 

high degree of information redundancy. 
• noise sensitivity: higher-order moments are very sensitive to noise. 
• large variation in the dynamic range of values: since the basis involves powers of p and 

q, the moments computed have large variation in the dynamic range of values for 
different orders. This may cause numerical instability when the image size is large. 

6.2.2 Algebraic moment invariants 
The algebraic moment invariants are computed from the first m central moments and are 
given as the eigenvalues of predefined matrices, M[j,k], whose elements are scaled factors of 
the central moments [46]. The algebraic moment invariants can be constructed up to 
arbitrary order and are invariant to affne transformations. However, algebraic moment 
invariants performed either very well or very poorly on the objects with different 
configuration of outlines. 

6.2.3 Zernike moments (ZM) 
Zernike Moments (ZM) are orthogonal moments [45]. The complex Zernike moments are 
derived from orthogonal Zernike polynomials: 

 
where Rnm(r)is the orthogonal radial polynomial: 

 
n = 0, 1, 2, … , 0 ≤ |m| ≤ n; and n - |m| is even. 
Zernike polynomials are a complete set of complex valued functions orthogonal over the 
unit disk, i.e., x2 + y2 ≤ 1. The Zernike moment of order n with repetition m of shape region 
f(x, y) (Eq. 1) is given by: 
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The algebraic moment invariants are computed from the first m central moments and are 
given as the eigenvalues of predefined matrices, M[j,k], whose elements are scaled factors of 
the central moments [46]. The algebraic moment invariants can be constructed up to 
arbitrary order and are invariant to affne transformations. However, algebraic moment 
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configuration of outlines. 
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Zernike moments (ZM) have the following advantages [47]: 
• rotation invariance: the magnitudes of Zernike moments are invariant to rotation. 
• robustness: they are robust to noise and minor variations in shape. 
• expressiveness: since the basis is orthogonal, they have minimum information 

redundancy. 
However, the computation of ZM (in general, continuous orthogonal moments) pose several 
problems: 
• coordinate space normalization: the image coordinate space must be transformed to the 

domain where the orthogonal polynomial is defined (unit circle for the Zernike 
polynomial). 

• numerical approximation of continuous integrals: the continuous integrals must be 
approximated by discrete summations. This approximation not only leads to numerical 
errors in the computed moments, but also severely affects the analytical properties such 
as rotational invariance and orthogonality. 

• computational complexity: computational complexity of the radial Zernike polynomial 
increases as the order becomes large. 

6.2.4 Radial Chebyshev moments (RCM) 
The radial Chebyshev moment of order p and repetition q is defined as [48]: 

 
 

where tp(r) is the scaled orthogonal Chebyshev polynomials for an image of size N × N: 

 
ρ(p,N) is the squared-norm: 

 
and m = (N/2) + 1. 
The mapping between (r, θ) and image coordinates (x, y) is given by: 

 
 

Compared to Chebyshev moments, radial Chebyshev moments possess rotational 
invariance property. 
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6.3 Discussions 
Besides the previous moments, there are other moments for shape representation, for 
example, homocentric polar-radius moment [49], orthogonal Fourier-Mellin moments 
(OFMMs) [50], pseudo-Zernike Moments [51], etc. The study shows that the moment-based 
shape descriptors are usually concise, robust and easy to compute. It is also invariant to 
scaling, rotation and translation of the object. However, because of their global nature, the 
disadvantage of moment-based methods is that it is dificult to correlate high order moments 
with a shape's salient features. 

7. Scale space approaches 
In scale space theory a curve is embedded into a continuous family {Γ:  ≥0} of gradually 
simplified versions. The main idea of scale spaces is that the original curve Γ = Γ 0 should get 
more and more simplified, and so small structures should vanish as parameter  increases. 
Thus due to different scales (values of ), it is possible to separate small details from 
relevant shape properties. The ordered sequence {Γ:  ≥ 0} is referred to as evolution of Γ. 
Scale-spaces find wide application in computer vision, in particular, due to smoothing and 
elimination of small details. 
A lot of shape features can be analyzed in scale-space theory to get more information about 
shapes. Here we introduced 2 scale-space approaches: curvature scale-space (CSS) and 
intersection points map (IPM). 

7.1 Curvature scale-space 
The curvature scale-space (CSS) method, proposed by F. Mokhtarian in 1988, was selected as 
a contour shape descriptor for MPEG-7. This approach is based on multi-scale 
representation and curvature to represent planar curves. The nature parametrization 
equation is shown as following: 

 (17)

An evolved version of that curve is defined by 

 
where X(μ, ) = x(μ) ∗g(μ, ) and Y (μ, ) = y(μ)∗g(μ, ), ∗ is the convolution operator, and 
g(μ, ) denotes a Gaussian filter with standard deviation  defined by 

 
Functions X(μ, ) and Y (μ, ) are given explicitly by 

 
The curvature of is given by 



 Pattern Recognition Techniques, Technology and Applications 

 

74 

Zernike moments (ZM) have the following advantages [47]: 
• rotation invariance: the magnitudes of Zernike moments are invariant to rotation. 
• robustness: they are robust to noise and minor variations in shape. 
• expressiveness: since the basis is orthogonal, they have minimum information 

redundancy. 
However, the computation of ZM (in general, continuous orthogonal moments) pose several 
problems: 
• coordinate space normalization: the image coordinate space must be transformed to the 

domain where the orthogonal polynomial is defined (unit circle for the Zernike 
polynomial). 

• numerical approximation of continuous integrals: the continuous integrals must be 
approximated by discrete summations. This approximation not only leads to numerical 
errors in the computed moments, but also severely affects the analytical properties such 
as rotational invariance and orthogonality. 

• computational complexity: computational complexity of the radial Zernike polynomial 
increases as the order becomes large. 

6.2.4 Radial Chebyshev moments (RCM) 
The radial Chebyshev moment of order p and repetition q is defined as [48]: 

 
 

where tp(r) is the scaled orthogonal Chebyshev polynomials for an image of size N × N: 

 
ρ(p,N) is the squared-norm: 

 
and m = (N/2) + 1. 
The mapping between (r, θ) and image coordinates (x, y) is given by: 

 
 

Compared to Chebyshev moments, radial Chebyshev moments possess rotational 
invariance property. 

A Survey of Shape Feature Extraction Techniques 

 

75 

6.3 Discussions 
Besides the previous moments, there are other moments for shape representation, for 
example, homocentric polar-radius moment [49], orthogonal Fourier-Mellin moments 
(OFMMs) [50], pseudo-Zernike Moments [51], etc. The study shows that the moment-based 
shape descriptors are usually concise, robust and easy to compute. It is also invariant to 
scaling, rotation and translation of the object. However, because of their global nature, the 
disadvantage of moment-based methods is that it is dificult to correlate high order moments 
with a shape's salient features. 

7. Scale space approaches 
In scale space theory a curve is embedded into a continuous family {Γ:  ≥0} of gradually 
simplified versions. The main idea of scale spaces is that the original curve Γ = Γ 0 should get 
more and more simplified, and so small structures should vanish as parameter  increases. 
Thus due to different scales (values of ), it is possible to separate small details from 
relevant shape properties. The ordered sequence {Γ:  ≥ 0} is referred to as evolution of Γ. 
Scale-spaces find wide application in computer vision, in particular, due to smoothing and 
elimination of small details. 
A lot of shape features can be analyzed in scale-space theory to get more information about 
shapes. Here we introduced 2 scale-space approaches: curvature scale-space (CSS) and 
intersection points map (IPM). 

7.1 Curvature scale-space 
The curvature scale-space (CSS) method, proposed by F. Mokhtarian in 1988, was selected as 
a contour shape descriptor for MPEG-7. This approach is based on multi-scale 
representation and curvature to represent planar curves. The nature parametrization 
equation is shown as following: 

 (17)

An evolved version of that curve is defined by 

 
where X(μ, ) = x(μ) ∗g(μ, ) and Y (μ, ) = y(μ)∗g(μ, ), ∗ is the convolution operator, and 
g(μ, ) denotes a Gaussian filter with standard deviation  defined by 

 
Functions X(μ, ) and Y (μ, ) are given explicitly by 

 
The curvature of is given by 



 Pattern Recognition Techniques, Technology and Applications 

 

76 

 
where 

 
Note that  is also referred to as a scale parameter. The process of generating evolved 
versions of Γ as  increases from 0 to ∞ is referred to as the evolution of Γ. This technique 
is suitable for removing noise and smoothing a planar curve as well as gradual 
simplification of a shape. 
The function defined by k(μ, ) = 0 is the CSS image of Γ. Figure 33 is a CSS image examples. 
 

 
Fig. 33. Curvature scale-space image (a) Evolution of Africa: from left to right  = 0(original), 
 = 4,  = 8 and  = 16, respectively; (b) CSS image of Africa. 

The representation of CSS is the maxima of CSS contour of an image. Many methods for 
representing the maxima of CSS exist in the literatures [52, 53, 19] and the CSS technique has 
been shown to be robust contour-based shape representation technique. The basic properties 
of the CSS representation are as follows: 
• it captures the main features of a shape, enabling similarity-based retrieval; 
• it is robust to noise, changes in scale and orientation of objects; 
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• it is compact, reliable and fast; 
• it retains the local information of a shape. Every concavity or convexity on the shape 

has its own corresponding contour on the CSS image. 
Although CSS has a lot of advantages, it does not always give results in accordance with 
human vision system. The main drawbacks of this description are due to the problem of 
shallow concavities/convexities on a shape. It can be shown that the shallow and deep 
concavities/convexities may create the same large contours on the CSS image. In [54, 55], 
the authors gave some methods to alleviate these effects. 

7.2 Intersection points map 
Similarly to the CSS, many methods also use a Gaussian kernel to progressively smooth the 
curve relatively to the varying bandwidth. In [56], the authors proposed a new algorithm, 
intersection points map (IPM), based on this principle, instead of characterizing the curve 
with its curvature involving 2nd order derivatives, it uses the intersection points between the 
smoothed curve and the original. As the standard deviation of the Gaussian kernel 
increases, the number of the intersection points decreases. By analyzing these remaining 
points, features for a pattern can be defined. Since this method deals only with curve 
smoothing, it needs only the convolution operation in the smoothing process. So this 
method is faster than the CSS one with equivalent performances. Figure 34 is an example of 
IPM. 
 

 
Fig. 34. Example of the IPM  (a) An original contour; (b) an IPM image in the (u, ) plane. 
The IPM points indicated by (1)-(6) refer to the corresponding intersection points in (a). 

The IPM pattern can be identified regardless of its orientation, translation and scale change. 
It is also resistant to noise for a range of noise energy. The main weakness of this approach 
is that it fails to handle occulted contours and those having undergone a non-rigid 
deformation. 

7.3 Discussions 
As multi-resolution analysis in signal processing, scale-space theory can obtain abundant 
information about a contour with different scales. In scale-space, global pattern information 
can be interpreted from higher scales, while detailed pattern information can be interpreted 
from lower scales. Scale-space algorithm benefit from the boundary information 
redundancy in the new image, making it less sensitive to errors in the alignment or contour 
extraction algorithms. The great advantages are the high robustness to noise and the great 
coherence with human perception. 
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8. Shape transform domains 
The transform domain class includes methods which are formed by the transform of the 
detected object or the transform of the whole image. Transforms can therefore be used to 
characterize the appearance of images. The shape feature is represented by the all or partial 
coefficients of a transform. 

8.1 Fourier descriptors 
Although, Fourier descriptor (FD) is a 40-year-old technique, it is still considered as a valid 
description tool. The shape description and classification using FD either in contours or 
regions are simple to compute, robust to noise and compact. It has many applications in 
different areas. 

8.1.1 One-dimensional Fourier descriptors 
In general, Fourier descriptor (FD) is obtained by applying Fourier transform on a shape 
signature that is a one-dimensional function which is derived from shape boundary 
coordinates (cf. Section 3). The normalized Fourier transformed coefficients are called the 
Fourier descriptor of the shape. FD derived from different signatures has significant 
different performance on shape retrieval. As shown in [10, 53], FD derived from centroid 
distance function r(t) outperforms FD derived from other shape signatures in terms of 
overall performance. The discrete Fourier transform of r(t) is then given by 

 
Since the centroid distance function r(t) is only invariant to rotation and translation, the 
acquired Fourier coefficients have to be further normalized so that they are scaling and start 
point independent shape descriptors. From Fourier transform theory, the general form of 
the Fourier coefficients of a contour centroid distance function r(t) transformed through 
scaling and change of start point from the original function r(t)(o) is given by 

 
where an and a ( )o

n  are the Fourier coefficients of the transformed shape and the original 
shape, respectively,  is the angles incurred by the change of start point; s is the scale factor. 
Now considering the following expression: 

 
where bn and b ( )o

n  are the normalized Fourier coefficients of the transformed shape and the 
original shape, respectively. If we ignore the phase information and only use magnitude of 
the coefficients, then|bn|and|b ( )o

n |are the same. In other words,|bn|is invariant to 
translation, rotation, scaling and change of start point. 
The set of magnitudes of the normalized Fourier coefficients of the shape {|bn|, 0 < n < N} 
are used as shape descriptors, denoted as 
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One-dimensional FD has several nice characteristics such as simple derivation, simple 
normalization and simple to do matching. As indicated by [53], for efficient retrieval, 10 FDs 
are sufficient for shape description. 

8.1.2 Region-based Fourier descriptor 
The region-based FD is referred to as generic FD (GFD), which can be used for general 
applications. Basically, GFD is derived by applying a modified polar Fourier transform 
(MPFT) on shape image [57, 12]. In order to apply MPFT, the polar shape image is treated as 
a normal rectangular image. The steps are 
1. the approximated normalized image is rotated counter clockwise by an angular step 

sufficiently small. 
2. the pixel values along positive x-direction starting from the image center are copied and 

pasted into a new matrix as row elements. 
3. the steps 1 and 2 are repeated until the image is rotated by 360°. 
The result of these steps is that an image in polar space plots into Cartesian space. 
Figure 35 shows the polar shape image turning into normal rectangular image. 
 

 
                                (a)                                                                 (b) 

Fig. 35. The polar shape image turns into normal rectangular image. (a) Original shape 
image in polar space; (b) polar image of (a) plotted into Cartesian space. 

The Fourier transform is acquired by applying a discrete 2D Fourier transform on this shape 
image. 

 
where  and  
is the center of mass of the shape; R and T are the radial and angular resolutions. The 
acquired Fourier coefficients are translation invariant. Rotation and scaling invariance are 
achieved by the following: 

 
where area is the area of the bounding circle in which the polar image resides. m is the 
maximum number of the radial frequencies selected and n is the maximum number of 
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angular frequencies selected. m and n can be adjusted to achieve hierarchical coarse to fine 
representation requirement. 
For efficient shape description, in the implementation of [57], 36 GFD features reflecting m = 
4 and n = 9 are selected to index the shape. The experimental results have shown GFD as 
invariant to translation, rotation, and scaling. For obtaining the affine and general minor 
distortions invariance, in [57], the authors proposed Enhanced Generic Fourier Descriptor 
(EGFD) to improve the GFD properties. 

8.2 Wavelet transform 
A hierarchical planar curve descriptor is developed by using the wavelet transform [58]. 
This descriptor decomposes a curve into components of different scales so that the coarsest 
scale components carry the global approximation information while the finer scale 
components contain the local detailed information. The wavelet descriptor has many 
desirable properties such as multi-resolution representation, invariance, uniqueness, 
stability, and spatial localization. In [59], the authors use dyadic wavelet transform deriving 
an affine invariant function. In [60], a descriptor is obtained by applying the Fourier 
transform along the axis of polar angle and the wavelet transform along the axis of radius. 
This feature is also invariant to translation, rotation, and scaling. At same time, the matching 
process of wavelet descriptor can be accomplished cheaply. 

8.3 Angular radial transformation 
The angular radial transformation (ART) is based in a polar coordinate system where the 
sinusoidal basis functions are defined on a unit disc. Given an image function in polar 
coordinates, f(ρ, θ), an ART coefficient Fnm (radial order n, angular order m) can be defined as 
[61]: 

 
Vnm(ρ, θ) is the ART basis function and is separable in the angular and radial directions so that: 

 
The angular basis function, Am, is an exponential function used to obtain orientation 
invariance. This function is defined as: 

 
Rn, the radial basis function, is defined as: 

 
In MPEG-7, twelve angular and three radial functions are used (n < 3, m < 12). Real parts of 
the 2-D basis functions are shown in Figure 36. 
For scale normalization, the ART coefficients are divided by the magnitude of ART 
coefficient of order n = 0, m = 0. 
MPEG-7 standardization process showed the efficiency of 2-D angular radial transformation. 
This descriptor is robust to translations, scaling, multi-representation (remeshing, weak 
distortions) and noises. 
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Fig. 36. Real parts of the ART basis functions 

8.4 Shape signature harmonic embedding 
A harmonic function is obtained by a convolution between the Poisson kernel PR(r, θ) and a 
given boundary function u(Re jφ ). Poisson kernel is defined by 

 
The boundary function could be any real- or complex-valued function, but here we choose 
shape signature functions for the purpose of shape representation. For any shape signature 
s[n], n = 0, 1, … ,N – 1, the boundary values for a unit disk can be set as 

 
where ω0 = 2π/N, φ = ω0n. 
So the harmonic function u can be written as 

 
(18)

The Poisson kernel PR(r, θ) has a low-pass filter characteristic, where the radius r is inversely 
related to the bandwidth of the filter. The radius r is considered as scale parameter of a 
multi-scale representation [62]. Another important property is PR(0, θ) = 1, indicating u(0) is 
the mean value of boundary function u(Re jφ ). 
In [62], the authors proposed a formulation of a discrete closed-form solution for the 
Poisson’s integral formula Eq. 18, so that one can avoid the need for approximation or 
numerical calculation of the Poisson summation form. 
As in Subsection 8.1.2, the harmonic function inside the disk can be mapped to a rectilinear 
space for a better illustration. Figure 37 shows an example for a star shape. Here, we used 
curvature as the signature to provide boundary values. 
The zero-crossing image of the harmonic functions is extracted as shape feature. This shape 
descriptor is invariant to translation, rotation and scaling. It is also robust to noise. Figure 38 
is for example. The original curve is corrupted with different noise levels, and the harmonic 
embeddings show robustness to the noise. 
At same time, it is more efficient than CSS descriptor. However, it is not suitable for 
similarity retrieval, because it is unconsistent to non-rigid transform. 
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embeddings show robustness to the noise. 
At same time, it is more efficient than CSS descriptor. However, it is not suitable for 
similarity retrieval, because it is unconsistent to non-rigid transform. 
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                          (a)                                        (b)                                                  (c) 

Fig. 37. Harmonic embedding of curvature signature (a) Example shape; (b) harmonic 
function within the unit disk; (c) rectilinear mapping of the function. 

 
Fig. 38. centroid distance signature harmonic embedding that is robust to noisy boundaries 
(a) Original and noisy shapes; (b) harmonic embedding images for centroid distance 
signature. 

8.5 ℜ-Transform 
The ℜ-Transform to represent a shape is based on the Radon transform. The approach is 
presented as follow. We assume that the function f is the domain of a shape, cf. Eq. 1. Its 
Radon transform is defined by: 

 
where (.) is the Dirac delta-function: 

 
θ ∈ [0, π] and ρ ∈(-∞,∞). In other words, Radon transform TR(ρ, θ) is the integral of f over the 
line L(ρ,θ) defined by ρ = xcos θ + ysin θ. 
Figure 39 is an example of a shape and its Radon transform. 
The following transform is defined as ℜ-transform: 
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where TR(ρ, θ) is the Radon transform of the domain function f. In [63], the authors show the 
following properties of ℜf (θ): 

• periodicity: ℜf (θ±π) = ℜf (θ) 

• rotation: a rotation of the image by an angle θ 0 implies a translation of the ℜ-transform 

of θ 0: ℜf (θ + θ 0). 

• translation: the ℜ-transform is invariant under a translation of the shape f by a vector 
u = (x0, y0). 

• scaling: a change of the scaling of the shape f induces a scaling in the amplitude only of 
the ℜ-transform. 

 

 
                                           (a) Shape                       (b) Radon transform of (a) 
Fig. 39. A shape and its Radon transform 

Given a large collection of shapes, one ℜ-transform per shape is not efficient to distinguish 

from the others because the ℜ-transform provides a highly compact shape representation. In 
this perspective, to improve the description, each shape is projected in the Radon space for 
different segmentation levels of the Chamfer distance transform. Chamfer distance 
transform is introduced in [64, 65]. 
Given the distance transform of a shape, the distance image is segmented into N equidistant 
levels to keep the segmentation isotropic. For each distance level, pixels having a distance 
value superior to that level are selected and at each level of segmentation, an ℜ-transform is 
computed. In this manner, both the internal structure and the boundaries of the shape are 
captured. 
Since a rotation of the shape implies a corresponding shift of the ℜ-transform. Therefore, a 
one-dimensional Fourier transform is applied on this function to obtain the rotation 
invariance. After the discrete one-dimensional Fourier transform F, ℜ-transform descriptor 
vector is defined as follows: 

 
where i∈ [1,M], M is the angular resolution. Fℜ is the magnitude of Fourier transform to ℜ-
transform.  ∈ [1, N], is the segmentation level of Chamfer distance transform. 
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8.6 Shapelets descriptor 
Shapelets descriptor was proposed to present a model for animate shapes and extracting 
meaningful parts of objects. The model assumes that animate shapes (2D simple closed 
curves) are formed by a linear superposition of a number of shape bases. A basis function  
(s; μ, ) is defined in [66]: μ ∈ [0, 1] indicates the location of the basis function relative to the 
domain of the observed curve, and  is the scale of the function ψ. Figure 40 shows the 
shape of the basis function ψ at different  values. It displays variety with different 
parameter and transforms. 
 

 
Fig. 40. Each shape base is a lobe-shaped curve 

The basis functions are subject to affine transformations by a 2 × 2 matrix of basis 
coefficients: 

 
The variables for describing a base are denoted by bk = (Ak, μk, k) and are termed basis 
elements. The shapelet is defined by 

 
Figure 40 (b,c,d) demonstrates shapelets obtained from the basis functions ψ by the affine 
transformations of rotation, scaling, and shearing respectively, as indicated by the basis 
coefficient Ak. By collecting all the shapelets at various μ, , A and discretizing them at 
multiple levels, an over-complete dictionary is obtained 

 
A special shapelet γ0 is defined as an ellipse. 
Shapelets are the building blocks for shape contours, and they form closed curves by linear 
addition: 

 
Here (x0, y0) is the centroid of the contour and n is residue. 
A discrete representation B = (K, b1, b2, …, bK), shown by the dots in second row of Figure 
41, represents a shape. B is called the “shape script” by analogy to music scripts, where each 
shapelet is represented by a dot in the (μ, ) domain. The horizontal axis is μ ∈ [0, 1] and the 
vertical axis is the . Large dots correspond to big coefficient matrix 
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Fig. 41. Pursuit of shape bases for an eagle contour 

Clearly, computing the shape script B is a non-trivial task, since Δ is over-complete and 
there will be multiple sets of bases that reconstruct the curve with equal precision. [66] gave 
some pursuit algorithms to use shapelets representing a shape. 

8.7 Discussions 
As a kind of global shape description technique, shape analysis in transform domains takes 
the whole shape as th shape representation. The description scheme is designed for this 
representation. Unlike the spacial interrelation feature analysis, shape transform projects a 
shape contour or region into an other domain to obtain some of its intrinsic features. For 
shape description, there is always a trade-off between accuracy and efficiency. On one hand, 
shape should be described as accurate as possible; on the other hand, shape description 
should be as compact as possible to simplify indexing and retrieval. For a shape transform 
analysis algorithm, it is very flexible to accomplish a shape description with different 
accuracy and efficiency by choosing the number of transform coefficients. 

9. Summary table  
For convenience to compare these shape feature extraction approaches in this chapter, we 
summarize their properties in Table 1. 
Frankly speaking, it is not equitable to affirm a property of an approach by rudely speaking 
“good” or “bad”. Because certain approaches have great different performances under 
different conditions. For example, the method area function is invariant with affine 
transform under the condition of the contours sampled at its same vertices; whereas it is not 
robust to affine transform if the condition can’t be contented. In addition, some approaches 
have good properties for certain type shapes; however it is not for the others. For example, 
the method shapelets representation is especially suitable for blobby objects, and it has 
shortcomings in representing elongated objects. So the simple evaluations in this table are 
only as a reference. These evaluations are drawn by assuming that all the necessary 
conditions have been contented for each approach. 

10. Conclusion 
In this chapter we made a study and a comparison the methods of shape-based feature 
extraction and representation. About 40 techniques for extraction of shape features have 
been shortly described and compared. Unlike the traditional classification, the approaches of 
shape-based feature extraction and representation were classified by their processing 
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approaches. These processing approaches included shape signatures, polygonal 
approximation methods, spatial inter-relation feature, moments approaches, scale-space 
methods and shape transform domains: in such way, one can easily select the appropriate 
processing approach. A synthetic table has been established for a fast and global comparison 
of the performances of these approaches. 
Extracting a shape feature in accordance with human perception is not an easy task. Due to 
the fact that huma vision and perception are an extraordinary complicated system, it is a 
utopia to hope that the machine vision has super excellent performance with small 
complexity. In addition, choosing appropriate features for a shape recognition system must 
consider what kinds of features are suitable for the task. There exists no general feature 
which would work best for every kind of images. 
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1. Introduction     
Analysis of electrophysiological brain activity has long been considered as one of 
indispensable tools enabling clinicians and scientists to investigate various aspects of 
cognitive brain functionality and its underlying neurophysiological structure. The relevance 
of electroencephalogram (EEG) in particular, due to its inexpensive and most importantly, 
non-invasive acquisition procedure, has been reflected in the abundance of clinical 
applications and the diversity of areas of research studies it has contributed to. These 
studies lie within the realm of brain science understood nowadays in a broad sense 
embracing and linking interdisciplinary fields of neuroimaging, cognitive psychology and 
neurophysiology among others. In medical practice, EEG is used more pragmatically to 
support clinicians in their effort to establish the presence, severity and cerebral distribution 
of neurological disorders. Epilepsy diagnostic serves as a prime example in this regard 
(Fisch, 1999). The complex nature of brain signals and the intricacies of the measurement 
process involved (Fisch, 1999; Niedermeyer & Lopes da Silva, 2004), particularly in the case 
of EEG, render their analysis and interpretation challenging (Kaiser, 2005). Historically, 
these signals used to be examined only qualitatively based on routine visual inspection and 
the experience of responsible technicians or practitioners. With the advent of the era of 
digital biosignal recordings, computerised quantitative electroencephalography gained 
notable popularity as a supplementary tool enhancing objectiveness of analysis (Kaiser, 
2005). The fast pace of technological advancement, considerable progress in neuroscience 
and neuroengineering along with growing investments in medical and health sectors among 
others have opened up new possibilities for automated EEG analysis systems. A continually 
growing scope for their applications set dominant design trends and imposed requirements 
regarding their functionality that prevail in today’s practice and research. One of the key 
points in this regard is the need for the increased independence, autonomy and thus the 
improved reliability of such systems. This has led to a more comprehensive formulation of a 
computational problem of brain signal analysis within the realm of pattern recognition, 
which facilitates a more generic description of existing approaches, and development or re-
use of suitable pattern recognition methods. In consequence, the notion of brain signal 
pattern recognition has been introduced to refer to the underlying concept of processing raw 
data with the aim of acting upon its category (Niedermeyer & Lopes da Silva, 2004; Duda et 
al., 2001). The objective is to identify patterns in electrophysiological brain activity that are 
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indicative of various cognitive brain states (Niedermeyer & Lopes da Silva, 2004). The 
demanding nature of this task is here emphasised due to the spatio-temporal complexity of 
brain signal dynamics and low signal-to-noise ratio, particularly in the case of EEG. In order 
to ensure robust recognition of relevant brain signal correlates, as required in automated 
brain signal analysis, the major challenges should be identified. One of the most urgent 
needs is to robustly account for uncertain information inherent to biological data sources. 
The uncertainty effects arise mainly out of stochastic nature of signal acquisition processes 
and nondeterministic characteristics of the underlying neurophysiological phenomena, 
which cannot be accurately explained by any biologically plausible model but are attributed 
to the existence of a general biological tendency to undergo changes and transitions (Fisch, 
1999; Wolpaw et al., 2002). In this regard, the multitude of behavioural, cognitive and 
psycho-emotional or physiological factors play a substantial contributory role. The resultant 
uncertainty manifestations are rarely dealt with in an explicit and effective manner. It 
should be realised though that ignoring them or adopting simplistic assumptions may 
undermine the concept of robust brain signal analysis. 
This chapter is concentrated on a particular instance of brain signal pattern recognition, 
where uncertainty and variability effects manifest themselves with relatively high intensity. 
More precisely, the problem of classification of spontaneous electrophysiological brain 
activity when the subject is voluntarily performing specific cognitive tasks is examined. This 
deliberate control of thoughts provides a scope for a communication channel between the 
brain and the external environment with brain signals being the carrier of information. Such 
an alternative form of communication, independent of peripheral nerves and muscles, 
underpins the concept of the so-called brain-computer interface (BCI). Thus, the outcome of 
the study reported in this chapter bears direct relevance and has intrinsic implications for a 
broad area of BCI. This work follows the prevailing trends in BCI and is focused on the 
discrimination between self-induced imaginations of right and left hand movements, 
referred to as motor imagery (MI), based on analysis of the associated EEG correlates. The 
essence of uncertainty manifestations in this challenging brain signal pattern recognition 
problem and a range of existing approaches adopted to minimise the associated detrimental 
effects on BCI performance are discussed in section 2. Then, in section 3 a computational 
intelligence methodology is briefly introduced with emphasis on fuzzy logic (FL) paradigms 
in the context of pattern recognition under uncertainty. Section 4 describes methods 
developed and employed in this work to address a given MI-based brain signal pattern 
recognition problem. It also reveals the details of a BCI experimental procedure allowing for 
MI related EEG data acquisition. A comparative analysis of the results obtained with novel 
approaches introduced in this chapter and with more conventional BCI techniques is 
reported in section 5. Final conclusions and summary of the chapter are included in section 
6. The key directions for further work are also suggested. 

2. Uncertainty effects in EEG-based BCI 
Uncertainty as an inseparable feature of BCI operation needs to be properly addressed in 
order to develop practical and robust systems (Wolpaw et al., 2002). Effective handling of 
uncertainty effects, strongly reflected in EEG signals, has been recognised as a key challenge 
in BCI (Vaughan et al., 2003). These effects have been traditionally associated with inherent 
changes in the underlying brain dynamics and varying physical characteristics of the signal 
measurement environment (Wolpaw et al., 2002; Vaughan et al., 2003; Millán et al., 2003). 
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There are a number of behavioural and neurophysiological factors that determine the 
character of transitions between cognitive brain states. Consequently, electrophysiological 
signals display a degree of inconsistency due to a varying level of subject’s awareness, 
mental focus, motivation and fatigue among others (Wolpaw et al., 2002). In addition, the 
brain plasticity harnessed by the mechanism of neurofeedback involved in BCI operation∗ 
inevitably produces changes in the brain’s behaviour. With regard to signal recording 
environment, it has been reported that inter-session changes in EEG cap placement 
(McFarland et al., 1997) or in the impedance of scalp-electrode interface (Sykacek et al., 2004) 
may affect BCI performance.  
Uncertainty in the space of brain state categories poses another challenge in BCI. It arises out 
of intrinsic ambiguity and vagueness in interpretation of different brain states correlated 
with specific cognitive tasks, no matter how well they are defined. It is hard to assume that 
there is a crisp unequivocal association between characteristic patterns of brain’s 
electrophysiological activity and classes of particular mental tasks. As suggested in (Yang et 
al., 2007), a mixture of some residual correlates of different cognitive processes should 
always be expected. This facet of uncertainty related to brain state class assignments is 
perceived as an inherent feature of brain signal pattern recognition. 
Regardless of the sources of variability in BCI, it is predominantly reflected in 
electrophysiological brain signals, particularly in EEG, in the form of nonstationarity effects 
at different temporal levels. Their manifestations are present in any low-dimensional EEG 
feature space and are difficult to model analytically due to limitations in today’s 
understanding of the underlying brain phenomena. Thus, their handling is considered as a 
challenging task and poses an urgent objective in the presence of numerous literature 
reports on a detrimental impact of EEG nonstationarities on the performance of BCI 
systems. In (Cheng et al., 2004), significant discrepancies in the distribution of EEG power 
features, extracted from data sets acquired at different times than the original training data 
set, were observed to result in a relatively poor accuracy of linear classifiers employed in an 
MI-based BCI. A similar inter-session deterioration of the performance of a linear 
discriminant analysis (LDA) classifier was reported in (Obermaier et al., 2001). The authors 
concluded that the LDA method did not provide capabilities to generalise MI induced 
spatio-temporal patterns in EEGs. In (Townsend et al., 2006), special attention was paid to 
inconsistencies in machine learning-based selection of the most relevant discriminative EEG 
feature components within the same BCI data set. Analogous incoherence in the localisation 
of optimal electrodes and in the identification of the most reactive EEG rhythms providing 
the maximum distinguishability of MI related EEG signals was described in (Pregenzer & 
Pfurtscheller, 1999). The changes were particularly noticeable in feedback sessions. Shenoy 
et al. (2006) and Vidaurre et al. (2006) made an attempt to graphically illustrate session-to-
session nonstationarities in different EEG feature spaces by performing their two-
dimensional projections. Although the projection approaches adopted in (Shenoy et al., 
                                                 
∗ In the context of EEG-based BCI, subjects receive mostly visual, auditory or haptic 
feedback information about their brain activity reflected in the EEG. It conveys the degree of 
success in voluntary control of the brain activity. Thus, the feedback signal has an important 
motivational role as it facilitates higher attention levels or otherwise causes frustration and 
confusion if it is unreliable (McFarland et al., 1998). 
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2006) and (Vidaurre et al., 2006) were distinct, the conclusions were the same. Namely, inter-
session discrepancies between clusters of the features representing the classes of associated 
MIs were clearly identified. Schlögl et al. (2005) analysed several types of EEG 
nonstationarities in BCI experiments using the state-of-the-art adaptive autoregressive (AR) 
features and an LDA classifier. The effect of both short- and long-term variability of the EEG 
dynamics was reflected in the considerable inconsistency of BCI performance. 
There has been some empirical evidence gathered (Millán et al., 2002; Pfurtscheller et al., 
2000; Guger et al., 2001; Pfurtscheller & Neuper, 2001) that in the face of the problem of 
session-to-session performance transfer it is beneficial to update or re-train a BCI classifier 
on a regular basis using the most recent data from one or a few past sessions. Still, the 
effectiveness of this method is limited as presented in (Shenoy et al., 2006; Guger et al., 2001) 
using linear classification approaches. In addition, it appears rather impractical considering 
the automated nature of BCI systems. The burden associated with their frequent re-
calibration can be partly mitigated by computationally efficient algorithms for BCI 
prototyping and incorporating necessary modifications, as suggested in (Guger et al., 2001). 
Despite the shortcomings discussed here, this practice of regular BCI update has been a 
traditional approach to the problem of inter-session variability in BCI and it is still widely 
utilised.  
There has also been considerable research conducted on adaptive BCI classification (Sykacek 
et al., 2004; Vidaurre et al., 2006; Millán et al., 2003) in the spirit of Wolpaw’s principle of 
adaptive human (brain)–machine interaction (Wolpaw et al., 2002). Unlike the approach 
involving frequent off-line BCI re-calibration, adaptive systems are updated nearly 
instantaneously in on-line mode. Some of them have demonstrated the enhanced potential 
in handling uncertainty effects and have thus led to improved BCI performance than 
regularly re-trained but static linear, quadratic and probabilistic classifiers (Sykacek et al., 
2004; Vidaurre et al., 2006; Shenoy et al., 2006). It should be noted however that the focus of 
adaptive BCI has been on reducing the effect of spontaneous EEG variations, and thus on 
handling short-term within-session changes of the signal dynamics. In consequence, the 
concept of continuous on-line update (Vidaurre et al., 2006; Sykacek et al., 2004) is likely to 
result in undesirable excessive detuning of a BCI classifier under the conditions of acute 
variability when handling short-lived transients, as indicated in (Vaughan et al., 2003). Yet, 
it does not necessarily address the problem of long-term changes in the EEG dynamics, 
particularly in a session-to-session scenario. Moreover, on-line adaptive classifiers are 
generally developed under the assumption of a known type of the signal’s feature 
distribution, which may not be satisfied increasing the risk of lower accuracy. 
It has become clear that various manifestations of uncertainty inherent to brain signal 
pattern recognition constitute a serious challenge in BCI research. The problem of 
maintaining good BCI performance over a reasonably long period in spite of the presence of 
these effects has not yet been effectively addressed using classical signal processing 
techniques, statistical pattern recognition methods or machine learning approaches. In the 
next section, advantages of a different methodological paradigm referred to as 
computational intelligence, eg. (Gorzalczany, 2002), with emphasis on computing with 
fuzzy sets (FSs), in application to pattern recognition under uncertainty are outlined. Special 
attention is given to an emerging type-2 (T2) fuzzy logic (FL) methodology (Mendel, 2001) 
due to its enhanced uncertainty handling capabilities.  
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3. Computational intelligence in pattern recognition 
As discussed earlier, the uncertainty effects inherent to brain signal pattern recognition have 
a multi-faceted nature. In the context of EEG-based BCI, nonstationarity of EEG dynamics 
reveals nondeterministic characteristics of the underlying data generation mechanism, and 
thus it is not suitable for analytical modelling. It is also difficult to make valid statistical 
inference about its probabilistic features. In the realm of uncertainty analysis, there appears 
a group of methods that have demonstrated true potential in dealing with complexity and 
uncertainty in numerical data without any underlying physical model of their generator. 
Such a model-free approach can be adopted using computational intelligence paradigms 
(Mendel, 2001; Gorzalczany, 2002). They allow for data-driven design of computational 
systems that are capable of generalising knowledge, performing abstract associations and 
inference using approximate reasoning even in the presence of vague, ambiguous or 
imprecise information in ill-structured environments, and thus providing robust low-cost 
solutions to real-world problems (Mendel, 2001). Pattern recognition naturally lends itself as 
an application domain for computational intelligence. When uncertainty is strongly 
manifested in a given class of problems, FL methodology and the related FS theory are of 
special relevance. With a suitable system framework, the transparency of inference methods 
and mechanisms, and the flexibility of available data-driven design methods, this 
computational intelligence tool offers considerable potential in the context of uncertainty 
management in brain signal pattern recognition. 
Recently, new directions in FL development have been explored to further enhance 
uncertainty modelling apparatus of conventional type-1 (T1) FL systems (FLSs), eg. (Karnik 
et al., 1999; Mendel, 2001). As a result, the notion of an extended type-2 (T2) FS with an 
additional dimension of fuzziness has received growing research attention and the 
corresponding T2FL uncertainty calculus has been shown to outperform its classical T1 
counterpart in practical applications (Mendel, 2001). Thus, T2FL methodology appears to be 
a promising approach to the challenging brain signal pattern recognition problem 
undertaken in this work. Below, fundamental concepts in the area of T2FL related to this 
work are briefly presented. 
At the heart of T2FL lies the definition of a T2FS originally introduced by Zadeh (1975) as an 
extension or a fuzzy version of a classical T1FS. This additional level of fuzziness is 
associated with another dimension in the definition of a T2FS. As a result, instead of being 
two-dimensional, a T2FS Ã is three-dimensional and the membership grade defined in (1) 
for any given Xx U∗ ∈ ( XU is a domain, also called a universe of discourse) is an ordinary FS 

with the membership function *( , ), [0,1]xÃ x u u Jμ ∈ ⊆ ( xJ  is the primary membership of 

x), not a crisp number *( )A xμ  in [0,1] as in a classical T1FS A (c.f. (2)): 
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The domain of support for membership functions in T2FS representation is two-dimensional 
and is often referred to as a foot of uncertainty (FOU) (Mendel, 2001). Since it is effectively 
the union of all ,x XJ x U∀ ∈ , the FOU allows for embedding a range of T1FSs. The resultant 
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extra degrees of freedom facilitate capturing more information about the represented term 
than a single T1FS can and thus render FOU particularly important in handling 
inconsistently varying information content. This enhanced flexibility in modelling the 
associated uncertainty underlies the potential of T2FLSs to outperform their T1 counterparts 
in problems where classification or approximation is to be made under uncertain, variable 
conditions. 
On the other hand, T2FLSs are more computationally expensive. This overhead can be 
reduced by exploiting the so-called interval T2FSs (IT2FSs) (Liang & Mendel, 2000). Their 
membership functions over the FOU are constant and equal one (Mendel, 2001). This 
substantially simplifies operations on FSs, which now amount to interval-type operations 
(Liang & Mendel, 2000; Gorzalczany, 1988) on the associated FOUs, and facilitates 
transparent flow of uncertainties through a T2FLS. Moreover, the use of IT2FSs has proven 
to be beneficial in practical applications (Mendel, 2001). FOUs of the two most common 
Gaussian IT2FS, with uncertain mean, m, but fixed standard deviation, σ, and with fixed 
mean and uncertain standard deviation, are depicted in Fig. 1a-b. Since they embed 
conventional T1FSs Ae, as mentioned earlier, these FOUs can be easily parameterised with 
T1 membership functions, respectively (with m1, m2, σ1, σ2 defining the ranges of parameter 
variations): 

 
2

1 22

( )
( ) exp , [ , ],

2
fixed

eA
x m

x m m mμ
σ

σ−
= ∈

−

⎡ ⎤
⎢ ⎥
⎣ ⎦

, (3a) 

 
2

1 22

( )
( ) exp , [ , ],  fixed

2eA
x m

x mμ σ σ σ
σ

−
= ∈

−

⎡ ⎤
⎢ ⎥
⎣ ⎦

. (3b) 

 

 
Fig. 1. An illustration of the FOUs of Gaussian T2FSs a) with uncertain mean and fixed 
standard deviation, b) with fixed mean and uncertain standard deviation. 

Architecture of a T2FLS is analogous to that of its T1FLS counterpart with the difference 
in the type of FS representation in the antecedents and consequents of fuzzy rules, and in 
FS operators. In consequence, since the result of T2FL inference is a T2FS, the process of 
obtaining a crisp value from a final FLS output involves an additional step in T2FLSs 
when compared to T1FLSs. To this end, type reduction is applied to reduce a T2FS to a 
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T1FS before it is ultimately defuzzified using classical fuzzy methods. Type reduction 
constitutes the computational bottleneck in interval T2FLSs (IT2FLSs) (Mendel, 2001; 
Liang & Mendel, 2000). There are a number of type reduction approaches including 
approximate techniques reported in the fuzzy literature with centre-of-sets and centroid 
type reduction being the most popular (Karnik et al., 1999; Mendel, 2001). The entire 
process of information flow through a T2FLS can be summarised by the following 
sequence (c.f. Fig. 2): 
1. Fuzzification (optional) – transforming a crisp input value to a T1FS or a T2FS. 
2. Inference using a compositional rule (Mendel, 2001) involving the system input 

(fuzzified) and fuzzy rule base relations. 
3. Aggregation of the resultant T2FSs obtained from different rules in the process of 

inference (in some cases, aggregation is considered as part of the inference process). 
4. Type reduction, eg. by evaluating the centroid or the centre-of-sets of the aggregated 

output T2FS. 
5. Defuzzification of the T1FS obtained in 4) (optional) to extract a crisp output. 
 
 

 
Fig. 2. T2FLS framework. 

In the context of the brain signal pattern recognition problem considered in this chapter, it 
is expected that the increased flexibility of IT2FSs in modelling uncertainty can be 
effectively utilised to encapsulate the range of possible behaviours of brain signal 
dynamics correlated with MI and thus robustly account for the associated variability. 
Consequently, the central objective is to examine the potential of a novel IT2FLS-based 
approach to dichotomous classification of MI induced EEG patterns. The emphasis is on 
the classifier’s capability to generalise well across a few data sets obtained at different 
times (exhibiting mainly long-term changes). At the same time, it should be realised that 
despite the early progress in the domain of applied T2FL, there has been rather limited 
research done on systematic approaches to data-driven design of IT2FLSs used in pattern 
recognition. This chapter also outlines some developments that address this emerging 
need and discusses key issues related to the effective exploitation of IT2FLS’s uncertainty 
handling apparatus in the given instance of brain signal pattern recognition. Automation 
of the fuzzy classifier design process is intended and to this end, its computationally 
efficient implementation is proposed. A detailed description of the BCI experimental 
setup and the pattern recognition methods devised and employed in this work are 
presented in the next section. 



 Pattern Recognition Techniques, Technology and Applications 

 

96 

extra degrees of freedom facilitate capturing more information about the represented term 
than a single T1FS can and thus render FOU particularly important in handling 
inconsistently varying information content. This enhanced flexibility in modelling the 
associated uncertainty underlies the potential of T2FLSs to outperform their T1 counterparts 
in problems where classification or approximation is to be made under uncertain, variable 
conditions. 
On the other hand, T2FLSs are more computationally expensive. This overhead can be 
reduced by exploiting the so-called interval T2FSs (IT2FSs) (Liang & Mendel, 2000). Their 
membership functions over the FOU are constant and equal one (Mendel, 2001). This 
substantially simplifies operations on FSs, which now amount to interval-type operations 
(Liang & Mendel, 2000; Gorzalczany, 1988) on the associated FOUs, and facilitates 
transparent flow of uncertainties through a T2FLS. Moreover, the use of IT2FSs has proven 
to be beneficial in practical applications (Mendel, 2001). FOUs of the two most common 
Gaussian IT2FS, with uncertain mean, m, but fixed standard deviation, σ, and with fixed 
mean and uncertain standard deviation, are depicted in Fig. 1a-b. Since they embed 
conventional T1FSs Ae, as mentioned earlier, these FOUs can be easily parameterised with 
T1 membership functions, respectively (with m1, m2, σ1, σ2 defining the ranges of parameter 
variations): 

 
2

1 22

( )
( ) exp , [ , ],

2
fixed

eA
x m

x m m mμ
σ

σ−
= ∈

−

⎡ ⎤
⎢ ⎥
⎣ ⎦

, (3a) 

 
2

1 22

( )
( ) exp , [ , ],  fixed

2eA
x m

x mμ σ σ σ
σ

−
= ∈

−

⎡ ⎤
⎢ ⎥
⎣ ⎦

. (3b) 

 

 
Fig. 1. An illustration of the FOUs of Gaussian T2FSs a) with uncertain mean and fixed 
standard deviation, b) with fixed mean and uncertain standard deviation. 

Architecture of a T2FLS is analogous to that of its T1FLS counterpart with the difference 
in the type of FS representation in the antecedents and consequents of fuzzy rules, and in 
FS operators. In consequence, since the result of T2FL inference is a T2FS, the process of 
obtaining a crisp value from a final FLS output involves an additional step in T2FLSs 
when compared to T1FLSs. To this end, type reduction is applied to reduce a T2FS to a 

Computational Intelligence Approaches to Brain Signal Pattern Recognition 

 

97 

T1FS before it is ultimately defuzzified using classical fuzzy methods. Type reduction 
constitutes the computational bottleneck in interval T2FLSs (IT2FLSs) (Mendel, 2001; 
Liang & Mendel, 2000). There are a number of type reduction approaches including 
approximate techniques reported in the fuzzy literature with centre-of-sets and centroid 
type reduction being the most popular (Karnik et al., 1999; Mendel, 2001). The entire 
process of information flow through a T2FLS can be summarised by the following 
sequence (c.f. Fig. 2): 
1. Fuzzification (optional) – transforming a crisp input value to a T1FS or a T2FS. 
2. Inference using a compositional rule (Mendel, 2001) involving the system input 

(fuzzified) and fuzzy rule base relations. 
3. Aggregation of the resultant T2FSs obtained from different rules in the process of 

inference (in some cases, aggregation is considered as part of the inference process). 
4. Type reduction, eg. by evaluating the centroid or the centre-of-sets of the aggregated 

output T2FS. 
5. Defuzzification of the T1FS obtained in 4) (optional) to extract a crisp output. 
 
 

 
Fig. 2. T2FLS framework. 

In the context of the brain signal pattern recognition problem considered in this chapter, it 
is expected that the increased flexibility of IT2FSs in modelling uncertainty can be 
effectively utilised to encapsulate the range of possible behaviours of brain signal 
dynamics correlated with MI and thus robustly account for the associated variability. 
Consequently, the central objective is to examine the potential of a novel IT2FLS-based 
approach to dichotomous classification of MI induced EEG patterns. The emphasis is on 
the classifier’s capability to generalise well across a few data sets obtained at different 
times (exhibiting mainly long-term changes). At the same time, it should be realised that 
despite the early progress in the domain of applied T2FL, there has been rather limited 
research done on systematic approaches to data-driven design of IT2FLSs used in pattern 
recognition. This chapter also outlines some developments that address this emerging 
need and discusses key issues related to the effective exploitation of IT2FLS’s uncertainty 
handling apparatus in the given instance of brain signal pattern recognition. Automation 
of the fuzzy classifier design process is intended and to this end, its computationally 
efficient implementation is proposed. A detailed description of the BCI experimental 
setup and the pattern recognition methods devised and employed in this work are 
presented in the next section. 



 Pattern Recognition Techniques, Technology and Applications 

 

98 

4. Methods and experimental work 
4.1 Experimental setup and data acquisition 
In the presented work, EEG data acquired in BCI experiments in two different labs were 
utilised. The first data set was obtained from the Institute of Human–Computer Interfaces, 
Graz University of Technology. The EEG signals were recorded from three healthy subjects 
(S1, S2 and S3) in a timed experimental recording procedure where the subjects were 
instructed to imagine moving the left and the right hand in accordance with a directional 
cue displayed on a computer monitor (Fig. 3a). Each trial was 8 s in length. A fixation cross 
was displayed from t = 0 s to t = 3 s. The beginning of a trial was marked by acoustic 
stimulus at t = 2 s. Next, an arrow (left or right) was displayed as a cue at t = 3 s. Therefore 
the segment of the data recorded after t = 3 s of each trial was considered as event related 
and was used for off-line analysis. The recordings were made with a g.tec amplifier 
(http://www.gtec.at) and AgCl electrodes over two consecutive sessions, each session 
consisting of 140 trials for S1 and 160 trials for S2 and S3 with equal number of trials 
representing two MI classes (Wang et al., 2004). Two bipolar EEG channels were measured 
over C3 and C4 locations (two electrodes placed 2.5 cm anterior and posterior to positions 
C3 and C4) according to the international standard nomenclature (10/20 system) 
(Niedermeyer & Lopes da Silva, 2004). The EEGs were then sampled at a frequency of 128 
Hz and band-pass filtered in the frequency range 0.5–30 Hz.  
The second EEG data set was acquired at the Intelligent Systems Research Centre (ISRC), 
University of Ulster using the same g.tec equipment and the location of two bipolar channel 
electrodes as that used by the Graz BCI group. The EEG data were recorded from six 
healthy subjects (SI–SVIII) over ten 160-trial (balanced) sessions with a sampling frequency of 
125 Hz. Depending on the subject, first one or two sessions were conducted without 
neurofeedback, and to this end, a directional cue following a fixation cross was displayed in 
the form of an arrow pointing to left or right to instruct a subject which MI should be carried 
out, as in the Graz paradigm. In the subsequent feedback sessions, the game-like basket 
paradigm was employed. In each trial of 7 s duration, two baskets were displayed at t = 3 s 
at the bottom of the screen in the form of bars – the target basket in green and the non-target 
one in red. Subjects were asked to perform MI that allowed them through the BCI to direct a 
ball falling from the top of the screen for the last 3 s of a trial to the target basket. The ball 
movement was continuously (in real-time) controlled in a horizontal direction from t = 4 s to 
t = 7 s utilising the proposed fuzzy classifier’s output signal, which served as BCI feedback. 
The timing and a graph illustrating the concept of this paradigm are presented in Fig. 3b.  
Although the EEG data sets under consideration were originally recorded in on-line BCI 
paradigms with continuous classification, they were also exploited in the context of off-line 
discrete classification of entire trials. As a result, two separate BCI study cases were 
investigated in this work, with continuous on-line (only on the ISRC data set) and discrete 
off-line application of an IT2FLS classifier. Still, it should be emphasised that they share 
similar characteristics of MI related brain signal pattern recognition with slightly different 
aspects of the uncertainty effects being exposed in each case (see section 5 for more 
discussion). From the perspective of a signal processing methodology, the major difference 
lies in the way that temporal information is handled at the feature extraction stage (c.f. 
section 4.2). Moreover, on-line verification of BCI classification performance raises 
additional issues related to instantaneous neurofeedback delivery, which are not taken into 
account in a post-hoc off-line simulation. They are given more attention in section 4.3.3. 
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Fig. 3. Data recording in a) Graz BCI paradigm (Haselsteiner & Pfurtscheller, 2000) and   
b) BCI basket paradigm (Wang et al., 2004). 

It should also be mentioned that only a few final sessions when individual subjects acquired 
an acceptable level of BCI control were closely examined and evaluated in the study 
reported in this chapter. The data gathered during earlier training sessions were exploited in 
most cases to pre-calibrate BCI methods and conduct preliminary off-line analyses. 

4.2 EEG feature extraction and analysis 
Sensorimotor rhythms represent the most discernible and reliable category of EEG correlates 
of MI induced brain phenomena (Vaughan et al., 2003; McFarland et al., 1997). Thus, brain 
signal patterns considered in this work are derived from mu (µ) and beta (β) rhythms of 
spontaneous EEG activity over the specified sensorimotor areas (C3 and C4 locations, c.f. 
section 4.1). In particular, the imagination of hand movement causes activation of the brain’s 
motor cortex that is usually manifested in the interplay between contralateral attenuation of 
the µ rhythm and ipsilateral enhancement of the central β oscillations in different phases of 
MI. These processes occur due to the neurophysiological mechanisms of the so-called event-
related desynchronization (ERD) and event-related synchronization (ERS) (Niedermeyer & 
Lopes da Silva, 2004). The exact sensorimotor EEG patterns and the most reactive frequency 
bands of ERS and ERD vary from subject to subject. Preliminary analysis performed in this 
work confirmed that overall, ERD manifestations in the µ range could be observed on the 
contralateral side and a slight ERS in the central β rhythm on the ipsilateral hemisphere. 
This hemispheric lateralisation of the oscillatory brain signal patterns underlies 
discrimination between the left and right MIs. In consequence, methods of spectral analysis 
played a dominant role in the process of EEG quantification conducted in this work to 
extract discriminative signal features.  
As mentioned in section 4.1, the problem of MI related brain signal pattern recognition was 
addressed in two modes – with discrete classification of entire EEG trials and instantaneous 
discrimination within a trial. The main difference between these two BCI approaches lies in 
the temporal characteristics of a feature extraction protocol. Consequently, handling and 
quantification of the relevant spatio-temporal EEG patterns requires distinct approaches. 
They are described in two subsequent sections. 
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Fig. 3. Data recording in a) Graz BCI paradigm (Haselsteiner & Pfurtscheller, 2000) and   
b) BCI basket paradigm (Wang et al., 2004). 

It should also be mentioned that only a few final sessions when individual subjects acquired 
an acceptable level of BCI control were closely examined and evaluated in the study 
reported in this chapter. The data gathered during earlier training sessions were exploited in 
most cases to pre-calibrate BCI methods and conduct preliminary off-line analyses. 

4.2 EEG feature extraction and analysis 
Sensorimotor rhythms represent the most discernible and reliable category of EEG correlates 
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section 4.1). In particular, the imagination of hand movement causes activation of the brain’s 
motor cortex that is usually manifested in the interplay between contralateral attenuation of 
the µ rhythm and ipsilateral enhancement of the central β oscillations in different phases of 
MI. These processes occur due to the neurophysiological mechanisms of the so-called event-
related desynchronization (ERD) and event-related synchronization (ERS) (Niedermeyer & 
Lopes da Silva, 2004). The exact sensorimotor EEG patterns and the most reactive frequency 
bands of ERS and ERD vary from subject to subject. Preliminary analysis performed in this 
work confirmed that overall, ERD manifestations in the µ range could be observed on the 
contralateral side and a slight ERS in the central β rhythm on the ipsilateral hemisphere. 
This hemispheric lateralisation of the oscillatory brain signal patterns underlies 
discrimination between the left and right MIs. In consequence, methods of spectral analysis 
played a dominant role in the process of EEG quantification conducted in this work to 
extract discriminative signal features.  
As mentioned in section 4.1, the problem of MI related brain signal pattern recognition was 
addressed in two modes – with discrete classification of entire EEG trials and instantaneous 
discrimination within a trial. The main difference between these two BCI approaches lies in 
the temporal characteristics of a feature extraction protocol. Consequently, handling and 
quantification of the relevant spatio-temporal EEG patterns requires distinct approaches. 
They are described in two subsequent sections. 
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4.2.1 Off-line analysis of spectral EEG patterns 
In off-line discrete classification each EEG trial is represented as a single feature vector. To 
this end, the event-related segment (starting from t = 3 s) of length 5 128 640N = ∗ = samples 
for the Graz data set and 4 125 500N = ∗ = samples for the ISRC data set was divided into 
rectangular windows depending on the settings of two parameters: window length, win_len, 
and the amount of overlap, ovl. Next, the frequency-related information was independently 
extracted from each of nwin windows (c.f. (5)) and the relevant spectral correlates of ERD and 
ERS phenomena were quantified. In particular, the μ and β bandpower components were 
merged within each window to constitute a feature vector element, rij (i=1,..,nwin) given two 
recording channels, { }C3, C4j ∈ . The entire feature vector r representing an EEG trial was 
composed of 2nwin such components: 

 ( )C3 C3 C3 C 4 C 4 C 4

1 2 1 2, , .., , , , ..,
win winn nr r r r r r=r , (4) 

where: 
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In the preliminary analysis reported in (Herman et al., 2008a), a wide range of spectral 
methods such as power spectral density (PSD) estimation techniques (Stoica & Moses, 1997), 
atomic decompositions including short-time Fourier transform (STFT) (Stoica & Moses, 
1997) and S-transform (Assous et al., 2006), quadratic time-frequency energy distributions 
and wavelet-based methods (Akay, 1997) were thoroughly examined in the given brain 
signal pattern recognition problem. They were all employed within the same window-based 
feature extraction framework to obtain signal’s bandpower components in the μ and central 
β ranges. The resultant low-dimension feature representations (c.f. (4)) were assessed in 
terms of their discriminative properties quantified using the classification accuracy (CA) 
rate obtained with popular linear and nonlinear BCI classifiers (c.f. section 4.3.2). Since PSD 
approaches were demonstrated overall to deliver consistently superior performance in 
within-session and inter-session classification scenarios, this category of spectral 
quantification methods was exploited in this work. In particular, nonparametric 
periodogram (Stoica & Moses, 1997) and parametric PSD estimate using Yule-Walker 
algorithm (Haykin, 1996) were applied depending on the subject. The exact frequency bands 
within the μ and central β ranges, from which bandpower components were extracted, were 
tuned individually for each subject to maximise linear separability between the resultant 
feature vectors representing two-class MI related EEG trials. To this end, linear 
discriminative analysis (LDA) (Bishop, 1995) was conducted on the initial calibration data 
within a cross-validation (CV) framework. 
In order to demonstrate the problem of variability in BCI, discussed in section 2, session-to-
session changes in the distribution of class-specific EEG features acquired from one of the 
subjects under consideration are presented in Fig. 4. In particular, the feature space was 
projected on the principal components (PC) axes. PC analysis (PCA) was performed with 
one session (I) as the reference and the data in the other session (II) were transformed 
according to this new set of directions of the largest variance. For illustrative purposes, only 
the first two components accounting for over 70% of the total variance are shown. Apart 
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from the projected two-dimensional feature samples, their means and standard deviations, 
estimated in each class after removing the most noticeable outliers, are depicted. The 
standard deviations presented in the form of ellipses centred at the corresponding means 
were scaled down to enhance the clarity of the illustrations. 
Several relevant observations can be made based on the proposed analysis. Firstly, largely 
overlapping regions of the projected feature space corresponding to different MI classes are 
evident. Secondly, the inter-session shifts of the class means for both left MI and right MI 
groups are strongly manifested in the given data set (c.f. 4a-b). They are indicative of the 
variability effects inherent to BCI as discussed in section 2. Since there is no underlying 
model of these changes and due to their inconsistent nature, reported in a multi-session 
analysis, the issue of uncertainty arises and renders this brain signal pattern recognition 
problem particularly challenging.  
 

 
Fig. 4. The distribution of spectral EEG features in two-dimensional normalised PCs’ space 
with their corresponding class means and scaled standard deviations: a) left and b) right MI 
features in sessions I and II plus within-session feature distribution: c) session I and d) 
session II. 

4.2.2 Feature extraction for on-line BCI 
As discussed in section 4.2, on-line BCI was implemented in continuous mode. In other 
words, EEG features were extracted and classified instantaneously within a trial, which led 
to as many classifications per trial as the number of its even-related data samples 
(considering that the length of the event-related part of a trial in a basket paradigm was 4 s, 
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there were 5001254 =∗ relevant applications of a feature extractor and a classifier). To this 
end, a sliding window approach was adopted within a causal framework. In consequence, 
the window acts as a buffer and introduces a delay with respect to the temporal occurrence 
of relevant MI correlates in the signal examined. The window sizes used in this work were 
identified with a view to compromising the time resolution of BCI control (reactivity) and 
the MI related content of spontaneous EEG activity. The delay was found to be acceptable in 
on-line operation and its effect could only be felt at the trial’s onset. 
Three alternative techniques of spectral analysis were utilised in this study to suit individual 
cases. Similarly as in the earlier study involving discrete classification of entire trials, PSD 
approaches, Welch periodogram and Yule-Walker’s parametric PSD estimation in 
particular, were found to facilitate consistent and robust BCI performance. Additionally, for 
a small proportion of subjects, STFT was demonstrated in off-line preliminary analyses to 
lead to higher CA rates than those reported with PSD techniques. Therefore, the 
identification of an optimal feature type extractor for the on-line use was subject specific. 
The spectral methods just mentioned were employed to extract bandpower information 
from EEGs in the frequency ranges related to the ERD/ERS phenomena. Due to distinct 
temporal scales of signal representation in continuous feature extraction and in a discrete 
approach (with an entire trial being represented as a feature vector), the relation between 
the quantified oscillatory components in the μ and β bands had different characteristics in 
both cases. Although spectral contributions from the two relevant frequency ranges were 
proven in the study reported in section 4.2.1 to provide more discriminative feature 
representation when merged together, in the preliminary off-line simulation of continuous 
BCI it was demonstrated that treating these ERD and ERS correlates separately, as 
independent feature components, led in the clear majority of cases to better classification 
results. Moreover, it was concluded that normalizing the resultant feature vector r (c.f. (5)), 
extracted on a sample-by-sample basis (the window was shifted at the sampling rate, i.e. 
every 8 ms), by its Euclidean length facilitated handling the variance of the signal’s energy.  

 ( )C3 C3 C4 C4
μ β μ β, , ,r r r r=r , (5) 

where C3 (C4)
μ (β)r corresponds to the spectral feature component extracted from the adjusted μ 

(or β band) from the EEG channel C3 (or C4). The instantaneous feature extraction 
procedure is schematically illustrated in Fig. 5. 

4.3 Classification of EEG trials 
Classification constitutes another phase of recognition of brain signal patterns allowing for a 
categorical interpretation of EEG relying on its feature representation. In the context of the 
work reported in this chapter, the aim of BCI classification is to assign signal trials to the 
classes of the associated mental tasks (MIs). This given instance of brain signal pattern 
recognition is dichotomous since an imagination of left hand movement is to be 
distinguished from an imagination of right hand movement. As discussed earlier, the 
problem is challenging mainly due to strong EEG nonstationarity effects manifested even in 
low-dimensional feature spaces. The resultant inter-session variability in the feature 
distributions was demonstrated in section 4.2.1. In consequence, the study on single trial 
classification in discrete mode was aimed at effective dealing with these long-term changes in 
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Fig. 5. Graph illustrating the proposed concept of instantaneous BCI feature extraction and 
classification. 

EEG spectral patterns correlated with MI. A successful method is expected to maintain a 
satisfactory accuracy rate over a few sessions recorded with around one-week break in 
between without the need for frequent inter-session adjustments. The shorter-term within-
trial manifestations are also reported difficult to handle in BCI experiments (Wolpaw et al., 
2002; Vaughan et al., 2003; Sykacek et al., 2004). In this work, they could be observed in the 
study involving instantaneous BCI operation. The intrinsic characteristics of discrete and 
continuous BCI classification are discussed in section 4.3.3. 
In conclusion, the concept of robust brain signal pattern recognition is linked to the key 
issue of uncertainty in a broader sense, as elaborated in section 2. The emphasis is on 
handling its multi-faceted manifestations at the classification stage. In order to address this 
urgent challenge, a novel fuzzy BCI classifier was proposed (c.f. section 4.3.1) and its inter-
session performance was compared to that of more traditional BCI approaches: LDA and 
support vector machines (SVMs) (Cristianini & Shawe-Taylor, 2000) (c.f. section 4.3.2). The 
CA rate was used as an objective measure in this evaluation.  

4.3.1 Fuzzy classification 
As elaborated in section 3, T2FLS framework offers more flexibility in handling uncertain 
information content than its T1 counterpart. It should be emphasised however that in order 
to appropriately exploit the T2FL apparatus for handling uncertainty without sacrificing its 
generalisation capability, special care is required in T2FLS development. Therefore, 
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considerable effort was devoted in this work to devise effective techniques for a fuzzy 
classifier design. For faster computations, IT2FSs were employed in the construction of a 
Mamdani-type rule base (Mendel, 2001) (c.f. section 2). The following template of a fuzzy 
rule was adopted: 

 1 1IF  is  AND...AND  is  THEN  is [ , ]n n left rightX A X A class c c , (6) 

where fuzzy variables 1, ..., nX X  correspond to the fuzzified components of an input feature 
vector r=(r1,…,rn), n is their number and Ã1,…, Ãn denote IT2FSs with uncertain means (c.f. 
Fig. 1a, section 3) that serve as the rule antecedents. C is the centroid of the consequent T2FS 
(in the form of a rectangular T1FS) representing the class that the input feature vector is 
assigned to. As a result, the rule base models uncertainty related to the variability of EEG 
features, as discussed in section 4.2.1 (c.f. Fig. 4), and the vagueness or ambiguity of a crisp 
MI label, i.e. left (associated with numerical value -1) versus right (value 1), c.f. section 2. 
When Ãi’s are replaced by T1FSs and C becomes a crisp centroid of a T1FS, the T2 fuzzy rule 
reduces to the T1 rule format with limited capacity to account for the aforementioned types 
of uncertain information. The input features to both fuzzy classifiers are represented as 
T1FSs (fuzzification) to model stationary uniform noise present in the feature space (with 
standard deviation sfuzz_inp). Gaussian type of FSs was used in the proposed design to 
facilitate gradient-based tuning. Fig. 6 illustratively juxtaposes the T1FL and T2FL rule 
pattern (for one-dimensional input) adopted in the reported study. 
The IT2FLS classifier was developed in a two-stage procedure, inspired by general FLS 
design methodology. Firstly, an initial fuzzy rule base was identified and secondly, its 
parameters were tuned using a global optimisation approach. The design was conducted on 
a so-called calibration data set, split into a validation and a training subset. The final 
evaluation was performed on an unseen test data set. In most cases, the calibration and test 
data sets were taken from independent sessions. 
 

 
Fig. 6. Illustrative comparison of T1FL and T2FL rule patterns.  

An initial fuzzy rule base was identified using a partitioning approach. In other words, the 
input space was divided into regions accounting for the underlying distribution of a 
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training set of EEG features with the main objective to obtain a compact data representation 
that captures their salient characteristics and preserves the inherent input-output 
relationship (class assignments). Thus, a general clustering approach was adopted to 
construct a conventional prototype T1FLS rule base that could be extended to serve as an 
initial T2FLS framework (Herman et al., 2008c). Several clustering methods were examined 
to identify an optimal design strategy. To this end, a simple heuristic for their initial 
evaluation was developed. The resultant cluster validity index was primarily used as a 
criterion for selecting an optimal set of parameters for the initialisation schemes under 
consideration. It was based on the performance of a prototype (untrained) singleton T1FLS 
classifier derived directly from the given cluster structure on the calibration data set without 
any extra parameters, as described later in this section. A final comparative evaluation of the 
initialisation techniques was conducted within the entire design framework, i.e. in 
combination with a parameter tuning phase. In consequence, the CA rates obtained with 
fully trained T1FLSs and with T2FLSs in within-session CV and inter-session classification 
served as a final performance measure. The outcome of this analysis is discussed in section 
5.1. Below, the fuzzy rule base initialisation methods investigated in this work are outlined. 
Firstly, a mapping-constrained agglomerative (MCA) clustering algorithm was employed to 
reinforce the consistency in the mapping from the input to the output space. It has been 
proven to be robust in the presence of noise and outliers that can affect the input-output 
relationship (Wang & Lee, 2002). However, due to the excessive susceptibility of an original 
single-pass (sp) MCA to variations in the input data ordering, a heuristic modification was 
proposed to alleviate this problem. As a result, a multi-pass (mp) MCA algorithm was 
developed (Herman et al., 2008c). It relied on iterating the original spMCA several times 
(controlled by a parameter) with the core input data appended with the data points 
representing means of clusters found in the previous iteration. The core data were shuffled 
at each iteration. Moreover, for every iteration the record of the cluster validity index, 
reported on a separate validation set, serving as a performance measure of the given cluster 
structure was kept. The maximum of this measure determined the iteration that resulted in 
the selected cluster structure. The underlying concept of this approach is presented in the 
form of pseudocode in Fig. 7. 
It is worth emphasising that the MCA provides information not only about the cluster 
position in the multi-dimensional input space (the cluster mean, mINP) but also determines 
its spread in terms of the standard deviation estimate, sINP (independently along different 
dimensions). Moreover, the assignment of a class label to each cluster is straightforward due 
to the consistency in the input-output mapping promoted by the algorithm.  
Secondly, the well-established fuzzy c-means (FCM) clustering was examined in this work 
due to its wide applicability in fuzzy rule base identification (Bezdek, 1981). Although the 
algorithm requires the prior assumption of the number of clusters, its identification was 
automated using the above-mentioned cluster validity index as a selection criterion. The 
input data space was clustered resulting in the specified number of cluster centres mINP. The 
clusters’ width vectors, sINP, were composed of the one-dimensional standard deviations, 
sINP(i), i = 1,…, n, calculated independently for each feature vector component over the subset 
of the input data points with the membership degree in the corresponding clusters above a 
certain threshold (controlled by a parameter). Since FCM does not explicitly enforce the 
consistency in mapping between the input and the output space, the class assignments were 
uniformly randomised in the interval corresponding to class labels, i.e. [-1,1]. 
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The IT2FLS classifier was developed in a two-stage procedure, inspired by general FLS 
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evaluation was performed on an unseen test data set. In most cases, the calibration and test 
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Fig. 6. Illustrative comparison of T1FL and T2FL rule patterns.  

An initial fuzzy rule base was identified using a partitioning approach. In other words, the 
input space was divided into regions accounting for the underlying distribution of a 

Computational Intelligence Approaches to Brain Signal Pattern Recognition 

 

105 

training set of EEG features with the main objective to obtain a compact data representation 
that captures their salient characteristics and preserves the inherent input-output 
relationship (class assignments). Thus, a general clustering approach was adopted to 
construct a conventional prototype T1FLS rule base that could be extended to serve as an 
initial T2FLS framework (Herman et al., 2008c). Several clustering methods were examined 
to identify an optimal design strategy. To this end, a simple heuristic for their initial 
evaluation was developed. The resultant cluster validity index was primarily used as a 
criterion for selecting an optimal set of parameters for the initialisation schemes under 
consideration. It was based on the performance of a prototype (untrained) singleton T1FLS 
classifier derived directly from the given cluster structure on the calibration data set without 
any extra parameters, as described later in this section. A final comparative evaluation of the 
initialisation techniques was conducted within the entire design framework, i.e. in 
combination with a parameter tuning phase. In consequence, the CA rates obtained with 
fully trained T1FLSs and with T2FLSs in within-session CV and inter-session classification 
served as a final performance measure. The outcome of this analysis is discussed in section 
5.1. Below, the fuzzy rule base initialisation methods investigated in this work are outlined. 
Firstly, a mapping-constrained agglomerative (MCA) clustering algorithm was employed to 
reinforce the consistency in the mapping from the input to the output space. It has been 
proven to be robust in the presence of noise and outliers that can affect the input-output 
relationship (Wang & Lee, 2002). However, due to the excessive susceptibility of an original 
single-pass (sp) MCA to variations in the input data ordering, a heuristic modification was 
proposed to alleviate this problem. As a result, a multi-pass (mp) MCA algorithm was 
developed (Herman et al., 2008c). It relied on iterating the original spMCA several times 
(controlled by a parameter) with the core input data appended with the data points 
representing means of clusters found in the previous iteration. The core data were shuffled 
at each iteration. Moreover, for every iteration the record of the cluster validity index, 
reported on a separate validation set, serving as a performance measure of the given cluster 
structure was kept. The maximum of this measure determined the iteration that resulted in 
the selected cluster structure. The underlying concept of this approach is presented in the 
form of pseudocode in Fig. 7. 
It is worth emphasising that the MCA provides information not only about the cluster 
position in the multi-dimensional input space (the cluster mean, mINP) but also determines 
its spread in terms of the standard deviation estimate, sINP (independently along different 
dimensions). Moreover, the assignment of a class label to each cluster is straightforward due 
to the consistency in the input-output mapping promoted by the algorithm.  
Secondly, the well-established fuzzy c-means (FCM) clustering was examined in this work 
due to its wide applicability in fuzzy rule base identification (Bezdek, 1981). Although the 
algorithm requires the prior assumption of the number of clusters, its identification was 
automated using the above-mentioned cluster validity index as a selection criterion. The 
input data space was clustered resulting in the specified number of cluster centres mINP. The 
clusters’ width vectors, sINP, were composed of the one-dimensional standard deviations, 
sINP(i), i = 1,…, n, calculated independently for each feature vector component over the subset 
of the input data points with the membership degree in the corresponding clusters above a 
certain threshold (controlled by a parameter). Since FCM does not explicitly enforce the 
consistency in mapping between the input and the output space, the class assignments were 
uniformly randomised in the interval corresponding to class labels, i.e. [-1,1]. 
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Fig. 7. Pseudocode of the modified MCA algorithm – mpMCA. 

Thirdly, subtractive clustering (Chiu et al., 1994) as a computationally effective 
implementation of mountain clustering, originally proposed by Yager and Filev (Yager & 
Filev, 1994), was employed in this study. The selection of cluster centres was based on the 
density of data points (feature vectors). The density-related measure assumed the form of an 
iterative combination (for subsequent clusters) of radial basis functions. Analogously to the 
FCM approach, a certain neighbourhood of each resultant cluster centre was specified to 
determine the membership status of the clustered data points and then to estimate the 
corresponding one-dimensional standard deviations. The size of the neighbourhood was 
controlled by an extra parameter, which facilitated adjustments of the size of overlap 
between the clusters. The output space assignments were made randomly for the same 
reasons as in the FCM-based scheme. 
A prototype singleton T1FLS rule base was straightforwardly derived from the resultant 
clusters in the input space and their class assignments. To this end, each multi-dimensional 
cluster was projected on single input dimensions (feature vector components) to form a 
fuzzy rule. Its antecedents were modelled using Gaussian T1FSs, whose means, m(i), and 
widths, s(i), i = 1,..,n, were determined as the projections of the cluster’s mINP and sINP, 
respectively. The consequent was defined in the output space as centroid centred at the 
associated class label. For the purpose of easy visualisation, an example of the projection of a 
two-dimensional cluster of data belonging to class c on the axes corresponding to respective 
feature vector components (rj and rk) and the resulting T1 fuzzy rule are illustrated in Fig. 8. 
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Fig. 8. A two-dimensional cluster in the feature space and the corresponding prototype T1 
fuzzy rule. 

After the identification of the prototype T1FLS, it was extended to serve as a framework for 
an IT2FLS. As presented above, each T1FL rule was described in terms of its antecedent FSs 
Ai (i=1,..,n), parameterised with vector m=(m(1),…,m(n)) of their means and vector 
s=(s(1),…,s(n)) of their standard deviations, and a crisp consequent, c. The uncertainty bounds 
of the FSs defining the antecedent and the consequent part of an IT2FL rule were expressed 
using additional quantities, Δm and Δc, respectively (c.f. Fig. 6). The resultant formulae for 
IT2FL rule induction from the classical T1FL rule prototype are as follows:  

 1 2 ,
.left rightc c c c c cΔ Δ

= − = +
= − = +

m m m m m mΔ Δ
 (7) 

Vectors m1 and m2 refer to the lower and the upper bound of the uncertain means (c.f. Fig. 
1a) in the antecedent IT2FSs and cleft, cright define the consequent centroid. The standard 
deviations, s, of the prototype T1FSs were kept the same for the resultant IT2FSs. 
Furthermore, it was found that the constrained parameterization of Δm and sfuzz_inp (used in 
the description of the fuzzified inputs, c.f. Fig. 6) with multiplicative factors dm and a in (8) 
and (9), respectively, led to a more computationally efficient parameter selection procedure. 

 dm=Δm s , (8) 

 a=fuzz_inp rs σ , (9) 

where σr is a vector of the standard deviations of the input features r in a training set. 
The parameters dm, Δc and a, assumed to be homogeneous for the entire rule base, 
determined the initial bounds of the uncertainty captured in the system. They were selected 
in combination with a training process, described below, with the aim of maximising the 
performance of the resultant IT2FLS classifier evaluated using a CV approach on the 
selected calibration data set (within-session classification).  
In the second stage of the IT2FLS classifier design, the quantities initialised in the earlier 
step, m1, m2, s, cleft, cright and sfuzz_inp, were tuned for every rule. A global nonlinear 
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where σr is a vector of the standard deviations of the input features r in a training set. 
The parameters dm, Δc and a, assumed to be homogeneous for the entire rule base, 
determined the initial bounds of the uncertainty captured in the system. They were selected 
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optimisation approach was adopted to this end. The learning algorithm was based on the 
concept of steepest gradient descent with the mean square error loss function, L, defined in 
(10). In the training phase, a continuous defuzzified output, y, of the fuzzy classifier was 
taken into account whereas in the recall process, simple thresholding was applied to obtain 
a dichotomous class label. 

 2

1
,

1 ( )
M

j j
jM

L y label
=

= −∑  (10) 

where M is the number of training trials (feature vectors) and labelj is the desired class label 
(-1 or 1) assigned to the j-th trial (feature vector).   
A heuristic training strategy for IT2FLS classifiers was proposed in this work with a view to 
enhancing their generalisation properties and speeding up the convergence of nonlinear 
optimisation. It is composed of three stages and combines two approaches known in the 
domain of IT2FLSs: the conventional steepest gradient descent algorithm developed by 
Liang and Mendel (Liang & Mendel, 2000; Mendel, 2001), and the method based on the 
dynamic optimal rate theorem (Wang et al., 2004). This hybridisation was demonstrated to 
result in more robust and effective search for an optimal configuration of the system 
parameters than the conventional Liang and Mendel’s approach in the given brain signal 
pattern recognition problem. The three stages were conducted as follows (Herman et al., 
2008c): 
 

Stage I)  
The conventional steepest descent was applied with learning rates being reduced by a 
constant factor every 10 epochs. Identification of their initial values was found to play a 
significant role in the entire optimisation process and it was thus incorporated in the 
parameter selection scheme. A validation data set was utilised to implement an early 
stopping criterion. This facilitated an informed decision about terminating the optimisation 
process and led to the enhancement of the classifier’s generalisation capabilities. 
 

Stage II) 
An algorithm based on the dynamic optimal rate theorem was applied to accelerate the 
optimisation of the parameters of the fuzzy rule consequents. In particular, the combination 
of sample-by-sample training of the standard deviations sfuzz_inp and the antecedent 
parameters m1, m2 and s with a batch update of the consequents cleft and cright was adopted. 
This parameter learning phase was terminated based on the same early stopping criterion as 
in the first stage. 
 

Stage III) 
The T2FLS’s parameters were fine tuned using an algorithm similar to that of the first stage 
with far lower learning rates and the reduced number of epochs. The updated system 
parameters were accepted only if the classifier’s performance in terms of the CA rate 
improved in comparison with the outcome of the second stage. Otherwise, the parameter 
configuration was rolled back.  
In order to conduct a fair comparative analysis, an analogous learning algorithm was 
developed for T1FLS classifiers. As mentioned earlier, the results of the examination of the 
presented design variants are summarised in section 5.1. 
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4.3.2 Popular BCI classifiers 
In a comparative evaluation, more conventional binary classifiers widely used in EEG-based 
BCI were verified. In the first place, parameter-less LDA, which is Bayes optimal classifier 
for normally distributed features in each of two classes with the same covariance matrix 
(Bishop, 1995), was employed. Although the condition mentioned is often violated (it was 
not met for any of the data sets considered in this study), LDA is commonly perceived as an 
effective, easy to use and computationally cheap classification method in BCI work 
(Vaughan et al., 2003; McFarland et al., 1997). In consequence, it has been proven to perform 
well even with relatively small data sets. SVM classifiers adopt a different approach to 
identifying a class separating hyperplane in dichotomous problems. Unlike in LDA, where 
the discriminative boundary is determined as a result of maximising the ratio of inter-class 
variance to the intra-class variance, SVM hyperplane provides the largest margin between 
classes without taking any second-order statistics into account (Cristianini & Shawe-Taylor, 
2000). This intuitively facilitates generalisation and from an algorithmic perspective, it 
requires solving a quadratic programming problem with a unique solution. A soft version of 
SVM (Kecman, 2001) is more popular in real-world problems involving discrimination in 
feature spaces with overlapping class specific regions. It allows for misclassification of a 
proportion of data points in a certain neighbourhood of the decision boundary, where 
overlapping is likely to occur. The size of the neighbourhood is controlled by a 
corresponding regularisation parameter that decides the trade-off between the training error 
and the size of the margin between classes. The core assets of SVM classifiers stem from 
their generalisation power, wide availability of computationally effective approaches to 
quadratic programming even in the presence of large data sets, and a kernel machine-based 
structure allowing for straightforward transformation of inherently linear classifiers into 
nonlinear ones. This latter property, which arises out of implicit nonlinear mapping 
determined by the so-called kernel function (Cristianini & Shawe-Taylor, 2000), is often 
exploited in practical applications. In this study, a Gaussian kernel with homogeneous 
variance was examined due to its successful application in other BCI studies, eg. (Garrett et 
al., 2005). For clarity, linear SVM (without a nonlinear kernel) is referred to throughout this 
chapter as SVMlin whereas SVM with the Gaussian kernel – SVMGauss. Finally, the relevance 
of parameter selection for optimal SVM performance should be emphasised. In this work, 
the regularisation constant for SVMlin and the kernel parameter with the regularisation 
constant for SVMGauss were identified in a simple off-line grid search based on the 
performance of the resultant classifiers. It was assessed using a CV estimate of the 
generalisation error, which was proven reliable in previous studies, eg. (Herman et al., 
2008a). 

4.3.3 Discrete vs. continuous classification 
As emphasised in section 4.2, the main methodological difference between discrete and 
continuous classification of MI related EEG spectral patterns lies in the design of a feature 
extraction unit. The classification framework remains essentially the same with the structure 
determined by the format of a feature vector and the parameter setup reflecting the 
temporal characteristics of the features to be discriminated. In discrete mode, the number of 
classifier’s inputs was dependent on the number of feature extraction windows, nwin (c.f. (4) 
and (5) in section 4.2.1). Since a feature vector described an entire signal trial, off-line 
handling of the resultant training data set was rather straightforward. This is more intricate 
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optimisation approach was adopted to this end. The learning algorithm was based on the 
concept of steepest gradient descent with the mean square error loss function, L, defined in 
(10). In the training phase, a continuous defuzzified output, y, of the fuzzy classifier was 
taken into account whereas in the recall process, simple thresholding was applied to obtain 
a dichotomous class label. 
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dynamic optimal rate theorem (Wang et al., 2004). This hybridisation was demonstrated to 
result in more robust and effective search for an optimal configuration of the system 
parameters than the conventional Liang and Mendel’s approach in the given brain signal 
pattern recognition problem. The three stages were conducted as follows (Herman et al., 
2008c): 
 

Stage I)  
The conventional steepest descent was applied with learning rates being reduced by a 
constant factor every 10 epochs. Identification of their initial values was found to play a 
significant role in the entire optimisation process and it was thus incorporated in the 
parameter selection scheme. A validation data set was utilised to implement an early 
stopping criterion. This facilitated an informed decision about terminating the optimisation 
process and led to the enhancement of the classifier’s generalisation capabilities. 
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An algorithm based on the dynamic optimal rate theorem was applied to accelerate the 
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with far lower learning rates and the reduced number of epochs. The updated system 
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improved in comparison with the outcome of the second stage. Otherwise, the parameter 
configuration was rolled back.  
In order to conduct a fair comparative analysis, an analogous learning algorithm was 
developed for T1FLS classifiers. As mentioned earlier, the results of the examination of the 
presented design variants are summarised in section 5.1. 
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In a comparative evaluation, more conventional binary classifiers widely used in EEG-based 
BCI were verified. In the first place, parameter-less LDA, which is Bayes optimal classifier 
for normally distributed features in each of two classes with the same covariance matrix 
(Bishop, 1995), was employed. Although the condition mentioned is often violated (it was 
not met for any of the data sets considered in this study), LDA is commonly perceived as an 
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structure allowing for straightforward transformation of inherently linear classifiers into 
nonlinear ones. This latter property, which arises out of implicit nonlinear mapping 
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of parameter selection for optimal SVM performance should be emphasised. In this work, 
the regularisation constant for SVMlin and the kernel parameter with the regularisation 
constant for SVMGauss were identified in a simple off-line grid search based on the 
performance of the resultant classifiers. It was assessed using a CV estimate of the 
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As emphasised in section 4.2, the main methodological difference between discrete and 
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in continuous classification mode. The dimensionality of the feature space and thus of the 
classifier’s input was set to four at every time point (separate correlates of µ and β for C3 
and C4 channels, c.f. section 4.2.2) within an event-related part of the trial. Consequently, in 
off-line calibration of the continuous BCI classifiers, there were as many data sets as many 
data points within a trial (a data set is defined here as a collection of feature vectors for all 
trials). In other words, there could be a new classifier set up at each time point. Since it was 
not considered to be a practical option, a single classifier to be applied in subsequent BCI 
sessions was derived using the most separable set of training features extracted at the so-
called optimum classification time point (c.f. Fig. 9a). It was expected that the classifier’s 
generalisation capability should secure robust performance over the entire trial’s length. 
Discriminative properties of the given feature sets were quantified based on the average CA 
obtained in CV analysis. The trained BCI classifier was then continuously applied at every 
sample point in trials in the following sessions.  
 

 
Fig. 9. Instance CA time courses obtained in a) off-line training and b) on-line BCI evaluation 
for subject SIII. Maximum CA and the optimum classification time within the event-related 
part of the trial are marked as mCA and CT, respectively. 

Instantaneous mode also renders the evaluation process and performance assessment more 
complex than in discrete classification of entire EEG trials. Application of a continuous 
classifier in an experimental session does not result in a single CA rate but allows for 
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generating a CA time course. There are several measures commonly employed in the 
quantification of performance of continuous BCIs such as information transfer rate or 
mutual information (Wolpaw et al., 2002). Here, the focus is on a pattern recognition aspect 
and thus CA plays a key role. In particular, the resultant CA time course was quantified by 
the maximum CA (mCA) rate within the event-related segment of a trial. An example pair 
of CA time courses, the first one obtained in the CV-based evaluation on a training session 
and the other one reported on-line in the subsequent test session is depicted in Fig. 9a-b. 
With regard to evaluation of an on-line BCI system it is important to realise that any 
comparative study has to involve retrospective off-line simulation of alternative BCIs since 
only one closed-feedback system (neurofeedback provider) can be used on-line at a time. To 
this end, the data recorded during on-line experiments with the original BCI (configured 
with an IT2FLS classifier) was exploited in the post-hoc examination of other BCI classifiers 
(c.f. section 4.3.2) in the way that ensured full correspondence in terms of the data handling 
strategy. Still, it should be noted that a comparative analysis of methods tested on-line and 
off-line has intrinsic limitations. An on-line BCI is part of a closed feedback loop and is thus 
coupled with the changes in the on-going MI related EEG activity due to the brain plasticity 
phenomenon (Herman et al., 2008b). This interaction renders on-line BCI classification 
particularly challenging. In short-term perspective, especially for subjects with little or no 
prior BCI experience, on-line BCI systems can either benefit from a facilitatory role of 
feedback in subject’s learning or suffer from inhibitory feedback effects (Herman et al., 
2008b). A retrospective off-line examination of BCI methods does not allow for such 
demanding verification. In spite of that, off-line evaluation still provides a valuable 
indicator of the potential of the methods being scrutinised to deal with a range of problems 
inherent to BCI. In this work, it served as the reference for demonstrating uncertainty 
handling capabilities of the proposed on-line T2FLS classification framework. 

5. Results and discussion 
5.1 Evaluation of fuzzy classifier design variants  
The aim of the extensive examination of several different design variants for T1FLS and 
IT2FLS was to identify an effective strategy for devising robust fuzzy classifiers with strong 
uncertainty handling and generalisation capabilities needed in BCI applications. Due to the 
pattern recognition focus of the presented work and dichotomous nature of the BCI 
classification, CA was meant to serve as the key comparative criterion. Other aspects such as 
computational time or sensitivity to initial parameters were assessed qualitatively and were 
also taken into account. The analysis involving all possible combinations of the proposed 
clustering-based initialisation methods and the learning algorithms (c.f. section 4.3.1), 
conventional steepest descent and the enhanced hybrid learning scheme, was performed off-
line in discrete classification mode on arbitrarily chosen initial calibration data sets (c.f. 
section 4.2). In particular, FLSs were set up using each of the design strategies and verified 
in two types of experimental tests. Firstly, within-session CV (five-fold) study was 
conducted to illustrate generalisation properties of the developed classifiers and secondly, 
session-to-session performance transfer was examined, i.e. the classifiers were calibrated 
including selection of design parameters (c.f. section 4.3.1) on data from one session and 
tested in single pass on unseen data from the other subsequent one. The inter-session 
classification helped to gain insight into the issue of dealing with long-term variability 
effects, highlighted in this chapter. 
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in continuous classification mode. The dimensionality of the feature space and thus of the 
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data points within a trial (a data set is defined here as a collection of feature vectors for all 
trials). In other words, there could be a new classifier set up at each time point. Since it was 
not considered to be a practical option, a single classifier to be applied in subsequent BCI 
sessions was derived using the most separable set of training features extracted at the so-
called optimum classification time point (c.f. Fig. 9a). It was expected that the classifier’s 
generalisation capability should secure robust performance over the entire trial’s length. 
Discriminative properties of the given feature sets were quantified based on the average CA 
obtained in CV analysis. The trained BCI classifier was then continuously applied at every 
sample point in trials in the following sessions.  
 

 
Fig. 9. Instance CA time courses obtained in a) off-line training and b) on-line BCI evaluation 
for subject SIII. Maximum CA and the optimum classification time within the event-related 
part of the trial are marked as mCA and CT, respectively. 

Instantaneous mode also renders the evaluation process and performance assessment more 
complex than in discrete classification of entire EEG trials. Application of a continuous 
classifier in an experimental session does not result in a single CA rate but allows for 
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generating a CA time course. There are several measures commonly employed in the 
quantification of performance of continuous BCIs such as information transfer rate or 
mutual information (Wolpaw et al., 2002). Here, the focus is on a pattern recognition aspect 
and thus CA plays a key role. In particular, the resultant CA time course was quantified by 
the maximum CA (mCA) rate within the event-related segment of a trial. An example pair 
of CA time courses, the first one obtained in the CV-based evaluation on a training session 
and the other one reported on-line in the subsequent test session is depicted in Fig. 9a-b. 
With regard to evaluation of an on-line BCI system it is important to realise that any 
comparative study has to involve retrospective off-line simulation of alternative BCIs since 
only one closed-feedback system (neurofeedback provider) can be used on-line at a time. To 
this end, the data recorded during on-line experiments with the original BCI (configured 
with an IT2FLS classifier) was exploited in the post-hoc examination of other BCI classifiers 
(c.f. section 4.3.2) in the way that ensured full correspondence in terms of the data handling 
strategy. Still, it should be noted that a comparative analysis of methods tested on-line and 
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indicator of the potential of the methods being scrutinised to deal with a range of problems 
inherent to BCI. In this work, it served as the reference for demonstrating uncertainty 
handling capabilities of the proposed on-line T2FLS classification framework. 

5. Results and discussion 
5.1 Evaluation of fuzzy classifier design variants  
The aim of the extensive examination of several different design variants for T1FLS and 
IT2FLS was to identify an effective strategy for devising robust fuzzy classifiers with strong 
uncertainty handling and generalisation capabilities needed in BCI applications. Due to the 
pattern recognition focus of the presented work and dichotomous nature of the BCI 
classification, CA was meant to serve as the key comparative criterion. Other aspects such as 
computational time or sensitivity to initial parameters were assessed qualitatively and were 
also taken into account. The analysis involving all possible combinations of the proposed 
clustering-based initialisation methods and the learning algorithms (c.f. section 4.3.1), 
conventional steepest descent and the enhanced hybrid learning scheme, was performed off-
line in discrete classification mode on arbitrarily chosen initial calibration data sets (c.f. 
section 4.2). In particular, FLSs were set up using each of the design strategies and verified 
in two types of experimental tests. Firstly, within-session CV (five-fold) study was 
conducted to illustrate generalisation properties of the developed classifiers and secondly, 
session-to-session performance transfer was examined, i.e. the classifiers were calibrated 
including selection of design parameters (c.f. section 4.3.1) on data from one session and 
tested in single pass on unseen data from the other subsequent one. The inter-session 
classification helped to gain insight into the issue of dealing with long-term variability 
effects, highlighted in this chapter. 
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Despite rather insignificant differences in the classification performance reported with all 
the design schemes, the comparative evaluation still allowed for several valuable 
observations to be made. They motivated the final selection of an optimal approach to 
devising IT2FLS classifiers utilised in this work and were less informative in the case of 
T1FLS.  
In the beginning, the proposed mpMCA-based initialisation was examined with the two 
parameter tuning approaches. As expected, it significantly alleviated the problem of 
inconsistency in the cluster structure due to random input data ordering, which manifested 
itself when the original spMCA was applied. The mpMCA heuristic also led to the 
improved classification performance of the resultant classifier, particularly IT2FLS in the 
session-to-session setup. As far as a training algorithm is considered, faster and steadier 
convergence was reported with the proposed heuristic learning strategy when the fuzzy 
rule base was initialised using mpMCA (Herman et al., 2008c). 
In the next stage, the mpMCA approach was juxtaposed with the other fuzzy structure 
identification approaches under consideration. At first, a paramount role of the three-stage 
parameter tuning algorithm was reported in the development of FLSs initialised with the 
FCM-based technique. This heuristic optimisation approach stimulated a considerable 
increase of the inter-session CA rates obtained with the resultant classifiers and demonstrated 
the improved convergence when compared to the conventional steepest descent method. Less 
pronounced effects of its application were observed when the subtractive clustering-based 
initialisation was employed. Still, both FCM and subtractive clustering approaches rendered 
the IT2FLS’s performance comparable (insignificantly worse) to that reported with the 
mpMCA-based fuzzy rule base identification. The differences were even more negligible in 
the domain of T1FLS. However, what turned out to play a decisive role was the fact that the 
mpMCA initialisation contributed to the faster convergence of the enhanced gradient 
descent training, and from the perspective of the derived FLS, mpMCA was found to be less 
susceptible to its initial parameters, especially considering the strong reliance of FCM upon 
the number of clusters to be found. In consequence, the combination of the mpMCA 
initialisation scheme and the proposed three-stage gradient descent-based learning 
algorithm was identified in this study as the most robust approach to fuzzy classifier design, 
IT2FLS in particular (Herman et al., 2008c). It was employed in the full evaluation of the 
proposed fuzzy pattern recognition methods on multi-session EEG data sets in discrete 
(section 5.2) and continuous (section 5.3) BCI classification. 

5.2 Discrete classification  
The same types of experimental tests were conducted to analyse the performance of BCI 
classification frameworks in discrete mode as in the examination of the proposed FLS design 
variants (c.f. section 5.1). At first, within-session CV was carried out on training sets to 
estimate the overall efficacy of the classifiers and to select optimal configurations of the 
system parameters. The main objective of the analysis however was to study the IT2FLS 
classifier’s performance over longer periods across different recording sessions (they were 
obtained with one-week gaps in between), which were expected to reflect a broad range of 
non-stationary variability effects in the underlying EEG. To this end, four consecutive 
sessions were arbitrarily selected for each subject, except for the Graz data set including 
only two-session recordings, and a strategy for multi-session comparative evaluation 
involving single-pass tests was devised. In particular, using the initial parameters identified 
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in the CV analysis the classifiers were calibrated on a training session data set and tested in 
one pass over multiple subsequent sessions. The overall results in the single pass training-
test experimental setup were grouped into three main categories reflecting a temporal 
relationship between the training and the test session. Next, they were averaged within 
these categories resulting in three mean CAs for every subject. The first category was 
generated from three training-test pairs, session I–II, II–III and III–IV. The second one 
consisted of the test CAs from experiments involving session pairs: I–III and II–IV, and the 
third category with the largest temporal gap between the training and the test data sets was 
composed of one CA result obtained with a classifier trained on session I and tested on 
session IV. This configuration of training-test session pairs is conceptually illustrated in Fig. 
10. These collective CAs were then averaged within each category over subjects. The inter-
subject means and their standard deviations are presented in Table 1 for every classifier 
examined in this study, i.e. IT2FLS, T1FLS, LDA, SVMlin and SVMGauss. In addition, the CV 
results averaged over three training sessions and subjects are also included in Table 1, in the 
column ‘CV’. 
 

 
Fig. 10.  An illustrative description of the multi-session experimental design for four-session 
data (lines connect training sessions with the corresponding test sessions). 
 

Training 
Session Test-Cat. I Test-Cat. II Test-Cat. III 

mean CA ±  std.dev. [%] Classifier 

CV Single pass training-test evaluation 
IT2FLS 71.2 ± 8.4 73.4 ± 9.0 64.8 ± 6.7 65.4 ± 6.7 
T1FLS 70.4 ± 8.3 71.8 ± 9.1 63.6 ± 6.3 63.9 ± 7.5 
LDA 71.5 ± 8.4 67.5 ± 9.3 61.8 ± 8.0 60.7 ± 7.1 

SVMlin 71.1 ± 9.3 69.8 ± 9.9 61.7 ± 7.5 60.3 ± 6.4 
SVMGauss 71.0 ± 9.3 69.7 ± 9.8 61.8 ± 7.0 60.4 ±6.9 

Table 1. Comparative analysis of the fuzzy rule based classifiers, i.e. T1FLS and IT2FLS, 
LDA and SVMs: linear (SVMlin) and with Gaussian kernel (SVMGauss) in terms of the mean 
CA rates obtained off-line in the multi-session setup with discrete classification. The mean 
values were calculated across subjects and averaged within given test categories. The 
standard deviations reflect inter-subject variability (Herman et al., 2008c). 

The results in Table I were analysed using one-way ANOVA with repeated measures to test 
the significance of the differences in the classifiers’ performance independently in each 
category. The null hypothesis could not be rejected for CV results so the focus was on the 
single pass test CA rates, which reflect the capability of the classifiers to effectively handle 
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Despite rather insignificant differences in the classification performance reported with all 
the design schemes, the comparative evaluation still allowed for several valuable 
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susceptible to its initial parameters, especially considering the strong reliance of FCM upon 
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IT2FLS in particular (Herman et al., 2008c). It was employed in the full evaluation of the 
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classifier’s performance over longer periods across different recording sessions (they were 
obtained with one-week gaps in between), which were expected to reflect a broad range of 
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in the CV analysis the classifiers were calibrated on a training session data set and tested in 
one pass over multiple subsequent sessions. The overall results in the single pass training-
test experimental setup were grouped into three main categories reflecting a temporal 
relationship between the training and the test session. Next, they were averaged within 
these categories resulting in three mean CAs for every subject. The first category was 
generated from three training-test pairs, session I–II, II–III and III–IV. The second one 
consisted of the test CAs from experiments involving session pairs: I–III and II–IV, and the 
third category with the largest temporal gap between the training and the test data sets was 
composed of one CA result obtained with a classifier trained on session I and tested on 
session IV. This configuration of training-test session pairs is conceptually illustrated in Fig. 
10. These collective CAs were then averaged within each category over subjects. The inter-
subject means and their standard deviations are presented in Table 1 for every classifier 
examined in this study, i.e. IT2FLS, T1FLS, LDA, SVMlin and SVMGauss. In addition, the CV 
results averaged over three training sessions and subjects are also included in Table 1, in the 
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Table 1. Comparative analysis of the fuzzy rule based classifiers, i.e. T1FLS and IT2FLS, 
LDA and SVMs: linear (SVMlin) and with Gaussian kernel (SVMGauss) in terms of the mean 
CA rates obtained off-line in the multi-session setup with discrete classification. The mean 
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The results in Table I were analysed using one-way ANOVA with repeated measures to test 
the significance of the differences in the classifiers’ performance independently in each 
category. The null hypothesis could not be rejected for CV results so the focus was on the 
single pass test CA rates, which reflect the capability of the classifiers to effectively handle 
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the inherent inter-session variability of the MI induced EEG patterns. The ANOVA test 
carried out on these sets of results revealed statistically significant (p<0.05) differences in the 
classifiers’ performances. The post test comparison was conducted using Tukey’s honestly 
significant difference criterion (at the significance level of α=0.05) (Maxwell & Delaney, 
2004). It showed that IT2FLS outperformed LDA and SVM in every test category, from I to 
III, whereas T1FLS delivered significantly higher CA rates than LDA only in the first 
category, i.e. when the classifiers were trained on the session directly preceding the test 
session. 
Although the difference between the mean CA rates obtained with IT2FLS and T1FLS was 
not found statistically significant, the superior trend of the IT2FLS-based approach was 
observed consistently for every category of the presented results across all subjects 
considered in this work. Overall, the analysis demonstrated the potential of the designed 
IT2FLS in offering enhanced robustness against the inter-session uncertainty effects in MI 
induced brain phenomena reflected in EEG, especially when compared to common BCI 
methods.  

5.3 Continuous classification and on-line BCI 
As discussed in section 4.3.3, the evaluation of the real-time performance of the IT2FLS 
classifier embedded in the on-line BCI system was accompanied by a comparative off-line 
study involving other BCI classifiers applied post hoc in continuous mode. The original on-
line study was conducted on six subjects performing MI tasks in the ISRC BCI setup over ten 
sessions (see section 4.1). Still, only four or five sessions when particular subjects showed 
some reasonable level of BCI control via neurofeedback mechanism are reported here. A 
strategy for off-line calibration and selection of a reliable BCI system configuration for on-
line application was devised individually for each subject. The objective was to maintain a 
given on-line BCI setup, particularly the IT2FLS in use, over the longest possible time 
provided that its real-time performance was satisfactory. Otherwise, the classifier was re-
trained and an optimal model was selected off-line using the most recent session data as a 
design (training) data set in the way described in section 4.3.3 (involving within-session CV-
based estimate of generalisation error and the identification of the optimal classification time 
within a trial). This procedure of occasional (every few sessions) calibration of the BCI, with 
emphasis on the embedded IT2FLS classifier, was aimed at delivering the best possible on-
line BCI performance (Herman et al., 2008b). More specifically, the maximum recognition 
rate in each session was of main concern (c.f. Fig. 9 and section 4.3.3) as it was directly 
relevant to the desirable effect of the biofeedback facilitating real-time BCI operation and 
enhancing the consistency of the EEG patterns correlated with the brain activity underlying 
MI generation. 
With regard to the retrospective simulation of a continuous BCI with the other classifiers 
including T1FLS and the classical methods described in section 4.3.2, the combination of 
training and test data sets was made analogous to that adopted individually for each subject 
in on-line experiments. The performance was assessed based on the examination of the 
resultant CA time courses, as described in section 4.3.3 (c.f. Fig. 9b). In consequence, 
depending on the subject, four or five mCA rates are considered here as a result of single-
pass test evaluation (on-line for IT2FLS and off-line for the rest of the classifiers). Their 
average is illustrated for every subject in Fig. 11. The mean values across all six subjects are 
then presented in Table 2. 
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Table 2. The average mCA rates obtained in the comparative study with the classifiers 
evaluated off-line, i.e. T1FLS, LDA, SVMlin, SVMGauss, and IT2FLSs applied on-line. The mean 
values were calculated across all subjects and respective test sessions. The standard 
deviations reflect inter-subject variability (Herman et al., 2008b). 
 

 
Fig. 11. The average mCA rates (maximum values in the CA time courses) obtained for 
every subject across BCI test sessions with LDA, SVMlin, SVMGauss, T1FLS in off-line and 
with IT2FLS in on-line mode (Herman et al., 2008b). 

Similarly as in the study on discrete classification of MI induced EEG spectral patterns, the 
experimental results were analysed in the framework of one-way ANOVA with repeated 
measures. It facilitated accounting for the inter-subject variability. The test conducted at a 
significance level of α=0.05 allowed for rejecting the null hypothesis about the equality of 
the grand average of the mCAs reported with different classifiers. The Tukey-Kramer post-
ANOVA multiple comparison test demonstrated that the IT2FLS classifier produced overall 
better classification performance than the other classifiers except SVMGauss, which is 
generally known for its robustness in the presence of incoherency, noise and nonlinearity 
effects in the feature space (Cristianini & Shawe-Taylor, 2000; Kecman, 2001). Still, a 
complementary planned pair-wise comparison between IT2FLS and SVMGauss with t-statistic 
and the Bonferroni adjustment helped in manifesting the statistically significant difference 
between the two mCA means. Fig. 11 illustrates the consistency of the IT2FLS approach 
across different subjects in delivering superior mCA rates even if the overall degree of the 
enhancement was rather modest. Despite the limitations of such comparative evaluation of 

Average performance in 
test sessions Classifier 

mean mCA ±  std.dev. [%] 
IT2FLS (online) 69.2 ± 4.6 

T1FLS 66.9 ± 4.3 
LDA 66.0 ± 4.4 

SVMlin 66.8 ± 4.9 
SVMGauss 67.1 ± 4.5 



 Pattern Recognition Techniques, Technology and Applications 

 

114 

the inherent inter-session variability of the MI induced EEG patterns. The ANOVA test 
carried out on these sets of results revealed statistically significant (p<0.05) differences in the 
classifiers’ performances. The post test comparison was conducted using Tukey’s honestly 
significant difference criterion (at the significance level of α=0.05) (Maxwell & Delaney, 
2004). It showed that IT2FLS outperformed LDA and SVM in every test category, from I to 
III, whereas T1FLS delivered significantly higher CA rates than LDA only in the first 
category, i.e. when the classifiers were trained on the session directly preceding the test 
session. 
Although the difference between the mean CA rates obtained with IT2FLS and T1FLS was 
not found statistically significant, the superior trend of the IT2FLS-based approach was 
observed consistently for every category of the presented results across all subjects 
considered in this work. Overall, the analysis demonstrated the potential of the designed 
IT2FLS in offering enhanced robustness against the inter-session uncertainty effects in MI 
induced brain phenomena reflected in EEG, especially when compared to common BCI 
methods.  

5.3 Continuous classification and on-line BCI 
As discussed in section 4.3.3, the evaluation of the real-time performance of the IT2FLS 
classifier embedded in the on-line BCI system was accompanied by a comparative off-line 
study involving other BCI classifiers applied post hoc in continuous mode. The original on-
line study was conducted on six subjects performing MI tasks in the ISRC BCI setup over ten 
sessions (see section 4.1). Still, only four or five sessions when particular subjects showed 
some reasonable level of BCI control via neurofeedback mechanism are reported here. A 
strategy for off-line calibration and selection of a reliable BCI system configuration for on-
line application was devised individually for each subject. The objective was to maintain a 
given on-line BCI setup, particularly the IT2FLS in use, over the longest possible time 
provided that its real-time performance was satisfactory. Otherwise, the classifier was re-
trained and an optimal model was selected off-line using the most recent session data as a 
design (training) data set in the way described in section 4.3.3 (involving within-session CV-
based estimate of generalisation error and the identification of the optimal classification time 
within a trial). This procedure of occasional (every few sessions) calibration of the BCI, with 
emphasis on the embedded IT2FLS classifier, was aimed at delivering the best possible on-
line BCI performance (Herman et al., 2008b). More specifically, the maximum recognition 
rate in each session was of main concern (c.f. Fig. 9 and section 4.3.3) as it was directly 
relevant to the desirable effect of the biofeedback facilitating real-time BCI operation and 
enhancing the consistency of the EEG patterns correlated with the brain activity underlying 
MI generation. 
With regard to the retrospective simulation of a continuous BCI with the other classifiers 
including T1FLS and the classical methods described in section 4.3.2, the combination of 
training and test data sets was made analogous to that adopted individually for each subject 
in on-line experiments. The performance was assessed based on the examination of the 
resultant CA time courses, as described in section 4.3.3 (c.f. Fig. 9b). In consequence, 
depending on the subject, four or five mCA rates are considered here as a result of single-
pass test evaluation (on-line for IT2FLS and off-line for the rest of the classifiers). Their 
average is illustrated for every subject in Fig. 11. The mean values across all six subjects are 
then presented in Table 2. 

Computational Intelligence Approaches to Brain Signal Pattern Recognition 

 

115 

 

Table 2. The average mCA rates obtained in the comparative study with the classifiers 
evaluated off-line, i.e. T1FLS, LDA, SVMlin, SVMGauss, and IT2FLSs applied on-line. The mean 
values were calculated across all subjects and respective test sessions. The standard 
deviations reflect inter-subject variability (Herman et al., 2008b). 
 

 
Fig. 11. The average mCA rates (maximum values in the CA time courses) obtained for 
every subject across BCI test sessions with LDA, SVMlin, SVMGauss, T1FLS in off-line and 
with IT2FLS in on-line mode (Herman et al., 2008b). 

Similarly as in the study on discrete classification of MI induced EEG spectral patterns, the 
experimental results were analysed in the framework of one-way ANOVA with repeated 
measures. It facilitated accounting for the inter-subject variability. The test conducted at a 
significance level of α=0.05 allowed for rejecting the null hypothesis about the equality of 
the grand average of the mCAs reported with different classifiers. The Tukey-Kramer post-
ANOVA multiple comparison test demonstrated that the IT2FLS classifier produced overall 
better classification performance than the other classifiers except SVMGauss, which is 
generally known for its robustness in the presence of incoherency, noise and nonlinearity 
effects in the feature space (Cristianini & Shawe-Taylor, 2000; Kecman, 2001). Still, a 
complementary planned pair-wise comparison between IT2FLS and SVMGauss with t-statistic 
and the Bonferroni adjustment helped in manifesting the statistically significant difference 
between the two mCA means. Fig. 11 illustrates the consistency of the IT2FLS approach 
across different subjects in delivering superior mCA rates even if the overall degree of the 
enhancement was rather modest. Despite the limitations of such comparative evaluation of 

Average performance in 
test sessions Classifier 

mean mCA ±  std.dev. [%] 
IT2FLS (online) 69.2 ± 4.6 

T1FLS 66.9 ± 4.3 
LDA 66.0 ± 4.4 

SVMlin 66.8 ± 4.9 
SVMGauss 67.1 ± 4.5 



 Pattern Recognition Techniques, Technology and Applications 

 

116 

BCI methods applied on-line and those simulated off-line, as discussed in section 4.3.3, the 
results obtained in this study reinforce the conclusions drawn in the previous section 
regarding the potential of the IT2FLS-based classification framework to account for intrinsic 
uncertainty manifestations more effectively than the other more common BCI classifiers. It 
should be noted that unlike discrete single trial classification, continuous within trial 
analysis allows for examining BCI performance at different temporal scales – not only in the 
presence of inter-session variability effects.  
With regard to the juxtaposition of a conventional T1FLS and a new IT2FLS, it should be 
reminded that the observed superiority trends of the latter method could not be proven 
statistically in the earlier study reported in section 5.2. However, in continuous recognition 
of MI induced EEG spectral patterns, the ANOVA test demonstrated a significant advantage 
of IT2FLS in terms of the average mCA rate. This outcome substantiates the fact that a 
conventional T1 uncertainty handling framework, unlike the enhanced IT2FLS, does not 
provide a sufficiently flexible mechanism to account for a range of variability effects 
observed in MI related EEG at various temporal levels. At the same time, the computational 
time involved in the IT2FLS optimisation was comparable to that of the T1FLS classifier due 
to rather small rule base sizes being used. 

6. Summary, conclusions and future work 
The major theme of this chapter has been centred on the demanding nature of brain signal 
pattern recognition in the presence of uncertain information intrinsically associated with the 
biological data source. Specifically, the problem of classification of EEG correlates of MI 
related brain phenomena has been studied in detail due to its direct relevance to the fast 
growing field of BCI. Uncertainty effects in EEG-based BCI pose a particularly serious 
challenge due to their strong manifestations and multi-faceted characteristics. As suggested 
in the BCI literature and confirmed in the work reported in this chapter, these effects are 
reflected in the nonstationary changes in the underlying spatio-temporal dynamics of the 
spectral EEG correlates. Long-term variability have been the main focus of this research due to 
its particularly adverse influence on inter-session classification performance. In consequence, 
the research efforts have been concentrated on creating a robust pattern recognition 
framework capable of more effective handling of the uncertainty manifestations to perform 
reliable brain signal analysis for BCI purposes. Two instances of a general MI related EEG 
classification problem have been examined in this chapter – firstly, discrete (single) 
classification of entire trials and secondly, continuous discrimination of MI induced EEG 
patterns in a multi-session setup for multiple subjects. The nature of relevant spectral EEG 
correlates is similar in both cases as they arise out of the same neurophysiological 
phenomena. However, feature extraction approaches were devised to suit different 
temporal characteristics of the given problem instances. 
A fuzzy rule base classifier proposed here constitutes the core of the developed framework 
for robust brain signal pattern recognition. The emphasis in this chapter has been put on 
T2FLS methodology recently enjoying a considerably surge of interest. The extended 
definition of T2FSs provides more flexibility in modelling inherently uncertain phenomena. 
In order to effectively exploit this enhanced framework for handling variability effects and 
boost its generalisation capability, the need to devise a suitable design strategy has been 
identified and addressed in this chapter. In particular, incremental modifications and 
hybridisation of existing initialisation and optimisation techniques have resulted in an 
effective design scheme for IT2FLS classifiers.  
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The outcome of both empirical studies, conducted with discrete and continuous pattern 
recognition framework, has led to the overall conclusion that the proposed IT2FLS method 
lends itself as a more robust alternative to the state-of-the-art BCI classification approaches 
in the presence of intrinsic variability of the spectral EEG correlates of MI at different 
temporal scales. The IT2FLS classifier’s capacity to embrace inter-trial variations in the EEG 
feature patterns over a training session and encapsulate them within the FOU for use on 
subsequent test sessions is considered to be of particular relevance in this regard (Herman et 
al., 2008c). It should be noted that the applicability of the proposed classification framework 
in real-world BCI situations was successfully verified in demanding on-line tests, which 
reflected the potential of IT2FLS in generating consistent and contingent real-time 
neurofeedback responses correlated with subjects’ motor imaginations (Herman et al., 
2008b). Consequently, the IT2FLS-based BCI has recently been used in a preliminary study 
on post-stroke rehabilitation. 
In addition, it is worth mentioning that the inherent transparency of a fuzzy inference 
system was exploited in original work in an attempt to enhance the understanding of MI 
classification rules derived from the underlying data. Due to a purely qualitative nature of 
these investigations, they are not reported in this chapter. It suffices to say that they led to 
the identification of subject specific discriminative trends in spectro-spatio-temporal EEG 
patterns characteristic of each of the MI classes under consideration. This interpretative 
approach is still in its early stage. It is aimed to constrain the rule base analysis to gain 
valuable insight into more general (for a population of subjects) electrophysiological 
correlates of MI induced brain phenomena through the prism of the qualitative knowledge 
extracted in the classifier induction process. This may add a new dimension to machine 
learning-based BCI studies. 
The work presented in this chapter is by no means completed. It marks a crucial 
development and experimental stage, still leaving room for further advancements. In the 
first place, it is suggested that a general problem of initialising uncertainty bounds for 
antecedents and consequents of IT2FLSs based on a priori knowledge, if available, could be 
investigated. In this work, where the fuzzy classifier was applied to MI induced brain signal 
pattern recognition problems, these bounds were adjusted to account for the inter-trial 
variability within a BCI session granted that uncertainty associated with session-to-session 
transfer was in the corresponding range. In this regard, a more systematic approach to 
quantifying or estimating the effective scope of T2FL uncertainty in data would be more 
beneficial. In a broader perspective, it could be paired with investigations into alternative 
methods of an initial IT2FLS structure identification. Research efforts should be then 
concentrated on the development of new clustering algorithms in the T2FL domain, which 
would also facilitate the initialisation process of the IT2FLS’s uncertainty bounds. 
From a more theoretical perspective, it is felt that more insight into the formalism of the 
underlying T2FL apparatus in comparison with well-established probabilistic approaches is 
needed. Investigations along these lines would pave the way for a more specific description 
and quantification of uncertainty effects and thus facilitate more informed IT2FLS design. 
This work could be inspired by the existing links between a probabilistic and a possibilistic 
perspective of modelling uncertain information.  
In the longer perspective it is envisaged that an application of a generalised T2FLS (unlike 
simplified IT2FLS methodology employed in this work) in MI related EEG pattern 
recognition can result in further performance enhancement. It should be realised however 
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BCI methods applied on-line and those simulated off-line, as discussed in section 4.3.3, the 
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regarding the potential of the IT2FLS-based classification framework to account for intrinsic 
uncertainty manifestations more effectively than the other more common BCI classifiers. It 
should be noted that unlike discrete single trial classification, continuous within trial 
analysis allows for examining BCI performance at different temporal scales – not only in the 
presence of inter-session variability effects.  
With regard to the juxtaposition of a conventional T1FLS and a new IT2FLS, it should be 
reminded that the observed superiority trends of the latter method could not be proven 
statistically in the earlier study reported in section 5.2. However, in continuous recognition 
of MI induced EEG spectral patterns, the ANOVA test demonstrated a significant advantage 
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phenomena. However, feature extraction approaches were devised to suit different 
temporal characteristics of the given problem instances. 
A fuzzy rule base classifier proposed here constitutes the core of the developed framework 
for robust brain signal pattern recognition. The emphasis in this chapter has been put on 
T2FLS methodology recently enjoying a considerably surge of interest. The extended 
definition of T2FSs provides more flexibility in modelling inherently uncertain phenomena. 
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boost its generalisation capability, the need to devise a suitable design strategy has been 
identified and addressed in this chapter. In particular, incremental modifications and 
hybridisation of existing initialisation and optimisation techniques have resulted in an 
effective design scheme for IT2FLS classifiers.  

Computational Intelligence Approaches to Brain Signal Pattern Recognition 

 

117 

The outcome of both empirical studies, conducted with discrete and continuous pattern 
recognition framework, has led to the overall conclusion that the proposed IT2FLS method 
lends itself as a more robust alternative to the state-of-the-art BCI classification approaches 
in the presence of intrinsic variability of the spectral EEG correlates of MI at different 
temporal scales. The IT2FLS classifier’s capacity to embrace inter-trial variations in the EEG 
feature patterns over a training session and encapsulate them within the FOU for use on 
subsequent test sessions is considered to be of particular relevance in this regard (Herman et 
al., 2008c). It should be noted that the applicability of the proposed classification framework 
in real-world BCI situations was successfully verified in demanding on-line tests, which 
reflected the potential of IT2FLS in generating consistent and contingent real-time 
neurofeedback responses correlated with subjects’ motor imaginations (Herman et al., 
2008b). Consequently, the IT2FLS-based BCI has recently been used in a preliminary study 
on post-stroke rehabilitation. 
In addition, it is worth mentioning that the inherent transparency of a fuzzy inference 
system was exploited in original work in an attempt to enhance the understanding of MI 
classification rules derived from the underlying data. Due to a purely qualitative nature of 
these investigations, they are not reported in this chapter. It suffices to say that they led to 
the identification of subject specific discriminative trends in spectro-spatio-temporal EEG 
patterns characteristic of each of the MI classes under consideration. This interpretative 
approach is still in its early stage. It is aimed to constrain the rule base analysis to gain 
valuable insight into more general (for a population of subjects) electrophysiological 
correlates of MI induced brain phenomena through the prism of the qualitative knowledge 
extracted in the classifier induction process. This may add a new dimension to machine 
learning-based BCI studies. 
The work presented in this chapter is by no means completed. It marks a crucial 
development and experimental stage, still leaving room for further advancements. In the 
first place, it is suggested that a general problem of initialising uncertainty bounds for 
antecedents and consequents of IT2FLSs based on a priori knowledge, if available, could be 
investigated. In this work, where the fuzzy classifier was applied to MI induced brain signal 
pattern recognition problems, these bounds were adjusted to account for the inter-trial 
variability within a BCI session granted that uncertainty associated with session-to-session 
transfer was in the corresponding range. In this regard, a more systematic approach to 
quantifying or estimating the effective scope of T2FL uncertainty in data would be more 
beneficial. In a broader perspective, it could be paired with investigations into alternative 
methods of an initial IT2FLS structure identification. Research efforts should be then 
concentrated on the development of new clustering algorithms in the T2FL domain, which 
would also facilitate the initialisation process of the IT2FLS’s uncertainty bounds. 
From a more theoretical perspective, it is felt that more insight into the formalism of the 
underlying T2FL apparatus in comparison with well-established probabilistic approaches is 
needed. Investigations along these lines would pave the way for a more specific description 
and quantification of uncertainty effects and thus facilitate more informed IT2FLS design. 
This work could be inspired by the existing links between a probabilistic and a possibilistic 
perspective of modelling uncertain information.  
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that design of generalised T2FLSs involves several serious challenges, starting from a 
selection of initial rule bases expressed in terms of generalised T2FSs and ending with 
heuristic approaches to parameter optimisation. In addition, real-time feasibility is expected 
to be problematic when the resultant T2FLS classifier is applied within a BCI framework. 
Approximate algorithms may be needed in this regard. The starting point and inspiration 
for this work should be the remarkable contribution to the area of generalised T2FL made by 
the research team led by John, e.g. see a review in (John & Coupland, 2007). 
In a broader context, it is envisaged that the integrated framework devised in this work to 
contend with a specific brain signal pattern recognition problem can address a range of 
complex nonstationary biological and physical signals with uncertain spatio-temporal 
characteristics that cannot be handled using a rigorous analytical modelling apparatus. In 
the presence of such highly variable components exhibiting nondeterministic behaviour, 
T2FLS methodology would appear particularly advantageous over other more conventional 
approaches. The proposed data driven design approach would promote then the 
development of a model-free, yet qualitatively interpretable, system for automated analysis 
with a classification output.   
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1. Introduction  
Visual object recognition and tracking require a good resolution of the object to accurately 
model its appearance. In addition, tracking systems must be able to robustly recover moving 
target trajectory, and possibly cope with fast motion and large displacements. Wide angle 
static cameras capture a global view of the scene but they suffer from a lack of resolution in the 
case of a large distance between the objects and the sensor. On the contrary, dynamic sensors 
such as Pan-Tilt-Zoom (PTZ) cameras are controlled to focus on a 3D point in the scene and 
give access to high resolution images by adapting their zoom level. However, when a PTZ 
camera focuses on a target, its very limited field of view makes the tracking difficult. To 
overcome these limitations, hybrid sensor systems composed of a wide angle static camera and 
a dynamic camera can be used. Coupling these two types of sensors enables the exploitation 
of their complementary desired properties while limiting their respective drawbacks. 
Calibration is required to enable information exchange between the two sensors to produce 
collaborative algorithms. The calibration of our system is difficult because of changes of 
both intrinsic (focal length, central point, distortion) and extrinsic (position, orientation) 
parameters of the dynamic sensor during system exploitation. Two approaches for dynamic 
stereo sensor calibration are possible: 
• Strong calibration involves a complete modeling of the system. Intrinsic parameters of 

each camera and extrinsic parameters are estimated. This approach enables the 
projection of 3D points, expressed in the world frame, in 2D points expressed in each 
image frame.  

• Weak calibration does not target to estimate intrinsic or extrinsic parameters. The 
objective is only to estimate the direct relation between pixels of the different sensors. 
From a pixel in the first camera, which is the projection of a given 3D point, the 
calibration gives the projection of the same 3D point to the second camera. In this 
approach, the recovery of 3D point coordinates is not more difficult. 

1.1 The strong calibration approach 
Our system is composed of two cameras observing the same scene (see Fig. 1). 
We denote: 
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1. Introduction  
Visual object recognition and tracking require a good resolution of the object to accurately 
model its appearance. In addition, tracking systems must be able to robustly recover moving 
target trajectory, and possibly cope with fast motion and large displacements. Wide angle 
static cameras capture a global view of the scene but they suffer from a lack of resolution in the 
case of a large distance between the objects and the sensor. On the contrary, dynamic sensors 
such as Pan-Tilt-Zoom (PTZ) cameras are controlled to focus on a 3D point in the scene and 
give access to high resolution images by adapting their zoom level. However, when a PTZ 
camera focuses on a target, its very limited field of view makes the tracking difficult. To 
overcome these limitations, hybrid sensor systems composed of a wide angle static camera and 
a dynamic camera can be used. Coupling these two types of sensors enables the exploitation 
of their complementary desired properties while limiting their respective drawbacks. 
Calibration is required to enable information exchange between the two sensors to produce 
collaborative algorithms. The calibration of our system is difficult because of changes of 
both intrinsic (focal length, central point, distortion) and extrinsic (position, orientation) 
parameters of the dynamic sensor during system exploitation. Two approaches for dynamic 
stereo sensor calibration are possible: 
• Strong calibration involves a complete modeling of the system. Intrinsic parameters of 

each camera and extrinsic parameters are estimated. This approach enables the 
projection of 3D points, expressed in the world frame, in 2D points expressed in each 
image frame.  

• Weak calibration does not target to estimate intrinsic or extrinsic parameters. The 
objective is only to estimate the direct relation between pixels of the different sensors. 
From a pixel in the first camera, which is the projection of a given 3D point, the 
calibration gives the projection of the same 3D point to the second camera. In this 
approach, the recovery of 3D point coordinates is not more difficult. 

1.1 The strong calibration approach 
Our system is composed of two cameras observing the same scene (see Fig. 1). 
We denote: 
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• wP  a 3D point of the scene. The 3D coordinates of wP are expressed in the world 
reference frame wR . 

• 
sIP the projection of wP in the image sI from the static sensor. The 2D coordinates of 

sIP are expressed in the image frame 
sIR   

• 
dIP the projection of wP  in the image dI  from the dynamic sensor. The 2D coordinates 

of 
dIP are expressed in the image frame

dIR .  
 

 
Fig. 1. Vision system and geometric relations. 

The strong calibration enables the computation of the coordinates of 
sIP and 

dIP from the 

3D coordinates of wP . Reciprocally, the 3D coordinates of wP can be inferred from the 
coordinates of 

sIP and 
dIP  (triangulation). The calibration process consists in estimating the 

transformation matrices 
sIw RRM → from the world frame wR to the image frame

sIR of the 

static sensor and
dIw RRM → from the world frame wR to the image frame

dIR of the dynamic 

sensor. 
In the next section, we present methods for the calibration of the static sensor. Then, we 
present the calibration of the dynamic sensor following the same objectives as the static 
sensor calibration, but with its specific constraint. The third section is dedicated to solutions 
to gather the two sensors in the same world frame. 
Static camera calibration 
The pin-hole camera model is a usually used to represent image formation for standard 
camera. This model supposes that all light rays converge through a point sC called the 
optical center (see Fig. 2). The focal length f represents the distance from the optical center 
to the image plane. The optical axis is defined by the point sC  and is orthogonal to the 
image plane. The principal point O  is defined as the intersection of the optical axis with the 
image plane. The 3D world is projected on the image plane following a perspective 
transformation.  

Automatic Calibration of Hybrid Dynamic Vision System for High Resolution Object Tracking 

 

123 

The calibration of the static sensor consists in estimating the transformation matrix 

sIw RRM → which is composed of the extrinsic transformation 
sCw RRM →  from the world 

frame to the camera frame
sCR and the intrinsic transformation from the camera frame

sCR to 

the image frame
sIR .  

 
Fig. 2. The pinhole camera model for image formation.  

sCw RRM → is composed of a rotation, denoted R , and a translation, denoted t . The 

transformation between wP and csP is described as follows:  
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As proposed in (Horaud & Monga, 1995), the transformation
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It supposes that rows and columns of the sensors are orthogonal. The parameters uk  and 

vk  are respectively horizontal and vertical scale factors (expressed in pixels per length unit), 

0u  and 0v  are the coordinates of the principal point O . These parameters are called 
intrinsic parameters. 
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The calibration of the static sensor consists in estimating the transformation matrix 
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frame to the camera frame
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Furthermore, optical distortions must be taken into account with real cameras. With 
standard cameras, two parameters are required to model radial and tangential distortion by 
polynomial functions (Lavest & Rives, 2003). 
A standard approach to solve equation (3) consists in estimating both intrinsic and extrinsic 
camera parameters from the position of a known pattern (see Fig. 3). The first step of the 
calibration procedure deals with the accurate detection of pattern features on the calibration 
pattern. Several types of features can be used: cross (Peuchot, 1994), center of ellipse 
(Lavest et al., 1998; Brand & Mohr, 1994) and other techniques (Blaszka & Deriche, 1995). 
The extracted features serve as inputs of a non linear optimization process where the 
criterion to minimize is generally the sum of quadratic errors measured between the pattern 
features and their re-projection using the estimated camera model. 
 

 
Fig. 3. Examples of calibration patterns. 
Dynamic camera calibration 
Geometric calibration of a dynamic sensor is much more complex than a standard camera 
one. Indeed, most of the proposed methods suppose a simple cinematic model (Fig. 4) 
where the rotation axes are orthogonal and centered on the optical axis (Barreto et al., 1999; 
Basu & Ravi, 1997; Collins & Tsin, 1999; Fry et al., 2000; Horaud et al., 2006; Woo & Capson, 
2000).  
Under this assumption, the camera geometric model can be represented by the following 
equation: 

 wRRxyRRI PMRRMP
dCwdIdCd →→=  (4) 

where xR  represents the pan rotation matrix and yR  the tilt rotation matrix.  
 

 
Fig. 4. Simplified cinematic model of a dynamic camera (Davis & Chen, 2003). The rotation 
axes (pan and tilt) are centered on the optical axis. 

Standard dynamic cameras do not respect the constraint of rotation axes centered on the 
optical center because it is not compliant with low cost mechanic production. Indeed, 
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rotation mechanisms are independent for pan and tilt. Furthermore, there is the motion of 
the optical center during zoom changes which makes this assumption unrealistic. 
The modeling of standard mechanisms requires the introduction of an additive degree of 
freedom in the command equation (5). Davis and Chen (Davis & Chen, 2003) proposed a 
general formulation for this equation, which was extended later in (Jain et al., 2006). 
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wRRxxxyyyRRI

PyxMP
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=
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where xR  (resp. yR ) represents the rotation matrix in pan (resp. tilt), xt  (resp. yt ) 
represents the horizontal (resp. vertical) translation of the optical center. Λ represents the 
intrinsic and extrinsic parameters of the dynamic camera. 
  

 
Fig. 5. Generalized cinematic model of the dynamic camera (Davis & Chen, 2003). Pan and 
tilt motions are represented by arrows and modeled as a rotation around a random 3D 
direction.  

To determine ( )yxM
dIw RR ,,Λ→ , a finite set of angle pairs ( )ii βα , is regularly sampled in the 

range of the dynamic sensor motion. For each couple ( )ii βα , , the dynamic camera is 
considered as a static camera and it is calibrated with standard techniques. A set of 
correspondences between 3D points and their 2D projection in the image is built. Camera 
parameters are estimated by minimizing the differences between the projection of 3D points 
and their associated observations. Instead of using a passive calibration pattern, the authors 
use an active pattern composed of LEDs (Light-Emitting Diodes) in order to cover the 
complete field of view of the dynamic camera. 
In (Jain et al., 2006), in addition to the calibration of rotation axes in position and orientation, 
correspondences between the camera command angles and the real observed angles are 
searched for. The extended method includes the following complementary steps: 
1. Construction with interpolation of the expressions )(ˆ αα g=  and )(ˆ ββ g= , which link 

the required angles α  and β  with the real ones α̂  and β̂ . 
2. Construction by interpolation of transformations xt  and yt  with respect to zoom: for a 

given number of zoom values, the relative position of the optical center and the rotation 
axis are recorded. 
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rotation mechanisms are independent for pan and tilt. Furthermore, there is the motion of 
the optical center during zoom changes which makes this assumption unrealistic. 
The modeling of standard mechanisms requires the introduction of an additive degree of 
freedom in the command equation (5). Davis and Chen (Davis & Chen, 2003) proposed a 
general formulation for this equation, which was extended later in (Jain et al., 2006). 
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complete field of view of the dynamic camera. 
In (Jain et al., 2006), in addition to the calibration of rotation axes in position and orientation, 
correspondences between the camera command angles and the real observed angles are 
searched for. The extended method includes the following complementary steps: 
1. Construction with interpolation of the expressions )(ˆ αα g=  and )(ˆ ββ g= , which link 

the required angles α  and β  with the real ones α̂  and β̂ . 
2. Construction by interpolation of transformations xt  and yt  with respect to zoom: for a 

given number of zoom values, the relative position of the optical center and the rotation 
axis are recorded. 
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A common reference frame 
When the static and the dynamic cameras are calibrated, a common reference frame 
definition is required. As shown in Fig. 1, the following equations can be derived: 
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The three transformations are dependent:  
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The matrix 
dCsC RRM →  is easily determined from the calibration of each sensor, and can be 

written: 
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where the vector b = ( )tzyx bbb  is the translation between the optical centers of the static 
camera and the dynamic camera. 
Conclusion on strong calibration 
Strong calibration gives a complete geometric modeling of the pair of sensors. Knowing the 
projection model for each sensor and the spatial relation between the sensors, coordinates of 
3D points can be inferred from their observations in images. This property is fundamental to 
recover 3D information for reconstruction purpose. Large orientation angles between the 
two sensors reduce the uncertainty on 3D reconstruction even if it complicates data 
matching between images. 
These methods are based on the use of calibration patterns, and require human intervention. 
This constraint is not compatible with the objective to obtain a system able to adapt itself to 
environment changes, implying automatic re-calibration. 

1.2 Weak calibration of the dynamic stereo sensor 
In many computer vision applications such as object tracking and recognition, a pair of 
cameras with close points of view, make visual information matching possible (see Fig. 6). 
However, in this case, it was shown that the estimation of motion parameters become 
difficult, particularly for small angles in the dynamic sensor (Gardel, 2004). Weak calibration 
solves this problem, because it enables the estimation of the dynamic camera command 
from visual information extracted in static images, without analytic modeling of the vision 
system. The basic idea is to find a mapping between pixels coordinates in the static camera 
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and rotation angles of the dynamic sensor, at a given zoom value. Moreover, weak 
calibration avoids explicit modeling of optical distortions. This approach also implicitly 
encodes the 3D structure of the observed scene. 
 

 
Fig. 6. Weak calibration of a pair of sensors. 

Zhou et al. (Zhou et al., 2003) proposed an implementation of this method. A lookup table 
(LUT) linking a pixel of the static camera with the pan and tilt angles centering the dynamic 
sensor on the corresponding 3D point is built. The LUT is created in two steps:  
• Creation of an LUT for a set of points 

sIP in the static sensor: for each point k
Is

P , the 

dynamic sensor is manually commanded to set the center of the dynamic image on the 
corresponding point k

wP  of the real scene. The k
Is

P coordinates and pan-tilt angles 

( )ii βα ,  are recorded in the LUT.  
• Interpolation for all the pixels of the static sensor: a linear interpolation is done 

between the pixels of the initial set. This linear interpolation is not adapted to handling 
optical distortions and nonlinear 3D geometry variations. The precision is acceptable to 
initialize a person tracking and so set up the PTZ camera, as the object is in the field of 
view, but not to perform pixel matching for intensive sensor collaboration. A denser 
initial set of points could lead to better accuracy, but it would require a considerable 
amount of intervention of the supervisor to control the PTZ.  

More recently, Senior et al. (Senior et al., 2005) presented a calibration system applied to 
people tracking where the slave camera is steered to a pan/tilt position calculated using a 
sequence of transformations, as shown in Fig. 7. Each transformation is learned from 
unlabelled training data, generated by synchronized video tracking of people in each 
camera. The method is based on the assumption that people move on a plane and a 
homography is sufficient to map ground plane points (the location of the feet) in the master 
camera into points in the second camera. The homography H  is learned using the approach 
described in (Stauffer & Tieu, 2003), and the transformation T inferred from the learned 
mapping between pan-tilt angles ( )βα ,  generated on a spiral and the motion of the optical 
center in the dynamic camera compared to the known home position ),( 00 yx where the 
camera correspondence homography was trained. Then, T is estimated by solving a least-
squares linear system TX=Θ where Θ represents all couples ( )βα , , and X all coordinates 
( )0,0 yyxx ii −−  corresponding to ( )βα , . 



 Pattern Recognition Techniques, Technology and Applications 

 

126 

A common reference frame 
When the static and the dynamic cameras are calibrated, a common reference frame 
definition is required. As shown in Fig. 1, the following equations can be derived: 
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The three transformations are dependent:  
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The matrix 
dCsC RRM →  is easily determined from the calibration of each sensor, and can be 

written: 
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where the vector b = ( )tzyx bbb  is the translation between the optical centers of the static 
camera and the dynamic camera. 
Conclusion on strong calibration 
Strong calibration gives a complete geometric modeling of the pair of sensors. Knowing the 
projection model for each sensor and the spatial relation between the sensors, coordinates of 
3D points can be inferred from their observations in images. This property is fundamental to 
recover 3D information for reconstruction purpose. Large orientation angles between the 
two sensors reduce the uncertainty on 3D reconstruction even if it complicates data 
matching between images. 
These methods are based on the use of calibration patterns, and require human intervention. 
This constraint is not compatible with the objective to obtain a system able to adapt itself to 
environment changes, implying automatic re-calibration. 

1.2 Weak calibration of the dynamic stereo sensor 
In many computer vision applications such as object tracking and recognition, a pair of 
cameras with close points of view, make visual information matching possible (see Fig. 6). 
However, in this case, it was shown that the estimation of motion parameters become 
difficult, particularly for small angles in the dynamic sensor (Gardel, 2004). Weak calibration 
solves this problem, because it enables the estimation of the dynamic camera command 
from visual information extracted in static images, without analytic modeling of the vision 
system. The basic idea is to find a mapping between pixels coordinates in the static camera 

Automatic Calibration of Hybrid Dynamic Vision System for High Resolution Object Tracking 

 

127 

and rotation angles of the dynamic sensor, at a given zoom value. Moreover, weak 
calibration avoids explicit modeling of optical distortions. This approach also implicitly 
encodes the 3D structure of the observed scene. 
 

 
Fig. 6. Weak calibration of a pair of sensors. 

Zhou et al. (Zhou et al., 2003) proposed an implementation of this method. A lookup table 
(LUT) linking a pixel of the static camera with the pan and tilt angles centering the dynamic 
sensor on the corresponding 3D point is built. The LUT is created in two steps:  
• Creation of an LUT for a set of points 

sIP in the static sensor: for each point k
Is

P , the 

dynamic sensor is manually commanded to set the center of the dynamic image on the 
corresponding point k
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Is

P coordinates and pan-tilt angles 

( )ii βα ,  are recorded in the LUT.  
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between the pixels of the initial set. This linear interpolation is not adapted to handling 
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initialize a person tracking and so set up the PTZ camera, as the object is in the field of 
view, but not to perform pixel matching for intensive sensor collaboration. A denser 
initial set of points could lead to better accuracy, but it would require a considerable 
amount of intervention of the supervisor to control the PTZ.  

More recently, Senior et al. (Senior et al., 2005) presented a calibration system applied to 
people tracking where the slave camera is steered to a pan/tilt position calculated using a 
sequence of transformations, as shown in Fig. 7. Each transformation is learned from 
unlabelled training data, generated by synchronized video tracking of people in each 
camera. The method is based on the assumption that people move on a plane and a 
homography is sufficient to map ground plane points (the location of the feet) in the master 
camera into points in the second camera. The homography H  is learned using the approach 
described in (Stauffer & Tieu, 2003), and the transformation T inferred from the learned 
mapping between pan-tilt angles ( )βα ,  generated on a spiral and the motion of the optical 
center in the dynamic camera compared to the known home position ),( 00 yx where the 
camera correspondence homography was trained. Then, T is estimated by solving a least-
squares linear system TX=Θ where Θ represents all couples ( )βα , , and X all coordinates 
( )0,0 yyxx ii −−  corresponding to ( )βα , . 
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Fig. 7. Calibration approach proposed in (Senior et al., 2005): sequence of transformations to 
control the PTZ camera PTZ using tracking results in the static image. 

1.3 Discussion on the choice of the calibration method for our vision system 
Our objective is to develop information fusion between the two sensors. We chose to set 
cameras close to each other to facilitate image matching. This option led us to consider weak 
calibration (excluding 3D triangulation possibility). This choice is reinforced by material 
consideration. The low-cost PTZ camera makes strong calibration approach difficult (focal 
length management). 
Weak calibration methods (Zhou et al., 2003; Senior et al., 2005) are manual or require expert 
skill contribution to elaborate learning bases. These constraints are not compatible with an 
autonomous and self calibrating system. We propose in the following a weak calibration 
method that requires no human intervention. Our contribution concerns the two main 
objectives: 
• Automatism and autonomy: the proposed method is based on the construction of an 

LUT which associates pixels of the static sensor with pan-tilt angles to center the 
dynamic sensor on the corresponding scene point. Our approach exploits natural 
information, without using a calibration pattern or any supervised learning base. This 
automatic approach makes re-calibration possible during the system’s life and thus 
drastically reduces the requirement on human intervention. 

• Precision: the approach uses an interpolation function to get a correspondence for all 
pixels of the static image. This approach also takes into account distortions in images. 

2. Learning-based calibration of the hybrid dynamic sensor system 
2.1 Overview of the system 
The hybrid dynamic vision system is composed of a static wide angle camera and a dynamic 
(Pan-Tilt-Zoom) camera. In the following, the images of the static and the PTZ cameras are 
respectively denoted sI and ),,( ZId βα . The parameters ),,( Zβα  represent the pan, tilt, 
and zoom parameters of the PTZ camera.  
The proposed calibration method can be considered as a registration process by visual 
servoing. It consists in learning the mapping ζ , for any zoom level Z , between the pixel 
coordinates ),( ss yx of a point 

sIP  of the static camera and the pan-tilt command angles 

),( ZZ βα to be applied to center the dynamic camera on the corresponding point 
dIP : 

 ),,(),( Zyx ssZZ ζβα =  (9) 

The data registration relies on the extraction of interest points in regions of interest, which are 
visually matched in the two images. The basic assumption for interest point matching is that 
there is locally enough texture information in the image. Moreover, in order to speed up the 
calibration procedure, the mapping between the two cameras is not computed for all pixels 
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sIP in the static camera. Thus, correspondences are searched for in a subset of pixels { }
sIPΓ . 

The complete mapping is then estimated by interpolation and coded in the LUT. 
The learning of the mapping ζ is performed in two main steps: 
1. Automatic sub area registration of the two cameras views for a subset of pre-defined 

positions { }
sIPΓ  by visual servoing, at different zoom values mjZ ,,1,0=  (see Fig. 8) 

        a.     Learn the mapping ζ at the minimum zoom level, denoted 0Z , for pixels in { }
sIPΓ  

        b.     Learn the mapping ζ  at sampled zoom values mjZ ,,1,0= , for pixels in { }
sIPΓ . 

2. Automatic global area matching by interpolation for all pixels of SI  and all values of 
the zoom.  

 

 
Fig. 8. Learning of the mapping ζ between a pixel ),( ss yx in the static camera and the pan-
tilt angles ),( ZZ βα  to be applied in the PTZ camera, at a given zoom level Z  by visual 
servoing. The learning is performed for a subset of pre-defined points. 

2.2 Calibrating the hybrid dynamic sensor system at Z0 
The proposed calibration method can be compared to the Iterative Closest Point (ICP) 
algorithm. The ICP was first presented by Chen and Medioni (Chen & Medioni, 1991) and 
Besl and McKay (Besl & McKay, 1992). This simple algorithm iteratively registers two points 
sets by finding the best rigid transform between the two datasets in the least squares sense.  
In our calibration approach, points sets are registered such that the angular parameters of 
the PTZ camera are optimal, e.g. the point 

dIP corresponding to a considered point
sIP is 

moved to the center dC of the dynamic camera image. 
The algorithm for registering the camera sub areas for points in { }

sIPΓ  at 0Z is summarized 

below: 
1. Start with point 0

sIP  

2. For each point k
I s

P of the selected points subset { }
sIPΓ  

a. Selection of images sI and ),,( ZId βα  to be compared 

Zβ
Zα

0Z

5Z  

Static camera Dynamic camera 

k
sy

k
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Fig. 7. Calibration approach proposed in (Senior et al., 2005): sequence of transformations to 
control the PTZ camera PTZ using tracking results in the static image. 

1.3 Discussion on the choice of the calibration method for our vision system 
Our objective is to develop information fusion between the two sensors. We chose to set 
cameras close to each other to facilitate image matching. This option led us to consider weak 
calibration (excluding 3D triangulation possibility). This choice is reinforced by material 
consideration. The low-cost PTZ camera makes strong calibration approach difficult (focal 
length management). 
Weak calibration methods (Zhou et al., 2003; Senior et al., 2005) are manual or require expert 
skill contribution to elaborate learning bases. These constraints are not compatible with an 
autonomous and self calibrating system. We propose in the following a weak calibration 
method that requires no human intervention. Our contribution concerns the two main 
objectives: 
• Automatism and autonomy: the proposed method is based on the construction of an 

LUT which associates pixels of the static sensor with pan-tilt angles to center the 
dynamic sensor on the corresponding scene point. Our approach exploits natural 
information, without using a calibration pattern or any supervised learning base. This 
automatic approach makes re-calibration possible during the system’s life and thus 
drastically reduces the requirement on human intervention. 

• Precision: the approach uses an interpolation function to get a correspondence for all 
pixels of the static image. This approach also takes into account distortions in images. 

2. Learning-based calibration of the hybrid dynamic sensor system 
2.1 Overview of the system 
The hybrid dynamic vision system is composed of a static wide angle camera and a dynamic 
(Pan-Tilt-Zoom) camera. In the following, the images of the static and the PTZ cameras are 
respectively denoted sI and ),,( ZId βα . The parameters ),,( Zβα  represent the pan, tilt, 
and zoom parameters of the PTZ camera.  
The proposed calibration method can be considered as a registration process by visual 
servoing. It consists in learning the mapping ζ , for any zoom level Z , between the pixel 
coordinates ),( ss yx of a point 

sIP  of the static camera and the pan-tilt command angles 

),( ZZ βα to be applied to center the dynamic camera on the corresponding point 
dIP : 

 ),,(),( Zyx ssZZ ζβα =  (9) 

The data registration relies on the extraction of interest points in regions of interest, which are 
visually matched in the two images. The basic assumption for interest point matching is that 
there is locally enough texture information in the image. Moreover, in order to speed up the 
calibration procedure, the mapping between the two cameras is not computed for all pixels 
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sIP in the static camera. Thus, correspondences are searched for in a subset of pixels { }
sIPΓ . 

The complete mapping is then estimated by interpolation and coded in the LUT. 
The learning of the mapping ζ is performed in two main steps: 
1. Automatic sub area registration of the two cameras views for a subset of pre-defined 

positions { }
sIPΓ  by visual servoing, at different zoom values mjZ ,,1,0=  (see Fig. 8) 

        a.     Learn the mapping ζ at the minimum zoom level, denoted 0Z , for pixels in { }
sIPΓ  

        b.     Learn the mapping ζ  at sampled zoom values mjZ ,,1,0= , for pixels in { }
sIPΓ . 

2. Automatic global area matching by interpolation for all pixels of SI  and all values of 
the zoom.  

 

 
Fig. 8. Learning of the mapping ζ between a pixel ),( ss yx in the static camera and the pan-
tilt angles ),( ZZ βα  to be applied in the PTZ camera, at a given zoom level Z  by visual 
servoing. The learning is performed for a subset of pre-defined points. 

2.2 Calibrating the hybrid dynamic sensor system at Z0 
The proposed calibration method can be compared to the Iterative Closest Point (ICP) 
algorithm. The ICP was first presented by Chen and Medioni (Chen & Medioni, 1991) and 
Besl and McKay (Besl & McKay, 1992). This simple algorithm iteratively registers two points 
sets by finding the best rigid transform between the two datasets in the least squares sense.  
In our calibration approach, points sets are registered such that the angular parameters of 
the PTZ camera are optimal, e.g. the point 

dIP corresponding to a considered point
sIP is 

moved to the center dC of the dynamic camera image. 
The algorithm for registering the camera sub areas for points in { }

sIPΓ  at 0Z is summarized 

below: 
1. Start with point 0
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2. For each point k
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P of the selected points subset { }
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b. Detection and robust matching of interest points between a region of interest sI '  of 

sI around k
I s

P  and ),,( ZId βα  

c. Estimation of the homography H between interest points of sI ' and ),,( ZId βα  

d. Computation of k
Id

P  coordinates in ),,( ZId βα by k
I

k
I sd

PHP ×=  

e. Command of the dynamic camera in order to k
Id

P catch up with dC  

f. Process k
I s

P until the condition ε<− d
k
I CP

d
is reached. Otherwise, the algorithm 

stops after n iterations. 
3. Go to step (2) to process the next point 1+k

I s
P . 

The main difficulty for registering images from a hybrid camera system resides in the 
heterogeneity of image resolutions and a potentially variable visual appearance of objects in 
the two sensors in terms of contrast and color levels for instance.  
The registration procedure thus requires a method for detecting and matching visual 
features robust to scale, rotation, viewpoint, and lightning. In (Mikolajczyk & Schmidt, 
2005), the performance of state-of-the art feature matching methods is evaluated. The Scale-
Invariant Feature Transform (SIFT) (Lowe, 1999) exhibits great performance regarding these 
constraints.  
Because the field of view of the dynamic camera is smaller than that of the static camera, 
interest points are detected in a region of interest sI ' of sI around the point k

I s
P  such that 

sI ' approximately corresponds to the view of the dynamic camera. The estimated 

registration error is taken as the distance in pixels between 
dIP and dC . Consequently, we 

must be able to calculate the coordinates of 
dIP and the transform between a point in the 

static camera and its corresponding point in the dynamic camera. We make the assumption 
that interest points in sI ' and ),,( ZId βα are linked by a homography H , which means that 
interest points are supposed to locally lie in a plane in the 3-D scene. Moreover, the 
distortion in the static camera is considered locally insignificant. The homography H is 
robustly computed with a RANSAC algorithm (Fischler & Bolles, 1981).  
In order to ensure the convergence of 

dIP to dC , we use a proportional controller based on 

the error between the coordinates of 
dIP  and the coordinates of dC so that it minimizes the 

criterion of step (2.f). Assuming that the pan-tilt axes and the coordinate axes are collocated 
for small displacements, we can write: 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δ
Δ

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

→

→

y
x

K
K

x

x

β

α

β
α

0
0

 (10) 

where ( ) dI
T CPyx

d
−=ΔΔ  

During the learning stage, the 3-D scene is assumed to be invariant. As the calibration 
procedure is an off-line process, there is no temporal constraint on the speed of the PTZ 
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command. As system accuracy depends mainly on the mechanics of the dynamic camera, a 
proportional controller is sufficient for calibration purpose. 
  

 
Fig. 9. Calibration of the hybrid sensor system at zoom 0Z by visual servoing on a subset of 
pre-defined points. 

2.3 Initialization of the dynamic camera for a given learning point 
sIP  

Case of the initial point 0
sIP  

The objective of the initialization stage is to obtain a pair of pan-tilt angles such that the 
projection of 0

sIP  and its neighborhood in the dynamic camera are visible in the image dI . 

Starting from the obtained configuration, the dynamic camera parameters are optimized 
through the visual servoing iterations. The initialization algorithm is given here. 
Let d

s

C
IP be the projection of dC in sI . 

Repeat until d
s

C
IP falls in the neighborhood of 0

sIP :  

1. Random generation of a pair of ),( βα values 
2. Selection of current images sI and ),,( ZId βα  to be compared 
3. Detection and robust matching of interest points between sI and ),,( ZId βα  
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b. Detection and robust matching of interest points between a region of interest sI '  of 

sI around k
I s

P  and ),,( ZId βα  

c. Estimation of the homography H between interest points of sI ' and ),,( ZId βα  

d. Computation of k
Id

P  coordinates in ),,( ZId βα by k
I

k
I sd

PHP ×=  

e. Command of the dynamic camera in order to k
Id

P catch up with dC  

f. Process k
I s

P until the condition ε<− d
k
I CP

d
is reached. Otherwise, the algorithm 

stops after n iterations. 
3. Go to step (2) to process the next point 1+k

I s
P . 

The main difficulty for registering images from a hybrid camera system resides in the 
heterogeneity of image resolutions and a potentially variable visual appearance of objects in 
the two sensors in terms of contrast and color levels for instance.  
The registration procedure thus requires a method for detecting and matching visual 
features robust to scale, rotation, viewpoint, and lightning. In (Mikolajczyk & Schmidt, 
2005), the performance of state-of-the art feature matching methods is evaluated. The Scale-
Invariant Feature Transform (SIFT) (Lowe, 1999) exhibits great performance regarding these 
constraints.  
Because the field of view of the dynamic camera is smaller than that of the static camera, 
interest points are detected in a region of interest sI ' of sI around the point k

I s
P  such that 

sI ' approximately corresponds to the view of the dynamic camera. The estimated 

registration error is taken as the distance in pixels between 
dIP and dC . Consequently, we 

must be able to calculate the coordinates of 
dIP and the transform between a point in the 

static camera and its corresponding point in the dynamic camera. We make the assumption 
that interest points in sI ' and ),,( ZId βα are linked by a homography H , which means that 
interest points are supposed to locally lie in a plane in the 3-D scene. Moreover, the 
distortion in the static camera is considered locally insignificant. The homography H is 
robustly computed with a RANSAC algorithm (Fischler & Bolles, 1981).  
In order to ensure the convergence of 

dIP to dC , we use a proportional controller based on 

the error between the coordinates of 
dIP  and the coordinates of dC so that it minimizes the 

criterion of step (2.f). Assuming that the pan-tilt axes and the coordinate axes are collocated 
for small displacements, we can write: 
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where ( ) dI
T CPyx

d
−=ΔΔ  

During the learning stage, the 3-D scene is assumed to be invariant. As the calibration 
procedure is an off-line process, there is no temporal constraint on the speed of the PTZ 
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command. As system accuracy depends mainly on the mechanics of the dynamic camera, a 
proportional controller is sufficient for calibration purpose. 
  

 
Fig. 9. Calibration of the hybrid sensor system at zoom 0Z by visual servoing on a subset of 
pre-defined points. 

2.3 Initialization of the dynamic camera for a given learning point 
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Case of the initial point 0
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The objective of the initialization stage is to obtain a pair of pan-tilt angles such that the 
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4. Computation of homography H between matched interest points in sI and ),,( ZId βα  

5. Computation of dC coordinates in sI  by d
C
I CHP d

s
×=  

Case of pre-defined k
I s

P points 

Let us assume that m grid points { }
mk

k
I s

P
,,1=

 are already learned. To move the dynamic 

camera in the neighborhood of 1+m
I s

P , we estimate the command parameters ),( 11 ++ mm βα  

from previously learned positions. For each independent direction, the closest point to 
1+m

I s
P  is searched for in the learning base, and serves as an initialization for the calibration 

on the current point. 

2.4 Calibrating the hybrid dynamic sensor system at other zoom values 
The presented learning algorithm for the system calibration at the initial zoom Z0 and for a 
subset of pre-defined grid points can be applied at other zoom levels. The only difference is 
the selection of the reference image. At zoom Z0, the image from the static camera is 
compared to the image in the dynamic camera. For other zoom values, the images to be 
registered come from the dynamic sensor at two different zoom levels jk ZZ < . 
Instead of taking k = j - 1, which would incrementally cause an accumulation of calibration 
errors, we select Zk as the minimum zoom value so that the two images can be registered. 
The main steps of the method are: 
1. For each point k

I s
P  

a. Initialize the dynamic camera at a reference zoom refZ (initially set to Z0) using the 
previous learned command ( )βα ,  

b. Select the current image in the dynamic camera, denoted ref
dI  

c. For each zoom value jZ so that maxZZ j <  
i. Apply the zoom Zj 
ii. Detect and match SIFT interest points between ref

dI and j
dI  

iii. Estimate the homography H between interest points in ref
dI and j

dI  

iv. Calculate the center dC of ref
dI in j

dI by d
k
I

CHP j
d

×=  

v. Command the dynamic camera to minimize the distance between cd and 
k
I j

d
P until ε<− d

k
I

CP j
d

 

d. If the previous step fails,  consider 1+← refref ZZ , and go to (1.a) 

2. Go to (1) to process 1+k
I s

P with 0ZZref = . 

2.5 Sampling grid  
The calibration process involves the matching of interest points extracted with the SIFT 
algorithm. A regular sampling of the image in the static sensor does not take into 
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consideration the structure information of the 3D scene. Some of the points of the sampling 
grid might fall in homogeneous regions, with poor texture information, and cause errors in 
estimating the homography between the images. To better exploit the 3D scene structure 
and increase confidence in the learning points, we propose an adaptive sampling strategy 
which selects more points in textured areas while in homogeneous regions, the mapping 
will be interpolated from neighboring grid nodes. For a given image sI , SIFT points are 
detected. Then, a probability density estimated by Parzen windowing (Parzen, 1962) from 
extracted SIFT interest points is associated to every pixel in sI .(see Fig. 10). The size of the 
window is taken to be equal to the size of the region of interest used for calibrating at zoom 

0Z . Two additional constraints are introduced in the sampling method: (i) pixels near the 
image borders are rejected, (ii) the selected learning nodes must be distributed over the 
whole image.   
 

 
Fig. 10. Adaptive grid sampling of the 3-D scene. Left: the source image, middle: image 
representing the probability density of interest points using the Parzen windowing 
technique, right: the obtained sampling grid. The size of red circles represents the 
probability of the node. 

2.6 Extending the LUT by Thin Plate Spline (TPS) interpolation 
The previous learning method enables the determination of a sparse mapping between pixel 
coordinates in the static camera and angular parameters in the dynamic camera, at a limited 
number of grid nodes. In order to extend the LUT to all pixels in sI , an approximation is 
made by using an interpolation function. Thin-Plate-Spline (TPS) interpolation functions, 
first presented by Bookstein (Bookstein, 1989) are a popular solution to interpolating 
problems because they give similar results to direct polynomial interpolation, while 
implicating lower degree polynomials. They also avoid Runge’s phenomenon for higher 
degrees (oscillation between the interpolate points with a large variation). 

3. Results and discussion 
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dIP  coincides with dC . In order to evaluate the 

accuracy of the method, we seek to estimate the error between the actual position of wP  in 

dI  and the sought position, e.g. dC . Because the approach is a weak calibration of the 
camera pair, we have no access to the 3D coordinates of a point in the scene. Consequently, 
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Fig. 10. Adaptive grid sampling of the 3-D scene. Left: the source image, middle: image 
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technique, right: the obtained sampling grid. The size of red circles represents the 
probability of the node. 
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we used a calibration pattern to estimate the exact coordinates of a point. The pattern is a 
black ellipse on a white background which is seen in the two cameras (Fig. 11) and easily 
detectable. The coordinates of the center of gravity of the ellipse was estimated with a 
subpixellic detector after adaptive thresholding. 
 

 
Fig. 11. Illustration of the elliptic calibration pattern (surrounded by red) used to evaluate 
the accuracy of the method of calibration. Left: in the static camera, right: in the dynamic 
camera. 

This calibration method makes a distinction between points learned during the first stage of 
calibration and interpolated points after the second stage. The learned points serve as a basis 
for the interpolation function. We present here and evaluation showing, firstly, the accuracy 
obtained on the learning points, then, taking into account the interpolation stage, the 
accuracy obtained on any point of the scene observed in the static camera. 

3.1 Accuracy of learning stage 
In order to evaluate the accuracy of the visual servoing process during the calibration, we 
position the elliptic pattern on a number of nodes on the grid so that its center of gravity 
coincides with a selected node, and focus the dynamic camera with the learned command 
parameters. The coordinates of the center of gravity of the ellipse in dI  are determined. 
Finally, the spatial error between this center of gravity and dC  is estimated and converted 
to an angular error. 
Two dynamic cameras were tested: 
• AXIS PTZ 213 network camera, 26x optical zoom, coverage: pan 340°, tilt 100° 
• AXIS 233D high-end network dome camera, 35x optical zoom, coverage: pan 360° 

endless, tilt 180°. 
Results for AXIS 233D dome camera  
The grid points that are considered for evaluation are the points surrounded by black in 
Fig. 12. The points are sorted in a list, according to their probability density. The initial 
grid contains 124 nodes. As an example, node 3, 7 and 13 are points where SIFT points 
density is high. Nodes 43 and 61 present a medium density. The point 93 has a very low 
density. 
One can note (Fig. 13)that the neighborhood of points 3 and 7 represents a region of the 
scene that exhibits large variations in the 3D geometry in terms of depth (about ten meters). 
The neighborhood of nodes 13 and 43 presents a greater homogeneity of the 3D geometry of 
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the scene (a depth of several meters). The neighborhood of points 61 and 93 is mainly 
composed of a single plane. 
 

 
Fig. 12. Learning grid for calibration. The points surrounded by black are used in the 
discussion on the accuracy of the calibration. The size of the circles represents the 
probability density of detected SIFT points. 

 

 
 

Fig. 13. Neighborhood of six points in sI selected for evaluation and corresponding to the 
points surrounded by black in Fig. 12. 

The results of the experiments are presented in Table 1. 

Point 3 Point 7 Point 13

Point 43 Point 61 Point 93
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 Point 3 Point 7 Point 13 Point 43 Point 61 Point 93 
Angular error in 

pan (degrees) 0.54° 0.13° 0.13° 0.28° 0.09° 0.6° 

Angular error in 
tilt (degrees) 0.02° 0.3° 0.16° 0.29° 0.08° 0.32° 

Table 1. Angular errors made in the learning stage of the calibration method. 

The method is based on the mapping of interest points that are used to estimate the 
coordinates of the projected grid point in dI .  
The accuracy of the projection estimate depends upon (i) the number of detected and 
matched SIFT points and (ii) the number of points that verify the homography assumption.  
It could be expected that the accuracy of the first points of the grid will be better than the 
last points because of their higher probability values. The neighborhood of points 13 and 43 
and points 61 and 93 are visually similar (Fig.13). The notable difference between the two 
cases is the SIFT point density in the area of interest. One can notice that the accuracy for 
points 43 and 93 is lower than for 13 points and 61 although the environment is similar. This 
result shows the dependence of the calibration accuracy on the 3D scene structure and 
confirms the interest of this adaptive grid sampling. 
However, the accuracy obtained for the points 3 and 7 is much lower than that obtained for 
items 61, while 3 and 7 own a high probability density. The neighborhood of points 3 and 7 
presents sharp disparities in terms of 3D geometry, while the region around point 61 can be 
better approximated by a plane. This second observation is related to the homography 
approximation between 3D points of the scene and images in the two sensors. 
The corridor is somehow an extreme case because of the large depth variation in the scene, 
contrary to an office environment for example. Its specific geometry invalidates in some 
cases the assumption that the learning points locally lie on a plane. Nevertheless, the 
accuracy achieved with our automatic calibration method remains acceptable in the context 
of visual surveillance application such as people tracking. 
Results for AXIS 213 PTZ camera  
The deviation due to zoom in this PTZ camera is very important. This means that at a high 
zoom, a pointed object is no longer entirely visible. For this type of equipment, it is therefore 
necessary to implement the step size for different zooms. Fig. 14 shows the average error 
committed at different zooms for a set of points of the learning grid and its associated 
deviation. One can remark that the errors due to calibration (0.2°-0.3°) are smaller than 
errors inherent to the zoom mechanism of the PTZ camera (0.6°-0.8°). Our calibration 
method therefore enables the compensation of the inaccuracy of the camera mechanism.  

3.2 Accuracy of the interpolation stage 
We evaluate here the overall accuracy of the calibration system, including the interpolation 
step. A number of points distributed over the image and not corresponding to learning 
points are selected (Fig. 15). The points labelled a, b and c are sampled in the middle of 
learned points. The points labelled d and e are chosen in an area with very few learned 
points because of its homogeneity (ground). 
The results of experiments are presented in Table 2. 
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Fig. 14. Results for the accuracy of the method relative to the zoom parameter for the PTZ 
camera. The errors are represented by their mean and standard deviation, the red dots stand 
for the observed deviation due to the zoom mechanism. Left: error in degrees of the 
estimated pan angle, right: error in degrees on the estimated tilt angle. 

 Point a Point b Point c Point d Point e 
Angular error in 

pan (degrees) 0.12° 0.26° 0.13° 0.07° 0.5° 

Angular error in 
tilt (degrees) 0.11° 0.02° 0.16° 0.34° 0.5° 

Table 2. Angular errors for interpolated points. 

 
Fig. 15. Points where the error is measured (blue cross). These points do not belong to the 
learning grid represented by red dots. 
Point a shows the best obtained accuracy, since its neighborhood corresponds to a 3D plane. 
The accuracy of point b and c is lower. In contrast to point a, their neighborhood cannot be 
easily approximated by a plane. As it was previously shown, the planar constraint affects 
the obtained accuracy. This influence is also observable at interpolated points. As expected, 
the accuracy obtained for points taken outside the learning grid (points d and e) is lower. But 
it is still acceptable for people tracking applications.  
A solution to limit errors due to interpolation could be to increase the number of learning 
nodes either by using a finer sampling grid or by artificially enriching the scene with 
textured objects during the off-line calibration process, as shown in Fig. 16. 
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Point a shows the best obtained accuracy, since its neighborhood corresponds to a 3D plane. 
The accuracy of point b and c is lower. In contrast to point a, their neighborhood cannot be 
easily approximated by a plane. As it was previously shown, the planar constraint affects 
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it is still acceptable for people tracking applications.  
A solution to limit errors due to interpolation could be to increase the number of learning 
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Fig. 16. Sampling grid in the case of calibration in a corridor. The first row shows the scene 
observed by the static camera. The second row represents the estimate of the probability 
density of SIFT points using Parzen windows. The last row shows the obtained sampling 
grid (the circles size is related to the probability density of the interest point). 

4. Application to high resolution tracking 
An immediate application of our calibration method is to use the pair of cameras as a 
master-slave system. An object is designated in the static camera and the dynamic camera is 
commanded to focus on it in order to obtain a higher resolution image. Fig. 17 illustrates the 
focalization of the dynamic camera using the LUT obtained by the calibration algorithm, for 
both indoor and outdoor environments. In the outdoor sample, the person and the blue car 
represent approximately 7x7 pixels in the static camera whereas in the PTZ image, they 
occupy 300x270 pixels. The object resolution obtained in the PTZ image is suitable for 
recognition tasks such as gesture recognition, license plate reading or people identification. 
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Fig. 17. Examples illustrating the direct application of our generic calibration method: 
indoor (first row) and outdoor (second row) scenes. The images obtained with the dynamic 
camera (right column) can be used for recognition applications. 
We implemented a more elaborate system to automatically detect and track people in the 
static camera and focus on a particular individual in the dynamic sensor. The detection is 
carried out by robust and efficient statistical background modelling in the static camera, 
based on the approach described in (Chen et al., 2007). Detected blobs are then tracked with 
a Kalman Filter and a simple first order dynamic model, to reinforce spatial coherence of 
blob/target associations over time. Fig. 18 shows a result of tracking a person along a 
corridor with our calibrated hybrid dynamic vision system.  

5. Conclusion 
We have proposed a fast and fully automatic learning-based calibration method that 
determines a complete mapping between the static camera pixels and the command 
parameters of the dynamic camera, for all values of the zoom. The method encodes in an 
LUT the following relations: 
• ( ) ),(, ssZZ yxζβα = , for any pixel ),( ss yx , at a given zoom Z , 

• ( )ZZss yx βαζ ,),( 1−= , for any pair ( )ZZ βα , , at a given zoom Z . 
The only requirement is that the observed scene presents sufficient texture information as 
the methods is based on visual features matching. The obtained results in the corridor 
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Fig. 18. Tracking a person walking in a corridor with a calibrated hybrid dynamic sensor 
system. 
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showed a good accuracy even in the case of high variations of depth in the scene. The 
knowledge of the complete mapping ( )1, −ζζ  relating the two sensors opens new 
perspectives for high resolution tracking and pattern recognition in wide areas by 
collaborative algorithms. 
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1. Introduction      
Multiresolution techniques for image processing have grown very rapidly in the last few 
years (Burt & Adelson, 1983, Heijmans & Goutsias, 2000, Goutsias & Heijmans, 2000). The 
bank-of-filters implementation method, based on the discrete wavelet transform (Heijmans 
& Goutsias, 2000, Mallat, 1989), has been very significant. However, in general, such an 
implementation has limitations due to intensive computation, sequential implementation 
and lack of the geometrical information in the processing. Moreover, the theoretical 
extension from one-dimension to two-dimension is complex (Vaidyanathan, 1993). In this 
paper, we propose a technique based on fuzzy mathematical morphology (Sinha & 
Dougherty, 1992) to implement the multiresolution analysis, which is analogous to discrete 
wavelet transformation, in one- and two-dimensions. Fuzzy morphological operators, 
similar to conventional morphological operators (Sternberg, 1983, Haralick et al., 1987), are 
non-linear well suited for efficient implementation using parallel computing. Moreover, 
they have the ability to extract geometrical information in signals by appropriate 
transformations. Furthermore, our method can be easily extended to two-dimension.  
Rcently, Mallat et al. (Heijmans & Goutsias, 2000, Mallat, 1989) have developed a 
hierarchical structure to decompose and reconstruct a signal based on one-dimensional 
wavelet orthogonal bases. Haralick et al. (Haralick et al., 1989) and Heijmans (Heijmans & 
Toet, 1991) have developed a morphological sampling theory that gives a theoretical basis to 
reconstruct sampled signals. Its application is constrained by sampling conditions. Toet 
(Heijmans & Toet, 1991) has proposed morphological approach using many scales but 
identical shape as structuring function. This approach has   some computational benefits 
due to using the morphological filter instead of the linear filter. Although this method takes 
care of the geometrical information of the processing signal it uses only a single identical 
shape of structure in each scale. This decomposition structure is actually same as Burt and 
Adelsons' (Burt & Adelson, 1983) work which has the problem of 4/3 redundant for a 
sample representation (Kronander).  Cha (Cha & Chaparro, 1999) has proposed a 
morphological wavelet transform which uses conventional morphology and is suitable for 
positive signals. Our objective is to develop a representation taking the advantage of the 
methods reviewed above while overcome some problems they have. 
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In new paper, we propose a fuzzy morphological approach to represent one- and two-
dimensional signals, that extends the geometrical decomposition (Pitas & Venetsanopoulos, 
1990, Pitas, 1991, Pitas & Venetsanopoulos, 1991) of signals using multiple structuring 
functions (Song & Delp, 1990) into the fuzzy morphological frame. We will develop a fuzzy 
morphological interpolator (FMI) which along with a hierarchical pyramid-like structure 
yields a multiresolution signal representation called fuzzy morphological wavelet (FMW). 
Our algorithm is illustrated by means of experiment to one- and two-dimensional signals for 
signal and image analysis and shape recognition. 
In section 2, we briefly review fuzzy mathematical morphology. In section 3, we develop the 
one-dimensional FMW representation. A one-dimensional FMI algorithm is formulated first. 
We consider then fast pyramid implementation for the first and second order interpolators. 
In section 4, we extend our algorithm to two-dimensions. We discuss a two dimensional 
FMI. We then develop a two-dimensional FMW representation based on one-dimensional 
FMI and the two-dimensional FMI. A fast two-dimensional pyramid implementation is also 
derived. In section 5, we apply our representation to data compression and shape 
recognition, demonstrating the advantage of our representation over the commonly used 
Daubechies' wavelet and Fourier descriptor methods. Finally, concluding remarks are given 
in section 6. 

2. Fuzzy mathematical morphology 
Recently, Sinha and Dougherty (Sinha & Dougherty, 1992) proposed to consider fuzzy set 
theory (Zadeh, 1965) instead of the classical set theory to develop mathematical 
morphology. They have in fact, obtained a new approach that considers simultaneously 
binary and multilevel morphology. The concept of “umbra” is not longer needed to develop 
the multilevel case. Morphological operations are then developed on the “fuzzy” fitting so 
that for crisp sets the fitting still remains characterized as either 0 or 1, but fuzzy or no-crisp 
sets it is possible to have a fitting characterized by a value between 0 and 1. The closer to 
unity, the better the fitting of the structuring element. As in the classical morphology, fuzzy 
morphology (Sinha & Dougherty, 1992) also consists in transforming a fuzzy set into 
another.  Such a transformation is performed by means of a fuzzy structuring set containing 
the desired geometric structure.    
If we let X  be the universe of discourse and x  be its generic element, the difference 
between crisp and fuzzy sets is the characteristic function of a crisp set C  is defined as 

}{ 1,0μC:X →  while the membership function [ ]1,0μF:X →    of a fuzzy set F is defined so 
that μF(x)  denotes the degree to which x  belongs to the set F . Among the different 
operations on fuzzy sets (Dubois & Prade, 1980), the following are important that operations 
will be used later: 
a. Complement operation: 

μF(x)1(x)μF c −=  

b. Translation of a fuzzy set F  by a vector  Xv ∈ :  

v)μF(xμT(F;v)(x) −=  

c. Reflection of a set F : 
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x)μF(F(x)μ −=−  

d. Bold union of two sets F and G : 

 [ ]μG(x)F(x),1minμFΔG(x) += μ  (1) 

e. Bold intersection GF∇ : 

 [ ]1)x(G)x(F,0max)x(GF −+=∇ μμμ  (2) 

The degree of fitting of a set A   into a set B  is measured by an inclusion grade operator 
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where Δ  is the bold union operator. According to the above index the degree of subsethood 
of two crisp sets B,A  is either 0 or1, while for fuzzy sets C  and  D  [ ]1,0)D,C(I ∈ . 
Moreover, if DC ⊆  then 1)D,C(I =  and in general 1)D,C(I0 ≤≤ . Using such an index 
(Sinha & Dougherty, 1992) has shown the erosion operation can be defined, and from it the 
dilation, opening and closing operators are obtained. In fact, if )n(f  is a multilevel and  

)n(k  is a structuring element with supports F and K and membership function )n(fμ  and 
)n(kμ   then we have  
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Opening:                                        )n(k)kf()n(kf ⊕= Θμμ  
 

Closing:                                         )n(k)kf()n(kf Θμμ ⊕=•  

3. Fuzzy Morphological Wavelet (FMW) representation 
This representation is analogous to the multiresolution decomposition (Heijmans & 
Goutsias, 2000, Mallat, 1989) and the morphological wavelet  transform (Cha & Chaparro, 
1999). We first introduce a fuzzy morphological interpolation (FMI) and then develop the 
FMW representation 

3.1 Fuzzy morphological   interpolation 
In (Haralick et al., 1989, Heijmans & Toet, 1991), it is  shown that under special conditions a 
morphological sampling theorem permits the reconstruction of sampled signals. We show in 
this section, that under general conditions one can develop an interpolation algorithm to 
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reconstruct sampled membership functions by adapting the fuzzy structuring functions. 
Furthermore, fast computation algorithms can be obtained.  
Let { }1Mn0|nF −≤≤=   be the domain of the given signal )n(f  and its membership 
function )n(fμ , and let { }1Nn0|nK −≤≤=  be the domain of the fuzzy structuring 
function  )n(kiμ  and the window function )n(W .  Assuming NM >>  and FK ⊂  we then 
let { }Q/)1N(n0,nQm|mS −≤≤==  be the sampling domain where Q  is the sampling rate. 
Choosing the sampling rate Q  and the window length N  appropriately, NQ < , we then  
define the positive integer Q/)1N( −=θ  as the  order of the interpolator.  
Assuming there is no a-priori information about the geometrical structure of the 
membership function, a set of fuzzy structuring functions based on ordered normalized 
orthogonal polynomials (e.g., the NDLO (Neuman & Schonbach, 1974)) can be used for the 
interpolation. 
For a windowed   membership function Kn),n(z ∈  μ , the sampled membership function in 
a window is defined as 
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Thus, )n(|z sμ   is equal to )n(zμ  every Q  sample but is undefined at other samples in the 
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sμ   is equal to )n(zμ  every Q  sample but is 0 at other samples in the 

window. 
Just as in (Haralick et al., 1989) we can obtain a minimum approximation (fitting from 
below), denoted as )n(fmin

νμ , and a maximum approximation (fitting from above), denoted 

as )n(fmax
νμ , in a window [ ]1N,0 −  by considering the approximation of the signal 

membership function Kn),n(z0 ∈ νμ . 

3.2 General interpolation algorithm 
The following algorithm provides a way to interpolate the given samples of a signal 
membership function in a window. It basically obtains an adaptive approximation of the 
windowed membership function in a recursive way. This geometric decomposition permit 
us, just as in the fuzzy morphological polynomial representation(Huang & Chaparro, 1995), 
to obtain the adaptation coefficients as well as minimum and maximum reconstructions of 
the membership function. Our fuzzy morphological interpolation algorithm in a window  ν  
is as follows:  
1. Frame definition: 

)Nn(W)n(|f)n(|x ss0 νμμν −×=  
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where )n(x0
νμ  is the given membership function, )n(fmin
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νμ  are the 

minimum and maximum interpolation  membership functions, respectively. The 
reconstruction error for the minimum ( tmieνμ ) and maximum ( tmaeνμ ) interpolation in a 
window is defined as 
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where the )n(x0
νμ  is the given membership function, )n(fmin

νμ  and )n(fmax
νμ  are the 

minimum and maximum interpolation  membership functions, respectively. 

3.3 Properties  
The following propositions will give insight on how the FMI works and how to calculate the 
adaptive coefficients  { }ia . Here, we work on a frame signal only, and thus the superscript 
ν  can be omitted.  
Proposition 1.  Given )n(k),n(z ii

νν μμ   , [ ]1,0a,SKn i ∈∩∈    then  

 [ ]    , SKn1)n(ka,0max)n(ka|z ciiiii ∩∈−+= μμμν  (17) 

where [ ]{ }    , SK)(ka)(zmin,0min1 iiic ∩∈−+= μμμ  

Proposition 2. If )n(k),n(z ii
νν μμ   ,    ,SKn ∩∈  then there exists an optimum [ ]1,0ai ∈   

such that  for  , ,SKn)n(ka)n(ka|z iiiii ∩∈= μμν  if and only if the following optimum 
condition is satisfied 
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Proposition 3. If optimum condition is met then: 
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According to the above properties, ia  can be computed uniquely. When using orthogonal 
polynomials to generate the structuring functions, we need to consider the shifted and 
normalized orthogonal polynomials )n(giμ   and their complements )n(gc

iμ . To determine 

either )n(giμ or )n(gc
iμ  is to be chosen as )n(kiμ  in the representation, we calculate the 

corresponding reconstruction errors using equation (15) or (16) and choose the one that 
gives the smaller error. 

3.4 First and second orderinterpolation 
The first-order or linear interpolator ( 2Q,3N,1 ===     θ ) keeps the sampled points and 
provides interpolated values in between using either the minimum or maximum 
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interpolation. The second-order or quadratic interpolator ( 2Q,5N,2 ===     θ ) performs 
similarly with an additional condition on convexity. Convexity is tested by simply checking 
that the middle sample of the membership function is greater than or equal to the average of 
the other two points. For both interpolators it is possible to develop a closed form formula 
for calculating the interpolated points. The following propositions provide theoretical basis 
for the fast computation algorithms to be discussed later. Proofs are easily obtained by 
following the above interpolation algorithm.  
Proposition 4. For a first order interpolator the windowed sampled membership function is  

{ })2(f),*,0(f)n(|x s0 μμμ = . 

Using either minimum or maximum reconstruction the interpolation results is  

[ ]{ })2(f,)2(f)0(f5.0),0(f)n(f μμμμμ += . 

Proposition 5. For a second order interpolator the windowed sampled membership function is 

{ })4(f),*,2(f),*,0(f)n(|x s0 μμμμ = . 

Using the minimum interpolation under convexity conditions or the maximum 
interpolation under concavity condition the interpolation result is 
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~
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μμμμ −+= and 
)4(f375.0)2(f75.0)0(f125.0)3(f

~
μμμμ ++−= . 

3.5 Higher order interpolation 
When the order is greater than two, we do not have the assurance that the sampled points 
are kept, which as we will see is very important for the FMW representation. As a solution,   
we use the following algorithm to select the minimum or maximum interpolation and to 
correct the sampled points whenever necessary. In the case when the errors 

0)n(e,0)n(e maxmin == νν μμ   (see equations (13) and (14) then the interpolated membership 
function of the thν  frame be   

 )n(f)n(f min
νν μμ =  (20) 

 )n(f)n(f max
νν μμ =  (21) 

In this case the given sample points are preserved. Otherwise we would have that either be 

)n(e)n(e maxmin
νν μμ ≤  in which case the interpolated membership function at the thν frame 

is given by  

 )n(|f)n(|x)n(f s
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0
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or  
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where the set S   is a complement of set S . This will guarantee that the given samples 
remain unchanged and the other values are interpolated. Knowing which of these situations 
occurred will allow us to proceed accordingly in the synthesis. In the case third or higher 
order interpolation both minimum and maximum interpolation need to be done 
simultaneously and the comparing the errors )n(emin

νμ  and  )n(emax
νμ  and decide which 

of (20) to (23) to use. This algorithm guarantees perfect reconstruction. 

4. Fuzzy morphological wavelet implementation 
The wavelet representation (Heijmans & Goutsias, 2000, Mallat, 1989) has received a great deal 
of attention in image processing. Its implementation is done with a bank of filters. In this 
section, we show a realization of the basic idea behind the wavelet representation using the FMI 
algorithm presented before. Our implementation involves no phase in the output and allows 
perfect reconstruction. We first present the FMW representation using the first and second 
order interpolation and then present the representation using higher order interpolators.  
Let )n(f)n(f0 =  be the input signal and )n(fi  be the thi  level signal. Let )n(di  be the thi  
error signal corresponding to the difference between the ith level signal and its fuzzy 
morphological interpolated signal. Let L be the linear fuzzifier and D be the linear 
defuzzifier described before. Let H be the interpolator described in the last section. Let 
↓,↑correspond to decimation and expansion, respectively. 

4.1 Fast implementation case  
In Figs. 1, 2, we display the analysis and synthesis procedures based on the first and second 
order interpolation. In the analysis, the signal )n(fi   is sampled and then linearly fuzzified 
to get its membership function )n(|f siμ , fuzzy morphological  interpolation give us  

)n(f iμ  which is then linearly defuzzified to get its interpolated signal )n(f i . Decimation is 
then used  to get the next level signal )n(f 1i+  which has the sampled points of the original 
signal, while )n(di  ↓ has the error of the interpolated values. If we denote the  linear 
fuzzifier (L), the membership interpolator (H) and linear defuzzifier (D) as fΠ  (i.e., 

( ) ( )[ ]{ } )n(f)n(|f)n(|f isisif == LHDΠ ) then  ( ).)n(|f)n(f sif1i Π=+ ↓ where .,2,1,0i =  The 
)n(di  is the error signal of the interpolation  i.e., ( ))n(|f)n(f)n(d sifii Π−=    

In the synthesis, we proceed in an inverse fashion. The signal )n(f 1i+  is expanded and 

linearly fuzzified to get )n(f 1i ↑+μ , then interpolated to get )n(f 1i ↑+μ ,  and finally linear 

defuzzified to get the interpolated signal ( ) )n(f)n(f i1if =↑+  Π . The synthesis signal is 

( ) )n(f)n(d)n(f)n(f̂ ii1ifi =+= +  ↑Π indicating perfect reconstruction. 
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Fig.1. First and second order fuzzy morphological wavelet analysis 
 

 
Fig. 2. First and second order fuzzy morphological wavelet synthesis 
 

 
                                         (a)                                                                          (b) 
Fig. 3. FMW pyramid implementation for first-order interpolator (a) analysis (b) synthesis. 
 

 
                                     (a)                                                                             (b) 

Fig. 4. FMW pyramid implementation for second-order interpolator (a) analysis (b) 
synthesis. 
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Fig.1. First and second order fuzzy morphological wavelet analysis 
 

 
Fig. 2. First and second order fuzzy morphological wavelet synthesis 
 

 
                                         (a)                                                                          (b) 
Fig. 3. FMW pyramid implementation for first-order interpolator (a) analysis (b) synthesis. 
 

 
                                     (a)                                                                             (b) 

Fig. 4. FMW pyramid implementation for second-order interpolator (a) analysis (b) 
synthesis. 
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A pyramid implementation for FMW representation using first order and second order 
interpolators in a window is shown in Figs. 3, 4, respectively. The FMW representation can 
be implemented very fast. 
We further derive close formulas to get the smooth and detail signal of any level from the 
original signal when using first- and second-order interpolator. The usefulness of these 
properties will be clear when the representation is applied to the shape recognition. 
Proposition 6. The pyramidal components of the FMW representation using a first-order 
interpolator has the following properties for .,1,0i;,1,0n ==  
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These propositions show that our  smooth and detail signal of each level for the FMW 
representation can be obtained from the original signals and the number of pixels in the 
high  level is smaller than that of the lower level. Notice that the first point of the smooth 
signal in every level is same as the first point in the original signal i.e. .i),0(f)0(f 0i ∀=  
 

 
Fig. 5. Fuzzy morphological wavelet analysis (general) 

 
Fig. 6. Fuzzy morphological wavelet synthesis (general) 
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4.2 A general implementation case  
When the order θ   is three or more, the FMW analysis and synthesis blocks are shown in 
Fig. 5, 6, respectively.  Perfect reconstruction is still possible as indicated before. 
 The interpolations are done using both minimum and maximum reconstruction, denoted 
as maxH and minH , respectively. The block denoted as S/C is a selection and correction box, 
which is designed for choosing the maximum or minimum reconstruction as our 
interpolation output and correcting the error at sampled points. (see equation (20)-(23)). 

5. Two-dimensional fuzzy morphological wavelet representation 
The practical advantage of FMW becomes more evident in two-dimensions. The wavelet 
representation theory is much more complex in two-dimension than in one due to the 
difficulty of defining bivariate wavelets. Besides, the multirate methods in two-dimensions 
are more complex than in one-dimension to choose the sampling, decimation/expansion 
procedures. Although one-dimensional procedures can be applied when using separable 
two-dimensional filters, more appropriate non-separable filters make the procedure much 
more complex. The two-dimensional fuzzy morphological implementation is much simpler 
as it will be shown in the section. 

5.1 Two-dimensional FMI  
Unlike the one-dimensional case, there is no unique way to sample in two-dimension 
(Vaidyanathan, 1993). For simplicity, we consider two commonly used procedures: 
row/column sampling and quincunx sampling. Let { }1Nn0,1Mm0|)n,m(F −≤≤−≤≤=   

be domain of the given signal )n,m(f  and [ ] [ ]{ }T
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sampling domain, where V   is a sampling matrix in lattice transform (Vaidyanathan, 1993) 

and [ ]T⋅  is transpose operator.  For a given image F)n,m(),n,m(f ∈   the sampling signal 
)n,m(|f s  is defined as   
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where * corresponds to  undefined  samples. Similarly, for the column sampling matrix. The 
quincunx sampling matrix (Vaidyanathan, 1993) is defined as   
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where * stands for undefined  samples. 
 

 
Fig. 7. FMW analysis block diagram for two-dimensional signals 

 
Fig. 8. FMW synthesis block diagram for two-dimensional signals 

Image Representation Using Fuzzy Morphological Wavelet 

 

155 

The interpolation in the row/column sampling can be done using the one-dimensional FMI 
discussed before. In the quincunx sampling case we extend the one-dimensional FMI 
algorithm using bivariate structuring functions. The structuring functions are generated as 
the product of one-dimensional ones. The structuring index ordering method in (Huang  
1996) may be used to order these functions in two-dimensional space. 

5.2 Two-dimensional FMW implementation 
Figs. 7, 8 show the analysis and synthesis steps of the FMW representation using the 
row/column sampling. If the one-dimensional interpolator xΠ   is first order we obtain the 
following relationship among the components for the analysis  
 

 
Fig. 9. TDFMW analysis block diagram with quincunx sampling 

 
Fig. 10. TDFMW synthesis block diagram with quincunx sampling 
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Notice that if we use column/row instead of row/column sampling the signals )n,m(ff 1i+  
and )n,m(dd 1i+  remain the same while  )n,m(fd 1i+  and )n,m(df 1i+   are interchanged. 
When the quincunx sampling is used, theΠ is a TDFMI. The image is processed block by 
block. The structures of the analysis and synthesis are shown in Fig. 9, 10, respectively. 
 

 
Table 1. Compression ratio for two-dimensional signal 
 

(a) (b) 

 

(c) (d) 

 

Fig. 11. Two-dimensional FMW and WT representation for artificial image: (a) original 
image, (b) TDFMW using quincunx sampling, (c) TDFMW using row/column sampling, (d) 
WT using row/column sampling. 
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6. Applications 
To illustrate our representation, we show how it can be applied to data compression and 
shape recognition. We compare the data compression results with those using Daubechies' 
wavelet transform (Daubechies, 1988) and the shape recognition results with Fourier 
descriptor method (Gonzales & Woods, 2002, Persoon & Fu, 1977). 

6.1 Data compression 
The application of FMW representation for data compression is achieved by encoding the 
lowest resolution smoothed image and the detailed image. The performance of our 
representation is evaluated by the entropy-based compression ratio (ECR) defined as  
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(c) (d) 

Fig. 12 Two-dimensional FMW and WT representation for pepper image 
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where N  is the number of subblock signals, iM  is the number of samples of the subblock i , 

i  is the bits/sample required to code subblock i , T  is the bits/sample required for the 
original signal, TM  is the total number of samples of the original signal. The average 
bits/sample i  required to code a subblock signal is defined by entropy as:  

 ∑−=
−

=

1G

0j
j2ji plogp  (28) 

where pj is a probability of a sample with amplitude j, G is the greatest amplitude of the 
signal. 
The TDFMW representation is used to process the artificial (piles) and real (pepper) 
images. The TDFMW pyramid representations for piles image in Fig. 11 (a) are shown in 
Fig. 11 (b) and (c) using quincunx and row/column sampling with frame size of 33× , 
respectively. For comparison, the result of WT using Daubechies' wavelet of length 8 is 
shown in Fig. 11 (d) using row/column sampling. The TDFMW pyramid representation 
for pepper image in Fig. 12 (a) are shown in  Fig. 12 (b) and (c) using qucunx and 
row/column sampling with window size of 33× , respectively. For comparison, the WT 
using Daubechies' wavelet of length 8 and row/column sampling method is shown in Fig. 
12 (d). The data compression results for FMW and WT are shown in Table 1 for three 
stages. 

(a) (b) 

 
Fig. 13. Signature extraction:  (a) shape sampling (b) signature 

6.2 Aircraft shape recognition 
In this section, we apply our FMW representation to aircraft shape recognition. The  shapes 
are  nonoverlapping,  simply   connected and closed planar contours, each represented by a 
set of boundary coordinates { }.1N,,2,1,0n)),n(y),n(x( −=  Due to closeness of the contour, 
the resulting observations are periodic i.e., )Nn(x)n(x +=  and )Nn(y)n(y += . We 
compute the centroid, sample the boundary at equidistant points to calculate corresponding 
radii { }1M,,2,1,0n),n(r −= where M is usually less than N (Fig. 13(a)). These radii  

[ ]{ }1M,0n),n(r −∈  form a one-dimensional signature (Fig. 13(b)) of the two-dimensional 
contour, which is invariant to translation, but it does depend on rotation and scaling [26]. 
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In order to use the signature signal for shape recognition we need to overcome this 
dependence. When applying the FMW representations of the template and the test shapes, 
the linear fuzzification obviates the scaling dependence. The rotation of the object 
generates a signature that is shifted in a periodic way with respect to the template 
signature. To find a reference point we will then apply proposition 6 or 7 to do so. 
Basically these propositions establish that { }i),0(f)0(f i0 ∀= , that is that at every stage in 
the FMW the first point is the same for every stage in the representation. By working from 
the lowest to highest resolution of the FMW representation, we then try to match the 
template signature with the test signature. The matchness is determined by the nearest-
neighbor rule (Schalkoff, 1992) using the Euclidean distance between template and test 
signatures. This can be done by initiating the lowest resolution template signature with a 
known maximum and then sequentially shifting the lowest resolution test signature until 
either a match or a mismatch situation is encountered. If a match is obtained then we 
verify that it is a good match and stop, or consider the next higher resolution and repeat 
this process. The verification uses the detail signals of the FMW of the template and test 
signature.  
60 test shapes used in the experiment are obtained by scaling, rotating the template shapes 
in Fig. 14, 10 scales from 1.0 with  0.15 increase in each step and 10 rotations from 0 with 15 
degree increase in each step and then sample them to get the test signatures. As an example 
of the resulting test shapes is shown in Fig. 15. The shapes are all discriminated at the 6th 
level which contains 4 pixels. These results verify that using our FMW representation can 
effectively solve the scaling and rotation variant problem. 
 

 
Fig. 14. Template aircraft shapes 

For comparison purpose, the Fourier descriptor is used to do the same experiment. The 
nearest-neighbor rule is used to classify the shapes by Euclidean distance between the 
Fourier coefficients of the template and test shape. The results are that only the shapes 
without scaling and rotation is correctly classified surely when coefficients is greater than 4. 
The correctly classified shapes when using 16 coefficients are only 17 out of 60 (28 percent). 
The discrimination performance can be improved to recognize around 90 percent by the 
Fourier descriptor using optimal matching algorithm, however, the computation complexity 
will increase up to 94 times as described in (Persoon & Fu, 1977). These results show that 
our recognition method has better performance over the Fourier descriptor in recognizing 
the aircraft shapes. 
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compute the centroid, sample the boundary at equidistant points to calculate corresponding 
radii { }1M,,2,1,0n),n(r −= where M is usually less than N (Fig. 13(a)). These radii  

[ ]{ }1M,0n),n(r −∈  form a one-dimensional signature (Fig. 13(b)) of the two-dimensional 
contour, which is invariant to translation, but it does depend on rotation and scaling [26]. 
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In order to use the signature signal for shape recognition we need to overcome this 
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generates a signature that is shifted in a periodic way with respect to the template 
signature. To find a reference point we will then apply proposition 6 or 7 to do so. 
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known maximum and then sequentially shifting the lowest resolution test signature until 
either a match or a mismatch situation is encountered. If a match is obtained then we 
verify that it is a good match and stop, or consider the next higher resolution and repeat 
this process. The verification uses the detail signals of the FMW of the template and test 
signature.  
60 test shapes used in the experiment are obtained by scaling, rotating the template shapes 
in Fig. 14, 10 scales from 1.0 with  0.15 increase in each step and 10 rotations from 0 with 15 
degree increase in each step and then sample them to get the test signatures. As an example 
of the resulting test shapes is shown in Fig. 15. The shapes are all discriminated at the 6th 
level which contains 4 pixels. These results verify that using our FMW representation can 
effectively solve the scaling and rotation variant problem. 
 

 
Fig. 14. Template aircraft shapes 

For comparison purpose, the Fourier descriptor is used to do the same experiment. The 
nearest-neighbor rule is used to classify the shapes by Euclidean distance between the 
Fourier coefficients of the template and test shape. The results are that only the shapes 
without scaling and rotation is correctly classified surely when coefficients is greater than 4. 
The correctly classified shapes when using 16 coefficients are only 17 out of 60 (28 percent). 
The discrimination performance can be improved to recognize around 90 percent by the 
Fourier descriptor using optimal matching algorithm, however, the computation complexity 
will increase up to 94 times as described in (Persoon & Fu, 1977). These results show that 
our recognition method has better performance over the Fourier descriptor in recognizing 
the aircraft shapes. 
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Fig. 15. Test aircraft shapes example     

7. Conclusion 
A novel image representation using fuzzy morphological approach has been presented in 
this paper. Using the fuzzy morphological operators and the minimum and maximum 
reconstruction we develop the fuzzy morphological interpolation (FMI) algorithm. Based 
on FMI and the hierarchical pyramid structure, we formulate  the analysis and synthesis 
procedure, similar to those given by wavelet transform. Through using the fuzzy 
morphological approach, a signal can be efficiently represented with several additional 
advantages, such as lower computation complexity and easily extend to two dimensions. 
Furthermore, our representation can be implemented very fast by parallel. We 
successfully use the fuzzy mathematical morphology approach to extend the work of the 
Pitas and Venetsanopoulos  and of Song and Delp on morphological signal 
representation. We have applied our representation to image analysis and shape 
recognition, the experimental results have shown the advantage of using our FMW 
representation as compare with the WT (Daubechies, 1988)  and Fourier descriptor 
(Persoon & Fu, 1977) methods. 
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Fig. 15. Test aircraft shapes example     
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1. Introduction 
Clustering techniques aim to regroup a set of multidimensional observations, represented as 
data points scattered through a N-dimensional data space, into groups, or clusters, 
according to their similarities or dissimilarities. Each point corresponds to a vector of 
observed features measured on the objects to be classified. Among the different approaches 
that have been developed for cluster analysis [Jain et al., 1999; Theodoridis & Koutroumbas, 
2003; Tran et al., 2005; Xu & Wunsch, 2005; Filipone et al., 2008], we consider the statistical 
approach [Devijver & Kittler, 1983]. In this framework, many clustering procedures have 
been proposed, based on the analysis of the underlying probability density function (pdf). 
The high density of data points within the clusters gives rise to modal regions 
corresponding to the modes of the pdf that are separated by valleys of low densities 
[Parzen, 1962]. 
Independently from cluster analysis, a large amount of research effort is devoted to image 
segmentation. Starting from an unstructured collection of pixels, we generally agree about 
the different regions constituting an image due to our visual grouping capabilities. The most 
important factors that lead to this perceptual grouping are similarity, proximity and 
connectedness. More precisely, segmentation can be considered as a partitioning scheme 
such that: 
- Every pixel of the image must belong to a region, 
- The regions must be composed of contiguous pixels, 
- The pixels constituting a region must share a given property of similarity. 
These three conditions can be easily adapted to the clustering process. Indeed, each data 
point must be assigned to a cluster, and the clusters must be composed of neighbouring data 
points since the points assigned to the same cluster must share some properties of similarity. 
Considering this analogy between segmentation and clustering, several image segmentation 
procedures based on the gray-level function analysis have been successfully adapted to 
detect the modes or to seek the valleys of the pdf for pattern classification purpose [Botte-
Lecocq et al., 2007]. 
In this framework, the underlying pdf is generally estimated on a regular discrete array of 
sampling points [Postaire & Vasseur, 1982]. The idea of using a pdf estimation for mode 
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seeking is not new [Parzen, 1962] and in very simple situations, the modes can be detected 
by thresholding the pdf at an appropriate level, using a procedure similar to image 
binarization [Weszka, 1978]. A “mode” label is associated with each point where the 
underlying pdf is above the threshold. Otherwise, the corresponding point is assigned a 
“valley” label. 
However, in practical situations, it can be difficult, or even impossible, to select an 
appropriate global threshold to detect the significant modes. A solution for improving this 
simple scheme is to consider the spatial relationships among the sampling points where the 
underlying pdf is estimated, rather than making a decision at each point independently of 
the decisions at other points. Probabilistic labeling, or relaxation, is a formalism through 
which object labels are iteratively updated according to a compatibility measure defined 
among the neighboring labels. This approach, which has been successfully applied to image 
processing [Dankner, 1981], has been adapted to cluster analysis to reduce local ambiguities 
in the mode/valley discrimination process [Touzani & Postaire, 1988]. 
The segmentation of an image can also be considered as a problem of edge detection [Davis, 
1975]. Similarly, in the clustering context, a mode boundary can be localized at important 
local changes in the pdf. It can be detected by means of generalized gradient operators 
designed to perform a discrete spatial differentiation of the estimated pdf [Touzani & 
Postaire, 1989]. Although these spatial operators enhance substantially the discontinuities 
that delineate the modes, a relaxation labeling process, similar to the one used for 
thresholding, can be necessary for mode boundary extraction [Postaire & Touzani, 1989]. 
Beside procedures based on the concepts of similarity and discontinuity, mathematical 
morphology has proven to be a valuable approach for image segmentation. This theory has 
been adapted to cluster analysis by considering the sets of multidimensional observations as 
mathematical discrete binary sets [Postaire et al., 1993]. Binary erosions and dilations of 
these discrete sets eliminate irrelevant details in the shapes of the clusters without geometric 
distortions [Botte-Lecocq & Postaire, 1991]. Multivalue morphological operations, such as 
numerical erosions, dilations and homotopic thinnings have also been defined for 
processing multidimensional pdf using the umbra concept [Sbihi & Postaire, 1995]. With 
these operators, the clusters are delineated by means of the watershed transform 
[Benslimane et al., 1996]. 
Modeling spatial relationships between pixels by means of Markov random fields has 
proved to be relevant to the image segmentation problem [Manjunath & Chellappa, 1991; 
Panjwani & Healey, 1995]. The Markovian approach has been adapted to the mode detection 
problem in cluster analysis. The hidden field containing the “mode” and the “valley” labels 
is derived from the observable field representing the data set by means of the estimation-
maximisation algorithm combined with the maximum a posteriori mode criterion [Sbihi et 
al., 2000; Moussa et al., 2008] . 
All the above-mentioned clustering methods tend to generalize bi-dimensional procedures 
initially developed for image processing purpose. But, even though texture properties have 
been intensively used to solve image segmentation problems, they have not been extended 
to pattern classification problems. Following the main idea of adapting image processing 
techniques to cluster analysis, the objective of this chapter is to show how the texture 
concept can be used in the framework of clustering. The basic idea behind this new 
approach is the characterization of the local spatial distribution of the data points in the 
multidimensional data space in terms of textures [Hammouche et al., 2006]. 
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Similarly to texture segmentation, the approach consists first in selecting a set of texture 
features that characterize the local multidimensional texture around each sampling point of 
the data space. These multidimensional textures, which reflect the spatial arrangement of 
the data points, are then classified on the basis of these features. The data points with similar 
local textures are aggregated in the data space to define compact connected components of 
homogeneous textures. Some of these multidimensional domains of uniform texture are 
finally considered as the cores of the clusters. 
The chapter is organized as follows. We first describe the discretization process of the input 
data that yields an array of sampling points well conditioned for multidimensional texture 
analysis (Section 2). We then introduce the multidimensional texture concept itself, as an 
alternative to describe the spatial distribution of observations through the data space 
(Section 3). Such textures are locally characterized by a number of parameters that can be 
extracted from co-occurrence matrices or from sum and difference histograms, defined as 
straightforward generalizations of the tools used in textured image processing. 
The mode detection strategy is based on the assumption that the texture is homogeneous 
within the modes of the data distribution, and different from the texture in the valleys 
between the clusters. Hence, similarly to segmentation of textured images, the sampling 
points where the local underlying texture is evaluated are classified into different texture 
classes in order to partition the data space into domains with homogeneous texture 
properties (Section 4). The determination of the set of the most discriminating texture 
parameters among all those that are available is based on a performance-dependent feature 
selection scheme (Section 5). 
Many examples are presented to demonstrate the efficiency of this clustering strategy based 
on multidimensional texture analysis (Section 6). As the computational load could to be 
prohibitive for data sets of high dimensionality and large size, a specific attention is devoted 
to the implementation of the clustering procedure in order to improve the computation 
speed (Section 7). 

2. Discretization of the data set 
In order to adapt texture analysis tools to clustering, it is necessary to introduce a discrete 
array of sampling points [Postaire & Vasseur, 1982]. Let us consider Q observations 
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coordinates of the observation qX  in the data space. The range of variation of each 
component of the multivariate observations is normalized to the interval [0,S] , where S is an 
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denoted rP , 1,2,..., Nr S= . The unit hypercubic cell centered at point rP  is denoted ( )rH P . 
It is defined by its coordinates ,1 ,2 , ,, ,..., ,...,r r r n r Nh h h h , which are the integer parts of the 

coordinates of its center rP . The qth normalized observation '
qX  falls into the unit cell 

( )rH P  of coordinates '
, ,int ( ) , 1, 2, ...,r n q nh x n N= = , where '

,int ( )q nx  denotes the integer 

part of the real number '
,q nx . 

Taking the integer parts of the coordinates of all the available normalized observations 
yields the list of the non-empty cells whose coordinates are defined on the set NZ + . If 
several observations fall into the same cell, this one appears many times in the list of non-
empty cells. It is easy to determine the number [ ]( )rq H P  of observations that fall into the 

hypercubic cell of center rP  by counting the number of times the cell ( )rH P  appears in that 
list. As this number can be considered as proportional to a rough estimate of the local 
density of observations, it will be referred as the “density” [ ]( ) ( )r rW P q H P=  associated to 

the point rP   in what follows. Subsequently, the distribution of the data points can be 
approximated on the discrete multi-dimensional array of points rP  . The result of this 
sampling procedure is a multidimensional regular array of discrete integers in the range 
[ ]0,G , where G is the maximum value of ( ) , 1,2,..., N

rW P r S=  , that is well conditioned 
for multidimensional texture analysis. Fig. 1 shows a raw data set of bi-dimensional 
observations (cf. Fig 1(a)) and the corresponding array of discrete densities obtained for  
S =25 (cf. Fig 1(b)). 

3. Multidimensional texture characterization 
To illustrate the basic ideas behind the proposed approach, let us consider the bi- and three-
dimensional uniform random distributions of data points of Fig. 2. A close visual attention 
to this figure shows that the arrangement of the observations appears to be more or less 
coarse and more or less sparse, depending on the density of data points in the bi- or the 
three-dimensional data spaces. Thanks to the capacities of perception of the human visual 
system, it is easy to distinguish various random textures associated with these distributions. 
These considerations led to consider the texture as a property of the data points distribution. 
In this chapter, it is assumed that the texture tends to be uniform within the core associated 
with each cluster, so that these cores can be searched as domains of the data space 
characterized by a relative homogeneity of suitable texture descriptors. 
When considering the examples of Fig. 2, it is clear that structural models based on 
primitive placement rules cannot satisfactorily describe the texture of the distribution of the 
data points. Therefore, one is led to consider the textural properties in terms of statistical 
models and the main difficulty is the selection of a set of relevant features to describe the 
properties of the spatial distribution of the data. A number of textural parameters have been 
proposed in the image processing literature, derived from autoregressive models [Comer & 
Delp, 1999], Markov random fields models [Cross & Jain, 1983], Gabor filters [Jain & 
Farrokhnia, 1991], wavelet coefficients [Porter & Canagarajah, 1996], fractal geometry [Keller 
& Crownover, 1989] and spatial gray-level dependence analysis [Haralick, 1978]. We have 
chosen to generalize the concepts of co-occurrence matrices and of sum and difference 
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histograms to multidimensional data spaces since a large variety of features can be derived 
from such texture models that combine spatial information with statistical properties [Reed 
& Hans du Buf, 1993]. 

3.1 Co-occurrence matrices 
In the framework of image processing, an element T(i,j)  of a co-occurrence matrix is a 

count of the number of times a pixel ' ,1 ,2[ , ]T
r r rP x x= with gray-level  i   is positioned with 

respect to a pixel ',1 ',2[ , ]T
r r rP x x=  with gray level  j   such as: 
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where  d   is the distance in the direction  θ   between the two pixels. 
A similar co-occurrence matrix is determined to characterize the local distribution of the 
data points in a given neighborhood of each sampling point rP  where the “density” value is 
not null. We use a classical hypercubic neighborhood. As directionality and periodicity are 
obviously irrelevant characteristics of the data point distributions, it is not necessary to 
determine co-occurrence matrices for different values of the distance d  and the orientation 
θ  between the pairs of sampling points taken into account. Hence, only one co-occurrence 
matrix is determined for each sampling point. Furthermore, the use of a small neighborhood 
reduces the computational load, while yielding local information on the distribution of the 
data points. The co-occurrences T(i,j)  of any given pair ( ),i j  of “density” values are 
simply counted for all the couples of adjacent sampling points encountered within a 
hypercubic neighborhood of side length equal to 3, without constraints on their orientations. 
Two sampling points are considered as adjacent if they are the centers of two hypercubes 
that have at least one point in common. As the “densities” are quantized on a set of 1G +  
discrete values, the co-occurrence matrices have 1G +  rows and 1G +  columns. 
As in [Haralick et al., 1973], several local texture features can be extracted from these specific 
co-occurrence matrices (COM) which accumulate information on the data distribution in the 
neighborhood of each sampling point (cf. Table 1). These features are expected to 
characterize such textural properties as roughness, smoothness, homogeneity, randomness 
or coarseness rather than properties such as directionality or periodicity, since each co-
occurrence matrix summarizes the number of occurrences of pairs of histogram values for 
all possible pairs of adjacent sampling points lying within a given neighborhood, without 
constraints on their orientations. 
Fig. 3 shows the spatial variations of the 7 first features of table 1 for the data set of Fig.1 that is 
composed of observations drawn from three normal distributions of equal weights. The values 
of the features 4f , 6f  and 7f decrease from the centers of the clusters to their peripheries. 
On the contrary, the values of 1f , 2f , 3f  and 5f  increase from the centers to the peripheries 
of the clusters. Although these seven texture features reflect the local distribution of the data 
points, they can be more or less correlated and more or less relevant for the detection of the 
cluster cores. Furthermore, it would be unrealistic to believe that the performance of the 
cluster core detection scheme will grow with an increasing number of features. 
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histograms to multidimensional data spaces since a large variety of features can be derived 
from such texture models that combine spatial information with statistical properties [Reed 
& Hans du Buf, 1993]. 

3.1 Co-occurrence matrices 
In the framework of image processing, an element T(i,j)  of a co-occurrence matrix is a 
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where  d   is the distance in the direction  θ   between the two pixels. 
A similar co-occurrence matrix is determined to characterize the local distribution of the 
data points in a given neighborhood of each sampling point rP  where the “density” value is 
not null. We use a classical hypercubic neighborhood. As directionality and periodicity are 
obviously irrelevant characteristics of the data point distributions, it is not necessary to 
determine co-occurrence matrices for different values of the distance d  and the orientation 
θ  between the pairs of sampling points taken into account. Hence, only one co-occurrence 
matrix is determined for each sampling point. Furthermore, the use of a small neighborhood 
reduces the computational load, while yielding local information on the distribution of the 
data points. The co-occurrences T(i,j)  of any given pair ( ),i j  of “density” values are 
simply counted for all the couples of adjacent sampling points encountered within a 
hypercubic neighborhood of side length equal to 3, without constraints on their orientations. 
Two sampling points are considered as adjacent if they are the centers of two hypercubes 
that have at least one point in common. As the “densities” are quantized on a set of 1G +  
discrete values, the co-occurrence matrices have 1G +  rows and 1G +  columns. 
As in [Haralick et al., 1973], several local texture features can be extracted from these specific 
co-occurrence matrices (COM) which accumulate information on the data distribution in the 
neighborhood of each sampling point (cf. Table 1). These features are expected to 
characterize such textural properties as roughness, smoothness, homogeneity, randomness 
or coarseness rather than properties such as directionality or periodicity, since each co-
occurrence matrix summarizes the number of occurrences of pairs of histogram values for 
all possible pairs of adjacent sampling points lying within a given neighborhood, without 
constraints on their orientations. 
Fig. 3 shows the spatial variations of the 7 first features of table 1 for the data set of Fig.1 that is 
composed of observations drawn from three normal distributions of equal weights. The values 
of the features 4f , 6f  and 7f decrease from the centers of the clusters to their peripheries. 
On the contrary, the values of 1f , 2f , 3f  and 5f  increase from the centers to the peripheries 
of the clusters. Although these seven texture features reflect the local distribution of the data 
points, they can be more or less correlated and more or less relevant for the detection of the 
cluster cores. Furthermore, it would be unrealistic to believe that the performance of the 
cluster core detection scheme will grow with an increasing number of features. 
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3.2 Sum and difference histograms 
In the image processing framework, statistical texture features can also be extracted from gray-
level sum and difference histograms [Unser, 1986]. These histograms are associated to couples 
of pixels rP  and 'rP , separated by specific distances d  along a set of directions θ . For each 

couple ( ),d θ , the value ( )h iΔ  of the ith bin of a difference histogram indicates the number of 

times such pixels have a gray-level difference ( )'r rg g−  equal to i , where rg  and 'rg  are the 

gray-levels at rP  and 'rP , respectively. Similarly, the value ( )h j∑  of the jth bin of a sum 

histogram represents the number of occurrences of pairs of pixels rP  and 'rP  which, in the 

same geometrical configuration, have a sum of gray-levels ( )'r rg g+  equal to j .  
This gray-level sum and difference histogram concept can be easily extended to summarize 
the distribution of the sums and differences of densities between pairs of sampling points. In 
this case, the ith bin ( )h iΔ  of the density difference histogram is equal to the number of times 
two sampling points rP  and 'rP  of the discretized data space, separated by the displacement 

defined by the couple ( ),d θ , have a difference between their densities equal to i , i.e. 

( ) ( )'r rW P W P i− = , ,...,i G G= − . Similarly, the jth bin ( )h j∑  of the density sum histogram 

is equal to the number of times two sampling points rP  and 'rP  have the sum of their 

densities equal to j , i.e. ( ) ( )'r rW P W P j+ = , 0,..., 2j G= .  As the values of the densities 
are quantized on a set of integers in the range [0, G ], the sum and difference histograms 
have ( )2 1G +  bins each. 
As when using the co-occurrence matrices, the multidimensional texture of the spatial 
distribution of the observations is analyzed locally around each sampling point Pr  of the 
data space where the density is not null. For this purpose, the density sum and difference 
histograms (density SDH) are determined in a hypercubic neighborhood of side length 
equal 3, centered at point Pr , and without constraints on their orientations  
In the image processing framework, several features can be computed from the gray-level 
sum and difference histograms [Unser, 1986; Clausi & Zhao, 2003]. Nine of the most 
commonly used texture features, denoted mf  , 1,2,...,9m =  , are described in table 2. 
Analogously, the texture at Pr can be evaluated by means of some of the nine features of 
table 2 derived from the density sum and difference histograms. 
Fig. 4 shows the spatial variations of the 8 first features of table 2 for the data set of Fig.1. 
The values of the features 1f , 4f , 5f , 7f , 8f  and 9f   decrease from the centers of the clusters 
to their peripheries. On the contrary, the values of 2f , 3f  and 6f  increase from the centers 
to the peripheries of the clusters. As for the features extracted from co-occurrence matrices, 
these features could be more or less suitable to describe the structure of the distribution.  
A specific problem that must be addressed is now the selection of meaningful features 
among those of table 1 or table 2 to describe the textural information that will be used to 
identify the cluster cores in the data space. Each sampling point will then be characterized 

by a feature vector ( ) [ ]1 2( ), ( ),..., ( ),..., ( ) T

r r r m r M rF P f P f P f P f P= , in a M-dimensional 
feature space. The selection of the M  most relevant features, specifically adapted to each 
data set, will be discussed in section 5. 
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4. Cluster core extraction 
4.1 Texture classification 
Similarly to image segmentation, it is expected that sampling points with similar texture 
properties could be aggregated in the data space to detect the clusters in the data. 
When the sampling points are characterized by a set of texture features, they can be 
represented as feature vectors in a multidimensional feature space. Texture classification 
consists in assigning the sampling points of the discrete data space to different texture 
classes defined in the feature space. This is an unsupervised classification problem since no a 
priori knowledge about the feature vectors associated with the textures to be identified is 
available. A simple solution is to use the basic K-means algorithm where the desired 
number of classes of feature vectors has to be specified [Macqueen, 1967]. The ability of 
varying the number of expected classes makes it possible to give some insight into the 
significance of the clusters that can be identified within the data.  
Fig. 5 shows the domains of homogeneous textures associated with the discrete data set of 
Fig.1(b) when the K-means algorithm requires 2, 3 and 4 classes of different textures 
characterized by means of co-occurrence matrices. The texture discrimination is performed in a 
2-dimensional feature space defined by two features, namely the homogeneity f3 and the 
correlation f4 of table 1, with S=25. When two classes are required, the two domains 
correspond to the cluster cores and the valleys, respectively (cf. Fig. 5(a)). When the sampling 
points are assigned to 3 classes of textures, one of them corresponds to the cores; the second to 
their boundaries and the last one to the valleys (cf. Fig. 5(b)). In the case of 4 classes, Fig. 5(c) 
shows that the cores are surrounded by concentric domains corresponding to different 
distribution characteristics that are obviously linked to the local data point densities. 
We have kept the parameter  S  and the two texture features unchanged in order to show the 
influence of the required number of texture classes on the resulting domains of homogeneous 
textures. A procedure to optimize the value of  S, to select an appropriate set of texture 
features and to determine the number of texture classes will be presented in section 5. 

4.2 Core extraction 
Under the assumption that the cluster cores are multidimensional domains with 
homogeneous textures, it is expected that the hypercubes centered on the sampling points 
assigned to the same class of texture give rise to connected components in the data space. 
These components can be extracted by means of an aggregation procedure where two 
hypercubes whose centers belong to the same class of texture are assigned to the same 
component if they have at least one point in common. Small components resulting from this 
aggregation procedure may correspond to non significant domains with only a few data 
points. Therefore any domain containing less than 5% of the total number Q of observations 
is discarded. 
Among the remaining components, those corresponding to the cores of the clusters are 
expected to be more compact than those corresponding to their boundaries or to the valleys 
between them. Hence, they can be discriminated from other components by analyzing their 
compactness defined as: 

[ ]
[ ]N

total number of hypercubes
C   

number of boundary hypercubes  
=  
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This compactness, which is as much as high as the component is compact, depends mainly 
on the dimensionality and on the structure of the data. In practice, the selection of the 
domains with a compactness higher than 50% of the highest compactness value among all 
the detected domains has proved to be a good strategy to identify the cluster cores 
[Hammouche et al., 2006].  
Table 3 indicates the compactness of the domains resulting from the aggregation of the 
connected sampling points of Fig. 5. It is clear that the cluster cores are much more compact 
than the other domains. Cluster core detection is straightforward by simple thresholding of 
the compactness. Fig. 6 shows the cores identified among the domains of homogeneous 
texture of Fig. 5. 
Due to irregularities in the distribution of the data points, especially for small data sets, the 
boundaries of the selected domains may present irrelevant details. In such situations, 
multidimensional binary morphology has proved to be an efficient solution to eliminate 
details in the data structure without changing the global shape of unsuppressed domains 
[Botte-Lecocq & Postaire, 1991]. A classical closing-opening operation, using a hypercubic 
structuring element of side length equal to 3, generally yields regularly shaped cluster cores. 
Finally, many supervised classification procedures can be used to assign the observations to 
the clusters attached to the detected cores. One solution is to use the observations falling 
into the cores as prototypes. The remaining observations are assigned to the cluster attached 
to their nearest neighbor among these prototypes. They are assigned one by one to the 
clusters in a specific order depending on their distances to the prototypes. At each step of 
this procedure, we consider the distances between all the unassigned observations and all 
the prototypes. The smallest among these distances indicates the specific observation that 
must be assigned to the cluster attached to its nearest neighbor. It is integrated within the set 
of prototypes defining this cluster. This updating rule is iterated until all the observations 
are classified [Botte-Lecocq & Postaire, 1994]. 

5. Algorithm tuning and feature selection 
The performance of the above described algorithm depends mainly on the adjustment of the 
discretization parameter S and on the relevance of the chosen texture features. 

5.1 Discretization tuning 
Let us first consider the effect of the resolution of the discretization process. In fact, the 
adjustment of S depends on the sample size  Q, on the dimensionality N of the data and on 
the structure of the distribution of the observations. It can be expected that, when true 
clusters exist, stable connected subsets of data points with similar texture properties appear 
for a wide range of values of S. Based on this assumption, the adjustment of S can be 
governed by the concept of cluster stability [Eigen et al., 1974]. Choosing such a parameter 
in the middle of the largest range where the number of detected clusters remains constant, 
and different from one, has proved to be a good procedure to optimize a number of 
clustering algorithms when nothing is a priori known about the structure of the distribution 
of the observations [Postaire & Vasseur, 1981]. Note that the larger the range, the more 
reliable is the tuning procedure. 

5.2 Feature selection 
In the framework of multidimensional texture analysis, the key problem is the selection of a 
set of suitable texture features. For choosing relevant features while reducing the 
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dimensionality of the texture classification problem, we propose a performance-dependent 
feature selection scheme which is directly related to the above mentioned concept of cluster 
stability. The effectiveness of a subset of features is evaluated by means of the width of the 
largest range of values of the discretization parameter S leading to the appropriate number 
of detected cluster cores. As mentioned at the end of § 5.1, the larger this range, the more 
reliable is the number of detected cores. This criterion is used to select a set of relevant 
features among the available ones by means of a sequential forward selection technique 
[Siedlecki & Sklansky, 1988]. 
To evaluate the relative relevance of M  features  1 ,..., ,...,m Mf f f , we consider the feature 

subspaces 1 ,..., ,...,m MR R R , taking into consideration an increasing number of texture 
features, from one to M . The algorithm starts with the M  possible 1R  spaces. The feature 
which maximizes the range of values of S  corresponding to a stable number of detected 
cores, different from one, is the first selected feature. This feature is combined, in a 2R  
feature space, with each of the 1M −  remaining ones. The corresponding 1M −  lengths of 
the stable ranges for S are then determined and the pair of features that maximizes the 
length is kept. 
When m features out of M have been chosen, the algorithm proceeds in the 1mR +  feature 
space of 1m +  dimensions to select the ( 1)thm +  feature that maximizes the length of the 
range of S when combined with the m previously chosen features. This procedure is iterated 
until the M features have been ordered by diminishing relevance. The sequence L(m) of 
length values thus obtained allows selecting a subset of relevant features within the set of M 
features. These salient features are those that correspond to the starting increasing phase of 
the length values in the sequence ( )L m . All the features that follow the first decrease in the 
sequence L(m) are discarded. 
To demonstrate the efficiency of the proposed feature selection technique, we use the bi-
dimensional data set of Fig. 1 constituted of three Gaussian clusters. The length L(m) of the 
longest range of values of S where the same number of cluster cores is detected by the 
clustering procedure is plotted against the number m of selected features (cf. Fig. 7). The 
feature selected at each step is indicated at the corresponding point of the plot. The series 

4 5 1 3 6 2 7( , , , , , , )f f f f f f f , 5 1 2 4 7 3 6( , , , , , , )f f f f f f f  and 5 2 6 4 3 1 7( , , , , , , )f f f f f f f  represent the 
7 first selected features among the 13 computed from the co-occurrence matrices, ordered by 
decreasing relevance when 2, 3 and 4 classes of textures are required by the K-means 
algorithm, respectively. As expected, the number of required classes influences the feature 
selection. When 2 classes are required, the selected features are f4, f5 and f1 since L(m) begins 
to decrease when f3 is selected (cf. Fig. 7(a-1)). With 3 classes of textures, the plot of Fig. 7(b-
1) shows that the two first features f5 and f1 are selected for detecting the 3 clusters. When 4 
classes of textures are used, it appears that only the first feature f5 is selected for detecting 
the 3 clusters (cf. Fig. 7(c-1)). Fig. 7(a-2), 7(b-2) and 7(c-2) show the ordered features 
extracted from density sum and difference histograms when 2, 3 and 4 classes of textures are 
required by the K-means algorithm, respectively. 

5.3 Number of texture classes 
The next parameter that remains to be adjusted is the number of texture classes required by 
the K-means algorithm. This number is not determined automatically by the basic, but well 
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This compactness, which is as much as high as the component is compact, depends mainly 
on the dimensionality and on the structure of the data. In practice, the selection of the 
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to their nearest neighbor among these prototypes. They are assigned one by one to the 
clusters in a specific order depending on their distances to the prototypes. At each step of 
this procedure, we consider the distances between all the unassigned observations and all 
the prototypes. The smallest among these distances indicates the specific observation that 
must be assigned to the cluster attached to its nearest neighbor. It is integrated within the set 
of prototypes defining this cluster. This updating rule is iterated until all the observations 
are classified [Botte-Lecocq & Postaire, 1994]. 

5. Algorithm tuning and feature selection 
The performance of the above described algorithm depends mainly on the adjustment of the 
discretization parameter S and on the relevance of the chosen texture features. 

5.1 Discretization tuning 
Let us first consider the effect of the resolution of the discretization process. In fact, the 
adjustment of S depends on the sample size  Q, on the dimensionality N of the data and on 
the structure of the distribution of the observations. It can be expected that, when true 
clusters exist, stable connected subsets of data points with similar texture properties appear 
for a wide range of values of S. Based on this assumption, the adjustment of S can be 
governed by the concept of cluster stability [Eigen et al., 1974]. Choosing such a parameter 
in the middle of the largest range where the number of detected clusters remains constant, 
and different from one, has proved to be a good procedure to optimize a number of 
clustering algorithms when nothing is a priori known about the structure of the distribution 
of the observations [Postaire & Vasseur, 1981]. Note that the larger the range, the more 
reliable is the tuning procedure. 

5.2 Feature selection 
In the framework of multidimensional texture analysis, the key problem is the selection of a 
set of suitable texture features. For choosing relevant features while reducing the 
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dimensionality of the texture classification problem, we propose a performance-dependent 
feature selection scheme which is directly related to the above mentioned concept of cluster 
stability. The effectiveness of a subset of features is evaluated by means of the width of the 
largest range of values of the discretization parameter S leading to the appropriate number 
of detected cluster cores. As mentioned at the end of § 5.1, the larger this range, the more 
reliable is the number of detected cores. This criterion is used to select a set of relevant 
features among the available ones by means of a sequential forward selection technique 
[Siedlecki & Sklansky, 1988]. 
To evaluate the relative relevance of M  features  1 ,..., ,...,m Mf f f , we consider the feature 

subspaces 1 ,..., ,...,m MR R R , taking into consideration an increasing number of texture 
features, from one to M . The algorithm starts with the M  possible 1R  spaces. The feature 
which maximizes the range of values of S  corresponding to a stable number of detected 
cores, different from one, is the first selected feature. This feature is combined, in a 2R  
feature space, with each of the 1M −  remaining ones. The corresponding 1M −  lengths of 
the stable ranges for S are then determined and the pair of features that maximizes the 
length is kept. 
When m features out of M have been chosen, the algorithm proceeds in the 1mR +  feature 
space of 1m +  dimensions to select the ( 1)thm +  feature that maximizes the length of the 
range of S when combined with the m previously chosen features. This procedure is iterated 
until the M features have been ordered by diminishing relevance. The sequence L(m) of 
length values thus obtained allows selecting a subset of relevant features within the set of M 
features. These salient features are those that correspond to the starting increasing phase of 
the length values in the sequence ( )L m . All the features that follow the first decrease in the 
sequence L(m) are discarded. 
To demonstrate the efficiency of the proposed feature selection technique, we use the bi-
dimensional data set of Fig. 1 constituted of three Gaussian clusters. The length L(m) of the 
longest range of values of S where the same number of cluster cores is detected by the 
clustering procedure is plotted against the number m of selected features (cf. Fig. 7). The 
feature selected at each step is indicated at the corresponding point of the plot. The series 

4 5 1 3 6 2 7( , , , , , , )f f f f f f f , 5 1 2 4 7 3 6( , , , , , , )f f f f f f f  and 5 2 6 4 3 1 7( , , , , , , )f f f f f f f  represent the 
7 first selected features among the 13 computed from the co-occurrence matrices, ordered by 
decreasing relevance when 2, 3 and 4 classes of textures are required by the K-means 
algorithm, respectively. As expected, the number of required classes influences the feature 
selection. When 2 classes are required, the selected features are f4, f5 and f1 since L(m) begins 
to decrease when f3 is selected (cf. Fig. 7(a-1)). With 3 classes of textures, the plot of Fig. 7(b-
1) shows that the two first features f5 and f1 are selected for detecting the 3 clusters. When 4 
classes of textures are used, it appears that only the first feature f5 is selected for detecting 
the 3 clusters (cf. Fig. 7(c-1)). Fig. 7(a-2), 7(b-2) and 7(c-2) show the ordered features 
extracted from density sum and difference histograms when 2, 3 and 4 classes of textures are 
required by the K-means algorithm, respectively. 

5.3 Number of texture classes 
The next parameter that remains to be adjusted is the number of texture classes required by 
the K-means algorithm. This number is not determined automatically by the basic, but well 
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controlled, version of the algorithm used in this work. In fact, the concept of cluster stability 
allows specifying this number by selecting the number of texture classes that leads to the 
longest range of variation of  S  where the number of detected cores remains constant. Fig. 7 
shows that this wider range is reached when the textures are assigned to two classes with 
the three features  f4, f5  and  f1  extracted from the COM and with the five features f9, f3, f6, f1 
and f4 extracted from the density SDH.  

5.4 Hypercubic neighborhood size 
The neighborhoods used to determine the local values of the texture features have been 
defined as hypercubes of side length equal to 3 (cf. § 2.2). But we could have used larger 
neighborhoods constituted of (2 1)Nh +  unit cells centered at the sampling points. We have 
analyzed the effect of the parameter h on the behavior of the algorithm. For each neighborhood 
size varying from h =1 to h =4, we have selected the relevant texture features as explained in 
§ 5.2 to classify the bi-dimensional data of figure 1(a), asking always for two texture classes. 
Table 4 indicates the largest ranges of the discretization parameter S where the numbers of 
detected clusters remain constant for each neighborhood size. It appears that the largest of 
these ranges are obtained for h =1 . Furthermore, beside being the best choice in terms of 
reliability of the results, the choice of the minimal neighborhood size (h =1) reduces the 
computation time while improving the sensitivity of the procedure to local texture 
properties. 

6. Experimental results 
The following examples have been chosen to provide some insight into the behavior of the 
proposed texture based clustering procedure and to demonstrate the interest of this 
approach for pattern classification. 

6.1 Example 1 
The first example illustrates all the steps of the algorithm and demonstrates the ability of the 
procedure to detect clusters of unequal weights. The data set is presented in Fig. 8(a). It is 
composed of 950 bidimensional observations drawn from the four normal distributions of 
unequal weights specified in table 5. 
The local texture features are computed from the co-occurrence matrices, and, for 
comparison, from the density sum and difference histograms. In order to tune the algorithm, 
the number of required texture classes is varied from 2 to 4. In the two cases, the largest 
range where the number of detected clusters remains constant appears for two classes of 
textures. It corresponds to a partition of the data set into four clusters (cf. Figs. 8(c-1) and 
8(c-2)). With the density SDH based texture features, the largest range  of S where the 
number of detected cores remains constant is [13-38] (Fig. 8(c-2)). It is slightly larger than 
that obtained with the COM texture features, which is [26-50] (Fig. 8(c-1)).  
Figs. 8(d-1) and 8(d-2) show the discrete data sets obtained for S = 38, which is the middle of 
the range associated with the co-occurrence features, and for S = 26 when the features are 
extracted from density sum and difference histograms, respectively. The four cores, detected 
as domains of homogeneous textures, are displayed in Fig. 8(e-1) and 8(e-2). The texture 
features extracted from the COM are f1, f4, f3  and those extracted from the density SDH are 
f1, f9, f5  . 
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The result of the classification is shown in Fig. 8(b). Table 5 summarizes the statistics of the 
four detected clusters. The performance of the classifier is measured by the classification 
error-rate, estimated as the ratio of the number of misclassified observations to the total 
number of observations. The error-rates obtained with the two proposed algorithms are 
identical and equal to 3.15% . In this example, the classes do not overlap too much and the 
actual error-rate is very close to the theoretical minimum error-rate achieved by use of the 
Bayes decision rule associated with the true statistics of the data set, which is equal to 2.63%. 
The difference between these two error-rates corresponds to only five observations 
misclassified out of over 950.  

6.2 Example 2 
The major difficulties in cluster analysis are with non spherical clusters, bridges between 
clusters and non linearly separable clusters. The bivariate data set of Fig. 9(a) has been 
generated keeping these well-known difficulties in mind. It is composed of three 
populations of 1000 data points each drawn as: 

1 1 1cosx A B= Θ+  

2 2 2cosx A B= Θ+  
 

where Θ  is a normal random variable with mean m  and standard deviation s , and where 

1B  and 2B  are normal random variables with means μ  and variances σ  (cf. Table 6). 
For this example, the largest range of S where the three clusters have been identified is [24-
50] when the co-occurrence features are used (cf. Fig. 9(c-1)), while it is [24-46] for the 
features extracted from density SDH (cf. Fig. 9(c-2)). Figs. 9(d-1) and 9(d-2) show the discrete 
data sets obtained for S=37 and S=35 respectively, i.e. the middles of these ranges that are 
very similar. 
The three detected cores are displayed in Fig. 9(e-1) and 9(e-2). Two texture features, namely 

2f  and 6f  , have been extracted from the COM to obtain the two cores shown in Fig. 9(e-1) 

and four texture features extracted from density SDH, namely 6 3 1, ,f f f  and 2f  , have been 
selected to obtain the two cores shown in Fig. 9(e-2). The classification results achieved with 
the two algorithms are identical. They are shown in Fig. 9(b). The error-rate obtained with 
the texture clustering procedures is 1.12%, whereas it reaches 6.3% with the ISODATA 
algorithm [Ball & Hall, 1965]. This example shows that when central points cannot represent 
the clusters globally, the texture based approach, which takes into account the local 
properties of the distribution of the input data, performs much better than algorithms 
dedicated to globular clusters.  

6.3 Example 3 
We now present a multidimensional case, which demonstrates the ability of the procedure 
to identify interlaced clusters for data of higher dimensionality. The data shown in Fig. 10(a) 
consists of two clusters generated as circular torus formed by the rotation of a plane circular 
Gaussian distribution about an axis in the plane of that distribution. These two torus are 
interlaced as the rings of a chain. 



 Pattern Recognition Techniques, Technology and Applications 

 

172 

controlled, version of the algorithm used in this work. In fact, the concept of cluster stability 
allows specifying this number by selecting the number of texture classes that leads to the 
longest range of variation of  S  where the number of detected cores remains constant. Fig. 7 
shows that this wider range is reached when the textures are assigned to two classes with 
the three features  f4, f5  and  f1  extracted from the COM and with the five features f9, f3, f6, f1 
and f4 extracted from the density SDH.  

5.4 Hypercubic neighborhood size 
The neighborhoods used to determine the local values of the texture features have been 
defined as hypercubes of side length equal to 3 (cf. § 2.2). But we could have used larger 
neighborhoods constituted of (2 1)Nh +  unit cells centered at the sampling points. We have 
analyzed the effect of the parameter h on the behavior of the algorithm. For each neighborhood 
size varying from h =1 to h =4, we have selected the relevant texture features as explained in 
§ 5.2 to classify the bi-dimensional data of figure 1(a), asking always for two texture classes. 
Table 4 indicates the largest ranges of the discretization parameter S where the numbers of 
detected clusters remain constant for each neighborhood size. It appears that the largest of 
these ranges are obtained for h =1 . Furthermore, beside being the best choice in terms of 
reliability of the results, the choice of the minimal neighborhood size (h =1) reduces the 
computation time while improving the sensitivity of the procedure to local texture 
properties. 

6. Experimental results 
The following examples have been chosen to provide some insight into the behavior of the 
proposed texture based clustering procedure and to demonstrate the interest of this 
approach for pattern classification. 

6.1 Example 1 
The first example illustrates all the steps of the algorithm and demonstrates the ability of the 
procedure to detect clusters of unequal weights. The data set is presented in Fig. 8(a). It is 
composed of 950 bidimensional observations drawn from the four normal distributions of 
unequal weights specified in table 5. 
The local texture features are computed from the co-occurrence matrices, and, for 
comparison, from the density sum and difference histograms. In order to tune the algorithm, 
the number of required texture classes is varied from 2 to 4. In the two cases, the largest 
range where the number of detected clusters remains constant appears for two classes of 
textures. It corresponds to a partition of the data set into four clusters (cf. Figs. 8(c-1) and 
8(c-2)). With the density SDH based texture features, the largest range  of S where the 
number of detected cores remains constant is [13-38] (Fig. 8(c-2)). It is slightly larger than 
that obtained with the COM texture features, which is [26-50] (Fig. 8(c-1)).  
Figs. 8(d-1) and 8(d-2) show the discrete data sets obtained for S = 38, which is the middle of 
the range associated with the co-occurrence features, and for S = 26 when the features are 
extracted from density sum and difference histograms, respectively. The four cores, detected 
as domains of homogeneous textures, are displayed in Fig. 8(e-1) and 8(e-2). The texture 
features extracted from the COM are f1, f4, f3  and those extracted from the density SDH are 
f1, f9, f5  . 
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The result of the classification is shown in Fig. 8(b). Table 5 summarizes the statistics of the 
four detected clusters. The performance of the classifier is measured by the classification 
error-rate, estimated as the ratio of the number of misclassified observations to the total 
number of observations. The error-rates obtained with the two proposed algorithms are 
identical and equal to 3.15% . In this example, the classes do not overlap too much and the 
actual error-rate is very close to the theoretical minimum error-rate achieved by use of the 
Bayes decision rule associated with the true statistics of the data set, which is equal to 2.63%. 
The difference between these two error-rates corresponds to only five observations 
misclassified out of over 950.  

6.2 Example 2 
The major difficulties in cluster analysis are with non spherical clusters, bridges between 
clusters and non linearly separable clusters. The bivariate data set of Fig. 9(a) has been 
generated keeping these well-known difficulties in mind. It is composed of three 
populations of 1000 data points each drawn as: 

1 1 1cosx A B= Θ+  

2 2 2cosx A B= Θ+  
 

where Θ  is a normal random variable with mean m  and standard deviation s , and where 

1B  and 2B  are normal random variables with means μ  and variances σ  (cf. Table 6). 
For this example, the largest range of S where the three clusters have been identified is [24-
50] when the co-occurrence features are used (cf. Fig. 9(c-1)), while it is [24-46] for the 
features extracted from density SDH (cf. Fig. 9(c-2)). Figs. 9(d-1) and 9(d-2) show the discrete 
data sets obtained for S=37 and S=35 respectively, i.e. the middles of these ranges that are 
very similar. 
The three detected cores are displayed in Fig. 9(e-1) and 9(e-2). Two texture features, namely 

2f  and 6f  , have been extracted from the COM to obtain the two cores shown in Fig. 9(e-1) 

and four texture features extracted from density SDH, namely 6 3 1, ,f f f  and 2f  , have been 
selected to obtain the two cores shown in Fig. 9(e-2). The classification results achieved with 
the two algorithms are identical. They are shown in Fig. 9(b). The error-rate obtained with 
the texture clustering procedures is 1.12%, whereas it reaches 6.3% with the ISODATA 
algorithm [Ball & Hall, 1965]. This example shows that when central points cannot represent 
the clusters globally, the texture based approach, which takes into account the local 
properties of the distribution of the input data, performs much better than algorithms 
dedicated to globular clusters.  

6.3 Example 3 
We now present a multidimensional case, which demonstrates the ability of the procedure 
to identify interlaced clusters for data of higher dimensionality. The data shown in Fig. 10(a) 
consists of two clusters generated as circular torus formed by the rotation of a plane circular 
Gaussian distribution about an axis in the plane of that distribution. These two torus are 
interlaced as the rings of a chain. 
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The cluster cores detected by the clustering procedure based on the selected co-occurrence 
features f5 and f4 with two texture classes and with S=34, which is the middle of the [17-50] 
largest range where the number of detected clusters remains constant, are presented in Fig. 
10(c). Figure 10(d) shows the two cluster cores detected with the features f9, f6, f1, and f8 
extracted from the density sum and difference histograms with two texture classes and with 
S=32, i.e. the middle of the [14-50] largest range where the number of detected clusters 
remains constant. The classification results achieved with the two algorithms are identical. 
They are shown in Fig. 10(b). The error-rate associated with the two texture clustering 
procedures is 0.1% whereas it reaches 12.17% with the ISODATA algorithm. This result 
demonstrates the effectiveness of the approach in a non trivial situation. 

7. Computational load 
The proposed texture clustering algorithms are based on the same 3 steps scheme:  
1. Data conditioning  
2. Texture characterization 
3. Clustering based on texture properties.  
In the first data conditioning step, the distribution of the data points is approximated by the 
discrete multi-dimensional histogram constituted of NS cells. Thanks to the fast algorithm 
proposed in [Postaire & Vasseur, 1982], the number of elementary operations required by 
this procedure is N Q . 
In the last clustering step, the sampling points where the local underlying texture is 
evaluated are first assigned to different texture classes using the K-means algorithm that 
requires RKt  operations, where R is the number of non-empty hypercubes, K is the 
number of texture classes and t is the number of iterations necessary for the algorithm to 
converge. 
Then, the connected components are extracted by means of an aggregation procedure where 
two hypercubes that belong to the same class of texture are assigned to the same component 
if they have at least one point in common. As  (3 1)N −  adjacent neighbors of each sampling 
point are considered, R3N operations are required by the connected components extraction 
procedure. 
The core extraction procedure requires the determination of the compactness of all the 
detected connected components, involving also R3N elementary operations. Using a 
hypercubic structuring element of side length equal to 3, the classical closing-opening 
morphological filtering process requires 4R3N operations. 
We now focus our attention on the complexity of the second step since the first and third 
steps are independent of the texture features extraction process. This second step, which 
consists in the characterization of the distributions in terms of texture, is split into two 
phases. The co-occurrence matrices or the density sum and difference histograms are 
generated in a first one, while the texture features are extracted from the matrices or from 
the histograms in a second phase. 
The computational loads associated with the generation of the COM and the density SDH 
for each non-empty hypercube are similar, and depend on the number of the couples of 
adjacent sampling points encountered within a hypercubic neighborhood of size 
length (2 1)h + . As there are (3 1)N −  adjacent sampling points for each of the 
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(2 1)Nh + sampling points falling in the hypercubic neighborhood, (3 1)(2 1)N Nh− +  couples 
of sampling points are considered to compute the co-occurrence matrix or the density sum 
and difference histogram at each sampling point of the discrete multidimensional 
histogram. As h  is set to 1 (cf. § 5.4), the number of elementary operations is approximately 
equal to ( ) ( )3 3 1 9N N N× − ≈ . Hence, the determination of all the co-occurrence matrices or 

the density sum and difference histograms requires 9NR  operations. 
The second phase is significantly different for the COM based and the density SDH based 
algorithms. It deserves a particular attention to avoid computational burden. 

7.1 Complexity of the co-occurrence matrix based algorithm 
In the case of the COM, each matrix must be looped through once or twice depending on the 
feature to be extracted. ( )21G + operations are necessary to explore the matrix so that the 
total complexity of the texture characterization using the co-occurrence matrices for R non-
empty hypercubes is equal to: 

( ) ( )( )( )( )29 1NO R Gα β+ + + . 

where α  and β  are the numbers of features using 1 and 2 loops, respectively. 
When the quantization level G of the density and/or when the dimension N are large,  the 
computation cost for computing the features becomes prohibitive. Several algorithms have 
been proposed in the texture analysis literature to overcome this problem. Some solutions are 
the reduction of the quantization level G [Clausi, 2002], the updating the features determined 
in a hypercubic neighborhood from those obtained in the adjacent neighborhoods [Argenti et 
al., 1990] or the storage of only the non-zero co-occurring density values [Clausi & Jernigan, 
1998; Clausi & Zhao, 2002]. This last solution is well-adapted for large quantization levels G, 
i.e. when the co-occurrence matrices become large and sparse. We have used a hybrid data 
structure which combines a linked list and hash tables [Clausi & Zhao, 2002] to avoid the 
storage of the pairs of values of the co-occurrence matrices that have zero probability. This 
data structure is called hereafter the Hybrid Co-occurrence Matrix (HCM). 
Each node of that linked list is a structure containing one of the pairs of co-occurring values 
effectively encountered in the hypercubic neighborhood, its probability of co-occurrence for 
neighboring sampling points and a link to the next node in the list. To include a new pair in 
a linked list, a node having the same pair of density values is searched. If such a node is 
found, then its probability is incremented. Otherwise, a new node is added at the end of the 
list. However, the search of a particular node is time consuming. To avoid this drawback, 
we use a hash table with the same size than the co-occurrence matrix, in order to give a 
direct access to each node of the linked list. The access to the hash table is provided by the 
pair of density values (i,j). Each entry in the hash table contains a pointer. If the pointer is 
null, then the particular co-occurring pair of density value (i,j) does not have a 
representative node on the linked list. In this case, a new node is created and inserted at the 
end of the linked list. If the pointer is not null, then it points to the existing corresponding 
node in the linked list and its probability is incremented. 
The length L of the linked list is equal to the number of distinct pairs of values found in the 

considered hypercubic neighborhood. A total of ( ) ( )( )9 DR Lα β+ +  operations are 
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The cluster cores detected by the clustering procedure based on the selected co-occurrence 
features f5 and f4 with two texture classes and with S=34, which is the middle of the [17-50] 
largest range where the number of detected clusters remains constant, are presented in Fig. 
10(c). Figure 10(d) shows the two cluster cores detected with the features f9, f6, f1, and f8 
extracted from the density sum and difference histograms with two texture classes and with 
S=32, i.e. the middle of the [14-50] largest range where the number of detected clusters 
remains constant. The classification results achieved with the two algorithms are identical. 
They are shown in Fig. 10(b). The error-rate associated with the two texture clustering 
procedures is 0.1% whereas it reaches 12.17% with the ISODATA algorithm. This result 
demonstrates the effectiveness of the approach in a non trivial situation. 

7. Computational load 
The proposed texture clustering algorithms are based on the same 3 steps scheme:  
1. Data conditioning  
2. Texture characterization 
3. Clustering based on texture properties.  
In the first data conditioning step, the distribution of the data points is approximated by the 
discrete multi-dimensional histogram constituted of NS cells. Thanks to the fast algorithm 
proposed in [Postaire & Vasseur, 1982], the number of elementary operations required by 
this procedure is N Q . 
In the last clustering step, the sampling points where the local underlying texture is 
evaluated are first assigned to different texture classes using the K-means algorithm that 
requires RKt  operations, where R is the number of non-empty hypercubes, K is the 
number of texture classes and t is the number of iterations necessary for the algorithm to 
converge. 
Then, the connected components are extracted by means of an aggregation procedure where 
two hypercubes that belong to the same class of texture are assigned to the same component 
if they have at least one point in common. As  (3 1)N −  adjacent neighbors of each sampling 
point are considered, R3N operations are required by the connected components extraction 
procedure. 
The core extraction procedure requires the determination of the compactness of all the 
detected connected components, involving also R3N elementary operations. Using a 
hypercubic structuring element of side length equal to 3, the classical closing-opening 
morphological filtering process requires 4R3N operations. 
We now focus our attention on the complexity of the second step since the first and third 
steps are independent of the texture features extraction process. This second step, which 
consists in the characterization of the distributions in terms of texture, is split into two 
phases. The co-occurrence matrices or the density sum and difference histograms are 
generated in a first one, while the texture features are extracted from the matrices or from 
the histograms in a second phase. 
The computational loads associated with the generation of the COM and the density SDH 
for each non-empty hypercube are similar, and depend on the number of the couples of 
adjacent sampling points encountered within a hypercubic neighborhood of size 
length (2 1)h + . As there are (3 1)N −  adjacent sampling points for each of the 
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(2 1)Nh + sampling points falling in the hypercubic neighborhood, (3 1)(2 1)N Nh− +  couples 
of sampling points are considered to compute the co-occurrence matrix or the density sum 
and difference histogram at each sampling point of the discrete multidimensional 
histogram. As h  is set to 1 (cf. § 5.4), the number of elementary operations is approximately 
equal to ( ) ( )3 3 1 9N N N× − ≈ . Hence, the determination of all the co-occurrence matrices or 

the density sum and difference histograms requires 9NR  operations. 
The second phase is significantly different for the COM based and the density SDH based 
algorithms. It deserves a particular attention to avoid computational burden. 

7.1 Complexity of the co-occurrence matrix based algorithm 
In the case of the COM, each matrix must be looped through once or twice depending on the 
feature to be extracted. ( )21G + operations are necessary to explore the matrix so that the 
total complexity of the texture characterization using the co-occurrence matrices for R non-
empty hypercubes is equal to: 

( ) ( )( )( )( )29 1NO R Gα β+ + + . 

where α  and β  are the numbers of features using 1 and 2 loops, respectively. 
When the quantization level G of the density and/or when the dimension N are large,  the 
computation cost for computing the features becomes prohibitive. Several algorithms have 
been proposed in the texture analysis literature to overcome this problem. Some solutions are 
the reduction of the quantization level G [Clausi, 2002], the updating the features determined 
in a hypercubic neighborhood from those obtained in the adjacent neighborhoods [Argenti et 
al., 1990] or the storage of only the non-zero co-occurring density values [Clausi & Jernigan, 
1998; Clausi & Zhao, 2002]. This last solution is well-adapted for large quantization levels G, 
i.e. when the co-occurrence matrices become large and sparse. We have used a hybrid data 
structure which combines a linked list and hash tables [Clausi & Zhao, 2002] to avoid the 
storage of the pairs of values of the co-occurrence matrices that have zero probability. This 
data structure is called hereafter the Hybrid Co-occurrence Matrix (HCM). 
Each node of that linked list is a structure containing one of the pairs of co-occurring values 
effectively encountered in the hypercubic neighborhood, its probability of co-occurrence for 
neighboring sampling points and a link to the next node in the list. To include a new pair in 
a linked list, a node having the same pair of density values is searched. If such a node is 
found, then its probability is incremented. Otherwise, a new node is added at the end of the 
list. However, the search of a particular node is time consuming. To avoid this drawback, 
we use a hash table with the same size than the co-occurrence matrix, in order to give a 
direct access to each node of the linked list. The access to the hash table is provided by the 
pair of density values (i,j). Each entry in the hash table contains a pointer. If the pointer is 
null, then the particular co-occurring pair of density value (i,j) does not have a 
representative node on the linked list. In this case, a new node is created and inserted at the 
end of the linked list. If the pointer is not null, then it points to the existing corresponding 
node in the linked list and its probability is incremented. 
The length L of the linked list is equal to the number of distinct pairs of values found in the 

considered hypercubic neighborhood. A total of ( ) ( )( )9 DR Lα β+ +  operations are 
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required to calculate the texture features for all the sampling points. The value of L, depends 
on the data structure, on the dimension N and on the discretization parameter S. As L is 
generally significantly smaller than ( )21G + , the computational load to determine the 
texture features can be greatly reduced by means of the HCM.  

7.2 Complexity of the density sum and difference histogram based algorithm 
Let us now consider the algorithm based on the density sum and difference histograms that 
must be looped through once or twice to extract one feature. As the histograms are one-
dimensional structures, they are explored in ( )2 1G +  operations and the resulting 

complexity of the whole characterization procedure is equal to: 

( ) ( ) ( )( )( )9 2 1DO R Gα β+ + + . 

As ( ) ( )22 1 1G G+ +≺ , it appears that the complexity of the density SDH based algorithm is 
significantly smaller than that of the COM based algorithm, especially for high values of G. 
However, the comparison between the complexities of the density SDH and HCM based 
algorithms is not easy since the value of L  depends on many parameters. The complexity of 
the density SDH based algorithm is smaller than that of the HCM based algorithm only if 
( )2 1G L+ ≺ . 

7.3 Processing times comparison 
In order to compare the processing speeds produced by the feature extraction procedures 
based on the COM, the HCM and the density SDH , we use data sets constituted of two well 
separated Gaussian distributions of observations with means μ =[2, 2, 2,…, 2]T and  μ =[-2, -
2, -2,…, -2]T and with unit covariance matrices 1 2 NIΣ = Σ = . For N-dimensional data, 

1μ and 2μ  are N-dimensional vectors, while 1Σ and 2Σ  are N N×  unit covariance 
matrices. 
Since the main purpose of these simulations is to compare the computation times of the 
texture characterization procedures, the tuning of these algorithms is not optimized as 
proposed in section 5. On the contrary, all runs are made with 10S =  and with the largest 
number of available texture features for each algorithm. This strategy allows running the 
feature extraction procedures under comparable conditions for different dimensionalities N 
of the data and different sample sizes Q. For the density SDH based algorithm, we compute 
the 9 available features of table 2. For a fair comparison, we have selected the 9 most 
discriminatory features among the 13 that can be extracted from the COM and HCM (Table 
1). 
As the number of non-empty hypercubes depends on the structure of the data distribution, 
we have determined the average computation time per non-empty hypercube. Table 7 
indicates these computation times for twelve data sets obtained with three different sample 
sizes (Q=1000, 5000 and 10 000) and for N varying from 2 to 5, using a Pentium M processor 
715A/ 1.5GHz PC with 512 Moctets memory. Although the running times are computer 
dependent, they give an idea of the computation time improvement in a non trivial case. 
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We indicate, for each data set, the number R of non-empty hypercubes and the maximum 
value G of the densities. As the number of sampling points increases with the 
dimensionality N, the number of non-empty hypercubes is an increasing function of N for a 
given number Q of data points. As a consequence, the number of data points in each non-
empty hypercube tends to decrease with increasing values of N , so that G is a decreasing 
function of N.  The mean value of the lengths L of the linked lists produced by the HCM 
based procedure is also indicated in table 7. This mean value is denoted L . 
As expected, the processing times for the generation of the COM and the density SDH are 
similar. They increase with the dimensionality N and are independent of the number Q of 
data points.  
Table 7 allows to compare the processing times of the feature extraction process from the 
COM, the HCM and the density SDH for different couples of values of Q and N.  
The procedure based on the HCM is always faster than that based on the COM. The speed 
improvement is important when the value G is high and the mean value L  of the lengths of 
the linked lists is low. For example, with Q =10 000 and with the lower dimension N =2, G 
reaches the value 869, L  is equal to 63 and the extraction of the features from the HCM is 
more than 6000 times faster than the extraction from the COM. On the opposite, the 
improvement of the processing times is less significant for lower values of G and higher 
values of L . For the same number Q =10 000 and a higher dimension (N =5), the maximum 
value G is equal to 61 and L  reaches the value 804. In this case, the speed with the HCM is 
only twice faster than that with the COM (cf. table 7). 
The procedure based on the density SDH is also always faster than that based on the COM. 
The larger the maximum value G, the more important is the speed improvement. For 
example, the extraction of the features from the density SDH is more than 400 times faster 
than the extraction from the COM when  G reaches the value 869, i.e. with Q =10 000 and 
with the lower dimension N =2. For the same number Q =10 000 and a higher dimension (N 
=3), the maximum value G is equal to 415 and the speed with the density SDH is only 100 
times faster. But, even for G=61, a significantly lower value corresponding to N=5, the speed 
remains more than 10 times faster with the feature extraction procedure based on the 
density SDH than that based on the COM.  
If we compare the density SDH with the HCM based procedures, we can show that these 
two procedures provide comparable computation times. When the average value L  of the 
lengths of the linked lists is smaller than the size (2 1)G +  of the SDH, the extraction of the 
features from the HCM becomes faster than the extraction from the density SDH. For 
example, with Q=10 000, and with the dimension N =2, the extraction of the features from 
the HCM is more than 10 times faster than the extraction from the density SDH. On the 
contrary, for the same example and a higher dimension (N =5), the density SDH is more 
than 5 times faster than the HCM based procedure. 

8. Conclusion  
After a series of adaptations of classical image processing tools to cluster analysis such as 
thresholding, edge detection, relaxation, Markov field models and mathematical 
morphology, this chapter shows how texture analysis concepts can be introduced in the 
field of pattern classification. A general-purpose clustering procedure has been presented, 



 Pattern Recognition Techniques, Technology and Applications 

 

176 

required to calculate the texture features for all the sampling points. The value of L, depends 
on the data structure, on the dimension N and on the discretization parameter S. As L is 
generally significantly smaller than ( )21G + , the computational load to determine the 
texture features can be greatly reduced by means of the HCM.  

7.2 Complexity of the density sum and difference histogram based algorithm 
Let us now consider the algorithm based on the density sum and difference histograms that 
must be looped through once or twice to extract one feature. As the histograms are one-
dimensional structures, they are explored in ( )2 1G +  operations and the resulting 

complexity of the whole characterization procedure is equal to: 

( ) ( ) ( )( )( )9 2 1DO R Gα β+ + + . 

As ( ) ( )22 1 1G G+ +≺ , it appears that the complexity of the density SDH based algorithm is 
significantly smaller than that of the COM based algorithm, especially for high values of G. 
However, the comparison between the complexities of the density SDH and HCM based 
algorithms is not easy since the value of L  depends on many parameters. The complexity of 
the density SDH based algorithm is smaller than that of the HCM based algorithm only if 
( )2 1G L+ ≺ . 

7.3 Processing times comparison 
In order to compare the processing speeds produced by the feature extraction procedures 
based on the COM, the HCM and the density SDH , we use data sets constituted of two well 
separated Gaussian distributions of observations with means μ =[2, 2, 2,…, 2]T and  μ =[-2, -
2, -2,…, -2]T and with unit covariance matrices 1 2 NIΣ = Σ = . For N-dimensional data, 

1μ and 2μ  are N-dimensional vectors, while 1Σ and 2Σ  are N N×  unit covariance 
matrices. 
Since the main purpose of these simulations is to compare the computation times of the 
texture characterization procedures, the tuning of these algorithms is not optimized as 
proposed in section 5. On the contrary, all runs are made with 10S =  and with the largest 
number of available texture features for each algorithm. This strategy allows running the 
feature extraction procedures under comparable conditions for different dimensionalities N 
of the data and different sample sizes Q. For the density SDH based algorithm, we compute 
the 9 available features of table 2. For a fair comparison, we have selected the 9 most 
discriminatory features among the 13 that can be extracted from the COM and HCM (Table 
1). 
As the number of non-empty hypercubes depends on the structure of the data distribution, 
we have determined the average computation time per non-empty hypercube. Table 7 
indicates these computation times for twelve data sets obtained with three different sample 
sizes (Q=1000, 5000 and 10 000) and for N varying from 2 to 5, using a Pentium M processor 
715A/ 1.5GHz PC with 512 Moctets memory. Although the running times are computer 
dependent, they give an idea of the computation time improvement in a non trivial case. 
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We indicate, for each data set, the number R of non-empty hypercubes and the maximum 
value G of the densities. As the number of sampling points increases with the 
dimensionality N, the number of non-empty hypercubes is an increasing function of N for a 
given number Q of data points. As a consequence, the number of data points in each non-
empty hypercube tends to decrease with increasing values of N , so that G is a decreasing 
function of N.  The mean value of the lengths L of the linked lists produced by the HCM 
based procedure is also indicated in table 7. This mean value is denoted L . 
As expected, the processing times for the generation of the COM and the density SDH are 
similar. They increase with the dimensionality N and are independent of the number Q of 
data points.  
Table 7 allows to compare the processing times of the feature extraction process from the 
COM, the HCM and the density SDH for different couples of values of Q and N.  
The procedure based on the HCM is always faster than that based on the COM. The speed 
improvement is important when the value G is high and the mean value L  of the lengths of 
the linked lists is low. For example, with Q =10 000 and with the lower dimension N =2, G 
reaches the value 869, L  is equal to 63 and the extraction of the features from the HCM is 
more than 6000 times faster than the extraction from the COM. On the opposite, the 
improvement of the processing times is less significant for lower values of G and higher 
values of L . For the same number Q =10 000 and a higher dimension (N =5), the maximum 
value G is equal to 61 and L  reaches the value 804. In this case, the speed with the HCM is 
only twice faster than that with the COM (cf. table 7). 
The procedure based on the density SDH is also always faster than that based on the COM. 
The larger the maximum value G, the more important is the speed improvement. For 
example, the extraction of the features from the density SDH is more than 400 times faster 
than the extraction from the COM when  G reaches the value 869, i.e. with Q =10 000 and 
with the lower dimension N =2. For the same number Q =10 000 and a higher dimension (N 
=3), the maximum value G is equal to 415 and the speed with the density SDH is only 100 
times faster. But, even for G=61, a significantly lower value corresponding to N=5, the speed 
remains more than 10 times faster with the feature extraction procedure based on the 
density SDH than that based on the COM.  
If we compare the density SDH with the HCM based procedures, we can show that these 
two procedures provide comparable computation times. When the average value L  of the 
lengths of the linked lists is smaller than the size (2 1)G +  of the SDH, the extraction of the 
features from the HCM becomes faster than the extraction from the density SDH. For 
example, with Q=10 000, and with the dimension N =2, the extraction of the features from 
the HCM is more than 10 times faster than the extraction from the density SDH. On the 
contrary, for the same example and a higher dimension (N =5), the density SDH is more 
than 5 times faster than the HCM based procedure. 

8. Conclusion  
After a series of adaptations of classical image processing tools to cluster analysis such as 
thresholding, edge detection, relaxation, Markov field models and mathematical 
morphology, this chapter shows how texture analysis concepts can be introduced in the 
field of pattern classification. A general-purpose clustering procedure has been presented, 
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based on multidimensional texture analysis. The basic idea behind this approach is the 
characterization of the local distribution of the data points in the multidimensional data 
space in terms of textures. A set of texture features extracted from co-occurrence matrices or 
density sum and difference histograms that accumulate spatial and statistical information is 
used to evaluate locally the multidimensional textures that characterize the data 
distributions. The clustering scheme is based on the classification of texture feature vectors 
rather than on a direct processing of the observations themselves in the data space. 
Experimental results show that the density SDH and the COM based clustering algorithms 
are nearly as accurate in terms of error rates. However, the processing time using the COM 
tends to be prohibitive, especially for large data sets. This time processing can be greatly 
reduced by means of an hybrid structure including a linked list associated with hash tables. 
The main advantage of sum and difference histograms for clustering is a substantial 
reduction in computation time and memory requirement without any loss of accuracy of the 
results. 
When the texture based clustering procedures are compared with classical classification 
schemes for globular clusters detection, they perform comparably well. However, the new 
procedures are much more efficient in difficult clustering situations such as non spherical or 
non linearly separable clusters since they are sensitive to the local characteristics of the 
observation distributions. 
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based on multidimensional texture analysis. The basic idea behind this approach is the 
characterization of the local distribution of the data points in the multidimensional data 
space in terms of textures. A set of texture features extracted from co-occurrence matrices or 
density sum and difference histograms that accumulate spatial and statistical information is 
used to evaluate locally the multidimensional textures that characterize the data 
distributions. The clustering scheme is based on the classification of texture feature vectors 
rather than on a direct processing of the observations themselves in the data space. 
Experimental results show that the density SDH and the COM based clustering algorithms 
are nearly as accurate in terms of error rates. However, the processing time using the COM 
tends to be prohibitive, especially for large data sets. This time processing can be greatly 
reduced by means of an hybrid structure including a linked list associated with hash tables. 
The main advantage of sum and difference histograms for clustering is a substantial 
reduction in computation time and memory requirement without any loss of accuracy of the 
results. 
When the texture based clustering procedures are compared with classical classification 
schemes for globular clusters detection, they perform comparably well. However, the new 
procedures are much more efficient in difficult clustering situations such as non spherical or 
non linearly separable clusters since they are sensitive to the local characteristics of the 
observation distributions. 
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Fig. 1.  Discretization of a data set 

       (a) Raw data set          (b) Discrete multidimensional array of “densities” with 25S =  

Fig. 2.  Random textures synthesized as uniform bi- and tree- dimensional distributions of Q 
data points. (a) and (e) Q =200; (b) and (f) Q =600; (c) and (g) Q =1000; and (d) and  
(h) Q =1600 

Fig. 3.  Spatial variations of the 7 local texture features of table 1 for the data set of Fig.1.  
 (The range of variation of each feature is normalized between 0 and 1) 
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 (a) 1f : Uniformity - 1  (b) 2f : Uniformity – 2  (c) 3f : Homogeneity  (d) 4f : 
Correlation (e) 5f : Energy  (f) 6f : Entropy  (g) 7f : Inertia 

Fig. 4.  Spatial variations of the 8 local texture features of table 2 for the data set of Fig.1 

 (The range of variation of each feature is normalized between 0 and 1) 

(a) 1f : Dissimilarity  (b) 2f : Inverse Difference (c) 3f : Inverse Difference Moment  

(d) 4f : Cluster Shade (e) 5f : Cluster Prominence (f) 6f : Energy (g) 7f : Variance  

(h) 8f : Correlation  

Fig. 5.  Domains of homogeneous textures associated with the data set of Fig. 1 when 
different numbers of texture classes are required by the K-means algorithm 

 (a) 2 classes of textures      (b) 3 classes of textures      (c) 4 classes of textures 

 x :  cluster cores      + :  valleys        o :  core boundaries        * :  core surrounding 

Fig. 6.  Compact cores resulting from the compactness thresholding of the domains of Fig. 5  

 (a)  2 classes of textures    (b)  3 classes of textures    (c)  4 classes of textures 

Fig. 7.  Plots of the lengths  ( )L m   of the largest ranges of  S   where the number of detected 
 cores remains constant. 

 (a-i)* 2 classes of textures      (b-i)* 3 classes of textures      (c-i)* 4 classes of textures 

* i=1 for the COM based texture features, i=2 for the density SDH based texture features 

Fig. 8.  Cluster analysis for the bi-dimensional data set of example 1 

 (a) Raw data set (for statistical parameters, see table 6) 
 (b) Result of clustering  

                (c-i)*  Effect of the parameter  S   on the number of detected cores  

 (d-i)*  Discrete multidimensional histogram  

 (e-i)*  The four detected cluster cores  

* i=1 for the COM based texture features, i=2 for the density SDH based texture features 

Fig. 9.  Cluster analysis for the bi-dimensional data set of example 2 

 (a)  Raw data set (for statistical parameters, see table 6) 
 (b)  Result of clustering  

               (c-i)*  Effect of the parameter  S   on the number of detected cores  

 (d-i)*  Discrete multidimensional histogram  

 (e-i)*  The three detected cluster cores  

* i=1 for the COM based texture features, i=2 for the density SDH based texture features 

Fig. 10.  Cluster analysis for the three-dimensional data set of example 3.  

                 (a)  Raw data set 

                 (b)  Result of clustering 
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Fig. 9.  Cluster analysis for the bi-dimensional data set of example 2 

 (a)  Raw data set (for statistical parameters, see table 6) 
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Fig. 10.  Cluster analysis for the three-dimensional data set of example 3.  
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                 (b)  Result of clustering 
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                 (c)  Detected cluster cores with the COM based texture features 

                 (d)  Detected cluster cores with the density SDH based texture features 

 

Table captions 
Table 1.  Statistical texture features extracted from co-occurrence matrices 
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Table 2.  Statistical texture features extracted from sum and difference histograms 
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Table 3.  Compactness of the different domains of Fig. 3 when 2, 3 and 4 texture classes are  
   required by the K-means algorithm. 

(In bold, compactness’s higher than 50% of the highest compactness value among all the 
detected domains) 

Table 4.  Largest ranges of S  where the number of detected cores remains constant for 
different neighborhood sizes 

Table 5.  Statistical parameters of the two bi-dimensional distributions from which are 
drawn the observations of example 1 and statistical parameters of the detected clusters 

Table 6.  Statistical parameters of the two bi-dimensional distributions from which are 
drawn the observations of example 2 

Table 7.  Processing times, in ms, of the texture characterization procedures.
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 Most relevant features Largest range of S 

For  h=1:   f4 , f5 and f1 30 

For  h=2:   f6 , f3 , f1, f2  and f4 27 

For  h=3:   f6 22 

 
Co-occurrence matrices 

For  h=4:   f6 , f3 and  f2 18 

For h=1:  f9, f3, f6, f1 and f4 26 

For  h=2:   f9,  f3 24 

For  h=3:   f3, f9, f1 22 

Density sum and 
difference histograms 

For  h=4:   f9, f1 19 
Table 4 
 

Generated data Results of clustering 
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data points
Mean 
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Covariance 
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Dimension 
Method 

2 3 4 5 Q 

Generation times of COM, HCM or density SDH 0.01 0.06 0.40 2.77 

Number of non-empty hypercubes ( )R  61 209 466 736 

Maximum density ( )G  65 28 11 6 

Computation times for feature extraction from 
COM 1.48 0.30 0.07 0.03 

Computation times for feature extraction from 
density SDH 0.10 0.06 0.02 0.01 

1 000 

Computation times for feature extraction from 
HCM 

Mean values of the lengths of the linked lists ( )L
0.04 
53 

0.12 
140 

0.06 
91 

0.02 
35 

Number of non-empty hypercubes ( )R  67 329 857 1804 

Maximum density ( )G  440 123 72 32 

Computation times for feature extraction from 
COM 57.79 5.05 1.92 0.54 

Computation times for feature extraction from 
density SDH 0.38 0.21 0.13 0.06 

 
 

5 000 

Computation times for feature extraction from 
HCM 

Mean values of the lengths of the linked lists ( )L
0.04 
61 

0.22 
273 

0.45 
515 

0.32 
358 

Number of non-empty hypercubes ( )R  70 288 994 2489 

Maximum density ( )G  869 415 141 61 

Computation times for feature extraction from 
COM 246 49.8 6.00 1.67 

Computation times for feature extraction from 
density SDH 0.58 0.40 0.22 0.13 

 
 

10 000 

Computation times for feature extraction from 
HCM 

Mean values of the lengths of the linked lists ( )L
0.05 
63 

0.25 
322 

0.73 
855 

0.70 
804 

Table 7 

8 

Rock Particle Image Segmentation and Systems 
Weixing Wang 

Collage of Computer Science and Technology, Hubei University of Technology, 
 Wuhan, Hubei,  

China 

1. Introduction 
As known, most important, and the hard part of pattern recognition for rock particles, is image 
segmentation. Segmentation can be divided into two steps, one is segmentation based on gray 
levels (called image binarization, sometimes) in which a gray level image is processed and 
converted into a binary image. Another is segmentation based on rock particle shapes in a 
binary image, in which overlapping and touching particles will be split, and over-segmented 
particles will be merged based on some prior knowledge such as shape and size etc. 
Segmentation algorithms for monochrome (gray level) images generally are based on one of 
two basic properties of gray-level values: similarity and discontinuity. The principal 
approaches in the first category are based on thresholding, region growing, and region 
splitting and merging. In the second category, the approach is to partition an image based 
on abrupt changes in gray level. The principal areas of interest within this category are 
detection of isolated points and detection of lines and edges in an image.  
The choice of segmentation of rock particle images based on similarity or discontinuity of 
the gray-level values depends on both developed sub-algorithms and applications. 
Rock particle images have their own characteristics compared to other particle images. 
Generally speaking, under the frontlighting illumination condition which is common case, 
rock particle images have the characteristics: (1) uneven background and foreground for 
which a simple thresholding algorithm cannot be applied to segment the images; (2) each 
rock particle may possess a textured surface and multiple faces, which often causes an over-
segmentation problem; (3) rock particle overlapping each other, which hides parts of a 
particle, or causes breaks of the boundaries of rock particles; (4) touching rock particles 
forming a large cluster; (5) rain, snow, or much fine material making rock particle images 
clump together.  
Rock particles may be densely packed or be separated mostly on a background. The former 
case is more difficult to process than the latter. As well known, most systems for rock 
particle images were developed based on simple thresholding algorithms (some of them 
combined with morphological segmentation algorithm) and boundary detection algorithms. 
The segmentation algorithm designing is application (here, the type of rock particle images) 
dependent. In this chapter, the author summarize own segmentation approaches for rock 
particle images, they are: (1) an algorithm based on edge detection; (2) an algorithm based 
on region split-and-merge; (3) an adaptive thresholding algorithm; and (4) an algorithm for 
splitting touching particles in a binary image. 
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The size, shape and texture of rock particles are very important characteristics of the 
physical properties for the geology research and rock particle production industry and 
mining industry. In mining, the size and shape distributions of fragments affect not only 
rock blasting, but also the whole mining production sequence. In the quarry manufacture, 
the size, shape and texture of rock particles must fit the requirements of customers, such as 
high way and rail way construction companies, the different companies in the building 
industries, etc. In geology, the size, shape and texture of gravel and sedimentary deposits 
are often used for analyzing and describing local geological properties in a certain region. 
Hence, rock particle size, shape and texture are widely applied and studied in both 
industries and research organizations. 
Mechanical and manual measurement methods are traditional methods. Mechanical 
methods such as screens and classifiers will often separate rock particles according to their 
shapes, as well as density and size. In the laboratory, sieving of dry material is possible at 
sizes as fine as 0.05 mm and classification would not be applied to sizes greater than 0.1 mm. 
In industrial practices, it is impractical for screening the material sized below 3 mm, when 
the moisture is up to 3-10% by weight. These devices physically separate particles and often 
characterize the distribution of size in a limited size of a particle sample. The form of rock 
particle is often manually measured in a laboratory, in this way, three or more parameters 
such as the rock particle length, width, and thickness are often measured respectively for 
every individual particle. However, sieving and manual measurement methods are 
manpower and time consuming methods, in which the size of a sample is limited, and the 
measuring results are only suitable for the simple shape such as cube and cuboid. The 
results measured by different persons will be different in manual measurement [1]. In order 
to increase accuracy and speed of measurement, reduce manpower consuming, and enlarge 
sample size, new measurement methods are needed to be developed based on currently 
developed techniques. The image analysis method is one of these relatively new methods in 
engineering geology. For developing this kind of measurement methods or systems, the 
knowledge of geology or mining engineering, the techniques of image analysis and 
computer vision, as well as the skills of computer software development are needed.  
As computers are widely used today, the cost of an image system is often relatively low, and 
rock particle size, shape and texture analysis can thereby be handled easily and quickly. 
Image analysis is a subset of the wider field computer vision, which aims at imitating 
biological or human vision performance. Identifying and separating overlapping objects 
from each other, is something that human vision can do with surprising (uncanny) ease. It is 
still an open question how to achieve this algorithmically in computer vision..  

2. Literature review 
The earliest image analysis system for rock particles was developed by Gallagher [2] in 1976. 
In his PHD study, he set up a system aimed to measure fragment size parameters on a 
conveyor belt. The camera was mounted above the particle stream with its optical axis 
aligned normal to the moving bed of particles. The size distribution of the fragments was 
then computed by finding the spacing of edges with a chord sizing method. Nyberg (1982) 
[3] presented an image system scanning chord size on an edge image of fragments in a 
rockpile. During the past fifteen years, image analysis for rock particles has become a hot 
topic of research, and a number of image systems have been developed for measuring rock 
particles in different applications such as gravitational flows, conveyor belts, rockpiles, and 
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laboratories, and some of them are under development. The researches and developments 
have been and are carried out in many countries such as Sweden, Germany, France, 
England, Australia, Canada, United States, China, South Africa, and Spain etc.[4-11].  
Generally speaking, a system consists of three parts: image acquisition, image segmentation 
and particle size and shape measurement. Image acquisition is about how to set up an image 
acquisition system to acquire rock particle images of good quality under different work 
conditions, which is often strongly application dependent. Image segmentation is an 
important part in the whole system. The design of an image segmentation algorithm 
depends on the characteristics of rock particle images. The image segmentation results affect 
the accuracy of measurement of size, shape and texture of rock particle particles. The basic 
requirement for size, shape and texture measurement is that the measurement results 
should be reproducible, and should reflect as much information as possible. 
According to algorithms or methods of image segmentation, the existing systems could be 
classified into at least four classes. They are: (1) thresholding on histogram of gray levels [12-
18]; (2) boundary tracing or edge detection [2-3, 7-8, 19-33]; (3) region growing or merge & 
split [9-10, 34-37]; and (4) thresholding and granulometry (= morphology segmentation on a 
binary image) [38-41].  
Systems based on thresholding of histogram of gray levels were applied in some 
applications in which rock particle images have a uniform background, and rock particle 
possessing less surface texture. The typical application is measuring rock particles in a 
gravitational flow. Recently, such systems are used both in laboratories and for conveyor 
belts in the field [15-18]. The system uses backlighting illumination (a special lighting 
condition is constructed) to acquire rock particle images from a free falling rock particle 
stream, the acquired images being almost binarised ones. Therefore, a simple threshold can 
separate rock particles and background easily.   
There is a number of systems developed based on boundary tracing or edge detection 
algorithms. The early systems mentioned before [2-3], used a difference operator to obtain a 
gradient magnitude image from a gray level image, then binarised the gradient magnitude 
image. The binarised image is the image with contours of particles. In most cases, the 
segmentation results are not satisfactory due to the fact that the contours of particles are not 
closed curves, and false edges exist. In order to overcome the problems, some recent systems 
include procedures (sub-algorithms) for gap linking, false edge elimination and curve 
closing.  Some typical examples are summarized below. 
In Lin, Yen and Miller’s system (1995) [31], an image of overlapped rock fragments, taken 
from a moving conveyor belt, is first smoothed with an edge preserving filter, secondly 
detected by an edge detection operator (Canny’s algorithm), then processed by edge linking 
and edge gap filling, finally followed by segment connection. Transforming the intensity 
function of the processed image for the desired intensity regions smooths the original image. 
The Canny edge detector is used with a so-called hysteresis thresholding algorithm to 
extract edges from the smoothed image. Supplementary to edge detection, edge linking and 
gap filling functions are added in the algorithm. 
Kemeny et al. [24-27] system has been used in many cases. The system enhances an image 
by equalizing histogram of gray levels, then thresholds the enhanced image to separate void 
spaces among particles (non-particle regions), so-called shadows, from particles. Meanwhile 
a gradient magnitude image is obtained by using a Sobel difference operator. Particles are 
delineated by searching for large gradient paths ahead of sharp convexities of the shadows 
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to separate clusters of touching rock particles. Using a morphological segmentation 
algorithm splits the remaining touching particles.  
Norbert, Tom and Franklin [21-22 setup a system since 1988]: The work sequence of the 
segmentation algorithm is similar to Kemeny’s one. It includes two steps. The first step is to 
segment particles by use of several conventional image processing techniques, including the 
use of thresholding and gradient operators. In this step, the faint shadows between adjacent 
particles are detected, and the work step is available for clean images with lightly textured 
rock surfaces. The second step uses a number of reconstruction techniques to further 
delineate particles which are only partly outlined during the first step. In the second step, 
the algorithm is just for closing particle contours. Bedair 1996  in his Ph.D. study, developed 
a similar particle contour closing algorithm, the detail description can be found in [32-33]. 
In morphological segmentation of rock particle images, the thresholded binary image is the 
objective. Two kinds of algorithms have been used in the image analysis systems for rock 
particles: one is granulometry, the other is Watershed algorithm.  
The general idea of the Granulometry algorithm is that in order to simulate the sieving 
analysis, one can generate a series of squares (a maximum square inside of an particle) to 
obtain size distribution. In this algorithm, the complex segmentation is avoided. The ideal 
case is that particles have some regular shape (e.g. circle, square, or diamond). It is mainly 
based on the functions of opening and closing with a certain structure element, and distance 
transformation. The systems applying the algorithm can be found in [39-41]. 
Yen, Lin and Miller’s method (1994) [38] - a derivative of the Watershed segmentation: It 
includes seven steps: (1) “Edge Preserving Smoothing” technique is applied to the 
overlapped fragment image to eliminate the fluctuation of highs and lows on the particle 
surface as much as possible but preserve the edge points; (2) the Sobel edge detector is used 
to find the edges on the smoothed particle image; (3) A median  filter is utilized to eliminate 
the noise on the edge image; (4) the smoothed edge image is subtracted from the original 
image to construct an “edge cutted” (EC) image; (5) a gray scale morphology erosion is 
applied to shrink EC particle image to an extent such that no overlap occurs; (6) the “Otsu” 
thresholding algorithm [74] is used to shrunk, non-overlapped image and a labeling 
procedure used to identify each mark; (7) Once these inside markers have been located the 
“Odered Queue Watershed” algorithm can then be applied to the original particle image to 
separate the overlapped particles. The segmentation result is not very satisfactory even to 
well sorted particles with a good background. 
The segmentation algorithms of region growing or merge & split for rock particle images [9-
10, 34-37] were and are mainly developed by the author. The chapter will discuss that 
segmentation algorithm. All the four kinds of segmentation algorithms have been 
developed more or less in the study. The different developed algorithms have been chosen 
for different applications. The developed algorithms are described and compared too. 

3. Image segmentation algorithm for rock particles 
As mentioned before, most important, and the hard part of computer vision for rock particles, 
is segmentation. Segmentation can be divided into two steps, one is segmentation based on 
gray levels (called image binarization, sometimes) in which a gray level image is processed 
and converted into a binary image. Another is segmentation based on particle shapes in a 
binary image, in which overlapping and touching particles will be split, and oversegmented 
particles will be merged based on some prior knowledge such as shape and size etc. 

Rock Particle Image Segmentation and Systems 

 

201 

3.1 The algorithms based on edge detection 
3.1.1 Crucial algorithm edge detection 
As most developed segmentation algorithms in the existing systems for rock particle images, 
an algorithm based on edge detection was also developed in this study. The main parts of the 
algorithm are (1) image smoothing; (2) edge detection by an edge operator; (3) thresholding on 
the obtained gradient magnitude image; and (4) noise edge deleting and edge gap linking.  
After image smoothing (e.g. Gaussian smoothing), the Canny edge detector [59] is applied 
on the smoothed image. The gradient magnitude image obtained by Canny’s operator, is 
thresholded by the P-tile thresholding algorithm, the value of the P-tile is chosen according 
to characteristics of rock particle images. Before noise edges deleting and edge gap linking, 
the thresholded image is thinned by a thinning function. After this operation, all the end 
points of edges (lines or curves) are detected, and small gaps between two edges are linked, 
where some end points disappear. All the edges of the end points are eroded from the end 
points within a certain length LE(a number of pixels), the short edges of length < LE, are 
removed. The remaining edges are then dilated to recover their original states. Finally, the 
gaps (e.g. the length of a gap is less than 20 pixels) between edges are linked. 
As examples, two densely packed rock particle images are segmented by the algorithm (see 
Fig. 1). In the present stage, the algorithm can not provide closed curve for each individual 
particle, but the segmentation result can be used for estimation of average size of densely 
packed rock particle particles. 
 

 
                           (a)                  (b)                       (c) 

 
             (d)                                              (e)            (f) 
Fig. 1. Segmentation based on edge detection. (a) Original image #1. (b) Image after Canny 
operation on (a). (c) Image after deleting noise edges and gap linking on (b). (d) Original 
image #2. (e) Image after Canny operation on (d). (f) Image after noise edges deleting and 
gap linking on (e). 
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to separate clusters of touching rock particles. Using a morphological segmentation 
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3.1 The algorithms based on edge detection 
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particle, but the segmentation result can be used for estimation of average size of densely 
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                           (a)                  (b)                       (c) 

 
             (d)                                              (e)            (f) 
Fig. 1. Segmentation based on edge detection. (a) Original image #1. (b) Image after Canny 
operation on (a). (c) Image after deleting noise edges and gap linking on (b). (d) Original 
image #2. (e) Image after Canny operation on (d). (f) Image after noise edges deleting and 
gap linking on (e). 
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3.1.2  The algorithm of one-pass boundary detection  
The goal of edge detection in our case is to quickly and clearly detect the boundaries of 
particles, it is not necessary to close every particle’s boundary (it is too hard), but it should 
produce less gaps on boundaries and less noise edges on the particles. To reach this goal, we 
tested several widely used edge detection algorithms for a typical particle image; in Fig. 2, 
(a) original image (150x240x8 bits), (b) Sobel edge detection result that includes too much 
white noise, (c) Robert edge detection result that is mass, (d) Laplacian edge detection result 
that miss boundaries much, (e) Prewitt edge detection result that is similar to (a), (f) and (g) 
Canny edge detection results which are thresholding value dependent, and (h) the result 
from our developed one-pass boundary detection algorithm. By comparing results from the 
seven tests, the new algorithm gives the best edge (boundary) detection result. Our 
algorithm [53] is actually a kind of ridge detector (or line detector). 
 

 
       (a)                                  (b)                                    (c)                                 (d) 

 
     (e)                               (f)                         (g)                               (h) 

Fig. 2. Testing of edge detection algorithms: (a) Original image; (b) Sobel detection; (c) 
Robert detection; (d) Laplacian detection; (e) Prewitt detection; (f) Canny detection with a 
high threshold; (g) Canny detection with a low threshold; and (h) Boundary detection result 
by the new algorithm. 

To overcome the disadvantages of the above first six edge detection algorithms, we studied a 
new boundary detection algorithm (Fig. 2 (h)) based on ridge (or valley) information. We use the 
word valley as an abbreviation of negative ridge. The algorithm is briefly described as follows: 
A simple edge detector uses differences in two directions: ( ) ( )1, ,x f x y f x yΔ = + −  

and ( ) ( ), 1 ,y f x y f x yΔ = + − , where ( ),f x y  is a grey scale image. 
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In our valley detector, we use four directions. Obviously, in many situations, the horizontal 
and vertical grey value differences do not characterize a point, such as P (in Fig. 3), well. 
 

 

  
Fig. 3. Examine the point P, determining if it is a valley pixel, or not. Circles in the sparse (i, 
j)-grid. It moves for each P ∈ (x, y)-grid. (a) A grey value landscape over layered with a 
sample point grid. (b) PA-PB section. 
In Fig. 3, we see that P is surrounded by strong negative and positive differences in the 
diagonal directions: 

45 0∇ < , and 45 0Δ > , 135 0∇ < , and 135 0Δ > , whereas, 0 0∇ ≈ , and 0 0Δ ≥ , 90 0∇ ≈ , and 

90 0Δ ≈ , where Δ are forward differences:  ( ) ( )45 1, 1 ,f i j f i jΔ = + + − , and  ∇  are 

backward differences: ( ) ( )45 , 1, 1f i j f i j∇ = − − −  etc. for other directions. We use 

( )max α αΔ −∇  as a measure of the strength of an edge point. It should be noted that we use 
sampled grid coordinates, which are much more sparse than the pixel grid 0 x n≤ ≤ , 
0 y m≤ ≤ . f  is the original gray value image after slight smoothing.  
What should be stressed about the valley edge detector is: 
a. It uses four instead of two directions; 
b. It studies value differences of well separated points: the sparse 1i ±  corresponds to 

x L±  and 1j ±  corresponds to y L± , where 1L >> , in our case, 3 7L≤ ≤ . In 
applications, if there are closely packed particles of area > 400 pixels, images should be 
shrunk to be suitable for this choice of L. Section 3 deals with average size estimation, 
which can guide choice of L; 



 Pattern Recognition Techniques, Technology and Applications 

 

202 

3.1.2  The algorithm of one-pass boundary detection  
The goal of edge detection in our case is to quickly and clearly detect the boundaries of 
particles, it is not necessary to close every particle’s boundary (it is too hard), but it should 
produce less gaps on boundaries and less noise edges on the particles. To reach this goal, we 
tested several widely used edge detection algorithms for a typical particle image; in Fig. 2, 
(a) original image (150x240x8 bits), (b) Sobel edge detection result that includes too much 
white noise, (c) Robert edge detection result that is mass, (d) Laplacian edge detection result 
that miss boundaries much, (e) Prewitt edge detection result that is similar to (a), (f) and (g) 
Canny edge detection results which are thresholding value dependent, and (h) the result 
from our developed one-pass boundary detection algorithm. By comparing results from the 
seven tests, the new algorithm gives the best edge (boundary) detection result. Our 
algorithm [53] is actually a kind of ridge detector (or line detector). 
 

 
       (a)                                  (b)                                    (c)                                 (d) 

 
     (e)                               (f)                         (g)                               (h) 

Fig. 2. Testing of edge detection algorithms: (a) Original image; (b) Sobel detection; (c) 
Robert detection; (d) Laplacian detection; (e) Prewitt detection; (f) Canny detection with a 
high threshold; (g) Canny detection with a low threshold; and (h) Boundary detection result 
by the new algorithm. 

To overcome the disadvantages of the above first six edge detection algorithms, we studied a 
new boundary detection algorithm (Fig. 2 (h)) based on ridge (or valley) information. We use the 
word valley as an abbreviation of negative ridge. The algorithm is briefly described as follows: 
A simple edge detector uses differences in two directions: ( ) ( )1, ,x f x y f x yΔ = + −  

and ( ) ( ), 1 ,y f x y f x yΔ = + − , where ( ),f x y  is a grey scale image. 

Rock Particle Image Segmentation and Systems 

 

203 

In our valley detector, we use four directions. Obviously, in many situations, the horizontal 
and vertical grey value differences do not characterize a point, such as P (in Fig. 3), well. 
 

 

  
Fig. 3. Examine the point P, determining if it is a valley pixel, or not. Circles in the sparse (i, 
j)-grid. It moves for each P ∈ (x, y)-grid. (a) A grey value landscape over layered with a 
sample point grid. (b) PA-PB section. 
In Fig. 3, we see that P is surrounded by strong negative and positive differences in the 
diagonal directions: 

45 0∇ < , and 45 0Δ > , 135 0∇ < , and 135 0Δ > , whereas, 0 0∇ ≈ , and 0 0Δ ≥ , 90 0∇ ≈ , and 

90 0Δ ≈ , where Δ are forward differences:  ( ) ( )45 1, 1 ,f i j f i jΔ = + + − , and  ∇  are 

backward differences: ( ) ( )45 , 1, 1f i j f i j∇ = − − −  etc. for other directions. We use 

( )max α αΔ −∇  as a measure of the strength of an edge point. It should be noted that we use 
sampled grid coordinates, which are much more sparse than the pixel grid 0 x n≤ ≤ , 
0 y m≤ ≤ . f  is the original gray value image after slight smoothing.  
What should be stressed about the valley edge detector is: 
a. It uses four instead of two directions; 
b. It studies value differences of well separated points: the sparse 1i ±  corresponds to 
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c. It is nonlinear: only the most valley-like directional response ( )α αΔ −∇  is used. By 

valley-like, we mean ( )α αΔ −∇  value. To manage valley detection in cases of broader 

valleys, there is a slight modification whereby weighted averages of ( )α αΔ −∇ - 
expressions are used. 

        ( ) ( ) ( ) ( )1 2 2 1B A B Aw P w P w P w Pα α α αΔ + Δ − ∇ − ∇ , where, AP  and BP  are shown in Fig. 3. 
        For example, w1=2 and w2=3 are in our experiments. 
d. It is one-pass edge detection algorithm; the detected image is a binary image, no need 

for further thresholding. 
e. Since each edge point is detected through four different directions, hence in the local 

part, edge width is one pixel wide (if average particle area is greater than 200 pixels, a 
thinning operation follows boundary detection operation); 

f. It is not sensitive to illumination variations, as shown in Fig. 4, an egg sequence image. 
On the image, illumination (or egg color) varies from place to place, for which, some 
traditional edge detectors (Sobel and Canny etc.) are sensitive, but the new edge 
detector can give a stable and clear edge detection result comparable to manual 
drawing result.  

The algorithm has been tested for a number of images. It works satisfactory in several kinds 
of applications, and the testing results are shown in Figs. 5 -8.  
In Fig. 5, the froth is very small, say, 43 pixels per bubble on average, it is hard to delineate 
by using a common image segmentation algorithm. 
The image in Fig. 6 is different from the image in Fig. 5: the bubble size varies much; the 
white spots can clearly be seen on relative large bubbles. The ordinary edge detector may 
just detect the edges of the white spots, which are not the boundaries of the bubbles. 
The image in Fig. 7 includes a mass of rough surface particles (average area is about 45 
pixels), the new algorithm works well even for this kind of images. 
 
 

 
            (a)                                (b)                                        (c) 

 
           (d)                                  (e)           (f) 

Fig. 4. Egg image test: (a) original image (400x200 pixels), (b) new algorithm result, (c) 
manual drawing result (180 eggs), (d) Sobel edge detection result, and (e) and (f) Canny 
edge detection results with different thresholds. 

Rock Particle Image Segmentation and Systems 

 

205 

 

 
 

                           (a)                              (b) 
 

Fig. 5. Froth image of well sorted bubbles (image size 256x256, about 1516 bubbles):     (a) 
Original image, (b) Boundary detection result. 
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Fig. 6. Froth image of non-well sorted bubbles (image size 256x256, about 1421 bubbles): (a) 
Original image, (b) Boundary detection result. 
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Fig. 7. Soil image of well sorted particles (image size 256x256, about 1445 particles): (a) 
Original image (particle surface is very rough), (b) Boundary detection result. 

In Fig. 8, the image consists of a number of crushed aggregate particles, 47 pixels per 
aggregate particle on average. Even for the non-smooth (non-rounded) surface particles, the 
new edge detection algorithm can give a good detection result. 
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Fig. 8. Crushed aggregate image of well sorted particles (image size 356x288, about 2173 
particles): (a) Original image, (b) Boundary detection result. 
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The new algorithm includes only some kind of differentiation - one of the three operations 
(differentiation, smoothing and labeling) by comparing to ordinary edge detectors. It is a 
kind of line detection algorithm, but detecting lines in four directions. 
After boundary detection, the edge density will be counted and converted to particle size, 
the next section presents our particle size estimation algorithm. 

3.2 The algorithm based on split-and-merge 
For the images of densely packed rock particle particles, the above segmentation algorithm 
can provide average size rather than size distribution of particles. To meet the requirement 
of obtaining a size distribution of rock particle particles, a segmentation algorithm based on 
region split-and-merge was developed. The algorithm consists of three parts: (1) Suk & 
Chung algorithm-Single-pass split-and-merge [60]; (2) merging small regions into their 
adjacent large regions; (3) background split and regions merge based on shape of rock 
particle particles. 
For a rock particle image, the Suk & Chung algorithm [60] is first applied to segment the 
rock particle image into small regions. However, this segmentation based on gray values, 
yields a number of the small regions amounting to tens up to hundreds times the real 
number of particles in an image. In order to reduce the number of the small regions, a merge 
procedure was developed, in which the two steps are included: (1) Find the small regions Rs 
(< T3, T3 is a threshold value); (2) Among Rj (j =1,2, ...), all the neighboring regions of Rs , 
find Rm (j = m) for which the common edges between Rs  and Rj is maximal, and then merge 
Rs  and Rm. 
Sometimes, the whole rock particle image is not fully occupied by the particles. Parts of the 
non-particles regions or void spaces tend to be dark. To eliminate regions belonging to dark 
background, one may let regions of average gray value below a pre-defined threshold be re-
classified as background, so-called "background split". The use of a pre-defined threshold is 
partly enabled by the normalization pre-processing procedure. 
When the background is split from the image (i.e. the image is converted into a binary 
image), over-segmentation problem still exists in the binarized image. To overcome this 
problem, a procedure for merging regions based on shape of rock particle particles was 
constructed. In the merge procedure, three basic merge criteria were considered for two 
neighboring regions (or objects), they are: (1) their common boundary length is relatively 
long; (2) the gray value difference between two objects is not too large; and (3) if two objects 
are merged, the two junction points should not be concave points.  
The whole algorithm work sequence is illustrated in the following Figures. An original rock 
particle image (from pavement) is shown in Fig. 9(a). In the first processing step, the image 
is merged and split into many small regions, each of them has an uniform gray intensity (see 
Fig. 9(b)). After merging small regions into their adjacent large regions, the result image is 
shown in Fig. 9(c), where the over-segmentation problem still exists. To reduce this kind of 
problem, in the last step, the merge procedure on a binary image, is used, and the result is 
shown in Fig. 9(d).  
When a rock particle image is complex as shown in Fig. 10(a), one extra pre-processing 
algorithm has to be used before the segmentation algorithm is applied. The image pre-
processing algorithm was designed to: (i) strengthen the edges among the rock particles; (ii) 
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(< T3, T3 is a threshold value); (2) Among Rj (j =1,2, ...), all the neighboring regions of Rs , 
find Rm (j = m) for which the common edges between Rs  and Rj is maximal, and then merge 
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Sometimes, the whole rock particle image is not fully occupied by the particles. Parts of the 
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background, one may let regions of average gray value below a pre-defined threshold be re-
classified as background, so-called "background split". The use of a pre-defined threshold is 
partly enabled by the normalization pre-processing procedure. 
When the background is split from the image (i.e. the image is converted into a binary 
image), over-segmentation problem still exists in the binarized image. To overcome this 
problem, a procedure for merging regions based on shape of rock particle particles was 
constructed. In the merge procedure, three basic merge criteria were considered for two 
neighboring regions (or objects), they are: (1) their common boundary length is relatively 
long; (2) the gray value difference between two objects is not too large; and (3) if two objects 
are merged, the two junction points should not be concave points.  
The whole algorithm work sequence is illustrated in the following Figures. An original rock 
particle image (from pavement) is shown in Fig. 9(a). In the first processing step, the image 
is merged and split into many small regions, each of them has an uniform gray intensity (see 
Fig. 9(b)). After merging small regions into their adjacent large regions, the result image is 
shown in Fig. 9(c), where the over-segmentation problem still exists. To reduce this kind of 
problem, in the last step, the merge procedure on a binary image, is used, and the result is 
shown in Fig. 9(d).  
When a rock particle image is complex as shown in Fig. 10(a), one extra pre-processing 
algorithm has to be used before the segmentation algorithm is applied. The image pre-
processing algorithm was designed to: (i) strengthen the edges among the rock particles; (ii) 
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delete or decrease bright spots noises (= noise or irrelevant detail) in a rock particle image; 
and (iii) remove slowly varying intensity variations in a rock particle image. (i) is crucial 
because the contrast between touching or overlapping particle edges may be quite low, 
causing great difficulties for image segmentation. (ii) is very important for removing spots 
noise (e.g. fine material) and smooth particles. (iii) is of interest, since by making the image 
more homogeneous, eliminating some slowly sloping regions, segmentation is expected to 
work more efficiently. One example is shown in Fig. 10, to illustrate the usefulness of the 
 

   
           (a)              (b) 

 
           (c)             (d) 

Fig. 9. Image segmentation based on split-and-merge. (a) Original image. (b) Result of split-
and-merge. (c) Result after merging small regions into their adjacent large regions. (d) Image 
after regions merge based on shapes of rock particle particles. 
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image pre-processing algorithm. The segmentation result is not satisfactory because of 
without using the preprocessing procedure before segment the image. 
 

  
          (a)                                                (b) 

  
            (c)             (d) 

Fig. 10. Comparison between two segmentation results by using the segmentation algorithm 
described in the following section. (a) Original image. (b) Image after the pre-processing. (c) 
Segmented result on the image in (a). (d) Segmented result on the image in (b). 

Before the above procedure, a preprocessing step is operated. as the follows.  
The principal objective of image pre-processing is to process an image so that the result is 
more suitable than the original image for a specific segmentation algorithm. For the ceramic 
surface image segmentation, in order to make images more suitable for segmentation, we 
use our pre-processing program to reduce image noises in three steps: (1) strengthen the 
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edges among the ceramic grains; (2) delete or decrease bright spots noises (= noise or 
irrelevant detail) in a ceramic image, and (3) remove slowly varying intensity variations in a 
ceramic image. Item (1) is crucial because the contrast between touching or overlapping 
grain edges may be quite low, causing great difficulties for image segmentation. Item (2) we 
have already discussed. Item (3) is of interest, since by making the image more 
homogeneous, eliminating some slowly sloping regions, segmentation is expected to work 
more efficiently. 
We strengthen the edges by subtracting a gradient image (using Robert's difference 
operator) times a factor λ from fo, the original ceramic image, Eq. (1). We obtain a new 
image fn with more contrast along edges. 

 ( ) ( ) ( ), , ,n of x y f x y M X Yλ= −  (1) 

In Eq. (1), fn(x, y) is ceramic image after edge strengthening, fo(x, y) the original ceramic 
image, M(x, y) the magnitude image (based on fo) and λ a parameter, say λ = 0.5. 
Next, a curved normalization surface T(x, y) is constructed, for which, a normalization value 
is assigned to each pixel, given by Eq. (2). In Eq. (2), μ0 and d0 are global mean grey value 
and standard deviation of fn, respectively, and μ and d are local mean grey value and 
standard deviation of fn (e.g. 16x16 window), 

 ( )0 00.2( ) 0.5T d dμ μ μ= − − − −  (2) 

The image elements for which grey values are larger than T(x, y), (Here, T is used for grey 
value slicing, for finding bright regions. In Eq. (3), it is used for normalization.), will be 
processed through shrinking and expanding, so-called morphological operations, causing 
regions of width around 2 - 3 pixels, say narrow bright thin lines or bright spots, to vanish. 
In this case, the function T is used for detecting narrow or small bright regions. 

 ( ) ( ), ( , ) , .N nf x y f x y T x y Const= − +  (3) 

Narrow dark regions cannot be removed in this way since we then may destroy void space 
separating two grains. Slowly varying grey values can, locally, causes extra "shadows" in a 
grain, which makes segmentation difficult, for example, when separating away the 
background or when selecting threshold values for region merging and splitting, see the 
follows For that reason, the edge enhanced grey-level image fn is normalized by subtracting 
T, see Eq. (3), yielding fN. 
By applying the procedures, the complicated images can be processed satisfactorily; the 
following figures show the results (Fig. 11). 

3.3 The algorithms based on thresholding 
When an rock particle image has a uniform background, or particles’ gray intensity differs 
to their surrounding regions (local background regions), a segmentation algorithm based on 
thresholding is applicable. There is a number of thresholding algorithms published in 
literature [55]. They can be classified into global and local (adaptive) ones. In order to 
evaluate the existing global thresholding algorithms with respect to rock particle images, a 
comparison study has been carried out [55]. The comparison results show that for a rock 
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particle image with a uniform background or a global background which can be 
distinguished from rock particles by human vision, the algorithms Optimal threshold (OPT), 
Between class variance (BCV), are the best choices for performing global threshold. One 
example is shown in Fig. 12. The original image was taken from a laboratory, and comprised 
of sand particles ( of sizes 1 - 4 mm), the background gray value range is 130 - 250, and the 
range of gray values of particles is 10 -120. The BCV thresholding is presented in Fig. 12(b). 
The split algorithm summarized in next section split the touching particles. 
 

 
Fig. 11. Image without clear edges, particle surface is rough, non-uniform background 

 
             (a)                    (b)          (c) 

Fig. 12. Segmentation based on BCV global thresholding algorithm. (a) Original sand 
particle image. (b) Binarization result. (c) Touching particles were split by the split algorithm 
summarized in next section. 

When the background gray level changes from part to part, and the gray level in some part 
of background is similar to that in some particle regions, the global thresholding cannot be 
used. In one case, when every particle region is surrounded by background, and the gray 
level of the local background is quite different to that of the surrounding particle region, an 
adaptive thresholding algorithm can be used. One special adaptive thresholding algorithm, 
a so-called recursive BCV algorithm, was developed for the rock particle images in this case. 
The developed algorithm assumes that the grey levels of local background are significantly 
higher than those of the particles (note that an object may consist of several particles 
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particle image with a uniform background or a global background which can be 
distinguished from rock particles by human vision, the algorithms Optimal threshold (OPT), 
Between class variance (BCV), are the best choices for performing global threshold. One 
example is shown in Fig. 12. The original image was taken from a laboratory, and comprised 
of sand particles ( of sizes 1 - 4 mm), the background gray value range is 130 - 250, and the 
range of gray values of particles is 10 -120. The BCV thresholding is presented in Fig. 12(b). 
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The developed algorithm assumes that the grey levels of local background are significantly 
higher than those of the particles (note that an object may consist of several particles 
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touching each other to form a cluster); and that the range of the grey values in a particle is 
not too large. In practice the new algorithm processing sequence is: (1) the BCV algorithm is 
applied to the whole image for the initial thresholding round. Then, (2) for area A, a shape 
factor S and the range of grey levels Δf for each object is calculated. (3) For one object, if the 
area is too large, or the shape is ‘strange’ and the range of gray levels in the object is large 
enough, perform BCV thresholding in the object region. (4) Repeat the above step until no 
further object can be thresholded, according to these rules. Before formally presenting the 
algorithm, we will discuss data characteristics.  
Characterization of data of one application example 
Apart from the fact that the particles are locally brighter than the background, there are 
some characteristics of the grey value variation in the interior of the particles, which, 
generally-speaking, are fairly moderate. The images are taken with the sky as background. 
The sky, whether overcast or clear, is quite bright in comparison with the particles. A 
statistical analysis covering thousands of particles in long image sequences in our 
application (falling aggregate particles) shows that in most particles, the range of grey levels 
is less than 50. Some particles have a range around 80, often due to brighter spots around 
the edge of the particle, or, illumination differences on either side of interior edges 
separating two or more faces of a particle. Roughly speaking, there are three categories of 
imaged particles. For images of normal brightness the global threshold yields some kind of 
medium grey (around 128), and all objects have, by definition, grey values below this 
threshold. The first category are those particles for which grey values are in the range 40 to 
85, and they are in a clear majority. The second category covers many fewer particles, and 
they tend to have a grey value range [40,85], except for 1-10% of the pixels in each particle. 
The third category may have up to half of the pixel grey values outside the range [40,85], 
and the other half within that range. When thresholding for the second class, this will result 
in the “loss” of some interior parts of the particle, or, of the particles appearing to break up 
into several pieces. To overcome this problem, we define Δf as the range when excluding 10% 
of the pixels, namely those with grey values from 0 to the value at which the P-tile is 5%, and 
the tail from the value at which the P-tile is 95% up to 255, where P-tile refers to the relative 
grey value histogram of the object, (The object can be a particle, or, a cluster of particles, or, 
a mix of background and particles.) 
Formal algorithm description of an example 

Let iH  be the local gray value histogram of object i, 
( )ti L∈ .  

Define iA (area in pixels), / 4i i iS P Aπ=  and ( ) ( )95% 5%i i if tile H tile HΔ = − .  
Let BCV (region) denote BCV applied to a region.  

Let 
( )tL be the list of numbered objects in iteration t, t = 1,2,... 

BCV (whole image) 

loop: { calculate , ,i i iA S fΔ  for 
( )ti L∋  

 
( ) {ti L∀ ∋  

        if 6400iA >  and 50ifΔ >  do {  

  BCV ( iobject ), obtaining 
( )1tL +
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  goto loop 

            } else 

              if  1225 6400iA< <  and 50ifΔ >  do {  

               if  2.8iS >  do {  

    BCV ( iobject ), obtaining 
( )1tL +

 
    goto loop 

             }  

           }  

          }  

        }  
Fig. 13.  Pseudo-code of Algorithm. 

When formulating the algorithm below, we let the range test Δf > 50, where 50 is a range 
threshold, be a basic criterion determining whether to go on with recursive thresholding in 
current objects or not. For large objects consisting of both background and particles, the 
range of grey levels need to be large, Δf >50. For touching particles, forming an object 
(without background), the range (as defined by Δf) is often, but not always, small. For small 
particles (below 35 mm) the range criterion is normally not applicable (bright spots around 
the edge of the particle). This is an example of the third category mentioned in the previous 
paragraph.  
Hence, after global BCV thresholding, each of the objects is labeled and area A and 
perimeter P are calculated. Provided the grey value range is sufficiently large (e.g. Δf > 50), 
BCV thresholding is applied to an object if it is really large, A > 6400 pixels, or, if it is 
sufficiently large, i.e. 1225 < A < 6400 and of ‘complex shape’, where we use a simple shape 
factor 2 / 4S P Aπ=  [if more detail shape information is needed, the least squares oriented 
Feret box algorithm can be used], defining S > 2.8 as complex shape (from experience, about 
hundred images were tested visually and using an interactive program). 
Examples 
Figure 14 and Table 1 show one example, where Figure 14A illustrates an original image. 
After global BCV thresholding, the binarized image is given in Figure 14B. The largest 
white object is given a label number 0. Because the object no. 0 has an area greater than 
6400 and the range of grey levels is 116, the algorithm does BCV thresholding in the 
corresponding area of the original image, and the binarized image is shown in Figure 14C. 
In Figure 14C object nos. 1,2, 6, and 9 have an area greater than 1225 pixels. Expect for the 
object no. 9, the other three objects had a shape factor 2.8S > , and where selected for 
further processing and tests. Out of these three objects, nos. and 2 had a range of gray 
levels over 50. At the end of the whole sequence, the algorithm performed BCV 
thresholding both for object nos. 1 and 2 in the original image, and the final result is 
displayed in Figure 14D. To see if the new algorithm works better than some standard 
local / adaptive thresholding techniques, in the next section we will compare two widely-
used thresholding algorithms. 
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Fig. 13.  Pseudo-code of Algorithm. 
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particle No. area (square mm) shape factor range of gray level threshold 
0, Figure. 5B over 6400  154 - 38 = 116 128 
1, Figure. 5C 1804 9.266 122 - 38 = 84 90 
2, Figure. 5C 1489 3.442 122 - 49 = 73 93 
6, Figure. 5C 1470 3.172 128 - 93 = 35  
9, Figure. 5C 2458 2.385 119 - 83 = 36  

Table 1. The area, shape and the range of gray levels in the five detected objects. 

  
                             A              B 

  
                                              C                         D 

Fig.14. One example of recursive BCV thresholding performance (see Table 1). A—Original 
image. B—After global BCV thresholding. C—After thresholding of object No. 1 in B. D—
Final thresholding result. 
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When the surface of a particle in an image is non-uniform (e.g. three dimensional geometry 
property shows up), the particle “loses” part of its area when the algorithm is applied, as 
Figure 15 shown. This is often caused by directional lighting. To avoid this problem, better 
to use diffuse lighting. 
 

   
           A                                                                           B 

Fig. 15. An example of recursive BCV thresholding performance on an image. A—After 
global BCV thresholding. B—After thresholding of the largest object in A, the arrows 
indicate that the two particles “lost” more than 25% of their area. 

3.4 The algorithm for splitting touching particles in a binary image  
3.4.1 The algorithm for splitting touching particles  
It is normal that when a rock particle image is segmented based on its gray level 
information, the resulting binary image has often an under-segmentation problem. 
Therefore, after image segmentation based on gray-level, an intelligent algorithm is, by 
necessity, developed for splitting touching particles in a binary image. The algorithm has 
been developed mainly based on shape analysis of rock particles. The split algorithm is a 
heuristic search algorithm. 
In the past, there were a number of existing algorithms for splitting touching particles, but 
not for touching rock particle particles. In general, the existing algorithms first try to find a 
pair of cut points on the boundary of a particle (start and end points), and then detect an 
optimal cut path or synonymously, split path by using a cost function. To find a pair of cut 
points, one may use curvature information around a particle boundary, or ridge information 
of a particle, or partial gray level intensity (e.g. strength of local gradient magnitude or 
flatness). An optimal path could be detected by using distances, local intensity of gray 
levels, or local shape information or combinations thereof.  
The existing algorithms cannot be applied for splitting touching rock particles, because the 
boundaries of rock particles are rough, the touching parts of rock particles have less local 
gray level information, and the touching situations are complex [62].  
In the new algorithm for splitting touching rock particles, the main steps are: 
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Polygonal approximation for each object (touching particles): the advantages in this step are 
(1) smooth boundary to eliminate concave points caused by boundary  roughness; (2) easier 
and more accurate calculation of perimeter of a particle, based on detected vertices after 
polygonal approximation; (3) in a concave part of an object, only the deepest concave point 
in a concave region is detected after polygonal approximation; (4) the degree or classes of 
concave points can be determined by both  angle and lengths of the intersected lines at a 
detecting point; and (5) the opposite direction cone at a concave point is easily and robustly 
constructed. 
Classification of concavities: the classification of concave points (or concavities) is quite 
important for judging if one object is formed by touching particles, and if a hole in an object 
should be opened. It is also used for detecting the touching situations, start and end cut points. 
Split large clusters into simple clusters: the degrees of touching situations are classified into 
(1) two or three touching particles - a simple cluster, (2) multiple touching particles and (3) 
multiple touching particles with holes - a large cluster. For the situation (3), the new 
algorithm opens holes in some optimal paths, to convert the touching situation (3) to the 
touching situation (2) The touching situation (2) then becomes the situation (1) through an 
optimal split routine.  
Supplementary cost functions for two or three touching particles: when two or three 
particles touch and form a cluster, a split path is difficult to correctly search, a simple rule or 
criterion easily leads to a wrong split path. The variables such as the shortest distance, the 
shortest relative distance, minimum number of unmatched concave points, “opposite 
direction”, classes of concavities, area and maximum ratio between two split parts in terms 
of areas, are applied for construction of the supplementary cost functions in the new 
algorithm. 
The algorithm has been tested in an on-line system for measuring crushed rock particles in a 
gravitational flow, in which, normally two or three rock particles touching together. In 
addition to this, it has also been tested for other different particle images (e.g. crushed rock 
particles, natural and rounded rock particles, and potatoes) in which particles touch in a 
complicated fashion. The test results show that the algorithm works in a promising way. A 
typical example is shown in Fig. 16. In this example, the image binarization is not 
satisfactory (Fig. 16(b), but the split result (Fig. 16(c)) is rather good. 
 

 
         (a)                                                  (b)                         (c) 

Fig. 16. Example of splitting touching rock particle particles: (a) original image; (b) binarized 
image; (c) splitting result. 
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3.4.2 Discussion of the split algorithm 
The split algorithm consists of three different “treatments” or procedures in a certain order, 
namely (1) for holes prevailing inside an object; (2) for multiple touching particles; and (3) 
for two or three touching particles. All the three treatments are important for performance 
of the whole algorithm. If we do not consider procedures (1) and (2), the split result will  be 
as shown in Fig. 17(a). Some split paths cross holes or background area.  
If one opens holes by using an erosion procedure instead (say, repeating three times), then 
uses procedure (2) and (3) to split particles, the split result (Fig. 17(b)) is better than that of 
Fig. 17(a). However, in Fig. 17(b), some particles result from split, including new concave 
parts, and some touching particles are still not split completely or over-split. This takes place 
because erosion with a fixed number of iterations is not flexible enough. Note that parallel 
dilation after erosion cannot preserve the shape of particle. 
 

  
                           (a)               (b) 

Fig. 17. Two split results on the image in Fig. 19 (a): (a) split result without hole opening and 
without the procedure for multiple touching particles; (b) split result after opening holes by 
erosion of objects three times followed by split and parallel dilation, of objects. 

In the algorithm, one principal part is procedure (3), based on polygonal approximation. 
Without polygonal approximation, the classification and the detection of concave points are 
difficult to carry out. As described before, in most previous algorithms, a concave point is 
detected by the use of an angle or a curvature threshold. The angle is constructed by two 
chord lines with equally number of pixels, are usually determined by experience.. The 
following figures show an angle calculated by using two chord lines, each of them crossed 4 
pixels (Fig. 18(a)); and an angle calculated by using two chord lines, each of them crossed 8-
19 pixels (Fig. 18(b)), where the number of pixels on a chord line increases as the perimeter 
of the object increases. In both cases, the threshold for detecting a significant concave point 
is 64 degrees (angle 064α ≤ ). The images in Fig. 18 (white points are detected significant 
concave points) show that short chord lines give a rather precise detection of concave points, 
but, however, many scattered irrelevant candidates for the cut points (start and end points) 
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are obtained (Fig. 18(a)). On the other hand, long chord lines are good in signalling 
significant concave part (Fig. 18(b)), but there are too many adjacent candidates of cut points 
(fragmented and non-fragmented) located closely to the true significant concave point. In 
these cases, one has to develop special procedures to search for start and end points for 
candidates of split paths. 
 

  
                           (a)                                                                        (b) 

Fig. 18. Significant concave points detected by using two chord lines, each of them crossed 
the same number of pixels (angle 064α ≤ ): (a) each of the two chord lines crosses 4 pixels; 
(b) each of the two chord lines crosses  a q pixel, where [ ]8,19q∈  depending on object size 
(e.g. area or perimeter). 

Figure 18 illustrates that the angle obtained in reference, so-called k-curvature, is quite 
sensitive to choice of lengths of 2-vertex lines (chords).  

3.4.3 Test results of the algorithm  
The new split algorithm has been tested for aggregate images from muckpiles, laboratories, 
conveyor belts and gravity flows. The test results show that it works in a promising way.  
In a quarry of central Sweden (Västerås), an on-line system for the analysis of size and shape 
of aggregates in a gravitational flow, i.e. falling particles, was set-up. An interlaced CCD 
camera acquires aggregate images from a gravity flow at a speed of 25 frames per second. 
The odd-lines images were transferred into a PC computer with a resolution 256x256x8 bits. 
The system first checks the image quality (if the image is qualified for further processing or 
not, e.g. blurry or empty images cannot be chosen for further processing). When an image 
passes this checkpoint, image binarisation is performed. After this, investigating 1000 
particles in 52 binary images, on average, there are 40% particles with a touching problem, 
and normally two or three particles touch together, and just a few clusters consist of 5-6 
particles without holes. In order to resolve this kind of touching problem, a procedure of the 
split algorithm described in this article, for splitting two or three touching particles, is 
applied to all the binarised images, and finally size and shape of aggregates are analysed. 
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The system has been tested for about two months. It takes about ten minutes to process 
twenty images as one analysis data set, yielding size or shape distributions. Traditional 
sieving analysis results show that there is 5-10% of aggregate for which the size is over 64 
mm. Performed image analysis also yields the same results, which indicates that either there 
are no touching problems or the new split algorithm works.  
In order to clarify the issue, two hundred images were randomly picked up from all data. 
Out of all the images, only 21 of them had no touching problem. The number of clusters in 
the other 179 images was about 1602. A comparison between before and after splitting has 
been carried out by human vision; 90% of the clusters have been completely split by using 
the new splitting procedure for two or three touching particles. In the other 10% of clusters, 
4% are over-split due to concavity errors caused by noise, and 6% are under-split due to 
omission of some existing concavities not very significant for the algorithm. These two 
opposite situations may be related to concavity classification in the algorithm. The detail 
results are listed in Table 2. Split results from two example images are shown in Figs. 19-20. 
 

No. of images No. of 
particles No. of clusters Over-split 

clusters 
Under-split 

clusters Fully split clusters 

200 3815 1602 63 91 1448 

Table 2. Test results in an on-line system 

   
           (a)                                                  (b)                                          (c) 

Fig. 19. Example #1 of split result of aggregate images from a gravitational flow: (a) original 
image; (b) binary image; (c) split result, used thresholds: 

0 0
1 2 3 1 2( , , , , ) (6,0.5,0.6,100 ,60 )L L L α α = . 

We have tested the algorithm on a number of rock particle images with different situations 
of touching particles. The following examples illustrate the power of the split algorithm on 
realistic data for images of packed particles. The following figures show examples of split 
results from our split algorithm consisting of three main procedures: filling and opening 
holes, splitting multiply touching particles, and splitting two or three touching particles, 
which has been applied in an on-line system. Different grey shades in binary images are for 
different clusters (one object = one cluster) before split. 
In Fig. 21(a), the image is a binarised image, and the original image is taken from a 
laboratory, of crushed aggregate particles of different sizes. The image includes two large 
clusters and one single particle, and the split result image (Fig. 21(c)) shows that two large 
clusters were completely split into 54 particles. 
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omission of some existing concavities not very significant for the algorithm. These two 
opposite situations may be related to concavity classification in the algorithm. The detail 
results are listed in Table 2. Split results from two example images are shown in Figs. 19-20. 
 

No. of images No. of 
particles No. of clusters Over-split 

clusters 
Under-split 

clusters Fully split clusters 

200 3815 1602 63 91 1448 

Table 2. Test results in an on-line system 

   
           (a)                                                  (b)                                          (c) 

Fig. 19. Example #1 of split result of aggregate images from a gravitational flow: (a) original 
image; (b) binary image; (c) split result, used thresholds: 

0 0
1 2 3 1 2( , , , , ) (6,0.5,0.6,100 ,60 )L L L α α = . 

We have tested the algorithm on a number of rock particle images with different situations 
of touching particles. The following examples illustrate the power of the split algorithm on 
realistic data for images of packed particles. The following figures show examples of split 
results from our split algorithm consisting of three main procedures: filling and opening 
holes, splitting multiply touching particles, and splitting two or three touching particles, 
which has been applied in an on-line system. Different grey shades in binary images are for 
different clusters (one object = one cluster) before split. 
In Fig. 21(a), the image is a binarised image, and the original image is taken from a 
laboratory, of crushed aggregate particles of different sizes. The image includes two large 
clusters and one single particle, and the split result image (Fig. 21(c)) shows that two large 
clusters were completely split into 54 particles. 
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In Fig. 22(a), an original aggregate (natural) image is presented, taken from a conveyor belt 
in the laboratory. Although manual binarisation result (Fig. 22(b)) is not very satisfactory, 
the split result is quite promising. 
 

   
           (a)                                                (b)                         (c) 

Fig. 20. Example #2 of split result of aggregate images from a gravitational flow: (a) original 
image; (b) binary image; (c) split result, used thresholds: 

0 0
1 2 3 1 2( , , , , ) (6,0.5,0.6,100 ,60 )L L L α α = . 

 

   
         (a)                                                 (b)                                      (c) 

Fig. 21. Split result of touching particles of crushed aggregates: (a) a binary image taken with 
the illumination of backlighting, consisting of two clusters and one single particle; (b) the 
image after hole treatment; (c) the image after split, consisting of 55 particles.  

The new algorithm for splitting touching rock particles is developed based on polygonal 
approximation. It includes classification of concavities and analysis of supplementary cost 
functions. The whole procedure consists of three major steps: (1) two or three touching 
particles; (2) multiple touching particles; and (3) holes prevailing inside an object. The 
algorithm can be applicable not only to crushed rock particle images, but also to other 
particle images, e.g. cells or chromosomes, or cytological, histological, metallurgical or 
agricultural images. 
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          (a)                                                  (b)                                  (c) 

Fig. 22. Split result of touching particles of natural aggregates: (a) an original image taken 
with the illumination of frontlighting; (b) the image after binarisation, is made up of four 
clusters and thirteen particles; (c) the image after split, consisting of 59 particles. 

The new algorithm has some advantages over the existing algorithms, and is capable of 
decomposing touching rock particles. The test results show that the un-split touching 
particles only have concave points with degrees of concavity below 3, which indicates that 
the classification of degree of concavity is quite important. The split algorithm yields data 
suitable for analysis of aggregate size and shape, which will be reported elsewhere. 
Polygonal approximation and classification of concavity, based on polygons, substantially 
enhanced the robustness of the algorithm. 

4. Discussion and conclusion of segmentation algorithms 
Rock particle image segmentation is typically the first and most difficult task [59]. All 
subsequent interpretation tasks, including particle size, shape and texture analysis, rely 
heavily on the quality of the segmentation results. Since rock particle images vary from one 
to another, it is difficult or impossible to design and develop one segmentation algorithm for 
all kinds of rock particle images. The presented segmentation algorithms were developed 
for just several types of rock particle images with a certain characteristics with respect to 
segmentation. 
In general, both two steps of rock particle image segmentation, i.e. segmentation based on 
gray level and segmentation based on shape and size of rock particle particles, are needed in 
most cases of rock particle application. The thresholding algorithms are for images where 
particles or particle clusters differ everywhere in intensity from the background. The 
thresholding algorithms are not sensitive to texture on particles, and have normally a low 
cost for processing. When particles are densely packed, and particles are surrounded by 
particles and some void spaces (background), the algorithm based on split-and-merge can 
be applied for the image.  
The algorithm based on split-and-merge has the advantage of producing higher level 
primitives, but the region so extracted may not correspond to actual particles, and the 
boundary of the extracted region is rough. The algorithm based on edge detection is suitable 
for the images without too much texture on the surface of particles. It has the disadvantage 
of producing low-level primitives (segments) even after considerable processing. As one 
example, the two algorithms are compared in Fig. 23. In Fig. 23(a), the original image is a 
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fragments image taken from a rockpile. Where, fragments show multiple faces in the image, 
and natural light caused illumination non-uniform. The two algorithms were used for 
segmenting the original image without any preprocessing. The image in Fig. 23(c) is a 
thresholded edge image without doing noise edge deleting and gap linking. The algorithm 
based on edge detection is very sensitive to this kind of image. The algorithm based on split-
and-merge can not exactly extract every individual fragment.  
 

 
           (a)                                   (b)                       (c) 

Fig. 23. Comparison between two segmentation algorithms. (a) Original fragment image 
from a rockpile.  (b) Image segmented by the algorithm based on split-and-merge. (c) Edge 
image processed by Canny’s edge detector. 

The algorithm for splitting touching particles in a binary image is important for overcoming 
the problem of over-segmentation in a gray level image. In most cases, as discussed before, 
any single one of the gray level segmentation algorithms cannot segment a gray level image 
completely. As a supplementary procedure, the segmentation algorithms based on rock 
particle shapes should be used for further segmentation. 
In conclusions, segmentation algorithm selection is based on the types of rock particle 
images and requirement of measuring rock particles. If one needs a crude segmentation 
result for densely packed rock particle image, the algorithm based on edge detection will be 
very useful. The algorithm based on thresholding often lead to an under-segmentation 
problem, which can be resolved by using the split algorithm for touching particles. The 
algorithm based on split-and-merge is a combination of segmentation on gray level and 
segmentation based on shape of rock particles. The algorithm includes several techniques 
such as image pre-processing, region split-and-merge, thresholding, binary image 
segmentation. Combinations of the mentioned segmentation algorithms are more powerful 
than the individual procedures by themselves.  
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1. Introduction 
Segmentation is the fundamental process which partitions a data space into meaningful 
salient regions. Image segmentation essentially affects the overall performance of any 
automated image analysis system thus its quality is of the utmost importance. Image 
regions, homogeneous with respect to some usually textural or colour measure, which result 
from a segmentation algorithm are analysed in subsequent interpretation steps. Texture-
based image segmentation is area of intense research activity in the past thirty years and 
many algorithms were published in consequence of all this effort, starting from simple 
thresholding methods up to the most sophisticated random field type methods. 
Unsupervised methods which do not assume any prior scene knowledge which can be 
learned to help segmentation process are obviously more challenging than the supervised 
ones. 
Segmentation methods are usually categorized (Reed et al., 1993) as region-based, 
boundary-based, or as a hybrid of the two. Different published methods are difficult to 
compare because of lack of a comprehensive analysis together with accessible experimental 
data, however available results indicate that the ill-defined texture segmentation problem is 
still far from being satisfactorily solved. The clustering approach resulted in agglomerative 
and divisive algorithms which were modified for image segmentation as region-based 
merge and split algorithms. Spatial interaction models and especially Markov random field-
based models are increasingly popular for texture representation (Kashyap, 1986; Reed et 
al., 1993; Haindl, 1991), etc. Several researchers dealt with the difficult problem of 
unsupervised segmentation using these models see for example (Panjwani et al., 1995; 
Manjunath et al., 1991; Andrey et al., 1998; Haindl, 1999) or (Haindl et al., 2004, 2005, 2006a). 
In this chapter we assume constant illumination and viewing angles for all scene textures, or 
alternatively that the Lambert law holds for all scene surfaces. If this assumption cannot be 
assumed than all textures have to be treated either as Bidirectional Texture Functions (BTFs) 
or some illumination invariant features (Haindl et al., 2006b; Vacha et al., 2007) have too be 
used. 

2. Texture segmentation methods 
Segmentation methods are based on some pixel or region similarity measure in relation to 
their local neighbourhood. Boundary-based methods search for the most dissimilar pixels 
which represent discontinuities in the image, while region based methods on the contrary 
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which represent discontinuities in the image, while region based methods on the contrary 



 Pattern Recognition Techniques, Technology and Applications 

 

228 

search for the most similar areas. These similarity measures in texture segmentation 
methods use some textural spatial-spectral-temporal features such as Markov random field 
statistics (MRF) (Haindl et al., 2004, 2005, 2006a), cooccurrence matrix based features, Gabor 
features, local binary pattern (LBP) (Ojala et al., 1999), autocorrelation features and many 
others. Segmentation methods can be categorized using various criteria, e.g. region / 
boundary based, MAP / clustering methods, graph theoretic methods, etc. 

2.1 Region growing 
The basic approach of a region growing algorithm (Pal et al., 1993; Belongie et al., 1998; 
Deng et al., 2001, 2004; Scarpa et al., 2006, 2007) is to start from a seed regions (mostly one or 
few pixels) that are assumed to be inside the object to be segmented. The neighbouring 
pixels to every seed region are evaluated to decide if they should be considered part of the 
object or not. If they are recognized as similar, they are added to the region and the process 
continues as long as any undecided pixels remain. Region growing algorithms vary 
depending on the similarity criteria, seed region selection, the type connectivity used to 
determine neighbours, and the strategy used to visit neighbouring pixels. 
The JSEG method (Deng et al., 2001) consists of two independent steps: colour quantization 
and region growing spatial segmentation on multiscale thematic maps from the first step. 
The Blobworld scheme aims to transform images into a small set of regions which are 
coherent in colour and texture (Belongie et al., 1998). This is achieved by clustering pixels in 
a joint colour-texture-position eight-dimensional feature space using the EM algorithm. The 
feature vector is represented by a Gaussian mixture model. 

2.2 Split and merge 
Split and merge techniques (Pal et al., 1993) start with recursive splitting image into smaller 
regions until they do not satisfy some homogeneity criterion. The second merging step 
merges adjacent regions with similar attributes. 

2.3 Watershed 
Watershed segmentation (Shafarenko et al., 1997) classifies pixels into regions using 
gradient descent on image features and analysis of weak points along region boundaries. 
The image feature space is treated, using a suitable mapping, as a topological surface where 
higher values indicate the presence of boundaries in the original image data. It uses analogy 
with water gradually filling low lying landscape basins. The size of the basins grow with 
increasing amounts of water until they spill into one another. Small basins (regions) 
gradually merge together into larger basins. Regions are formed by using local geometric 
structure to associate the image domain features with local extremes measurement. 
Watershed techniques produce a hierarchy of segmentations, thus the resulting 
segmentation has to be selected using either some prior knowledge or manually. These 
methods are well suited for different measurements fusion and they are less sensitive to 
user defined thresholds. 

2.4 Level set segmentation 
The paradigm of the level set (Brox et al., 2006) is that it is a numerical method for tracking 
the evolution of contours and surfaces. Instead of manipulating the contour directly, the 
contour is embedded as the zero level set of a higher dimensional function called the level-
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set function. The level-set function is evolved under the control of a differential equation 
using some image-based features. At any time, the evolving contour can be obtained by 
extracting the zero level-set from the output. Level sets allow to model arbitrarily complex 
shapes and topological changes such as merging and splitting are handled implicitly. 

2.5 Mean shift segmentation 
Edison (Christoudias et al., 2002) is a mean shift based image segmentation with embedded 
edge information. Its first filtering step uses the mean shift (Comaniciu et al., 2002) 
segmenter in the combined colour L*u*v* and coordinate feature space. The mean shift 
weights are derived from the edge confidence measure. The second fusion step recursively 
fuses the basins of attraction of the modes. The method requires six segmentation 
parameters to be tuned. 

2.6 Graph-theoretic segmentation 
These methods (Felzenszwalb et al., 1998; Shi et al., 2000; Boykov et al., 2003; Galun et al., 
2003; Barbu et al., 2004; Estrada et al., 2005) use graph representation for image pixels or 
regions where usually small neighbourhood elements are mutually connected with 
weighted graph edges. These weights indicate pairwise elements similarities. The 
segmentation is based on finding groups of nodes that are strongly connected to each other, 
but weakly with the remaining nodes in the graph. 

3. GMRF-GM segmenter 
The adequate representation of general static Lambertian multispectral textures requires 
three dimensional models. Although full 3D models allows unrestricted spatial-spectral 
correlation description its main drawback is large amount of parameters to be estimated and 
in the case of Markov random field based models (MRF) also the necessity to estimate all 
these parameters simultaneously. Alternatively, it is possible to factorize the 3D static 
texture space into several (equal to the number d of spectral bands) 2D subspaces. A 
combination of several simpler 2D data models with less parameters per model allows more 
compact texture representation and faster estimation algorithms. Natural measured texture 
data space can be decorrelated only approximately thus the independent spectral 
component representation suffers with some loss of image information. However, because 
the segmentation is less demanding application than the texture synthesis, it is sufficient if 
such a representation maintains discriminative power of the full model even if its visual 
modeling strength is slightly compromised. The GMRF-GM segmenter (Haindl et al., 2004) 
uses such 2D generative Gaussian Markov representation. 

3.1 Spectral factorization 
Spectral factorization using the Karhunen-Loeve expansion transforms the original centered 
data space θ defined on the rectangular M×N finite lattice I into a new data space with K-L 
coordinate axes . This new basis vectors are the eigenvectors of the second-order statistical 
moments matrix 

 (1)
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where the multiindex r has two components r = [r1, r2], the first component is row and the 
second one column index, respectively. The projection of the centered random vector  
onto the K-L coordinate system uses the transformation matrix  which 
has single rows uj that are eigenvectors of the matrix Φ. 

 (2)

Components of the transformed vector  (2) are mutually uncorrelated. If we assume 
further on Gaussian vectors  then they are also independent, i.e., 

 
and single monospectral random fields can be modeled independently. 

3.2 GMRF texture model 
We assume that single monospectral texture factors  can be modeled using a 
Gaussian Markov random field model (GMRF). This model is obtained if the local 
conditional density of the MRF model is Gaussian: 

 
where the mean value is 

 
(3)

and , as ∀s ∈ Ir are unknown parameters. 
The 2D GMRF model can be expressed as a stationary non-causal correlated noise driven 2D 
autoregressive process: 

 
(4)

where the noise er is random variable with zero mean E{er} = 0 . The er noise variables are 
mutually correlated 

 

(5)

Correlation functions have the symmetry property E{erer+s} = E{erer-s} hence the 
neighbourhood support set Ir and its associated coefficients have to be symmetric, i.e., s ∈ Ir 

⇒ -s ∈Ir and as = a-s . 
The selection of an appropriate GMRF model support is important to obtain good results in 
modeling of a given random field. If the contextual neighbourhood is too small it can not 
capture all details of the random field. Inclusion of the unnecessary neighbours on the other 
hand add to the computational burden and can potentially degrade the performance of the 
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model as an additional source of noise. We use hierarchical neighbourhood system Ir, e.g., 
the first-order neighbourhood is Ir = {-(0, 1),+(0, 1),-(1, 0),+(1, 0)}, etc. An optimal 
neighbourhood is detected using the correlation method (Haindl et al., 1997) favoring 
neighbours locations corresponding to large correlations over those with small correlations. 
Parameter estimation of a MRF model is complicated by the difficulty associated with 
computing the normalization constant. Fortunately the GMRF model is an exception where the 
normalization constant is easy obtainable however either Bayesian or ML estimate requires 
iterative minimization of a nonlinear function. Therefore we use the pseudo-likelihood 
estimator which is computationally simple although not efficient. The pseudo-likelihood 
estimate for as parameters evaluated for a sublattice Jr ⊂ I and Jr = {s : ⎢r1 - s1⎢≤ m ∧ ⎢r2 - s2⎢ ≤ n} 
centered on the r index. The pseudo-likelihood estimate for as parameters has the form 

 
(6)

where . 

3.3 Mixture model based segmentation 
Multi-spectral texture segmentation is done by clustering in the GMRF parameter space 
Θ∈Rn defined on the lattice I where 

 (7)
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where the multiindex r has two components r = [r1, r2], the first component is row and the 
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is evaluated and the most similar rectangles, i.e., 

 
are merged together in each step. This initialization results in Kini subimages and 
recomputed statistics νi, Σi. Kini > K where K is the optimal number of textured segments to 
be found by the algorithm. After initialization two steps of the EM algorithm are repeating: 

 

 

 

 

(11)

The components with smaller weights pj <  than a given threshold are eliminated. For 
every pair of components we estimate their Kullback Leibler divergence (10). From the most 
similar couple, the component with the weight smaller than the threshold is merged to its 
stronger partner and all statistics are actualized using the EM algorithm. The algorithm 
stops when either the likelihood function has negligible increase ( – -1 < 0.05) or the 
maximum iteration number threshold is reached. 
The parametric vectors representing texture mosaic pixels are assigned to the clusters 
according to the highest component probabilities, i.e., r is assigned to the cluster ωj if 

 
(12)

 
The area of single cluster blobs is evaluated in the post-processing thematic map filtration 
step. Thematic map blobs with area smaller than a given threshold are attached to its 
neighbour with the highest similarity value. If there is no similar neighbour the blob is 
eliminated. After all blobs are processed remaining blobs are expanded. 

4. AR3D-GM segmenter 
If we do not like to lose spectral information due to the spectral decorrelation step, we have 
to use three dimensional models for adequate representation. One of few 3D models which 
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does not require any approximation and can be treated analytically is the 3D simultaneous 
causal autoregressive random field model (CAR) used in the AR3D-GM segmenter (Haindl 
et al., 2006a). 
We assume that single multispectral textures can be locally modeled using the CAR model. 
This model can be expressed as a stationary causal uncorrelated noise driven 3D 
autoregressive process (Haindl et al., 1992): 

 (13)

where 

 
is the d × dη parameter matrix, d is the number of spectral bands,  is a causal 

neighbourhood index set with η = card( ) and er is a white Gaussian noise vector with zero 
mean and a constant but unknown covariance, Xr is a corresponding vector of the contextual 
neighbours r-s and r, r - 1, . . . is a chosen direction of movement on the image index lattice 
I. The selection of an appropriate CAR model support ( ) is important to obtain good 
texture representation but less important for segmentation. The optimal neighbourhood as 
well as the Bayesian parameters estimation of a CAR model can be found analytically under 
few additional and acceptable assumptions using the Bayesian approach (Haindl et al., 
1992). The recursive Bayesian parameter estimation of the CAR model is (Haindl et al., 
1992): 

 
(14)

where  Local texture for each pixel is represented by four 
parametric vectors. Each vector contains local estimations of the CAR model parameters. 
These models have identical contextual neighbourhood  but they differ in their major 
movement direction (top-down, bottom-up, rightward, leftward), i.e., 

 (15)

The parametric space  is subsequently smooth out, rearranged into a vector and its 
dimensionality is reduced using the Karhunen-Loeve feature extraction ( ). Finally we add 
the average local spectral values   to the resulting feature vector (Θr). 

4.1 AR2D-GM segmenter 
The AR2D-GM segmenter (Haindl et al., 2005) uses the 2D simultaneous causal 
autoregressive random field model and thus it requires the spectral decorrelation described 
in section 3.1. If we stack single decorrelated mono spectral pixel components into d ×1 
vectors Yr, the model can be formalized using the same equations as the AR3D model, i.e. 
(13)-(15). The AR2D models differ in having diagonal parameter matrices As and a diagonal 
white noise covariance matrix. 
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4.2 Mixture based segmentation 
Multi-spectral texture segmentation is done by clustering in the CAR parameter space Θ 
defined on the lattice I where 

 
is the modified parameter vector (15) computed for the lattice location r. We assume that 
this parametric space can be represented using the Gaussian mixture model (GM) with 
diagonal covariance matrices due to the previous CAR parametric space decorrelation. The 
Gaussian mixture model for CAR parametric representation is again (8),(9) and can be 
solved similarly as (10)-(12). 

5. Evaluation methodology 
Unsupervised or supervised texture segmentation is the prerequisite for successful content-
based image retrieval, scene analysis, automatic acquisition of virtual models, quality 
control, security, medical applications and many others. Although more than 1000 different 
methods were already published (Zhang, 1997), this problem is still far from being solved. 
This is among others due to missing reliable performance comparison between different 
techniques because very limited effort was spent to develop suitable quantitative measures 
of segmentation quality that can be used to evaluate and compare segmentation algorithms. 
Rather than advancing the most promising image segmentation approaches novel 
algorithms are often satisfied just being sufficiently different from the previously published 
ones and tested only on a few carefully selected positive examples. The optimal alternative 
to check several variants of a developed method and to carefully compare results with state-
of-theart in this area is practically impossible because most methods are too complicated 
and insufficiently described to be implemented in the acceptable time. Because there is no 
available benchmark fully supporting segmentation method development, we implemented 
a solution in the form of web based data generator and benchmark software. Proper testing 
and robust learning of performance characteristics require large test sets and objective 
ground truth which is unfeasible for natural images. Thus, inevitably all such image sets 
such as the Berkeley benchmark (Martin et al., 2001) share the same drawbacks - subjectively 
generated ground truth regions and limited extent which is very difficult and expensive to 
enlarge. These problems motivated our preference for random mosaics with randomly filled 
textures even if they only approximate natural image scenes. The profitable feature of this 
compromise is the unlimited number of different test images with corresponding objective 
and free ground truth map available for each of them. 
The segmentation results can be judged (Zhang, 1997) either by using manually segmented 
images as reference (Lee et al., 1990), or visually by comparing to the original images (Pal et 
al., 1993), or just by applying quality measures corresponding to human intuition (Sahoo et 
al., 1988; Lee et al., 1990; Pal et al., 1993). However it is difficult to avoid subjective ranking 
conclusions by using either of above approaches on limited test databases. 
A prior work on the segmentation benchmark is the Berkeley benchmark presented by 
Martin et al. (Martin et al., 2001). This benchmark contains more than 1000 various natural 
images (300 in its public version) from the Corel database, each of which is manually 
processed by a group of people to get the ground-truth segmentation in the form of 
partitioning of the image into a set of disjoint segments. Without any special guidance, such 
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manual segmentations reflect the subjective human perception and therefore, different 
people usually construct different ground truths on the same image. The Berkeley benchmark 
suffers from several drawbacks. Apart from subjective ground truth, also its performance 
criteria a global consistency error (GCE) and a local consistency error (LCE) tolerate 
unreasonable refinement of the ground truth. Over-segmented machine segmentations have 
always zero consistency error, i.e., they wrongly suggest an ideal segmentation. The 
benchmark comparison is based on region borders hence different border localization from the 
human based drawing can handicap otherwise correct scene segmentation. 
Another segmentation benchmark Minerva (Sharma et al., 2001) contains 448 colour and 
grey scale images of natural scenes which are segmented using four different segmenters, 
segmented regions are manually labelled and different textural features can be learned from 
these regions and subsequently used by the kNN supervised classifier. This approach 
suffers from erroneous ground truth resulting from an imperfect segmenter, manual 
labelling and inadequate textural feature learning from small regions. 
Outex Texture Database (Ojala et al., 2002) provides a public repository for three types of 
empirical texture evaluation test suites. It contains 14 classification test suites, while one 
unsupervised segmentation test set is formed by 100 texture mosaics all using the same 
regular ground truth template and finally one texture retrieval test set. The test suites are 
publicly available on the website (http://www.outex.oulu.fi), which allows searching, 
browsing and downloading of the test image databases. Outex currently provides limited 
test repository but does not allow results evaluation or algorithms ranking. 
A psycho-visual evaluation of segmentation algorithms using human observers was 
proposed in (Shaffrey et al., 2002). The test was designed to visually compare two 
segmentations in each step and to answer if any consensus of the best segmentation exists. 
While such human judgement certainly allows meaningful evaluation, this approach is too 
demanding to be applicable in image segmentation research. 

5.1 Prague texture segmentation benchmark 
The Prague texture segmentation data-generator and benchmark Fig.1 is web based service 
(http://mosaic.utia.cas.cz) developed as a part of EU NoE no. 507752 MUSCLE project. The 
goal of the benchmark is to produce score, performance and quality measures for an 
algorithm’s performance for two main reasons: So that different algorithms can be 
compared to each other, and so that progress toward human-level segmentation 
performance can be tracked and measured over time. A good experimental evaluation 
should allow comparison of the current algorithm to several leading alternative algorithms, 
using as many test images as possible and employing several evaluation measures for 
comparison (in the absence of one clearly optimal measure). Our benchmark possesses all 
these features. 
Single textures as well as the mosaics generation approach were chosen on purpose to 
produce unusually difficult tests to allow an improvement space for future better 
segmentation algorithms. 
The benchmark operates either in full mode for registered users (unrestricted mode - U) or in a 
restricted mode. The major differences between both working modes are that the restricted 
operational mode does not permanently store visitor’s data (results, algorithm details, etc.) 
into its online database and does not allow custom mosaics creation. To be able to use full-
unrestricted benchmark functionalities the user is required to be registered (registration page). 
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4.2 Mixture based segmentation 
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Fig. 1. Benchmark interfaces, the comparison table (top) and detailed method’s evaluation 
on benchmark test mosaics. 
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The benchmark allows: 
• To obtain customized experimental texture mosaics and their corresponding ground 

truth (U), 
• To obtain the benchmark texture mosaic sets with their corresponding ground truth, 
• To evaluate visitor’s working segmentation results and compare them (Fig.1- top) with 

state-of-the-art algorithms, 
• To update the benchmark database (U) with an algorithm (reference, abstract, 

benchmark results) and use it for subsequent other algorithms benchmarking, 
• To grade noise endurance of an algorithm, 
• To check single mosaics evaluation details (criteria values and resulted thematic maps), 
• To rank segmentation algorithms according to the most common benchmark criteria, 
• To obtain LaTeX or MATLAB coded resulting criteria tables (U). 
 

 
Fig. 2. Voronoi (left) and modified (right) mosaic polygons. 

5.2 Benchmark generation 
Benchmark datasets are computer generated 512 ×512 random mosaics filled with randomly 
selected textures. The random mosaics are generated by using the Voronoi polygon random 
generator (Shewchuk, 1996). It creates firstly a Delaunay triangulation, secondly determines 
the circumcircle centres of its triangles, and thirdly connects these points according to the 
neighbourhood relations between the triangles. Resulting Voronoi polygons can further be 
modified, (see Fig.2), if required by inserting additional border points into each polygon 
line. We exploit the fact that segmenting smaller and irregular objects is more difficult than 
segmenting bigger and regular objects such as squares or circles. 

5.3 Performance criteria 
The submitted benchmark results are evaluated and stored (U) in the server database and 
used for the algorithm ranking according to a chosen criterion. We have implemented the 
twenty seven most frequented evaluation criteria categorized into four groups: region-based 
(5+5), pixel-wise (12), consistency measures (2) and clustering comparison criteria (3). The 
performance criteria mutually compare ground truth image regions with the corresponding 
machine segmented regions. Symbols  further denote required increase or decrease 
of the corresponding criterion. The basic region-based criteria available are correct, over-
segmentation, undersegmentation, missed and noise. All these criteria are available either 
for a single threshold parameter setting or as the performance curves (e.g. Fig.3) and their 



 Pattern Recognition Techniques, Technology and Applications 

 

236 

 
Fig. 1. Benchmark interfaces, the comparison table (top) and detailed method’s evaluation 
on benchmark test mosaics. 

Unsupervised Texture Segmentation 

 

237 

The benchmark allows: 
• To obtain customized experimental texture mosaics and their corresponding ground 

truth (U), 
• To obtain the benchmark texture mosaic sets with their corresponding ground truth, 
• To evaluate visitor’s working segmentation results and compare them (Fig.1- top) with 

state-of-the-art algorithms, 
• To update the benchmark database (U) with an algorithm (reference, abstract, 

benchmark results) and use it for subsequent other algorithms benchmarking, 
• To grade noise endurance of an algorithm, 
• To check single mosaics evaluation details (criteria values and resulted thematic maps), 
• To rank segmentation algorithms according to the most common benchmark criteria, 
• To obtain LaTeX or MATLAB coded resulting criteria tables (U). 
 

 
Fig. 2. Voronoi (left) and modified (right) mosaic polygons. 

5.2 Benchmark generation 
Benchmark datasets are computer generated 512 ×512 random mosaics filled with randomly 
selected textures. The random mosaics are generated by using the Voronoi polygon random 
generator (Shewchuk, 1996). It creates firstly a Delaunay triangulation, secondly determines 
the circumcircle centres of its triangles, and thirdly connects these points according to the 
neighbourhood relations between the triangles. Resulting Voronoi polygons can further be 
modified, (see Fig.2), if required by inserting additional border points into each polygon 
line. We exploit the fact that segmenting smaller and irregular objects is more difficult than 
segmenting bigger and regular objects such as squares or circles. 

5.3 Performance criteria 
The submitted benchmark results are evaluated and stored (U) in the server database and 
used for the algorithm ranking according to a chosen criterion. We have implemented the 
twenty seven most frequented evaluation criteria categorized into four groups: region-based 
(5+5), pixel-wise (12), consistency measures (2) and clustering comparison criteria (3). The 
performance criteria mutually compare ground truth image regions with the corresponding 
machine segmented regions. Symbols  further denote required increase or decrease 
of the corresponding criterion. The basic region-based criteria available are correct, over-
segmentation, undersegmentation, missed and noise. All these criteria are available either 
for a single threshold parameter setting or as the performance curves (e.g. Fig.3) and their 



 Pattern Recognition Techniques, Technology and Applications 

 

238 

integrals. Our pixel-wise criteria group contains the most frequented classification criteria 
such as the omission and commission errors, class accuracy, recall, precision, mapping 
score, etc. The consistency criteria group incorporates the global and local consistency 
errors. Finally, the last criterion set contains three clustering comparison measures. By 
clicking on a required criterion the evaluation table is reordered, according to this chosen 
criterion. 

 
Fig. 3. The correct segmentation sensitivity (performance) curve and its integral for the 
AR3D-GM segmenter. 

6. Results 
Our algorithms were tested on natural colour textures mosaics from the Prague Texture 
Segmentation Data-Generator and Benchmark (Mikeš et al., 2006; Haindl et al., 2008). The 
benchmark test mosaics layouts and each cell texture membership are randomly generated 
and filled with colour textures from the large (more than 1000 high resolution colour 
textures) Prague colour texture database. The benchmark ranks segmentation algorithms 
according to a chosen criterion. 
Tab.1 compares the overall benchmark performance of our algorithms (segmentation time 7 
min/img on the Athlon 2GHz processor) with the Blobworld (Carson et al., 1999) (30 
min/img), JSEG (Deng et al., 2001) (30 s/img), Edison (Christoudias et al., 2002) (10 s/img), 
respectively. These results demonstrate very good pixel-wise, correct region segmentation 
and low undersegmentation properties of both our methods while the oversegmentation 
results are only average. For all the pixel-wise criteria or the consistency measures our 
methods are either the best ones or the next best with marginal difference from the best one. 
Fig.4 shows four selected 512×512 experimental benchmark mosaics created from five to 
eleven natural colour textures. The last four columns demonstrate comparative results from 
the four alternative algorithms. Hard natural textures were chosen rather than synthesized 
(for example using Markov random field models) ones because they are expected to be more 
difficult for the underlying segmentation model. The third column demonstrates robust  
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Table 1. Benchmark criteria (×100): CS = correct segmentation; OS = oversegmentation; US = 
under-segmentation; ME = missed error; NE = noise error; O = omission error; C = 
commission error; CA = class accuracy; CO = recall – correct assignment; CC = precision - 
object accuracy; I. = type I error; II. = type II error; EA = mean class accuracy estimate; MS = 
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behaviour of our GMRF-GM algorithm but also infrequent algorithm failures producing the 
oversegmented thematic map for some textures. Such failures can be reduced by a more 
elaborate postprocessing step. The JSEG (Deng et al., 2001), Blobworld (Carson et al., 1999) 
and Edison (Christoudias et al., 2002) algorithms on these data performed steadily worse as 
can be seen in the last two columns of Fig.4, some areas are undersegmented while other 
parts of the mosaics are oversegmented. The GMRF-GM (Haindl et al., 2004) method is 
slower and its results are surprisingly also slightly worse than the AR3D-GM results. 
Resulting segmentation results are promising however comparison with all state-of-the-art 
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algorithms is difficult because of lack of sound experimental evaluation results in this area. 
Our results can be further improved by an appropriate postprocessing. 
 

 
               a                                b                               c                             d                              e 

Fig. 4. Selected benchmark texture mosaics (a), AR3D-GM (b), GMRF-GM (c), Blobworld (d), 
and Edison segmentation results (e), respectively. 

6.1 Mammography 
Breast cancer is the leading cause of death (Tweed et al., 2002; Qi et al., 2003) among all 
cancers for middle-aged women in most developed countries. Current effort is focused on 
cancer prevention and early detection which can significantly reduce the mortality rate. X-
ray screening mammography is the most frequented method for breast cancer early 
detection although not without problems (Qi et al., 2003) such as rather large minimum 
detectable tumor size, higher mammogram sensitivity for older women or radiation 
exposition. Automatic mammogram analysis is still difficult task due to wide variation of 
breast anatomy, nevertheless a computer-aided diagnosis system can successfully assist a 
radiologist, and can be used as a second opinion. The first step in a such system is detection 
of suspicious potentially cancerous regions of interest . Several approaches to detect these 
regions of interest (ROI) were published (Tweed et al., 2002), mostly based on supervised 
learning. We propose an unsupervised segmentation method for fast automatic 
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mammogram segmentation into the regions of interest (ROI) using a statistical random field 
based texture representation. 
The presented method detects the fibroglandular tissue regions from either craniocaudal 
(CC) or mediolateral oblique (MLO) views and thus can help focus a radiologist to this most 
important breast region. 
Breast Detector The method starts with automatic breast area detection because it can be 
cheaply computed and simplifies the subsequent fibroglandular tissue region detection. 
This is performed using simple histogram thresholding with an automatically selected 
threshold. In this step the method also recognizes several label areas on a mammogram. We 
compute their areas and all but the largest one are discarded and merged with the 
 

 
Fig. 5. Normal right breast mammogram (patient age 58, but with a cancerous lesion in the 
left breast), the detected breast area, segmentation result and detected regions of interest, 
respectively. 
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background. In this stage the algorithm also decides the breast orientation on the 
mammogram (left or right). Fig. 5 - breast mask show resulting detected breast area (in 
inverted grey levels). The following detection of regions of interest is performed only in the 
breast region ignoring the background area set in the mask template. 
Breast Tissue Texture Model Our method segments pseudo-colour multiresolution 
mammograms each created from the original greyscale mammogram and its two nonlinear 
gamma transformations. We assume to down-sample input image Y into M = 3 different 
resolutions  with sampling factors ιm  m = 1, . . . ,M identical for both directions 
and Y(1) = Y. Local texture for each pixel  is represented using the 3D CAR model 
parameter space . The concept of decision fusion (Kittler et al., 1997) for high-
performance pattern recognition is well known and widely accepted in the area of 
supervised classification where (often very diverse) classification technologies, each 
providing complementary sources of information about class membership, can be integrated 
to provide more accurate, robust and reliable classification decisions than the single 
 

 
Fig. 6. Cancerous mammograms (patients age 58 (top) and 80 (bottom)), radiologist 
associated ground truth and detected regions of interest using the multiple segmenter 
approach, respectively. 
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classifier applications. The proposed method circumvents the problem of multiple 
unsupervised segmenters combination (Haindl et al., 2007) by fusing multiple-processed 
measurements into a single segmenter feature vector. 
Experimental Results The algorithm was tested on mammograms from the Digital Database 
for Screening Mammography (DDSM) from the University of South Florida (Heath et al., 
2000). This database contains 2620 four view (left and right craniocaudal (CC) and 
mediolateral oblique (MLO)) mammograms in different resolutions. Single mammograms 
cases are divided into normal, benign, benign without callback volumes and cancer. All our 
experiments are done with three resolutions (M=3) using sampling factors 

 and the causal neighbourhood with fourteen neighbours (η= 14). Fig. 
6-top show left MLO mammogram of a patient age 58 with detected malignant asymmetric 
lesion and the right CC mammogram (Fig. 6-bottom) of a patient age 80 with detected 
irregular, spiculated malignant lesion type. The segmenter correctly found the region of 
interest with the cancer lesion on both mammograms. The detected region of interest results 
Figs. 5-6 demonstrate very good region segmentation and low oversegmentation properties 
of our method. 

6.2 Remote sensing 
Segmentation of remote sensing imagery for various applications (e.g. agriculture, 
geological survey, military and security, weather forecast, terrain classification, astronomy, 
the detection of changes and anomalies, etc.) is challenging task due to huge amounts of 
data measured by satellite or airborne sensors. Large remote sensing images suffer not only 
with geometric and radiometric distortions problems but also with various challenges due 
to the high heterogeneity both within and across classes. The within class heterogeneity is 
due to the difference of acquisition process, orientation, and intrinsic appearance (Fauqueur 
et al., 2005). 
We modified our unsupervised segmentation methods (sections 3,4) to be able to handle 
large aerial images (up to 8000 × 8000) distributed by the British National Space Centre 
(BNSC) as a CDROM called ”Window On The UK”. These aerial images (Fig.7) cover both 
urban and rural areas of the United Kingdom. The parametric space Θ (7) build over large 
images from this set requires efficient memory handling and distance based region class 
merging to avoid expensive memory swapping during the segmentation. Segmentation 
results illustrated on Fig.7-bottom do not use any prior information except the minimal 
region area. This parameter can be easily determined from the image resolution and the 
intended thematic map application. 

7. Conclusions 
We discussed three efficient and robust methods for unsupervised texture segmentation 
with unknown number of classes based on the underlying Markovian and GM texture 
models and their modifications for medical mammographics and remote sensing 
applications, respectively. Although these algorithm use the random field type models they 
are fast because they use efficient recursive or pseudo-likelihood parameter estimation of 
the underlying texture models and therefore they are much faster than the usual Markov 
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Fig. 7. Aerial Lmw 4800 × 4800 image (top left), its detail (top right), the corresponding 
unsupervised segmentation (bottom left) and parrac 8000 × 8000 image segmentation result, 
respectively. 

chain Monte Carlo estimation approach. Usual handicap of segmentation methods is their 
lot of application dependent parameters to be experimentally estimated. Our methods 
require only a contextual neighbourhood selection and two additional thresholds. Their 
performance is demonstrated on the extensive benchmark tests on natural texture mosaics. 
They perform favorably compared with four alternative segmentation algorithms. The AR-
GM methods are faster than the GMRF-GM method. These segmenters allow to build 
efficient methods for completely automatic unsupervised detection of mammogram 
fibroglandular tissue regions of interest which can assist a radiologist, and can be used as a 
second opinion. Alternatively our segmenters can be used to detect meaningful areas in 
large remote sensing images and in various other image segmentation applications. 
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1. Introduction 
The systems of information extraction that include spatial apertures of signal sensors are 
widely used in robotics, for the remote exploration of Earth, in medicine, geology and in 
other fields. Such sensors generate dynamic arrays of data which are characterized by space-
time correlation and represent the sequence of framed of image to be changed (Gonzalez & 
Woods, 2002). Interframe geometrical deformations can be described by mathematical 
models of deformations of grids, on which images are specified.  
Estimation of variable parameters of interframe deformations is required when solving a lot 
of problems, for example, at automate search of fragment on the image, navigation tracking 
of mobile object in the conditions of limited visibility, registration of multiregion images at 
remote investigations of Earth, in medical investigations. A large number of calls for papers 
are devoted to different problems of interframe deformations estimation (the bibliography is 
presented for example in (Tashlinskii, 2000)). This chapter is devoted to one of approaches, 
where the problems of optimization of quality goal function pseudogradient in 
pseudogradient procedures of interframe geometrical deformations parameters estimation 
are considered. 
Let the model of deformations is determined with accuracy to a parameters vector α , 
frames ( ) { }Ω∈= jzj :)1(1Z  and ( ) =2Z { }Ω∈jzj :)2(  to be studied  of images are specified on the 

regular sample grid ( ){ }yx jjj ,==Ω , and a goal function of estimation quality is formed in 

terms of finding extremum of some functional )J(α . However, it is impossible to find 
optimal parameters in the mentioned sense because of incompleteness of image 
observations description. But we can estimate parameters α  on the basis of analysis of 
specific images ( )1Z  and ( )2Z  realizations, between of which geometrical deformations are 
estimated. At that it is of interest to estimate α  directly on values ( ) ( )( )21 ,,ˆJ ZZα  (Polyak & 
Tsypkin, 1984): 

 ( ) ( )( )21
1 ,,ˆJˆˆ ZZΛ α∇−α=α − ttt ,  (1) 
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where tα̂  - the next after 1
ˆ

−αt  approximation of the extremum point of ( ) ( )( )21 ,,ˆJ ZZα ;  

tΛ  - positively determined matrix, specifying a value of estimates change at the t -th 
iteration; )J(⋅∇  - gradient of functional ))J((⋅ . The necessity of multiple and cumbrous 
calculations of gradient opposes to imply the procedure (1) in the image processing. We can 
significantly reduce computational costs if at each iteration instead of ( ) ( )( )21 ,,ˆJ ZZα  we use 

its reduction ),ˆ(Ĵ 1 tt Z−α∇  on some part tZ  of realization which we call the local sample  

 { })1()2( ~, tjtjt zzZ = , ∈)2(
tjz ( )2Z , ∈α= − )ˆ,(~~

1
)1()1(

tttj jzz Z~ , (2) 

where )2(
tjz  – samples of a deformed image )2(Z , chosen to the local sample at the t -th 

iteration; )1(~
tjz  – sample of a continuous image ( )1~Z  (obtained from )1(Z  by means of some 

interpolation), the coordinates of which correspond to the current estimate of sample 
( )2)2( Z∈ljz ; Ω∈Ω∈ ttj  – coordinates of samples )2(

tjz ; tΩ  – plan of the local sample at the t -

th iteration. Let us call the number of samples { })2(
tjz  in tZ  through the local sample size and 

denote through μ. 
At large image sizes pseudogradient procedures (Polyak & Tsypkin, 1973; Tashlinskii, 2005) 
give a solution satisfying to requirements of simplicity, rapid convergence and availability 
in different real situations. 
For considered problem the pseudogradient tβ  is any random vector in the parameters 

space, for which the condition [ ] { } 0M),ˆJ( 1 ≥βα∇ − t
T

tt Z  is fulfilled, где T  - sign of 
transposition; {}⋅M  - symbol of the mathematical expectation.  
Then pseudogradient procedure is (Tzypkin, 1995) : 

 tttt β−α=α − Λ1
ˆˆ ,  (3) 

where Tt ,0=  - iteration number; T  - total number of iterations.  
Procedure (3) own indubitable advantages. It is applicable to image processing in the 
conditions of a priory uncertainty, supposes not large computational costs, does not require 
preliminary estimation of parameters of images to be estimated. The formed estimates are 
immune to pulse interferences and converge to true values under rather weak conditions.  
The processing of the image samples can be performed in an arbitrary order, for example, in 
order of scanning with decimation that is determined by the hardware speed, which 
facilitates obtaining a tradeoff between image entering rate and the speed of the available 
hardware (Tashlinskii, 2003).  
However, pseudogradient procedures have disadvantages, in particular, the presence of 
local extremums of the goal function estimate at real image processing, that significantly 
reduces the convergence rate of parameters estimates. To the second disadvantage we can 
refer relatively not large effective range, where effective convergence of estimates is 
ensured. This disadvantage depends on the autocorrelation function of images to be 
estimated. A posteriori optimization of the local sample (Minkina et al., 2005; Samojlov et 
al., 2007; Tashlinskii et al., 2005), assuming synthesis of estimation procedures, when sample 
size automatically adapted at each iteration for some condition fulfillment is directed on the 
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struggle with the first one. Relatively second disadvantage it is necessary to note that for 
increasing speed of procedures we tend to decrease local sample size, which directly 
influences on the convergence rate of parameters to be estimated to optimal values: as μ is 
larger, the convergence rate is higher. However on the another hand the increase of μ 
inevitably leads to increase of computational costs, that is not always acceptable. Let us note 
that at different errors of parameters estimates from optimal values at the same value of 
sample size the samples chosen in different regions of image ensure different estimate 
convergence rate. Thus, the problems of optimization of size and plan of local sample of 
samples used for goal function pseudogradient finding are urgent. The papers (Samojlov, 
2006; Tashlinskii  @ Samojlov, 2005; Dikarina et al., 2007) are devoted to solution of the 
problem of a priory optimization of local sample, in particular, on criteria of computational 
expenses minimum The problems of optimization of a plan of local sample samples choice 
are investigated weakly, that has determined the goal of this work. 
Pseudogradient estimation of parameters (3) is recurrent, thus as a result of iteration the 
estimate ti ,α̂  of the parameter iα  changes discretely: ttt αΔ+α=α −

ˆˆˆ
1 . At that the following 

events are possible: 
- If titi ,1, sign)sign( αΔ=ε − , then change of the estimate tα̂  is directed backward from the 

optimal value *
iα , where *

,, ˆ ititi α−α=ε  – the error of its optimal value of the parameter 
*
iα  and its estimate, mi ,1= . In accordance with (Tashlinskii & Tikhonov, 2001) let us 

denote the probability of such an event through ( )ti ερ− .  

- At 0, =αΔ ti  the estimate tα̂  does not change with probability ( )ti ερ0 . 

- If )sign( 1, −ε− ti ti ,sign αΔ= , the change of the estimate tα̂  is directed towards the 

optimal value of the estimate with some probability ( )ti ερ+ . 

Let us note, that the probabilities ( )ti ερ+ , ( )1
0

−ερ ti  and ( )ti ερ−  depend on the current errors 

( )Ttmttt ,,2,1 ,...,, εεε=ε  of other parameters to be estimated, but because of divisible group of 

events we have ( ) ( ) ( )tititi ερ−=ερ+ερ −+ 01 . If the goal function is maximized and 0, >ε ti , 

then ( )ti ερ+  is the probability of the fact that  projection iβ  of the pseudogradient on the 

parameters iα  axes will be negative, and ( )ti ερ−  – positive: 

 ( ) { } ( )∫
∞−

+ ββ=<β=ερ
0

0 iiiti dwP ,  ( ) { } ( )∫
∞

− ββ=>β=ερ
0

0 iiiti dwP , (4) 

where ( )iw β  – probability density function of the projection iβ  on the axes iα . 

Probabilities ( )ti ερ+ , ( )ti ερ0  and ( )ti ερ−  will be used below for finding optimal region of 
local sample samples choice on some criterion. 

2. Finding goal functions pseudorgadients with usage of finite differences 
In the papers (Vasiliev & Tashlinskii, 1998; Vasiliev  &Krasheninikov, 2007) it is shown, that 
when pseudogradient estimating of interframe deformations parameters as a goal function 
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it is reasonable to use interframe difference mean square and interframe correlation 
coefficient. Pseudogradients of the mentioned functions are found through a local sample 

tZ  and estimates 1
ˆ

−αt  of deformations parameters at the pervious iteration: 

( )
1

ˆ

)2(
,
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,
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However the direct usage of the obtained expressions for images, specified by discrete 
sample grids, is impossible, because they include analytic derivatives. Thus let us briefly 
consider approaches for goal functions pseudogradients calculation. 
At  the explicitly given function its estimate Ĵ  at the current iteration can be found, using 

estimates α̂  of deformations parameters, obtained by this iteration, information about 
brightness z  and coordinates ( )yx,  of samples of the local sample, formed at the current 
iteration, and accepted deformations model. Thus the dependence of the goal function on 
parameters can be represented directly: 

 ( )α= fĴ ,  (5) 

and through intermediate brightness functions:  

 ( )( )α= zfĴ , ( )α= uz  (6) 

and coordinates: 

 ( ) ( )( )αα= yx ,fĴ , ( )α= xx v , ( )α= yy v .  (7) 

In accordance with rules of partial derivatives calculation different approaches of 
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α∂
∂ f , 

dz
d f , 

α∂
∂z , 

α∂
∂x  and 

α∂
∂y . Since 
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its estimate by means of finite differences of the goal function. At that each component iβ  of 

the pseudogradient β  is determined separately through increments iαΔ  of the relative i -th 
parameter: 
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where tZ  – the local sample. Let us note, that for forming elements )1(~
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interpolation. However the requirements to their first derivatives existence are not laid.  
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representation of the function. The partial derivative 
α∂
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If for the given deformations model the requirements to its first derivatives on parameters 

existence are fulfilled then the partial derivatives 
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where ( )xt xZ Δ±  – the local sample, the samples { })1(~
tjz  coordinates of which are shifted on 

the axis x  by a value xΔ , ttj Ω∈ . As well as estimates of derivatives 
x
z
∂
∂  and 

y
z
∂
∂ , they are 

identical for all parameters to be estimated.  
Thus, four approaches to calculate pseudogradient of the goal function, which are defined 
by expressions (11), (12), (13) and (14), are possible. Let us note, when usage of different 
approaches different requirements are laid to features of the goal function and deformations 
model. 
We can obtain the estimate of interframe difference mean square at the next iteration, using 
local sample (2) and estimates 1

ˆ
−αt  of parameters to be estimated, obtained at the previous 

iteration: 
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l

ljljt zz . (15) 

The estimate of interframe correlation coefficient is determined by equation of sample 
correlation coefficient calculation: 

 ( ) ( ) ( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛ μ−

σσμ
= ∑

μ

=

21

1

21

21~

~~~
ˆˆ
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1~ˆ zσ , 2

2ˆ zσ  и ( )1~
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avz - estimates of variances and mean values of )2(
tjz  and )1(~

tjz , ttj Ω∈ . 

As an example let us find design expressions for calculation of the pseudogradient of 
interframe difference mean square through finite differences. At that for definition let us 
suppose, that the affine deformations model, containing parameters of rotation angle ϕ , 
scale coefficient κ  and parallel shift ( )yx hhh ,=  is used. Then coordinates ),( yx  of the point 

on the image ( )1Z  at vector ( )Tyx hh κϕ=α ,,,  of deformations transform to coordinates: 

 ( ) ( )( ) ( ) ( )( )( )yx hyyxxyyhyyxxxx +ϕ−+ϕ−κ+=+ϕ−−ϕ−κ+= cossin~,sincos~
000000 , (17) 

 

where ( )00, yx  – rotation center coordinates. We use bilinear interpolation for a forecast of 

brightness in the point )~,~( yx  from the image ( )1~Z . Subject to accepted limitations let us 

concretize the methods for pseudogradient calculation. Let us note that these limitations are 
introduced for concretization of the obtained expressions and do not reduce consideration 
generality.   
The first method. It is the least laborious way in calculus, where differentiation of the 
deformations model and the goal function is not used. The component itβ  of the 
pseudogradient is calculated as normalized difference of two estimates of the goal function: 
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where ( ) titilj Zz ∈Δ±α α−1,
)1( ˆ~  - brightness of the interpolated image in the point with 

coordinates ( )ll yx ~,~ , determined by deformations model and current parameters estimates 

1
ˆ

−αt ; tlj Ω∈  – samples coordinates )2(
ljz ; iαΔ  – increment of a parameter iα  to be 

estimated. In particular, for affine model (17) for shifts on the axis x , y ,  scale coefficient 
and rotation angle we obtain correspondingly: 
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Brightness of the sample ( )itiljz α− Δ±α 1,
)1( ˆ~  in the point ( )ll yx ~,~  is found, for example, by 

means of bilinear interpolation: 
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where lx xj ~int=− , 1+= −+ xx jj , ly yj ~int=− , 1+= −+ yy jj  – coordinates of nodes of the 

image ( )1Z , nearby to the point ( )ll yx ~,~ ; )1(
, ±± jyjxz  – brightness in the corresponding nodes of 

thesample grid. Let us note that the expression (18) can be written in more handy form for 
calculations.  

The second method is based on the analytical finding of derivative 
dz
d f  and estimation through 

limited differences of derivative 
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∂z . Subject to (12) and (15) we obtain: 
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where coordinates of interpolated samples ( ) ( )itiljz α− Δ±α 1,
1 ˆ~  are found on the equations (19), 

and their brightness at bilinear interpolation – on the equation (20). 
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where coordinates of interpolated samples ( ) ( )itiljz α− Δ±α 1,
1 ˆ~  are found on the equations (19), 

and their brightness at bilinear interpolation – on the equation (20). 
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The third method assumes the existence derivative 
dz
d f  and particular derivatives 

α∂
∂x  and 

α∂
∂y . Derivatives of brightness 

x
z
∂
∂  and 

y
z
∂
∂  on the base axis are estimated through finite 

differences. Then in accordance with (13): 
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where coordinates of samples ( )1
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lyxlxz Δ± , ( )1
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ylylxz Δ±  are found in points ( )lxl yx ~,~ Δ± , 

( )yll yx Δ±~,~  of the image ( )1Z~ .  Derivatives 
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deformations model. At affine model in the point ( )ll yx ~,~ :  
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Having introduced denotations il
i

l cx
=

α∂
∂~

 and il
i

l dy
=

α∂
∂~

, for the i -th component of 

pseudogradient we can write: 
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In the case if increments on coordinates are equal to the step of sample grid 1=Δ=Δ yx , 
then (23) takes a form 
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Let us note, that the number of computational operations in the last expression can be 
reduced in the assumption of equality of derivatives on coordinates for the sample )1(~

ljz  of 

the image ( )1~Z  and the sample )2(
ljz  of the image ( )2Z . This assumption is approximately 

fulfilled at small deviations α̂  from the optimal value α . Тогда : 
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The fourth method is based on the estimation of derivatives 
x∂
∂ f  and 

y∂
∂ f  through finite 

differences at analytic finding derivatives 
α∂
∂x  and 

α∂
∂y : 

( )( ) ( )( )( ) ( )( ) ( )( )( )
⎥
⎥
⎦

⎤

α∂
∂

−−−
Δ

+⎢⎣
⎡

α∂
∂

−−−
Δμ

=β ∑∑
μ

=
Δ−Δ+

μ

=
Δ−Δ+

1

2)2(1
~,~

2)2(1
~,~

1

2)2(1
~,~

2)2(1
~,~ ~~1~~1

2
1

l i
ljylylxljylylx

yl i
ljlyxlxljlyxlx

x
it

yzzzzxzzzz . 

3. Improvement coefficient of parameters estimates 
The convergence of parameters estimates of interframe deformations depends on a large 
number of influencing factors. We can divide them into a priory factors, which can be 
defined by probability density functions and autocorrelation functions of images and 
interfering noises, and a posteriori factors, determined by procedure (3) characteristics: 
pseudogradient calculation method, the kind of a gain matrix and number of iterations. As a 
rule, we can refer a goal function to the first group. For analysis it is desirable to describe the 
influence of the factors from the first group by a small number of values as far as possible. In 
the papers (Tashlinskii & Tikhonov, 2001) as such values it is proposed to use probabilities 
(4) of estimates change in parameters space. On their basis in the paper (Samojlov, 2006) a 
coefficient characterizing probabilistic characteristics of parameters change in the process of 
convergence is proposed. Let us consider it in details. If a value of parameter estimate at the 
( 1−t )-th iteration is 1,ˆ −α ti , then the mathematical expectation of the estimate at the t -th 

iteration can be expressed through probabilities ( )ερ+  and ( )ερ− : 

[ ] ( ) ( )( )11,1,, ˆˆM −
−

−
+

− ερ−ερλ−α=α tttititi . 

If ( ) ( )11 −
−

−
+ ερ>ερ tt , then the estimate is improved, if not – is deteriorated. Thus the 

characteristic 

 ( ) ( )ερ−ερ=ℜ −+
iii   (24) 

let us call the estimate improvement coefficient. The range of its change is from –1 to +1. At 
that a value +1 means that the mathematical expectation [ ]ti ,ˆM α of the estimate is 
improved at the t-th iteration by λi,t. 
The improvement coefficient can be the generalized characteristic of images to be estimated, 
effecting noises and also chosen goal function. Having used for its calculation the equations 
(4), we obtain 

 ( ) ( )∫ ∫
∞−

∞
ββ−ββ=ℜ

0

0
iiiii dwdw . (25) 

Let us analyze possibilities for improvement coefficient calculation for the cases of usage as 
a goal function interframe difference mean square and interframe correlation coefficient. At 
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The third method assumes the existence derivative 
dz
d f  and particular derivatives 
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where coordinates of samples ( )1
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Having introduced denotations il
i

l cx
=

α∂
∂~

 and il
i

l dy
=

α∂
∂~

, for the i -th component of 
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In the case if increments on coordinates are equal to the step of sample grid 1=Δ=Δ yx , 
then (23) takes a form 
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Let us note, that the number of computational operations in the last expression can be 
reduced in the assumption of equality of derivatives on coordinates for the sample )1(~

ljz  of 

the image ( )1~Z  and the sample )2(
ljz  of the image ( )2Z . This assumption is approximately 

fulfilled at small deviations α̂  from the optimal value α . Тогда : 
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3. Improvement coefficient of parameters estimates 
The convergence of parameters estimates of interframe deformations depends on a large 
number of influencing factors. We can divide them into a priory factors, which can be 
defined by probability density functions and autocorrelation functions of images and 
interfering noises, and a posteriori factors, determined by procedure (3) characteristics: 
pseudogradient calculation method, the kind of a gain matrix and number of iterations. As a 
rule, we can refer a goal function to the first group. For analysis it is desirable to describe the 
influence of the factors from the first group by a small number of values as far as possible. In 
the papers (Tashlinskii & Tikhonov, 2001) as such values it is proposed to use probabilities 
(4) of estimates change in parameters space. On their basis in the paper (Samojlov, 2006) a 
coefficient characterizing probabilistic characteristics of parameters change in the process of 
convergence is proposed. Let us consider it in details. If a value of parameter estimate at the 
( 1−t )-th iteration is 1,ˆ −α ti , then the mathematical expectation of the estimate at the t -th 

iteration can be expressed through probabilities ( )ερ+  and ( )ερ− : 

[ ] ( ) ( )( )11,1,, ˆˆM −
−

−
+

− ερ−ερλ−α=α tttititi . 

If ( ) ( )11 −
−

−
+ ερ>ερ tt , then the estimate is improved, if not – is deteriorated. Thus the 

characteristic 

 ( ) ( )ερ−ερ=ℜ −+
iii   (24) 

let us call the estimate improvement coefficient. The range of its change is from –1 to +1. At 
that a value +1 means that the mathematical expectation [ ]ti ,ˆM α of the estimate is 
improved at the t-th iteration by λi,t. 
The improvement coefficient can be the generalized characteristic of images to be estimated, 
effecting noises and also chosen goal function. Having used for its calculation the equations 
(4), we obtain 

 ( ) ( )∫ ∫
∞−

∞
ββ−ββ=ℜ

0

0
iiiii dwdw . (25) 

Let us analyze possibilities for improvement coefficient calculation for the cases of usage as 
a goal function interframe difference mean square and interframe correlation coefficient. At 
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that let us assume that ( ) 00 =ερi . The last assumption is true at unquantified samples of 

images to be studied. Subject to divisible group of events ( ) ( )ερ−=ερ −+
ii 1 , then 

( ) ( )∫
∞−

+ −ββ=−ερ=ℜ
0

1212 iiii dw . 

Interframe difference mean square  
The estimate of interframe difference mean square at each iteration of estimation can be 
found on the relation (15). Let us assume the images to be studied have Gaussian 
distribution of brightness with zero mean and unquantified samples and the model of 
images )1(~Z  and )2(Ζ  is additive : 

( ) ( ) ( )111 S~Z Θ+= ,  ( ) ( ) ( )222 ΘSZ += , 

where ( ) { })1(1 ~S~ js= , ( ) { })2(2
js=S  – desired random fields with identical variances 2

sσ , at that 

the field { })2(
js  has autocorrelation function ( )R ; ( ) { })1(1

jθ=Θ , ( ) { })2(2
jθ=Θ  – independent 

Gaussian random fields with zero mean and equal variances 2
θσ . Let us accept the affine 

model of deformations (17): ( )Tyx hh κϕ=α ,,, . 
In accordance with (25) for calculation of the estimate improvement coefficient iℜ  it is 

necessary to find probability density function ( )iw β  of projection iβ  of pseudogradient β  
on the parameter iα  axis. For this purpose let us use the third way (21) for interframe 
difference mean square pseudogradient calculation. 
Analytic finding probability distribution (23) as a function of 2

sσ , 2
θσ  and ( )R  is a difficult 

problem. However the approximate solution can be found (Tashlinskii & Tikhonov, 2001), if 
we use the circumstance, that as μ  increases the component iβ  normalizes quickly. At 

1=μ  (23) includes from four to eight similar summands, at 2=μ  – from eight to sixteen, 
etc. Thus the distribution of probabilities iβ  can be assumed to be close to Gaussian. Then: 
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where ( )⋅F  – Laplace function; [ ]iβM  and [ ]iβσ  – mathematical expectation and standard 
deviation of the component iβ . Thus the problem can be reduced to finding the 
mathematical expectation and variance of iβ . For relation (23) we obtain: 
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where ( )l
ba,  – Euclidian distance between point with coordinates  ( )ll ba ,  and point with 

coordinates ( )ll yx , , μ= ,1l ; ( )baR ,  – normalized autocorrelation function of the image; ilc  
and ild  – functions c  and d  for the i -го parameter in the point ( )ll ba ,  (Tashlinskii @ 
Minkina, 2006). For finding  iℜ  it is necessary to substitute (27) and (28) into (26). 

As it is seen from (27) and (28) iℜ  does not depend only on  2
sσ , 2

θσ  and ( )R , it also 
depends on a plan of the local sample tΖ , namely on reciprocal location of samples ( )ll ba , , 
of the deformed image which are in the local sample at the t -th iteration.  
In Fig. 1,а as an example the plots of the improvement coefficient for rotation angle ( ϕℜ ) as 

a function of error *ˆ ϕ−ϕ=εϕ , where *ϕ  is the sought value of parameter are presented. The 
results are obtained for images with Gaussian autocorrelation function with correlation 
radius equal to 5 at signal/noise ration 20=g  and local sample size 3=μ . At that it is 
supposed that coordinates of points of the local sample are chosen on the circle with radius 

20=L  (curve 1) and 30=L  (curve 2) with the center, coinciding with rotation center.  
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Fig. 1. The dependence of estimate improvement coefficient of rotation angle versus error 
Interframe correlation sample coefficient  
When choosing as a goal function interframe correlation coefficient its estimate at each 
iteration can be found on the relation (16). Having accepted for image to be studied the same 
assumptions as in the previous case for finding ( )iw β  let us use the expression: 
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that let us assume that ( ) 00 =ερi . The last assumption is true at unquantified samples of 

images to be studied. Subject to divisible group of events ( ) ( )ερ−=ερ −+
ii 1 , then 

( ) ( )∫
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+ −ββ=−ερ=ℜ
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Interframe difference mean square  
The estimate of interframe difference mean square at each iteration of estimation can be 
found on the relation (15). Let us assume the images to be studied have Gaussian 
distribution of brightness with zero mean and unquantified samples and the model of 
images )1(~Z  and )2(Ζ  is additive : 

( ) ( ) ( )111 S~Z Θ+= ,  ( ) ( ) ( )222 ΘSZ += , 

where ( ) { })1(1 ~S~ js= , ( ) { })2(2
js=S  – desired random fields with identical variances 2

sσ , at that 

the field { })2(
js  has autocorrelation function ( )R ; ( ) { })1(1

jθ=Θ , ( ) { })2(2
jθ=Θ  – independent 

Gaussian random fields with zero mean and equal variances 2
θσ . Let us accept the affine 

model of deformations (17): ( )Tyx hh κϕ=α ,,, . 
In accordance with (25) for calculation of the estimate improvement coefficient iℜ  it is 

necessary to find probability density function ( )iw β  of projection iβ  of pseudogradient β  
on the parameter iα  axis. For this purpose let us use the third way (21) for interframe 
difference mean square pseudogradient calculation. 
Analytic finding probability distribution (23) as a function of 2

sσ , 2
θσ  and ( )R  is a difficult 

problem. However the approximate solution can be found (Tashlinskii & Tikhonov, 2001), if 
we use the circumstance, that as μ  increases the component iβ  normalizes quickly. At 

1=μ  (23) includes from four to eight similar summands, at 2=μ  – from eight to sixteen, 
etc. Thus the distribution of probabilities iβ  can be assumed to be close to Gaussian. Then: 
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where ( )⋅F  – Laplace function; [ ]iβM  and [ ]iβσ  – mathematical expectation and standard 
deviation of the component iβ . Thus the problem can be reduced to finding the 
mathematical expectation and variance of iβ . For relation (23) we obtain: 
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where ( )l
ba,  – Euclidian distance between point with coordinates  ( )ll ba ,  and point with 

coordinates ( )ll yx , , μ= ,1l ; ( )baR ,  – normalized autocorrelation function of the image; ilc  
and ild  – functions c  and d  for the i -го parameter in the point ( )ll ba ,  (Tashlinskii @ 
Minkina, 2006). For finding  iℜ  it is necessary to substitute (27) and (28) into (26). 

As it is seen from (27) and (28) iℜ  does not depend only on  2
sσ , 2

θσ  and ( )R , it also 
depends on a plan of the local sample tΖ , namely on reciprocal location of samples ( )ll ba , , 
of the deformed image which are in the local sample at the t -th iteration.  
In Fig. 1,а as an example the plots of the improvement coefficient for rotation angle ( ϕℜ ) as 

a function of error *ˆ ϕ−ϕ=εϕ , where *ϕ  is the sought value of parameter are presented. The 
results are obtained for images with Gaussian autocorrelation function with correlation 
radius equal to 5 at signal/noise ration 20=g  and local sample size 3=μ . At that it is 
supposed that coordinates of points of the local sample are chosen on the circle with radius 

20=L  (curve 1) and 30=L  (curve 2) with the center, coinciding with rotation center.  
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Fig. 1. The dependence of estimate improvement coefficient of rotation angle versus error 
Interframe correlation sample coefficient  
When choosing as a goal function interframe correlation coefficient its estimate at each 
iteration can be found on the relation (16). Having accepted for image to be studied the same 
assumptions as in the previous case for finding ( )iw β  let us use the expression: 
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where coordinates and brightness of samples ( )1
~,~~

lyxlxz Δ± , ( )1
~,~~

ylylxz Δ±  are determined by 

equations (19) and (20) correspondingly. The derivatives 
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  can be found on 

equations (22). 
Let us consider several cases. At first let us suppose that mean values ( )2

avz  and ( )1~
avz  are 

equal to zero, and estimates of standard deviation 1ˆ zσ  and 2ˆ zσ  are known a priory. In this 
case pseudogradient of interframe correlation coefficient differs from pseudogradient of 
covariation estimate of images )1(Ζ  and )2(Ζ  only by constant factor ( ) 1
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For simplification of finding the mathematical expectation and the variance of iβ  

summands in the sum ∑
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assumption aboud noncorrelatedness of )2(
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ljz  is not rigid, because 

samples to the local sample are chosen as a rule to be weakly correlated (Tashlinskii @ 
Minkina, 2006). Then: 
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As an example in Fig. 1,b the plots of the improvement coefficient for rotation angle ( ϕℜ ) as 
the function of errors ϕε  are presented. Image parameters, signal/noise ration and sample 
size correspond to the example (Fig. 1,a). From the plot it is seen, that at similar conditions 

ϕℜ  for interframe correlation coefficient is less, than for interframe difference mean square. 

Optimization of Goal Function Pseudogradient in the Problem  
of Interframe Geometrical Deformations Estimation 

 

261 

Similarly the case when  2
1zσ , 2

2zσ  of ( )2
avz  and ( )1~

avz  are a priory known can be considered. 

4. Optimization of samples choice region on criterion of estimate 
improvement coefficient maximum  
Let one parameter is estimated. Then for finding optimal region of samples of a local sample 
we can use results, obtained in the previous part, choosing the estimate improvement 
coefficient maximum of a parameter to be estimated as an optimality criterion. At the affine 
deformations model the improvement coefficient for parameters hx and hy depends only on 
their errors from optimal values and does not depend on the location of samples of the local 
sample. Thus when estimating parallel shift parameters it is impossible to improve estimates 
convergence at the expense of choice of samples of the local sample. For parameters of 
rotation ϕ  and scale κ  the improvement coefficient depends on the samples coordinates. 
Correspondingly, the region of image, where the improvement coefficient maximum is 
ensured, can be found.  
As an example let us find the image region at the known error ϕε  of rotation angle ϕ . It is 
not difficult to show, that initial region at the given image parameters is determined by the 
distance opL  from the rotation centre ( )00 , yx . At that for each error ϕε  a value opL  will be 

individual. In Fig. 2 for o5=εϕ  the dependences of ϕℜ  as the function versus distance L  
from the rotation centre when using as the goal function interframe difference mean square 
(рис. 2,а) and interframe correlation coefficient (рис. 2,b), calculated by equations (26), (28) 
and (30), (31) correspondingly. The image was assumed to be Gaussian with autocorrelation 
function with correlation radius equal to 13 steps of the sample grid and signal/noise 
ratio 50=g . From the plot it is seen that for interframe difference mean square maximum of 
estimation coefficient attainess at 58=opL , for interframe correlation coefficient– at 

7.126=opL . 
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Fig. 2. The dependence of estimate improvement coefficient of rotation angle versus the 
distance from rotation center 

If we know the dependence of ϕε  change versus the number of iterations, we can find opL  

for each iteration. The rule of forming the dependence ϕε  on the number of iterations can be 

different and can depend on conditions of the problem to be solved. For instance, if we use a 
minimax approach, then it is enough to find the dependence beginning from maximum 
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As an example in Fig. 1,b the plots of the improvement coefficient for rotation angle ( ϕℜ ) as 
the function of errors ϕε  are presented. Image parameters, signal/noise ration and sample 
size correspond to the example (Fig. 1,a). From the plot it is seen, that at similar conditions 

ϕℜ  for interframe correlation coefficient is less, than for interframe difference mean square. 
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improvement coefficient maximum  
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deformations model the improvement coefficient for parameters hx and hy depends only on 
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sample. Thus when estimating parallel shift parameters it is impossible to improve estimates 
convergence at the expense of choice of samples of the local sample. For parameters of 
rotation ϕ  and scale κ  the improvement coefficient depends on the samples coordinates. 
Correspondingly, the region of image, where the improvement coefficient maximum is 
ensured, can be found.  
As an example let us find the image region at the known error ϕε  of rotation angle ϕ . It is 
not difficult to show, that initial region at the given image parameters is determined by the 
distance opL  from the rotation centre ( )00 , yx . At that for each error ϕε  a value opL  will be 

individual. In Fig. 2 for o5=εϕ  the dependences of ϕℜ  as the function versus distance L  
from the rotation centre when using as the goal function interframe difference mean square 
(рис. 2,а) and interframe correlation coefficient (рис. 2,b), calculated by equations (26), (28) 
and (30), (31) correspondingly. The image was assumed to be Gaussian with autocorrelation 
function with correlation radius equal to 13 steps of the sample grid and signal/noise 
ratio 50=g . From the plot it is seen that for interframe difference mean square maximum of 
estimation coefficient attainess at 58=opL , for interframe correlation coefficient– at 
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Fig. 2. The dependence of estimate improvement coefficient of rotation angle versus the 
distance from rotation center 

If we know the dependence of ϕε  change versus the number of iterations, we can find opL  

for each iteration. The rule of forming the dependence ϕε  on the number of iterations can be 

different and can depend on conditions of the problem to be solved. For instance, if we use a 
minimax approach, then it is enough to find the dependence beginning from maximum 
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possible parameter error (for the worst situation), and to find the number of iterations which 
is necessary for the given accuracy attainment. In the sequel the obtained rule of opL  change 

on the number of iterations is applied for any initial parameter error, ensuring the 
estimation accuracy which is not worse than the given one. At that the dependence of 
change of error ϕε  versus the number of iterations can be found either theoretically for the 

given autocorrelation function and probability density function of image brightness by the 
method of pseudogradient procedures simulation at finite number of iterations (Tashlinskii 
& Tikhonov, 2001), or experimentally on the current estimates, averaged on the given 
realizations assemblage. At the last approach the following algorithm can be used. 
1 0 .  To specify the initial error 0ϕε  of rotation angle. 

2 0 .  To find 1opL  for the first iteration.  

3 0 .  To perform the iteration u  times. On the obtained estimates to find the average error 

∑
=

ϕϕ ε=ε
u

r
ru 1

,01
1 , where u  – given number of realizations. 

4 0 .  For obtained 1ϕε  to repeat operators 1 0 –3 0  Т  times until the next Tϕε  is less the 
required estimation error порε , Т  – total number of iterations.  
Let us notice, that for digital images the circle with radius opL  can be considered as an 

optimal region only conditionally, because the probability of its intersection with nodes of 
sample grid is too small. To obtain the suboptimal region we can specify some range of 
acceptable values for the improvement coefficient from maxℜγ  to maxℜ  (Fig. 2,a), where  
γ  – threshold coefficient. Then values 1L  and 2L  specify region bounds, where the 
improvement coefficient does not differ from maximum more than, for example, 10%. At 
that the suboptimal region is ring. As an example in Fig. 3 the dependences opL  versus error  

ϕε  for interframe difference mean square (curve 1) and interframe correlation coefficient 

(curve 2) are shown. From figure it is seen that values of opL  for correlation coefficient 

exceed values of opL  for difference mean square. 

In Fig. 4 the dependence ϕε  versus the number of iterations (curve 1), obtained at usage of 

pseudogradient procedure with parameter o15.0=λϕ , initial error o450 =εϕ  and choice of 
samples of the local sample from 10 % suboptimal region on the image of size 1024× 1024 
pixels are presented. On the same figure the dependences for o250 =εϕ  (curve 2) and 

o150 =εϕ  (curve 3), obtained at the same rule of suboptimal region change and dependence 

obtained for o450 =εϕ  without optimization (curve 4) are shown. All curves are averaged on 
200 realizations. It is seen that optimization increases the convergence rate of rotation angle 
about several times. At initial errors which are less the maximum errors(curves 2 and 3), the 
convergence rate of estimate is a little less, than at maximum one, but the number of 
iterations which is necessary for the given error attainment does not exceed the number of 
iterations at maximum error. The behavior of estimates for scale coefficient estimation is 
similar.  
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Fig. 4. The dependence of ϕε  versus  the number of iterations 

Let us note, that the considered method of optimization of the local sample samples choice 
region is unacceptable when estimating a parameters vector. It is due to the fact that the 
improvement coefficient of parameters vector can not be found on estimates improvement 
coefficient of separate parameters. Thus let us consider another approach for the case when 
estimating a vector of parameters. 

5. Optimal Euclidian error distance of deformations parameters estimates  
For any set of deformations model parameters as a result of the next iteration performing for 
the sample )2(

kjz  with coordinates ( )ykxk jj ,  its estimate )1(~
kz  is found on the reference image 

with coordinates ( )kk yx ~,~ . At that the location of the point ( )kk yx ~,~  relatively the point 

( )ykxk jj ,  can be defined through Euclidian error distance (EED) ( ) ( )22 ~~
kykkxk yjxj −+−=ℜ  

and angle 
kxk

kyk

xj
yj

tg ~
~

arg
−

−
=φ  (Fig. 5). It can be shown that if only rotation angle is estimated 

then in different regions maximum EED attains at different values of estimate error, but at 
the same EED value. It is explained in Fig. 6. What is more when estimating any another 
parameter (scale, shift on one of the axis) or their set maximum EED attains at the same 
EED. We can suppose, that this optimal value of EED depends only on the goal function and 
characteristics of images to be studied and does not depend on the model of deformations. 



 Pattern Recognition Techniques, Technology and Applications 

 

262 
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convergence rate of estimate is a little less, than at maximum one, but the number of 
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Let us note, that the considered method of optimization of the local sample samples choice 
region is unacceptable when estimating a parameters vector. It is due to the fact that the 
improvement coefficient of parameters vector can not be found on estimates improvement 
coefficient of separate parameters. Thus let us consider another approach for the case when 
estimating a vector of parameters. 

5. Optimal Euclidian error distance of deformations parameters estimates  
For any set of deformations model parameters as a result of the next iteration performing for 
the sample )2(

kjz  with coordinates ( )ykxk jj ,  its estimate )1(~
kz  is found on the reference image 
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=φ  (Fig. 5). It can be shown that if only rotation angle is estimated 

then in different regions maximum EED attains at different values of estimate error, but at 
the same EED value. It is explained in Fig. 6. What is more when estimating any another 
parameter (scale, shift on one of the axis) or their set maximum EED attains at the same 
EED. We can suppose, that this optimal value of EED depends only on the goal function and 
characteristics of images to be studied and does not depend on the model of deformations. 
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On the other hand the optimal value of EED at the known error of parameters estimates 
determines the optimal region of samples for the local sample. Thus the solution of the 
problem of finding of optimal (suboptimal) region of samples of local sample can be divided 
into two steps: 
1) finding for the chosen goal function of estimation quality optimal EED as a function of 
image parameters (probability density function of brightness, autocorrelation function of 
desired image and signal/noise ratio); 
2) determining on the deformations model and a vector of parameters estimates error the 
optimal region of choice of samples of the local sample as a region in which the optimal EED 
is ensured.  
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Fig. 6. Location of optimal EED in dependence on rotation angle 

Let us consider the solution of the first mentioned problems. Let us the goal function of 
estimation quality is given. It is required to find value of EED, when maximum information 
about reciprocal deformation of images )1(Z  and )2(Z  is extracted. Let us understand the 

quantity of information in the sense of information, contained in one random value 
respectively another random value. 
The estimate of the goal function gradient is calculated on the local sample, containing μ  
samples pairs. Each pair of samples )2(

kjz  and )1(~
kz , μ= ,1k , of the local sample has desired 

information about contact degree of these samples. At that all pairs of samples are equal on 
average, thus bellow we will consider one pair. 
Assuming the image to be isotropic, for simplification of analysis of influence of distance 
between samples )2(

kjz  and )1(~
kz  on the features of the goal function estimate it is reasonable 

to amount the problem to one-dimensional problem. For that it is enough to specify the 
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coordinate axis l−0 , passing through coordinates of samples with the centre in the point 
( )ykxk jj ,  (Fig. 5). Correspondingly the literal notations for samples are simplified: )2(

kjzz = , 

£
)1( ~~ zzk = , where £  – the distance between samples. 

As it was already noticed, the information about contact degree of samples z  and £
~z  is 

noisy. For the additive model of image observations: θ+= sz , £££
~~~ θ+= sz , the noise 

component is caused by two factors: additive noises θ , £θ
~  and sample correlatedness. The 

influence of noncorrelated noises is equal for any sample location. As the distance between 
them increases the random component increases too. Thus the noise component is minimum 
if the coordinates of samples coincide, correspondingly in this case the correlatedness is 
maximum. Actually, let us assume that variances of the samples θ+= sz  and θ+= ~~~ sz  are 
equal, and 

 2
~

2
ss σ=σ , 2

~
2

θθ σ=σ ,  (32) 

for the mathematical expectation and variance of difference £
~zz −  square we obtain: 

( )[ ] ( )[ ] ( )( )122
££

2
£ £12~~M~M −+−σ=θ−−θ+=− gRsszz s , 

( )[ ] ( )[ ] ( )[ ] ( )( ) ,£18~M~M~D
2142

£
24

£
2

£
−+−σ=−−−=− gRzzzzzz s  

where ( )£R  – normalized autocorrelation function of images to be studied; 2

2

θσ
σ

= sg  – 

signal/noise ratio. The plots normalized to 2
sσ  for the mathematical expectation and the 

mean-square distance of ( )2£
~zz −  as the function of £  at 20=g  and Gaussian ( )£R  with 

correlation radius, equal to 5 steps of the sample grid, are given in Fig. 7 and Fig. 8 
correspondingly. 
For the mathematical expectation and variance of the product £

~zz  correspondingly we 
obtain: 

[ ] ( )( )[ ] ( )£~~cov~M 2
££ Rsszz sl σ=θ+θ+= , 

[ ] ( ) ( )( )£1~D 2214
£ Rgzz s ++σ= − . 

The normalized plots of covariation and mean-square distance ( )£
~zz  as a function of £  at 

the same image parameters are shown in Fig. 9 and Fig. 10 correspondingly. Let us notice 
that according to the assumptions (32) the normalized covariation, namely the correlation 
coefficient between samples z  and z~ , is determined by the expression: 

( )
( )( )[ ]
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On the other hand the optimal value of EED at the known error of parameters estimates 
determines the optimal region of samples for the local sample. Thus the solution of the 
problem of finding of optimal (suboptimal) region of samples of local sample can be divided 
into two steps: 
1) finding for the chosen goal function of estimation quality optimal EED as a function of 
image parameters (probability density function of brightness, autocorrelation function of 
desired image and signal/noise ratio); 
2) determining on the deformations model and a vector of parameters estimates error the 
optimal region of choice of samples of the local sample as a region in which the optimal EED 
is ensured.  
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Fig. 5. Illustration of points ( )yx jj ,  and ( )yx ~,~  location 
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Fig. 6. Location of optimal EED in dependence on rotation angle 

Let us consider the solution of the first mentioned problems. Let us the goal function of 
estimation quality is given. It is required to find value of EED, when maximum information 
about reciprocal deformation of images )1(Z  and )2(Z  is extracted. Let us understand the 

quantity of information in the sense of information, contained in one random value 
respectively another random value. 
The estimate of the goal function gradient is calculated on the local sample, containing μ  
samples pairs. Each pair of samples )2(

kjz  and )1(~
kz , μ= ,1k , of the local sample has desired 

information about contact degree of these samples. At that all pairs of samples are equal on 
average, thus bellow we will consider one pair. 
Assuming the image to be isotropic, for simplification of analysis of influence of distance 
between samples )2(

kjz  and )1(~
kz  on the features of the goal function estimate it is reasonable 

to amount the problem to one-dimensional problem. For that it is enough to specify the 
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coordinate axis l−0 , passing through coordinates of samples with the centre in the point 
( )ykxk jj ,  (Fig. 5). Correspondingly the literal notations for samples are simplified: )2(

kjzz = , 

£
)1( ~~ zzk = , where £  – the distance between samples. 

As it was already noticed, the information about contact degree of samples z  and £
~z  is 

noisy. For the additive model of image observations: θ+= sz , £££
~~~ θ+= sz , the noise 

component is caused by two factors: additive noises θ , £θ
~  and sample correlatedness. The 

influence of noncorrelated noises is equal for any sample location. As the distance between 
them increases the random component increases too. Thus the noise component is minimum 
if the coordinates of samples coincide, correspondingly in this case the correlatedness is 
maximum. Actually, let us assume that variances of the samples θ+= sz  and θ+= ~~~ sz  are 
equal, and 
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2
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~
2

θθ σ=σ ,  (32) 

for the mathematical expectation and variance of difference £
~zz −  square we obtain: 
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where ( )£R  – normalized autocorrelation function of images to be studied; 2

2

θσ
σ

= sg  – 

signal/noise ratio. The plots normalized to 2
sσ  for the mathematical expectation and the 

mean-square distance of ( )2£
~zz −  as the function of £  at 20=g  and Gaussian ( )£R  with 

correlation radius, equal to 5 steps of the sample grid, are given in Fig. 7 and Fig. 8 
correspondingly. 
For the mathematical expectation and variance of the product £

~zz  correspondingly we 
obtain: 
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The normalized plots of covariation and mean-square distance ( )£
~zz  as a function of £  at 

the same image parameters are shown in Fig. 9 and Fig. 10 correspondingly. Let us notice 
that according to the assumptions (32) the normalized covariation, namely the correlation 
coefficient between samples z  and z~ , is determined by the expression: 
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However when pseudogradient estimating interframe deformations parameters we are 
interested in the contact degree of samples z  and £

~z , containing in the goal function 
pseudogradient. As it was already noticed, this information is noisy. Thus let us consider 
the influence of the noise component on the information, which we are interested in, about 
goal function gradient. The gradient of the goal function in the given direction can be found 

either accordingly to the relation (8): 
£
Ĵ

∂
∂

=β , or, if the first derivative on the variable z  

exists, – in accordance with the relation (9): 
£

f
∂
∂

=β
z

dz
d . Taking into account that the both 

methods imply the approximation of derivatives with finite differences we obtain 

 ( ) ( )

£

££

2
£Ĵ£Ĵ

Δ
Δ−−Δ+

≈β  (33) 

for (8) and 

 
( )

£

££

2

~~f ££

Δ

−
≈β Δ−Δ+ zz

dz
d  (34) 

for (9).  
Let us specify the expressions (33) and (34) for interframe difference mean square, 
covariation and  sample correlation coefficient. 
Mean square of samples brightness 
In this case accordingly to (33) and (34) for the pseudogradient of the difference £

~zz −  we 
obtain the expressions relatively: 

 ( ) ( )
£

2
£

2
£

IDMS 2

~~
££

Δ

−−−
≈β Δ−Δ+ zzzz ,  (35) 

 
( )( )

£

£££
IDMS

£
~~~

Δ

−−
−≈β Δ−Δ+ zzzz l , (36) 

where £Δ  – the increment of the coordinate £ . Analysis of (35) and (36) shows, that at 
0£ →  and ∞→£  the mathematical expectation [ ]IDMSM β  of the pseudogradient IDMSβ  

tends to zero and does not have any information, which we could use for deformation 
parameters change. At some value of £ , corresponding to maximum steepness of the goal 
function, the module of [ ]IDMSM β  attains maximum value. Actually if we assume the model 
(35) and suppose validity of the assumption (32), we obtain that the mathematical 
expectation of IDMSβ  is determined by the expression: 

 [ ]
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⎢
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⎡

Δ

−−−
=β Δ−Δ+ RR

zzzz s  (37) 

where ( )£R  –normalized autocorrelation function of the image. Let us note that a similar 
relation is obtained for (36). From the plot in Fig. 11 that maximum module of [ ]IDMSM β  
attains at 3.4£ ≈ . 
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However when pseudogradient estimating interframe deformations parameters we are 
interested in the contact degree of samples z  and £

~z , containing in the goal function 
pseudogradient. As it was already noticed, this information is noisy. Thus let us consider 
the influence of the noise component on the information, which we are interested in, about 
goal function gradient. The gradient of the goal function in the given direction can be found 

either accordingly to the relation (8): 
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=β , or, if the first derivative on the variable z  

exists, – in accordance with the relation (9): 
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d . Taking into account that the both 

methods imply the approximation of derivatives with finite differences we obtain 
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for (9).  
Let us specify the expressions (33) and (34) for interframe difference mean square, 
covariation and  sample correlation coefficient. 
Mean square of samples brightness 
In this case accordingly to (33) and (34) for the pseudogradient of the difference £

~zz −  we 
obtain the expressions relatively: 
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where £Δ  – the increment of the coordinate £ . Analysis of (35) and (36) shows, that at 
0£ →  and ∞→£  the mathematical expectation [ ]IDMSM β  of the pseudogradient IDMSβ  

tends to zero and does not have any information, which we could use for deformation 
parameters change. At some value of £ , corresponding to maximum steepness of the goal 
function, the module of [ ]IDMSM β  attains maximum value. Actually if we assume the model 
(35) and suppose validity of the assumption (32), we obtain that the mathematical 
expectation of IDMSβ  is determined by the expression: 
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where ( )£R  –normalized autocorrelation function of the image. Let us note that a similar 
relation is obtained for (36). From the plot in Fig. 11 that maximum module of [ ]IDMSM β  
attains at 3.4£ ≈ . 
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As it was noticed information about gradient is extracted in noise conditions. At the 
assumed model of images the noise component  is caused by additive noises θ  and 
correlatedness of samples z  and z~ . Let us characterize a value of the noise component by 
its variance. For finding a variance [ ]IDMSD β  let us make use of the expression (36). Then, on 
the assumption of (32), we obtain  

 
[ ]
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( ) ( )( )) ( ) ( )( ) ),££2£2

21£14D
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1
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4

IDMS

Δ−−Δ+++Δ−−+
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Δ
σ

=β

−− RRgRRg

RRs

 (38) 

where g  – signal/noise ration. The plots of the normalized mean-square distance [ ]IDMSβσ  
as a function of £  at the same ( )£R  and signal/noise ratio 500=g (curve 1), 10 (curve 2) 
and 5 (curve 3) are given in Fig. 12. 
Let us find the condition when the information about contact degree of the samples s and s~ , 

extracted from the gradient of ( )2£
~zz − , is maximum on average. Since in accordance with 

(37) the mathematical expectation of the noise component is equal to zero, as such a 
condition maximum of module of mathematical expectation-to-mean-square distance ratio 
can be: 

 
][
]M[max

βσ
β . (39) 

Having substituted the expression (37) and (38) in (39) we obtain the condition, from which 
we can find the distance op£  between samples, ensuring extraction of maximum 

information for pseudogradient parameters estimation when choosing as the goal function 
interframe difference mean square: 
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As it was noticed information about gradient is extracted in noise conditions. At the 
assumed model of images the noise component  is caused by additive noises θ  and 
correlatedness of samples z  and z~ . Let us characterize a value of the noise component by 
its variance. For finding a variance [ ]IDMSD β  let us make use of the expression (36). Then, on 
the assumption of (32), we obtain  
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where g  – signal/noise ration. The plots of the normalized mean-square distance [ ]IDMSβσ  
as a function of £  at the same ( )£R  and signal/noise ratio 500=g (curve 1), 10 (curve 2) 
and 5 (curve 3) are given in Fig. 12. 
Let us find the condition when the information about contact degree of the samples s and s~ , 

extracted from the gradient of ( )2£
~zz − , is maximum on average. Since in accordance with 

(37) the mathematical expectation of the noise component is equal to zero, as such a 
condition maximum of module of mathematical expectation-to-mean-square distance ratio 
can be: 
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Having substituted the expression (37) and (38) in (39) we obtain the condition, from which 
we can find the distance op£  between samples, ensuring extraction of maximum 

information for pseudogradient parameters estimation when choosing as the goal function 
interframe difference mean square: 
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Fig. 16. Mathematical expectation of covβ -to-its  standard deviation  ratio 

Let us call this distance the optimal EED op£ . The plots of ratio [ ] [ ]IDMSIDMSM βσβ  as the 
function of £  at  g = 500 (curve 1), 10 (curve 2) and 5 (curve 3) are presented in Fig. 13.  
The distance op£  can be found by traditional method by means of equating of the first 
derivative to zero  
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We obtain the implicit equation for finding op£ : 
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In particular, for Gaussian ( ) ( )( )2£exp£ aR −=  correlation function of images: 
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As noise increases the distance, when maximum of the relation (40) attains, increases too. 
For instance, for the correlation function with correlation radius equal to 5 at 500=g  we 
obtain 14.1£ =op , at 10=g  – 75.2£ =op  and at 5=g  – 11.3£ =op  (Fig. 13).  
Thus in the situation when as the goal function interframe difference mean square of images 

)1(Z~  and )2(Z  is used for finding op£  it is necessary to know the autocorrelation function of 

the mage )1(~S , variances of images )1(S~  and )2(S  and variance of additive noises Θ . Value 

op£  as the function of mentioned factors is found from the condition (40). 
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Samples covariation  
Let us consider the mathematical expectation and the variance of pseudogradient of product 

£
~zz . In accordance with relations (33) and (34) we can write: 
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where £Δ  – increment of coordinate £ . Appling to (41) the same reasoning as well as to 
expressions (35) and (36), we obtain that the mathematical expectation of covβ  is determined 
by simple expression: 
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The plot of the normalized [ ]covM β  as the function of £  is given in Fig. 14. Maximum of 
module of [ ]covM β  attains at  3.4£ ≈ . 
Let us find the variance [ ]covD β  on the assumption of (32): 
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The examples of plots for the normalized [ ]covβσ  as the function of £  at signal\noise ration 
500=g  (curve 1), 10 (curve 2) и 5 (curve 3) are presented in Fig. 15. As it is seen from the 

figure, [ ]covβσ  has maximum, which does not depend on signal/noise ratio and attains at 
the same op£ , as well as maximum of [ ]covM β . Plots for of [ ]covM β -to- [ ]covβσ  ratio confirm 
the same fact(Fig. 16). 
Using (38) we obtain the condition when information about degree of samples s  and s~ , 
which is extracted from pseudogradient of the product ( )£

~zz , is maximum on average:  
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Let us note that maximum of (42) attains at maximum of the numerator, because extremums 
of numerator and denominator coincide. It is easy to show if we represent (42) in the form  
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Then we get implicit equation for finding op£  
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For Gaussian correlation function of images: 
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Let us call this distance the optimal EED op£ . The plots of ratio [ ] [ ]IDMSIDMSM βσβ  as the 
function of £  at  g = 500 (curve 1), 10 (curve 2) and 5 (curve 3) are presented in Fig. 13.  
The distance op£  can be found by traditional method by means of equating of the first 
derivative to zero  
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We obtain the implicit equation for finding op£ : 
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In particular, for Gaussian ( ) ( )( )2£exp£ aR −=  correlation function of images: 
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 (41) 

As noise increases the distance, when maximum of the relation (40) attains, increases too. 
For instance, for the correlation function with correlation radius equal to 5 at 500=g  we 
obtain 14.1£ =op , at 10=g  – 75.2£ =op  and at 5=g  – 11.3£ =op  (Fig. 13).  
Thus in the situation when as the goal function interframe difference mean square of images 

)1(Z~  and )2(Z  is used for finding op£  it is necessary to know the autocorrelation function of 

the mage )1(~S , variances of images )1(S~  and )2(S  and variance of additive noises Θ . Value 

op£  as the function of mentioned factors is found from the condition (40). 
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Samples covariation  
Let us consider the mathematical expectation and the variance of pseudogradient of product 

£
~zz . In accordance with relations (33) and (34) we can write: 
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where £Δ  – increment of coordinate £ . Appling to (41) the same reasoning as well as to 
expressions (35) and (36), we obtain that the mathematical expectation of covβ  is determined 
by simple expression: 
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The plot of the normalized [ ]covM β  as the function of £  is given in Fig. 14. Maximum of 
module of [ ]covM β  attains at  3.4£ ≈ . 
Let us find the variance [ ]covD β  on the assumption of (32): 
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The examples of plots for the normalized [ ]covβσ  as the function of £  at signal\noise ration 
500=g  (curve 1), 10 (curve 2) и 5 (curve 3) are presented in Fig. 15. As it is seen from the 

figure, [ ]covβσ  has maximum, which does not depend on signal/noise ratio and attains at 
the same op£ , as well as maximum of [ ]covM β . Plots for of [ ]covM β -to- [ ]covβσ  ratio confirm 
the same fact(Fig. 16). 
Using (38) we obtain the condition when information about degree of samples s  and s~ , 
which is extracted from pseudogradient of the product ( )£

~zz , is maximum on average:  
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Let us note that maximum of (42) attains at maximum of the numerator, because extremums 
of numerator and denominator coincide. It is easy to show if we represent (42) in the form  
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Then we get implicit equation for finding op£  
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For Gaussian correlation function of images: 
 

( ) ( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ Δ+

−Δ+=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ Δ−

−Δ−
2

£
£

2
£

£
£

exp£
£

exp£
aa

op
op

op
op . 



 Pattern Recognition Techniques, Technology and Applications 

 

272 

In particular at the correlation radius equal to 5 independently on a value of the noise we 
obtain 28.4£ =op . 

Thus in the situation when as the goal function is samples covariation of images )1(Z~  and 
)2(Z  for finding op£  it is enough to know only autocorrelation function of the image )1(S~ . 

Samples correlation coefficient  
It is not difficult to show that the mathematical expectation and the variance of 
pseudogradient of interframe correlation sample coefficient  
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is determined by expressions: 
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where kj£  – coordinates on the axis £  of samples of the local sample, μ= ,1k ; k£  – 
coordinates of estimates of corresponding samples; μ  – local sample size; g  – signal/noise 
ratio. Then the condition, when information about degree of samples s  and s~ , which is 
extracted from pseudogradient of the correlation coefficient, is maximum on average is:  
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Let us note that the condition (44) attains at the same distance op£ , as well as the condition (42). 
Thus, when choosing as the goal function interframe correlation coefficient for finding op£ , 

as in the previous case it is enough to know only autocorrelation function of the image )1(S~ . 
At that  op£  is found from the condition (43). 

6. Finding optimal region of samples of the local sample when estimating 
vector of parameters  
Let us consider the second step of solution of samples choice suboptimal region finding, 
which consists in finding on the base of the model of deformations and parameters 
estimates error vector imager region, in which suboptimal value of EED is ensured. For 
definition let us assume that the model of deformations is affine (17). 
Choice of initial estimates approximation  
Since the convergence of parameters α  estimates depends on their initial approximation 

0α̂ , let us specify the rule of choice 0α̂  from the condition of minimum of EED 
mathematical expectation, which is induced by the initial approximation of each parameter. 
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Let us the definition domain αΩ  of possible parameters values is: 

{ }maxminmaxminmaxminmaxmin ,,,: κ÷κϕ÷ϕ÷÷Ωα yyxx hhhh . 

In order to provide the accepted condition the initial approximation of each parameter has 
to give a EED component, which is equal to the mathematical expectation of Euclidian 
distances which are induced by all possible values of this parameter: 
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where ( ) ( )( )αα yx ~,~  – the current estimate of the point ( )** ,yx  coordinates ( )** ,yx , obtained 
after substitution the true parameters value into the model (17); ( )αw  – probability density 
function of possible values of the parameter α . In particular, on the assumption of ( )αw  is 
uniform, for parameters of shift and rotation angle we obtain  
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i. e. for the initial approximation of κ  we obtain: 
2

minmax
0

κ+κ
=κ . 

Suboptimal region forming at the given vector of estimates error  
As the reference point for suboptimal region forming  let us choose the rotation centre 
coordinates ( )00 , yx . For a random point ( )yx ~,~  EED (distance to the point ( )** ,yx ) is 
determined by all parameters to be estimated.  At that the module h£Δ  and the argument 

hφ  of contribution of parameters xh  and yh  in EED does not depend on the point location 
on the image: 

( ) ( )22£ yxh ε+ε=Δ ,   
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where xε  and yε  – errors of estimates xĥ  and yĥ  from the optimal values of parameters *
xh  

and *
yh . 

The contribution of parameters ϕ  and κ  depends on the distance L  from the rotation 
centre. If the error of angle estimate ϕ̂  from the optimal value *ϕ  is equal to ϕε , then it 
ensures the contribution in EED  
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In particular at the correlation radius equal to 5 independently on a value of the noise we 
obtain 28.4£ =op . 

Thus in the situation when as the goal function is samples covariation of images )1(Z~  and 
)2(Z  for finding op£  it is enough to know only autocorrelation function of the image )1(S~ . 

Samples correlation coefficient  
It is not difficult to show that the mathematical expectation and the variance of 
pseudogradient of interframe correlation sample coefficient  
 

( ) 21
1

££

~

1
££

1

~~

s

k
k

zz

k
k

g

zzzz

σ+μ
=

σμσ −

μ

=

μ

=
∑∑

 

is determined by expressions: 
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where kj£  – coordinates on the axis £  of samples of the local sample, μ= ,1k ; k£  – 
coordinates of estimates of corresponding samples; μ  – local sample size; g  – signal/noise 
ratio. Then the condition, when information about degree of samples s  and s~ , which is 
extracted from pseudogradient of the correlation coefficient, is maximum on average is:  
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Let us note that the condition (44) attains at the same distance op£ , as well as the condition (42). 
Thus, when choosing as the goal function interframe correlation coefficient for finding op£ , 

as in the previous case it is enough to know only autocorrelation function of the image )1(S~ . 
At that  op£  is found from the condition (43). 

6. Finding optimal region of samples of the local sample when estimating 
vector of parameters  
Let us consider the second step of solution of samples choice suboptimal region finding, 
which consists in finding on the base of the model of deformations and parameters 
estimates error vector imager region, in which suboptimal value of EED is ensured. For 
definition let us assume that the model of deformations is affine (17). 
Choice of initial estimates approximation  
Since the convergence of parameters α  estimates depends on their initial approximation 

0α̂ , let us specify the rule of choice 0α̂  from the condition of minimum of EED 
mathematical expectation, which is induced by the initial approximation of each parameter. 
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Let us the definition domain αΩ  of possible parameters values is: 
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In order to provide the accepted condition the initial approximation of each parameter has 
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function of possible values of the parameter α . In particular, on the assumption of ( )αw  is 
uniform, for parameters of shift and rotation angle we obtain  

2
,

2
ˆ,

2
ˆ maxmin

0
maxmin

0
maxmin

0
ϕ+ϕ

=ϕ
+

=
+

= yy
y

xx
x

hh
h

hh
h . 

For scale coefficient ( ) ( )0000
~,~ yyyyxxxx −κ+=−κ+= , then 

[ ] ( ) ( )20
2

0
minmax

2
1M yyxx −+−⎟

⎠

⎞
⎜
⎝

⎛ κ+κ
−=£ , 
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Suboptimal region forming at the given vector of estimates error  
As the reference point for suboptimal region forming  let us choose the rotation centre 
coordinates ( )00 , yx . For a random point ( )yx ~,~  EED (distance to the point ( )** ,yx ) is 
determined by all parameters to be estimated.  At that the module h£Δ  and the argument 

hφ  of contribution of parameters xh  and yh  in EED does not depend on the point location 
on the image: 
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where ( ) ( )20
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~~ yyxxL −+−= ; ϕΔ£  – the module of the contribution vector, the argument 
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The above-mentioned reasonings are illustrated in Fig. 17.  
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Fig. 17. Dependence of EED versus a vector of parameters estimates error 

For the assemblage of shift and scale parameters: 

( )( ) ( ) ϕκκκϕ εε+−ε++=Δ cos1211£ 2
, L . 

At that κϕΔ ,£  does not depend on the direction of the segment L . Taking into account the 
error of shift we obtain: 
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where 
L
yy 0

~
sinarg

−
=γ  – an angle, determining the direction of L  relatively the basic 

image axis ( )x−0 . 
At the known values of op£  and vector ( )Tyx κϕ εεεε=ε ,,  the expression (45) enables to find 

the optimal value  opL  as a function of angle γ . At the given angle γ  the optimal distance 

opL  can be obtained for example as the solution baaLop −+= 2  of quadratic equation 
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obtained by means of other methods. For instance, it is not difficult to show that at the affine 
model of deformations the geometrical location of points for which EED is equal to op£ , 

represents the circle ( ) ( ) 222 rdycx =−+−   with centre in the point 
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Forming the estimates error vector  
In order to obtain the suboptimal region it is required to find two values 1L  and 2L , 
corresponding to the range of EED from 1£  to 2£ , where either EED does not differ from 
optimal value more than the given value or bounds are chosen from the condition: 

£1 ££ Δ−= op , £2 ££ Δ+= op , where £Δ  – some deviation which is calculated experimentally. 
The dependence of estimates error vector versus the number of iterations can be formed by 
different methods and in general case depends on the conditions of the problem to be 
solved. For example, for ensuring the best convergence on average we can propose the 
following algorithm. 
1 0 . To specify the initial approximation ε  of the parameters estimates vector ε . 
2 0 . To find the mathematical expectation for each estimate.  
3 0 . Using (45) to find bounds 1L  and 2L  of suboptimal region of samples local sample.  

4 0 . To simulate the performing of the next iteration by pseudogradient procedure for 
calculation of the density of distribution of parameters estimates (for this purpose the 
method of calculation at finite number of iterations can be used (Tashlinskii & Tikhonov, 
2001)). 
5 0 . To repeat operators 2 0 –4 0  to attain the given estimation accuracy. 
However more of practical interest represents a minimax approach, when the dependence of 
suboptimal region versus the number of iterations for the initial approximation, 
corresponding to the highest possible parameters error (for the worst case) is found. The 
number of iterations, which is necessary to reach the given estimation accuracy, is 
determined. In the sequel the obtained rule of suboptimal region change is applied for any 
initial approximation of parameters, ensuring the estimation accuracy, which is not worse 
than the given one. At that for the given image class (for the given autocorrelation function 
and probability density function of image brightness) the rule of suboptimal region change 
can be found analytically with usage of probabilistic simulation and one of methods of 
suboptimal region construction, considered above. Another method for finding bounds 1L  
and 2L  of the suboptimal region is to find at each iteration EED on the parameters estimates 
error, obtained experimentally and averaged on the given realizations assemblage.  
It is necessary to note that for parameters of angle and scale under the assumption about 
quite large image size theoretically  it is always possible to find suboptimal region. The error 
on shift is invariant for any point of the image (this statement is true, if only parallel shift is 
specified) and can significantly exceed 1£  and 2£ , specially on the initial stage of 
estimation. In this case we can specify the base region on some criterion, where samples of 
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Fig. 17. Dependence of EED versus a vector of parameters estimates error 
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Forming the estimates error vector  
In order to obtain the suboptimal region it is required to find two values 1L  and 2L , 
corresponding to the range of EED from 1£  to 2£ , where either EED does not differ from 
optimal value more than the given value or bounds are chosen from the condition: 

£1 ££ Δ−= op , £2 ££ Δ+= op , where £Δ  – some deviation which is calculated experimentally. 
The dependence of estimates error vector versus the number of iterations can be formed by 
different methods and in general case depends on the conditions of the problem to be 
solved. For example, for ensuring the best convergence on average we can propose the 
following algorithm. 
1 0 . To specify the initial approximation ε  of the parameters estimates vector ε . 
2 0 . To find the mathematical expectation for each estimate.  
3 0 . Using (45) to find bounds 1L  and 2L  of suboptimal region of samples local sample.  

4 0 . To simulate the performing of the next iteration by pseudogradient procedure for 
calculation of the density of distribution of parameters estimates (for this purpose the 
method of calculation at finite number of iterations can be used (Tashlinskii & Tikhonov, 
2001)). 
5 0 . To repeat operators 2 0 –4 0  to attain the given estimation accuracy. 
However more of practical interest represents a minimax approach, when the dependence of 
suboptimal region versus the number of iterations for the initial approximation, 
corresponding to the highest possible parameters error (for the worst case) is found. The 
number of iterations, which is necessary to reach the given estimation accuracy, is 
determined. In the sequel the obtained rule of suboptimal region change is applied for any 
initial approximation of parameters, ensuring the estimation accuracy, which is not worse 
than the given one. At that for the given image class (for the given autocorrelation function 
and probability density function of image brightness) the rule of suboptimal region change 
can be found analytically with usage of probabilistic simulation and one of methods of 
suboptimal region construction, considered above. Another method for finding bounds 1L  
and 2L  of the suboptimal region is to find at each iteration EED on the parameters estimates 
error, obtained experimentally and averaged on the given realizations assemblage.  
It is necessary to note that for parameters of angle and scale under the assumption about 
quite large image size theoretically  it is always possible to find suboptimal region. The error 
on shift is invariant for any point of the image (this statement is true, if only parallel shift is 
specified) and can significantly exceed 1£  and 2£ , specially on the initial stage of 
estimation. In this case we can specify the base region on some criterion, where samples of 
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the local sample are chosen until the error increase on shift enables to form suboptimal 
region.  
As an example in Fig. 18 suboptimal regions of samples local sample on the image of size 
1024× 1024 with Gaussian autocorrelation function with correlation radius equal to 13 and 
signal/noise ratio 50=g  are shown. As thr goal function interframe deformations mean 
square is used. Optimization is carried out for the pseudogradient procedure with 
parameters of the diagonal gain matrix 1.0=λx , 1.0=λy , o15,0=λϕ , 01.0=λκ . The initial 

error of the parameters vector is ( )To
yx 5.0,25,10,10 =ε=ε=ε=ε=ε κϕ . The size of the base 

region is 64× 64. Suboptimal region is formed according to the rule: 121 −= opLL , 
122 += opLL . The value opL  is calculated by means of the relation (45). Estimates errors 

vector is determined in accordance with a minimax approach of statistic simulation. In 
figure suboptimal regions for 1, 200, 400 and 600 iterations, which correspond to errors: at 

200=t  – 33.0,4.15,9.7,9.4 =ε=ε=ε=ε κϕ
o

yx ; at 400=t  – 

03.0,9.2,7.2,8.0 =ε=ε=ε=ε κϕ
o

yx ; at 600=t  – 008.0,04.0,21.0,02.0 =ε=ε=ε=ε κϕ
o

yx  
are given. In Fig. 19 the plots of parameters estimates error versus the number of iterations 
with usage of suboptimal region of samples choice (curves 1) and without it (curves 2), 
averaged on 100 realizations are presented. 
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Fig. 19. Estimates convergence (1 – at region optimization; 2 – without optimization) 

In Fig. 20 the dependence of EED (at 20=L ) for the mentioned experiment is shown. It is 
seen, roughly to the 120-th iteration, while samples of the local sample are chosen from the 
base region, the convergence rate of EED is a little lower, because the conditions of 
optimality are not ensured. The decrease of the convergence rate is also observed at small 
values of EED, that is caused by suboptimal region spillover of image sizes. It is confirmed 
by Fig. 21, where the dependence of opL  versus the number of iterations is presented. 
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Fig. 21. Dependence  of opL  versus the number of iterations 

Thus optimization of image samples choice region enables to reduce computational costs 
significantly (about of dozens times) for the same parameters estimation accuracy 
attainment. In particular a value of EED=0.5 ( )20=L  at optimization attains on average to 
600 iterations and without it– to 14000 iterations, that corresponds to the gain in speed of 
about 24 times. 

7. Conclusion 
The discreteness of digital images amounts to estimation of derivatives through limited 
differences. Analysis of approaches to calculation of pseudogradient of a goal function on 
the local sample and current estimates of parameters to be measured exposed four possible 
methods for pseudogradient calculation: 
- in the first method components of pseudogradient are calculated as a normalized 

difference of two estimates of a goal function (at that the differentiation of deformations 
model and goal function is not used); 

- the second method is based on the analytic finding derivative of estimate of a goal 
function on brightness and estimation of brightness derivative on parameters through 
finite differences; 

- the third one assumes the possibility of analytic finding derivative of goal function 
estimate and partial derivatives of deformations model on parameters (brightness 
derivative on the base axis are estimated through finite differences) ; 

- the fourth methods is based on the estimation of derivatives of goal function on the 
base axis of image through finite differences and analytic finding derivatives of 
deformations model on parameters to be estimated. 

When estimating interframe geometrical deformations parameters plan of the local sample 
of samples, used for finding pseudogradient of the goal function, significantly influences on 
the parameters estimates convergence character. The estimates convergence character 
depends also on brightness distribution and autocorrelation functions of images and 
interference noises and also on the chosen kind of the goal function. For description of 
mentioned factors influence on the probabilistic features of estimate in the process of its 
convergence it is handy to use estimate improvement coefficient, which is equal to 
difference of probabilities of estimate movement to optimal and from optimal value.  
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On the basis of estimate improvement coefficient maximization we can realize the method of 
fining optimal (suboptimal) region of local sample samples choice. However this method is 
effective only at one parameter estimation, because at its usage for parameters vector 
insuperable mathematical difficulties arise.  
For a case of parameters vector estimation finding optimal region can be based on 
optimization of EED (the distance between true coordinates of a point at current estimate of 
its location). At that maximum of ratio of mathematical expectation of goal function estimate 
gradient to its variance corresponds to the optimal EED. Let us denote, that at usage of 
interframe difference mean square EED depends on signal/noise ratio and autocorrelation 
function of images. At that it increases when variance of noises increases. At usage of 
covariation and correlation coefficient optimal value determined by only image 
autocorrelation function.  
On the deformations model and parameters estimates error vector it is not difficult to find 
calculated expressions for optimal region. At that the dependence of estimates error vector 
versus the number of iterations can be found theoretically on the given autocorrelation 
function and image brightness distribution and experimentally on the current estimates 
averaged on the assemblage of realizations. 
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1. Introduction      
There are many cases where image processing is performed using the neural network. The 
content of this Chapter is implementation of CNN (Cellular Neural Network) on a chip in a 
new original digital approach. First, testing of some features of the proposed cell of the 
neural network is evaluated. Then the design of the basic circuit containing the cell for the 
CNN will be introduced. The idea is to use it for a more complex chip with image 
processing application. 
CNN have been extensively used in various image processing applications. 
One of the most important problems in signal processing is noise removal. The input signals 
mostly arrive from the real world and therefore they contain relatively high amounts of 
noise. The CNN circuits are capable of removing this noise partly. The possibility of noise 
removing depends on the template (weight) coefficients between the cells.  
CNN networks are based on relatively simple principles, very similar to biological neurons. 
The input signals are multiplied by appropriate weights, the weight matrix being given 
intuitively, as it is typical for CNN networks. Then they are added and multiplied by the 
transfer function. We describe also the settings of weights coefficients. CNN have been 
extensively used in various image processing applications ( Matsumoto & Yokohama, 1990 ) 
or ( Szirányi & Csicsvári, 1993 ). 
The main problem of CNN implementations on a chip is the chip area consumption. The 
most area is reserved for the multiplexer, so we looked for alternative multiplications. We 
describe the achieved results with the designed chip. During the creation of the chip 
architecture we proposed and introduced special original coding for the weight coefficients. 
After simulations we recognized that the results were better with rounding than without it, 
but we found that the rounding during multiplication was not as important as we 
previously expected. Therefore we decided – instead of a hardware multiplexer – to use 
multiplication realized by simple gate timing of the special signal. 
The circuit was designed as a digital synchronized circuit. For the design and simulation we 
used the Xilinx tool. The cell is based on sub-circuits as it will be shown in detail. 
The Chapter describes the designed circuit. We introduce also our novel simulator for the 
CNN using the program tool Visual Basic for Application, and its algorithm which was 
based on the same principle as the planned designed circuit. The network can process the 
patterns with 400 points  of recognition.  
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1. Introduction      
There are many cases where image processing is performed using the neural network. The 
content of this Chapter is implementation of CNN (Cellular Neural Network) on a chip in a 
new original digital approach. First, testing of some features of the proposed cell of the 
neural network is evaluated. Then the design of the basic circuit containing the cell for the 
CNN will be introduced. The idea is to use it for a more complex chip with image 
processing application. 
CNN have been extensively used in various image processing applications. 
One of the most important problems in signal processing is noise removal. The input signals 
mostly arrive from the real world and therefore they contain relatively high amounts of 
noise. The CNN circuits are capable of removing this noise partly. The possibility of noise 
removing depends on the template (weight) coefficients between the cells.  
CNN networks are based on relatively simple principles, very similar to biological neurons. 
The input signals are multiplied by appropriate weights, the weight matrix being given 
intuitively, as it is typical for CNN networks. Then they are added and multiplied by the 
transfer function. We describe also the settings of weights coefficients. CNN have been 
extensively used in various image processing applications ( Matsumoto & Yokohama, 1990 ) 
or ( Szirányi & Csicsvári, 1993 ). 
The main problem of CNN implementations on a chip is the chip area consumption. The 
most area is reserved for the multiplexer, so we looked for alternative multiplications. We 
describe the achieved results with the designed chip. During the creation of the chip 
architecture we proposed and introduced special original coding for the weight coefficients. 
After simulations we recognized that the results were better with rounding than without it, 
but we found that the rounding during multiplication was not as important as we 
previously expected. Therefore we decided – instead of a hardware multiplexer – to use 
multiplication realized by simple gate timing of the special signal. 
The circuit was designed as a digital synchronized circuit. For the design and simulation we 
used the Xilinx tool. The cell is based on sub-circuits as it will be shown in detail. 
The Chapter describes the designed circuit. We introduce also our novel simulator for the 
CNN using the program tool Visual Basic for Application, and its algorithm which was 
based on the same principle as the planned designed circuit. The network can process the 
patterns with 400 points  of recognition.  
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The aim of our work is an original approach to the designed digital chip architecture using 
special coding of the weights coefficients. This implementation of the CNN on a chip widens 
the family of the previous designed circuits. 

2. Some notes to using CNN for image processing 
The modern world needs image processing very often. There exist various methods for 
image processing, among them the methods based on the principle of neural networks are 
also useful. The advantage of the neural network is parallel processing and the 
implementation on the chip is designed as an analogue or digital circuit, however, the 
principle for both approaches is similar. According to the theory it is based on the sequences 
of single inputs ( x1... x9) multiplied by weights ( w1....w9 ), then the conversion through the 
transfer function (as we see in  Fig. 1) prepares the signal for the next processing. 
 

 
Fig. 1. Graphic representation of the cell. 

There exist various transfer functions, as for example the sigmoid function, hard-limiter 
function or threshold logic function.  For image processing the sigmoid function is 
commonly used. The  properties of the network, as for example noise removing, depend on 
correct choices of the weight matrix.  Every image is characterized by its weight matrix. We 
skip here the basic details well known from the classical theory introduced by Prof. 
L.O.Chua ( Chua & Yang, 1988a; 1988b ). As we will see in the next parts of the Chapter, 
according to the theory of CNN networks the weight matrix  is  set intuitively. 

3. The Novel simulator of CNN 
The basic circuit of the neural network is called the cell. The network contains cells 
connected together according to the proposed rule. The cellular neural network used 
neighbourhood 1, which means that each cell is connected with only the nearest neighbours. 
For the theoretical results we first created a simulator for CNN programmed as a macro in 
Visual Basic for Application. The results from the simulator were first used for evaluation of 
CNN behaviour, then to compare the results with those obtained from the designed chip. 
The results of simulations were achieved in matrix and graphical representations. The input 
and output values are in the range from –15 to + 15 and the graphical form is represented 
using spectra of two colours, as shown in Fig. 2.  
 

 
Fig. 2. The spectra of used colours.  
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In the first row there is a red colour scale which  represents positive numbers, the blue 
colour in the second row represents negative numbers. 
Our first simulator contained 16 cells. We tested some features of the neuron network, as 
e.g. detection of vertical lines (see Fig. 3) or filling of the picture (Fig. 4). 
 

   
Fig. 3. Filling of the lines for the given pattern. 

   
                                             a) in                                                         b) out 
Fig. 4. Completing  rectangle rims 
These figures illustrate the simple tasks for image processing. The left parts show the 
pattern input, the right parts are the output results. 
From this pattern we can recognize that the network is able to satisfy the given conditions. 
For more complicated image processing we need to widen the network to 400 cells. As the 
input matrix we use the 20×20 input values and a 3×3 input weight matrix. During the 
simulations we can change the slope of the sigmoid function, to fix the number of iterations, 
or to finish it automatically. The simulator gives the results with rounding, or without it. 
The results were mostly similar, however, the proposed rounding gave more precise results. 
The next experiment was focused on noise filtering. As an input we used letter “E“, with the 
random noise (around 35 %). The results are in Fig. 5. The quality of the results was 
dependent on the weight matrix and the position of the fault information. The weight matrix 
was given intuitively, as it is typical for CNN networks. In the first example (Fig. 5b), five 
points are not removed because we chose an incorrect weight matrix. Figure 5c shows 
perfect noise removal. 
The weight matrices for Figs. 5b and 5c are as follows:  

For figure b:  
4 6 4

6 7 6
4 6 4

− −⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥− −⎣ ⎦

     and for figure c: 
3 6 3

6 7 6
3 6 3

− −⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥− −⎣ ⎦
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                                (a)                                          (b)                                            (c) 

Fig. 5. Noise filtering 

          a) input to the network 

          b) output after the use of an inappropriate weight matrix 

          c) output after  perfect noise removing 

We have developed a novel simulator for the CNN using the program tool Visual Basic for 
Application, and its algorithm was based on the same principle as the planned designed 
circuit. The network can process the patterns with the recognition of 400 points. The created 
universal simulator can change various simulation parameters.  
We have found that rounding by multiplication is not as important as we previously 
expected. On the basis of the simulations we have design a novel digital CNN cell. This will 
be used for CNN consisting of 400 cells which will be used for image processing in the 
future. The circuit contains some service signals. For the cells connected into a CNN 
network it is inevitable to design a control circuit which will control synchronization. 

4. The design of the digital CNN cell 
After the simulations we started to design our digital approach for CNN implementation on 
a chip. The proposed circuit was designed as a digital synchronized circuit. For the design 
and simulation we used the Xilinx tool. The cell is based on sub-circuits as schematically 
shown in Fig.  6.  

 
Fig. 6. The block diagram of the  digital CNN cell 
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CNN networks are based on relatively simple principles, very similar to biological neurons. 
The input signals are multiplied by appropriate weights, then they are added and 
multiplied by the transfer function. The main problem of the CNN implementations on a 
chip is the chip area consumption. Most of the area is reserved for the multiplexer, so we 
looked for alternative multiplications. After the simulations we recognized that the results 
were almost the same with rounding and without it.  
As an input   we set Wgt_reg, then the sign 9 bit serial register sign_reg and input values 
State from the neighbour cells. Then we included also their sign and the input of the cells 
themselves because in the CNN theory the cell is the neighbour also to itself. 
The inputs from each cell are multiplexed by the input multiplexer. The input has 
information about the sign of the state of the next cell. These inputs are multiplexed by the 
weight register in the AND gate, and the inputs are compared with the gate XOR. The 
weights have to be specially timed, so by timing we can perform multiplication.  
Then the results are added in the Ud_counter and sequentially transferred through block 
sigmoidf . Function hard limiter (hl) has the values true or false, while functions threshold 
logic(tl) and sigmoid function(sf) could have values also between these extreme values true 
and false. We decided that function (sf) is the best as it has ist derivative in the whole range, 
while function (tl) has no derivative in points –1 and +1. This behaviour is important for 
neural networks which are able to learn. The plot of function (sf) for various slopes is in Fig. 7.  
The results are passing through the block sigmoidf, which realized the sigmoid function. The 
block converter transfers value output on the time interval, which sends nearest neighbors 
and contains register, where is the result storing.    
According to Fig. 6. the inputs from each cell are multiplexed by the input multiplexer. The 
block converter contains a register, where the result is stored. 

 
Fig. 7. The sigmoid function 

5. Multiplication of signals using the AND gate 
The method of multiplication is based on the fact that at multiplication the input value must 
be converted to the time signal and the weight value has to be special picked, so 
multiplication starts by timing. We proposed special coding for the weights.  
We used a special system of 15parts, e.g., one cycle is divided into 15 parts. In Fig. 8 we see 
the first 15 weights and their original coding. 
An example of special rounding and coding of the weights is shown in Fig.  9. The real value 
of the multiplication is x.w=0.293 and the result after Fig. 9. is 4/15=0.26. We used the 
simulator to recognize that we can neglect this rounding. 
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Fig. 8. The first fifteen weights in the proposed system  
 

 
Fig.  9. An example of evaluation for weight wgt=6/15 and input x=11/15  

6. The results of the simulations of the designed CNN cell  
After creating the architecture of our implemented CNN we made some simulations on the 
circuit. In Fig. 10 we can see the filling of the lines for the given pattern. At the input a) we 
see the corners of the input pattern. After 15 iterations we get the result as we see in Fig. 10b. 
 

                  
                             a) input to the network                    b)output to the network 
Fig. 10. The network completes the corners into a continuous line 

The next experiment was focused on noise filtering. As an input we used letter “A“ with 
random noise (around 10 %). Figure 11b shows the noise filtering output after the 3rd 

New Digital Approach to CNN On-chip Implementation for Pattern Recognition 

 

287 

iteration. The quality of the results was dependent on the weight matrix and the position of 
the fault information. For the noise filtering of letter “A“ we use the following  weight 

matrix: 
1 2 1

2 8 2
1 2 1

− −⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥− −⎣ ⎦

 

 

           
                                a) input to the network             b) output  the network 

Fig. 11. Filtering of the noise from the letter. 

The weight (wgt-out) is timed so that we can multiply it with the input. The result (here 
denoted as (sucin)) after multiplication with the sigmoid function and converting to the time 
interval is stored in (statex) multiplied with the sign ( signx).  In Fig. 12 we see the result 
after 15 tacts from the beginning. 

7. Conclusion 
We developed a novel simulator for the CNN using the program tool Visual Basic for 
Application. Its algorithm is based on the same principle as the planned designed circuit. 
The network can process the patterns with 400 point recognition. The created universal 
simulator can change various simulation parameters. 
We found that the rounding at multiplication is not as important as we previously expected.  
On the basis of the simulations we designed a novel digital CNN cell implemented on a 
chip.  This will be used for the CNN consisting of 400 cells. The architecture of the designed 
digital chip is cascadable, so we can create various capacity of CNN networks. 
We expect the applications of the designed chip in CNN for interactive education of the deaf 
(particularly children) trying to learn how to use the dactyl alphabet. 
The new experiment with the Data sensor glove used for this purpose is the topics of our 
present research. 
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1. Introduction  
Pattern recognition based on correlation is one of the most useful techniques for many 
applications. Since the pioneer work of VanderLugt (1964), correlation filters have gained 
popularity thanks to their shift-invariance property, good mathematical basis, and easy 
implementation by means of digital, optical or hybrid optical/digital systems. However, 
conventional correlation filters are sensitive to intensity signal degradations (blurring and 
noise) as well as to geometrical distortions of an object of interest. Basically, blurring is 
owing to image formation process, and it can be produced by imperfection of capturing 
devices, relative motion between a camera and an input scene, propagation environment, 
etc. An observed input scene always contains noise produced by an imaging system (i.e. 
imperfection of imaging sensors) or by a recording medium (i.e. quantization errors) 
(Bertero & Boccacci, 1998; Perry et al., 2002). On the other hand, geometric distortions 
change the information content and, therefore, affect the accuracy of recognition techniques. 
Two types of geometric distortions are distinguished: internal and external distortions. The 
internal distortions are produced by the geometrics of a sensor; they are systematic and can 
be corrected by a calibration. External distortions affect the sensor position or the object 
shape; they are unpredictable (Starck et al., 1998).  
This chapter treats the problem of distortion-invariant pattern recognition based on 
adaptive composite correlation filters. The distinctive feature of the described methods is the 
use of an adaptive approach to the filters design (Diaz-Ramirez et al., 2006; González-Fraga 
et al., 2006). According to this concept, we are interested in a filter with good performance 
characteristics for a given observed scene, i.e., with a fixed set of patterns or a fixed 
background to be rejected, rather than in a filter with average performance parameters over 
an ensemble of images. Specifically, we treat two problems: reliable recognition of degraded 
objects embedded into a linearly degraded and noisy scene (Ramos-Michel & Kober, 2007) 
and adaptive recognition of geometrically distorted objects in blurred and noisy scenes 
(Ramos-Michel & Kober, 2008). 
The first problem concerns with the design of optimum generalized filters to improve the 
recognition of a distorted object embedded into a nonoverlapping background noise when 
the input scene is degraded with a linear system and noise. The obtained filters take into 
account explicitly information about an object to be recognized, background noise, linear 
system degradation, linear target distortion, and sensor noise. For the filter design, it is 
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1. Introduction  
Pattern recognition based on correlation is one of the most useful techniques for many 
applications. Since the pioneer work of VanderLugt (1964), correlation filters have gained 
popularity thanks to their shift-invariance property, good mathematical basis, and easy 
implementation by means of digital, optical or hybrid optical/digital systems. However, 
conventional correlation filters are sensitive to intensity signal degradations (blurring and 
noise) as well as to geometrical distortions of an object of interest. Basically, blurring is 
owing to image formation process, and it can be produced by imperfection of capturing 
devices, relative motion between a camera and an input scene, propagation environment, 
etc. An observed input scene always contains noise produced by an imaging system (i.e. 
imperfection of imaging sensors) or by a recording medium (i.e. quantization errors) 
(Bertero & Boccacci, 1998; Perry et al., 2002). On the other hand, geometric distortions 
change the information content and, therefore, affect the accuracy of recognition techniques. 
Two types of geometric distortions are distinguished: internal and external distortions. The 
internal distortions are produced by the geometrics of a sensor; they are systematic and can 
be corrected by a calibration. External distortions affect the sensor position or the object 
shape; they are unpredictable (Starck et al., 1998).  
This chapter treats the problem of distortion-invariant pattern recognition based on 
adaptive composite correlation filters. The distinctive feature of the described methods is the 
use of an adaptive approach to the filters design (Diaz-Ramirez et al., 2006; González-Fraga 
et al., 2006). According to this concept, we are interested in a filter with good performance 
characteristics for a given observed scene, i.e., with a fixed set of patterns or a fixed 
background to be rejected, rather than in a filter with average performance parameters over 
an ensemble of images. Specifically, we treat two problems: reliable recognition of degraded 
objects embedded into a linearly degraded and noisy scene (Ramos-Michel & Kober, 2007) 
and adaptive recognition of geometrically distorted objects in blurred and noisy scenes 
(Ramos-Michel & Kober, 2008). 
The first problem concerns with the design of optimum generalized filters to improve the 
recognition of a distorted object embedded into a nonoverlapping background noise when 
the input scene is degraded with a linear system and noise. The obtained filters take into 
account explicitly information about an object to be recognized, background noise, linear 
system degradation, linear target distortion, and sensor noise. For the filter design, it is 
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assumed that this information is available or can be estimated from the nature of 
degradations. Therefore, the proposed filters establish upper bounds of patterns recognition 
quality among correlation filters with respect to the used criteria when the input scene and 
the target are degraded. The second problem is to decide on presence or absence of a 
geometrically distorted object embedded on a degraded and noisy scene. Since the 
performance of conventional correlation filters degrades rapidly with object distortions, one 
of the first attempts to overcome the problem was the introduction of synthetic discriminant 
functions (SDFs) (Casasent, 1984). However, conventional SDF filters often posses a low 
discrimination capability. New adaptive SDF filters for reliable recognition of a reference in 
a cluttered background designed on the base of optimum generalized filters are presented. 
The information about an object to be recognized, false objects, and background to be 
rejected is utilized in the proposed iterative training procedure. The designed correlation 
filter has a prespecified value of discrimination capability. The synthesis of adaptive filters 
also takes into account additive sensor noise by training with a noise realization. Therefore, 
the adaptive filters may possess a good robustness to the noise. Computer simulation results 
obtained with the proposed filters are compared with those of various correlation filters in 
terms of recognition performance.  

2. Generalized correlation filters for pattern recognition in degraded scenes 
In pattern recognition two different tasks are distinguished: detection of objects and 
estimation of their exact positions (localization) in images. Using a correlation filter, these 
tasks can be done in two steps. First, the detection is carried out by searching the highest 
correlation peak at the filter output, then, this coordinate is taken as the position estimation 
of a target in the input scene. The quality of detection and localization of a target may be 
limited by: (i) presence of additive and disjoint background noise in observed scenes, (ii) 
scene intensity degradations owing to image formation process, and (iii) geometric 
distortions of a target. Next, we design generalized optimum filters which are tolerant to 
intensity degradations of input scenes.  

2.1 Design of generalized optimum filters 
The detection ability of correlation filters can be quantitatively expressed in terms of several 
criteria, such as probability of detection errors, signal-to-noise ratio, peak sharpness, and 
discrimination capability (Vijaya-Kumar & Hassebrook, 1990). Optimization of these criteria 
leads to reducing false recognition errors. After the detection task has been solved, we still 
are faced with small errors of target position estimation that are due to distortions of the 
object by noise. The coordinate estimations lie in the vicinity of their actual values. Therefore 
the accuracy of the target location can be characterized by the variance of measurement 
errors along coordinates (Kober & Campos, 1996; Yaroslavsky, 1993). The variance 
minimization depends on a mathematical model of the input scene. Basically, two models 
are considered: overlapping and nonoverlapping models. Many correlation filters were 
proposed. For instance, if an input scene contains a reference object corrupted by additive 
noise (overlapping model), the matched spatial filter (MSF) (VanderLugt, 1964) is optimal 
with respect to the signal-to-noise ratio. Horner and Gianino (1984) suggested the phase-
only filter (POF) that maximizes the light efficiency. For the overlapping model, the optimal 
filter (OF) was proposed by minimizing the probability of anomalous errors (false alarms) 
(Yaroslavsky, 1993). If an input scene contains a reference object embedded into a disjoint 
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background (nonoverlapping model) and additive noise, the following correlation filters 
were derived: the generalized matched filter (GMF) maximizes the ratio of the expected 
value of the squared correlation peak to the average output variance (Javidi & Wang, 1994), 
the generalized phase-only filter (GPOF) maximizes the light efficiency (Kober et al., 2000), 
and the generalized optimum filter (GOF) maximizes the ratio of the expected value of the 
squared correlation peak to the average expected value of the output signal energy (POE) 
(Javidi & Wang, 1994). Other generalized filters were also introduced (Goudail & Réfrégier, 
1997; Javidi et al., 1996; Réfrégier, 1999; Réfrégier et al., 1993; Towghi & Javidi, 2001). 
Conventional filters are sensitive to intensity signal degradations. So particular cases of the 
degradations were taken into account in the filter design (Campos et al., 1994; Carnicer et al., 
1996; Navarro et al., 2004; Vargas et al., 2003). However, it appears that the problem of 
detection and localization with correlation filters has not been solved when the target and 
the input scene are degraded with linear systems. In this section, we derive generalized 
filters which are tolerant to the degradations. The POE criterion is defined as the ratio of the 
square of the expected value of the correlation peak to the expected value of the output 
signal energy (Javidi & Wang, 1994): 

 ( ){ } ( ){ }=
2 2

0 0 0POE , / ,E y x x E y x x , (1) 

where y(x,x0) is the filter output when the target is located at the position x0 in the input 
scene. E{.} denotes statistical averaging, and the overbar symbol in the denominator denotes 
statistical averaging over x. 
The second used criterion is referred to as the peak-to-average output variance (SNR). It is 
defined as the ratio of the square of the expected value of the correlation peak to the average 
output variance (Javidi & Wang, 1994): 

 ( ){ } ( ){ }=
2

0 0 0SNR , /Var ,E y x x y x x , (2) 

where Var{.} denotes the variance. The light efficiency (Horner & Gianino, 1984) is 
important in optical pattern recognition. For the nonoverlapping model of the input scene, it 
can be expressed as 

 ( ){ } ( ){ }= ∫ ∫
2 2

H 0 0η , dx/ , dxE y x x E s x x , (3) 

where s(x) represents the input scene. 
Next, we derive three generalized optimum filters by maximizing the criteria. For simplicity, 
one-dimensional notation is used. Integrals are taken between infinite limits. The same 
notation for a random process and its realization is used. 
 

A. Generalized correlation filters for object recognition in a noisy scene degraded by a 
linear system 
Let us consider the nonoverlapping signal model. The input scene s(x) is degraded by a 
linear system hLD(x) and corrupted by additive sensor noise n(x), and contains a target t(x) 
located at unknown coordinate x0 (random variable) and a spatially disjoint background 
noise b(x,x0): 

 ( ) ( ) ( ) ( ) ( )•= − + +⎡ ⎤⎣ ⎦0 0 0 LD, ,s x x t x x b x x h x n x , (4) 
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also takes into account additive sensor noise by training with a noise realization. Therefore, 
the adaptive filters may possess a good robustness to the noise. Computer simulation results 
obtained with the proposed filters are compared with those of various correlation filters in 
terms of recognition performance.  
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In pattern recognition two different tasks are distinguished: detection of objects and 
estimation of their exact positions (localization) in images. Using a correlation filter, these 
tasks can be done in two steps. First, the detection is carried out by searching the highest 
correlation peak at the filter output, then, this coordinate is taken as the position estimation 
of a target in the input scene. The quality of detection and localization of a target may be 
limited by: (i) presence of additive and disjoint background noise in observed scenes, (ii) 
scene intensity degradations owing to image formation process, and (iii) geometric 
distortions of a target. Next, we design generalized optimum filters which are tolerant to 
intensity degradations of input scenes.  

2.1 Design of generalized optimum filters 
The detection ability of correlation filters can be quantitatively expressed in terms of several 
criteria, such as probability of detection errors, signal-to-noise ratio, peak sharpness, and 
discrimination capability (Vijaya-Kumar & Hassebrook, 1990). Optimization of these criteria 
leads to reducing false recognition errors. After the detection task has been solved, we still 
are faced with small errors of target position estimation that are due to distortions of the 
object by noise. The coordinate estimations lie in the vicinity of their actual values. Therefore 
the accuracy of the target location can be characterized by the variance of measurement 
errors along coordinates (Kober & Campos, 1996; Yaroslavsky, 1993). The variance 
minimization depends on a mathematical model of the input scene. Basically, two models 
are considered: overlapping and nonoverlapping models. Many correlation filters were 
proposed. For instance, if an input scene contains a reference object corrupted by additive 
noise (overlapping model), the matched spatial filter (MSF) (VanderLugt, 1964) is optimal 
with respect to the signal-to-noise ratio. Horner and Gianino (1984) suggested the phase-
only filter (POF) that maximizes the light efficiency. For the overlapping model, the optimal 
filter (OF) was proposed by minimizing the probability of anomalous errors (false alarms) 
(Yaroslavsky, 1993). If an input scene contains a reference object embedded into a disjoint 
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background (nonoverlapping model) and additive noise, the following correlation filters 
were derived: the generalized matched filter (GMF) maximizes the ratio of the expected 
value of the squared correlation peak to the average output variance (Javidi & Wang, 1994), 
the generalized phase-only filter (GPOF) maximizes the light efficiency (Kober et al., 2000), 
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squared correlation peak to the average expected value of the output signal energy (POE) 
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the input scene are degraded with linear systems. In this section, we derive generalized 
filters which are tolerant to the degradations. The POE criterion is defined as the ratio of the 
square of the expected value of the correlation peak to the expected value of the output 
signal energy (Javidi & Wang, 1994): 
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where y(x,x0) is the filter output when the target is located at the position x0 in the input 
scene. E{.} denotes statistical averaging, and the overbar symbol in the denominator denotes 
statistical averaging over x. 
The second used criterion is referred to as the peak-to-average output variance (SNR). It is 
defined as the ratio of the square of the expected value of the correlation peak to the average 
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where Var{.} denotes the variance. The light efficiency (Horner & Gianino, 1984) is 
important in optical pattern recognition. For the nonoverlapping model of the input scene, it 
can be expressed as 
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where s(x) represents the input scene. 
Next, we derive three generalized optimum filters by maximizing the criteria. For simplicity, 
one-dimensional notation is used. Integrals are taken between infinite limits. The same 
notation for a random process and its realization is used. 
 

A. Generalized correlation filters for object recognition in a noisy scene degraded by a 
linear system 
Let us consider the nonoverlapping signal model. The input scene s(x) is degraded by a 
linear system hLD(x) and corrupted by additive sensor noise n(x), and contains a target t(x) 
located at unknown coordinate x0 (random variable) and a spatially disjoint background 
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 Pattern Recognition Techniques, Technology and Applications 

 

292 

where “●” denotes the convolution operation, and ( ) =∫ LD dx 1h x . The following notations 

and assumptions are used. 
1. The nonoverlapping background signal b(x,x0) is regarded as a product of a realization 

b(x) from a stationary random process (with expected value μb) and an inverse support 
function of the target w(x) defined as zero within the target area and unity elsewhere: 

 ( ) ( ) ( )= −0 0,b x x b x w x x . (5) 

2. B0(ω) is the power spectral density of  b0(x)=b(x)-μb. 
3. n(x) is a realization from a stationary process with zero-mean and the power spectral 

density N(ω). 
4. T(ω), W(ω), and HLD(ω) are the Fourier transforms of t(x), w(x), and hLD(x), respectively. 
5. The filter output y(x) is given by y(x,x0)=s(x,x0)●h(x), where h(x) is the real impulse 

response of a filter to be designed. 
6. The stationary processes and the random target location x0 are statistically independent 

of each other. 
Next, we derive optimum correlation filters. These filters are modified versions of the 
following generalized correlation filters: the GOF (Javidi & Wang, 1994), GMF (Javidi & 
Wang, 1994), and GPOF (Kober et al., 2000). The transfer functions of the designed filters are 
referred to as GOFLD, GMFLD, and GPOFLD, which are optimal with respect to the POE, the 
SNR, and the light efficiency, respectively (Ramos-Michel & Kober, 2007).  
1. Generalized Optimum Filter (GOFLD) 
The filter GOFLD maximizes the POE given in Eq. (1). From Eq. (4) the expected value of the 
filter output E{y(x,x0)} can be expressed as 

 ( ){ } ( ) ( )[ ] ( ) ( ) ( )ω μ ω ω ω ω
π

= + −⎡ ⎤⎣ ⎦∫0 0LD
1, exp dω.

2 bE y x x T W H H j x x  (6) 

The square of the expected value of the output peak can be written as 

 ( ){ } ( ) ( )[ ] ( ) ( )ω μ ω ω ω
π

= +∫
22

0 0 2 LD
1, dω

4 bE y x x T W H H . (7) 

The denominator of the POE can computed as  

 ( ){ } ( ){ } ( ){ }= +⎡ ⎤⎣ ⎦
22

0 0 0, Var , ,E y x x y x x E y x x . (8) 

Here, the spatial averaging converts a nonstationary process at the filter output to a 
stationary process. It is supposed that the output-signal energy is finite (for instance, spatial 
extend of the filter output is L (Javidi & Wang, 1994)). The expressions for the average of the 

output-signal variance ( ){ }0Var ,y x x  and the average energy of the expected value of the 

filter output ( ){ } 2

0,E y x x  are given, respectively, by 

 ( ){ } ( ) ( ) ( ) ( ) ( )α ω ω ω ω ω
π π

•
⎧ ⎫⎡ ⎤= +⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭∫

22 2
0 0 LD

1Var , dω,
2 2

y x x B W H N H  (9) 
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and  

 ( ){ } ( ) ( ) ( ) ( )α ω μ ω ω ω
π

= +∫
2 22 2

0 LD
1, dω

2 bE y x x T W H H , (10) 

where α=1/L is a normalizing constant (Kober & Campos, 1996). Substituting Eqs. (9) and 
(10) into Eq. (8), we obtain the average output energy: 

 
( ){ } ( ) ( ) ( ) ( ) ( )

( ) ( )

α ω μ ω ω ω ω
π π

ω ω

•
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⎫+ ⎬
⎭

∫
2 22 2

0 0

2

LD
1 1,

2 2

dω.

bE y x x T W B W H

N H
 (11) 

Using Eqs. (7) and (11) the POE can be written as  
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+
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∫

21
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0
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2 dω
POE

1 dω
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T W H H
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Applying the Schwarz inequality, we obtain the optimum filter: 

 ( )
( ) ( )[ ] ( ){ }
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ω μ ω ω
ω

α ω μ ω ω ω ω ω
π

•

+
=
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*
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0

LD
LD

LD

GOF
1

2

b

b

T W H

T W B W H N
, (13) 

where the asterisk denotes the complex conjugate. Note that the filter takes into account 
information about a linear image degradation and additive noise by means of HLD(ω) and 
N(ω), respectively. Besides, the transfer function of the filter contains T(ω)+μbW(ω), which 
defines a new target to be detected. Therefore, the information about the target support 
function and the mean value of a background is important as well as the target signal itself. 
2. Generalized Matched Filter (GMFLD) 
This filter maximizes SNR given in Eq. (2). Using Eqs. (7) and (9), the SNR can be expressed 
as follows: 
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Applying the Schwartz inequality, the optimum correlation filter is obtained: 
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. (15) 

One can observe that the filter contains information about the linear degradation system and 
additive noise. 
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Applying the Schwarz inequality, we obtain the optimum filter: 
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where the asterisk denotes the complex conjugate. Note that the filter takes into account 
information about a linear image degradation and additive noise by means of HLD(ω) and 
N(ω), respectively. Besides, the transfer function of the filter contains T(ω)+μbW(ω), which 
defines a new target to be detected. Therefore, the information about the target support 
function and the mean value of a background is important as well as the target signal itself. 
2. Generalized Matched Filter (GMFLD) 
This filter maximizes SNR given in Eq. (2). Using Eqs. (7) and (9), the SNR can be expressed 
as follows: 
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Applying the Schwartz inequality, the optimum correlation filter is obtained: 
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One can observe that the filter contains information about the linear degradation system and 
additive noise. 
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3. Generalized Phase Optimum Filter (GPOFLD) 
Using Eq. (4), the light efficiency given by Eq. (3) can be expressed as 
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Thus, the optimum correlation filter is given by  
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where ( )θ ω
LDH  is the phase distribution of the linear degradation. It can be seen that the 

GPOFLD does not take into account the degradation by additive noise. Therefore, it is 
expected that this filter will be sensitive to the noise. 
 

B. Generalized correlation filters for recognition of a linearly degraded object in a noisy 
scene degraded by a linear system 
The input scene contains a linearly degraded target located at unknown coordinate x0 and a 
spatially disjoint background b(x,x0). The scene is additionally degraded with a linear 
system and corrupted by additive noise n(x): 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )• •= − + − +⎡ ⎤⎣ ⎦0 0 0TD TD LD,s x x t x x h x b x w x x h x n x , (18) 

where hTD(x) is a real impulse response of target degradation, ( ) =∫ TD dx 1h x , 

( ) ( ) ( )•− = − −0 0TD T TD1 hw x x w x x x , wT(x) is a support function of the target (with unity 
within the target area and zero elsewhere). It is assumed that linear degradations of the 
target and the scene do not affect each other. In a similar manner, three generalized 
correlation filters are derived. The transfer functions of these filters are referred to as 
GOFLD_TD, GMFLD_TD, and GPOFLD_TD. They maximize the POE, the SNR, and the light 
efficiency, respectively (Ramos-Michel & Kober, 2007).  
1. Generalized Optimum Filter (GOFLD_TD) 
From the model of the input scene given in Eq. (18), the expected value of the filter output is  
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where HTD(ω) and WTD(ω) are the Fourier transforms of hTD(ω) and wTD(ω), respectively. The 
intensity correlation peak can be computed as follows: 
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and  
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With the help of Eqs. (1), (8), and (20)-(22), the POE is given by 

 ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

π ω ω μ ω ω ω

α ω ω μ ω ω ω ω ω ω
π

−

•

+⎡ ⎤⎣ ⎦
=

⎧ ⎫⎡ ⎤+ + +⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭

∫

∫

21

2 2 2 2
0

TD TD LD

TD TD TD LD

2 dω
POE .

1 dω
2

b

b

T H W H H

T H W B W H N H
 (23) 

Applying the Schwarz inequality, a generalized optimum filter is derived: 
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2. Generalized Matched Filter (GMFLD_TD) 
From Eqs. (2), (20), and (21), the SNR can be expressed as 
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Applying the Schwartz inequality, the optimum correlation filter is given by 
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We see that the filter contains information about the linear system and additive noise. 
3. Generalized Phase Optimum Filter (GPOFLD_TD) 
By maximizing the light efficiency given in Eq. (3), the transfer function of the GPOF can be 
written as 
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The filter does not take into account the degradation by additive noise. Therefore, it is 
expected that this filter will be sensitive to the noise. 

2.2 Performance of optimum generalized filters 
In this section the performance of the MSF (VanderLugt, 1964), the POF (Horner & Gianino, 
1984), the OF (Yaroslavsky, 1993), the GMF (Javidi & Wang, 1994), the GOF (Javidi & Wang, 
1994), the GPOF (Kober et al., 2000) and the proposed generalized filters is presented. The 
recognition of either a target or a moving object embedded into degraded test scenes is 
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Applying the Schwarz inequality, a generalized optimum filter is derived: 
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2. Generalized Matched Filter (GMFLD_TD) 
From Eqs. (2), (20), and (21), the SNR can be expressed as 
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Applying the Schwartz inequality, the optimum correlation filter is given by 
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We see that the filter contains information about the linear system and additive noise. 
3. Generalized Phase Optimum Filter (GPOFLD_TD) 
By maximizing the light efficiency given in Eq. (3), the transfer function of the GPOF can be 
written as 
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The filter does not take into account the degradation by additive noise. Therefore, it is 
expected that this filter will be sensitive to the noise. 

2.2 Performance of optimum generalized filters 
In this section the performance of the MSF (VanderLugt, 1964), the POF (Horner & Gianino, 
1984), the OF (Yaroslavsky, 1993), the GMF (Javidi & Wang, 1994), the GOF (Javidi & Wang, 
1994), the GPOF (Kober et al., 2000) and the proposed generalized filters is presented. The 
recognition of either a target or a moving object embedded into degraded test scenes is 
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evaluated in terms of discrimination capability (DC) and location accuracy. The DC is 
defined as the ability of a filter to distinguish a target from other different objects. If a target 
is embedded into a background that contains false objects, the DC can be expressed as  

 
( )
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= −

2

2

0
DC 1

0

B

T

C

C
, (28) 

where ⎢CB ⎢is the maximum in the correlation plane over the background area to be rejected, 
and ⎢CT ⎢is the maximum in the correlation plane over the area of target position. The area of 
the actual position is determined in the close vicinity of the actual target location. The 
background area is complementary to the area of target position. In our computer 
simulations the area of target position is chosen as the target area. Negative values of the DC 
indicate that a tested filter fails to recognize the target. The location accuracy can be 
characterized by means of the location errors (LE) defined as 

 ( ) ( )= − + −
2 2LE T T T Tx x y y , (29) 

where ( ),T Tx y  and y ( ),T Tx y  are the coordinates of the target exact position and the 
coordinates of the correlation peak taken as a target position estimation, respectively. 
 

 
Fig. 1. (a) Test input scene, (b) objects used in experiments. 
All correlation filters were implemented with the fast Fourier transform. To guarantee 
statistically correct results, 30 statistical trials of each experiment for different positions of a 
target and 20 realizations of random processes were carried out. The size of images used in 
experiments is 256×256. The signal range is [0-1]. Figure 1(a) shows a test input scene. The 
scene contains two objects with a similar shape and size (approximately 44×28 pixels) but 
with different gray-level contents. The target (upper butterfly) and the false object are 
shown in Fig. 1(b). The mean value and the standard deviation over the target area are 0.42 
and 0.2, respectively. The spatially inhomogeneous background has a mean value and a 
standard deviation of 0.37 and 0.19, respectively. 
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Two scenarios of the object recognition are considered: (a) detection of a target in linearly 
degraded and noisy scenes, and (b) detection of a moving target in linearly degraded and 
noisy scenes.  
 

A. Recognition of a target in linearly degraded and noisy scenes 
First, the test input scene is homogenously degraded with a linear system. An example of 
the linear degradation is a uniform image defocusing by a camera.  
 

 
Fig. 2. Test scenes corrupted by additive noise with σn=0.12 and defocused with: (a) D=7, 
and (b) D=23 pixels. 
 

 
Fig. 3. Performance of correlation filters when the input scene is defocused with different 
values of D: (a) DC versus D, (b) LE versus D. 
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Two scenarios of the object recognition are considered: (a) detection of a target in linearly 
degraded and noisy scenes, and (b) detection of a moving target in linearly degraded and 
noisy scenes.  
 

A. Recognition of a target in linearly degraded and noisy scenes 
First, the test input scene is homogenously degraded with a linear system. An example of 
the linear degradation is a uniform image defocusing by a camera.  
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and (b) D=23 pixels. 
 

 
Fig. 3. Performance of correlation filters when the input scene is defocused with different 
values of D: (a) DC versus D, (b) LE versus D. 
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Assume that the impulse response of the blurring is an impulse disk with a diameter D. The 
values of D used in the experiments are 3, 7, 11, 15, 19, 23, and 31 pixels. Since additive 
sensor noise is always present, the test scene is additionally corrupted by additive zero-
mean white Gaussian noise with the standard deviation σn. The values of σn are equal to 
0.02, 0.04, 0.08, 0.12, 0.16, and 0.17. Figures 2(a) and 2(b) show examples of the test scene 
linearly degraded with D=7 and 23 pixels, respectively, and corrupted by overlapping noise 
with σn=0.12. Figures 3(a) and 3(b) show the performance of the tested correlation filters 
with respect to the DC and the LE when the input is defocused with different values of D. It 
can be seen that the proposed filters GOFLD and GMFLD are always able to detect and 
localize exactly the target, whereas the GPOFLD is sensitive to the linear degradation. The 
performance of the other filters decreases as a function of D. The conventional GOF is able 
to detect the target; however, it yields large location errors. The MSF filter fails to recognize 
the target.  

 
Fig. 4. Tolerance to noise of correlation filters for pattern recognition in blurred scenes: (a) 
DC versus σn with D=7, (b) LE versus σn with D=7, (c) DC versus σn with D=11, (d) LE 
versus σn with D=11. 
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Now we illustrate robustness of the filters to additive noise. Figure 4 shows the performance 
of the filters for pattern recognition in blurred (with D=7 and D=11) and noisy test scenes 
when the standard deviation of additive noise is varied. One can observe that the proposed 
filters GOFLD and GMFLD are always able to detect and to localize the object with small 
location errors, whereas the performance of the rest of the filters worsens rapidly as a 
function of D and σn. 95% confidence intervals in the performance of the GOFLD are shown 
in Figs. 4 (c) and 4(d).  
 

B. Recognition of a moving target in linearly degraded and noisy scenes 
Let us consider a uniform target motion across a fixed background. For clarity and 
simplicity, we assume that the object moves from left to right with a constant velocity V 
during a time capture interval of [0, T]. The impulse response of the target degradation can 
be expressed as follows (Biemond et al., 1990): 

 ( )
≤ ≤ =⎧

= ⎨
⎩

TM
1 , if 0
0, otherwise

M x M VT
h x . (30) 

 

 
Fig. 5. Illustration of a linear degradation by a uniform target motion in 3 pixels from left to 
right. 

The target motion leads to a partial (inhomogeneous) blur of the input scene. Figure 5, 
illustrates this degradation when a target and a background are one-dimensional discrete 
signals (t1,…,t6) and (b1,…,b9), respectively, and the target moves in 3 pixels from left to 
right. The input signal s(r) is formed as the average of intermediate sequences s’(r). In 
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experiments, a uniform target motion from left to right on M pixels in test scenes is 
considered. The values of M used in our experiments are 3, 5, 7, 9, 11, and 15 pixels. The test 
 

 
Fig. 6. Test scene shown in Fig. 1(a) corrupted by: (a) target motion (M=9) and scene 
degradation (D=7), (b) target motion (M=9), scene degradation (D=7), and additive noise 
(σn=0.12). 

 
Fig. 7. Performance of correlation filters for recognition of a moving target: (a) DC versus M, 
(b) LE versus M for the scene. 
scene containing the moving target may be homogeneously degraded by a linear system 
with the parameter D. The values of D used in our experiments are 3, 7, 9, 15, 19, and 23 
pixels. Fig. 6(a) shows the test scene degraded with M=9 and D=7. Fig. 6(b) shows the 
degraded scene with M=9 and D=7, which is additionally corrupted by overlapping noise 
with σn=0.12.  
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Let us analyze the performance of the tested filters for recognition of a moving object in the 
still undistorted background. In this case, generalized optimum filters referred to as GMFTD, 
GOFTD, and GPOFTD can be obtained from Eqs. (24), (26), and (27), respectively, by 
substituting into these equations HLD(ω)=1. Figures 7(a) and 7(b) show the performance of 
the correlation filters with respect to the DC and the LE when the input scene in Fig. 1(a) 
contains a moving target with different values of M. 
 

 
Fig. 8. Recognition of a moving object in defocused with D=7 and noisy test scene: (a) DC 
versus σn with M=7, (b) LE versus σn with M=7, (c) DC versus σn with M=11, (b) LE versus 
σn with M=11. 

Note that the proposed filters the GOFTD, the GMFTD, and the GPOFTD are able to detect the 
target without location errors. On the other hand, one can see that the performance of the 
rest of the filters rapidly deteriorates in terms of the DC and the LE when the target 
displacement increases. 
Next, the filters are tested for recognition of a moving object in defocused and noisy test 
scenes. The performance of the filters for M=7, 11, and D=7 in terms of the DC and the LE as 
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experiments, a uniform target motion from left to right on M pixels in test scenes is 
considered. The values of M used in our experiments are 3, 5, 7, 9, 11, and 15 pixels. The test 
 

 
Fig. 6. Test scene shown in Fig. 1(a) corrupted by: (a) target motion (M=9) and scene 
degradation (D=7), (b) target motion (M=9), scene degradation (D=7), and additive noise 
(σn=0.12). 

 
Fig. 7. Performance of correlation filters for recognition of a moving target: (a) DC versus M, 
(b) LE versus M for the scene. 
scene containing the moving target may be homogeneously degraded by a linear system 
with the parameter D. The values of D used in our experiments are 3, 7, 9, 15, 19, and 23 
pixels. Fig. 6(a) shows the test scene degraded with M=9 and D=7. Fig. 6(b) shows the 
degraded scene with M=9 and D=7, which is additionally corrupted by overlapping noise 
with σn=0.12.  
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Let us analyze the performance of the tested filters for recognition of a moving object in the 
still undistorted background. In this case, generalized optimum filters referred to as GMFTD, 
GOFTD, and GPOFTD can be obtained from Eqs. (24), (26), and (27), respectively, by 
substituting into these equations HLD(ω)=1. Figures 7(a) and 7(b) show the performance of 
the correlation filters with respect to the DC and the LE when the input scene in Fig. 1(a) 
contains a moving target with different values of M. 
 

 
Fig. 8. Recognition of a moving object in defocused with D=7 and noisy test scene: (a) DC 
versus σn with M=7, (b) LE versus σn with M=7, (c) DC versus σn with M=11, (b) LE versus 
σn with M=11. 

Note that the proposed filters the GOFTD, the GMFTD, and the GPOFTD are able to detect the 
target without location errors. On the other hand, one can see that the performance of the 
rest of the filters rapidly deteriorates in terms of the DC and the LE when the target 
displacement increases. 
Next, the filters are tested for recognition of a moving object in defocused and noisy test 
scenes. The performance of the filters for M=7, 11, and D=7 in terms of the DC and the LE as 
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a function of the standard deviation of additive noise is shown in Fig. 8. Under these 
degradation conditions, the OF, the MSF, and the POF yield a poor performance. The 
GMFLD_TD is always able to detect and to localize the moving object for any tested values of 
M, D, and σn. However, it yields low values of the DC. The GOFLD_TD provides the best 
performance in terms of the DC and the LE when the scene is corrupted by additive noise 
with σn≤0.12 and the target moves by M≤15 pixels.  

3. Adaptive composite filters for recognition of geometrically distorted 
objects 
3.1 Design of adaptive composite filters 
In this section, we consider the task of recognition of geometrically distorted targets in input 
scenes degraded with a linear system and corrupted by noise. Various composite optimum 
correlation filters for recognition of geometrically distorted objects embedded in a 
nonoverlapping background have been proposed (Chan et al., 2000; Sjöberg & Noharet, 
1998). However, there are no correlation-based methods for detection and localization of 
geometrically distorted objects in blurred and noisy scenes. We use a priori information 
about an object to be recognized, false objects, background noise, linear degradations of the 
input scene and target, geometrical distortions of the target, and additive sensor noise. 
An attractive approach to geometrical distortion-invariant pattern recognition is based on 
SDF filters (Casasent, 1984; Mahalanobis et al., 1987; Vijaya-Kumar, 1986). Basically, a 
conventional SDF filter uses a set of training images to generate a filter that yields 
prespecified central correlation outputs in the response to training images. It is able to 
control only one point at the correlation plane for each training image. This is why SDF 
filters often have a low discrimination capability. We are interested in a filter which is able 
to recognize geometrically distorted objects in a set of observed degraded scenes, i.e., with a 
fixed set of patterns and backgrounds to be rejected (Ramos-Michel & Kober, 2008), rather 
than in a filter with average performance parameters over an ensemble of images (Chan et 
al., 2000). The impulse response of the obtained filter is a linear combination of correlation 
filters optimized with respect to the peak-to-output energy and common matched filters. 
The optimum generalized filters are derived from a set of training images, whereas the 
matched filters are designed from the background to be rejected. With the help of an 
iterative training procedure, an adaptive composite filter is generated. The filter ensures 
high correlation peaks corresponding to versions of the target while suppressing possible 
false peaks. The proposed algorithm of the filter design requires knowledge of the 
background image. The background can be described either deterministically (typical 
picture) or stochastically (realization of a stochastic process). 
Suppose that an input scene is homogenously degraded by a linear system and corrupted by 
additive noise. It contains geometrically distorted targets. For each object to be recognized, a 
generalized optimum filter (GOFLD) is designed [see Eq. (13)]. Each filter takes into account a 
priori information about the corresponding reference, background noise, linear degradation 
of the input scene, geometrical target distortions, and additive sensor noise. Let {ti(x), 
i=1,2,…,N} be a set of target images (linearly independent), each with d pixels. This set is 
called the true class of objects. The set includes geometrically distorted versions of the 
references. For the i’th image the transfer function of the GOFLD filter is given by  
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where Ti(ω) and Wi(ω) are the Fourier transforms of the i’th training object ti(x) and its 
inverse support function wi(x), respectively. We use the same notation and assumptions as 
in Section 2. Let ( )G

ih x  be the inverse Fourier transform of the complex-conjugate frequency 
response of the generalized optimum filter for the i’th pattern. A linear combination of 
{ ( )G

ih x , i=1,2,…,N} can form a SDF filter for intraclass distortion-invariant pattern 
recognition. In this case the coefficients of a linear combination must satisfy a set of 
constraints on the filter output requiring a prespecified value for each training pattern. 
Assume that there are various classes of objects to be rejected. For simplicity, a two-class 
recognition problem is considered. Thus, we are looking for a filter to recognize training 
images from one class and to reject images from another class, called the false class. Suppose 
that there are M training images from the false class {pi(x), i=1,2,…,M}. Let us denote a set of 
training images formed from the input patterns as S={t1(x),…, tN(x),p1(x),…, pM(x)}, and a 
new combined set of training images is defined as SN={ 1 ( )Gh x ,…, ( )G

Nh x , p1(x),…, pM(x)}. 
According to the SDF approach (Casasent, 1984), the composite image is computed as a 
linear combination of training images belonging to SN, i.e., 
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Let R denote a matrix with N+M columns and d rows, whose i’th column is given by the 
vector version of the i’th element of SN. Using vector-matrix notation, Eq. (32) can be 
rewritten as 

 =SDFh Ra , (33) 

where a represents the column vector of weighting coefficients {ai, i=1,…,M+N}. We can set 
the filter output {ui=1, i=1,…,N} for the true class objects and {ui=0, i=N+1, N+2,…,N+M} for 
the false class objects, i.e. u=[1 1 1 ··· 0 0 ··· 0]T. Here superscript T denotes the transpose. Let 
Q be a matrix with N+M columns and d rows, whose i’th column is the vector version of the 
i’th element of S. The weighting coefficients are chosen to satisfy the following condition: 

 += SDFu Q h , (34) 

where superscript + means conjugate transpose. From Eqs. (33) and (34) we obtain  

 
−+= ⎡ ⎤⎣ ⎦

1

SDFh R Q R u . (35) 

Using the filter given in Eq. (35), we expect that the central correlation peaks will be close to 
unity for all targets and it will be close to zero for false objects. It is important to note that 
this procedure lacks control over the full correlation output, because we are able to control 
only the output at the location of cross-correlation peaks. Therefore, other sidelobes may 
appear everywhere on the correlation plane. To achieve a good recognition, a modified  
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i=1,2,…,N} be a set of target images (linearly independent), each with d pixels. This set is 
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where Ti(ω) and Wi(ω) are the Fourier transforms of the i’th training object ti(x) and its 
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in Section 2. Let ( )G

ih x  be the inverse Fourier transform of the complex-conjugate frequency 
response of the generalized optimum filter for the i’th pattern. A linear combination of 
{ ( )G
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recognition. In this case the coefficients of a linear combination must satisfy a set of 
constraints on the filter output requiring a prespecified value for each training pattern. 
Assume that there are various classes of objects to be rejected. For simplicity, a two-class 
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Let R denote a matrix with N+M columns and d rows, whose i’th column is given by the 
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only the output at the location of cross-correlation peaks. Therefore, other sidelobes may 
appear everywhere on the correlation plane. To achieve a good recognition, a modified  
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iterative algorithm (Diaz-Ramirez et al., 2006; González-Fraga et al., 2006) is proposed. At 
each iteration, the algorithm suppresses the highest sidelobe peak, and therefore the value 
of discrimination capability monotonically increases until a prespecified value is reached. 
 

 
 

Fig. 9. Block diagram of the iterative algorithm for the filter design. 

The first step of the iterative algorithm is to carry out a correlation between a background 
(deterministic or stochastic) and the SDF filter given in Eq. (35). This filter is initially trained 
only with available versions of targets and known false objects. Next, the maximum of the 
filter output is set as the origin, and around the origin we form a new object to be rejected 
from the background. This object has a region of support equal to the union of those of all 
targets. The created object is added to the false class of objects. Now, the two-class 
recognition problem is utilized to design a new SDF filter. The described iterative procedure 
is repeated till a specified value of the DC is obtained. A block diagram of the procedure is 
shown in Fig. 9. The proposed algorithm consists of the following steps: 
1. Design a basic SDF filter using available distorted versions of targets and known false 

objects [see Eq. (35)]. 
2. Carry out the correlation between a background and the filter, and calculate the DC 

using Eq. (28). 
3. If the value of the DC is greater or equal to a desired value, then the filter design 

procedure is finished, else go to the next step. 
4. Create a new object to be rejected from the background. The origin of the object is at the 

highest sidelobe position in the correlation plane. The region of support of the object is 
the union of the region of supports of all targets. The created object is added to the false 
class of objects. 

5. Design a new SDF filter using Eq. (35) with the same true class and the extended false 
class of objects. Go to step 2. 

As a result of this procedure, the adaptive composite filter is synthesized. The performance 
of this filter in the recognition process is expected to be close to that in the synthesis process.  
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3.2 Performance of adaptive composite filters 
Now, we analyze the performance of the generalized optimum filter for pattern recognition 
in a linearly distorted scene (GOFLD) [given by Eq. (13)], the adaptive SDF filter (AMSF) 
(González-Fraga et al., 2006), the distortion-invariant minimum-mean-squared-error 
(MMSE) filter (Chan et al., 2000), and the proposed adaptive filter (AGOF) in terms of 
discrimination capability and location accuracy. 
 

 
Fig. 10. Test scene (degraded by motion blur with M=5 and additive noise with σn=0.08) 
contains the target: (a) rotated by 5 degree and scaled by factor of 0.8, (b) rotated by 10 
degree and scaled by factor of 1.2. 

We carried out experiments for recognition of scaled and rotated targets in blurred and 
noisy scenes. It is assumed that a camera moves from right to left on M=5 pixels. So, the 
input scene is degraded by the uniform motion blur given in Eq. (30). The scene also 
contains sensor noise with σn=0.08. Figures 10(a) and 10(b) show two examples of input 
scenes used in the experiment. To guarantee statistically correct results, 30 statistical trials 
for different positions of a target and 20 realizations of random processes were performed. 
For the filter design of the tested composite filters (AGOF, AMSF and MMSE) we used the 
same set of training images. The set contains versions of the target scaled by factors 0.8, 
0.85, 0.9, 1.1, and rotated by 0, 3, 6, and 9 degrees (see Fig. 11). Besides, for the synthesis of 
the adaptive filters we used the background shown in Fig. 1(a) degraded with M=5 and 
σn=0.08.  
Figure 12 shows the performance of the filters with respect to the DC and the LE when the 
target is scaled and rotated by 5 and 10 degrees. One can see that the proposed filter AGOF 
possesses the best average performance in terms of both criteria. The AMSF fails to 
recognize the distorted object when the target is scaled by a factor lower than 1.2. It is 
important to say that the number of iterations during the design process of the AGOF 
depends on a background and true and false objects. In our case, after 9 iterations in the 
design process the filter yields DC=0.93. 
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Fig. 11. Versions of the target distorted by rotation and scaling. 

 

 
Fig. 12. Performance of correlation filters for recognition of rotated and scaled objects. 
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4. Conclusion 
In this chapter we treated the problem of distortion-invariant pattern recognition based on 
adaptive composite correlation filters. First, we proposed optimum generalized filters to 
improve recognition of a linearly distorted object embedded into a nonoverlapping 
background noise when the input scene is degraded with a linear system and noise. The 
obtained filters take into account explicitly information about an object to be recognized, 
disjoint background noise, linear system degradation, linear target distortion and sensor 
noise. For the filter design, it is assumed that this information is available or can be 
estimated from the nature of degradations. Next, adaptive composite correlation filters for 
recognition of geometrically distorted objects embedded into degraded input scenes were 
proposed. The filters are a linear combination of generalized optimum filters and matched 
spatial filters. The information about an object to be recognized, false objects, and a 
background to be rejected is utilized in iterative training procedure to design a correlation 
filter with a prespecified value of discrimination capability. Computer simulation results 
obtained with the proposed filters are compared with those of various correlation filters in 
terms of recognition performance.  
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Fig. 11. Versions of the target distorted by rotation and scaling. 

 

 
Fig. 12. Performance of correlation filters for recognition of rotated and scaled objects. 
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estimated from the nature of degradations. Next, adaptive composite correlation filters for 
recognition of geometrically distorted objects embedded into degraded input scenes were 
proposed. The filters are a linear combination of generalized optimum filters and matched 
spatial filters. The information about an object to be recognized, false objects, and a 
background to be rejected is utilized in iterative training procedure to design a correlation 
filter with a prespecified value of discrimination capability. Computer simulation results 
obtained with the proposed filters are compared with those of various correlation filters in 
terms of recognition performance.  
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1. Introduction 
In pattern recognition, a kind of classical classifier called k-nearest neighbor rule (kNN) has 
been applied to many real-life problems because of its good performance and simple 
algorithm. In kNN, a test sample is classified by a majority vote of its k-closest training 
samples. This approach has the following advantages: (1) It was proved that the error rate of 
kNN approaches the Bayes error when both the number of training samples and the value 
of k are infinite (Duda et al., 2001). (2) kNN performs well even if different classes overlap 
each other. (3) It is easy to implement kNN due to its simple algorithm. However, kNN does 
not perform well when the dimensionality of feature vectors is large. As an example, Fig. 1 
shows a test sample (belonging to class 5) of the MNIST dataset (LeCun et al., 1998) and its 
five closest training samples selected by using Euclidean distance. Because the selected five 
training samples include the three samples belonging to class 8, the test sample is 
misclassified into class 8. Such misclassification is often yielded by kNN in high-
dimensional pattern classification such as character and face recognition. Moreover, kNN 
requires a large number of training samples for high accuracy because kNN is a kind of 
memory-based classifiers. Consequently, the classification cost and memory requirement of 
kNN tend to be high. 
 

 
Fig. 1. An example of a test sample (leftmost). The others are five training samples closest to 
the test sample. 

For overcoming these difficulties, classifiers using subspaces or linear manifolds (affine 
subspace) are used for real-life problems such as face recognition. Linear manifold-based 
classifiers can represent various artificial patterns by linear combinations of the small 
number of bases. As an example, a two-dimensional linear manifold spanned by three 
handwritten digit images ‘4’ is shown in Fig. 2. Each of the corners of the triangle represents 
pure training samples, whereas the images in between are linear combinations of them. 
These intermediate images can be used as artificial training samples for classification. Due to 
this property, manifold-based classifiers tend to outperform kNN in high-dimensional 
pattern classification. In addition, we can reduce the classification cost and memory 
requirement of manifold-based classifiers easily compared to kNN. However, bases of linear 
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Fig. 1. An example of a test sample (leftmost). The others are five training samples closest to 
the test sample. 

For overcoming these difficulties, classifiers using subspaces or linear manifolds (affine 
subspace) are used for real-life problems such as face recognition. Linear manifold-based 
classifiers can represent various artificial patterns by linear combinations of the small 
number of bases. As an example, a two-dimensional linear manifold spanned by three 
handwritten digit images ‘4’ is shown in Fig. 2. Each of the corners of the triangle represents 
pure training samples, whereas the images in between are linear combinations of them. 
These intermediate images can be used as artificial training samples for classification. Due to 
this property, manifold-based classifiers tend to outperform kNN in high-dimensional 
pattern classification. In addition, we can reduce the classification cost and memory 
requirement of manifold-based classifiers easily compared to kNN. However, bases of linear 
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manifolds have an effect on classification accuracy significantly, so we have to select them 
carefully. Generally, orthonormal bases obtained with principal component analysis (PCA) are 
used for forming linear manifolds, but there is no guarantee that they are the best ones for 
achieving high accuracy. 
 

 
Fig. 2. A two-dimensional linear manifold spanned by three handwritten digit images ‘4’ in 
the corners. 

In this chapter, we consider about achieving high accuracy in high-dimensional pattern 
classification using linear manifolds. Henceforth, classification using linear manifolds is 
called manifold matching for short. In manifold matching, a test sample is classified into the 
class that minimizes the residual length from a test sample to a manifold spanned by 
training samples. This classification rule can be derived from optimization for 
reconstructing a test sample from training samples of each class. Hence, we start with 
describing square error minimization between a test sample and a linear combination of 
training samples. Using the solutions of this minimization, we can define the classification 
rule for manifold matching easily. Next, this idea is extended to the distance between two 
linear manifolds. This distance is useful for incorporating transform-invariance into image 
classification. After that, accuracy improvement through kernel mapping and transform-
invariance is adopted to manifold matching. Finally, learning rules for manifold matching 
are proposed for reducing classification cost and memory requirement without accuracy 
deterioration. In this chapter, we deal with handwritten digit images as an example of high-
dimensional patterns. Experimental results on handwritten digit datasets show that 
manifold-based classification performs as well or better than state-of-the-art such as a 
support vector machine. 

2. Manifold matching 
In general, linear manifold-based classifiers are derived with principal component analysis 
(PCA). However, in this section, we start with square error minimization between a test 
sample and a linear combination of training samples. In pattern recognition, we should not 
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compute the distance between two patterns until we had transformed them to be as similar 
to one another as possible (Duda et al., 2001). From this point of view, measuring of a 
distance between a test point and each class is formalized as a square error minimization 
problem in this section. 
Let us consider a classifier that classifies a test sample into the class to which the most 
similar linear combination of training samples belongs. Suppose that a d-dimensional 
training sample  belonging to class j (j = 1, ...,C), 
where nj and C are the numbers of classes and training samples in class j, respectively. The 
notation  denotes the transpose of a matrix or vector. Let  
be the matrix of training samples in class j. If these training samples are linear independent, 
they are not necessary to be orthogonal each other. 
Given a test sample q = (q1 … qd) ⊤ ∈ Rd, we first construct linear combinations of training 

samples from individual classes by minimizing the cost for reconstructing a test sample 
from Xj before classification. For this purpose, the reconstruction error is measured by the 
following square error: 

 

(1) 

where  is a weight vector for the linear combination of training 
samples from class j, and  is a vector of which all elements are 1. The 
same cost function can be found in the first step of locally linear embedding (Roweis & Saul, 
2000). The optimal weights subject to sum-to-one are found by solving a least-squares 
problem. Note that the above cost function is equivalent to (Q−Xj)bj 2 with Q = (q|q| · · · 

|q) ∈ Rd× jn
 due to the constraint T

jb 1
jn  = 1. Let us define Cj = (Q − Xj) ⊤(Q − Xj), and by 

using it, Eq. (1) becomes 

 
(2) 

The solution of the above constrained minimization problem can be given in closed form by 
using Lagrange multipliers. The corresponding Lagrangian function is given as 

 
(3) 

where λ is the Lagrange multiplier. Setting the derivative of Eq. (3) to zero and substituting 
the constraint  into the derivative, the following optimal weight is given: 

 
(4) 
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Regularization is applied to Cj before inversion for avoiding over fitting or if nj > d using a 
regularization parameter α> 0 and an identity matrix  
In the above optimization problem, we can get rid of the constraint T

jb 1
jn = 1 by 

transforming the cost function from , where mj is the 
centroid of class j, i.e., , 
respectively. By this transformation, Eq. (1) becomes 

 
(5) 

By setting the derivative of Eq. (5) to zero, the optimal weight is given as follows: 

 (6) 

Consequently, the distance between q and the linear combination of class j is measured by 

 

(7) 

where Vj ∈Rd×r
 is the eigenvectors of ∈Rd×d, where r is the rank of . This 

equality means that the distance dj is given as a residual length from q to a r-dimensional 
linear manifold (affine subspace) of which origin is mj (cf. Fig. 3). In this chapter, a manifold 
spanned by training samples is called training manifold. 
 

 
Fig. 3. Concept of the shortest distance between q and the linear combination of training 
samples that exists on a training manifold. 

In a classification phase, the test sample q is classified into the class that has the shortes 
distance from q to the linear combination existing on the linear manifold. That is we define 
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the distance between q and class j as  test 
sample’s class (denoted by ω) is determined by the following classification rule: 

 (8) 

The above classification rule is called with different names according to the way of selection 
the set of training samples Xj . When we select the k-closest training samples of q from each 
class, and use them as Xj , the classification rule is called local subspace classifier (LSC) 
(Laaksonen, 1997; Vincent & Bengio, 2002). When all elements of bj in LSC are equal to 1/k, 
LSC is called local-mean based classifier (Mitani & Hamamoto, 2006). In addition, if we use 
an image and its tangent vector as mj and jX  respectively in Eq. (7), the distance is called 
one-sided tangent distance (1S-TD) (Simard et al., 1993). These classifier and distance are 
described again in the next section. Finally, when we use the r’  r eigenvectors 
corresponding to the r’ largest eigenvalues of  as Vj , the rule is called projection 
distance method (PDM) (Ikeda et al., 1983) that is a kind of subspace classifiers. In this 
chapter, classification using the distance between a test sample and a training manifold is 
called one-sided manifold matching (1S-MM). 

2.1 Distance between two linear manifolds 
In this section, we assume that a test sample is given by the set of vector. In this case the 
dissimilarity between test and training data is measured by the distance between two linear 
manifolds. Let Q = (q1|q2|…|qm) ∈ Rd×m

 be the set of m test vectors, where qi = (qi1 · · · qid) ⊤ 

∈Rd
 (i = 1, ...,m) is the ith test vector. If these test vectors are linear independent, they are not 

necessary to be orthogonal each other. Let a = (a1 … am) ⊤ ∈ Rm
 is a weight vector for a linear 

combination of test vectors. 
By developing Eq. (1) to the reconstruction error between two linear combinations, the 
following optimization problem can be formalized: 

 
(9) 

The solutions of the above optimization problem can be given in closed form by using 
Lagrange multipliers. However, they have complex structures, so we get rid of the two 
constraints a ⊤ 1m = 1 and b ⊤ 1n = 1 by transformating the cost function from Qa − Xb 2 to 

(mq + Q a) − (mj + jX bj ) 2, where mq  and Q  are the centroid of test vectors (i.e., mq = 

1
m
i=Σ qi/m) and Q  = (q1 −mq|…|qm − mq) ∈ Rd×m, respectively. By this transformation, Eq. (9) 

becomes 

 (10)

The above minimization problem can be regarded as the distance between two manifolds 
(cf. Fig. 4). In this chapter, a linear manifold spanned by test samples is called test manifold. 
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regularization parameter α> 0 and an identity matrix  
In the above optimization problem, we can get rid of the constraint T

jb 1
jn = 1 by 

transforming the cost function from , where mj is the 
centroid of class j, i.e., , 
respectively. By this transformation, Eq. (1) becomes 

 
(5) 

By setting the derivative of Eq. (5) to zero, the optimal weight is given as follows: 

 (6) 
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Fig. 3. Concept of the shortest distance between q and the linear combination of training 
samples that exists on a training manifold. 

In a classification phase, the test sample q is classified into the class that has the shortes 
distance from q to the linear combination existing on the linear manifold. That is we define 
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the distance between q and class j as  test 
sample’s class (denoted by ω) is determined by the following classification rule: 

 (8) 
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The solutions of the above optimization problem can be given in closed form by using 
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The above minimization problem can be regarded as the distance between two manifolds 
(cf. Fig. 4). In this chapter, a linear manifold spanned by test samples is called test manifold. 
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Fig. 4. Concept of the shortest distance between a test manifold and a training manifold. 

The solutions of Eq. (10) are given by setting the derivative of Eq. (10) to zero. Consequently, 
the optimal weights are given as follows: 

 (11)

 (12)

where 

 (13)

 (14)

If necessary, regularization is applied to Q1 and X1 before inversion using regularization 
parameters α1, α2 > 0 and identity matrices Im

 ∈Rm×m and  such as Q1 +α1Im
 and 

X1 + α2I jn . 

In a classification phase, the test vectors Q is classified into the class that has the shortest 
distance from Qa to the Xjbj

 . That is we define the distance between a test manifold and a 
training manifold as  and the class of the test 
manifold (denoted by ω) is determined by the following classification rule: 

 (15)

The above classification rule is also called by different names according to the way of selecting 
the sets of test and training, i.e., Q and Xj . When two linear manifolds are represented by 
orthonormal bases obtained with PCA, the classification rule of Eq. (15) is called inter-
subspace distance (Chen et al., 2004). When mq, mj are bitmap images and Q , jX  are their 
tangent vectors, the distance d(Q,Xj) is called two-sided tangent distance (2S-TD) (Simard et al., 
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1993). In this chapter, classification using the distance between two linear manifolds is called 
two-sided manifold matching (2S-MM). 

3. Accuracy improvement 
We encounter different types of geometric transformations in image classification. Hence, it 
is important to incorporate transform-invariance into classification rules for achieving high 
accuracy. Distance-based classifiers such as kNN often rely on simple distances such as 
Euclidean distance, thus they suffer a high sensitivity to geometric transformations of 
images such as shifts, scaling and others. Distances in manifold-matching are measured 
based on a square error, so they are also not robust against geometric transformations. In 
this section, two approaches of incorporating transform-invariance into manifold matching 
are introduced. The first is to adopt kernel mapping (Schölkopf & Smola, 2002) to manifold 
matching. The second is combining tangent distance (TD) (Simard et al., 1993) and manifold 
matching. 

3.1 Kernel manifold matching 
First, let us consider adopting kernel mapping to 1S-MM. The extension from a linear 
classifier to nonlinear one can be achieved by a kernel trick  for 
mapping samples from an input space to a feature space Rd  F (Schölkopf & Smola, 2002). 

By applying kernel mapping to Eq. (1), the optimization problem becomes 

 
(16)

where QΦ and X j
Φ are defined as  

respectively. By using the kernel trick and Lagrange multipliers, the optimal weight is given 
by the following: 

 
(17)

where  is a kernel matrix of which the (k, l)-element is given as 

 (18)

When applying kernel mapping to Eq. (5), kernel PCA (Schölkopf et al., 1998) is needed for 
obtaining orthonormal bases in F. Refer to (Maeda & Murase, 2002) or (Hotta, 2008a) for 
more details. 
Next, let us consider adopting kernel mapping to 2S-MM. By applying kernel mapping to 
Eq. (10), the optimization problem becomes 

 
(19)

where  are given as follows: 
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(20)

 (21)

 
(22)

By setting the derivative of Eq. (19) to zero and using the kernel trick, the optimal weights 
are given as follows: 

 (23)

 (24)

where  and kX 

∈R jn of which the (k, l)-elements of matrices and the lth element of vectors are given by 

 

(25)

 

(26)

 

(27)

 

(28)

 

(29)
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(30)

In addition, Euclidean distance between Φ(mq) and Φ (mx) in F is given by 

 

(31)

Hence, the distance between a test manifold and a training manifold of class j in F is 
measured by 

 
(32)

If necessary, regularization is applied to KQQ and KXX such as KQQ +α1Im, KXX +α2I jn . 

For incorporating transform-invariance into kernel classifiers for digit classification, some 
kernels have been proposed in the past (Decoste & Sch¨olkopf, 2002; Haasdonk & Keysers, 
2002). Here, we focus on a tangent distance kernel (TDK) because of its simplicity. TDK is 
defined by replacing Euclidean distance with a tangent distance in arbitrary distance-based 
kernels. For example, if we modify the following radial basis function (RBF) kernel 

 (33)

by replacing Euclidean distance with 2S-TD, we then obtain the kernel called two sided TD 
kernel (cf. Eq.(36)): 

 (34)

We can achieve higher accuracy by this simple modification than the use of the original RBF 
kernel (Haasdonk & Keysers, 2002). In addition, the above modification is adequate for 
kernel setting because of its natural definition and symmetric property. 

3.2 Combination of manifold matching and tangent distance 
Let us start with a brief review of tangent distance before introducing the way of combining 
manifold matching and tangent distance. 
When an image q is transformed with small rotations that depend on one parameter α, and 
so the set of all the transformed images is given as a one-dimensional curve Sq (i.e., a 
nonlinear manifold) in a pixel space (see from top to middle in Fig. 5). Similarly, assume that 
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the set of all the transformed images of another image x is given as a one-dimensional curve 
Sx. In this situation, we can regard the distance between manifolds Sq and Sx as an adequate 
dissimilarity for two images q and x. For computational issue, we measure the distance 
between the corresponding tangent planes instead of measuring the strict distance between 
their nonlinear manifolds (cf. Fig. 6). The manifold Sq is approximated linearly by its tangent 
hyperplane at a point q: 

 
(35)

where t q
i  is the ith d-dimensional tangent vector (TV) that spans the r-dimensional tangent 

hyperplane (i.e., the number of considered geometric transformations is r) at a point q and 
the α q

i  is its corresponding parameter. The notations Tq and αq denote Tq = (t 1
q … t q

r ) and  

αq = (α 1
q  … α q

r ) ⊤, respectively. 
 

 
Fig. 6. Illustration of Euclidean distance and tangent distance between q and x. Black dots 
denote the transformed-images on tangent hyperplanes that minimize 2S-TD. 

For approximating Sq, we need to calculate TVs in advance by using finite difference. For 
instance, the seven TVs for the image depicted in Fig. 5 are shown in Fig. 7. These TVs are 
derived from the Lie group theory (thickness deformation is an exceptional case), so we can 
deal with seven geometric transformations (cf. Simard et al., 2001 for more details). By using 
these TVs, geometric transformations of q can be approximated by a linear combination of 
the original image q and its TVs. For example, the linear combinations with different 
amounts of α of the TV for rotation are shown in the bottom in Fig. 5. 
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Fig. 7. Tangent vectors ti for the image depicted in Fig. 3. Fromleft to right, they correspond 
to x-translation, y-translation, scaling, rotation, axis deformation, diagonal deformation and 
thickness deformation, respectively. 

When measuring the distance between two points on tangent planes, we can use the 
following distance called two sided TD (2S-TD): 

 (36)

The above distance is the same as 2S-MM, so the solutions of αq and αx can be given by using 
Eq. (11) and Eq. (12). Experimental results on handwritten digit recognition showed that kNN 
with TD achieves higher accuracy than the use of Euclidean distance (Simard et al., 1993). 
Next, a combination of manifold matching and TD for handwritten digit classification is 
introduced. In manifold matching, we uncritically use a square error between a test sample 
and training manifolds, so there is a possibility that manifold matching classifies a test 
sample by using the training samples that are not similar to the test sample. On the other 
hand, Simard et al. investigated the performance of TD using kNN, but the recognition rate 
of kNN deteriorates when the dimensionality of feature vectors is large. Hence, manifold 
matching and TD are combined to overcome each of the difficulty. Here, we use the k-closest 
neighbors to a test sample for manifold matching for achieving high accuracy, thus the 
algorithm of the combination method is described as follows: 
Step1: Find k-closest training samples x 1

j , ..., x j
k  to a test sample from class j according to 

d2S. 
Step2: Store the geometric transformed images of the k-closest neighbors existing on their 
tangent planes as  is calculated using the optimal weight α

i

j
x  as 

follows: 

 (37)

Step3: Also store the k geometric transformed images of the test sample used for selecting 
the k-closest neighbors x j

i  using 2S-TD as Q = ( q 1|…| q k), where q i is calculated using 

the optimal weight α j
i  as follows: 

 (38)

Step4: Classify Q with 2S-MM using Xj. 
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Step3: Also store the k geometric transformed images of the test sample used for selecting 
the k-closest neighbors x j

i  using 2S-TD as Q = ( q 1|…| q k), where q i is calculated using 

the optimal weight α j
i  as follows: 

 (38)

Step4: Classify Q with 2S-MM using Xj. 
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The two approaches described in this section can improve accuracy of manifold matching 
easily. However, classification cost and memory requirement of them tend to be large. This 
fact is showed by experiments. 

4. Learning rules for manifold matching 
For reducing memory requirement and classification cost without deterioration of accuracy, 
several schemes such as learning vector quantization (Kohonen, 1995; Sato & Yamada, 1995) 
were proposed in the past. In those schemes, vectors called codebooks are trained by a 
steepest descent method that minimizes a cost function defined with a training error 
criterion. However, they were not designed for manifold-based matching. In this section, we 
adopt generalized learning vector quantization (GLVQ) (Sato & Yamada, 1995) to manifold 
matching for reducing memory requirement and classification cost as small as possible. 
Let us consider that we apply GLVQ to 1S-MM. Given a labelled sample q ∈ Rd for training 
(not a test sample), then measure a distance between q and a training manifold of class j by 
dj

 = q − Xjbj 2 using the optimal weights obtained with Eq. (4). Let X1 ∈ Rd× 1n  be the set of 

codebooks belonging to the same class as q. In contrast, let X2 ∈ Rd× 2n  be the set of 
codebooks belonging to the nearest different class from q. Let us consider the relative 
distance difference μ(q) defined as follows: 

 
(39)

where d1 and d2 represent distances from q to X1b1 and X2b2, respectively. The above μ(q) 
satisfies −1 < μ(q) < 1. If μ(q) is negative, q is classified correctly; otherwise, q is misclassified. 
For improving accuracy, we should minimize the following cost function: 

 
(40)

where N is the total number of labelled samples for training, and f ( μ) is a monotonically 
increasing function. To minimize S, a steepest descent method with a small positive constant 
ε (0 < ε < 1) is adopted to each Xj : 

 
(41)

Now ∂S/∂Xj is derived as 

 

(42)

Consequently, the learning rule can be written as follows: 

 (43)
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where  If we use  as the distance, 
the learning rule becomes 

 
(44)

Similarly, we can apply a learning rule to 2S-MM. Suppose that a labelled manifold for 
training is given by the set of m vectors Q = (q1|q2|…|qm) (not a test manifold). Given this 
Q, a distance between Q and Xj is measured as  
using the optimal weights obtained with Eq. (11) and Eq. (12). Let X1 be the set of codebooks 
belonging to the same class as Q. In contrast, let X2 be the set of codebooks belonging to the 
nearest different class from Q. By applying the same manner mentioned above to 2S-MM, 
the learning rule can be derive as follows: 

 
(45)

 
In the above learning rules, we change dj/(d1 + d2)2 into dj/(d1 + d2) for setting ε easily. 
However, this change dose not affect the convergence condition (Sato & Yamada, 1995). As 
the monotonically increasing function, a sigmoid function f (μ, t) = 1/(1 − e−μt) is often used in 
experiments, where t is learning time. Hence, we use f (μ, t){1−f (μ, t)} as ∂f/∂μ in practice. 
 

 
Table 1. Summary of classifiers used in experiments 

In this case, ∂f/∂μ has a single peak at μ = 0, and the peak width becomes narrower as t 
increases. After the above training, q and Q are classified by the classification rules Eq. (8) 
and Eq. (15) respectively using trained codebooks. In the learning rule of Eq. (43), if the all 
elements of bj are equal to 1/  this rule is equivalent to GLVQ. Hence, Eq. (43) can be 
regarded as a natural extension of GLVQ. In addition, if Xj is defined by k-closest training 
samples to q, the rule can be regarded as a learning rule for LSC (Hotta, 2008b). 

5. Experiments 
For comparison, experimental results on handwritten digit datasets MNIST (LeCun et al., 
1998) and USPS (LeCun et al., 1989) are shown in this section. The MNIST dataset consists of 
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regarded as a natural extension of GLVQ. In addition, if Xj is defined by k-closest training 
samples to q, the rule can be regarded as a learning rule for LSC (Hotta, 2008b). 

5. Experiments 
For comparison, experimental results on handwritten digit datasets MNIST (LeCun et al., 
1998) and USPS (LeCun et al., 1989) are shown in this section. The MNIST dataset consists of 
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60,000 training and 10,000 test images. In experiments, the intensity of each 28 × 28 pixels 
image was reversed to represent the background of images with black. The USPS dataset 
consists of 7,291 training and 2,007 test images. The size of images of USPS is 16 × 16 pixels. 
The number of training samples of USPS is fewer than that of MNIST, so this dataset is more 
difficult to recognize than MNIST. In experiments, intensities of images were directly used 
for classification. 
The classifiers used in experiments and their parameters are summarized in Table 1. In 
1SMM, a training manifold of each class was formed by its centroid and r’ eigenvectors 
corresponding to the r’ largest eigenvalues obtained with PCA. In LSC, k-closest training 
samples to a test sample were selected from each class, and they were used as Xj . In 2S-MM, 
a test manifold was spanned by an original test image (mq) and its seven tangent vectors 
( X j) such as shown in Fig. 7. In contrast, a training manifold of each class was formed by 
using PCA. In K1S-MM, kernel PCA with TDK (cf. Eq. 34) was used for representing 
training manifolds in F. All methods were implemented with MATLAB on a standard PC 
that has Pentium 1.86GHz CPU and 2GB RAM. In implementation, program performance 
optimization techniques such as mex files were not used. For SVM, the SVM package called 
LIBSVM (Chang & Lin, 2001) was used for experiments. 

5.1 Test error rate, classification time, and memory size 
In the first experiment, test error rates, classification time per test sample, and a memory 
size of each classifier were evaluated. Here, a memory size means the size of a matrix for 
storing training samples (manifolds) for classification. The parameters of individual 
classifiers were tuned on a separate validation set (50000 training samples and 10000 
validation samples for MNIST; meanwhile, 5000 training samples and 2000 validation 
samples for USPS). 
Table 2 and Table 3 show results on MNIST and USPS, respectively. Due to out of memory, 
the results of SVM and K1S-MM in MNIST were not obtained with my PC. Hence, the result 
of SVM was referred to (Decoste & Schölkopf, 2002). As shown in Table 2, 2S-MM 
outperformed 1S-MM but the error rate of it was higher than those of other manifold 
matching such as LSC. However, classification cost of the classifiers other than 1S-MM and 
2S-MM was very high. Similar results can be found in the results of USPS. However, the 
error rate of 2S-MM was lower than that of SVM in USPS. In addition, manifold matching 
using accuracy improvement described in section 3 outperformed other classifiers. 
However, classification cost and memory requirement of them were very high. 
 

 
Table 2. Test error rates, classification time per test sample, and memory size on MNIST. 
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Table 3. Test error rates, classification time per test sample, and memory size on USPS. 

5.2 Effectiveness of learning 
Next, the effectiveness of learning for manifold matching was evaluated by experiments. In 
general, handwritten patterns include various geometric transformations such as rotation, 
so it is difficult to reduce memory sizes without accuracy deterioration. In this section, 
learning for 1S-MM using Eq. (44) is called learning 1S-MM (L1S-MM). The initial training 
manifolds were formed by PCA as shown in the left side of Fig. 8. Similarly, learning for 2S-
MM using Eq. (45) is called learning 2S-MM (L2S-MM). The initial training manifolds were 
also determined by PCA. In contrast, a manifold for training and a test manifold were 
spanned by an original image and its seven tangent vectors. The numbers of dimension for 
training manifolds of L1S-MM and L2S-MM were the same as those of 1S-MM and 2S-MM 
in the previous experiments, respectively. Hence, their classification time and memory size 
did not change. Learning rate ε was set to ε = 10−7 empirically. Batch type learning was 
applied to L1S-MM and L2S-MM to remove the effect of the order which training vectors or 
manifolds were presented to them. The right side of Fig. 8 shows the trained bases of each 
class using MNIST. As shown in this, learning enhanced the difference of patterns between 
similar classes. 
 

 
Table 4. Test error rates, training time, and memory size for training on MNIST. 

 
Table 5. Test error rate and training time on USPS. 

Figure 9 shows training error rates of L1S-MM and L2S-MM in MNIST with respect to the 
number of iteration. As shown in this figure, the training error rates decreased with time. 
This means that the learning rules described in this chapter converge stably based on the 
convergence property of GLVQ. Also 50 iteration was enough for learning, so the maximum 
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number of iteration was fixed to 50 for experiments. Table 4 and Table 5 show test error 
rates, training time, and memory size for training on MNIST and USPS, respectively. For 
comparison, the results obtained with GLVQ were also shown. As shown in these tables, 
accuracy of 1S-MM and 2S-MM was improved satisfactorily by learning without increasing 
of classification time and memory sizes. The right side of Fig. 8 shows the bases obtained 
with L2S-MM on MNIST. As shown in this, the learning rule enhanced the difference of 
patterns between similar classes. It can be considered that this phenomenon helped to 
improve accuracy. However, training cost for manifold matching was very high by 
comparison to those of GLVQ and SVM. 
 

 
Fig. 8. Left: Origins (mj ) and orthonormal bases Xj of individual classes obtained with PCA 
(initial components for training manifolds). Right: Origins and bases obtained with L2S-MM 
(components for training manifolds obtained with learning). 

6. Conclusion 
In this chapter manifold matching for high-dimensional pattern classification was described. 
The topics described in this chapter were summarized as follows: 
- The meaning and effectiveness of manifold matching 
- The similarity between various classifiers from the point of view of manifold matching 
- Accuracy improvement for manifold matching 
- Learning rules for manifold matching 
Experimental results on handwritten digit datasets showed that manifold matching 
achieved lower error rates than other classifiers such as SVM. In addition, learning 
improved accuracy and reduced memory requirement of manifold-based classifiers. 
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Fig. 9. Training error rates with respect to the number of iteration. 

The advantages of manifold matching are summarized as follows: 
- Wide range of application (e.g., movie classification) 
- Small memory requirement 
- We can adjust memory size easily (impossible for SVM) 
- Suitable for multi-class classification (not a binary classifier) 
However, training cost for manifold matching is high. Future work will be dedicated to 
speed up a training phase and improve accuracy using prior knowledge. 
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1. Introduction    
Classification is one of the ubiquitous problems in Artificial Intelligence. It is present in 
almost any application where Machine Learning is used. That is the reason why it is one of 
the Machine Learning issues that has received more research attention from the first works 
in the field. The intuitive statement of the problem is simple, depending on our application 
we define a number of different classes that are meaningful to us. The classes can be 
different diseases in some patients, the letters in an optical character recognition application, 
or different functional parts in a genetic sequence. Usually, we are also provided with a set 
of patterns whose class membership is known, and we want to use the knowledge carried 
on these patterns to classify new patterns whose class is unknown. 
The theory of classification is easier to develop for two class problems, where the patterns 
belong to one of only two classes. Thus, the major part of the theory on classification is 
devoted to two class problems. Furthermore, many of the available classification algorithms 
are either specifically designed for two class problems or work better in two class problems. 
However, most of the real world classification tasks are multiclass problems. When facing a 
multiclass problem there are two main alternatives: developing a multiclass version of the 
classification algorithm we are using, or developing a method to transform the multiclass 
problem into many two class problems. The second choice is a must when no multiclass 
version of the classification algorithm can be devised. But, even when such a version is 
available, the transformation of the multiclass problem into several two class problems may 
be advantageous for the performance of our classifier. This chapter presents a review of the 
methods for converting a multiclass problem into several two class problems and shows a 
series of experiments to test the usefulness of this approach and the different available 
methods. 
This chapter is organized as follows: Section 2 states the definition of the problem; Section 3 
presents a detailed description of the methods; Section 4 reviews the comparison of the 
different methods performed so far; Section 5 shows an experimental comparison; and 
Section 6 shows the conclusions of this chapter and some open research fields. 

2. Converting a multiclass problem to several two class problems 
A classification problem of K classes and n training observations consists of a set of patterns 
whose class membership is known. Let T = {(x1, y1), (x2, y2), ..., (xn, yn)} be a set of n training 
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samples where each pattern xi belongs to a domain X. Each label is an integer from the set Y = 
{1, ..., K}. A multiclass classifier is a function f: X→Y that maps a pattern x to an element of Y. 
The task is to find a definition for the unknown function, f(x), given the set of training 
patterns. Although many real world problems are multiclass problems, K > 2, many of the 
most popular classifiers work best when facing two class problems, K = 2. Indeed many 
algorithms are specially designed for binary problems, such as Support Vector Machines 
(SVM) (Boser et al., 1992). A class binarization (Fürnkranz, 2002) is a mapping of a multi-
class problem onto several two-class problems in a way that allows the derivation of a 
prediction for the multi-class problem from the predictions of the two-class classifiers. The 
two-class classifier is usually referred to as the binary classifier or base learner. 
In this way, we usually have two steps in any class binarization scheme. First, we must 
define the way the multiclass problem is decomposed into several two class problems and 
train the corresponding binary classifier. Second, we must describe the way the binary 
classifiers are used to obtain the class of a given query pattern. In this section we show 
briefly the main current approaches of converting a multiclass problem into several two 
class problems. In the next section a more detailed description is presented, showing their 
pros and cons. Finally, in the experimental section several practical issues are addressed. 
Among the proposed methods for approaching multi-class problems as many, possibly 
simpler, two-class problems, we can make a rough classification into three groups: one-vs-
all, one-vs-one, and error correcting output codes based methods: 
• One-vs-one (ovo): This method, proposed in Knerr et al. (1990), constructs K(K-1)/2 

classifiers. Classifier ij, named fij, is trained using all the patterns from class i as positive 
patterns, all the patterns from class j as negative patterns, and disregarding the rest. 
There are different methods of combining the obtained classifiers, the most common is a 
simple voting scheme. When classifying a new pattern each one of the base classifiers 
casts a vote for one of the two classes used in its training. The pattern is classified into 
the most voted class. 

• One-vs-all (ova): This method has been proposed independently by several authors 
(Clark & Boswell, 1991; Anand et al., 1992). ova method constructs K binary classifiers. 
Classifier i-th, fi, is trained using all the patterns of class i as positive patterns and the 
patterns of the other classes as negative patterns. An example is classified in the class 
whose corresponding classifier has the highest output. This method has the advantage 
of simplicity, although it has been argued by many researchers that its performance is 
inferior to the other methods. 

• Error correcting output codes (ecoc): Dietterich & Bakiri (1995) suggested the use of 
error correcting codes for multiclass classification. This method uses a matrix M of {-1, 
1} values of size K × L, where L is the number of binary classifiers. The j-th column of 
the matrix induces a partition of the classes into two metaclasses. Pattern x belonging to 
class i is a positive pattern for j-th classifier if and only if Mij = 1. If we designate fj as the 
sign of the j-th classifier, the decision implemented by this method, f(x), using the 
Hamming distance between each row of the matrix M and the output of the L classifiers 
is given by: 
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These three methods comprehend all the alternatives we have to transform a multiclass 
problem into many binary problems. In this chapter we will discuss these three methods in 
depth, showing the most relevant theoretical and experimental results.  
Although there are differences, class binarization methods can be considered as another 
form of ensembling classifiers, as different learners are combined to solve a given problem. 
An advantage that is shared by all class binarization methods is the possibility of parallel 
implementation. The multiclass problem is broken into several independent two-class 
problems that can be solved in parallel. In problems with large amounts of data and many 
classes, this may be a very interesting advantage over monolithic multiclass methods. This is 
a very interesting feature, as the most common alternative for dealing with complex 
multiclass problems, ensembles of classifiers constructed by boosting method, is inherently 
a sequential algorithm (Bauer & Kohavi, 1999). 

3. Class binarization methods 
This section describes more profoundly the three methods mentioned above with a special 
interest on theoretical considerations. Experimental facts are dealt with in the next section. 

3.1 One-vs-one 
The definition of one-vs-one (ovo) method is the following: ovo method constructs, for a 
problem of K classes, K(K-1)/2 binary classifiers1, fij, i = 1, ..., K-1, j = i+1, ..., K. The classifier fij 
is trained using patterns from class i as positive patterns and patterns from class j as 
negative patterns. The rest of patterns are ignored. This method is also known as round-robin 
classification, all-pairs and all-against-all.  
Once we have the trained classifiers, we must develop a method for predicting the class of a 
test pattern x. The most straightforward and simple way is using a voting scheme, we 
evaluate every classifier, fij(x), which casts a vote for either class i or class j. The most voted 
class is assigned to the test pattern. Ties are solved randomly or assigning the pattern to the 
most frequent class among the tied ones. However, this method has a problem. For every 
pattern there are several classifiers that are forced to cast an erroneous vote. If we have a test 
pattern from class k, all the classifiers that are not trained using class k must also cast a vote, 
which cannot be accurate as k is not among the two alternatives of the classifier. For 
instance, if we have K = 10 classes, we will have 45 binary classifiers. For a pattern of class 1, 
there are 9 classifiers that can cast a correct vote, but 36 that cannot. In practice, if the classes 
are independent, we should expect that these classifiers would not largely agree on the same 
wrong class. However, in some problems whose classes are hierarchical or have similarities 
between them, this problem can be a source for incorrect classification. In fact, it has been 
shown that it is the main source of failure of ovo in real world applications (García-Pedrajas 
& Ortiz-Boyer, 2006). 
This problem is usually termed as the problem of the incompetent classifiers (Kim & Park, 
2003). As it has been pointed out by several researchers, it is an inherent problem of the 
method, and it is not likely that a solution can be found. Anyway, it does not prevent the 
usefulness of ovo method. 
                                                 
1 This definition assumes that the base learner used is class-symmetric, that is, 
distinguishing class i from class j is the same task as distinguishing class j from class i, as 
this is the most common situation. 
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most frequent class among the tied ones. However, this method has a problem. For every 
pattern there are several classifiers that are forced to cast an erroneous vote. If we have a test 
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which cannot be accurate as k is not among the two alternatives of the classifier. For 
instance, if we have K = 10 classes, we will have 45 binary classifiers. For a pattern of class 1, 
there are 9 classifiers that can cast a correct vote, but 36 that cannot. In practice, if the classes 
are independent, we should expect that these classifiers would not largely agree on the same 
wrong class. However, in some problems whose classes are hierarchical or have similarities 
between them, this problem can be a source for incorrect classification. In fact, it has been 
shown that it is the main source of failure of ovo in real world applications (García-Pedrajas 
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This problem is usually termed as the problem of the incompetent classifiers (Kim & Park, 
2003). As it has been pointed out by several researchers, it is an inherent problem of the 
method, and it is not likely that a solution can be found. Anyway, it does not prevent the 
usefulness of ovo method. 
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Regarding the causes of the good performance of ovo, Fürnkranz (2002) hypothesized that 
ovo is just another ensemble method. The basis of this assumption is that ovo tends to 
perform well in problems where ensemble methods, such as bagging or boosting, also 
perform well. Additionally, other works have shown that the combination of ovo and 
ADABOOST boosting method do not produce improvements in the testing error (Schapire, 
1997; Allwein et al, 2000), supporting the idea that they perform a similar work. 
One of the disadvantages of ovo appears in classification time. For predicting the class of a 
test pattern we need to evaluate K(K-1)/2 classifiers, which can be a time consuming task if 
we have many classes. In order to avoid this problem, Platt et al. (2000) proposed a variant 
of ovo method based on using a directed acyclic graph for evaluating the class of a testing 
pattern. The method is identical to ovo at training time and differs from it at testing time. 
The method is usually referred to as the Decision Directed Acyclic Graph (DDAG). The 
method constructs a rooted binary acyclic graph using the classifiers. The nodes are 
arranged in a triangle with the root node at the top, two nodes in the second layer, four in 
the third layer, and so on. In order to evaluate a DDAG on input pattern x, starting at the 
root node the binary function is evaluated, and the next node visited depends upon the 
results of this evaluation. The final answer is the class assigned by the leaf node visited at 
the final step. The root node can be assigned randomly. The testing error reported using ovo 
and DDAG are very similar, the latter having the advantage of a faster classification time. 
Hastie & Tibshirani (1998) gave a statistical perspective of this method, estimating class 
probabilities for each pair of classes and then coupling the estimates together to get a 
decision rule. 

3.2 One-vs-all 
One-vs-all (ova) method is the most intuitive of the three discussed options. Thus, it has been 
proposed independently by many researchers. As we have explained above, the method 
constructs K classifiers for K classes. Classifier fi is trained to distinguish between class i and 
all other classes. In classification time all the classifiers are evaluated and the query pattern 
is assigned to the class whose corresponding classifier has the highest output. 
This method has the advantage of training a smaller number of classifiers than the other two 
methods. However, it has been theoretically shown (Fürnkranz, 2002) that the training of 
these classifiers is more complex than the training of ovo classifiers. However, this 
theoretical analysis does not consider the time associated with the repeated execution of an 
actual program, and also assumes that the execution time is linear with the number of 
patterns. In fact, in the experiments reported here the execution time of ova is usually shorter 
than the time spent by ovo and ecoc. 
The main advantage of ova approach is its simplicity. If a class binarization must be 
performed, it is perhaps the first method one thinks of. In fact, some multiclass methods, 
such as the one used in multiclass multilayer Perceptron, are based on the idea of separating 
each class from all the rest of classes.  
Among its drawbacks several authors argue (Fürnkranz, 2002) that separating a class from 
all the rest is a harder task than separating classes in pairs. However, in practice the 
situation depends on another issue. The task of separating classes in pairs may be simple, 
but also, there are fewer available patterns to learn the classifiers. In many cases the 
classifiers that learned to distinguish between two classes have large generalization errors 
due to the small number of patterns used in their training process. These large errors 
undermine the performance of ovo in favor of ova in several problems. 
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3.3 Error-correcting output codes 
This method was proposed by Dietterich & Bakiri (1995). They use a “coding matrix“ 

{ 1, 1}KxLM +∈ − which has a row for each class and a number of columns, L, defined by the 
user. Each row codifies a class, and each column represents a binary problem, where the 
patterns of the classes whose corresponding row has a +1 are considered as positive 
samples, and the patterns whose corresponding row has a -1 as negative samples. So, after 
training we have a set of L binary classifiers, {f1, f2, ..., fL}. In order to predict the class of an 
unknown test sample x, we obtain the output of each classifier and classify the pattern in the 
class whose coding row is closest to the output of the binary classifiers (f1(x), f2(x), ..., fL(x)). 
There are many different ways of obtaining the closest row. The simplest one is using 
Hamming distance, breaking the ties with a certain criterion. However, this method loses 
information, as the actual output of each classifier can be considered a measure of the 
probability of the bit to be 1. In this way, L1 norm can be used instead of Hamming distance. 
The L1 distance between a codeword Mi and the output of the classifiers F = {f1, f2, ..., fL} is 
defined by: 
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The L1 norm is preferred over Hamming distance for its better performance and as it has 
also been proven that ecoc method is able to produce reliable probability estimates. Windeatt 
& Ghaderi (2003) tested several decoding strategies, showing that none of them was able to 
improve the performance of L1 norm significantly. Several other decoding methods have 
been proposed (Passerini et al., 2004) but only with a marginal advantage over L1 norm. 
This approach was pioneered by Sejnowski & Rosenberg (1987) who defined manual 
codewords for the NETtalk system. In that work, the codewords were chosen taking into 
account different features of each class. The contribution of Dietterich & Bakiri was 
considering the principles of error-correcting codes design for constructing the codewords.  
The idea is considering the classification problem similar to the problem of transmitting a 
string of bits over a parallel channel. As a bit can be transmitted incorrectly due to a failure 
of the channel, we can consider that a classifier that does not predict accurately the class of a 
sample is like a bit transmitted over an unreliable channel. In this case the channel consists 
of the input features, the training patterns and the learning process. In the same way as an 
error-correcting code can recover from the failure of some of the transmitted bits, ecoc codes 
might be able to recover from the failure of some of the classifiers. 
However, this argumentation has a very important issue, error-correcting codes rely on the 
independent transmission of the bits. If the errors are correlated, the error-correcting 
capabilities are seriously damaged. In a pattern recognition task, it is debatable whether the 
different binary classifiers are independent. If we consider that the input features, the 
learning process and the training patterns are the same, although the learning task is 
different, the independence among the classifiers is not an expected result. 
Using the formulation of ecoc codes, Allwein et al. (2000) presented a unifying approach, 
using coding matrices of three values, {-1, 0, 1}, 0 meaning “don't care”. Using this approach, 
ova method can be represented with a matrix of 1's in the main diagonal and -1 in the 
remaining places, and ovo with a matrix of K(K-1)/2 columns, each one with a +1, a -1 and 
the remaining places in the column set to 0. Allwein et al. also presented training and 
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Regarding the causes of the good performance of ovo, Fürnkranz (2002) hypothesized that 
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1997; Allwein et al, 2000), supporting the idea that they perform a similar work. 
One of the disadvantages of ovo appears in classification time. For predicting the class of a 
test pattern we need to evaluate K(K-1)/2 classifiers, which can be a time consuming task if 
we have many classes. In order to avoid this problem, Platt et al. (2000) proposed a variant 
of ovo method based on using a directed acyclic graph for evaluating the class of a testing 
pattern. The method is identical to ovo at training time and differs from it at testing time. 
The method is usually referred to as the Decision Directed Acyclic Graph (DDAG). The 
method constructs a rooted binary acyclic graph using the classifiers. The nodes are 
arranged in a triangle with the root node at the top, two nodes in the second layer, four in 
the third layer, and so on. In order to evaluate a DDAG on input pattern x, starting at the 
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and DDAG are very similar, the latter having the advantage of a faster classification time. 
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probabilities for each pair of classes and then coupling the estimates together to get a 
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constructs K classifiers for K classes. Classifier fi is trained to distinguish between class i and 
all other classes. In classification time all the classifiers are evaluated and the query pattern 
is assigned to the class whose corresponding classifier has the highest output. 
This method has the advantage of training a smaller number of classifiers than the other two 
methods. However, it has been theoretically shown (Fürnkranz, 2002) that the training of 
these classifiers is more complex than the training of ovo classifiers. However, this 
theoretical analysis does not consider the time associated with the repeated execution of an 
actual program, and also assumes that the execution time is linear with the number of 
patterns. In fact, in the experiments reported here the execution time of ova is usually shorter 
than the time spent by ovo and ecoc. 
The main advantage of ova approach is its simplicity. If a class binarization must be 
performed, it is perhaps the first method one thinks of. In fact, some multiclass methods, 
such as the one used in multiclass multilayer Perceptron, are based on the idea of separating 
each class from all the rest of classes.  
Among its drawbacks several authors argue (Fürnkranz, 2002) that separating a class from 
all the rest is a harder task than separating classes in pairs. However, in practice the 
situation depends on another issue. The task of separating classes in pairs may be simple, 
but also, there are fewer available patterns to learn the classifiers. In many cases the 
classifiers that learned to distinguish between two classes have large generalization errors 
due to the small number of patterns used in their training process. These large errors 
undermine the performance of ovo in favor of ova in several problems. 
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user. Each row codifies a class, and each column represents a binary problem, where the 
patterns of the classes whose corresponding row has a +1 are considered as positive 
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The L1 norm is preferred over Hamming distance for its better performance and as it has 
also been proven that ecoc method is able to produce reliable probability estimates. Windeatt 
& Ghaderi (2003) tested several decoding strategies, showing that none of them was able to 
improve the performance of L1 norm significantly. Several other decoding methods have 
been proposed (Passerini et al., 2004) but only with a marginal advantage over L1 norm. 
This approach was pioneered by Sejnowski & Rosenberg (1987) who defined manual 
codewords for the NETtalk system. In that work, the codewords were chosen taking into 
account different features of each class. The contribution of Dietterich & Bakiri was 
considering the principles of error-correcting codes design for constructing the codewords.  
The idea is considering the classification problem similar to the problem of transmitting a 
string of bits over a parallel channel. As a bit can be transmitted incorrectly due to a failure 
of the channel, we can consider that a classifier that does not predict accurately the class of a 
sample is like a bit transmitted over an unreliable channel. In this case the channel consists 
of the input features, the training patterns and the learning process. In the same way as an 
error-correcting code can recover from the failure of some of the transmitted bits, ecoc codes 
might be able to recover from the failure of some of the classifiers. 
However, this argumentation has a very important issue, error-correcting codes rely on the 
independent transmission of the bits. If the errors are correlated, the error-correcting 
capabilities are seriously damaged. In a pattern recognition task, it is debatable whether the 
different binary classifiers are independent. If we consider that the input features, the 
learning process and the training patterns are the same, although the learning task is 
different, the independence among the classifiers is not an expected result. 
Using the formulation of ecoc codes, Allwein et al. (2000) presented a unifying approach, 
using coding matrices of three values, {-1, 0, 1}, 0 meaning “don't care”. Using this approach, 
ova method can be represented with a matrix of 1's in the main diagonal and -1 in the 
remaining places, and ovo with a matrix of K(K-1)/2 columns, each one with a +1, a -1 and 
the remaining places in the column set to 0. Allwein et al. also presented training and 
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generalization error bounds for output codes when loss based decoding is used. However, 
the generalization bounds are not tight, and they should be seemed more as a way of 
considering the qualitative effect of each of the factors that have an impact on the 
generalization error. In general, these theoretical studies have recognized shortcomings and 
the bounds on the error are too loose for practical purposes. In the same way, the studies on 
the effect of ecoc on bias/variance have the problem of estimating these components of the 
error in classification problems (James, 2003). 
As an additional advantage, Dietterich & Bakiri (1995) showed, using rejection curves, that 
ecoc are good estimators of the confidence of the multiclass classifier. The performance of 
ecoc codes has been explained in terms of reducing bias/variance and by interpreting them 
as large margin classifiers (Masulli & Valentini, 2003). However, a generally accepted 
explanation is still lacking as many theoretical issues are open.  
In fact, several issues concerning ecoc method remain debatable. One of the most important 
is the relationship between the error correcting capabilities and the generalization error. 
These two aspects are also closely related to the independence of the dichotomizers. Masulli 
& Valentini (2003) performed a study using 3 real-world problems without finding any clear 
trend. 

3.3.1 Error-correcting output codes design 
Once we have stated that the use of codewords designed by their error-correcting 
capabilities may be a way of improving the performance of the multiclass classifier, we must 
face the design of such codes. 
The design of error-correcting codes is aimed at obtaining codes whose separation, in terms 
of Hamming distance, is maximized. If we have a code whose minimum separation between 
codewords is d, then the code can correct at least ( )1 / 2d −⎢ ⎥⎣ ⎦ bits. Thus, the first objective is 

maximizing minimum row separation. However, there is another objective in designing ecoc 
codes, we must enforce a low correlation between the binary classifiers induced by each 
column. In order to accomplish this, we maximize the distance between each column and all 
other columns. As we are dealing with class symmetric classifiers, we must also maximize 
the distance between each column and the complement of all other columns. The underlying 
idea is that if the columns are similar (or complementary) the binary classifiers learned from 
those columns will be similar and tend to make correlated mistakes.  
These two objectives make the task of designing the matrix of codewords for ecoc method 
more difficult than the designing of error-correcting codes. For a problem with K classes, we 
have 2k-1 – 1 possible choices for the columns. For small values of K, we can construct 
exhaustive codes, evaluating all the possible matrices for a given number of columns. 
However, for larger values of K the designing of the coding matrix is an open problem. 
The designing of a coding matrix is then an optimization problem that can only be solved 
using an iterative optimization algorithm. Dietterich & Bakiri (1995) proposed several 
methods, including randomized hill-climbing and BCH codes. BCH algorithm is used for 
designing error correcting codes. However, its application to ecoc design is problematic, 
among other factors because it does not take into account column separation, as it is not 
needed for error-correcting codes. Other authors have used general purpose optimization 
algorithms such as evolutionary computation (García-Pedrajas & Fyfe, 2008). 
More recently, methods for obtaining the coding matrix taking into account the problem to 
be solved have been proposed. Pujol et al. (2006) proposed Discriminant ECOC, a heuristic 
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method based on a hierarchical partition of the class space that maximizes a certain 
discriminative criterion. García-Pedrajas & Fyfe (2008) coupled the design of the codes with 
the learning of the classifiers, designing the coding matrix using an evolutionary algorithm. 

4. Comparison of the different methods 
The usual question when we face a multiclass problem and decide to use a class binarization 
method is which is the best method for my problem. Unfortunately, this is an open question 
which generates much controversy among the researchers.  
One of the advantages of ovo is that the binary problems generated are simpler, as only a 
subset of the whole set of patterns is used. Furthermore, it is common in real world 
problems that the classes are pairwise separable (Knerr et al., 1992), a situation that is not so 
common for ova and ecoc methods. 
In principle, it may be argued that replacing a K classes problem by K(K-1)/2 problems 
should significantly increase the computational cost of the task. However, Fürnkranz (2002) 
presented theoretical arguments showing that ovo has less computational complexity than 
ova. The basis underlying the argumentation is that, although ovo needs to train more 
classifiers, each classifier is simpler as it only focuses on a certain pair of classes 
disregarding the remaining patterns. In that work an experimental comparison is also 
performed using as base learner Ripper algorithm (Cohen, 1995). The experiments showed 
that ovo is about 2 times faster than ova using Ripper as base learner. However, the 
situation depends on the base learner used. In many cases there is an overhead associated 
with the application of the base learner which is independent of the complexity of the 
learning task. Furthermore, if the base learner needs some kind of parameters estimation, 
using cross-validation or any other method for parameters setting, the situation may be 
worse. In fact, in the experiments reported in Section 5, using powerful base learners, the 
complexity of ovo was usually greater than the complexity of ova. 
There are many works devoted to the comparison of the different methods. Hsu & Lin 
(2002) compared ovo, ova and two native multiclass methods using a SVM. They concluded 
that ova was worse than the other methods, which showed a similar performance. In fact, 
most of the previous works agree on the inferior performance of ova. However, the 
consensus about the inferior performance of ova has been challenged recently (Rifkin & 
Klautau, 2004). In an extensive discussion of previous work, they concluded that the 
differences reported were mostly the product of either using too simple base learners or 
poorly tuned classifiers. As it is well known, the combination of weak learners can take 
advantage of the independence of the errors they make, while combining powerful learners 
is less profitable due to their more correlated errors. In that paper, the authors concluded 
that ova method is very difficult to be outperformed if a powerful enough base learner is 
chosen and the parameters are set using a sound method. 

5. Experimental comparison 
As we have shown in the previous section, there is no general agreement on which one of 
the presented methods shows the best performance. Thus, in this experimental section we 
will test several of the issues that are relevant for the researcher, as a help for choosing the 
most appropriate method for a given problem. 
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generalization error bounds for output codes when loss based decoding is used. However, 
the generalization bounds are not tight, and they should be seemed more as a way of 
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maximizing minimum row separation. However, there is another objective in designing ecoc 
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among other factors because it does not take into account column separation, as it is not 
needed for error-correcting codes. Other authors have used general purpose optimization 
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method based on a hierarchical partition of the class space that maximizes a certain 
discriminative criterion. García-Pedrajas & Fyfe (2008) coupled the design of the codes with 
the learning of the classifiers, designing the coding matrix using an evolutionary algorithm. 

4. Comparison of the different methods 
The usual question when we face a multiclass problem and decide to use a class binarization 
method is which is the best method for my problem. Unfortunately, this is an open question 
which generates much controversy among the researchers.  
One of the advantages of ovo is that the binary problems generated are simpler, as only a 
subset of the whole set of patterns is used. Furthermore, it is common in real world 
problems that the classes are pairwise separable (Knerr et al., 1992), a situation that is not so 
common for ova and ecoc methods. 
In principle, it may be argued that replacing a K classes problem by K(K-1)/2 problems 
should significantly increase the computational cost of the task. However, Fürnkranz (2002) 
presented theoretical arguments showing that ovo has less computational complexity than 
ova. The basis underlying the argumentation is that, although ovo needs to train more 
classifiers, each classifier is simpler as it only focuses on a certain pair of classes 
disregarding the remaining patterns. In that work an experimental comparison is also 
performed using as base learner Ripper algorithm (Cohen, 1995). The experiments showed 
that ovo is about 2 times faster than ova using Ripper as base learner. However, the 
situation depends on the base learner used. In many cases there is an overhead associated 
with the application of the base learner which is independent of the complexity of the 
learning task. Furthermore, if the base learner needs some kind of parameters estimation, 
using cross-validation or any other method for parameters setting, the situation may be 
worse. In fact, in the experiments reported in Section 5, using powerful base learners, the 
complexity of ovo was usually greater than the complexity of ova. 
There are many works devoted to the comparison of the different methods. Hsu & Lin 
(2002) compared ovo, ova and two native multiclass methods using a SVM. They concluded 
that ova was worse than the other methods, which showed a similar performance. In fact, 
most of the previous works agree on the inferior performance of ova. However, the 
consensus about the inferior performance of ova has been challenged recently (Rifkin & 
Klautau, 2004). In an extensive discussion of previous work, they concluded that the 
differences reported were mostly the product of either using too simple base learners or 
poorly tuned classifiers. As it is well known, the combination of weak learners can take 
advantage of the independence of the errors they make, while combining powerful learners 
is less profitable due to their more correlated errors. In that paper, the authors concluded 
that ova method is very difficult to be outperformed if a powerful enough base learner is 
chosen and the parameters are set using a sound method. 

5. Experimental comparison 
As we have shown in the previous section, there is no general agreement on which one of 
the presented methods shows the best performance. Thus, in this experimental section we 
will test several of the issues that are relevant for the researcher, as a help for choosing the 
most appropriate method for a given problem. 
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For the comparison of the different models, we selected 41 datasets from the UCI Machine 
Learning Repository which are shown in Table 1. The estimation of the error is made using 
10-fold cross-validation. The datasets were selected considering problems of at least 6 
classes for ecoc codes (27 datasets), and problems with at least 3 classes for the other 
methods. We will use as main base learner a C4.5 decision tree (Quinlan, 1993), because it is 
a powerful widely used classification algorithm and has a native multiclass method that can 
be compared with class binarization algorithms. In some experiments we will also show 
results with other base learners for the sake of completeness. It is interesting to note that this 
set of problems is considerably larger than the used in the comparison studies cited along 
the paper.  
When the differences between two algorithms must be statistically assessed we use a 
Wilcoxon test for several reasons. Wilcoxon test assumes limited commensurability. It is 
safer than parametric tests since it does not assume normal distributions or homogeneity of 
variance. Thus, it can be applied to error ratios. Furthermore, empirical results show that it 
is also stronger than other tests (Demšar, 2006). 
 

Binary classifiers 
Dataset Cases Inputs Classes 

Dense ecoc Sparse ecoc One-vs-one 
Abalone 4177 10 29 2.68e+8 3.43e+13 406 
Anneal 898 59 5 15 90 10 

Arrhythmia 452 279 13 4095 7.88e+5 78 
Audiology 226 93 24 8.38e+6 1.41e+11 276 

Autos 205 72 6 31 301 15 
Balance 625 4 3 3 6 3 

Car 1728 16 4 7 25 6 
Dermatology 366 34 6 31 301 15 

Ecoli 336 7 8 127 3025 28 
Gene 3175 120 3 3 6 3 
Glass 214 9 6 31 301 15 
Horse 364 58 3 3 6 3 
Hypo 3772 29 4 7 25 6 

Iris 150 4 3 3 6 3 
Isolet 7797 617 26 3.35e+7 1.27e+12 325 

Krkopt 28056 6 6 1.31e+5 1.93e+8 153 
Led24 200 24 10 511 28501 45 
Letter 20000 16 26 3.35e+7 1.27e+12 325 

Lrs 531 101 10 511 28501 45 
Lymph 148 38 4 7 25 6 

Mfeat-fou 2000 76 10 511 28501 45 
Mfeat-kar 2000 64 10 511 28501 45 
Mfeat-mor 2000 6 10 511 28501 45 
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Binary classifiers 
Dataset Cases Inputs Classes 

Dense ecoc Sparse ecoc One-vs-one 
Mfeat-zer 2000 47 10 511 28501 45 

New-thyroid 215 5 3 3 6 3 
Nursery 12960 23 5 15 90 10 

Optdigits 5620 64 10 511 28501 45 
Page-blocks 5473 10 5 15 90 10 

Pendigits 10992 16 10 511 28501 45 
Primary 339 23 22 2.09e+6 1.56e+10 231 
Satimage 6435 36 6 31 301 15 
Segment 2310 19 7 63 966 21 
Soybean 683 82 19 2.62e+5 5.80e+8 171 
Texture 5500 40 11 1023 86526 55 
Vehicle 846 18 4 7 25 6 
Vowel 990 10 11 1023 86526 55 

Waveform 5000 40 3 3 6 3 
Wine 178 13 3 3 6 3 
Yeast 1484 8 10 511 28501 45 
Zip 9298 256 10 511 28501 45 
Zoo 101 16 7 63 966 21 

Table 1. Summary of datasets used in the experiments. 

The first set of experiments is devoted to studying the behavior of ecoc codes. First, we test 
the influence of the size of codewords on the performance of ecoc method. We also test 
whether the use of codes designed by their error correcting capabilities are better than codes 
randomly designed. For the first experiment we use codes of 30, 50, 100 and 200 bits.  
In many previous studies it has been shown that, in general, the advantage of using codes 
designed for their error correcting capabilities over random codes is only marginal. We 
construct random codes just generating the coding matrix randomly with the only post-
processing of removing repeated columns or rows. In order to construct error-correcting 
codes, we must take into account two different objectives, as mentioned above, column and 
row separation. Error-correcting design algorithm are only concerned with row separation 
so their use must be coupled with another method for ensuring column separation. 
Furthermore, many of these algorithms are too complex and difficult to scale for long codes. 
So, instead of these methods, we have used an evolutionary computation method, a genetic 
algorithm to construct our coding matrix. 
Evolutionary computation (EC) (Ortiz-Boyer at al., 2005) is a set of global optimization 
techniques that have been widely used over the last years for almost every problem within 
the field of Artificial Intelligence. In evolutionary computation a population (set) of 
individuals (solutions to the problem faced) are codified following a code similar to the 
genetic code of plants and animals. This population of solutions is evolved (modified) over a 
certain number of generations (iterations) until the defined stop criterion is fulfilled. Each 
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results with other base learners for the sake of completeness. It is interesting to note that this 
set of problems is considerably larger than the used in the comparison studies cited along 
the paper.  
When the differences between two algorithms must be statistically assessed we use a 
Wilcoxon test for several reasons. Wilcoxon test assumes limited commensurability. It is 
safer than parametric tests since it does not assume normal distributions or homogeneity of 
variance. Thus, it can be applied to error ratios. Furthermore, empirical results show that it 
is also stronger than other tests (Demšar, 2006). 
 

Binary classifiers 
Dataset Cases Inputs Classes 

Dense ecoc Sparse ecoc One-vs-one 
Abalone 4177 10 29 2.68e+8 3.43e+13 406 
Anneal 898 59 5 15 90 10 

Arrhythmia 452 279 13 4095 7.88e+5 78 
Audiology 226 93 24 8.38e+6 1.41e+11 276 

Autos 205 72 6 31 301 15 
Balance 625 4 3 3 6 3 

Car 1728 16 4 7 25 6 
Dermatology 366 34 6 31 301 15 

Ecoli 336 7 8 127 3025 28 
Gene 3175 120 3 3 6 3 
Glass 214 9 6 31 301 15 
Horse 364 58 3 3 6 3 
Hypo 3772 29 4 7 25 6 

Iris 150 4 3 3 6 3 
Isolet 7797 617 26 3.35e+7 1.27e+12 325 

Krkopt 28056 6 6 1.31e+5 1.93e+8 153 
Led24 200 24 10 511 28501 45 
Letter 20000 16 26 3.35e+7 1.27e+12 325 

Lrs 531 101 10 511 28501 45 
Lymph 148 38 4 7 25 6 

Mfeat-fou 2000 76 10 511 28501 45 
Mfeat-kar 2000 64 10 511 28501 45 
Mfeat-mor 2000 6 10 511 28501 45 

Output Coding Methods: Review and Experimental Comparison 

 

335 

Binary classifiers 
Dataset Cases Inputs Classes 

Dense ecoc Sparse ecoc One-vs-one 
Mfeat-zer 2000 47 10 511 28501 45 

New-thyroid 215 5 3 3 6 3 
Nursery 12960 23 5 15 90 10 

Optdigits 5620 64 10 511 28501 45 
Page-blocks 5473 10 5 15 90 10 

Pendigits 10992 16 10 511 28501 45 
Primary 339 23 22 2.09e+6 1.56e+10 231 
Satimage 6435 36 6 31 301 15 
Segment 2310 19 7 63 966 21 
Soybean 683 82 19 2.62e+5 5.80e+8 171 
Texture 5500 40 11 1023 86526 55 
Vehicle 846 18 4 7 25 6 
Vowel 990 10 11 1023 86526 55 

Waveform 5000 40 3 3 6 3 
Wine 178 13 3 3 6 3 
Yeast 1484 8 10 511 28501 45 
Zip 9298 256 10 511 28501 45 
Zoo 101 16 7 63 966 21 

Table 1. Summary of datasets used in the experiments. 

The first set of experiments is devoted to studying the behavior of ecoc codes. First, we test 
the influence of the size of codewords on the performance of ecoc method. We also test 
whether the use of codes designed by their error correcting capabilities are better than codes 
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In many previous studies it has been shown that, in general, the advantage of using codes 
designed for their error correcting capabilities over random codes is only marginal. We 
construct random codes just generating the coding matrix randomly with the only post-
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algorithm to construct our coding matrix. 
Evolutionary computation (EC) (Ortiz-Boyer at al., 2005) is a set of global optimization 
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individuals (solutions to the problem faced) are codified following a code similar to the 
genetic code of plants and animals. This population of solutions is evolved (modified) over a 
certain number of generations (iterations) until the defined stop criterion is fulfilled. Each 
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individual is assigned a real value that measures its ability to solve the problem, which is 
called its fitness. 
In each iteration, new solutions are obtained combining two or more individuals (crossover 
operator) or randomly modifying one individual (mutation operator). After applying these 
two operators a subset of individuals is selected to survive to the next generation, either by 
sampling the current individuals with a probability proportional to their fitness, or by 
selecting the best ones (elitism). The repeated processes of crossover, mutation and selection 
are able to obtain increasingly better solutions for many problems of Artificial Intelligence. 
For the evolution of the population, we have used the CHC algorithm. The algorithm 
optimizes row and columns separation. We will refer to these codes as CHC codes 
throughout the paper for brevity's sake. 
This method is able to achieve very good matrices in terms of our two objectives, and also 
showed better results than other optimization algorithms we tried. Figure 1 shows the 
results for the four sizes of code length and both types of codes, random and CHC. For 
problems with few classes, the experiments are done up to the maximum length available. 
For instance, glass dataset has 6 classes, which means that for dense codes we have 31 
different columns, so for this problem only codes of 30 bits are available and it is not 
included in this comparison. 
The figure shows two interesting results. Firstly, we can see that the increment in the size of 
the codewords has the effect of improving the accuracy of the classifier. However, the effect 
is less marked as the codeword is longer. In fact, there is almost no differences between a 
codeword of 100 bits and a codeword of 200 bits. Secondly, regarding the effect of error 
correcting capabilities, there is a general advantage of CHC codes, but the differences are 
not very marked. In general, we can consider that a code of 100 bits is enough, as the 
improvement of the error using 200 bits is hardly significant, and the added complexity 
important. 
Allwein et al. (2000) proposed sparse ecoc codes, where 0's are allowed in the columns, 
meaning “don't care”. It is interesting to show whether the same pattern observed for dense 
codes, is also present in sparse codes. In order to test the behavior of sparse codes, we have 
performed the same experiment as for dense codes, that is, random and CHC codes of 30, 
50, 100 and 200 bits and C.45 as base learner. Figure 2 shows the testing error results. For 
sparse codes we have more columns available (see Table 1), so all the datasets with 6 classes 
or more are included in the experiments. 
 

 
Fig. 1. Error values for ecoc dense codes using codewords of 30, 50, 100 and 200 bits and a 
C4.5 tree as base learner. 
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As a general rule, the results are similar, with the difference that the improvement of large 
codes, 100 and 200 bits, over small codes, 30 and 50 bits, is more marked than for dense 
codes. The figure also shows that the performance of both kind of codes, dense and sparse, 
is very similar. It is interesting to note that Allwein et al. (2000) suggested codes of 
⎣10log2(K)⎦ bits for dense codes and of ⎣15log2(K)⎦ bits for sparse codes, being K the number 
of classes. However, in our experiments it is shown that these values are too small, as longer 
codes are able to improve the results of codewords of that length. 
 

 
Fig. 2. Error values for ecoc sparse codes using codewords of 30, 50, 100 and 200 bits and a 
C4.5 tree as base learner. 

We measure the independence of the classifiers using Yule's Q statistic. Classifiers that 
recognize the same patterns will have positive values of Q, and classifiers that tend to make 
mistakes in different patterns will have negative values of Q. For independent classifiers the 
expectation of Q is 0. For a set of L classifiers we use an average value Qav: 
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where qi,j is the value of Q statistic between i and j classifiers which is given by: 
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where N11 means both classifiers agree and are correct, N00 means both classifiers agree and 
are wrong, N01 means classifier i is wrong and classifier j is right, and N10 means classifiers i 
is right and classifier j is wrong. In this experiment, we test whether constructing codewords 
with higher Hamming distances improves independence of the classifiers.  
After these previous experiments, we consider that a CHC code of 100 bits can be 
considered representative of ecoc codes, as the improvement obtained with longer codes is 
not significant. 
It is generally assumed that codes designed by their error correcting capabilities should 
improve the independence of the errors between the classifiers. In this way, their failure to 
improve the performance of random codes is attributed to the fact that more difficult 
dichotomies are induced. However, whether the obtained classifiers are more independent 
is not an established fact. In this experiment we study if this assumption of independent 
errors is justified.  
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Fig. 2. Error values for ecoc sparse codes using codewords of 30, 50, 100 and 200 bits and a 
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where N11 means both classifiers agree and are correct, N00 means both classifiers agree and 
are wrong, N01 means classifier i is wrong and classifier j is right, and N10 means classifiers i 
is right and classifier j is wrong. In this experiment, we test whether constructing codewords 
with higher Hamming distances improves independence of the classifiers.  
After these previous experiments, we consider that a CHC code of 100 bits can be 
considered representative of ecoc codes, as the improvement obtained with longer codes is 
not significant. 
It is generally assumed that codes designed by their error correcting capabilities should 
improve the independence of the errors between the classifiers. In this way, their failure to 
improve the performance of random codes is attributed to the fact that more difficult 
dichotomies are induced. However, whether the obtained classifiers are more independent 
is not an established fact. In this experiment we study if this assumption of independent 
errors is justified.  
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For this experiment, we have used three base learners, C4.5 decision trees, neural networks 
and support vector machines. Figure 3 shows the average values of Q statistic for all the 27 
datasets for dense and sparse codes using random and CHC codes in both cases. For dense 
codes, we found a very interesting result. Both types of codes achieve very similar results in 
terms of independence of errors, and CHC codes are not able to improve the independence 
of errors of random codes, which is probably one of the reasons why CHC codes are no 
better than random codes. This is in contrast with the general belief, showing that some of 
the assumed behavior of ecoc codes must be further experimentally tested. 
 

 
(a) Dense codes (b) Sparse codes 

Fig. 3. Average Q value for dense and sparse codes using three different base learners 

The case for sparse codes is different. For these types of codes, CHC codes are significantly 
more independent for neural networks and C4.5. For SVM, CHC codes are also more 
independent although the differences are not statistically significant. The reason may be 
found in the differences between both types of codes. For dense codes, all the binary 
classifiers are trained using all the data, so although the dichotomies are different, it is more 
difficult to obtain independent classifiers as all classifiers are trained using the same data. 
On the other hand, sparse codes disregard the patterns of the classes which have a 0 in the 
corresponding column representing the dichotomy. CHC algorithm enforces column 
separation, which means that the columns have less overlapping. Thus, the binary classifiers 
induced by CHC matrices are trained using datasets that have less overlapping and can be 
less dependent.  
So far we have studied ecoc method. The following experiment is devoted to the study of the 
other two methods: ovo and ova. The differences in performance between ovo and ova is a 
matter of discussion. We have stated that most works agree on a general advantage of ovo, 
but a careful study performed by Rifkin & Klautau (2004) has shown that most of the 
reported differences are not significant. In the works studied in that paper, the base learner 
was a support vector machine (SVM). As we are using a C4.5 algorithm, it is interesting to 
show whether the same conclusions can be extracted from our experiments. Figure 4 shows 
a comparison of results for the 41 tested datasets of the two methods. The figure shows for 
each dataset a point which reflects in the x-axis the testing error of ovo method, and in the y-
axis the testing error of ova method. A point above the main diagonal means that ovo is 
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performing better than ova, and vice versa. The figures shows a clear advantage of ovo 
method, which performs better than ova in 31 of the 41 datasets. The differences are also 
marked for many problems, as it is shown in the figure by the large separation of the points 
from the main diagonal. As C4.5 has no relevant parameters, the hypothesis of Rifkin & 
Klautau of a poor parameter setting is not applicable. 
 

 
Fig. 4. Comparison of ovo and ova methods in terms of testing error. 

In the previous experiments, we have studied the behavior of the different class binarization 
methods. However, there is still an important question that remains unanswered. There are 
many classification algorithms that can be directly applied to multiclass problems, so the 
obvious question is whether the use of ova, ovo or ecoc methods can be useful when a 
“native” multiclass approach is available. For instance, for C4.5 ecoc codes are more complex 
than the native multiclass method, so we must get an improvement from ecoc codes to 
overcome this added complexity. In fact, this situation is common with most classification 
methods, as a general rule class binarization is a more complex approach than the available 
native multiclass methods. 
We have performed a comparison of ecoc codes using a CHC code of 100 bits, ovo and ova 
methods and the native multiclass method provided with C4.5 algorithm. The results are 
shown in Figure 5, for the 41 datasets.  
The results in Figure 5 show that ecoc and ovo methods are able to improve native C4.5 
multiclass method most of the times. In fact, ecoc method is better than the native method in 
all the 27 datasets. ovo is better than the native method in 31 out of 41 datasets. On the other 
hand, ova is not able to regularly improve the results of the native multiclass method. These 
results show that ecoc and ovo methods are useful, even if we have a native multiclass 
method for the classification algorithm we are using. 
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terms of independence of errors, and CHC codes are not able to improve the independence 
of errors of random codes, which is probably one of the reasons why CHC codes are no 
better than random codes. This is in contrast with the general belief, showing that some of 
the assumed behavior of ecoc codes must be further experimentally tested. 
 

 
(a) Dense codes (b) Sparse codes 

Fig. 3. Average Q value for dense and sparse codes using three different base learners 

The case for sparse codes is different. For these types of codes, CHC codes are significantly 
more independent for neural networks and C4.5. For SVM, CHC codes are also more 
independent although the differences are not statistically significant. The reason may be 
found in the differences between both types of codes. For dense codes, all the binary 
classifiers are trained using all the data, so although the dichotomies are different, it is more 
difficult to obtain independent classifiers as all classifiers are trained using the same data. 
On the other hand, sparse codes disregard the patterns of the classes which have a 0 in the 
corresponding column representing the dichotomy. CHC algorithm enforces column 
separation, which means that the columns have less overlapping. Thus, the binary classifiers 
induced by CHC matrices are trained using datasets that have less overlapping and can be 
less dependent.  
So far we have studied ecoc method. The following experiment is devoted to the study of the 
other two methods: ovo and ova. The differences in performance between ovo and ova is a 
matter of discussion. We have stated that most works agree on a general advantage of ovo, 
but a careful study performed by Rifkin & Klautau (2004) has shown that most of the 
reported differences are not significant. In the works studied in that paper, the base learner 
was a support vector machine (SVM). As we are using a C4.5 algorithm, it is interesting to 
show whether the same conclusions can be extracted from our experiments. Figure 4 shows 
a comparison of results for the 41 tested datasets of the two methods. The figure shows for 
each dataset a point which reflects in the x-axis the testing error of ovo method, and in the y-
axis the testing error of ova method. A point above the main diagonal means that ovo is 
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performing better than ova, and vice versa. The figures shows a clear advantage of ovo 
method, which performs better than ova in 31 of the 41 datasets. The differences are also 
marked for many problems, as it is shown in the figure by the large separation of the points 
from the main diagonal. As C4.5 has no relevant parameters, the hypothesis of Rifkin & 
Klautau of a poor parameter setting is not applicable. 
 

 
Fig. 4. Comparison of ovo and ova methods in terms of testing error. 

In the previous experiments, we have studied the behavior of the different class binarization 
methods. However, there is still an important question that remains unanswered. There are 
many classification algorithms that can be directly applied to multiclass problems, so the 
obvious question is whether the use of ova, ovo or ecoc methods can be useful when a 
“native” multiclass approach is available. For instance, for C4.5 ecoc codes are more complex 
than the native multiclass method, so we must get an improvement from ecoc codes to 
overcome this added complexity. In fact, this situation is common with most classification 
methods, as a general rule class binarization is a more complex approach than the available 
native multiclass methods. 
We have performed a comparison of ecoc codes using a CHC code of 100 bits, ovo and ova 
methods and the native multiclass method provided with C4.5 algorithm. The results are 
shown in Figure 5, for the 41 datasets.  
The results in Figure 5 show that ecoc and ovo methods are able to improve native C4.5 
multiclass method most of the times. In fact, ecoc method is better than the native method in 
all the 27 datasets. ovo is better than the native method in 31 out of 41 datasets. On the other 
hand, ova is not able to regularly improve the results of the native multiclass method. These 
results show that ecoc and ovo methods are useful, even if we have a native multiclass 
method for the classification algorithm we are using. 
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Fig. 5. Error values for ovo, ova and ecoc dense codes obtained with a CHC algorithm using 
codewords of 100 bits (or the longest available) and a C4.5 tree as base learner, and the 
native C4.5 multiclass algorithm. 
Several authors have hypothesized that the lack of improvement when using codes 
designed by their error correcting capabilities over random ones may be due to the fact that 
some of the induced dichotomies could be more difficult to learn. In this way, the 
improvement due to a larger Hamming distance may be undermined by more difficult 
problems. In the same way, it has been said that ovo binary problems are easier to solve than 
ova binary problems. These two statements must be corroborated by the experiments. 
Figure 6 shows the average generalization binary testing error of all the base learners for 
each dataset for random and CHC codes. As in previous figures a point is drawn for each 

 
Fig. 6. Average generalization binary testing error of all the base learners for each dataset for 
random and CHC codes, using a C4.5 decision tree. Errors for dense codes (triangles) and 
sparse codes (squares). 
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dataset, with error for random codes in x-axis and error for CHC codes in y-axis. The figure 
shows the error for both dense and sparse codes. The results strongly support the 
hypothesis that the binary problems induced by codes designed by their error correcting 
capabilities are more difficult. Almost all the points are below the main diagonal, showing a 
general advantage of random codes. As the previous experiments failed to show a clear 
improvement of CHC codes over random ones, it is clear that the fact that the binary 
performance of the former is worse may be one of the reasons. 
In order to assure the differences shown in the figure we performed a Wilcoxon test. The test 
showed that the differences are significant for both, dense and sparse codes, as a 
significance level of 99%.  
In the same way we have compared the binary performance of ovo and ova methods. First, 
we must take into account that this comparison must be cautiously taken, as we are 
comparing the error of problems that are different. The results are shown in Figure 7, for a 
C4.5 decision tree, a support vector machine and a neural network as base learners.  

 
Fig. 7. Average generalization binary testing error of all the base learners for each dataset for 
ovo and ova methods, using a C4.5 decision tree (triangles), a support vector machine 
(squares) and a neural network (circles). 

In this case, the results depend on the base learner used. For C4.5 and support vector 
machines, there are no differences, as it is shown in the figure and corroborated by Wilcoxon 
test. However, for neural networks the figure shows a clear smaller error of ovo method. The 
difference is statistically significant for Wilcoxon test at a significance level of 99%. 
We must take into account that, although separating two classes may be easier than 
separating a class for all the remaining classes, the number of available patterns for the 
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dataset, with error for random codes in x-axis and error for CHC codes in y-axis. The figure 
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former problem is also lower than the number of available patterns for the latter. In this 
way, this last problem is more susceptible to over-fitting. As a matter of fact, binary 
classifiers training accuracy is always better for one-vs-one method. However, this problem 
does not appear when using a neural network, where one-vs-one is able to beat one-vs-all in 
terms of binary classifier testing error. As in previous experiments, C4.5 seems to suffer 
most from small training sets. 
It is noticeable that for some problems, namely abalone, arrhythmia, audiology, and 
primary-tumor, the minimum testing accuracy of the binary classifiers for one-vs-one 
method is very low. A closer look at the results shows that this problem appears in datasets 
with many classes. For some pairs, the number of patterns belonging to any of the two 
classes is very low, yielding to poorly trained binary classifiers. These classifiers might also 
have a harmful effect on the overall accuracy of the classifier. This problem does not arise in 
one-vs-all methods, as all binary classifiers are trained with all the data. 

7. Conclusions 
In this chapter, we have shown the available methods to convert a k class problem into 
several two class problems. These methods are the only alternative when we use 
classification algorithms, such as support vector machines, which are specially designed for 
two class problems. But, even if we are dealing with a method that can directly solve 
multiclass problems, we have shown that a class binarization can be able to improve the 
performance of the native multiclass method of the classifier. 
Many research lines are still open, both in the theoretical and practical fields. After some 
recent works on the topic (García-Pedrajas & Fyfe, 2008) (Escalera et al., 2008) it has been 
shown that the design of the ecoc codes and the training of the classifiers should be coupled 
to obtain a better performance. Regarding the comparison among the different approaches, 
there are still many open questions, one of the most interesting is the relationship between 
the relative performance of each method and the base learner used, as contradictory results 
have been presented depending on the binary classifier. 
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1. Introduction 
Activity recognition focuses on what is happening in the scene. It endeavors to recognize the 
actions and goals of one or more actors from a sequence of observations both on the actor 
actions and the environmental conditions. Automated recognition of human activity is 
essential ability that may be used in the surveillance to provide security in indoor as well as 
outdoor environments. Understanding human activity is also important for human-
computer-interaction systems including tele-conferencing and for content-based retrieval of 
video from digital repositories.  
The main technique utilized in activity recognition is computer vision. In vision-based 
activity recognition, a great deal of work has already been done. This is partially due to 
increasing computational power that allows huge amount of video to be processed and 
stored, but also due to the large number of potential applications. In vision-based activity 
recognition, we can distinguish four steps, namely human detection, human tracking, 
human activity recognition and then a high-level activity evaluation. 
A method of (Viola et al., 2003) detects a moving pedestrian in a temporal sequence of 
images. A linear combination of filters is applied to compute motion and appearance 
features that are then summed to determine a cumulative score, employed afterwards in a 
classification of the detection window as including the moving object. For vision based 
activity recognition, tracking is the fundamental component. The entity must be first tracked 
before the recognition can take place. Briefly, the goal of visual tracking is to find and 
describe the relative position change of the moving object from one frame to another in the 
whole sequence, while the task of action recognition is to classify the person’s action given 
the person’s location, recent appearance, etc. Kalman filters (Crowley & Berard, 1997; 
Kwolek, 2003) and particle filtering–based algorithms (Nait-Charif & McKenna, 2003) are 
utilized extensively for object tracking in this domain. These algorithms generally involve an 
object state transition model and an observation model, which reflect both motion and 
appearance of the object (Haykin & de Freitas, 2004). After tracking of the moving objects 
the action recognition stage occurs, where Dynamic Time Warping (Myers et al., 1980; 
Myers & Rabiner, 1981) and Hidden Markov Models (Brand & Kettnaker, 2000) are 
employed very often at this stage. Sophisticated stochastic models such as Dynamic 
Bayesian Networks (Albrecht et al., 1997; Ghahramani, 1997), Stochastic Context Free 
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whole sequence, while the task of action recognition is to classify the person’s action given 
the person’s location, recent appearance, etc. Kalman filters (Crowley & Berard, 1997; 
Kwolek, 2003) and particle filtering–based algorithms (Nait-Charif & McKenna, 2003) are 
utilized extensively for object tracking in this domain. These algorithms generally involve an 
object state transition model and an observation model, which reflect both motion and 
appearance of the object (Haykin & de Freitas, 2004). After tracking of the moving objects 
the action recognition stage occurs, where Dynamic Time Warping (Myers et al., 1980; 
Myers & Rabiner, 1981) and Hidden Markov Models (Brand & Kettnaker, 2000) are 
employed very often at this stage. Sophisticated stochastic models such as Dynamic 
Bayesian Networks (Albrecht et al., 1997; Ghahramani, 1997), Stochastic Context Free 
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Grammar (Pynadath et al., 1998), Probabilistic State Dependent Grammars (Pynadath et al., 
2000), Abstract Hidden Markow Models (Bui et al., 2002), among others, were elaborated in 
order to represent high-level behaviors. 
In this chapter, we focus on recognition of student activities during a computer-based 
examination where some knowledge about the layout of the scene is known. One 
characteristic of such activities is that they exhibit some specific motion patterns. The 
recognition is done on the basis of coordinates of the tracked heads, the activated activity 
areas and the probabilistic timed automata. 

2. Relevant work 
In the past decade, there has been intensive research in designing algorithms for tracking 
humans and recognizing their actions. An overview of work related to modeling and 
recognizing people’s behaviors, particularly largely structured behaviors, can be found in 
work (Aggarwal & Cai, 1999). A more recent survey on recognizing of behaviors in 
surveillance images can be found in (Hu et al., 2004). There is now a rich literature on vision 
based action recognition. In this section, we focus on approaches and applications that are 
closely related to our work.  
In work of (Rota & Thonnat, 2003), the video interpretation encompasses incremental 
recognition of scene states, scenarios and behaviors, which are described in a declarative 
manner. A classical constraint satisfaction algorithm called Arc Consistency-4 or AC4, is 
utilized to reduce the computation time for the process of recognizing such activities. The 
system described in work (Madabhushi & Aggarwal, 2000) is capable to recognize activities 
using head movement. The system is able to recognize 12 activities based on nearest 
neighbor classification. The activities include: standing up, sitting down, bending down, 
getting up, etc. A recognition rate about of 80% has been reported in this work. 
The Finite State Machine (FSM) to model high-level activities has been used in work (Ayers 
& Shah, 2001). However, the approach presented in the mentioned work does not account 
for uncertainty in the model. State machine-based representations of behaviors have also 
been utilized in work (Bremond & Medioni, 1998), where deterministic automata in order to 
recognize airborne surveillance scenarios with vehicle behaviors in aerial imagery have been 
employed. Non-deterministic finite automaton has been employed in work (Wada & 
Matsuyama, 2000) as a sequence analyzer. An approach for multi-object activity recognition 
based on activity driven selective attention has been proposed. Bayesian networks and 
probabilistic finite-state automata were used to describe single-actor activities in work 
(Hongeng et al. 2004). The activities are recognized on the basis of the characteristics of the 
trajectory and the shape of the moving blob of the actor. The interaction between multiple 
actors was modeled by an event graph. 
Recognition of mutual interactions between two pedestrians at blob level has been described 
in work (Sato & Aggarval, 2004). Most of the research connected with recognition of human 
interactions considers multiple-person interactions in remote scenes at a coarse level, where 
each person is represented as a single moving box. An extension of Hidden Markov Models, 
called Behavior Hidden Markov Models (BHMMs) has been presented in work (Han & 
Veloso, 1999) in order to describe behaviors and interactions in a robot system. Using such a 
representation an algorithm for automatically recognizing behaviors of single robots has 
been described too.  
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Hidden Markow Models (HMMs) are popular state-based models. In practice, only the 
observation sequence is known, while the underlying state sequence is hidden, which is 
why they are called Hidden Markov Models. HMMs have been widely employed to 
represent temporal trajectories and they are especially known for their application in 
temporal pattern recognition. A HMM is a kind of stochastic state machines (Brand et al., 
1997), which changes its state once every time unit. However, unlike finite state machines, 
they are not deterministic. A finite state machine emits a deterministic symbol in a given 
state. It then deterministically transitions to another state. HMMs do neither 
deterministically, rather they both transition and emit under a probabilistic model. Its use 
consists in two stages, namely, training and recognition. HMM training stage involves 
maximizing the observed probabilities for examples belonging to a class. In the recognition 
stage, the probability with which a particular HMM emits the test symbol sequence 
corresponding to the observations is computed. However, the amount of data that is 
required to train a HMM is typically very large. In addition, the number of states and 
transitions can be found using a guess or trial and error and in particular, there is no general 
way to determine this. Furthermore, the states and transitions depend on the class being 
learnt. Despite such shortcomings the HMMs are one of the most popular algorithms 
employed in recognition of actions. 
In our previous work related to action recognition, we presented a timed automata based 
approach for recognition of actions in meeting videos (Pelc & Kwolek, 2006). Timed 
automata are finite state machines extended about possibility for modelling of the behavior 
of real-time systems over time (Alur & Dill, 1994). A declarative knowledge provided 
graphically by the user together with person positions extracted by a tracking algorithm 
were used to generate the data for recognition of actions. The actions were formally 
specified as well as recognized using the timed automata.  
In this chapter, we present a system for recognition of high-level behaviors of people in 
complex laboratory environments. The novelty of the presented approach is in the use of 
probabilistic timed automata (PTA). The probabilistic timed automata can model state-
dependent behaviors, and with the support of time, probabilistic inference of high-level 
behaviors from low-level data. The PTA-based recognition module of behaviors takes 
sequences of coordinates of observed heads that are determined by the tracking module. Some 
declarative knowledge that has been specified graphically in advance by the system supervisor 
together with such coordinates is utilized to prepare the input data for the automata 
recognizing behaviors under uncertainty. The system also recognizes person-to-person 
interactions, which in our student examination scenario are perceived as not allowed behaviors. 

3. Vision-based person tracking 
Vision-based recognition of human activities involves extraction of relevant visual 
information, representation that information from the point of view of learning and 
recognition, and finally interpretation and evaluation of activities to be recognized. Image 
sequences consist of huge quantity of data in which the most relevant information for 
activity recognition is contained. Thus, the first step in activity recognition is to extract the 
relevant information in the form of movement primitives. Typically, this is achieved 
through vision-based object detection and tracking.  
Tracking and activity recognition are closely related problems. A time series, which has 
been extracted by an object tracker provides a descriptor that can be used in a general 



 Pattern Recognition Techniques, Technology and Applications 

 

346 
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system described in work (Madabhushi & Aggarwal, 2000) is capable to recognize activities 
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& Shah, 2001). However, the approach presented in the mentioned work does not account 
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employed. Non-deterministic finite automaton has been employed in work (Wada & 
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based on activity driven selective attention has been proposed. Bayesian networks and 
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trajectory and the shape of the moving blob of the actor. The interaction between multiple 
actors was modeled by an event graph. 
Recognition of mutual interactions between two pedestrians at blob level has been described 
in work (Sato & Aggarval, 2004). Most of the research connected with recognition of human 
interactions considers multiple-person interactions in remote scenes at a coarse level, where 
each person is represented as a single moving box. An extension of Hidden Markov Models, 
called Behavior Hidden Markov Models (BHMMs) has been presented in work (Han & 
Veloso, 1999) in order to describe behaviors and interactions in a robot system. Using such a 
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Hidden Markow Models (HMMs) are popular state-based models. In practice, only the 
observation sequence is known, while the underlying state sequence is hidden, which is 
why they are called Hidden Markov Models. HMMs have been widely employed to 
represent temporal trajectories and they are especially known for their application in 
temporal pattern recognition. A HMM is a kind of stochastic state machines (Brand et al., 
1997), which changes its state once every time unit. However, unlike finite state machines, 
they are not deterministic. A finite state machine emits a deterministic symbol in a given 
state. It then deterministically transitions to another state. HMMs do neither 
deterministically, rather they both transition and emit under a probabilistic model. Its use 
consists in two stages, namely, training and recognition. HMM training stage involves 
maximizing the observed probabilities for examples belonging to a class. In the recognition 
stage, the probability with which a particular HMM emits the test symbol sequence 
corresponding to the observations is computed. However, the amount of data that is 
required to train a HMM is typically very large. In addition, the number of states and 
transitions can be found using a guess or trial and error and in particular, there is no general 
way to determine this. Furthermore, the states and transitions depend on the class being 
learnt. Despite such shortcomings the HMMs are one of the most popular algorithms 
employed in recognition of actions. 
In our previous work related to action recognition, we presented a timed automata based 
approach for recognition of actions in meeting videos (Pelc & Kwolek, 2006). Timed 
automata are finite state machines extended about possibility for modelling of the behavior 
of real-time systems over time (Alur & Dill, 1994). A declarative knowledge provided 
graphically by the user together with person positions extracted by a tracking algorithm 
were used to generate the data for recognition of actions. The actions were formally 
specified as well as recognized using the timed automata.  
In this chapter, we present a system for recognition of high-level behaviors of people in 
complex laboratory environments. The novelty of the presented approach is in the use of 
probabilistic timed automata (PTA). The probabilistic timed automata can model state-
dependent behaviors, and with the support of time, probabilistic inference of high-level 
behaviors from low-level data. The PTA-based recognition module of behaviors takes 
sequences of coordinates of observed heads that are determined by the tracking module. Some 
declarative knowledge that has been specified graphically in advance by the system supervisor 
together with such coordinates is utilized to prepare the input data for the automata 
recognizing behaviors under uncertainty. The system also recognizes person-to-person 
interactions, which in our student examination scenario are perceived as not allowed behaviors. 

3. Vision-based person tracking 
Vision-based recognition of human activities involves extraction of relevant visual 
information, representation that information from the point of view of learning and 
recognition, and finally interpretation and evaluation of activities to be recognized. Image 
sequences consist of huge quantity of data in which the most relevant information for 
activity recognition is contained. Thus, the first step in activity recognition is to extract the 
relevant information in the form of movement primitives. Typically, this is achieved 
through vision-based object detection and tracking.  
Tracking and activity recognition are closely related problems. A time series, which has 
been extracted by an object tracker provides a descriptor that can be used in a general 
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recognition framework. Robust detection and tracking of moving objects from an image 
sequence is a substantial key for reliable activity recognition. Much tracking methods can be 
applied in scenarios with simple backgrounds and constant lighting conditions. 
Unfortunately, in real scenarios only occasionally do such situations arise. Typically, 
tracking requires consideration of complicated environments with difficult visual scenarios, 
under varying lighting conditions.  
The shape of the head is one of the most effortlessly recognizable human parts and can be 
sufficiently well approximated by an ellipse. Its shape undergoes relatively little changes in 
comparison to changes of the human silhouette. In our scenario the position of the head is 
very useful because on the basis of its location we can recognize the actions consisting in 
looking at the terminal of a neighboring student. Moreover, on the basis of the location of 
the head we can determine the person’s movement through the scene and in consequence 
we can recognize several actions like entering the scene, leaving the scene, standing up, 
sitting down, using a computer terminal, and so on. 
The participant undergoing tracking can make rotations of both his/her body and head and 
thus the actions should be identified in either the frontal and lateral view. This implies that 
the usage of only color information for person tracking in long image sequences can be 
infeasible. In work (Kwolek, 2004) it has been demonstrated a tracker that has proven to be 
very useful in long-term tracking of people attending a meeting. This particle filter based 
tracker is built on gradient, color and stereovision. Human face is rich both in details and 
texture and consequently the depth map covering a face region is usually dense. The 
algorithm can track a person’s head with no user intervention required. More importantly, 
this algorithm is efficient enough to allow real-time tracking on typical 850 MHz personal 
computer with PIII. It can accurately track in real-time multiple subjects in most situations. 
The detection of person entrance has also been done on the basis of the head. The entering 
and leaving the scene by participants of the exam is detected in entry and exit zones on the 
basis of method described in (Kwolek, 2005). Assuming that the person’s head is relatively 
flat and that the entrance should be done at some distance from the camera we can suppress 
pixels not belonging to the person.  

4. Activity recognition using probabilistic timed automata 
4.1 The problem 
The aim of the system is to recognize activities as well as to detect abnormal activities 
(suspicious and forbidden) that can take place during examination of the students. During 
the exam the students solve individually some tasks using computers and the collaboration 
between students is not permitted. In other words, each student should solve his/her task 
one-self, without looking into the computer screen of the neighbor. During the unaided 
work the student must not change workplace and take an empty workplace, and 
particularly, crib another student’s solution from the computer screen, if such a student 
temporally left his/her workplace in order to pass the oral part of the exam in another part 
of the laboratory or lecturer’s room. Additionally, the system should recognize the start as 
well as the end of the activities in order to record the corresponding key-frames. 
Figure 1 depicts a scene that has been shot in a typical laboratory environment. The 
rectangles that are overlaid on the image are employed in detection of activity areas in order 
to pre-segment low-level data for recognition. In work (Pelc & Kwolek, 2006) the timed 
automata were used in action recognition and a person was required to continuously 
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occupy positions within rectangular activity areas for specified in advance time intervals. It 
this work, the probabilistic timed automata are employed to model state-dependent 
activities, and with the support of time, to perform probabilistic inference of high-level 
behaviors from low-level data. The activity recognition under uncertainty is done on the 
basis of sequences of head coordinates. Some declarative knowledge in form of rectangular 
areas that can be activated together with such coordinates is utilized to pre-segment the 
input data for the automata. The system recognizes also person-to-person interactions, 
which in our student examination scenario are perceived as not allowed behaviors. 
 

 
Fig. 1. A view of the scene from the camera  

Using probabilistic timed automata the system recognizes the following activities: 
• A_Work – work of the examined student, 
• A_PartialC – partial collaboration of two students, 
• A_FullC – full collaboration of two students,  
• A_Suspicious – suspicious action of a student, 
• A_Forbidden – forbidden action of a student. 
As we already mentioned above, the system determines also both the start and the end of 
such activities in order to record some important key-frames. A more precise explanation of 
actions to be recognized will be given in the remaining subsections in coherence with 
description of automata.  

4.2 Probabilistic timed automata 
A description of probabilistic timed automata can be found in (Alur and Dill, 1994; 
Kwiatkowska et al., 2004). It is worth to note that the probabilistic timed automaton can be 
represented via a directed graph. In such a graph-based representation the nodes stand for 
the states, whereas the edges are labeled by actions. Time domain is represented by positive 
integer values. The variables of such a type are called clocks. They are employed to 
formulate state invariants and guards for the edges. After transition along an edge the 
clocks can be reset. In order to express probabilities the edges can be forked and they can 
connect more than two states. The state that will be reached by the automata after 
performing the action connected with the edges depends on the probability (assuming 
positive real values) of the given transition. Figure 2. depicts an example of elementary 
probabilistic timed automaton. This automaton consists of:  
• two states: State0 and State1, and one clock t, 
• two state invariants: t≤T and true, respectively, where T is some integer parameter 

assuming positive values, whereas true means that the invariant is always satisfied, 
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recognition framework. Robust detection and tracking of moving objects from an image 
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clocks can be reset. In order to express probabilities the edges can be forked and they can 
connect more than two states. The state that will be reached by the automata after 
performing the action connected with the edges depends on the probability (assuming 
positive real values) of the given transition. Figure 2. depicts an example of elementary 
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• two states: State0 and State1, and one clock t, 
• two state invariants: t≤T and true, respectively, where T is some integer parameter 

assuming positive values, whereas true means that the invariant is always satisfied, 
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• one action: a, 
• one guard of the action: t≥T, 
• reset function of the clock, t:=0, 
• probabilities of the transitions: p and 1-p. 
At the beginning the automaton is in the state State0 and it can occupy this state for a period 
of time not longer than T. If in a period of time T an action a occurs, then automaton may 
change its state. The moment of the transition is determined by the guard t≥T, which 
together with the initial state invariant determines the moment of the transition. The 
automaton makes the transition that has been caused by the action a and resets the clock t. 
The automaton may transit to State1, what occurs with probability equal to p or remain in 
the state State0, what occurs with the probability 1-p.  
 

 
Fig. 2. Example of an elementary probabilistic timed automaton  

It is worth to note that the passage of time is an action itself.  

4.3 PTA-based action recognition 
The PTA-based action recognition is done on the basis of four different concurrent 
automata, which synchronize themselves if needed. The aim of the automata is to recognize 
the following actions: 
• PTA_ElementaryActionPx - recognition of an elementary action of the person Px, 
• PTA_ActionWorkPx – recognition of action A_Work of person Px, 
• PTA_Interact – recognition of collaboration between persons and recognition of actions 

not allowed: A_PartialC, A_FullC, A_Suspicious, A_Forbidden, 
• PTA_StartEnd – determination of the start, the end as well as persistence of the actions 

undergoing recognition. 
For each person the system activates separate instances of the automaton 
PTA__ElementaryActionPx, where x assumes values 1, 2 and 3. 
In description of the PTA-based action recognition that follows in four subsequent 
subsections we utilize the following notation:  
- names of the automata begin with PTA_, for example PTA_Interact, 
- actions recognized by the system begin with A_, for example, action work is denoted as 

A_Work, 
- actions moving an automaton from one state to another are denoted by names, which 

begin with a_, for example, the action connected with a step of computation is denoted 
by a_step,  

- names of the states of the automata begin with S_, for example, in case of recognition of 
the action A_Work the state of the automaton PTA_ActionWorkPx is denoted as 
S_Work. 

The system recognizes 48 actions, including actions listed in Section 4.2. Such a set of actions 
consists of 8 basic actions, 8 elementary actions and 4 auxiliary actions for each basic action, 
see Table 1.  
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Type of action Denotation Description 
A_NWork no work 
A_PWork probable work 
A_Work work 
A_NoC no collaboration 
A_PartialC partial collaboration 
A_FullC full collaboration 
A_Suspicious suspicious action 

Basic actions 

A_Forbidden forbidden action 

A_Desk1, ..., A_Desk3 Standing at workplace 1, 2, 3, 
respectively 

A_Outside Person is outside of the camera’s 
field of view 

A_Chair1, ..., A_Chair3 Seating at workplace 1, 2, 3, 
respectively 

Elementary 
actions 

A_Move Moving between workplaces  
A_Start_A_NWork, 
... 
A_Start_A_Forbidden 

Start of basic action A_NWork, ..., 
A_Forbidden, respectively 

A_During_A_NWork, 
...  
A_During_A_Forbidden 

Persistence of basic action 
A_NWork, ..., A_Forbidden, 
respectively 

A_End_A_NWork, 
... 
A_End_A_Forbidden 

End of basic action  A_NWork, ..., 
A_Forbidden, respectively 

Auxiliary 
actions 

A_No_A_NWork, 
... 
A_No_A_Forbidden 

Lack of basic action A_NWork, ..., 
A_Forbidden, respectively 

Table 1. Statement of actions that are recognized by the system 

4.3.1 Automaton PTA_ElementaryActionPx 
The automaton PTA_ElementaryActionPx is designated for recogniton of elementary 
actions, which are listed in Table 1. It is depicted in a simplified form in Fig. 3. 
The detection of an elementary action is connected with reaching by the automaton of the 
suitable state. The states, except the states S_Outside and S_Move, are connected with the 
presence of the person in the suitable rectangular area depicted in Fig. 1. Table 2 lists the 
connections between the active areas, the states of the automaton PTA_ElementaryActionPx, 
and the recognized elementary actions. 
The state S_Move reflects the absence of a person in the assumed activity areas of the scene, 
see Fig. 1. In such a situation we assume that a person moves between the workplaces. The 
state S_Outside is reached when a person is out of the camera’s field of view. 
From the analysis of the automaton shown in Fig. 3 we can notice that the PTA-based 
activity recognizer detects entry and exit to/from the activity areas of the scene depicted in 
Fig. 1. For example, the entry event into the area A1 in the Fig. 1, and then exit from this area 
is connected with action (edge) a_dk1_on, which transits the automaton to state S_Desk1, 
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• one action: a, 
• one guard of the action: t≥T, 
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together with the initial state invariant determines the moment of the transition. The 
automaton makes the transition that has been caused by the action a and resets the clock t. 
The automaton may transit to State1, what occurs with probability equal to p or remain in 
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Fig. 2. Example of an elementary probabilistic timed automaton  
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Type of action Denotation Description 
A_NWork no work 
A_PWork probable work 
A_Work work 
A_NoC no collaboration 
A_PartialC partial collaboration 
A_FullC full collaboration 
A_Suspicious suspicious action 

Basic actions 

A_Forbidden forbidden action 

A_Desk1, ..., A_Desk3 Standing at workplace 1, 2, 3, 
respectively 

A_Outside Person is outside of the camera’s 
field of view 

A_Chair1, ..., A_Chair3 Seating at workplace 1, 2, 3, 
respectively 

Elementary 
actions 

A_Move Moving between workplaces  
A_Start_A_NWork, 
... 
A_Start_A_Forbidden 

Start of basic action A_NWork, ..., 
A_Forbidden, respectively 

A_During_A_NWork, 
...  
A_During_A_Forbidden 

Persistence of basic action 
A_NWork, ..., A_Forbidden, 
respectively 

A_End_A_NWork, 
... 
A_End_A_Forbidden 

End of basic action  A_NWork, ..., 
A_Forbidden, respectively 

Auxiliary 
actions 

A_No_A_NWork, 
... 
A_No_A_Forbidden 

Lack of basic action A_NWork, ..., 
A_Forbidden, respectively 

Table 1. Statement of actions that are recognized by the system 

4.3.1 Automaton PTA_ElementaryActionPx 
The automaton PTA_ElementaryActionPx is designated for recogniton of elementary 
actions, which are listed in Table 1. It is depicted in a simplified form in Fig. 3. 
The detection of an elementary action is connected with reaching by the automaton of the 
suitable state. The states, except the states S_Outside and S_Move, are connected with the 
presence of the person in the suitable rectangular area depicted in Fig. 1. Table 2 lists the 
connections between the active areas, the states of the automaton PTA_ElementaryActionPx, 
and the recognized elementary actions. 
The state S_Move reflects the absence of a person in the assumed activity areas of the scene, 
see Fig. 1. In such a situation we assume that a person moves between the workplaces. The 
state S_Outside is reached when a person is out of the camera’s field of view. 
From the analysis of the automaton shown in Fig. 3 we can notice that the PTA-based 
activity recognizer detects entry and exit to/from the activity areas of the scene depicted in 
Fig. 1. For example, the entry event into the area A1 in the Fig. 1, and then exit from this area 
is connected with action (edge) a_dk1_on, which transits the automaton to state S_Desk1, 
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and after that the action a_dk1_off deriving the automaton from that state, see Fig. 3. 
Analogously, for the area A2 it would be a_dk2_on and a_dk2_off, whereas for the area B1 
(S_Chair1 in automaton) a_ch1_on and a_ch1_off, and so on. 
  

 
Fig. 3. The automaton for recognition of elementary actions 
 

Area of scene State of the automaton 
PTA_ElementaryActionPx 

The recognized elementary 
actions 

A1 S_Desk1 A_Desk1 
A2 S_Desk2 A_Desk2 
A3 S_Desk3 A_Desk3 
B1 S_Chair1 A_Chair1 
B2 S_Chair2 A_Chair2 
B3 S_Chair3 A_Chair3 

Table 2. Connections between the active areas, the states of the automaton 
PTA_ElementaryActionPx, and the recognized elementary actions 

4.3.2 Automaton PTA_ActionWorkPx 
The action A_Work can be recognized with some likelihood. The system activates separate 
instances of the automaton PTA_ActionWorkPx for each person Px. Let us consider the 
person P1 acting in front of the area B1. The smaller number of times the area B1 has been 
left by the person in time Tw, and at the same time, the smaller was his/her total time of 
staying outside B1, the greater the likelihood is, that the person P1 is working. Time Tw 
stands for minimal time that should elapse between the entry and the exit of the workplace 
to indicate that activity relying on work has been started.  
The automaton PTA_ActionWorkPx is shown at Fig. 4 (for clarity of presentation some less 
important details have been omitted). It consists of the following states: 
S_NWork – the considered person is not working, 
S_PWork – it is possible that the considered person is working, 
S_Work – the considered person is working. 
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In case the automaton PTA_ActionWorkPx has synchronized with the suitable automata, 
then attaining by it the state S_NWork is equivalent with recognition by the system the 
action A_NWork. Analogous relationship is between S_PWork and A_PWork, S_Work and 
A_Work, see also Tab. 1. 
 

 
Fig. 4. Automaton PTA_ActionWorkPx  

Let us assume, that the person P1 is doing alternately the actions A_Chair1 (area B1 in 
Fig. 1) and A_Move (outside B1). Such a probable work will be recognized as action 
A_PWork. In dependence of how the transitions frequent are, as well as how long they 
appeared in total according to time Tw, the person P1 may in consequence either work with 
the probability pW, what exemplifies the action A_Work, or may not work, what exemplifies 
the action A_NWork with probability 1-pW. 
The probability pW has been determined as follows: 

 pWnw)(1pWtwpW ⋅−+⋅=  (1) 

where w denotes a weight that can assume values between 0 and 1.0, pWt stands for 
probability resulting from the summed time of temporal absences in the area Bx, see Fig. 1, 
pWn is a probability resulting from the number of the mentioned above absences in period 
of time Tw. 
Figure 5a illustrates the method of determining the probability pWt. Let us denote by tn the 
summed time of the absence in the period of time Tw. Then 

 
1-(1/ ) for 0

0 for   
⋅ ≤ ≤⎧

= ⎨ >⎩

Tmax tn tn Tmax
pWt

tn Tmax
 (2) 

where Tmax denotes maximal admissible sum of temporal absences at the workplace. The 
value of time Tmax must be less than the value Tw. 
 

a) 

 

b) 

 
Fig. 5. The probability functions: a) pWt, b) pWn  

Figure 5b illustrates the method of computation of the probability pWn. Let us denote by n 
the number of absences at workplace in the period of time Tw. Then  
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1-(1/ ) for 0

0 for   
⋅ ≤ ≤⎧
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Nmax n n Nmax
pWn

n Nmax
 (3) 

where Nmax stands for maximal admissible number of absences in the workplace during 
time period equal to Tw. 
In the sequel we explain actions of the automaton PTA_ActionWorkPx in the context of the 
remaining automata. The meaning of actions a_1, ..., a_6 depicted in Fig. 4, under 
assumption that they were done by person P1, is as follows: 
• a_1 – will occur, if at the moment of occurrence of action a_step the automaton 

PTA_ElementaryActionPx is in other state than S_Chair1, what means that the 
considered person P1 is not seating at his/her workplace,  

• a_2 – will occur, if at the moment of occurrence of action a_step the automaton 
PTA_ElementaryActionPx is in state S_Chair1, what means that the considered person 
is seating at his/her workplace, 

• a_3 – will take place, if at the moment of occurrence of action a_step the automaton 
PTA_ElementaryActionPx is in the state S_Chair1 or S_Move, in other words, the 
considered person seats at his/her workplace, and from time to time the person lefts it 
temporary. Because of the guard t<Tw, the mentioned behavior can only take time 
shorter than Tw. 

• a_4 – analogously to the action a_1, likewise, the action a_5 is analogous to action a_2, 
• a_6 – will occur, if the action a_step is occurring and the automaton 

PTA_ElementaryActionPx is not neither in the state S_Chair1 nor S_Move,  
• t≥Tw – action connected with passage of time. 

4.3.3 Automaton PTA_Interact 
As we already mentioned in Section 4.1 the system should recognize the activity A_Work as 
well as the following activities: 
- Partial collaboration – A_PartialC, 
- Full collaboration – A_FullC, 
- Suspicious action – A_Suspicious, 
- Forbidden action – A_Forbidden. 
Below is a more detailed description of assumed conditions that are used in process of the 
recognition of the listed above activities.  
1. If two persons work, then with the probability of 10% they collaborate each other and in 

consequence the action A_PartialC takes place.  
2. If A_PartialC took place and the considered persons still work together, then the 

probability of persistence of the collaboration is 50%. 
3. If the neighboring persons collaborate each other and one of them looks at the screen of 

one of the neighbors, then with the probability of 90% the action A_FullC occurs. 
4. If a person is not present at his/her workplace, and another person Px is present at 

his/her workplace, then Px makes the suspicious action denoted as A_Suspicious. 
5. If the action A_Suspicious extends in time, for time not longer than some assumed 

value ta, then the person Px makes forbidden action denoted as A_Forbidden. 
Figure 6 illustrates a part of the automaton PTA_Interact for recognition of collaboration 
between P1 and P2. The state S_NoC stands for no collaboration. 
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Fig. 6. Automaton PTA_Interact 

The meaning of actions depicted in Fig. 6 is as follows: 
• a_1 – the automata PTA_ActionWorkP1 and PTA_ActionWorkP2 are not 

simultaneously in the states S_Work,  
• a_2, a_8 – similar meaning with a_1, 
• a_3 – the automata PTA_ActionWorkP1 and PTA_ActionWorkP2 are simultaneously in 

the states S_Work,  
• a_4, a_7 – similar meaning with a_3, 
• a_5 – the automata PTA_ActionWorkP1 and PTA_ActionWorkP2 are simultaneously in 

the states S_Work, and additionally, the automaton PTA_ElementaryActionP1 is in the 
state S_Char2 or the automaton PTA_ElementaryActionP2 is in the state S_Char1, 

• a_6 – similar meaning with a_5, 
• a_9 – the automaton PTA_ElementaryActionP1 is in the state S_Char2, whereas the 

automaton PTA_ElementaryActionP2 is in the state S_Outside,  
• a_10 – similarly to a_9, but the time of being in the state S_Suspicious is shorter than an 

assumed value Ta, 
• a_11, a_14 – have a sense similar with the negation of the action a_9, 
• a_12 – similarly to a_10, but time Ta elapsed, 
• a_13 – similar meaning with a_9. 
For the remaining persons the rest of the automaton will be analogous. 

4.3.4 Automaton PTA_SartEnd 
The automaton consists of four states for each basic action recognized by the system, see 
also Tab. 1. The first state is reached when the suitable action begins, the second one is when 
the action is in progress, the third one is reached when the action ends, whereas the fourth 
state exemplifies no action. The transitions between the mentioned states depend on the 
suitable states. The discussed automaton is employed in recording of the key-frames of the 
video.  
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4.4 Realization of the activity recognizer in PRISM 
PRISM (Kwiatkowska et al., 2006) is a verifier of probabilistic, stochastic and non-
deterministic automata. This tool has no built-in support for expressing the elapse of time in 
the probabilistic automata, i.e. it has no support for constructing probabilistic timed 
automata. In our PTA-based based system for activity recognition an event-based approach 
has been used to express the elapse of time. This allowed us to code the reachability graphs 
of our PTA-based activity recognizer for proper period of time. Such PRISM-based 
realization of the recognizer has been tested both on real data, i.e. from our tracker and on 
data obtained form a module modeling selected person activities. The module responsible 
for modeling the person activities is described below.  

4.5 Simulations 
For practical test of the formal model as well as simulation purposes we prepared models 
of the activities to be recognized. Such models of the person activities have a form of 
deterministic timed automata. The aim of the automata is to express real activities that can 
happen in our scenario. They are employed to generate the input data for the probabilistic 
timed automata responsible for activity recognition. Such an approach permits the 
analysis of the correctness of the recognition for typical activities. Furthermore, the 
simulation was helpful in tuning of the system through setting the values of parameters. 
In particular, owing to simulation experiments we chosen the following values of the 
parameters: 
• the number and location of the activity areas,  
• Tmax - maximal admissible sum of temporal absences at the workplace, 
• Tw - minimal time of being in workplace, that allows us to draw a conclusion that the 

person might begin his/her work, 
• Nmax - maximal admissible number of absences in the workplace during time period 

equal to Tw, 
• w – weight in (1), 
• Ta – minimal admissible time of being in another than the assigned workplace.  
Our simulation experiments demonstrated that practical difficulties related to too small 
activity areas can be compensated through larger values of Nmax and smaller values of the 
parameter w. Good choice of the mentioned parameters guarantees high recognition rate 
despite smaller activity areas. In case of not suspicious actions, a decrease of the size of 
activity areas leads to smaller efficiency of the recognition.  

5. Experiments 
The system for activity recognition has been tested both on simulated as well as real data 
that were provided by the person tracking module. The experiments demonstrated that the 
system correctly recognizes the activities described previously. Figure 7 shows example 
images with visualization of the recognition process. The dotted line illustrates the activity 
zones in which no person attendance (no head) has been recognized, solid line marks the 
activity zones in which presence of a person has been recognized, double line informs about 
attendance of two persons in a single activity zone, whereas the crossed zone notifies about 
a forbidden action. 

Activity Recognition Using Probabilistic Timed Automata 

 

357 

At Fig. 7a we can observe person P1 inclining to person’s P2 side. Because this activity 
persisted over sufficiently long time, the system recognized the full collaboration A_FullC 
between the person P1 and the person P2, what has been depicted via double line overlaid 
on the zone B2. At Fig. 7b a full collaboration between P2 and P3 has been depicted in a 
similar manner. Figure 7c illustrates a situation where the person P3, who should occupy 
only the workplace number 3 in the zone B3, changed workplace during absence of the 
person P2 and now occupies his/her workplace in zone B2. Because this action was 
sufficiently long the system recognized the action A_Forbidden, what has been visualized 
via crossing the zone B2. 
 

a)        b)              c) 

  
Fig. 7. Recognition of student activities during an exam, action A_FullC between P1 and P2 
(a), and P2 and P3 (b), action A_Forbidden done by person P3 at workplace number 2 (c) 

The images used in this work are 320 x 240 in size. They were acquired by commercial 
binocular Megapixel Stereo Head (Konolige, 1997). The stereo head is designed to operate 
with SRI’s stereo engine for fast range determination on standard PC hardware. It delivers 
range and color images at frame rates 30 Hz with a PIII 750 MHz. Range is interpolated to 
1/16 pixel, texture and consistency filters eliminate ambiguous areas in the range images. 
We decided to utilize stereo information in our head detection and tracking algorithm 
because of its usefulness in varying illumination conditions. Using it in the tracking 
algorithm we determine the length of the ellipse’s minor axis approximating the oval shape 
of the head. The stereo information serves also as constraint region both in head detection 
and tracking. 
By employing shape, color, stereovision as well as elliptical shape features our particle filter 
based tracker (Kwolek, 2004) can estimate the location of the person’s head reliably. It is able 
to track the heads of persons over the whole image sequences of typical exam. Its robustness 
with respect to full 360-degree out-of-plane rotation, considerable head tilting, substantial 
but short in time head occlusions, moving people in background, as well as varying 
illumination conditions play very important role in the process of activity recognition 
without user intervention.    
To test the activity recognition system, we have conducted several experiments in 
circumstances occurring naturally in laboratory. The aim of the experiments was to 
automatically detect the entrance of students into the exam, and then to track the heads. The 
videos as well as the 3D locations of the heads with the corresponding ellipse sizes were 
stored in files for further analysis. The activity recognition as well as visualization are done  
on the basis of such data. 
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activity areas can be compensated through larger values of Nmax and smaller values of the 
parameter w. Good choice of the mentioned parameters guarantees high recognition rate 
despite smaller activity areas. In case of not suspicious actions, a decrease of the size of 
activity areas leads to smaller efficiency of the recognition.  

5. Experiments 
The system for activity recognition has been tested both on simulated as well as real data 
that were provided by the person tracking module. The experiments demonstrated that the 
system correctly recognizes the activities described previously. Figure 7 shows example 
images with visualization of the recognition process. The dotted line illustrates the activity 
zones in which no person attendance (no head) has been recognized, solid line marks the 
activity zones in which presence of a person has been recognized, double line informs about 
attendance of two persons in a single activity zone, whereas the crossed zone notifies about 
a forbidden action. 
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At Fig. 7a we can observe person P1 inclining to person’s P2 side. Because this activity 
persisted over sufficiently long time, the system recognized the full collaboration A_FullC 
between the person P1 and the person P2, what has been depicted via double line overlaid 
on the zone B2. At Fig. 7b a full collaboration between P2 and P3 has been depicted in a 
similar manner. Figure 7c illustrates a situation where the person P3, who should occupy 
only the workplace number 3 in the zone B3, changed workplace during absence of the 
person P2 and now occupies his/her workplace in zone B2. Because this action was 
sufficiently long the system recognized the action A_Forbidden, what has been visualized 
via crossing the zone B2. 
 

a)        b)              c) 

  
Fig. 7. Recognition of student activities during an exam, action A_FullC between P1 and P2 
(a), and P2 and P3 (b), action A_Forbidden done by person P3 at workplace number 2 (c) 

The images used in this work are 320 x 240 in size. They were acquired by commercial 
binocular Megapixel Stereo Head (Konolige, 1997). The stereo head is designed to operate 
with SRI’s stereo engine for fast range determination on standard PC hardware. It delivers 
range and color images at frame rates 30 Hz with a PIII 750 MHz. Range is interpolated to 
1/16 pixel, texture and consistency filters eliminate ambiguous areas in the range images. 
We decided to utilize stereo information in our head detection and tracking algorithm 
because of its usefulness in varying illumination conditions. Using it in the tracking 
algorithm we determine the length of the ellipse’s minor axis approximating the oval shape 
of the head. The stereo information serves also as constraint region both in head detection 
and tracking. 
By employing shape, color, stereovision as well as elliptical shape features our particle filter 
based tracker (Kwolek, 2004) can estimate the location of the person’s head reliably. It is able 
to track the heads of persons over the whole image sequences of typical exam. Its robustness 
with respect to full 360-degree out-of-plane rotation, considerable head tilting, substantial 
but short in time head occlusions, moving people in background, as well as varying 
illumination conditions play very important role in the process of activity recognition 
without user intervention.    
To test the activity recognition system, we have conducted several experiments in 
circumstances occurring naturally in laboratory. The aim of the experiments was to 
automatically detect the entrance of students into the exam, and then to track the heads. The 
videos as well as the 3D locations of the heads with the corresponding ellipse sizes were 
stored in files for further analysis. The activity recognition as well as visualization are done  
on the basis of such data. 
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6. Conclusions 
We have developed a system for recognizing and monitoring human behaviors. It 
recognizes both single- and multiple actor activities. The approach is based upon 
probabilistic timed automata. The input data for the probabilistic timed automata are 
extracted via person’s head tracker. By employing depth, color, as well as elliptical shape 
features the utilized particle filter tracks a head over a sequence of images and generates the 
trajectories of the head. Experimental results demonstrate the ability of the system to 
provide monitoring of high level behaviors in the student exam scenario. Given workplace -
specific constraints, the system enabled the actions of working, collaborating, doing 
forbidden actions to be recognized. Although we only showed example in the context of the 
student exam, our system is capable to monitor a wide variety of events. One of the 
advantages of the presented approach is that it does not require a large amount of training 
data for recognition of activities at acceptable level. 
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1. Introduction 
1.1 Introduction to load time series classification 
The formation of typical chronological load curves is an important tool of resolution of many 
problems in power systems, such as the short-term and medium-term load forecasting, the 
adaptation of customers’ tariffs and the classification of electricity customers.  
Classical indexes, like maximum power or load factor, can not describe the electricity 
behaviour of a customer or a power system thoroughly, as it can be comprehended from the 
example of Fig 1.1, where the customer of Fig 1.1(a) fatigues the power system’s generators 
less than the customer of Fig 1.1(b) for the same peak load, load factor and power factor, 
because the number of the load demand changes are fewer. If an energy storage system is 
used, the second customer will need smaller battery system than the first one. These 
inferences cannot be drawn without the customers’ load profiles. 

 
(a) 

 
(b) 

Fig. 1.1. Indicative load curves of electricity consumers with the same max load, load factor 
and power factor   
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In the case of short-term load forecasting the use of the typical days decreases the mean 
absolute percentage error, especially for anomalous days (i.e. holiday periods) (Chicco et al., 
2001; Lamedica et al., 1996). Through this segmentation the load forecasting models are not 
misled by the respective load curves of last days in which more weight is usually given. 
Similarly the formation of typical chronological load curves and the corresponding 
diachronic development can be used for medium-term load forecasting (Al - Hamadi & 
Soliman, 2005), so that the maintenance of the units and electric network, the fuel supply, 
the electrical energy imports/exports and the exploitation of the water reserves for 
hydrothermal scheduling can be implemented.   
In a deregulated electricity market, each supplier wishes to identify his customers’ electricity 
behaviour accurately, in order to provide them with satisfactory services at a low cost, 
recovering the energy and power cost and having a fair profit. So the classification of 
electricity customers is a necessary stage. At the same time, each consumer wants to know 
his electricity behaviour, in order to select the proper tariff or to apply energy efficiency 
measures successfully. Taking into consideration the demand-side bidding in competitive 
markets (Task VIII of IEA, 2002) the accurate estimation of the next day’s load profile is a 
fundamental requirement for each large customer, so that it can find the way to minimize its 
electricity bill.  
During the last years, a significant research effort has been focused on load curves 
classification regarding the short-term load forecasting of anomalous days and the 
clustering of the customers of the power systems. The clustering methods have been used so 
far are:  
• the “modified follow the leader” (Chicco et al., 2003a; -,2003b;  -, 2004; -, 2006),  
• the self-organizing map (Beccali et al., 2004; Chicco et al., 2004; -, 2006 ; Figueiredo et al., 

2003; Lamedica et al. 1996; Verdu et al., 2003),  
• the k-means (Chicco et al., 2006; Figueiredo et al., 2003),  
• the average and Ward hierarchical methods (Chicco et al., 2004; -, 2006; Gerber et al., 

2003) and  
• the fuzzy k-means (Chicco et al., 2004; -, 2006; Gerber et al., 2003; -, 2004; -, 2005).  
All the above methods generally belong to pattern recognition techniques (Theodoridis & 
Koutroumbas, 1999). Alternatively, classification problem can be solved by using data 
mining (Kitayama et al., 2003; Figueiredo et al., 2005), wavelet packet transformation 
(Petrescu & Scutariu, 2002), frequency-domain data (Carpaneto et al., 2006), stratified 
sampling (Chen et al., 1997). For the reduction of the size of the clustering input data set 
Sammon map, principal component analysis and curvilinear component analysis have been 
proposed (Chicco et al., 2006).  
The respective adequacy measures that are commonly used are:  
• the mean index adequacy (Chicco et al., 2003a; -, 2003b;  -, 2004),  
• the clustering dispersion indicator (Chicco et al., 2003a; -, 2003b; -, 2004; -, 2006),  
• the similarity matrix indicator (Chicco et al., 2004),  
• the Davies-Bouldin indicator (Beccali et al., 2004; Chicco et al., 2003; -, 2006; Gerbec et 

al., 2004; -, 2005),  
• the modified Dunn index (Chicco et al., 2006),  
• the scatter index (Chicco et al., 2006) and  
• the mean square error (Gerbec et al., 2003; -, 2004; -, 2005).  
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In all cases analytical chronological load curves are required, which have resulted via 
suitable measurements or load surveys. The use of classification methods allow us to 
compress data information implementing the fundamental concepts of data mining and 
pattern recognition. 

1.2 Why should load time-series classification be realized using unsupervised pattern 
recognition methods? What kind of problems are we going to meet? 
According to R.O.Duda, P.E. Hart, D. G. Stock (Duda et al., 2001), it is known that “pattern 
recognition” is the act of taking in raw data and making an action based on the category of 
the pattern. Generally any method that incorporates information from training samples in 
the design of a classifier employs learning. There are three kinds of learning: 
• Supervised learning, in which a category label or cost for each pattern is provided in a 

training set and the sum of these patterns should be minimized using methods based on 
Bayesian decision theory, maximum likelihood and Bayesian parameter estimation, 
multilayer neural networks, probabilistic neural network etc.  

• Unsupervised learning or clustering, where there are no any a priori category labels for 
patterns and the pattern recognition system forms clusters - sets of the input patterns. 
Different clustering algorithms, such as self organizing map, adaptive vector  
quantization etc, lead to different clusters.  

• Reinforcement learning, where no desired category signal is given, but the only feedback 
is that the specified category is right or wrong, without saying why it is wrong.  

In our case the clusters of the load time-series are unknown. We do not know either the 
clusters, or their number. The danger of an inappropriate representation is big. In order to 
realize the categorization of  the load time-series and to select the proper number of clusters 
we are going to study the behaviour of the adequacy measures, which show us when the 
proper number of clusters is determined. Other basic notions in our approach are the 
following: 
• the modification of the clustering techniques for this kind of classification problem, 

such as the appropriate weights initialization for the k-means and fuzzy k-means;  
• the proper parameters calibration, such as the training rate of mono-dimensional SOM, 

in order to fit the classification needs; 
• the comparison of the performance of the clustering algorithms for each one of the 

adequacy measures; 
• the introduction of the ratio of within cluster sum of squares to between cluster 

variation, which is first presented for this kind of classification. 

1.3 Mathematical modeling of clustering methods and adequacy measures  
1.3.1 General introduction  
We assume that the classification of daily load curves is necessary using the proper pattern 
recognition method.  Generally N is defined as the population of the input vectors, which 
are going to be clustered. The -th input vector is symbolized as follows:   

 ( )1 2, ,... ,... T
i dx x x x x=  (1.1) 

where d is its dimension, which equals to 96 or 24, if the load measurements are taken every 
15 minutes or every hour respectively. The corresponding set of vectors is given by: 
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In all cases analytical chronological load curves are required, which have resulted via 
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pattern recognition. 
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recognition” is the act of taking in raw data and making an action based on the category of 
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Bayesian decision theory, maximum likelihood and Bayesian parameter estimation, 
multilayer neural networks, probabilistic neural network etc.  
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variation, which is first presented for this kind of classification. 

1.3 Mathematical modeling of clustering methods and adequacy measures  
1.3.1 General introduction  
We assume that the classification of daily load curves is necessary using the proper pattern 
recognition method.  Generally N is defined as the population of the input vectors, which 
are going to be clustered. The -th input vector is symbolized as follows:   

 ( )1 2, ,... ,... T
i dx x x x x=  (1.1) 

where d is its dimension, which equals to 96 or 24, if the load measurements are taken every 
15 minutes or every hour respectively. The corresponding set of vectors is given by: 
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 { }: 1,...,X x N= =  (1.2) 

It is worth mentioning that ix  are normalized using the upper and lower values of all 
elements of the original input patterns set, aiming the achievement of the best possible 
results after the application of clustering methods. 
Each classification process makes a partition of the initial N input vectors to M clusters, 
which can be the typical days of the under study customer (first example) or the customer 
classes (second example - the second stage of the proposed methodology of (Tsekouras et 
al., 2007)) or the typical days of the power system (third example). The j-th cluster has a 
representative, which is the respective load profile and is represented by the vector of d 
dimension: 

 ( )1 2, ,... ,...
T

j j j ji jdw w w w w=  (1.3) 

The last vector also expresses the cluster’s centre or the weight vector of neuron, if a 
clustering artificial neural network is used. In our case it is also called the j-th class 
representative load diagram. The corresponding set is the classes’ set, which is defined by:  

 { }, 1,...kW w k M= =  (1.4) 

The subset of input vectors x , which belong to the j-th cluster, is jΩ  and the respective 

population of load diagrams is jN . More specifically jΩ  is determined as follows:  

 ( )/
/

, 1,... & arg min ,j k
k

x N f x w j
∀

⎧ ⎫Ω = = →⎨ ⎬
⎩ ⎭

 (1.5) 

where j XΩ ⊆  and ( )//
arg min ,

kk
f x w

∀
 the corresponding criterion of classification of the  

l-th vector in the j-th cluster.  
For the study and evaluation of classification algorithms the following distances’ forms are 
defined: 
1. the Euclidean distance between 1 , 2  input vectors of the set X: 

 ( ) ( )1 2 1 2

2

1

1,
d

i i
i

d x x x x
d =

= −∑  (1.6) 

2. the distance between the representative vector jw  of j-th cluster and the subset jΩ , 

calculated as the geometric mean of the Euclidean distances between jw  and each 

member of jΩ :  

 ( ) ( )21, ,
k

k k k
xk

d w d w x
N ∈Ω

Ω = ∑  (1.7) 
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3. the infra-set mean distance of a set, defined as the geometric mean of the inter-distances 
between the members of the set, i.e. for the subset jΩ  and for the subset W: 

 ( ) ( )21ˆ ,
2

k

k k
xk

d d x
N ∈Ω

Ω = Ω∑  (1.8) 

 ( ) ( )2

1

1ˆ ,
2

M

k
k

d W d w W
M =

= ∑  (1.9) 

1.3.2 Adequacy measures  
In order to evaluate the performance of the clustering algorithms and to compare them with 
each other, six different adequacy measures are applied. Their purpose is to obtain well-
separated and compact clusters to make the load diagrams self explanatory. The definitions 
of these measures are the following: 
1. Mean square error or error function (J) (Gerber et al., 2003), which expresses the distance of 

each vector from its cluster’s centre with the same value of weight: 

 ( )2
:

1

1 ,
k

N

k xJ d x w
N ∈Ω

=

= ∑  (1.10) 

2. Mean index adequacy (MIA) (Chicco et al., 2003a), which is defined as the average of the 
distances between each input vector assigned to the cluster and its centre:  

 ( )2

1

1 ,
M

k k
k

MIA d w
M =

= Ω∑  (1.11) 

3. Clustering dispersion indicator (CDI) (Chicco et al., 2003a), which depends on the mean 
infra-set distance between the input vectors in the same cluster and inversely on the 
infra-set distance between the class representative load curves: 

 
( )

( )2

1

1 1 ˆ
ˆ

M

k
k

CDI d
Md W =

= Ω∑  (1.12) 

4. Similarity matrix indicator (SMI) (Chicco et al., 2003b), which is defined as the maximum 
off-diagonal element of the symmetrical similarity matrix, whose terms are calculated by 
using a logarithmic function of the Euclidean distance between any kind of class 
representative load curves:  

 
( )

1

1max 1
ln ,p q

p q

SMI
d w w

−

〉

⎧ ⎫⎛ ⎞⎪ ⎪⎜ ⎟= −⎨ ⎬⎜ ⎟⎡ ⎤⎪ ⎪⎣ ⎦⎝ ⎠⎩ ⎭

: p, q = 1,…, M (1.13) 

5. Davies-Bouldin indicator (DBI) (Davies & Bouldin., 1979), which represents the system-
wide average of the similarity measures of each cluster with its most similar cluster: 
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off-diagonal element of the symmetrical similarity matrix, whose terms are calculated by 
using a logarithmic function of the Euclidean distance between any kind of class 
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( ) ( )

( )1

ˆ ˆ1 max
,

M
p q

p qk p q

d d
DBI

M d w w≠
=

⎧ ⎫Ω + Ω⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

∑ : p, q = 1,…, M (1.14) 

6. Ratio of within cluster sum of squares to between cluster variation (WCBCR) (Hand et al., 
2001), which depends on the sum of the distance’s square between each input vector 
and its cluster’s representative vector, as well as the similarity of the clusters’ centres: 

 
( )

( )

2

1

2

1

,

,

k

M

k
k x

M

p q
q p

d w x
WCBCR

d w w

= ∈Ω

≤ <

=
∑ ∑

∑
 (1.15) 

The success of the different algorithms for the same final number of clusters is expressed by 
having small values of the adequacy measures. By increasing the number of clusters all the 
measures decrease, except of the similarity matrix indicator. An additional adequacy 
measure could be the number of the dead clusters, for which the sets are empty. It is 
intended to minimize this number. It is noted that in eq. (1.10)-(1.15), M is the number of the 
clusters without the dead ones. 

1.3.3 K-means 
The k-means method is the simplest hard clustering method, which gives satisfactory results 
for compact clusters (Duda et al., 2001). The k-means clustering method groups the set of the 
N input vectors to M clusters using an iterative procedure. The respective steps of the 
algorithm are the follows: 
a. Initialization of the weights of M clusters is determined. In the classic model a random 

choice among the input vectors is used (Chicco et al., 2006; Figueiredo et al., 2003). In 
the developed algorithm the wji of the j-th centre is initialized as: 

 (0) ( 1) ( 1)jiw a b j M= + ⋅ − −  (1.16) 

where a and b are properly calibrated parameters. Alternatively the wji is initialized as: 

 (0) ( 1) ( 1)ji i iw a b j M= + ⋅ − −  (1.17) 

where ( )mini jij
a x

∀
=  and ( )maxi jij

b x
∀

= .  

b. During epoch t for each training vector x  its Euclidean distances ( ), jd x w  are 

calculated for all centres. The -th input vector is put in the set ( )t
jΩ , for which the 

distance between x  and the respective centre is minimum, which means:   

 ( ) ( ), min ,k jj
d x w d x w

∀
=  (1.18) 

c. When the entire training set is formed, the new weights of each centre are calculated as:   
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( )

( 1)
( )

1
t
j

t
j t

xj

w x
N

+

∈Ω

= ∑  (1.19) 

where ( )t
jN  is the population of the respective set ( )t

jΩ  during epoch t.  
d. Next, the number of the epochs is increased by one. This process is repeated (return to 

step b) until the maximum number of epochs is used or weights do not significantly 
change ( ( ) ( 1)t t

j jw w ε+− < , where ε  is the upper limit of weight change between 

sequential iterations). The algorithm’s main purpose is to minimize the appropriate 
error function J. The main difference with the classic model is that the process is 
repeated for various pairs of (a,b). The best results for each adequacy measure are 
recorded for various pairs (a,b).  

At the end of the execution of the algorithm the six adequacy measures are calculated, 
which are used for comparison reasons with the other clustering methods. The core of 
algorithm is executed from  M1  to  M2  neurons, because the necessary number of clusters is 
not known a priori, as it depends on the time period which is examined and the available 
number of patterns. 

1.3.4 Kohonen adaptive vector quantization - AVQ  
This algorithm is a variation of the k-means method, which belongs to the unsupervised 
competitive one-layer neural networks. It classifies input vectors into clusters by using a 
competitive layer with a constant number of neurons. Practically in each step all clusters 
compete each other for the winning of a pattern. The winning cluster moves its centre to the 
direction of the pattern, while the rest clusters move their centres to the opposite direction 
(supervised classification) or remain stable (unsupervised classification).  
Here, we will use the last unsupervised classification algorithm. The respective steps are the 
following: 
a. Initialization of the weights of M clusters is determined, where the weights of all 

clusters are equal to 0.5, that is ( )0 0.5, ,jiw j i= ∀ .  

b. During epoch t each input vector x  is randomly presented and its respective Euclidean 
distances from every neuron are calculated. In the case of existence of bias factor λ , the 
respective minimization function is: 

 ( ) ( )( )_ : min ,winner neuron j jj
f x j d x w N Nλ

∀
= + ⋅  (1.20) 

where jN  is the population of the respective set jΩ  during epoch t-1. 
The weights of the winning neuron (with the smallest distance) are updated as: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )( )1t t t
j j jw n w n t x w nη+ = + ⋅ −  (1.21) 

 

where n is the number of input vectors, which have been presented during the current 
epoch, and ( )tη  is the learning rate according to: 
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The success of the different algorithms for the same final number of clusters is expressed by 
having small values of the adequacy measures. By increasing the number of clusters all the 
measures decrease, except of the similarity matrix indicator. An additional adequacy 
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intended to minimize this number. It is noted that in eq. (1.10)-(1.15), M is the number of the 
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jΩ , for which the 

distance between x  and the respective centre is minimum, which means:   
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 ( ) 0 min
0

exp tt
Tη

η η η
⎛ ⎞

= ⋅ − >⎜ ⎟⎜ ⎟
⎝ ⎠

 (1.22) 

where 0η , minη and 0Tη  are the initial value, the minimum value and the time 

parameter respectively. The remaining neurons are unchangeable for x , as introduced 
by the Kohonen winner-take-all learning rule (Kohonen, 1989; Haykin, 1994).  

c. Next, the number of the epochs is increased by one. This process is repeated (return to 
step b) until either the maximum number of epochs is reached or the weights converge 
or the error function J does not improve, which means: 

 
( ) ( )

( )

1t t

t

J J
J

ε
+− ′<  for int T≥  (1.23) 

where /ε  is the upper limit of error function change between sequential iterations and 
the respective criterion is activated after Tin epochs. 

The core of algorithm is executed for specific number of neurons and the respective 
parameters 0η , minη and 0Tη  are optimized for each adequacy measure separately. This 

process is repeated from  M1  to  M2  neurons. 

1.3.5 Fuzzy k-means 
During the application of the k-mean or the adaptive vector quantization algorithm each 
pattern is assumed to be in exactly one cluster (hard clustering). In many cases the areas of 
two neighbour clusters are overlapped, so that there are not any valid qualitative results.  
If we want to relax the condition of exclusive partition of an input pattern to one cluster, we 
should use fuzzy clustering techniques. Specifically, each input vector x  does not belong to 
only one cluster, but it participates to every j-th cluster by a membership factor ju , where: 

 
1

1
M

j
j

u
=

=∑  &  0 1,ju j≤ ≤ ∀  (1.24) 

Theoretically, the membership factor gives more flexibility in the vector’s distribution. 
During the iterations the following objective function is minimized:   

 ( )2

1 1

1 ,
M N

fuzzy j j
j

J u d x w
N = =

= ⋅∑∑  (1.25) 

 

The simplest algorithm is the fuzzy k-means clustering one, in which the respective steps 
are the following: 
a. Initialization of the weights of M clusters is determined. In the classic model a random 

choice among the input vectors is used (Chicco et al., 2006; Figueiredo et al., 2003). In 
the developed algorithm the wji of the j-th centre is initialized by eq. (1.16) or eq. (1.17).   

b. During epoch t for each training vector x  the membership factors are calculated for 
every cluster:  
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c. Afterwards the new weights of each centre are calculated as:   
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where q is the amount of fuzziness in the range (1, ∞) which increases as fuzziness 
reduces.  

d. Next, the number of the epochs is increased by one. This process is repeated (return to 
step b) until the maximum number of epochs is used or weights do not significantly 
change.  

This process is repeated for different pairs of (a,b) and for different amounts of fuzziness. 
The best results for each adequacy measure are recorded for different pairs (a,b) and q. 

1.3.6 Self-organizing map - SOM 
The Kohonen SOM (Kohonen, 1989; SOM Toolbox for MATLAB 5, 2000; Thang et al., 2003) 
is a topologically unsupervised neural network that projects a d-dimensional input data set 
into a reduced dimensional space (usually a mono-dimensional or bi-dimensional map). It is 
composed of a predefined grid containing 1 2M M×  d-dimensional neurons kw , which are 
calculated by a competitive learning algorithm that updates not only the weights of the 
winning neuron, but also the weights of its neighbour units in inverse proportion of their 
distance. The neighbourhood size of each neuron shrinks progressively during the training 
process, starting with nearly the whole map and ending with the single neuron.  
The process of algorithm is described by the following stages:  
• Initialization stage. The weights of the neural network are initialized connecting the 

neurons of the input layer with the map neurons.  
• Competition stage. For each input pattern the map neurons calculate the corresponding 

value of the competition function, where the neuron with the biggest value is the 
winner.   

• Collaboration stage. The winner neuron determines the territorial area of topological 
neighbourhood, providing the subbase for the collaboration between the neighbouring 
neurons.   

• Weights’ adaptation stage. The neurons that belong in the winning neighbourhood adapt 
their weights of winner-neuron, so that its response will be strengthened during the 
presentation of a training input pattern.  

The training of SOM is divided to two phases: 
• rough ordering, with high initial learning rate, large radius and small number of epochs, 

so that neurons are arranged into a  structure which approximately displays the 
inherent characteristics of the input data, 
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where 0η , minη and 0Tη  are the initial value, the minimum value and the time 

parameter respectively. The remaining neurons are unchangeable for x , as introduced 
by the Kohonen winner-take-all learning rule (Kohonen, 1989; Haykin, 1994).  

c. Next, the number of the epochs is increased by one. This process is repeated (return to 
step b) until either the maximum number of epochs is reached or the weights converge 
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where /ε  is the upper limit of error function change between sequential iterations and 
the respective criterion is activated after Tin epochs. 

The core of algorithm is executed for specific number of neurons and the respective 
parameters 0η , minη and 0Tη  are optimized for each adequacy measure separately. This 

process is repeated from  M1  to  M2  neurons. 
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Theoretically, the membership factor gives more flexibility in the vector’s distribution. 
During the iterations the following objective function is minimized:   
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The simplest algorithm is the fuzzy k-means clustering one, in which the respective steps 
are the following: 
a. Initialization of the weights of M clusters is determined. In the classic model a random 

choice among the input vectors is used (Chicco et al., 2006; Figueiredo et al., 2003). In 
the developed algorithm the wji of the j-th centre is initialized by eq. (1.16) or eq. (1.17).   

b. During epoch t for each training vector x  the membership factors are calculated for 
every cluster:  
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where q is the amount of fuzziness in the range (1, ∞) which increases as fuzziness 
reduces.  
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The Kohonen SOM (Kohonen, 1989; SOM Toolbox for MATLAB 5, 2000; Thang et al., 2003) 
is a topologically unsupervised neural network that projects a d-dimensional input data set 
into a reduced dimensional space (usually a mono-dimensional or bi-dimensional map). It is 
composed of a predefined grid containing 1 2M M×  d-dimensional neurons kw , which are 
calculated by a competitive learning algorithm that updates not only the weights of the 
winning neuron, but also the weights of its neighbour units in inverse proportion of their 
distance. The neighbourhood size of each neuron shrinks progressively during the training 
process, starting with nearly the whole map and ending with the single neuron.  
The process of algorithm is described by the following stages:  
• Initialization stage. The weights of the neural network are initialized connecting the 

neurons of the input layer with the map neurons.  
• Competition stage. For each input pattern the map neurons calculate the corresponding 

value of the competition function, where the neuron with the biggest value is the 
winner.   

• Collaboration stage. The winner neuron determines the territorial area of topological 
neighbourhood, providing the subbase for the collaboration between the neighbouring 
neurons.   

• Weights’ adaptation stage. The neurons that belong in the winning neighbourhood adapt 
their weights of winner-neuron, so that its response will be strengthened during the 
presentation of a training input pattern.  

The training of SOM is divided to two phases: 
• rough ordering, with high initial learning rate, large radius and small number of epochs, 

so that neurons are arranged into a  structure which approximately displays the 
inherent characteristics of the input data, 
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• fine tuning, with small initial learning rate, small radius and higher number of training 
epochs, in order to tune the final structure of the SOM. 

The transition of the rough ordering phase to the fine tuning one is happened after Ts0 
epochs. 
More analytically, the respective steps of the SOM algorithm are the following: 
a. The shape and the number of neurons of the SOM’s grid are defined and the 

initialization of the respective weights is determined. Specifically, in the case of the 
mono-dimensional SOM the weights can be given by (a) 0.5, ,kiw k i= ∀ , (b) the random 
initialization of each neuron’s weight, (c) the random choice of the input vectors for 
each neuron. In the case of the bi-dimensional SOM the additional issues that must be 
solved, are the shape, the population of neurons and their respective arrangement.  The 
rectangular shape of the map is defined by rectangular or hexagonal arrangement of 
neurons, as it is presented in Fig. 1.2. The population of the neurons is recommended to 
be 5 N×  to 20 N×  (Chicco et al., 2004; SOM Toolbox for MATLAB 5, 2000; Thang 
et al., 2003;). The height/width ratio 1 2M M of the rectangular grid can be calculated 
as the ratio between the two major eigenvalues 1λ , 2λ   of the covariance matrix of the 
input vectors set (with 1 2λ λ> ). The initialization of the neurons can be a linear 
combination of the respective eigenvectors 1e  and 2e of the two major eigenvalues or 
can be equal to 0.5. It is reminded that the element 

1 2,k ks  of the covariance matrix of the 

input vectors set is given by:  

 ( ) ( ) ( )
1 2 1 1 2 2,

1
1

N

k k k k k ks x x x x N
=

= − ⋅ − −∑  (1.28) 

where 
1kx  is the mean value of the respective k1 dimension of all input patterns.  

b. The SOM training commences by first choosing an input vector x , at t epoch, 
randomly from the input vectors’ set. The Euclidean distances between the n-th 
presented input pattern x  and all kw  are calculated, so as to determine the winning 
neuron i′  that is closest to x  (competition stage). The j-th reference vector is updated 
(weights’ adaptation stage) according to: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )1t t t
j j i j jw n w n t h t x w nη ′+ = + ⋅ ⋅ −  (1.29) 

where ( )tη  is the learning rate according to: 
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with 0η , minη and 
0

Tη  representing the initial value, the minimum value and the time 

parameter respectively. During the rough ordering phase 0,r Tηη  are the initial value  
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Fig. 1.2. Arrangement of bi-dimensional self-organized map 10x10 

and the time parameter respectively, while during the fine tuning phase the respective 
values are 0,f Tηη . The ( )i jh t′  is the neighbourhood symmetrical function, that will 
activate the j neurons that are topologically close to the winning neuron i’, according to 
their geometrical distance, who will learn from the same x  (collaboration stage). In this 
case the Gauss function is proposed: 
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• fine tuning, with small initial learning rate, small radius and higher number of training 
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More analytically, the respective steps of the SOM algorithm are the following: 
a. The shape and the number of neurons of the SOM’s grid are defined and the 

initialization of the respective weights is determined. Specifically, in the case of the 
mono-dimensional SOM the weights can be given by (a) 0.5, ,kiw k i= ∀ , (b) the random 
initialization of each neuron’s weight, (c) the random choice of the input vectors for 
each neuron. In the case of the bi-dimensional SOM the additional issues that must be 
solved, are the shape, the population of neurons and their respective arrangement.  The 
rectangular shape of the map is defined by rectangular or hexagonal arrangement of 
neurons, as it is presented in Fig. 1.2. The population of the neurons is recommended to 
be 5 N×  to 20 N×  (Chicco et al., 2004; SOM Toolbox for MATLAB 5, 2000; Thang 
et al., 2003;). The height/width ratio 1 2M M of the rectangular grid can be calculated 
as the ratio between the two major eigenvalues 1λ , 2λ   of the covariance matrix of the 
input vectors set (with 1 2λ λ> ). The initialization of the neurons can be a linear 
combination of the respective eigenvectors 1e  and 2e of the two major eigenvalues or 
can be equal to 0.5. It is reminded that the element 

1 2,k ks  of the covariance matrix of the 

input vectors set is given by:  
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where 
1kx  is the mean value of the respective k1 dimension of all input patterns.  

b. The SOM training commences by first choosing an input vector x , at t epoch, 
randomly from the input vectors’ set. The Euclidean distances between the n-th 
presented input pattern x  and all kw  are calculated, so as to determine the winning 
neuron i′  that is closest to x  (competition stage). The j-th reference vector is updated 
(weights’ adaptation stage) according to: 
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Tη  representing the initial value, the minimum value and the time 

parameter respectively. During the rough ordering phase 0,r Tηη  are the initial value  
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and the time parameter respectively, while during the fine tuning phase the respective 
values are 0,f Tηη . The ( )i jh t′  is the neighbourhood symmetrical function, that will 
activate the j neurons that are topologically close to the winning neuron i’, according to 
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where i j i jd r r′ ′= −  is the respective distance between i’ and j neurons, ( ),j j jr x y=  

are the respective co-ordinates in the grid, ( ) ( )00 exp /t t Tσσ σ= ⋅ −  is the decreasing 

neighbourhood radius function where 0σ  and 
0

Tσ  are the respective initial value and 

time parameter of the radius respectively. 
c. Next, the number of the epochs is increased by one. This process is repeated (return to 

step b) until either the maximum number of epochs is reached or the index Is gets the 
minimum value (SOM Toolbox for MATLAB 5, 2000):  

 ( )( ) ( ) ( )sI t J t ADM t TE t= + +  (1.32) 
where the quality measures of the optimum SOM are based on the quantization error J -
given by (1.10)-, the topographic error TE and the average distortion measure ADM. The 
topographic error measures the distortion of the map as the percentage of input vectors 
for which the first 1i′  and second 2i′  winning neuron are not neighbouring map units: 

 ( )1 2
1

,
N

TE neighb i i N
=

′ ′= ∑  (1.33) 

where, for each input vector, ( )1 2,neighb i i′ ′ equals to 1, if 1i′  and 2i′  neurons are not 
neighbours, either 0. The average distortion measure is given for the t epoch by:  

 ( ) ( ) ( )2
,

1 1
,

N M

i x j j
j

ADM t h t d x w N′→
= =

= ⋅∑∑  (1.34) 

This process is repeated for different parameters of 0σ , ,fη ,rη 0Tη , 0Tσ  and 
0sT . 

Alternatively, the multiplicative factors φ  and ξ  are introduced -without decreasing the 
generalization ability of the parameters’ calibration: 

 
0 0sT Tηφ= ⋅  (1.35) 

 
0 0 0lnT Tσ ηξ σ= ⋅  (1.36) 

The best results for each adequacy measure are recorded for different parameters 
0σ , ,fη ,rη 0Tη ,φ  and ξ .  

In the case of the bi-dimensional map, the immediate exploitation of the respective clusters 
is not a simple problem. We can exploit the map either through human vision or applying a 
second simple clustering method. According to Chicco et al., (2002), the simple k-mean 
method was used, while, here, the proposed k-mean method with initialization by eq. (1.16) 
is used. Practically, the neurons of the map sustain a new data compression from which the 
final classification of the input patterns is concluded. 

1.3.7 Hierarchical agglomerative algorithms   
Hierarchical algorithms have a different philosophy compared to the aforementioned 
algorithms. Instead of producing a single clustering, they produce a hierarchy of clustering.  
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Agglomerative algorithms are based on matrix theory (Theodoridis & Koutroumbas, 1999). 
The input is the N N×  dissimilarity matrix 0P . At each level t, when two clusters are 
merged into one, the size of the dissimilarity matrix Pt becomes ( ) ( )N t N t− × − . Matrix Pt is 
obtained from Pt-1 by deleting the two rows and columns that correspond to the merged 
clusters and adding a new row and a new column that contain the distances between the 
newly formed cluster and the old ones. The distance between the newly formed cluster 

qC (the result of merging iC  and jC ) and an old cluster sC  is determined as: 

 ( ) ( ) ( ) ( )( ), , , , , ,q s i s j s i jd C C f d C C d C C d C C=  (1.37) 

Alternatively eq. (1.37) is written as: 

 ( ) ( ) ( ) ( ) ( ) ( ), , , , , ,q s i i s j j s i j i s j sd C C a d C C a d C C b d C C c d C C d C C= ⋅ + ⋅ + ⋅ + ⋅ − (1.38) 

where ia , ja , b  and c  correspond to different choices of the dissimilarity measure.  
The basic algorithms, which are going to be used in our case, are: 
• the single link algorithm (SL) -it is obtained from (1.38) for ai=aj=0.5, b=0 and 0.5c = − : 

( ) ( ) ( ){ } ( ) ( ) ( ) ( )1 1 1, min , , , , , , ,
2 2 2q s i s j s i s j s i s j sd C C d C C d C C d C C d C C d C C d C C= = ⋅ + ⋅ − ⋅ −  (1.39) 

• the complete link algorithm (CL) -it is obtained from (1.38) for ai=aj=0.5, b=0 and 0.5c = : 

( ) ( ) ( ){ } ( ) ( ) ( ) ( )1 1 1, max , , , , , , ,
2 2 2q s i s j s i s j s i s j sd C C d C C d C C d C C d C C d C C d C C= = ⋅ + ⋅ + ⋅ −  (1.40) 

• the unweighted pair group method average algorithm (UPGMA): 

 ( ) ( ) ( ), ,
, i i s j j s

q s
i j

n d C C n d C C
d C C

n n
⋅ + ⋅

=
+

 (1.50) 

where in  and jn -  are the respective members’ populations of clusters iC  and jC . 
• the weighted pair group method average algorithm (WPGMA): 

 ( ) ( ) ( ){ }1, , ,
2q s i s j sd C C d C C d C C= ⋅ +  (1.42) 

• the unweighted pair group method centroid algorithm (UPGMC): 
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where  ( ) ( ) 21 ,q s q sd C C w w= −  and qw  is the representative centre of the q-th cluster 

according to the following equation (which is similar to(1.39)): 
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where i j i jd r r′ ′= −  is the respective distance between i’ and j neurons, ( ),j j jr x y=  
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step b) until either the maximum number of epochs is reached or the index Is gets the 
minimum value (SOM Toolbox for MATLAB 5, 2000):  
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where the quality measures of the optimum SOM are based on the quantization error J -
given by (1.10)-, the topographic error TE and the average distortion measure ADM. The 
topographic error measures the distortion of the map as the percentage of input vectors 
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This process is repeated for different parameters of 0σ , ,fη ,rη 0Tη , 0Tσ  and 
0sT . 

Alternatively, the multiplicative factors φ  and ξ  are introduced -without decreasing the 
generalization ability of the parameters’ calibration: 
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In the case of the bi-dimensional map, the immediate exploitation of the respective clusters 
is not a simple problem. We can exploit the map either through human vision or applying a 
second simple clustering method. According to Chicco et al., (2002), the simple k-mean 
method was used, while, here, the proposed k-mean method with initialization by eq. (1.16) 
is used. Practically, the neurons of the map sustain a new data compression from which the 
final classification of the input patterns is concluded. 

1.3.7 Hierarchical agglomerative algorithms   
Hierarchical algorithms have a different philosophy compared to the aforementioned 
algorithms. Instead of producing a single clustering, they produce a hierarchy of clustering.  
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Agglomerative algorithms are based on matrix theory (Theodoridis & Koutroumbas, 1999). 
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obtained from Pt-1 by deleting the two rows and columns that correspond to the merged 
clusters and adding a new row and a new column that contain the distances between the 
newly formed cluster and the old ones. The distance between the newly formed cluster 
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where in  and jn -  are the respective members’ populations of clusters iC  and jC . 
• the weighted pair group method average algorithm (WPGMA): 
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2q s i s j sd C C d C C d C C= ⋅ +  (1.42) 

• the unweighted pair group method centroid algorithm (UPGMC): 
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where  ( ) ( ) 21 ,q s q sd C C w w= −  and qw  is the representative centre of the q-th cluster 

according to the following equation (which is similar to(1.39)): 
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• the weighted pair group method centroid algorithm (WPGMC): 

 ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )1 1 1 11 1, , , ,
2 4q s i s j s i jd C C d C C d C C d C C= ⋅ + − ⋅  (1.45) 

• the Ward or minimum variance algorithm (WARD): 
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where: 

 ( ) ( ) ( ) ( )2 1, ,i j
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It is noted that in each level t the respective representative vectors are calculated by 
eq.(1.44). 
The respective steps of each algorithm are the following: 
a. Initialization: The set of the remaining patterns 0ℜ  for zero level ( 0t = ) is the set of the 

input vectors X. The similarity matrix ( )0P P X=  is determined. Afterwards t increases 
by one (t=t+1). 

b. During level t clusters iC  and jC  are found, for which the minimization criterion is 

satisfied ( ) ( ), 1,..., ,, min ,i j r s N r s r sd C C d C C= ≠= .  

c. Then clusters iC  and jC  are merged into a single cluster qC  and the set of the 

remaining patterns tℜ  is formed as: { }( ) { }1 ,t t i j qC C C−ℜ = ℜ − ∪ .  

d. The construction of the dissimilarity matrix tP  from 1tP−  is realized by applying 
eq.(1.37).  

e. Next, the number of the levels is increased by one. This process is repeated (return to 
step b) until the remaining patterns 1N −ℜ  is formed and all input vectors are in the 
same and unique cluster.  

It is mentioned that the number of iterations is determined from the beginning and it equals 
to the number of input vectors decreased by 1 (N-1). 

1.4 A pattern recognition methodology for evaluation of load profiles and typical days 
of large electricity customers 
1.4.1 General description of the proposed methodology   
The classification of daily chronological load curves of one customer is achieved by means 
of the pattern recognition methodology, as shown in Fig. 1.3.  
The main steps are the following (Tsekouras et al., 2008): 
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a. Data and features selection: Using electronic meters, the active and reactive energy values 
are registered (in kWh and kvarh) for each time period in steps of 15 minutes, 1 hour, 
etc. The daily chronological load curves are determined for the study period. 

Data selection

Typical load diagrams & respective day
 classes of the electricity customer

Tariff selection &
settlement of bills

Data preprocessing

Main applcation 
of pattern 
recognition methods

Short- & mid-term
load forecasting

Load estimation 
after DSM application

Feasibility studies 
of DSM progams

Representative load curve 
for customers' classification

PROPOSED METHODOLOGY

Training process Parameters' 
optimization

Evaluation process

End of 
optimization 

No

Have all algorithms
been examined?

No

Yes

Yes

Selection of the algortihm with the 
best results per adequacy measure

For each one of the next algortihms:
k-means, AVQ, SOM, fuzzy k-means, 

7 hierchical agglomerative ones

 
Fig. 1.3. Flow diagram of pattern recognition methodology for the classification of daily 
chronological load curves of one large electricity customer 

b. Data preprocessing: The load diagrams of the customer are examined for normality, in 
order to modify or delete the values that are obviously wrong (noise suppression). If it is 
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b. Data preprocessing: The load diagrams of the customer are examined for normality, in 
order to modify or delete the values that are obviously wrong (noise suppression). If it is 
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necessary, a preliminary execution of a pattern recognition algorithm is carried out, in 
order to track bad measurements or networks faults, which will reduce the number of 
the useful typical days for a constant number of clusters, if they remain uncorrected. In 
future, a filtering step can be added using principal component analysis, Sammon map, 
and curvilinear component analysis (Chicco et al., 2006), for the reduction of the load 
diagrams dimensions. 

c. Main application of pattern recognition methods: For the load diagrams of the customer, a 
number of clustering algorithms (k-means, adaptive vector quantization, self organized 
map, fuzzy k-means and hierarchical clustering) is applied. Each algorithm is trained 
for the set of load diagrams and evaluated according to six adequacy measures. The 
parameters of the algorithms are optimized, if it is necessary. The developed 
methodology uses the clustering methods that provide the most satisfactory results. It 
should be noted that conventional methods, like statistical tools, supervised techniques, 
etc., cannot be used, because the classification of the typical days must be already 
known. 

1.4.2 Application of the proposed methodology to a medium voltage customer    
1.4.2.1 General 
The developed methodology was analytically applied on one medium voltage industrial 
paper mill customer of the Greek distribution system. The data used are 15 minutes load 
values for a period of ten months in 2003. The respective set of the daily chronological 
curves has 301 members. Nine curves were rejected through data pre-processing, while the 
remaining 292 diagrams were used by the aforementioned clustering methods. The last 
diagrams are registered in Fig. 1.4 and Fig. 1.5, in which the load variability is also 
presented. The load behaviour is significantly decreased during holiday time. The mean 
load demand is 6656 kW and the peak load demand is 9469 kW during the period under 
study.  
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Fig. 1.4. Daily chronological 15-minutes load diagrams for a set of 292 days for the industrial 
medium voltage customer for each day (February – November 2003) 
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Fig. 1.5. Chronological 15-minutes load diagram for a set of 292 days for the industrial 
medium voltage customer for the time period under study (February-November 2003) 

The main goal of the application of this methodology is the representation of the load 
behaviour of the customer with typical daily load chronological diagrams. This is achieved 
through the following steps:  
• The calibration of the parameters of each clustering method is realized for every 

adequacy measure separately and the performance for different number of clusters is 
registered.  

• The clustering models are compared to each other using the six adequacy measures, the 
behaviour of these measures is studied and the appropriate number of the clusters is 
defined.  

The representative daily load chronological diagrams of the customer are calculated for the 
best clustering techniques and the proposed number of clusters. 

1.4.2.2 Application of the k-means 

The proposed model of the k-means method (k-means-scenario 1 with the weights 
initialization based on eq.(1.16)) is executed for different pairs (a,b) from 2 to 25 clusters, 
where a={0.1,0.11,…,0.45} and a+b={0.54,0.55,…,0.9}. For each cluster, 1332 different pairs 
(a,b) are checked. The best results for the 6 adequacy measures do not refer to the same 
pair (a,b). The second model of the k-means method (k-means-scenario 2) is based on eq. 
(1.17) for the weights initialization. The third model (k-means-scenario 3) is the classic one 
with the random choice of the input vectors during the centres’ initialization. For the 
classic k-means model, 100 executions are carried out and the best results for each index 
are registered. In Fig. 1.6, it is obvious that the proposed k-means is superior to the other 
two scenarios of k-means.  The superiority of the proposed model applies in all cases of 
neurons. 
A second advantage comprises the convergence to the same results for the respective pairs 
(a,b), which cannot be reached using the classic model. 
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Fig. 1.4. Daily chronological 15-minutes load diagrams for a set of 292 days for the industrial 
medium voltage customer for each day (February – November 2003) 
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Fig.  1.6. Adequacy measures for the k-means method for a set of 292 training patterns for 5 
to 25 clusters (scenario 1: proposed method – weights initialization based on eq. (1.16)-, 
scenario 2: alternative method – weights initialization based on eq. (1.17)-, scenario 3: classic 
method) 

In Fig. 1.7 the dead clusters for the proposed k-means method are presented for the six 
different adequacy measures. It is obvious that WCBCR presents the best behaviour, because 
the first dead cluster is presented when 23 clusters are required, while all other measures 
present dead clusters for smaller required clusters. 
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Fig. 1.7. Dead clusters for the proposed k-means method for the six different adequacy 
measures for a set of 292 training patterns for 5 to 25 clusters 
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Fig. 1.7. Dead clusters for the proposed k-means method for the six different adequacy 
measures for a set of 292 training patterns for 5 to 25 clusters 



 Pattern Recognition Techniques, Technology and Applications 

 

380 

It is mentioned that the maximum number of epochs is 200 for the three scenarios, the upper 
limit of the weight change between sequential iterations ε  is 10-4. Practically the algorithm 
is always converged after at most 20-30 iterations. 

1.4.2.3 Application of the adaptive vector quantization 

During the application of the AVQ method with serial presentation and without bias factor 
the parameters 0η , minη and 0Tη  should be optimized. Specifically, the model is executed for 

0η ={0.05, 0.1, ..., 0.9}  and 0Tη ={500, 1000, ..., 5000} from 2 to 25 clusters with minη  stable 

(=10-5). Indicatively the adequacy measures of the AVQ method for 10 clusters are presented 
in Fig. 1.8, where the best results for each adequacy measure are presented for different 
areas of  0η  and 0Tη .  
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Fig. 1.8. Adequacy measures for the AVQ method (with serial presentation and without bias 
factor) for a set of 292 training patterns for 10 clusters, η0={0.05, 0.1,..., 0.9}, Tη0={500, 1000, ..., 
5000} 

The J indicator presents the best results for 0η > 0.45 and 0Tη ≤ 2000, while the CDI indicator 

has similar behaviour to the J one. The MIA and WCBCR indicators present their best results 
for 0η > 0.85 and 0Tη ≤ 2000, DBI and SMI indicators for 0η ≈0.45, ∀ 0Tη . For different 

number of clusters the pairs ( 0η , 0Tη ) for the best results are not the same, but the greater 

areas are similar, as it is presented for the J indicator for 8 and 15 clusters in Fig. 1.9 
indicatively. Generally, as the number of clusters increases, so the respective behaviour of 
( 0η , 0Tη ) is stabilized. The value of the parameter minη  is not significant, but it helps 

towards the algorithm’s convergence for a big number of epochs with the condition minη  not 
having zero value. In this problem the proper values of this parameter are between 10-4 and 
10-6.  
During the application of the AVQ method with random presentation and without bias 
factor the respective results are improved against the serial presentation having two 
disadvantages: 
♦ the computing time increases by 10% and  
♦ the convergence areas for pairs (η0, Tη0) have more unstable shape. 
Indicatively, J and WCBCR measures are presented for 10 clusters in Fig. 1.10 improving the 
respective values in comparison to serial presentation from 0.259 to 0.250 and from 0.0083 to 
0.0068 respectively.  
If the bias factor is used with values between 10-3 and 10, the respective results are not 
practically improved (there is a slight improvement of the forth significant digit for each 
adequacy measure). Since the computing time is increased by 50%, we propose not to use 
the bias factor. 
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Fig. 1.9. J adequacy measures for the AVQ method (with serial presentation and without 
bias factor) for a set of 292 training patterns for 8 clusters and 15 clusters, η0={0.05, 0.1,..., 
0.9}, Tη0={500, 1000, ..., 5000} 

 It is mentioned that the maximum number of epochs is 10000, the upper limit of the weight 
change between sequential iterations ε  and the upper limit of the error function change 
between sequential iterations /ε  are 10-4. The algorithm usually converges after a few 
hundreds epochs after 0Tη  epochs. 
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Fig. 1.8. Adequacy measures for the AVQ method (with serial presentation and without bias 
factor) for a set of 292 training patterns for 10 clusters, η0={0.05, 0.1,..., 0.9}, Tη0={500, 1000, ..., 
5000} 

The J indicator presents the best results for 0η > 0.45 and 0Tη ≤ 2000, while the CDI indicator 

has similar behaviour to the J one. The MIA and WCBCR indicators present their best results 
for 0η > 0.85 and 0Tη ≤ 2000, DBI and SMI indicators for 0η ≈0.45, ∀ 0Tη . For different 

number of clusters the pairs ( 0η , 0Tη ) for the best results are not the same, but the greater 

areas are similar, as it is presented for the J indicator for 8 and 15 clusters in Fig. 1.9 
indicatively. Generally, as the number of clusters increases, so the respective behaviour of 
( 0η , 0Tη ) is stabilized. The value of the parameter minη  is not significant, but it helps 

towards the algorithm’s convergence for a big number of epochs with the condition minη  not 
having zero value. In this problem the proper values of this parameter are between 10-4 and 
10-6.  
During the application of the AVQ method with random presentation and without bias 
factor the respective results are improved against the serial presentation having two 
disadvantages: 
♦ the computing time increases by 10% and  
♦ the convergence areas for pairs (η0, Tη0) have more unstable shape. 
Indicatively, J and WCBCR measures are presented for 10 clusters in Fig. 1.10 improving the 
respective values in comparison to serial presentation from 0.259 to 0.250 and from 0.0083 to 
0.0068 respectively.  
If the bias factor is used with values between 10-3 and 10, the respective results are not 
practically improved (there is a slight improvement of the forth significant digit for each 
adequacy measure). Since the computing time is increased by 50%, we propose not to use 
the bias factor. 
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Fig. 1.9. J adequacy measures for the AVQ method (with serial presentation and without 
bias factor) for a set of 292 training patterns for 8 clusters and 15 clusters, η0={0.05, 0.1,..., 
0.9}, Tη0={500, 1000, ..., 5000} 

 It is mentioned that the maximum number of epochs is 10000, the upper limit of the weight 
change between sequential iterations ε  and the upper limit of the error function change 
between sequential iterations /ε  are 10-4. The algorithm usually converges after a few 
hundreds epochs after 0Tη  epochs. 



 Pattern Recognition Techniques, Technology and Applications 

 

384 

 

0

0.2

0.4

0.6

0.8

1

0

1000

2000

3000

4000

5000

0.24

0.26

0.28

0.3

0.32

0.34

Initial value of learning rate
Time parameter of learning rate

J

0.25

0.26

0.27

0.28

0.29

0.3

0.31

0.32

 
 

a. J indicator 
 

0
0.2

0.4
0.6

0.8
1 0

1000

2000

3000

4000

5000

0.006

0.007

0.008

0.009

0.01

0.011

0.012

0.013

0.014

Time parameter of learning rate
Initial value of learning rate

WCBCR

7

7.5

8

8.5

9

9.5

10

10.5

11

11.5

12

x 10-3

 
 

b. WCBCR indicator 
 

Fig. 1.10. J and WCBCR adequacy measures for the AVQ method (with random 
presentation, without bias factor) for a set of 292 training patterns for 10 clusters, η0={0.05, 
0.1,..., 0.9}, Tη0={500, 1000, ..., 5000} 

In Fig. 1.11 the two basic scenarios of the AVQ method (serial and random presentation 
without the bias factor) are presented for all adequacy measures. The method with the 
random presentation is slightly superior to the other one for all adequacy measures for 9 
clusters and above, except the SMI and DBI indicators. 

Load Time-Series Classification Based on Pattern Recognition Methods 

 

385 

0.10

0.20

0.30

0.40

5 10 15 20 25

Number of Clusters

J

Serial presentation

Random presentation

a. J indicator 

0.04

0.06

0.08

0.10

5 10 15 20 25

Number of Clusters

M
IA

Serial presentation

Random presentation

 
b. MIA indicator 

0.00

0.20

0.40

0.60

0.80

1.00

5 10 15 20 25

Number of Clusters

C
D

I

Serial presentation

Random presentation

c. CDI indicator 

0.60

0.65

0.70

0.75

0.80

5 10 15 20 25

Number of Clusters

SM
I

Serial presentation

Random presentation

 
d. SMI indicator 

1.50

2.00

2.50

3.00

5 10 15 20 25

Number of Clusters

D
BI

Serial presentation

Random presentation

e. DBI indicator 

0.000

0.005

0.010

0.015

0.020

0.025

0.030

5 10 15 20 25

Number of Clusters

W
C

BC
R

Serial presentation

Random presentation

 
f. WCBCR indicator 

Fig. 1.11. Adequacy measures for the AVQ method for a set of 292 training patterns for 5 to 
25 clusters (serial presentation and random presentation without bias factor) 
The use of the AVQ algorithm with random presentation without the bias factor is 
proposed, even if there is a small computing time increment against the algorithm with 
serial presentation. 
1.4.2.4 Application of the fuzzy k-means 
In the fuzzy k-means algorithm the results of all adequacy measures (except J) improve as 
the amount of fuzziness increases, as shown in Fig. 1.12, where the six adequacy measures 
are presented for different number of clusters and for three cases of q={2,4,6}.  
It is noted that the initialization of the respective weights is similar to the proposed k-means. 
The maximum number of epochs is 500 for the three scenarios and the upper limit of the 
weight change between sequential iterations ε is 10-4. Practically the algorithm is always 
converged after at most 400 iterations. 
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Fig. 1.10. J and WCBCR adequacy measures for the AVQ method (with random 
presentation, without bias factor) for a set of 292 training patterns for 10 clusters, η0={0.05, 
0.1,..., 0.9}, Tη0={500, 1000, ..., 5000} 

In Fig. 1.11 the two basic scenarios of the AVQ method (serial and random presentation 
without the bias factor) are presented for all adequacy measures. The method with the 
random presentation is slightly superior to the other one for all adequacy measures for 9 
clusters and above, except the SMI and DBI indicators. 
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Fig. 1.11. Adequacy measures for the AVQ method for a set of 292 training patterns for 5 to 
25 clusters (serial presentation and random presentation without bias factor) 
The use of the AVQ algorithm with random presentation without the bias factor is 
proposed, even if there is a small computing time increment against the algorithm with 
serial presentation. 
1.4.2.4 Application of the fuzzy k-means 
In the fuzzy k-means algorithm the results of all adequacy measures (except J) improve as 
the amount of fuzziness increases, as shown in Fig. 1.12, where the six adequacy measures 
are presented for different number of clusters and for three cases of q={2,4,6}.  
It is noted that the initialization of the respective weights is similar to the proposed k-means. 
The maximum number of epochs is 500 for the three scenarios and the upper limit of the 
weight change between sequential iterations ε is 10-4. Practically the algorithm is always 
converged after at most 400 iterations. 
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Fig.  1.12.  Adequacy measures for the fuzzy k-means method for a set of 292 training 
patterns, for 5 to 25 clusters and q=2, 4, 6 
1.4.2.5 Application of hierarchical agglomerative algorithms 

In the case of the seven hierarchical models the best results are given by the WARD model 
for J and CDI adequacy measures and by the UPGMA model for MIA, SMI, WCBCR 
indicators. For the Davies-Bouldin indicator there are significant variances, according to 
Fig.1.13. It should be mentioned that there are not any other parameters for calibration, such 
as maximum number of iterations etc. 
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Fig. 1.13. Adequacy measures for the 7 hierarchical clustering algorithms for a set of 292 
training patterns for 5 to 25 clusters 
1.4.2.6 Application of mono-dimensional self-organizing maps  

Although the SOM algorithm is theoretically well defined, there are several issues that need 
to be solved for the effective training of SOM. The major problems are: 
• to stop the training process of the optimum SOM. In this case the target is to minimize 

the index Is (eq.(1.32)), which combines the quality measures of the quantization error 
given by eq.(1.4), the topographic error given by eq. (1.33) and the average distortion 
measure error given by eq.(1.34). In Fig. 1.14, the normalized values of these four 
indices are registered for the case of a 10x1 SOM for the chronological load curves of the 
industrial customer under study. Generally, it is noticed that the convergence is 



 Pattern Recognition Techniques, Technology and Applications 

 

386 

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

5 10 15 20 25

Number of clusters

J

 - q=2
 - q=4
 - q=6

a. J indicator 

0.04

0.05

0.06

0.07

0.08

0.09

5 10 15 20 25

Number of clusters

M
IA

 - q=2
 - q=4
 - q=6

 
b. MIA indicator 

0.0

0.2

0.4

0.6

0.8

1.0

5 10 15 20 25

Number of clusters

C
D

I

 - q=2

 - q=4

 - q=6

c. CDI indicator 

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

5 10 15 20 25
Number of clusters

SM
I

 - q=2
 - q=4
 - q=6

 
d. SMI indicator 

0

10

20

30

40

50

5 10 15 20 25

Number of clusters

D
B

I

 - q=2
 - q=4
 - q=6

e. DBI indicator 

0.000

0.005

0.010

0.015

0.020

0.025

5 10 15 20 25
Number of clusters

W
C

B
C

R

- q=2

- q=4

- q=6

 
f. WCBCR indicator 

 

Fig.  1.12.  Adequacy measures for the fuzzy k-means method for a set of 292 training 
patterns, for 5 to 25 clusters and q=2, 4, 6 
1.4.2.5 Application of hierarchical agglomerative algorithms 

In the case of the seven hierarchical models the best results are given by the WARD model 
for J and CDI adequacy measures and by the UPGMA model for MIA, SMI, WCBCR 
indicators. For the Davies-Bouldin indicator there are significant variances, according to 
Fig.1.13. It should be mentioned that there are not any other parameters for calibration, such 
as maximum number of iterations etc. 
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Fig. 1.13. Adequacy measures for the 7 hierarchical clustering algorithms for a set of 292 
training patterns for 5 to 25 clusters 
1.4.2.6 Application of mono-dimensional self-organizing maps  

Although the SOM algorithm is theoretically well defined, there are several issues that need 
to be solved for the effective training of SOM. The major problems are: 
• to stop the training process of the optimum SOM. In this case the target is to minimize 

the index Is (eq.(1.32)), which combines the quality measures of the quantization error 
given by eq.(1.4), the topographic error given by eq. (1.33) and the average distortion 
measure error given by eq.(1.34). In Fig. 1.14, the normalized values of these four 
indices are registered for the case of a 10x1 SOM for the chronological load curves of the 
industrial customer under study. Generally, it is noticed that the convergence is 
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Fig. 1.14. Quality normalized measures of the quantization error (QE), the topographic error 
(TE), the average distortion measure error (ADM) and the  index (Is) for the mono-
dimensional SOM with 10 clusters, 0.1rη = , 0.001fη = , 

0
1000Tη = , 0 10σ = , 

0 0sT Tη= ,  

00 0/ lnT Tσ η σ=  in the case of  a set of 292 training patterns of the industrial customer under 

study 
 

• the proper initial value of the neighbourhood radius 0σ . The radius follows the 

decreasing power of the neighbourhood radius function ( ) ( )0 0exp /t t Tσσ σ= ⋅ − , 
which has the advantage to act on all neurons of the map with decreasing weights 
according to the respective distances of the winning neuron. On the contrary,  the linear 
radius function does not change the weights of those neurons with distances from the 
winning neuron larger than ( )tσ . The computational time of the last one is 
significantly smaller than the power function.  In Fig. 1.15 the effects of the initial radius 

0σ  on the adequacy measures are registered. It is noticed that the neural network’s 
performance is improved, if the initial radius is increased 0σ , especially for 

0
2000Tη ≤ . 

• the proper values of the multiplicative factor φ  between 
0sT (epochs of the rough 

ordering phase) and 
0

Tη (time parameter of learning rate). In Fig. 1.16 the adequacy 

measures with respect toφ  and 
0

Tη  are presented as indicative examples, from which it 

is concluded that the best behaviour of J, CDI, SMI, DBI indicators is registered for Τη ≥ 
800 and φ =1, while of MIA, WCBCR ones for φ =2 respectively.  
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Fig. 1.15. Normalized adequacy measures with respect to the initial radius 0σ  for the mono-
dimensional SOM with 10 clusters, 0.1rη = , 0.001fη = , 
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decreasing power of the neighbourhood radius function ( ) ( )0 0exp /t t Tσσ σ= ⋅ − , 
which has the advantage to act on all neurons of the map with decreasing weights 
according to the respective distances of the winning neuron. On the contrary,  the linear 
radius function does not change the weights of those neurons with distances from the 
winning neuron larger than ( )tσ . The computational time of the last one is 
significantly smaller than the power function.  In Fig. 1.15 the effects of the initial radius 
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Fig. 1.16. Adequacy measures with respect to {1,2,3,4,5}φ =  and 
0

Tη  = {200,400, ..., 2000}  

for the mono-dimensional SOM with 10 clusters, 0.1rη = , 0.001fη = , 0 10σ = , 

0 0 0/ lnT Tσ η σ=  in the case of  a set of 292 training patterns for the industrial customer under 

study 

• the proper values of the multiplicative factor ξ  between 
0

Tσ  (time parameter of 

neighbourhood radius) and 
0

Tη . In Fig. 1.17 the adequacy measures with respect toξ  

and 
0

Tη  are presented as indicative examples, from which it is concluded that the best 

behaviour of J, CDI indicators is registered for Τη ≥ 1000 and ξ ={0.2,..,1}, of SMI, DBI 
ones for Τη ≥ 1000 and ξ =0.6, of MIA, WCBCR ones for Τη ≥ 1000 and ξ ={0.2,0.4} 
respectively.  
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Fig. 1.16. Adequacy measures with respect to {1,2,3,4,5}φ =  and 
0

Tη  = {200,400, ..., 2000}  

for the mono-dimensional SOM with 10 clusters, 0.1rη = , 0.001fη = , 0 10σ = , 

0 0 0/ lnT Tσ η σ=  in the case of  a set of 292 training patterns for the industrial customer under 

study 

• the proper values of the multiplicative factor ξ  between 
0

Tσ  (time parameter of 

neighbourhood radius) and 
0

Tη . In Fig. 1.17 the adequacy measures with respect toξ  

and 
0

Tη  are presented as indicative examples, from which it is concluded that the best 

behaviour of J, CDI indicators is registered for Τη ≥ 1000 and ξ ={0.2,..,1}, of SMI, DBI 
ones for Τη ≥ 1000 and ξ =0.6, of MIA, WCBCR ones for Τη ≥ 1000 and ξ ={0.2,0.4} 
respectively.  
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f. WCBCR indicator 

Fig. 1.17. Adequacy measures with respect to ξ  = {0.2,0.4,…,1.0} and 
0

Tη  = {500,1000, ..., 

3000} for the mono-dimensional SOM with 10 clusters, ηr=0.1, ηf = 0.001, 0=10, 
0 0 0/ lnT Tσ η σ=  

in the case of  a set of 292 training patterns for the industrial customer under study 
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f. WCBCR indicator 

Fig. 1.17. Adequacy measures with respect to ξ  = {0.2,0.4,…,1.0} and 
0

Tη  = {500,1000, ..., 

3000} for the mono-dimensional SOM with 10 clusters, ηr=0.1, ηf = 0.001, 0=10, 
0 0 0/ lnT Tσ η σ=  

in the case of  a set of 292 training patterns for the industrial customer under study 
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• the proper values of the learning rate rη during the rough ordering phase. In Fig. 1.18 
the adequacy measures with respect to rη  and 

0
Tη  are presented as indicative examples, 

from which it is concluded that the best behaviour for all indicators is registered for Τη ≥ 
1000 and 00.1 0.15η≤ ≤ . Especially for MIA, WCBCR indicators the best results are 
succeeded for 1000≤Τη ≤1500 and 00.2 0.4η≤ ≤  with big variations.  

• the learning rate fη  during the fine tuning phase. From the results of the performed 

study, it is derived that the proper value of the parameter fη  must be smaller than 20% 

of the initial value of the learning rate rη and between 10-3 and 10-4. If fη  is increased, 
the behaviour of J, CDI, SMI, DBI, WCBCR indicators is improved whereas that of MIA 
is worsened. 
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Fig. 1.18. Adequacy measures  with respect to {0.05,0.10,...,0.4}rη =  and 

0
{500,1000,..., 4000}Tη =  for the mono-dimensional SOM with 10 clusters, 

0.001fη = , 0 10σ = , 
0 0sT Tη= , 

0 0 0/ lnT Tσ η σ=  in the case of  a set of 292 training patterns 

for the industrial customer under study 

• the initialization of the weights of the neurons. Three cases were examined: (a) 
0.5, ,kiw k i= ∀ , (b) the random initialization of each neuron’s weight, (c) the random 

choice of the input vectors for each neuron. The best training behaviour was presented 
in case (a).  

The optimization process for the mono-dimensional SOM parameters is repeated for any 
population of clusters. 

1.4.2.7 Application of bi-dimensional self-organizing maps  

In the case of the bi-dimensional SOM, the shape, the population of neurons and their 
respective arrangement are issues to be solved –beyond the optimization of parameters, 
which is considered during the training process of the mono-dimensional SOM.  
The rectangular shape of the map is defined with rectangular or hexagonal arrangement of 
neurons. The population of the last ones is recommended to be 5 N×  to 20 N×  (SOM 
Toolbox for MATLAB 5, 2000; Thang et al., 2003; Chicco et al., 2004). In the case of the 
industrial customer, a set of 292 vectors was given. The map can have 85 ( 5 292≅ × ) to 
342 ( 20 292≅ × ) neurons. The respective square maps can be 9x9 to 19x19. Using the 
ratio between the two major eigenvalues, the respective ratio is 27.31 (=4.399/0.161) and 
the proposed grids can be 55x2 and 82x3. In Table 1.1 the quality indices are presented for 
different grids, arrangements of neurons, weights’ initialization. The best result for the 
index Is is given for the square grid 19x19. It is noted that the initialization of the neurons 
can be a linear combination of the respective eigenvectors of the two major eigenvalues 
(scenario of initialization 1) or can be equal to 0.5 (scenario of initialization 2). 
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2D SOM-
neurons 

population 

Arrangement –
weights 

initialization 

Total 
epochs -

t 
Is(t) ADM(t) TE(t) J(t) 

Calibration of 

0r fTη ξ φ η η σ− − − − −  

9x9=81 Rect. –(2) 3600 0.2832 0.08853 0.10616 0.08853 1500-0.4-2-0.15-0.001-9 
9x9=81 Hex. –(2) 2400 0.3245 0.08372 0.15753 0.08372 1000-1.0-2-0.20-0.001-9 

10x10=100 Rect. –(2) 3600 0.2208 0.06757 0.08562 0.06757 1500-0.6-2-0.40-0.001-10 
10x10=100 Hex. –(2) 2400 0.2354 0.07147 0.09247 0.07147 1000-1.0-2-0.25-0.001-10 
12x12=144 Rect. –(2) 1100 0.2371 0.05176 0.13356 0.05176 500-1.0-2-0.15-0.001-12 
12x12=144 Hex. –(2) 4400 0.2679 0.05003 0.16781 0.05003 2000-1.0-2-0.05-0.001-12 
14x14=196 Rect. –(2) 3600 0.2306 0.04167 0.14726 0.04167 1500-1.0-2-0.05-0.001-14 
14x14=196 Hex. –(2) 2200 0.2245 0.03521 0.15410 0.03521 500-1.0-2-0.05-0.001-16 
16x16=256 Rect. –(2) 2200 0.1356 0.02840 0.07877 0.02840 1000-1.0-2-0.10-0.001-16 
16x16=256 Hex. –(2) 3300 0.1678 0.02909 0.10959 0.02909 1500-1.0-2-0.10-0.001-16 
19x19=361 Rect. –(2) 4400 0.0970 0.01254 0.07192 0.01254 2000-1.0-2-0.15-0.001-19 
19x19=361 Hex. –(2) 4400 0.1267 0.01538 0.09589 0.01538 2000-1.0-2-0.05-0.001-19 
55x2=110 Rect. –(2) 1200 0.3504 0.05532 0.23973 0.05532 500-1.0-2-0.15-0.001-55 
55x2=110 Rect. –(1) 1200 0.3503 0.05532 0.23973 0.05532 500-1.0-2-0.15-0.001-55 
82x3=246 Rect. –(2) 1100 0.2040 0.01982 0.16438 0.01982 500-1.0-2-0.30-0.001-82 

Table 1.1. Quality Indices for Different Cases of Bi-Dimensional SOM 

The type of the arrangement and the weights initialization do not affect the respective 
results significantly. Practically, the clusters of the bi-dimensional map cannot be directly 
exploited because of the size and the location of the neurons into the grid, as shown in Fig. 
1.19. This problem is solved through the application of a basic classification method (e.g. the 
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a. Bi-dimensional SOM 10x10 with rectangular arrangement 
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Fig. 1.18. Adequacy measures  with respect to {0.05,0.10,...,0.4}rη =  and 

0
{500,1000,..., 4000}Tη =  for the mono-dimensional SOM with 10 clusters, 

0.001fη = , 0 10σ = , 
0 0sT Tη= , 

0 0 0/ lnT Tσ η σ=  in the case of  a set of 292 training patterns 

for the industrial customer under study 

• the initialization of the weights of the neurons. Three cases were examined: (a) 
0.5, ,kiw k i= ∀ , (b) the random initialization of each neuron’s weight, (c) the random 

choice of the input vectors for each neuron. The best training behaviour was presented 
in case (a).  

The optimization process for the mono-dimensional SOM parameters is repeated for any 
population of clusters. 

1.4.2.7 Application of bi-dimensional self-organizing maps  

In the case of the bi-dimensional SOM, the shape, the population of neurons and their 
respective arrangement are issues to be solved –beyond the optimization of parameters, 
which is considered during the training process of the mono-dimensional SOM.  
The rectangular shape of the map is defined with rectangular or hexagonal arrangement of 
neurons. The population of the last ones is recommended to be 5 N×  to 20 N×  (SOM 
Toolbox for MATLAB 5, 2000; Thang et al., 2003; Chicco et al., 2004). In the case of the 
industrial customer, a set of 292 vectors was given. The map can have 85 ( 5 292≅ × ) to 
342 ( 20 292≅ × ) neurons. The respective square maps can be 9x9 to 19x19. Using the 
ratio between the two major eigenvalues, the respective ratio is 27.31 (=4.399/0.161) and 
the proposed grids can be 55x2 and 82x3. In Table 1.1 the quality indices are presented for 
different grids, arrangements of neurons, weights’ initialization. The best result for the 
index Is is given for the square grid 19x19. It is noted that the initialization of the neurons 
can be a linear combination of the respective eigenvectors of the two major eigenvalues 
(scenario of initialization 1) or can be equal to 0.5 (scenario of initialization 2). 
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2D SOM-
neurons 

population 

Arrangement –
weights 

initialization 

Total 
epochs -

t 
Is(t) ADM(t) TE(t) J(t) 

Calibration of 

0r fTη ξ φ η η σ− − − − −  

9x9=81 Rect. –(2) 3600 0.2832 0.08853 0.10616 0.08853 1500-0.4-2-0.15-0.001-9 
9x9=81 Hex. –(2) 2400 0.3245 0.08372 0.15753 0.08372 1000-1.0-2-0.20-0.001-9 

10x10=100 Rect. –(2) 3600 0.2208 0.06757 0.08562 0.06757 1500-0.6-2-0.40-0.001-10 
10x10=100 Hex. –(2) 2400 0.2354 0.07147 0.09247 0.07147 1000-1.0-2-0.25-0.001-10 
12x12=144 Rect. –(2) 1100 0.2371 0.05176 0.13356 0.05176 500-1.0-2-0.15-0.001-12 
12x12=144 Hex. –(2) 4400 0.2679 0.05003 0.16781 0.05003 2000-1.0-2-0.05-0.001-12 
14x14=196 Rect. –(2) 3600 0.2306 0.04167 0.14726 0.04167 1500-1.0-2-0.05-0.001-14 
14x14=196 Hex. –(2) 2200 0.2245 0.03521 0.15410 0.03521 500-1.0-2-0.05-0.001-16 
16x16=256 Rect. –(2) 2200 0.1356 0.02840 0.07877 0.02840 1000-1.0-2-0.10-0.001-16 
16x16=256 Hex. –(2) 3300 0.1678 0.02909 0.10959 0.02909 1500-1.0-2-0.10-0.001-16 
19x19=361 Rect. –(2) 4400 0.0970 0.01254 0.07192 0.01254 2000-1.0-2-0.15-0.001-19 
19x19=361 Hex. –(2) 4400 0.1267 0.01538 0.09589 0.01538 2000-1.0-2-0.05-0.001-19 
55x2=110 Rect. –(2) 1200 0.3504 0.05532 0.23973 0.05532 500-1.0-2-0.15-0.001-55 
55x2=110 Rect. –(1) 1200 0.3503 0.05532 0.23973 0.05532 500-1.0-2-0.15-0.001-55 
82x3=246 Rect. –(2) 1100 0.2040 0.01982 0.16438 0.01982 500-1.0-2-0.30-0.001-82 

Table 1.1. Quality Indices for Different Cases of Bi-Dimensional SOM 

The type of the arrangement and the weights initialization do not affect the respective 
results significantly. Practically, the clusters of the bi-dimensional map cannot be directly 
exploited because of the size and the location of the neurons into the grid, as shown in Fig. 
1.19. This problem is solved through the application of a basic classification method (e.g. the 
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a. Bi-dimensional SOM 10x10 with hexagonal arrangement 
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b. Bi-dimensional SOM 55x2 with rectangular arrangement 

Fig. 1.19. Different cases of bi-dimensional SOM after the application of the proposed k-
means method at the neurons of SOM 
proposed k-means) for the neurons of the bi-dimensional SOM (Chicco et al., 2004). The 
adequacy measures are calculated using the load daily chronological curves of the neurons 
which form the respective clusters of the basic classification method. In Table 1.2, the 
adequacy measures of the aforementioned maps are presented, using the proposed k-means 
method for 10 final clusters. 
For the industrial customer, the best results of the application of the k-means method to the 
neurons of the SOM are given for the maps with the ratio between the two major 
eigenvalues of the covariance matrix of the input vectors set (see Table 1.2). The respective 
clusters are also more compact than the ones of the square maps, as it can be seen in Fig. 
1.19. 
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Adequacy Measure 2D SOM-
neurons 

population 

Arrangement 
–weights 

initialization J MIA CDI SMI DBI WCBCR 
(*10-3) 

9x9=81 Rect. – (2) 0.309430 0.064420 0.365331 0.668309 2.01767 8.4570 
9x9=81 Hex. – (2) 0.284911 0.064730 0.358870 0.666259 1.91128 9.1605 

10x10=100 Rect. – (2) 0.269351 0.066746 0.358512 0.661059 1.76758 8.7586 
10x10=100 Hex. – (2) 0.285281 0.062488 0.369192 0.682404 1.81237 8.4091 
12x12=144 Rect. – (2) 0.267056 0.065584 0.353097 0.671649 1.74857 9.2029 
12x12=144 Hex. – (2) 0.268810 0.070409 0.351914 0.661194 1.85451 9.4168 
14x14=196 Rect. – (2) 0.272213 0.066418 0.360227 0.662015 1.68854 8.8566 
14x14=196 Hex. – (2) 0.273781 0.069001 0.361199 0.666046 1.75621 10.0756 
16x16=256 Rect. – (2) 0.267521 0.066970 0.349423 0.669469 1.88224 9.2304 
16x16=256 Hex. – (2) 0.268528 0.068710 0.364127 0.660511 1.69430 9.4152 
19x19=361 Rect. – (2) 0.266128 0.065389 0.351903 0.682931 1.85560 8.5386 
19x19=361 Hex. – (2) 0.267087 0.067618 0.343808 0.660950 1.70171 8.8486 
55x2=110 Rect. – (2) 0.262634 0.060581 0.345677 0.654891 1.68728 7.7872 
82x3=246 Rect. – (2) 0.258002 0.063284 0.334516 0.681566 1.75790 8.1426 

Table 1.2. Adequacy Indices for 10 Clusters – Typical Load Chronological Curves of the 
Industrial Customer Using Proposed K-Means Method at the Second Classification Level for 
Different Cases of Bi-Dimensional SOM 
1.4.2.8 Comparison of clustering models & adequacy indicators 
In Fig. 1.20, the best results for each clustering method (proposed k-means, fuzzy k-means, 
adaptive vector quantization, self-organized maps and hierarchical algorithms) are depicted. 
The proposed k-means model has the smallest values for the MIA, CDI, DBI and WCBCR 
indicators. The WARD algorithm presents the best behaviour for the mean square error J, 
the unweighted pair group method average algorithm (UPGMA) and the bi-dimensional 
SOM (with the application of the proposed k-means at the second level) for the SMI 
indicator. The proposed k-means model has similar behaviour to the WARD algorithm for 
the J indicator and to the UPGMA algorithm for the WCBCR. All indicators -except DBI- 
exhibit improved performance, as the number of clusters is increased. 
In Table 1.3 the results of the best clustering methods are presented for 10 clusters with the 
respective parameters, which is the finally proposed size of the typical days for that 
customer. The optimized parameters for the mono- dimensional  and bi- dimensional self-
organized maps have been analyzed in §1.4.2.5 and §1.4.2.6 respectively. The proposed k-
means method gives the best results for the MIA, CDI, DBI and WCBCR indicators (for 
different pairs of (a,b)), while the adaptive vector quantization should be used for J indicator 
and the bi-dimensional self organized map using proposed k-means for classification in a 
second level for SMI indicator. 
Observing the number of dead clusters for the under study models (Fig. 1.20.g) the 
behaviour of DBI and SMI indicators for bi-dimensional SOM and k-means emerges a 
significant variability. For the above reasons the proposed indicators are MIA and WCBCR. 
Studying the number of dead clusters for the proposed k-means model (Fig. 1.7), it is 
obvious that the use of WCBCR indicator is slightly superior to the use of MIA and J 
indicators. It is also noted, that the basic theoretical advantage of the WCBCR indicator is the 
fact that it combines the distances of the input vectors from the representative clusters and 
the distances between clusters, covering also the J and CDI characteristics.  
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b. Bi-dimensional SOM 55x2 with rectangular arrangement 

Fig. 1.19. Different cases of bi-dimensional SOM after the application of the proposed k-
means method at the neurons of SOM 
proposed k-means) for the neurons of the bi-dimensional SOM (Chicco et al., 2004). The 
adequacy measures are calculated using the load daily chronological curves of the neurons 
which form the respective clusters of the basic classification method. In Table 1.2, the 
adequacy measures of the aforementioned maps are presented, using the proposed k-means 
method for 10 final clusters. 
For the industrial customer, the best results of the application of the k-means method to the 
neurons of the SOM are given for the maps with the ratio between the two major 
eigenvalues of the covariance matrix of the input vectors set (see Table 1.2). The respective 
clusters are also more compact than the ones of the square maps, as it can be seen in Fig. 
1.19. 
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Adequacy Measure 2D SOM-
neurons 

population 

Arrangement 
–weights 

initialization J MIA CDI SMI DBI WCBCR 
(*10-3) 

9x9=81 Rect. – (2) 0.309430 0.064420 0.365331 0.668309 2.01767 8.4570 
9x9=81 Hex. – (2) 0.284911 0.064730 0.358870 0.666259 1.91128 9.1605 
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10x10=100 Hex. – (2) 0.285281 0.062488 0.369192 0.682404 1.81237 8.4091 
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Table 1.2. Adequacy Indices for 10 Clusters – Typical Load Chronological Curves of the 
Industrial Customer Using Proposed K-Means Method at the Second Classification Level for 
Different Cases of Bi-Dimensional SOM 
1.4.2.8 Comparison of clustering models & adequacy indicators 
In Fig. 1.20, the best results for each clustering method (proposed k-means, fuzzy k-means, 
adaptive vector quantization, self-organized maps and hierarchical algorithms) are depicted. 
The proposed k-means model has the smallest values for the MIA, CDI, DBI and WCBCR 
indicators. The WARD algorithm presents the best behaviour for the mean square error J, 
the unweighted pair group method average algorithm (UPGMA) and the bi-dimensional 
SOM (with the application of the proposed k-means at the second level) for the SMI 
indicator. The proposed k-means model has similar behaviour to the WARD algorithm for 
the J indicator and to the UPGMA algorithm for the WCBCR. All indicators -except DBI- 
exhibit improved performance, as the number of clusters is increased. 
In Table 1.3 the results of the best clustering methods are presented for 10 clusters with the 
respective parameters, which is the finally proposed size of the typical days for that 
customer. The optimized parameters for the mono- dimensional  and bi- dimensional self-
organized maps have been analyzed in §1.4.2.5 and §1.4.2.6 respectively. The proposed k-
means method gives the best results for the MIA, CDI, DBI and WCBCR indicators (for 
different pairs of (a,b)), while the adaptive vector quantization should be used for J indicator 
and the bi-dimensional self organized map using proposed k-means for classification in a 
second level for SMI indicator. 
Observing the number of dead clusters for the under study models (Fig. 1.20.g) the 
behaviour of DBI and SMI indicators for bi-dimensional SOM and k-means emerges a 
significant variability. For the above reasons the proposed indicators are MIA and WCBCR. 
Studying the number of dead clusters for the proposed k-means model (Fig. 1.7), it is 
obvious that the use of WCBCR indicator is slightly superior to the use of MIA and J 
indicators. It is also noted, that the basic theoretical advantage of the WCBCR indicator is the 
fact that it combines the distances of the input vectors from the representative clusters and 
the distances between clusters, covering also the J and CDI characteristics.  
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g. Dead clusters for the basic clustering methods 

Fig. 1.20. The best results of each clustering method for the set of 292 training patterns of a 
medium voltage industrial customer for 5 to 25 clusters 
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The improvement of the adequacy indicators is significant for the first 10 clusters. After this 
point, the behaviour of the most indicators is gradually stabilized. It can also be estimated 
graphically by using the rule of the “knee” (Gerbec et al., 2004; -, 2005), as shown in Fig. 
1.21. If this knee is not clearly shown, the tangents are drawn estimating the knee for 10 
clusters for the current case study. 
After having taken into consideration that the ratio of the computational training time for 
the under study methods is 0.05:1:22:24:36:50 (hierarchical: proposed k-means: adaptive 
vector quantization: mono-dimensional SOM: fuzzy k-means for q=6: bi-dimensional SOM), 
the use of the hierarchical and k-means models is proposed. It is mentioned that the 
necessary computational training time for the proposed k-means method is approximately 
one hour for Pentium 4, 1.7 GHz, 768 MB. 
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Fig. 1.21. Indicative estimation of the necessary clusters for the typical load daily 
chronological curves of a medium voltage industrial customer, using the proposed k-means 
model with the WCBCR adequacy measure 

Consequently, the proposed k-means model with WCBCR adequacy measure is suggested 
for the description of the load behaviour of the analyzed paper-mill medium voltage 
customer. More generally, the WCBCR indicator should be used because of its 
aforementioned basic theoretical advantage. But for completeness reasons we will examine 
all adequacy measures for all models for other 93 customers in §1.4.2.10. Before this step the 
results for the analyzed paper-mill medium voltage customer will be presented. 

1.4.2.9 Representative daily load chronological diagrams of a paper-mill medium voltage customer 

The results of the respective clustering for 10 clusters using the proposed k-means model 
with the optimization of the WCBCR indicator are presented in Tables 1.4 and in Fig. 1.22. 
This number of clusters is qualitatively satisfied.  
The retailer and the head engineer of the under study industry can observe the customer’s 
daily demand behaviour during the year based on the respective load curves. Specifically, 
cluster 1 represents holidays, clusters 2 and 4 the days of the re-operation of the industry, 
cluster 3 the days of stopping the operation of the industry, cluster 5 a day with partial 
internal power fault, cluster 6 the workdays with one of the two lines for production in 
operation, clusters 7 and 8 the workdays for which one of the two lines for production is out 
of operation for few hours, clusters 9 and 10 the usual workdays, where every 8 hours there 
is a small variance because of the workers’ change. 
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Fig. 1.20. The best results of each clustering method for the set of 292 training patterns of a 
medium voltage industrial customer for 5 to 25 clusters 
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The improvement of the adequacy indicators is significant for the first 10 clusters. After this 
point, the behaviour of the most indicators is gradually stabilized. It can also be estimated 
graphically by using the rule of the “knee” (Gerbec et al., 2004; -, 2005), as shown in Fig. 
1.21. If this knee is not clearly shown, the tangents are drawn estimating the knee for 10 
clusters for the current case study. 
After having taken into consideration that the ratio of the computational training time for 
the under study methods is 0.05:1:22:24:36:50 (hierarchical: proposed k-means: adaptive 
vector quantization: mono-dimensional SOM: fuzzy k-means for q=6: bi-dimensional SOM), 
the use of the hierarchical and k-means models is proposed. It is mentioned that the 
necessary computational training time for the proposed k-means method is approximately 
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Fig. 1.21. Indicative estimation of the necessary clusters for the typical load daily 
chronological curves of a medium voltage industrial customer, using the proposed k-means 
model with the WCBCR adequacy measure 

Consequently, the proposed k-means model with WCBCR adequacy measure is suggested 
for the description of the load behaviour of the analyzed paper-mill medium voltage 
customer. More generally, the WCBCR indicator should be used because of its 
aforementioned basic theoretical advantage. But for completeness reasons we will examine 
all adequacy measures for all models for other 93 customers in §1.4.2.10. Before this step the 
results for the analyzed paper-mill medium voltage customer will be presented. 

1.4.2.9 Representative daily load chronological diagrams of a paper-mill medium voltage customer 

The results of the respective clustering for 10 clusters using the proposed k-means model 
with the optimization of the WCBCR indicator are presented in Tables 1.4 and in Fig. 1.22. 
This number of clusters is qualitatively satisfied.  
The retailer and the head engineer of the under study industry can observe the customer’s 
daily demand behaviour during the year based on the respective load curves. Specifically, 
cluster 1 represents holidays, clusters 2 and 4 the days of the re-operation of the industry, 
cluster 3 the days of stopping the operation of the industry, cluster 5 a day with partial 
internal power fault, cluster 6 the workdays with one of the two lines for production in 
operation, clusters 7 and 8 the workdays for which one of the two lines for production is out 
of operation for few hours, clusters 9 and 10 the usual workdays, where every 8 hours there 
is a small variance because of the workers’ change. 
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Adequacy Measure Methods -Parameters 
J MIA CDI SMI DBI WCBCR 

Proposed k-means (scenario 
1) 0.2527 0.05828 0.3239 0.6711 1.6515 0.006679 

a parameter 0.10 0.19 0.35 0.17 0.18 0.11 
b parameter 0.77 0.35 0.55 0.48 0.37 0.60 

K-means (scenario 2) 0.2537 0.06782 0.3601 0.7311 2.5603 0.007760 
Classic k-means (scenario 3) 0.2538 0.06435 0.3419 0.7306 2.4173 0.006716 

AVQ 0.2496 0.06472 0.3537 0.7160 2.1884 0.006886 
0η   parameter 0.80 0.85 0.85 0.75 0.60 0.70 

0Tη  parameter 500 1500 500 2000 500 500 
Fuzzy k-means (q=6) 0.3575 0.07144 0.3697 0.7635 3.2559 0.007153 

a parameter 0.31 0.27 0.18 0.13 0.10 0.10 
b parameter 0.49 0.31 0.36 0.54 0.59 0.46 

CL 0.2973 0.07271 0.3977 0.7427 2.9928 0.010052 
SL 0.7027 0.09644 0.5049 0.6798 2.4855 0.015696 

UPGMA 0.3127 0.06297 0.4008 0.6494 2.1714 0.006684 
UPGMC 0.4147 0.07656 0.4346 0.6494 2.1198 0.009908 
WARD 0.2538 0.06804 0.3723 0.7296 2.7334 0.008399 

WPGMA 0.3296 0.06807 0.4112 0.6781 2.4764 0.007991 
WPGMC 0.5747 0.07386 0.4665 0.6900 2.7903 0.008884 

Mono-dimensional SOM 0.2607 0.07189 0.3903 0.7588 3.8325 0.009631 
Bi-dimensional SOM 55x2 

using proposed k-means for 
classification in a second level

0.2623 0.06059 0.3456 0.6549 1.6873 0.007787 

a parameter of k-means 0.15 0.24 0.36 0.44 0.22 0.22 
b parameter of k-means 0.69 0.28 0.51 0.11 0.30 0.30 

Table 1.3. Comparison of the Best Clustering Models for 10 Clusters for the Medium Voltage 
Industrial Customer 

Day (1 for Monday, 2 for Tuesday etc.) Load cluster 
1 2 3 4 5 6 7 

Days 
per cluster 

1 4 4 4 4 3 4 4 27 
2 1 0 0 0 2 0 0 3 
3 1 0 0 0 0 1 0 2 
4 0 1 1 0 0 0 0 2 
5 0 1 0 0 0 0 0 1 
6 4 2 4 4 3 2 2 21 
7 6 4 3 4 4 2 0 23 
8 2 1 1 1 2 2 1 10 
9 9 11 16 11 11 11 13 82 

10 14 17 12 18 16 21 22 120 
 Total number of days under study 292 

Table 1.4. Results of the Proposed k-means Model with optimization to WCBCR Adequacy 
Measure for 10 clusters for the Medium Voltage Industrial Customer 
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Fig. 1.22. Typical daily chronological load curves for the medium voltage industrial 
customer using proposed k-means model with optimization to WCBCR adequacy measure 
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using proposed k-means for 
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Table 1.4. Results of the Proposed k-means Model with optimization to WCBCR Adequacy 
Measure for 10 clusters for the Medium Voltage Industrial Customer 

Load Time-Series Classification Based on Pattern Recognition Methods 

 

403 

100
150
200
250
300
350
400

0 6 12 18 24
Time (h)

A
ct

iv
e 

Po
w

er
 (k

W
)

 
a. Cluster 1 

0
1000
2000
3000
4000
5000
6000

0 6 12 18 24
Time (h)

A
ct

iv
e 

Po
w

er
 (k

W
)

 
b. Cluster 2 

0

1000

2000

3000

4000

5000

0 6 12 18 24
Time (h)

A
ct

iv
e 

Po
w

er
 (k

W
)

 
c. Cluster 3 

0
1000
2000
3000
4000
5000
6000

0 6 12 18 24
Time (h)

A
ct

iv
e 

Po
w

er
 (k

W
)

 
d. Cluster 4 

0

1000

2000

3000

4000

5000

0 6 12 18 24
Time (h)

A
ct

iv
e 

Po
w

er
 (k

W
)

 
e. Cluster 5 

3000

4000

5000

6000

0 6 12 18 24Time (h)

A
ct

iv
e 

Po
w

er
 (k

W
)

 
f. Cluster 6 

4000

5000
6000

7000

8000
9000

0 6 12 18 24Time (h)

A
ct

iv
e 

Po
w

er
 (k

W
)

 
g. Cluster 7 

4000
5000
6000

7000
8000
9000

0 6 12 18 24Time (h)

A
ct

iv
e 

Po
w

er
 (k

W
)

 
h. Cluster 8 

7000

7250

7500

7750

8000

0 6 12 18 24
Time (h)

A
ct

iv
e 

Po
w

er
 (k

W
)

Mean value Mean - standard dev.
Mean +standard dev.  

i. Cluster 9 

7900

8100

8300

8500

8700

0 6 12 18 24
Time (h)

A
ct

iv
e 

Po
w

er
 (k

W
)

Mean value Mean - standard dev.
Mean +standard dev.  

k. Cluster 10 

Fig. 1.22. Typical daily chronological load curves for the medium voltage industrial 
customer using proposed k-means model with optimization to WCBCR adequacy measure 
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The daily load diagrams are well identified using the k-means clustering method and the 
WCBCR indicator, as it is indicatively presented in Fig. 1.23, where the typical load curve of 
cluster 10 (which represents the most populated day and the day with peak load 
simultaneously) along with the 120 measured clustered load curves are shown. It is obvious 
from table 1.4 that the number of the days for each representative cluster of this customer is 
not influenced by the day of the week. 
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Fig. 1.23. Daily chronological load curve of cluster 10 for the MV industrial customer (bold 
line) along with its 120 clustered measured curves (thin lines) using the proposed k-means 
clustering method and the WCBCR indicator 
1.4.2.10 Application of the Proposed Methodology to a Set of Medium Voltage Customers   

The same process was repeated for 93 more medium voltage customers of the Greek 
power distribution system, with load curves qualitatively described by using 8-12 clusters 
for each customer. The scope of this application is the representation of the comparison of 
the clustering algorithms and the adequacy measures for more than one customer. The 
performance of these methods is presented in Table 1.5 and in Fig. 1.24, through the 
indication of the number of customers which achieves the best value of adequacy 
measure.  
It is evident, by observing Fig. 1.24, in which a comparison of the algorithms is depicted, 
that the developed k-means method achieves a better performance for MIA, CDI  and 
WCBCR measures, the bi-dimensional SOM model using proposed k-means for 
classification in a second level for J measure and the adaptive vector quantization for SMI, 
DBI indicators. It can be noticed that the other two k-means models show the worst 
performance in adequacy measures. 
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Adequacy Measure Methods 
J MIA CDI SMI DBI WCBCR 

Proposed k-means (scenario 1) 6 28 85 16 13 37 
K-means (scenario 2) 0 0 0 0 0 0 

Classic k-means (scenario 3) 0 0 0 0 0 0 
AVQ 2 2 0 32 47 1 

Fuzzy k-means (q=6) 0 0 0 0 1 6 
CL 0 1 0 0 0 0 
SL 0 5 0 2 4 4 

UPGMA 0 15 0 3 7 12 
UPGMC 0 20 0 22 6 18 
WARD 16 0 0 0 0 1 

WPGMA 0 13 0 0 3 8 
WPGMC 0 6 0 2 1 7 

Mono-dimensional SOM 5 1 0 0 0 0 
Bi-dimensional SOM using 

proposed k-means for 
classification in a second level 

65 3 9 17 12 0 

Table 1.5. Comparison of the Clustering Models for the Set of 94 MV Customers for 10 
clusters 
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Fig. 1.24. Population of customers with the best value of adequacy measure, with respect to 
different clustering models for the set of the 94 medium voltage customers of the Greek 
Power Distribution System 

In practice, the proposed k-means model and hierarchical ones should be used, as they lead 
to the best results compared to the other models, especially for the WCBCR indicator. 

1.4.3 Usefulness of the application of the proposed methodology    
The results of the developed methodology can be used for: 
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The daily load diagrams are well identified using the k-means clustering method and the 
WCBCR indicator, as it is indicatively presented in Fig. 1.23, where the typical load curve of 
cluster 10 (which represents the most populated day and the day with peak load 
simultaneously) along with the 120 measured clustered load curves are shown. It is obvious 
from table 1.4 that the number of the days for each representative cluster of this customer is 
not influenced by the day of the week. 
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Fig. 1.23. Daily chronological load curve of cluster 10 for the MV industrial customer (bold 
line) along with its 120 clustered measured curves (thin lines) using the proposed k-means 
clustering method and the WCBCR indicator 
1.4.2.10 Application of the Proposed Methodology to a Set of Medium Voltage Customers   

The same process was repeated for 93 more medium voltage customers of the Greek 
power distribution system, with load curves qualitatively described by using 8-12 clusters 
for each customer. The scope of this application is the representation of the comparison of 
the clustering algorithms and the adequacy measures for more than one customer. The 
performance of these methods is presented in Table 1.5 and in Fig. 1.24, through the 
indication of the number of customers which achieves the best value of adequacy 
measure.  
It is evident, by observing Fig. 1.24, in which a comparison of the algorithms is depicted, 
that the developed k-means method achieves a better performance for MIA, CDI  and 
WCBCR measures, the bi-dimensional SOM model using proposed k-means for 
classification in a second level for J measure and the adaptive vector quantization for SMI, 
DBI indicators. It can be noticed that the other two k-means models show the worst 
performance in adequacy measures. 
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Adequacy Measure Methods 
J MIA CDI SMI DBI WCBCR 

Proposed k-means (scenario 1) 6 28 85 16 13 37 
K-means (scenario 2) 0 0 0 0 0 0 

Classic k-means (scenario 3) 0 0 0 0 0 0 
AVQ 2 2 0 32 47 1 

Fuzzy k-means (q=6) 0 0 0 0 1 6 
CL 0 1 0 0 0 0 
SL 0 5 0 2 4 4 

UPGMA 0 15 0 3 7 12 
UPGMC 0 20 0 22 6 18 
WARD 16 0 0 0 0 1 

WPGMA 0 13 0 0 3 8 
WPGMC 0 6 0 2 1 7 

Mono-dimensional SOM 5 1 0 0 0 0 
Bi-dimensional SOM using 

proposed k-means for 
classification in a second level 

65 3 9 17 12 0 

Table 1.5. Comparison of the Clustering Models for the Set of 94 MV Customers for 10 
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Fig. 1.24. Population of customers with the best value of adequacy measure, with respect to 
different clustering models for the set of the 94 medium voltage customers of the Greek 
Power Distribution System 

In practice, the proposed k-means model and hierarchical ones should be used, as they lead 
to the best results compared to the other models, especially for the WCBCR indicator. 

1.4.3 Usefulness of the application of the proposed methodology    
The results of the developed methodology can be used for: 
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• the proper selection of an adequate tariff by the customer or the recommendation of a 
tariff from the supplier, 

• the settlement of the customer’s bills in the case of energy and power bought from more 
than one suppliers,  

• the feasibility studies of the energy efficiency and demand side management measures, 
which are proper for the customer,  

• the customer’s short-term and mid-term load forecasting, load estimation after the 
application of demand side management programs, in which  the customer as well as 
the suppliers are interested,  

• the selection of the representative chronological load diagram of the customer by 
choosing the type of typical day (such as the most populated day, the day with the peak 
demand load or with the maximum demand energy, etc), which will be used for the 
customers’ classification by the suppliers. 

1.5 A two-stage pattern recognition of load curves for classification of electricity 
customers  
1.5.1 General description of the proposed two-stage methodology   
Based on the pattern recognition methodology for the classification of the daily load curves 
of a customer  a two-stage methodology, which has been developed for the classification of 
electricity customers, is presented by Tsekouras et al., 2007. In the first stage, typical 
chronological load curves of various customers are estimated using pattern recognition 
methods and their results are compared using the six adequacy measures, as in the case of 
the first paradigm. In the second stage, classification of customers is performed by the same 
methods and measures, along with the representative load patterns of customers being 
obtained from the first stage. The flow chart of the proposed methodology is shown in Fig. 
1.25, while its basic steps are the following:  
a. Data and features selection  (same to (a) step of the methodology of §1.4). 
b. Customers’ clustering using a priori indices: Customers can be characterized by their 

geographical region, voltage level (high, medium, low), economic activity, installed 
power, contracted energy, power factor, etc. These indices are not necessarily related to 
the load curves according to the experience of the power distribution company. They 
can be used however for the pre-classification of customers. It is mentioned that the 
load curves of each customer are normalized using the respective minimum and 
maximum loads of the period under study. 

c. Data preprocessing (same to (b) step of the methodology of §1.4). 
d. Typical load curves clustering for each customer –First stage application of pattern recognition 

methods: For each customer, a number of clustering algorithms (k-means, adaptive 
vector quantization, fuzzy k-means, self-organized maps and hierarchical clustering) is 
applied. Each algorithm is trained for the set of load curves and evaluated according to 
six adequacy measures. The parameters of the algorithms are optimized, if necessary. 
The developed methodology uses the clustering methods that provide the most 
satisfactory results. This process is repeated for the total set of customers under study. 
Special customers, such as seasonal ones (e.g. oil-press industry, small seaside hotels) 
are identified. Practically, it is the (c) step of the main application of the pattern 
recognition methods of the methodology of §1.4. 
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Fig. 1.25. Flow chart of two stage pattern recognition methodology for the classification of 
customers 
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• the proper selection of an adequate tariff by the customer or the recommendation of a 
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Fig. 1.25. Flow chart of two stage pattern recognition methodology for the classification of 
customers 
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e. Selection of typical chronological load curves for customers: The typical load curves of 
customers that will be used for the final clustering are selected by choosing the type of 
typical day (such as the most populated day, the day with the peak demand load or 
with the maximum demand energy, etc). It is possible to omit the customer’s typical 
load curves clustering, if the user wishes to compare the customer’s behaviour in 
specific days, such as the day of system peak load, the mean July workday, etc. 
However, the customers’ behaviour is not entirely representative for the period under 
study. It is noticed that special customers can be handled separately. 

f. Clustering of customers - Second stage application of pattern recognition methods: The 
clustering methods are applied for the set of the customer’s representative load curves. 
After algorithms’ calibration, the clusters of customers and the respective classes 
representative load curves are formed. 

1.5.2 Application of the two-stage methodology to a set of medium voltage customers    
1.5.2.1 General 

For the application of the proposed methodology a set of 94 medium voltage customers of the 
Greek power distribution system is used. It should be noticed that larger customer sets coming 
from different power distribution systems can be handled applying the same procedure and 
the expected results might be better. However, only the set of 94 customers is available. 
Firstly, the first stage of the proposed methodology is realized, which has been already 
presented in § 1.4.2.1 -  § 1.4.2.9 (analytically for one customer) and  § 1.4.2.10 (synoptically 
for the set of the 94 medium voltage customers). Next, the second stage is implemented. The 
characteristic customer’s typical day can be either the most populated day of the customer 
or the day with the peak load demand (independently of the best number of clusters for 
each individual customer). Here, two case studies are presented: the first with the most 
populated day of each customer and the second with the peak load demand. In both cases 
the representative load curve for each customer is obtained by the clustering method that 
shows the best results for the adequacy measure being used (here is WCBCR). The clustering 
methods are applied for the set of the representative load curve for each customer using 
WCBCR as adequacy measure because of its theoretical advantage (see §1.4.2.8). 
1.5.2.2 Case study I: the most populated day of each customer  

For this case study the most populated day of each customer is used. For example the 
respective cluster is the 10th one for the industrial customer in Table 1.2. Fig. 1.26 shows the 
best results of each clustering method by using the WCBCR measure. The developed k-
means and UPGMC models are proved to be the best ones, as it is also registered in Table 
1.6. The respective number of clusters is determined by using the rule of the “knee” (see 
§1.4.2.8) finding that the necessary number of clusters is 12. 
The results of clustering for 12 clusters using the UPGMC model with the optimization of 
the WCBCR measure are presented in Table 1.7 and in Fig. 1.27. Practically eighty-nine 
customers form seven main clusters (it is proposed empirically the number of the clusters to 
be between 2 and 89 9≈  (Figueiredo et al., 2005)), while the remaining five customers 
show specific unique characteristics among the members of the set of the 94 customers 
(respective individual clusters 2, 4, 5, 9, 10).  
Each customer class presents its separate behaviour. Specifically, customers of cluster 1 have 
stable load demand equal to approximately 10% of the respective normalized peak load 
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(=1.0). Similarly customers of cluster 7 and cluster 12 have stable load demand equal to 
approximately 45% and 80% of the respective normalized peak load respectively. Cluster 3 
has the most customers (40 from 94), whose load behaviour is characteristic: gradual load 
increment from 18% to 45% of normalized peak load from 6:00 to 10:00, a small variation at 
12:00, afterwards a slow load reduction from 14:00 to 24:00. 
Load demand of customers of cluster 8 has a rapid increment at 8:00 (from 40% to 70% of 
normalized peak load), it remains stable until 20:00, then it has a slow reduction until 23:00 
(receiving 40% of normalized peak load). This cluster has mainly industrial and commercial 
customers. On the contrary, cluster 11 has only industrial customers with similar load 
behaviour (load demand has a rapid increment at 6:00 from 50% to 80% of maximum peak 
load, it remains stable until 22:00, then it has a rapid reduction to 50% of maximum peak 
load, while it is obvious that there is a small variation approximately at 14:00). The separate 
customers of clusters 4, 5 and 9 have similar load behaviour with the customers of clusters 8 
and 11, but they have some special characteristics, such as different hours of load increment etc.  
The two commercial customers of cluster 6 and the separate customer of cluster 2 have 
maximum load demand during early night hours (completely opposite behaviour from the 
other customers). 
The obtained representative curves provide useful information about the load demand of 
the customers’ clusters throughout the year. It is obvious that the a priori index of 
customer’s activity is not representative for load curves, which is also confirmed by (Chicco 
et al., 2003a; -, 2003b; -, 2004; -, 2006; Figueiredo et al., 2003). This can not be generalized 
since it may vary within countries and distribution companies depending on the respective 
data of customers (Gerbec et al., 2003; -, 2004; -, 2005). But the proposed methodology can be 
applied directly to the respective set of customers, in order to study their respective load 
behaviour. The same process can be repeated for all other adequacy measures. The number 
of the clusters being used can also be selected according to the desirable precision and the 
relative improvement of the respective measure. 
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Fig. 1.26. WCBCR measure of the best fitting clustering methods for 5 to 25 neurons for the 
training patterns set of 94 medium voltage customers for the most populated day 
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shows the best results for the adequacy measure being used (here is WCBCR). The clustering 
methods are applied for the set of the representative load curve for each customer using 
WCBCR as adequacy measure because of its theoretical advantage (see §1.4.2.8). 
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For this case study the most populated day of each customer is used. For example the 
respective cluster is the 10th one for the industrial customer in Table 1.2. Fig. 1.26 shows the 
best results of each clustering method by using the WCBCR measure. The developed k-
means and UPGMC models are proved to be the best ones, as it is also registered in Table 
1.6. The respective number of clusters is determined by using the rule of the “knee” (see 
§1.4.2.8) finding that the necessary number of clusters is 12. 
The results of clustering for 12 clusters using the UPGMC model with the optimization of 
the WCBCR measure are presented in Table 1.7 and in Fig. 1.27. Practically eighty-nine 
customers form seven main clusters (it is proposed empirically the number of the clusters to 
be between 2 and 89 9≈  (Figueiredo et al., 2005)), while the remaining five customers 
show specific unique characteristics among the members of the set of the 94 customers 
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load, while it is obvious that there is a small variation approximately at 14:00). The separate 
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and 11, but they have some special characteristics, such as different hours of load increment etc.  
The two commercial customers of cluster 6 and the separate customer of cluster 2 have 
maximum load demand during early night hours (completely opposite behaviour from the 
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The obtained representative curves provide useful information about the load demand of 
the customers’ clusters throughout the year. It is obvious that the a priori index of 
customer’s activity is not representative for load curves, which is also confirmed by (Chicco 
et al., 2003a; -, 2003b; -, 2004; -, 2006; Figueiredo et al., 2003). This can not be generalized 
since it may vary within countries and distribution companies depending on the respective 
data of customers (Gerbec et al., 2003; -, 2004; -, 2005). But the proposed methodology can be 
applied directly to the respective set of customers, in order to study their respective load 
behaviour. The same process can be repeated for all other adequacy measures. The number 
of the clusters being used can also be selected according to the desirable precision and the 
relative improvement of the respective measure. 
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Fig. 1.26. WCBCR measure of the best fitting clustering methods for 5 to 25 neurons for the 
training patterns set of 94 medium voltage customers for the most populated day 
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Adequacy Measure Methods -Parameters 
J MIA CDI SMI DBI WCBCR 

Proposed k-means 0.3840 0.04950 0.2064 0.6732 1.6694 0.004100 
AVQ 0.3601 0.05453 0.2215 0.6736 1.2345 0.004877 

Fuzzy k-means (q=6) 0.5751 0.06559 0.2656 0.7411 2.1210 0.007577 

CL 0.4058 0.05484 0.2291 0.7010 1.7056 0.004926 
SL 1.2718 0.08737 0.3421 0.7050 2.7942 0.011694 

UPGMA 0.4956 0.05070 0.2442 0.6664 1.6341 0.004008 
UPGMC 0.5462 0.04696 0.2528 0.6593 1.8610 0.003315 
WARD 0.3728 0.05369 0.2349 0.6984 1.7817 0.005258 

WPGMA 0.4573 0.05367 0.2288 0.6768 1.6965 0.004452 
WPGMC 0.4617 0.05579 0.2301 0.6752 1.6779 0.004712 

Mono-dimensional SOM 0.4163 0.06330 0.2694 0.7184 2.0013 0.008752 

Bi-dimensional SOM 14x3 using 
proposed k-means for 

classification in a second level
0.3265 0.05920 0.2157 0.6676 1.7604 0.006599 

 

Table 1.6. Comparison of the Best Clustering Models for 12 Clusters for the set of 94 medium 
voltage customers using the most populated day based on WCBCR adequacy measure of 
the 1st stage 
 

Activity of customer (1: commercial, 2: 
industrial, 3: public services, 4:traction) Load 

cluster 
1 2 3 4 

Customers 
per cluster 

1 12 6 3 1 22 
2 1 0 0 0 1 
3 26 9 3 2 40 
4 0 1 0 0 1 
5 1 0 0 0 1 
6 2 0 0 0 2 
7 5 3 1 0 9 
8 6 2 0 0 8 
9 0 1 0 0 1 
10 0 1 0 0 1 
11 0 3 0 0 3 
12 0 5 0 0 5 

Total 53 31 7 3 94 
 

Table 1.7. Results of the UPGMC Model with optimization to WCBCR measure  for 12 
clusters for a set of 94 Customers using the most populated day 
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voltage customers using the most populated day based on WCBCR adequacy measure of 
the 1st stage 
 

Activity of customer (1: commercial, 2: 
industrial, 3: public services, 4:traction) Load 

cluster 
1 2 3 4 

Customers 
per cluster 

1 12 6 3 1 22 
2 1 0 0 0 1 
3 26 9 3 2 40 
4 0 1 0 0 1 
5 1 0 0 0 1 
6 2 0 0 0 2 
7 5 3 1 0 9 
8 6 2 0 0 8 
9 0 1 0 0 1 
10 0 1 0 0 1 
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12 0 5 0 0 5 

Total 53 31 7 3 94 
 

Table 1.7. Results of the UPGMC Model with optimization to WCBCR measure  for 12 
clusters for a set of 94 Customers using the most populated day 
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Fig. 1.27. Normalized representative chronological load curves of typical classes from the 
classification of a set of 94 medium voltage customers (as derived from the load curves of 
the most populated typical day of each customer) for the Greek power distribution system 
to 12 clusters using UPGMC model with the optimization of the WCBCR measure 
1.5.2.3 Case study II: the day with peak load demand  
For this case study the day with the respective peak load demand of each customer is used. 
For example the respective cluster is the 10th one for the industrial customer (see Fig. 1.22), 
which is also characterised by the most populated day (this congruency rarely happens).  
Fig. 1.28 shows the best results of each clustering method by using the WCBCR measure. 
The WPGMA and UPGMC models are proved to be the best ones, as it is also registered in 
Table 1.8. Using the rule of the “knee” the necessary number of clusters is between 9 and 15 
choosing finally 12 (the position of the knee is not clear).  
The results of clustering for 12 clusters using the WPGMA model with the optimization of 
the WCBCR measure are presented in Table 1.9 and in Fig. 1.29. Practically eighty-nine 
customers form seven main clusters, as it has been already happened for the most populated 
day, but it is an accidental occasion. The respective representative load curves are more 
abrupt and sharp than the ones of the most populated day.  
Specifically, customers of cluster 11 (with 20 customers from 94) have stable load demand 
equal to approximately 80% of the respective normalized peak load. The load behaviour of 
cluster 10, which has the most customers (36 from 94), presents a gradual load increment 
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from 30% to 85% of normalized peak load from 6:00 to 11:00, afterwards a slow load 
reduction from 13:00 to 24:00. Both of these clusters present small variations.  
The load behaviour of clusters 3, 4, 8 and 9 presents larger variations than the respective one 
of clusters 10 and 11. Customers of cluster 3 have a gradual load increment from 10% to 70% 
of normalized peak load from 6:00 to 15:00, afterwards a slow load reduction from 15:00 to 
24:00. Customers of cluster 4 have a rapid load increment from 10% to 90% of normalized 
peak load at 8:00, then their load remains stable practically until 16:00, afterwards their load 
reduces sharply at 16:00. Load demand of customers’ cluster 9 has a gradual increment from 
10% to 90% of normalized peak load from 8:00 to 13:00, it remains stable until 20:00, then it 
has a rapid reduction until 24:00.  
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Fig. 1.28. WCBCR measure of the best fitting clustering methods for 5 to 25 neurons for the 
training patterns set of 94 medium voltage customers for the day with the peak load 
demand 

Adequacy Measure Methods -Parameters 
J MIA CDI SMI DBI WCBCR 

Proposed k-means 1.1754 0.1043 0.3434 0.6591 2.1421 0.02033 
AVQ 1.1304 0.1043 0.4389 0.6557 2.0546 0.02222 

Fuzzy k-means (q=6) 1.6999 0.1282 0.4963 0.7073 3.3089 0.03387 
CL 1.2138 0.1105 0.4663 0.6752 2.7041 0.02702 
SL 2.5647 0.1256 0.5420 0.6373 3.3553 0.02870 

UPGMA 1.3303 0.0989 0.4219 0.6584 2.5309 0.01657 
UPGMC 1.6186 0.0951 0.4435 0.6223 2.7116 0.01430 
WARD 1.1696 0.1145 0.4739 0.6828 2.7926 0.03122 

WPGMA 1.4141 0.0953 0.4031 0.6377 2.5680 0.01327 
WPGMC 1.7250 0.1040 0.4274 0.6303 2.9650 0.01536 

Mono-dimensional SOM 1.1682 0.1139 0.4981 0.6788 2.7897 0.03480 
Bi-dimensional SOM 14x3 using 

proposed k-means for classification 
in a second level 

1.0373 0.1023 0.3475 0.6500 2.1731 0.02067 

Table 1.8. Comparison of the Best Clustering Models for 12 Clusters for the set of 94 medium 
voltage customers using the day with the peak load demand based on WCBCR adequacy 
measure of the 1st stage 
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Fig. 1.27. Normalized representative chronological load curves of typical classes from the 
classification of a set of 94 medium voltage customers (as derived from the load curves of 
the most populated typical day of each customer) for the Greek power distribution system 
to 12 clusters using UPGMC model with the optimization of the WCBCR measure 
1.5.2.3 Case study II: the day with peak load demand  
For this case study the day with the respective peak load demand of each customer is used. 
For example the respective cluster is the 10th one for the industrial customer (see Fig. 1.22), 
which is also characterised by the most populated day (this congruency rarely happens).  
Fig. 1.28 shows the best results of each clustering method by using the WCBCR measure. 
The WPGMA and UPGMC models are proved to be the best ones, as it is also registered in 
Table 1.8. Using the rule of the “knee” the necessary number of clusters is between 9 and 15 
choosing finally 12 (the position of the knee is not clear).  
The results of clustering for 12 clusters using the WPGMA model with the optimization of 
the WCBCR measure are presented in Table 1.9 and in Fig. 1.29. Practically eighty-nine 
customers form seven main clusters, as it has been already happened for the most populated 
day, but it is an accidental occasion. The respective representative load curves are more 
abrupt and sharp than the ones of the most populated day.  
Specifically, customers of cluster 11 (with 20 customers from 94) have stable load demand 
equal to approximately 80% of the respective normalized peak load. The load behaviour of 
cluster 10, which has the most customers (36 from 94), presents a gradual load increment 
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from 30% to 85% of normalized peak load from 6:00 to 11:00, afterwards a slow load 
reduction from 13:00 to 24:00. Both of these clusters present small variations.  
The load behaviour of clusters 3, 4, 8 and 9 presents larger variations than the respective one 
of clusters 10 and 11. Customers of cluster 3 have a gradual load increment from 10% to 70% 
of normalized peak load from 6:00 to 15:00, afterwards a slow load reduction from 15:00 to 
24:00. Customers of cluster 4 have a rapid load increment from 10% to 90% of normalized 
peak load at 8:00, then their load remains stable practically until 16:00, afterwards their load 
reduces sharply at 16:00. Load demand of customers’ cluster 9 has a gradual increment from 
10% to 90% of normalized peak load from 8:00 to 13:00, it remains stable until 20:00, then it 
has a rapid reduction until 24:00.  
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Fig. 1.28. WCBCR measure of the best fitting clustering methods for 5 to 25 neurons for the 
training patterns set of 94 medium voltage customers for the day with the peak load 
demand 
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Fuzzy k-means (q=6) 1.6999 0.1282 0.4963 0.7073 3.3089 0.03387 
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SL 2.5647 0.1256 0.5420 0.6373 3.3553 0.02870 

UPGMA 1.3303 0.0989 0.4219 0.6584 2.5309 0.01657 
UPGMC 1.6186 0.0951 0.4435 0.6223 2.7116 0.01430 
WARD 1.1696 0.1145 0.4739 0.6828 2.7926 0.03122 

WPGMA 1.4141 0.0953 0.4031 0.6377 2.5680 0.01327 
WPGMC 1.7250 0.1040 0.4274 0.6303 2.9650 0.01536 

Mono-dimensional SOM 1.1682 0.1139 0.4981 0.6788 2.7897 0.03480 
Bi-dimensional SOM 14x3 using 

proposed k-means for classification 
in a second level 

1.0373 0.1023 0.3475 0.6500 2.1731 0.02067 

Table 1.8. Comparison of the Best Clustering Models for 12 Clusters for the set of 94 medium 
voltage customers using the day with the peak load demand based on WCBCR adequacy 
measure of the 1st stage 
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Activity of customer (1: commercial, 2: 
industrial, 3: public services, 4:traction) Load 

cluster 
1 2 3 4 

Customers 
per cluster 

1 0 1 0 0 1 
2 1 0 1 0 2 
3 8 1 1 3 13 
4 3 4 0 0 7 
5 0 1 0 0 1 
6 0 1 0 0 1 
7 0 1 0 0 1 
8 6 0 0 0 6 
9 2 2 1 0 5 
10 25 8 3 0 36 
11 8 11 1 0 20 
12 0 1 0 0 1 

Total 53 31 7 3 94 

Table 1.9. Results of the UPGMC Model with optimization to WCBCR measure  for 12 
clusters for a set of 94 Customers using the day with the peak load demand 
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Fig. 1.29. Normalized representative chronological load curves of typical classes from the 
classification of a set of 94 medium voltage customers (as derived from the load curves of 
the days with the peak load of each customer) for the Greek power distribution system to 12 
clusters using WPGMA model with the optimization of the WCBCR measure 
Cluster 8 presents an opposite load behaviour against clusters 3, 4 and 9, because the 
maximum load demand is achieved during early night hours (70% of peak load), while 
during the rest day load varies from 30% to 50% of peak load. 
The rest seven customers are represented by six clusters (the clusters 1, 5, 6, 7, 12 contain one 
customer each and the cluster 2 contains two ones), where its customer presents unique 
characteristics for its chronological typical load curve.  
It is mentioned that the type of typical day (such as the most populated day etc) is defined 
by the user according to his needs. 

1.5.3 Usefulness of the application of the proposed two-stage methodology    
The results of the developed methodology can be used either for each customer separately 
or for a set of customers. The results of the first stage are the respective ones of the typical 
chronological load curves of each customer of §1.4.3. 
The results of the second stage can be used as important input information for: 
• the adaptation of tariffs for each customer class from the suppliers, 
• the adaptation of tariffs for ancillary services of the reactive demand on behalf of the 

distribution or transmission operator, if the respective representative curves of reactive 
load are calculated,  

• the feasibility studies of the energy efficiency and demand side management measures, 
which are proper for each customer class (extraordinary useful for the suppliers, in 
order to smooth their respective daily load demand curve),  

• the short-term and mid-term load forecasting for the customer classes, for which the 
suppliers, the system operator and the regulatory energy authority are interested. 

1.6 A pattern recognition methodology for power system load profiles for applications 
of demand side management programs  
1.6.1 General description of the proposed methodology   
Based on the pattern recognition methodology for the classification of the daily load curves 
of a customer a similar pattern recognition methodology can be used for the classification of 
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daily chronological load curves of power system, as shown in Fig. 1.30. The main steps are 
the following: 
a. Data and features selection  (same to (a) step of the methodology of §1.4). The active and 

reactive energy values are registered (in MWh and Mvarh) for each time period in steps 
of 1 hour.  

b. Data pre-processing (same to (b) step of the methodology of §1.4).  
c. Main application of pattern recognition methods (same to (c) step of the methodology of 

§1.4).  
As we can see this methodology is quite similar to one of §1.4. This can lead us to propose 
the extension of the application of this methodology for the classification of similar time-
series curves, such as daily chronological temperatures curves, etc (Tsekouras, 2006). 
 

Data selection
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optimization
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Evaluation process
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of pattern 
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Fig. 1.30. Flow diagram of pattern recognition methodology for the classification of daily 
chronological load curves of power system 
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1.6.2  Application of the Greek power system    
1.6.2.1 General 

The developed methodology is applied on the Greek power system, analytically for the 
summer of the year 2000 and concisely for the period of years 1985-2002 per epoch and per 
year. The data used are hourly load values for the respective period, which is divided into 
two epochs: summer (from April to September) and winter (from October to March of the 
next year).  
In the case of the summer of the year 2000, the respective set of the daily chronological 
curves has 183 members, from which none is rejected through data pre-processing. In the 
following next paragraphs the application of each clustering method is analyzed. 
1.6.2.2 Application of the k-means 
The proposed model of the k-means method is executed for different pairs (a,b) from 2 to 25 
clusters, where a={0.1,0.11,…,0.45} and a+b={0.54,0.55,…,0.9}, as in the case of § 1.4.2.2. The 
best results for the six adequacy measures do not refer to the same pair (a,b) –as it is 
presented in Table 1.10 for 10 clusters. The alternative model is the classic one with the 
random choice of the input vectors during the centres’ initialization. For the classic k-means 
model 100 executions are carried out and the best results for each index are registered. The 
superiority of the proposed model is the fact that applies in all above cases of neurons and 
that it converges to the same results for the respective pairs (a,b), which can not be achieved 
using the classic model. 
1.6.2.3 Application of the adaptive vector quantization  

The initial value 0η , the minimum value minη  and the time parameter 0Tη  of learning rate 
are properly calibrated. The best results of the adequacy measures are given for different 
pairs of ( 0η , 0Tη ), according to the results of Table 1.10 for 10 clusters. The minη  value does 
not practically improve the neural network’s behaviour assuming that it ranges between 10-5 
and 10-6. 
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Fig. 1.31.  SMI and WCBCR for the fuzzy k-means method for the set of 183 load curves of 
the summer of the year 2000 for the Greek power system with q=2, 4, 6 for 5 to 25 clusters 
1.6.2.4 Application of the fuzzy k-means 
In the fuzzy k-means algorithm the results of the adequacy measures depend on the amount 
of fuzziness increment. In Fig. 1.31 SMI and WCBCR adequacy measures are indicatively 
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presented for different number of clusters for three cases of q={2,4,6}. The best results are 
given by q=4 for J, MIA, CDI and WCBCR adequacy measures, by q=6 for SMI and DBI 
indicators. It is noted that the initialization of the respective weights is similar to the 
proposed k-means. 
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Fig. 1.32. Adequacy measures for the 7 hierarchical clustering algorithms for the set of 183 
load curves of the summer of the year 2000  for the Greek power system for 5 to 25 clusters 
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Fig. 1.32. Adequacy measures for the 7 hierarchical clustering algorithms for the set of 183 
load curves of the summer of the year 2000  for the Greek power system for 5 to 25 clusters 
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1.6.2.5 Application of hierarchical agglomerative algorithms 

In the case of the seven hierarchical models the best results are given by the WARD model 
for J, by the UPGMC model for MIA, by the WPGMA model for CDI, by the UPGMC and 
UPGMA models for SMI, by the UPGMC and WPGMC models for DBI, by the UPGMC,  
UPGMA, WPGMC and WPGMA models for WCBCR adequacy measure, according to Fig. 
1.32. 

1.6.2.6 Application of mono-dimensional self-organizing maps  

The main problems during the training of the mono-dimensional SOM are: 
• the proper termination of the SOM’s training process, which is solved by minimizing 

the index Is (eq.(1.32)), 
• the proper calibration of (a) the initial value of the neighbourhood radius 0σ , (b) the 

multiplicative factor φ  between 
0sT  (epochs of the rough ordering phase) and 

0
Tη  (time 

parameter of learning rate), (c) the multiplicative factor ξ  between 
0

Tσ  (time parameter 

of neighbourhood radius) and 
0

Tη , (d) the proper initial values of the learning rate rη  

and fη  during the rough ordering phase and the fine tuning phase respectively. 
•   the proper initialization of the weights of the neurons.  
The optimization process for the mono-dimensional SOM parameters is similar to that one 
of §1.4.2.6 and it is repeated for any population of clusters 
1.6.2.7 Application of bi-dimensional self-organizing maps  

In the case of the bi-dimensional SOM the additional issues that must be solved, are the 
shape, the population of neurons and their respective arrangement. In the case of the set of 
183 load curves for the summer of the year 2000 the map can have 67 ( 5 183≅ × ) to 270 

( 20 183≅ × ) neurons. Using the ratio between the two major eigenvalues the respective 
value is 22.739 (=0.26423/0.01162) and the proposed grids can be 46x2  (see Fig. 1.33) and 
68x3. 
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Fig. 1.33. 46x2 SOM after the application of the proposed k-means method at the neurons of 
SOM for the set of 183 load curves of the summer of the year 2000 for the Greek power 
system for 10 neurons 
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Because of the size and the location of the neurons in the grid, the clusters of the bi-
dimensional map cannot be directly exploited and the proposed k-means is applied for the 
neurons of the bi-dimensional SOM, as it has already happened in §1.4.2.7. The adequacy 
measures are calculated using the load curves of the neurons which form the respective 
clusters of the proposed k-means method and the best results are given by the 46x2 grid for 
all adequacy measures for different pairs (a,b) of the k-means method. 

1.6.2.8 Comparison of clustering models & adequacy indicators  

In Fig. 1.34 the best results achieved by each clustering method are depicted. The 
proposed k-means model has the smallest values for the MIA and WCBCR indicators, the 
bi-dimensional SOM (with the application of the proposed k-means at the second level) 
for the J and SMI indicator and the adaptive vector quantization for DBI indicator. The 
proposed k-means model and the bi-dimensional SOM give equivalent results for the CDI 
indicator.  
By observing the number of dead clusters for the proposed k-means model (Fig. 1.34.h) it is 
obvious that the use of WCBCR indicator is slightly superior to MIA and J indicators. Taking 
into consideration the basic theoretical advantage of the WCBCR indicator and the 
significant variability of the behaviour of DBI and SMI indicators for different clustering 
techniques the WCBCR indicator is proposed to be used.    
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1.6.2.5 Application of hierarchical agglomerative algorithms 

In the case of the seven hierarchical models the best results are given by the WARD model 
for J, by the UPGMC model for MIA, by the WPGMA model for CDI, by the UPGMC and 
UPGMA models for SMI, by the UPGMC and WPGMC models for DBI, by the UPGMC,  
UPGMA, WPGMC and WPGMA models for WCBCR adequacy measure, according to Fig. 
1.32. 

1.6.2.6 Application of mono-dimensional self-organizing maps  

The main problems during the training of the mono-dimensional SOM are: 
• the proper termination of the SOM’s training process, which is solved by minimizing 

the index Is (eq.(1.32)), 
• the proper calibration of (a) the initial value of the neighbourhood radius 0σ , (b) the 

multiplicative factor φ  between 
0sT  (epochs of the rough ordering phase) and 

0
Tη  (time 

parameter of learning rate), (c) the multiplicative factor ξ  between 
0

Tσ  (time parameter 

of neighbourhood radius) and 
0

Tη , (d) the proper initial values of the learning rate rη  

and fη  during the rough ordering phase and the fine tuning phase respectively. 
•   the proper initialization of the weights of the neurons.  
The optimization process for the mono-dimensional SOM parameters is similar to that one 
of §1.4.2.6 and it is repeated for any population of clusters 
1.6.2.7 Application of bi-dimensional self-organizing maps  

In the case of the bi-dimensional SOM the additional issues that must be solved, are the 
shape, the population of neurons and their respective arrangement. In the case of the set of 
183 load curves for the summer of the year 2000 the map can have 67 ( 5 183≅ × ) to 270 

( 20 183≅ × ) neurons. Using the ratio between the two major eigenvalues the respective 
value is 22.739 (=0.26423/0.01162) and the proposed grids can be 46x2  (see Fig. 1.33) and 
68x3. 
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Fig. 1.33. 46x2 SOM after the application of the proposed k-means method at the neurons of 
SOM for the set of 183 load curves of the summer of the year 2000 for the Greek power 
system for 10 neurons 
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Fig. 1.34. The best results of each clustering method for the set of 183 load curves of the 
summer of the year 2000 for the Greek power system for 5 to 25 clusters 

The improvement of the adequacy indicators is significant until 10 clusters. After this value 
the behaviour of the most indicators is gradually stabilized. It can also be estimated 
graphically by using the rule of the “knee”, which gives values between 8 to 10 clusters (see 
Fig. 1.35). In Table 1.10 the results of the best clustering methods are presented for 10 
clusters, which is the finally proposed size of the typical days for this case. 
 Taking into consideration that the ratio of the computational training time for the under 
study methods is 0.05:1:24:28:36:50 (hierarchical: proposed k-means: mono-dimensional 
SOM: AVQ: fuzzy k-means: bi-dimensional SOM), the use of the hierarchical and k-means 
models is proposed. It is mentioned that the computational training time for the proposed k-
means method is approximately 20 minutes for a Pentium 4, 1.7 GHz, 768 MB.  
For this case study (load daily chronological curves of the summer of the year 2000 for the 
Greek power system) the proposed k-means model with the WCBCR adequacy indicator is 
going to be used. 

1.6.2.9 Representative daily load curves of the summer of the year 2000 for the Greek power system 

The results of the respective clustering for 10 clusters using the proposed k-means model 
with the optimization of the WCBCR indicator are presented in Table 1.11 and in Fig. 1.36 
respectively.  
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Fig. 1.35.  Indicative estimation of the necessary clusters for the typical load daily 
chronological curves of the summer of the year 2000 for the Greek power system for the 
WCBCR adequacy indicator 

Adequacy Measure Methods -Parameters J MIA CDI SMI DBI WCBCR 
Proposed k-means 0.01729 0.02262 0.1778 0.7331 2.0606 0.002142 

a- b  parameters 0.26 – 0.39 0.15-0.44 0.45-0.45 0.10-0.78 0.15-0.43 0.14-0.61 
Classic k-means 0.01934 0.02434 0.1935 0.7549 2.7517 0.002346 

AVQ 0.01723 0.02819 0.2615 0.7431 1.9973 0.004145 
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0.5-5x10-

7-5000 
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7-2000 
0.8-5x10-

7-1000 
0.4-5x10-7-

4000 
Fuzzy k-means 0.02208 0.03036 0.25328 0.7482 2.1936 0.003894 

q- a- b  parameters 4-0.22-
0.46 

4-0.18-
0.62 

4-0.18-
0.70 

6-0.12-
0.62 

6-0.14-
0.74 4-0.18-0.62 

CL 0.01960 0.02974 0.2636 0.7465 2.4849 0.004233 
SL 0.06249 0.04435 0.2950 0.7503 2.3509 0.006103 

UPGMA 0.02334 0.02885 0.2544 0.7423 2.2401 0.003186 
UPGMC 0.02200 0.02847 0.2603 0.7455 2.1934 0.003412 
WARD 0.01801 0.02858 0.2645 0.7635 2.5964 0.004227 

WPGMA 0.02094 0.02743 0.2330 0.7373 2.2638 0.002619 
WPGMC 0.02227 0.02863 0.2418 0.7378 2.1498 0.003008 

Mono-dimensional SOM 0.02024 0.03043 0.3366 0.7752 3.1656 0.007126 

00 f r Tησ φ ξ η η− − − − −  
parameters 
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0.2-0.10-
10-3-1750

10-1.0-
0.6-0.15-
10-3-1500

10-1.0-
0.6-0.15-
10-3-1500

10-1.0-
0.6-0.10-
10-3-1500 

10-2.0-0.2-
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2D SOM 46x2 using proposed k-
means for classification in a 2nd 

level 
0.01685 0.02697 0.1785 0.7271 2.2572 0.002459 

00 f r Tησ φ ξ η η− − − − − -a- b  
parameters 

46-1.0-
1.0-0.30-
10-3-500-
0.28-0.36

46-1.0-
1.0-0.30-
10-3-500-
0.15-0.58

46-1.0-
1.0-0.30-
10-3-500-
0.44-0.46

46-1.0-
0.2-0.20-
10-3-500-
0.10-0.77

46-1.0-
0.2-0.20-
10-3-500-
0.44-0.25 

46-1.0-1.0-
0.30-10-3-
500-0.15-

0.58 

Table 1.10. Comparison of the Best Clustering Models for 10 Clusters for the Set  of 183 Load 
Curves of the Summer of the Year 2000 for the Greek Power System 
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Fig. 1.34. The best results of each clustering method for the set of 183 load curves of the 
summer of the year 2000 for the Greek power system for 5 to 25 clusters 

The improvement of the adequacy indicators is significant until 10 clusters. After this value 
the behaviour of the most indicators is gradually stabilized. It can also be estimated 
graphically by using the rule of the “knee”, which gives values between 8 to 10 clusters (see 
Fig. 1.35). In Table 1.10 the results of the best clustering methods are presented for 10 
clusters, which is the finally proposed size of the typical days for this case. 
 Taking into consideration that the ratio of the computational training time for the under 
study methods is 0.05:1:24:28:36:50 (hierarchical: proposed k-means: mono-dimensional 
SOM: AVQ: fuzzy k-means: bi-dimensional SOM), the use of the hierarchical and k-means 
models is proposed. It is mentioned that the computational training time for the proposed k-
means method is approximately 20 minutes for a Pentium 4, 1.7 GHz, 768 MB.  
For this case study (load daily chronological curves of the summer of the year 2000 for the 
Greek power system) the proposed k-means model with the WCBCR adequacy indicator is 
going to be used. 

1.6.2.9 Representative daily load curves of the summer of the year 2000 for the Greek power system 

The results of the respective clustering for 10 clusters using the proposed k-means model 
with the optimization of the WCBCR indicator are presented in Table 1.11 and in Fig. 1.36 
respectively.  
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Fig. 1.35.  Indicative estimation of the necessary clusters for the typical load daily 
chronological curves of the summer of the year 2000 for the Greek power system for the 
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Table 1.10. Comparison of the Best Clustering Models for 10 Clusters for the Set  of 183 Load 
Curves of the Summer of the Year 2000 for the Greek Power System 
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Day (1 for Monday, 2 for Tuesday etc.) Load cluster 
1 2 3 4 5 6 7 

Days 
per cluster 

1 0 0 0 0 0 0 1 1 
2 1 0 0 0 1 0 0 2 
3 0 1 0 0 0 2 13 16 
4 9 8 9 8 7 12 2 55 
5 4 3 2 3 4 4 8 28 
6 4 6 6 4 3 7 1 31 
7 4 3 4 6 6 0 1 24 
8 4 3 2 3 3 2 0 17 
9 0 2 3 1 2 0 0 8 

10 0 0 0 1 0 0 0 1 

Table 1.11. Results of the Proposed k-means Model with optimization to WCBCR  for 10 
clusters  for a Set of 183 Load Curves of the summer of the year 2000 for the Greek Power 
system 
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Fig. 1.36.  Typical daily chronological load curves for the set of 183 curves of the summer of 
the year 2000 for the Greek power system using proposed k-means model with optimization 
to WCBCR 

Specifically, cluster 1 represents Easter, cluster 2 Holy Friday and Monday after Easter, 
cluster 3 the Sundays of April, May, early June and September, Holy Saturday and Labour 
day. Cluster 4 contains the workdays of very low demand (during April, early May and 
September) with normal temperatures (22-28oC) and Saturdays of April, May, early June 
and September, while cluster 5 includes the workdays of low demand and Sundays of high 
peak load demand during the hot summer days. Cluster 6 represents the workdays of 
medium peak load demand and Saturdays of high peak load demand, while clusters 7 to 10 
mainly involves workdays with gradually increasing peak load demand.  
As we can notice the separation between work days and non-work days for each season is 
not so much descriptive for the load behaviour of a power system, as we have proved that 8 
to 10 clusters are needed. 

1.6.2.10 Application of the Proposed Methodology for the Greek Power System Per Seasons and Per 
Years for the time period 1985-2002 

The same process is repeated for the summer (April–September) and the winter (October-
March) periods for the years between 1985 and 2002. The load curves of each season are 
qualitatively described by using 8-10 clusters. The performance of these methods is 
presented in Table 1.12 by indicating the number of seasons that achieves the best value of 
adequacy measure respectively.  
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Fig. 1.36.  Typical daily chronological load curves for the set of 183 curves of the summer of 
the year 2000 for the Greek power system using proposed k-means model with optimization 
to WCBCR 

Specifically, cluster 1 represents Easter, cluster 2 Holy Friday and Monday after Easter, 
cluster 3 the Sundays of April, May, early June and September, Holy Saturday and Labour 
day. Cluster 4 contains the workdays of very low demand (during April, early May and 
September) with normal temperatures (22-28oC) and Saturdays of April, May, early June 
and September, while cluster 5 includes the workdays of low demand and Sundays of high 
peak load demand during the hot summer days. Cluster 6 represents the workdays of 
medium peak load demand and Saturdays of high peak load demand, while clusters 7 to 10 
mainly involves workdays with gradually increasing peak load demand.  
As we can notice the separation between work days and non-work days for each season is 
not so much descriptive for the load behaviour of a power system, as we have proved that 8 
to 10 clusters are needed. 

1.6.2.10 Application of the Proposed Methodology for the Greek Power System Per Seasons and Per 
Years for the time period 1985-2002 

The same process is repeated for the summer (April–September) and the winter (October-
March) periods for the years between 1985 and 2002. The load curves of each season are 
qualitatively described by using 8-10 clusters. The performance of these methods is 
presented in Table 1.12 by indicating the number of seasons that achieves the best value of 
adequacy measure respectively.  
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Adequacy Measure 
Methods 

J MIA CDI SMI DBI WCBCR 

Proposed k-means 1 24 31 7 12 29 

Classic k-means 0 0 0 0 0 0 
AVQ 2 0 0 7 16 0 

Fuzzy k-means 0 0 0 0 0 1 
CL 0 0 0 0 0 0 
SL 0 0 0 0 0 0 

UPGMA 0 3 0 0 0 1 
UPGMC 0 7 0 2 5 3 
WARD 0 0 0 0 0 0 

WPGMA 0 0 0 0 1 0 
WPGMC 0 3 0 0 2 2 

Mono-dimensional SOM 0 0 0 0 0 0 
Bi-dimensional SOM using 

proposed k-means for 
classification in a second level 

34 0 6 21 1 1 

 

Table 1.12. Comparison of the Clustering Models for the Sets of Load Curves  of the Greek 
Power System per Season for the time period 1985-2002 

The comparison of the algorithms shows that the developed k-means method achieves a 
better performance for MIA, CDI and WCBCR measures, the bi-dimensional SOM model 
using proposed k-means for classification in a second level for J and SMI indicators and the 
adaptive vector quantization for DBI adequacy measure. 
The methodology is also applied for each year during the period 1985-2002, where the load 
curves are qualitatively described by using 15-20 clusters. The respective performance is 
presented in Table 1.13 by indicating the number of years which achieves the best value of 
adequacy measure respectively. The comparison of the algorithms shows that the developed 
k-means method achieves a better performance for MIA, CDI, DBI and WCBCR measures, 
the bi-dimensional SOM model using proposed k-means for classification in a second level 
for J indicator and the UPGMC algorithm for SMI index.  
The main disadvantage of the load curves classification per year is that each cluster does not 
contain the same family of days during the time period under study. I.e. if 20 clusters are 
selected to represent the load demand behaviour of the Greek power system per year, the 
20th cluster will contain the workdays with the highest peak load demand of the winter for 
the years 1985-1992 and that of summer for the rest years. In order to avoid this problem, the 
classification per season is proposed. 

1.6.3 Usefulness of the application of the proposed methodology    
The results of the second stage can be used as important input information for: 
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• power system short-term and mid-term load forecasting,  
• energy trades,  
• techno-economic studies of the energy efficiency and demand side management 

programs and  
• the respective load estimation after the application of these programs. 
 
 

Adequacy Measure 
Methods 

J MIA CDI SMI DBI WCBCR 

Proposed k-means 0 8 18 0 13 14 

Classic k-means 0 0 0 0 0 0 
AVQ 1 0 0 1 3 0 
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SL 0 0 0 0 0 0 
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UPGMC 0 6 0 14 1 2 
WARD 0 0 0 0 0 0 

WPGMA 0 1 0 0 0 0 
WPGMC 0 1 0 0 0 2 

Mono-dimensional SOM 0 0 0 0 0 0 
Bi-dimensional SOM using 

proposed k-means for 
classification in a second level 

17 1 0 3 1 0 

 
 

Table 1.13. Comparison of the Clustering Models for the Sets of Load Curves  of the Greek 
Power System per Year for the time period 1985-2002 

1.7 Conclusions  
In this chapter pattern recognition methodologies for the study of the load time series were 
presented. Specifically, the first methodology deals with the classification of the daily 
chronological load curves of each large electricity customer, in order to estimate his typical 
days and his respective representative daily load profiles. It is based on classical pattern 
recognition methods, such as k-means, hierarchical agglomerative clustering, Kohonen 
adaptive vector quantization, mono-dimensional and bi-dimensional self-organized maps 
and fuzzy k-means. The parameters of each clustering method are properly selected by an 
optimization process, which is separately applied for each one of six adequacy measures. 
The latter are the mean square error, the mean index adequacy, the clustering dispersion 
indicator, the similarity matrix, the Davies-Bouldin  indicator and the ratio of within cluster 
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sum of squares to between cluster variation. Some pattern recognition methods, such as k-
means, were properly modified, in order to achieve better values for the adequacy 
measures. The results can be used for the load forecasting of each consumer, the choice of 
the proper tariffs and the feasibility studies of demand side management programs. This 
methodology is in detail applied for one medium voltage paper mill industrial customer 
and synoptically for a set of 94 medium voltage customers of the Greek power distribution 
system, although it is applicable to any power system. From this execution the basic 
conclusions are:  
• The daily chronological load of each large customer for a year can be classified to 8÷12 

clusters satisfactorily (in the special case of seasonal customers, like small seaside 
hotels, oil-press industry, less clusters are needed). 

• The ratio of within cluster sum of squares to between cluster variation (WCBCR) is 
proposed as the most suitable adequacy measure, because of (a) the presentation of the 
minimum dead clusters with respect to the desired number of clusters against the other 
adequacy measures and (b) its basic theoretical advantage, which is the combination of 
the distances of the input vectors from the representative clusters and the distances 
between clusters, covering the characteristics of the mean square error (J) and the mean 
index adequacy (CDI) simultaneously.  

• The proposed k-means method and the hierarchical agglomerative methods 
(especially the unweighted pair group method average (UPGMA) & the unweighted 
pair group method centroid (UPGMC)) present the best results for the set of 94 
medium voltage customers of the Greek power distribution system with respect to 
the WCBCR adequacy measure taking into consideration the computational training 
time.  

Secondly, a two-stage methodology developed for the classification of electricity customers 
is presented. In the first stage, typical chronological load curves of various customers are 
estimated using pattern recognition methods and their results are compared using six 
adequacy measures, as it has already happened in the first case. In the second stage, 
classification of customers is performed by the same methods and measures, together with 
the representative load patterns of customers being obtained from the first stage. The basic 
contribution of this methodology is that its first stage enables the modification of the 
representative day, such as the most populated day, and avoids the a priori definition of a 
single day or the “mean” day of a specific time period (as it is suggested by previously 
published methodologies (Chicco et al., 2002 ; -,2003a; -,2003b; -, 2004; -,2006; Figueiredo et 
al., 2003; -, 2005; Gerbec et al., 2003 ;-,2004;-,2005)). The results of the second stage provide 
valuable information for electricity suppliers in competitive energy markets. The developed 
methodology was applied on the aforementioned set of 94 customers. From this execution 
the basic conclusions are:  
• The representative clusters of the customers classes can be approximately 10÷15 for a 

set of 94 customers. 
• The ratio of within cluster sum of squares to between cluster variation (WCBCR) is 

proposed as the most suitable adequacy measure for the same reasons for which it was 
also proposed in the first stage. 
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• The proposed k-means method and the hierarchical agglomerative methods (especially 
the weighted pair group method average (WPGMA) & the unweighted pair group 
method centroid (UPGMC)) present the best results for the classification of the second 
stage with respect to the WCBCR adequacy measure independently from the kind of the 
typical day which was examined (the most populated one and the day with the peak 
load). 

• The a priori index of customer’s activity is not representative for the classification of the 
load curves, which is also confirmed by (Chicco et al., 2002 ; -,2003a; -,2003b; -, 2004; -
,2006; Figueiredo et al., 2003; -, 2005). This can not be generalized since it may vary 
within countries and distribution companies, depending on the respective data of 
customers (Gerbec et al., 2003 ;-,2004;-,2005). 

Finally, the pattern recognition methodology for the classification of the daily 
chronological load curves of the Greek power system is presented, in order to estimate 
their respective representative daily load profiles, which can be used for load forecasting 
and the feasibility studies of demand side management programs. Practically it is the 
same one with the first methodology or with the first stage of the two-stage 
methodology. It has been applied for the Greek power system for the period of years 
1985-2002 per season (summer & winter) and per year, and from its execution the main 
conclusions are:  
• The daily chronological load curves of the Greek power system for a season can be 

classified to 8÷10 clusters, which proves that the separation to workdays and no-
workdays is not satisfactory. For a year the necessary clusters should be 15÷20. 

• The ratio of within cluster sum of squares to between cluster variation (WCBCR) is 
proposed as the most suitable adequacy measure for the same reasons for which it was 
also proposed in the first methodology. 

• The proposed k-means method and the hierarchical agglomerative methods (especially 
the weighted pair group method centroid (WPGMC) & the unweighted pair group 
method centroid (UPGMC)) present the best results for the classification of the load 
curves with respect to the WCBCR adequacy measure. 

At the end, it should be mentioned that the basic contributions of the aforementioned 
methodologies are:  
• The use of a set of pattern recognition methods, whose parameters are optimized 

properly for each adequacy measure separately, in order to use that method which 
gives the best results for the respective adequacy measure. 

• The use of the ratio of within cluster sum of squares to between cluster variation 
(WCBCR) for this kind of methodologies for the first time.  

These pattern recognition methodologies can be used for the classification of similar 
time-series curves, such as daily chronological temperatures curves, etc (Tsekouras, 
2006). 
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1. Basis of cognitive psychology related to pattern recognition 
1.1 Perception and its constancy 
Born and developed in the middle of 1970’s, cognitive science is a kind of intersectional and 
integrative science aiming to study both the working principle and the developing 
mechanism of human brain and psyche. It is a product from the processes of intersection, 
infiltration and aggregation of such sciences as psychology, computer science, neurology, 
linguistics, anthropology, philosophy, and so on.  
As one of the important parts of cognitive science, cognitive psychology[1-6], developed in 
the middle of 1950’s, is a kind of psychology making the view of information processing as 
the core, thus also named information processing psychology, and a kind of science 
studying the processes of transforming, processing, storing, recovering, extracting and using 
information through sense.  
Perception has always been an important studying field of psychology. Cognitive 
psychology treats perception as the organization and explanation of sense information, and 
the process of acquiring the meanings of sense information. Correspondingly, this process is 
treated as a series of consecutive information processing, and the ability of the process 
depends on the past knowledge and experience.  
We can cover a building far away by just a finger, it means that the image of finger formed on 
the retina is bigger than that of the building. But if we move away the finger and first look at 
the building then the finger, we will feel the building is much bigger than the finger anyway, 
that indicating a very important feature of perception-constancy. The constancy of perception 
refers to perception keeps constant when the condition of perception changes in a certain 
range [7]. In the real world, various forms of energy are changed while reaching our sense 
organs, even the same object reaching our sense organs. Constancy in size and shape keeps our 
lives normal in this daedal world. Although an object sometimes seems smaller or bigger, we 
can recognize it. Constancy is the basis of stable perception of human to the outside. For 
instance, students can always recognize their own schoolbag, no matter far away (assuming it 
is visible) or close, overlooking or upward viewing, or looking in the front or sides. Although 
the images formed in the retina under the different conditions mentioned above are different 
from each other student’s perceptions of this object are the same schoolbag.  
Constancy in size and shape are two main types of the perception constancy. Perception 
constancy in size means that although the size of object images shot on the retina change, 
human perception of the size of object keeps constant. The size of image on the human 
retina directly depends on the distance between the object and our eyes.  
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For example, a man is coming toward you from far away, but after you recognize who he is, 
although his image on your retina is growing bigger and bigger as he is getting closer and 
closer to you, your perception of the coming person has nearly no change but just that guy. 
This perception, of course, has boundary, the farthest boundary are where you can 
recognize the person. Is there any nearest boundary? Suppose a very tall man, which is 
double or triple of you, gets close to you, you can only see his leg, at this time you can not 
recognize who he is. When he returns back facing you, as the distance between you and him 
increases, the image you have is closer and closer to his panorama, then you can recognize 
him. Therefore we may interpret the size constancy of perception as this: in the condition 
that image information is enough to recognize the pattern, the size of the image doesn’t 
affect human’s perception.  
 

 
Fig. 1. The constancy of the perception  

The shape constancy of perception means that in perception, although the shape of the 
object image shot on retina changes, people’s perception of the shape of object stays 
constant. The shape of image on human retina directly depends on the angle of view 
between the object and eyes. As shown in figure 1, when the object is projected in the 
normal direction of plane A, we can only see plane A without the whole shape of this object. 
When we move the direction of view along the positive way of x and z axis, and can see 
plane A, B, C, and D. No matter what the size and proportion of these four planes, we can 
still recognize the object. This is shape constancy of perception. We now can interpret it as 
follows: when image information is enough to recognize the pattern, the changes of image 
shape don’t affect human perception of the object. 

1.2 Pattern recognition 
Pattern recognition is one of the fundamental core problems in the field of cognitive 
psychology. Pattern recognition is the fundamental human cognition or intelligence, which 
stands heavily in various human activities. Tightly linking with such psychological 
processes as sense, memory, study, and thinking, pattern recognition is one of important 
windows through which we can get a perspective view on human psychological activities. 
Human pattern recognition can be considered as a typical perception process which 
depends on knowledge and experience people already have. Generally, pattern recognition 
refers to a process of inputting stimulating (pattern) information and matching with the 
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information in long-term memory, then recognizing the category which the stimulation 
belongs to. Therefore, pattern recognition depends on people’s knowledge and experience. 
Without involving individual’s knowledge and experience, people cannot understand the 
meanings of the stimulating information pattern inputted, then neither possible to recognize 
the patterns, which means to recognize the objects. The process which a person 
distinguishes a pattern he percepts with others and identifies what it is means pattern 
recognition. Current cognitive psychology has proposed such theoretical models or 
hypothesis as the Theory of Template (Model of Template Matching), the Theory of 
Prototype (Model of Prototype Matching), the Theory of Feature (Model of Feature 
Analysis), and so on. 
(1) The Theory of Template 
As the simplest theoretical hypothesis in pattern recognition, the Theory of Template mainly 
considers that people store various mini copies of exterior patterns formed in the past in the 
long-term memory. These copies, named templates, correspond with the exterior 
stimulation patterns one by one. When a simulation acts on people’s sense organs, the 
simulating information is first coded, compared and matched with pattern stored in brain, 
then identified as one certain pattern in brain which matches best. thus the pattern 
recognition effect is produced, otherwise the stimulation can not be distinguished and 
recognized. Because every template relates to a certain meanings and some other 
information, the pattern recognized then will be explained and processed in other ways. In 
daily life we can also find out some examples of template matching. Comparing with 
template, machine can recognize the seals on paychecks rapidly.  
Although it can explains some human pattern recognition, the Theory of Template, 
meanwhile, has some obvious restrictions. According to the Theory of Template, people 
have to store an appropriate template before recognize a pattern. Although pre-processing 
course is added, these templates are still numerous, not only bringing heavy burden to 
memory but also leading pattern recognition less flexible and stiffer. The Theory of 
Template doesn’t entirely explain the process of human pattern recognition, but the 
template and template matching cannot be entirely denied. As one aspect or link in the 
process of human pattern recognition, the template still works anyway. In some other 
models of pattern recognition, some mechanisms which are similar to template matching 
will also come out.  
(2) The Theory of Prototype 
The Theory of Prototype, also named the Theory of Prototype Matching, has the 
outstanding characteristic that memory is not storing templates which matches one-by-one 
with outside patterns but prototypes. The prototype, rather than an inside copy of a certain 
pattern, is considered as inside attribute of one kind of objects, which means abstractive 
characteristics of all individuals in one certain type or category. This theory reveals basic 
features of one type of objects. For instances, people know various kinds of airplanes, but a 
long cylinder with two wings can be the prototype of airplane. Therefore, according to the 
Theory of Prototype, in the process of pattern recognition, outside simulation only needs to 
be compared with the prototype, and the sense to objects comes from the matching between 
input information and prototype[5]. Once outside simulating information matches best with 
a certain prototype in brain, the information can be ranged in the category of that prototype 
and recognized. In a certain extent the template matching is covered in the Theory of 
Prototype, which appears more flexible and more elastic. However, this model also has 
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some drawbacks, only having up-down processing but no bottom-up processing, which is 
sometimes more important for the prototype matching in human perceptional process.  
Biederman(1987,1990) proposed the theory of Recognition-By-Components, whose core 
assumption is that, object is constituted by some basic shapes or components, or say 
geometries which includes block, cylinder, sphere, arc, and wedge. Although the number of 
components seems not enough for us to recognize all objects, these geometries can be used 
to describe efficiently, for the various spatial relations of all geometries can constitute 
countless assembles. The Step one of Biederman’s Recognition-By-Components process is 
extracting edges, and the Step two divides a visible object into some segments to establish 
the components or geometries constituting the object. The other key is that the edge 
information has invariant properties, based on which the components and geometries of the 
visible object are established.  
(3) The Theory of Feature 
The Theory of Feature is other theory explaining pattern perception and shape perception. 
According to this theory, people try to match the features of pattern with those stored in 
memory, rather than the entire pattern with template or prototype. This model is the most 
attractive one currently, the Model of Feature Analysis has been applied widely in computer 
pattern recognition. However, it is just a bottom-up processing model, lacking up-down 
processing. Therefore, it still has some drawbacks.  

1.3 Memory 
First、The Description of memory 
Memory is a reflection of the past experience in human brain, and, in cognitive psychology, 
a process of information coding, storing, and extracting in a certain condition in future. 
Having a big effect on human history and individual person development, memory is a gift 
from the nature to individual life, and also a power with which individual keeps and uses 
the achieved stimulating information, knowledge and experience 
As a necessary condition of the intellect development, memory is the root of all intelligence. 
People keep past experience into their brain by memory, and then, based on experience 
recovering, have thinking and imagination, whose results are kept again in brain as the basis 
of further thinking and imagining.  
Memory, in cognitive psychology, can be seen as a process of information inputting, coding, 
storing, and extracting, therefore, it can be separated as instantaneous memory, short-term 
memory, and long-term memory according to the time of storage. Recent years, more and 
more researchers propose to view memory as multiple memory form with different 
property functions formed with various forms, systems or types (Schacter 1985).  
Second、The model of memory system 
In 1960’s, relying on the deep research of short-term and long-term memory, researchers on 
cognitive psychology gradually proposed and built some memorial theory and related 
memorial models. Among them, the Multiple Mnemonic Model proposed by Atkinson and 
Shiffrin in 1968 is the most attractive one, as shown in figure 2.  
In this model, memory is described by 3 kinds of memory storages: ①sensory store, limited 
number and very short time for the information keeping; ②short-term store, longer time of 
storage but still limited number to keep;③long-term store, powerful power of storage, and 
able to keep for a long time, or maybe even forever. However, recently cognitive 
psychologists usually describe these 3 kinds of storages as sensory memory, short-term 
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memory, and long-term memory. In this model, outside information first input into sensory 
registration, which has various kinds of information but probably disappears very soon. 
Then the information will be transferred into short-term memory, in which the information 
is organized by hearing, language or spoken language acknowledgement, and is stored 
longer than that in sensory storage. If processed meticulously, repeated, and transferring 
acknowledged, the information will be input into long-term memory, or else will decline or 
disappear. 
 

 

Sensory memory 
     
Vision     … 

Short-term memory 
Hearing 
Speaking      … 

Long-term memory 
 
A.v.l Vision     time 

Information losing 

Information losing 

Retrogression interfering 
strength losing 

 
Fig. 2. The model of memory system 

1.4 The expression and organization of knowledge 
Human has transcendental imagination. If imagination is produced by experience and 
knowledge, then human’s knowledge must be organized by a certain way. Cognitive 
psychology describes inside knowledge attribution of individual through establishing 
cognitive model, which has 3 hypothetical models.  
First、Hypothesis of symbol-net model  
This model can comparatively indicate how every part of knowledge in human brain arrays 
and interacts with each other in a certain connecting mode.  
In symbol-net model, conceptions are usually described as “node”, which links each other 
with a arrowed line, and therefore the two concepts are connected by a certain mode. In 
symbol-net model, we describe this relation with “up and down level”, adding with 
arrowed line. What needs to be attended is the arrow direction, which has some theoretical 
meanings in symbol-net model, as figure 3 showing. 
The fundamental assumption of symbol-net model is a reflection of people’s knowledge 
organization, which is similar to searching among the network nodes. The search is 
performed one node by another along the direction of the arrows according to the form of 
cognitive process series, until reach the nearest node and search out the knowledge. If the 
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Fig. 2. The model of memory system 

1.4 The expression and organization of knowledge 
Human has transcendental imagination. If imagination is produced by experience and 
knowledge, then human’s knowledge must be organized by a certain way. Cognitive 
psychology describes inside knowledge attribution of individual through establishing 
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In symbol-net model, conceptions are usually described as “node”, which links each other 
with a arrowed line, and therefore the two concepts are connected by a certain mode. In 
symbol-net model, we describe this relation with “up and down level”, adding with 
arrowed line. What needs to be attended is the arrow direction, which has some theoretical 
meanings in symbol-net model, as figure 3 showing. 
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knowledge in the nearest node can answer the certain question, the search will cease, 
otherwise the search will continue till finding out answer or giving up. 
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       Fig. 3. The Symbol-net model 

Second、Level-semantics-net model  
The Level-semantics-net Model, proposed by Collins and Quillian, is a net connecting with 
various elements, the node represents a concept and the arrowed line reflects the affiliation 
of concepts. This model indicates that every concept or node has two relationships, one is 
that every concept is subject to other concepts, which deciding the type of knowledge 
attribution and describing the affiliation with “is a kind of” relation; the other is that every 
concept has one or more characteristics, meaning the “have” relation of concept, as figure 4 
showing. 
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Fig. 4. The Level-semantics-net model 

According to this model, the organized knowledge attribution is a level dendriform view, in 
which lines link nodes denoting concepts of each grade, actually in a certain extent has some 
imagining function. In this model, because concepts form a net according to “up-and-down” 
grades, every concept and characteristic locates in a specific position in the network, and the 
meaning of a concept depends on connecting links. According to the cognitive economic 
principle, the Level-semantics-net model maximizes the effective storage capability while 
minimizes the redundancy.  
Third、The activation-diffusion model 
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The core of Level-semantics-net model is the network established by the logical relations of 
noun concepts. This features the model clean and clear, but also causes some problems, 
which mainly appears that the model explains human knowledge organization and 
attribution assuming on logics rather than psychology. Therefore, Collins and Loftus 
modified the original model and proposed a new one, which is the activation-diffusion 
model. Giving up the level structure of the concepts,, the new model organizes concepts by 
the connection or similarity of semantics.  
In activation-diffusion model, the knowledge stored in individual’s knowledge structure is a 
big network of concepts, between which certain connection is established, namely some 
knowledge is contained in advance. Therefore, activation-diffusion model is also a kind of 
pre-storing model, as shown in figure 5.  
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Fig. 5. The activation-diffusion model 

The activation-diffusion model has two assumptions related to knowledge structure: first, 
the line between concepts reveals their relation, the shorter the line, the tighter their relation, 
and the more similar their features, for instance, “car” having tight relation with “truck”, 
rather with “teacher”, second, the intension of concept of the model is decided by other 
related concepts, especially the tight ones, but the features of concept is unnecessary to be 
stored in different grades. 

1.5 The theory of topological vision  
Lin Chen, involving topology into visual perception study, proposed The theory of 
topological vision [7]. The topology study of perceptual organization is based on a core idea 
and composed by two aspects. The core idea is that, perceptual organization should be 
interpreted in the angle of transformation and its invariance perception. One aspect 
emphasizes the topological structure in shape perception, which means that the global 
characteristic of perceptual organization can be described by topological invariance. The 
other aspect further emphasizes the early topological characteristic perception, which means 
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that, topological characteristic perception priors to the partial characteristic perception. The 
word “prior” has two rigid meanings: the entire organization decided by topological 
characteristics are basis of the perception of partial geometric characters, and topological 
characteristics perception of physical connectivity is ahead of perception of partly geometric 
characteristics.  

2. Brief commentary of machine pattern recognition 
Machine pattern recognition developed rapidly in the beginning of 1960’s and became a 
new science, then has been in rapid development and successfully applied in weather 
forecasting, satellite aerochart explanation, industrial products measurement, character 
recognition, voice recognition, fingerprint recognition, medical image analysis and so on.  
By now Machine pattern recognition (pattern recognition for short) mainly has two basic 
methods: statistics pattern recognition and structure (syntax) pattern recognition. Structure 
pattern recognition, based on image features of structure, accomplishes pattern recognition 
by using dendriform information of the layered structure of pattern and subschema. 
Statistics pattern recognition, which has wider application, is based on the type probability 
density function of samples in feature space and separates pattern statistics into types, 
which means pattern recognition integrated with Bayesian decision in proportion statistics, 
is also called decision theory recognition method.  
In statistics pattern recognition, some knowledge and experience can decide the principle of 
classification, which means the rules of judgment. According to appropriate rules of 
judgment, we can separate the samples of feature space into different types and thus change 
feature space to type space. We separate feature space into type space while we classify the 
patterns. Statistics pattern recognition is based on the type probability density function of 
samples in feature space, and the rule of judgment of multiple statistics pattern recognition 
is Bayesian decision theory, aiming to minimize the expected risk of prior probability and 
lost function. Because nonlinear classification can be transferred into linear classification, the 
fact is searching the hyper plane of optimal decision. Although Bayesian decision rules solve 
the problem of engineering the optimal classifier, the implement has to be first settled with 
the more difficult problem of probability density distribution, thus research develops 
surrounding decision rules and probability density distribution. For the former, Rueda L G 
and Oommen B J’s researches in recent years indicate that the normal distribution and other 
criteria functions with the covariance matrix unequal are linear and their classifiers is 
optimal[9]; Liu J N K, Li B N L, and Dillon T S improved Bayesian classifier with genetic 
algorithm when choosing input feature subset in classification problem[10]; Ferland G and 
Yeap T, studying the math structure of RTANN method, identified the condition of 
achieving optimal Bayesian classification with such method[11]. For the issue of probability 
density distribution, usual assuming density is a model with parameters like multiple 
normal distribution, while the parameters are estimated by the training sample. When the 
sample is not enough, the estimated error which is contained by distribution function will 
affect the precision of recognition. In order to improve the precision of recognition, Ujiie H 
et al transformed the reference data closer to normal distribution, no matter what the 
distribution of original data, and found the optimal transformation in theory [12]. The 
emergence of statistic learning and supporting vector machine bring theoretical and 
methodological supplement for the transformation. Core function which satisfy the Mercer 
condition realizes the design of the nonlinear classifier without knowing the specific form of 
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nonlinear transformation[13]. Fisher judgment and principal component analysis are 
traditional linear methods which widely applied in pattern classification and feature 
extraction. The Fisher judgment [14-15]and principal component analysis[16] in recent years 
both based on the core function are their linear widespread. One-dimensional parameter 
search and recursion Fisher method can get better training result than normal Fisher 
judgment. Using Mercer core, we can generalize these two methods into nonlinear decision 
plane[17]. There are also some reports of improving the function of classifier by declining 
pattern overlapping with fuzzy cluster analysis[18].  
Therefore, there are two main problems need to be solved in pattern recognition: 
1.  Because of the requirement of sample amount, statistics pattern recognition cannot 

function well in small sample recognition.  
2. so far, the pattern recognition is mainly based on the classification mechanism of the 

recognized objects, rather than on the perception mechanism. In “recognition”, namely 
in the aspect of acknowledge of objects (study), there is large difference between human 
perception process and limited learning ability.  

3. Theory of cognitive pattern recognition 
3.1 Perceptive constancy and topological invariance  
In the first chapter, we generally express perceptive constancy as: in the condition that the 
image information of the object is sufficient to determine its pattern, the geometry changing 
in the size and shape does not affect people's perception for the object.  
The above questions refer to a special kind of geometric properties of geometry, which 
involve the property of the geometric overall structure, named the topological property. 
Obviously, these topological properties are not related to such aspects of the geometry as 
the size, the shape and the straight or curved of lines and so on, which means that they can 
not be dealt with by ordinary geometric methods. Topology is to study the invariable 
property when geometry makes elastic deformation, the same as the perceptive constancy 
that changing in size and shape of the geometry do not affect people's perception for the 
object. 
Now let’s make a further analysis to the topological property. As mentioned above, 
topology embodies the overall structure of geometric features, that any changes in shapes 
(such as squeezing, stretching or distorting, etc), as long as the geometry is neither torn nor 
adhered, will not destroy its overall structure and the topological properties remain the 
same. The above deformations are called the topological transformation, so the topological 
invariability is the property keeping the same when the geometry transforms topologically. 
The topological property can be accurately described by the set and mapping language. The 
changing of the geometry M to M’ (both can be regarded as a set of topological feature 
points) is a one-to-one mapping (therefore the overlap phenomenon will not appear, 
moreover new points will not be created) :f M M ′→ , where f is continuous (that means 

no conglutination). Generally speaking, if both f and f -1 are continuous, the one-to-one 
mapping f, which changes M to M’, can be regarded as a topological transformation from M 
to M’, also f and  f -1 are the mapping of homeomorphism. Therefore, topological property is 
common in the homeomorphous geometries. The geometries of homeomorphism have no 
differentiation in topology because their topological properties are the same. 
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3.2 Perceptive constancy and pattern invariance  
From above discussion, we can regard the perceptive constancy as the topological 
invariance. As the size constancy, changing the size of geometry is actually compressing and 
expanding the geometry during which the topological properties of the geometry do not 
change. And the shape constancy means to carry unequal proportional compression and 
expansion on geometries. As shown in figure 1, when we make projection on the normal 
direction of plane A, which creates conglutination between plane A and plane B, C, D, 
geometric topology has been changed, so the object can not be perceived. When the 
projection points move along the x-axis and z-axis, we can observe that conglutination has 
not been created among plane A, B, C, D, the topological structure has not been changed, so 
the object can be perceived.  
Furthermore, we will discuss perceptive constancy by using the theory of topology. 
First, size constancy：  
As mentioned above, as the distance between human eyes and the object changes the image 
sizes of geometry on the retina change, but in our minds we perceive the images of different 
sizes as an object, we call this kind of information processing size constancy. The 
explanation of size constancy is shown in figure 7. In the figure, as the distance between the 
eyes and the object changes, the images are named a, b, c and d respectively. In image a, the 
distance between the eyes and object is so near that the image of the object cannot be seen 
entirely, thus unable to be recognized. As the distance between the eyes and object becomes 
farther and farther, the images of the object on the retina become smaller and smaller, as 
shown in figure b, c and d. In the figure d, the distance to the eyes is too far and the image of 
the object is too small to recognize. 
Sequence images of the object are generated on the retina as the distance between the eyes 
and an object X changes. Now suppose Y is the image generated on the retina at a certain 
distance from eyes within the human visual range, the topological information set (such as 
connection, holes, nodes, branches and so on )of the image Y can be expressed as 
Y= 1 2{ , , , }my y y ,where any element of Y can be obtained by the compression and 

expansion of the corresponding element of object X ( in order to discuss conveniently, 
every set is supposed to have m elements, but that not means different sets have the same 
number of the elements). The topological information set of the object X is expressed as 
X= 1 2{ , , , }mx x x . 

Suppose the power set of Y(the collection containing all subsets of Y)is YΨ  
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Proposition 3.1: YΨ is the topology of the topological information set of the image Y, then 

(Y, YΨ ) constitutes a discrete topological space. 

Proof: Because YΨ , the power set of Y, contains all subsets of Y, obviously YΨ  satisfies three 
topological theorems as follows: 
1. Both Y and∅  are in YΨ ; 

2. The union of random number of any subcollection of YΨ  is in YΨ ; 

3. The intersection of limited number of subcollection of YΨ  is in YΨ . 

Therefore, YΨ is the topology of the topological information set of the image Y, and 

(Y， YΨ ) constitutes a discrete topological space, thus the proposition is proved and 
established. 
Similarly, (X， XΨ ) also constitutes a discrete topological space which denotes the 
topological space of the topological information set of the object X. 
People can not only see the whole object, but also a part of it, thus the elements of Y can 
combine into any different subset which means the whole information of the image, the 
whole information of a partial image, the whole information of certain feature of the image 
(Although the integration of features in image is not separated, the combination among the 
elements of Y still can be characterized) 
Proposition 3.2: When other conditions remain unchanged relatively, as the distance 
between the eyes and the object changes, the topological space of the topological 
information set of the image (Y， YΨ ) and (X， XΨ ) which is the topological space of the 
topological information set of the object X have the same homeomorphism.  
Proof: Y is the image of the object X generated on the retina, the topological space (X, XΨ ) 

of the object X is the direct foundation of the topological space of the image Y.（Y, YΨ ）is 

the result of（X, XΨ ）converted by human visual perception system. When Other   
conditions remains relatively unchanged and in the range of human visual perception, as 
the distance between the eyes and object changes, the image Y is just the compression or 
expansion of the object X, but the topology of it has not changed. As shown in Fig 6, for any 
element (that is topological properties, such as connectivity, the number of "hole" and so 
on)in the image Y there is a unique corresponding element in the object X. For example the 
elements y1 and ym of the image Y respectively corresponds to the elements x1 and xm of the 
object X. 
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established. 
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elements y1 and ym of the image Y respectively corresponds to the elements x1 and xm of the 
object X. 



 Pattern Recognition Techniques, Technology and Applications 

 

444 

Therefore, there exists a bijective correspondence between the object X and the image Y                   
f: X →Y 
The mapping direction indicates the relationship between the reason and the result. 
Whereas, there also exists a bijective correspondence from the topological information set of 
the image Y to the topological information set of the object X 

f -1: Y →X 

Moreover, f and f -1are continuous. According to the definition of the homeomorphism in 
topology, f is the mapping of homeomorphism. As a result, the topological space 
（Y， YΨ ）of the image Y and (X， XΨ ) which is the topological space of the object X have 
the same homeomorphism. So the proposition is proved and established. 

 
Fig. 6. The relationship between the object and its image 

Proposition 3.3: The size constancy of visual perception has the property of topological 
invariance. 
Proof: suppose the smallest distinguishable image (image of object X generated on retina 
from the farthest distance) is the topological space Y1 (proved in Proposition 3.1 and 
corresponding to the of Figure 7(c)), as the distance between the eyes and the object changes, 
different topological spaces Y2，Y3，…，Yi，…, are generated on the retina, Yn is the 
topological space of the biggest image (as shown in Fig 7(b)). From proposition 3.2, when 
other conditions remain relatively unchanged, as the distance between the eyes and the 
object changes, the topological spaces of the images have the same homeomorphism as the 
topological space of the object X. So {1, , }i n∀ ∈ , Yi and X have the same homeomorphism, 
which means Yi ≅ X. Also because the property of homeomorphism has the transitivity, 
every Yi is has the same homeomorphism with each other, which means for , {1, , }i j n∀ ∈  
all satisfies Yi ≅ Yj. Thus the topological spaces Y1，Y2，…，Yi，…，Yn  have the same 
homeomorphism, indicating that the size constancy of visual perception has the property of 
topological invariance. 
In figure 7, the above are the images and below are the topological structures corresponding 
to its image. From the figure, (b) and (c) can be perceived as a cuboid because they have the 
same topology. For image (a), the size of the image is expanded seriously, only a few partial 
information about the object can be seen, therefore the object cannot be recognized for not 
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enough information available; in figure (d), the image is compressed so excessively that we 
are not sure whether it is a cuboid, cylinder or a small piece of others. There does not exist a 
bijective correspondence between the topological spaces of the (a), (d) and the topological 
spaces of the (b), (c), therefore, they do not have the same homeomorphism as the 
topological spaces of the (b) and (c). 
 

   
Fig. 7. The Size constancy  

Thus, it is concluded that when the sizes of the images change, as long as the topology of the 
images has not been changed, people can perceive them as the same object, that is to say, the 
size constancy can perceive the objects which make the topological transformation as the 
same object.   
Second, shape constancy： 
As mentioned above, shape constancy is a kind of information procession which mainly as 
the angles between the eyes and the object change, the shapes of the images on the retina 
change, but in our minds we perceive different shapes of images as the same object.  
The explanation of the shape constancy is shown in Figure 8. 
Suppose Y1 is the topological space of the distinguishable image(the image generated on the 
retina when the eyes are at the bottom of the object), different topological spaces Y2, 
Y3，…，Yi, …of the images are generated as the angles between the eyes and object change, 
Yn is the topological space of the image generated on the retina when the eyes are at the top 
of the object. Obviously the relationship between the topological spaces the images of Y1 and 
Yi (i=2，…，n) are squeeze and stretch. As the angles between the eyes and the object 
changes, part of the object are squeezed, while other part of the object are stretched, as 
shown in the figure 8. But as constancy, which means that, at the range of the human visual 
perception, each side and each part of the object keep the original characteristics well, 
without adhesion or tearing. Therefore the topological spaces Y1, Y2, ..., Yi, ..., Yn  have the 
same homeomorphism, namely the shape constancy of the human visual perception has the 
property of the topological invariance, the method of the proof is just the same as that of the 
size constancy. 
In Fig 8, the above row are the images and below are the topological structures 
corresponding to its image. From the figure, (a), (b) and (c) can be perceived as a cuboid, 
because they have the same topology. (b) and (f) have the same topology different with 
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others, we cannot perceived them as a cuboid, maybe we will perceived them as folded 
piece of a rectangle. We may perceive (g) as a piece papper. 
 

     
Fig. 8. The shape constancy 

Therefore, it can be concluded that when the images’ shapes of the object change, as long as 
the topology of the images has not been changed, we can perceive them as the same object, 
in other words, the shape constancy can perceive the objects making topological 
transformation as the same object. 
From the above analysis, we can see that the constancy in size and shape of the visual 
perception can be described by topological invariance. As long as the topology of the images 
keeps unchanged, we can perceive the images that make topological transformation as the 
same object at the range of the human visual perception. 
In conclusion, we can believe that the constancy of the human visual perception can be 
described by the topology invariance, that is, people can perceive the objects which are 
changed by topological transformation as the same object.  

3.3 Composition of patterns   
From the theory of the component recognition, the principle which the components 
constitute objects in the real world can be understood like this: there are countless type of 
materials in the world, but the types of the chemical elements composing the materials are 
just a little more than 100. Various colors in the world can be composed by the three colors 
of red, green and blue. All buildings, no matter how grand and splendid they are, are 
composed by the foundation, beams, column doors, walls, floors and the ceilings. A variety 
of delicious food can be cooked by just a few spices of the oil, salt, sugar, vinegar, soy sauce 
and so on. 
Music is wonderful, and countless musical works are composed by the seven notes of 
1,2,3,4,5,6,7 and their changeable sound. The number of the English words is very huge, 
moreover in the rapid development, but they are just composed by the 52 letters including 
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26 uppercase and 26 lowercase letters. As we know the number of figures in various aspects 
of the world is endless, but in the decimal system these figures are constituted by 0 to 9 
altogether ten figures; in the hexadecimal 0 to 9 ten figures and A to F six letters are needed; 
in the binary only two symbols 0 and 1 are needed.  
Therefore we can take it that Biederman’s theory of the components recognition reveals the 
pattern of the real world’s construction: all the objects of the world are composed by a few 
components, that is to say, all the objects can be decomposed into certain components.   
Biederman's theory holds that the limited components have almost infinite combination, 
thus compose almost unlimited objects. This conforms to Chinese philosophy of “one lives 
two, two lives three, and three lives everything”. In terms of the geometry, the objects can be 
fully described by the geometries, because various spatial relationships among the 
geometries have infinite combination. The same components can form different objects 
through different combination. The English words “on” and “no”, "dear" and "dare", "hear" 
and "hare" respectively have the same letters, but when combination is different, the words 
composed are completely different. 
We call such a combination of the objects structures, which is a very important concept in 
pattern recognition. The definition of the structure is the organization of each part of the 
object[19]. 
In pattern recognition, the structure is the combinational relations between the object and 
its’ components, and the combination of their components. For example, the English word 
“structure” is composed by s, t, r, u, c, e six letters, the order of the arrangement is s-t-r-u-c-
t-u-r-e. In organic chemistry, Methane (CH4) is composed by the two elements of Carbon(C) 
and Hydrogen(H), and the structure of the CH4 is a regular tetrahedron, that the carbon 
atom is in the center of the tetrahedron, while four hydrogen atoms are in the vertices of the 
tetrahedron, as shown in Fig 9.  

 
Fig. 9. The structure of the methane 

The structure of objects, has its own laws, which cannot be constructed arbitrarily. In 
English, the letters have certain regulations of arrangement to construct the words, for 
example we cannot arrange w, v, u and some other letters together repeatedly. In 
appearance of the human face, there are not more than two eyes, only one nose and only one 
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mouth, moreover the distribution of them is that the eyes are at the top of the face, the nose 
in the middle, and the mouth at the bottom. 
Now we use the theory of set to describe the construction of the object: 
Definition 3.1 The objects which have the same characteristics in some aspects compose a 
set, denoted as O.  
Definition 3.2 The elements in the object set O are called object or pattern, denoted as m, 
that is m∈O. 
Definition 3.3 For any m∈O, we can decompose it to one or several components according 
to a certain regulations, then the components form a set which is recorded as Ci (i is the 
natural number) 
Definition 3.4 For any m∈O,we call the mutual relationship of the components structure 
which can be denoted as S or S（C1,C2,…,Cn）. 
     For example, with a certain structure the word “study” is composed by the letters  
“s, t, u, d, y”, which can be denoted as follow: 

      Study=S(s,t,u,d,y). 
     All patterns in the object set can be decomposed into a component or more according to a 
certain structure, that is, all the objects in the set can be composed by the several 
components according to a certain structure.  

3.4 The relationship between the prototype and the components of objects 
The theory of prototype believes that the storage in the long-term memory is the prototypes, 
rather than the templates corresponding to the external patterns. What is the prototype after 
all? Prototype is the internal characteristic of a class of objects and also the general 
characteristic of all individuals of a class of objects, but not the internal copy of a specific 
model. It is considered by component recognition that objects are composed by a number of 
basic shapes or components, that is to say, are composed by the geometries. 
From the above two theories, it appears that there is a difference in the content of their 
researches: the theory of the prototype matching is to study the human brain for perceiving 
the outside world, while the theory of the component recognition is to study the 
composition of the objects. However, the two theories are to study human’s pattern 
recognition, is there any relationship between them?  
Prototype, the general characteristic of all individuals in a category or area, reflects a class of 
the objects’ basic characteristics, is the generalization and abstraction of the object’s 
characteristics. As analyzed in the preceding chapter, an object is constituted by some 
elements that are concrete and determined under its structure. Therefore, there exists a 
process from general to determine and from abstract to concrete between the prototypes and 
the components. 
     We might understand prototype like this: for an object set of English word, and for any 
word in the object set, all of them are constituted by one or more of 52 symbols which has 26 
uppercase and 26 lowercase letters. With 26 uppercase and 26 lowercase letters, the 52 
symbols are the generalization and abstraction of the components of all the English words. 
No matter how many English words and various fonts there are, they can be constituted by 
some letters changing in size and shape. Therefore, English words’ uppercase and lowercase 
letters are the prototypes of this object of English words. The sizes and shapes of prototypes 
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are fixed, the matches between them and the components with various size and shape can 
be realized by topological mapping. The deduction of the concept is shown in Figure 10. 
In Fig 10, the prototype set P has 52 elements including 26 uppercase and 26 lowercase 
letters, while all the English words compose the set of the objects. The elements in the set of 
the objects are specific English words “Pattern Recognition PATTERN RECOGNITION”, 
which are composed by elements of the prototypes “R, P, A, T, E, N, C, O, I, G, e, c, o, g, n, I, t”. 
The elements’ size and font in the prototype set are fixed, the prototypes can match each 
kind size and font of the components through the topological transformation. 
 

 
Fig. 10. The relationship between the prototypes and the components of objects 

It can be described from the perspective of topology: 
Definition 3.5 A set without any repeated elements abstracted from the component 
collection C of all the objects M in a kind of object O, is called the prototype of this kind of 
object O, denoted as P,  
From the definition 3.3 and 3.5, all objects M in every class of object O can be decomposed, 
under a certain rule, into some components C, from which a set abstracted without any 
repeated elements becomes prototype P, as shown in Fig 11. 
 

 
Fig. 11. Objects-Components-Prototypes  

In the example above the specific objects are the following English words “Pattern, 
Recognition, PATTERN, RECOGNITION”, if set 
M={Pattern，Recognition，PATTERN，RECOGNITION }, then M can be decomposed 
into the component collection C={{P, a, t, t, e, r, n}, {R, e, c, o, g, n, i, t, i, o, n}, {P, A, T, T, E, 
R, N}, {R,  E, C, O, G, N, I, T, I, O, N}}. The differences of the components among the R, R 
and R are only size and shape, there is no difference on topology among these three 
elements, so these three elements can be abstracted as a prototype R. Therefore, the 
prototype set P can be abstracted from the component collection C, that is the prototype set 
P = (R, P, A, T, E, N, C, O, I, G, e, c, o, g, n, i, t).        
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Further expatiation on topological theory is following. 
Suppose M={ 1 2, , , nm m m� } is the set of all the objects in O, each element in it denotes an 

object; 1 2{ , , , }i i i imC c c c= � （i=1,…,n）denotes the components of the ith object in M, C= 

1 2{ , , , }nC C C� denotes the collection of all components sets; P={ 1 2, , , rp p p� } denotes the 
set of all the prototypes which is abstracted from the component collection C of all the 
objects M in O. 
Suppose PΓ  is the power set of the prototypes P, 

iCΓ is the power set of Ci, MΓ is the power 
set of M. 
Proposition 3.4 PΓ is a topology of the prototype set P,（P， PΓ ）constitutes a discrete 
topological space. 
The method of proof is the same as that of the proposition 3.1. 
Similarly, it can be proved that (M, MΓ ) and (Ci, 

iCΓ ) also constitute discrete topological 

spaces. 
Proposition 3.5 The collection C={ 1 2, , , nC C C� } is a basis of the prototypes’ topological 

space（P， PΓ ）. 

Proof: P is the unions of the component set Ci, that is P=
1

n

i
i

C
=

∪ , so C is a subcollection of 

the（P， PΓ ）. Each element in PΓ can be denoted by the union of some elements in C, 
satisfying the definition of basis[20] in topological space, therefore, the collection 
C={ 1 2, , , nC C C� } constitutes a basis of the prototypes’ topological space（P， PΓ ）. 

From another perspective,（P， PΓ ）is a discrete topological space, moreover any discrete 
topological space has a simplest basis (of course, there may be more than one basis for any 
topology), which is composed by all single-point subset of it. The single-point subset of the 
topological space（P， PΓ ）is 1 2, , , nC C C� , therefore the collection C={ 1 2, , , nC C C� } 

constitutes a basis of the prototypes’ topological space（P， PΓ ）. 
So any prototypes in the prototype set P are abstracted from the component collection C of 
all the objects M in O. 
Proposition 3.6 If f is the mapping from the topological space of the components C to the 
topological space of the prototypes P, then f is surjective. 
Proof: P is the set of the prototypes abstracted from the components collection C of all the 

objects M in O, that is P=
1

n

i
i

C
=

∪ , thus there exist topological mappings 1 2( , , , )rf f f f� , and 

1 2( , , , )i i i i mf f f f� （i=1,2,…,r）, which make 

if ( 1 2, , , nC C C� )= pi, 
The prototypes P abstracted from the components C, have not changed the topology of the 
component cij of the objects, just make a small change in the size or the shape of the 
component cij, thus 

Theory of Cognitive Pattern Recognition 

 

451 

fij( cij)=pi, 
which is a homeomorphism, therefore  

( ) Pf C = . 

thus f is surjective. 
For example in English words, if M={Pattern，Recognition，PATTERN，RECOGNITION 
}, then M can be decomposed into components C1={P, a, t, t, e, r, n}, C2={R, e, c, o, g, n, i, t, i, o, 
n}, C3={P，A，T，T，E，R，N}，C4={R，E，C，O，G，N，I，T，I，O，N}, namely, 
C = (C1, C2, C3, C4), and the prototype set P={R, P, A, T, E, N, C, O, I, G, e, c, o, g, n, i, t} 
which is abstracted from the component collection C of all the objects in M, that is, 

1f ( R，R，R)=R=p1。 

11f ( R)=R= p1， 

    12f ( R)=R= p1， 

13f ( R)=R=p1， 

2f (P，P)=P= p2。 

21f ( P)=P= p2， 

   22f ( P)=P= p2， 

... 

1 2( , , , )i i i imf f f f = pi 

... 

Where each mapping i jf  is a homeomorphism, so 1 2( , , , )rf f f f which can makes 

: Pf C →  

is surjective. 
With topological transformation, any object m in the set M can be constituted by certain 
elements in the prototype set P, that is, the elements in the prototype set P firstly change into 
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the elements of the components throughout topological transformation, and then compose 
the objects according to a certain structure. Therefore the mathematical model, which 
expresses the course that the components compose the objects, is shown in Fig 12 and 
equation (3.1), the process and the plan are contrary to Fig 11.  

 
Fig.12. The components compose the objects  

 M=S（C）=S（ 1 : Pf C− → ） （3.1） 

For example, as shown in 10, the word PATTERN can be obtained like this: with the 
topological transformation the elements A, E, N, P, R,  T in the prototype set P change into 
the components A, E, N, P, R, T, and then according to certain structure the word is 
constituted by the components, that is 

PATTERN=S(A, E, N, P, R, T)。 

The model of composing object based on the theory of prototype matching can be described 
like this: 
There exists a set of the prototypes, which are abstracted from the components of all objects. 
Each object can be constituted by one or more elements in the prototype set through the 
topological transformation. 

3.5 Matching and coverage 
As discussed above that the power set PΓ  of the prototype set P is a topology of P, 

according to the theory of the prototype, there exist prototype set P =
{1,2 , , }

i
i n

C
∈ �
∪ ,thus PΓ is a 

coverage of P. It is known in the theory of prototype matching that, all objects are 
constituted by a limited prototypes, that is there are limited members in coverage PΓ , so 

PΓ is the limited coverage of P. The following are proving it in the theory of topology. 

Proposition 3.7: The topological space PΓ  of the prototype set P is compact. 

Proof: As（P， PΓ ）is a discrete topological space, and it is known by the theory of 
prototype that all of the objects M in a class of object O are constituted by limited 
prototypes, that PΓ  is limited and the discrete topological space is a compact topological 
space as long as its’ elements are limited [21]. The proposition is proved and established.  
Proposition 3.8: The prototype topological space （P， PΓ ) can satisfy the second countable 
axiom. 
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Proof: From the proposition above that C={ 1 2, , , nC C C } is a basis of （P， PΓ ）, the 
prototypes decomposed by all the objects in M are limited, that is, the number of the 
elements in collection C = { 1 2, , , nC C C }is numerable, so（P， PΓ ）has a numerable basis-

--- C={ 1 2, , , nC C C }, that satisfies the definition of the second countable axiom[22], 

therefore, the prototype topological space (P， PΓ ) can satisfy the second countable axiom 
and it is the space of A2, the proposition is proved and established.  
Proposition 3.9: The prototype topological space (P， PΓ ) can satisfy the first countable 
axiom.  
Proof: From the proposition above that C={ 1 2, , , nC C C } is a numerable basis 

of（P， PΓ ）, for PP, { | }
CPp C p C′ ′∀ ∈ Γ = ∈Γ ∈  is a neighborhood of p, which is a sub-

collection of C and is numerable collection, so P has a numerable neighborhood basis 
CPΓ  

at the point p, that satisfies the definition of the first countable axiom of the topological 
space[23], so the prototype topological space (P， PΓ ) can satisfy the first countable axiom 
and it is the space of A1, the proposition is proved and established.  
Proposition 3.10: The prototype topological space (P， PΓ ) can satisfy any axiom of 
separability. 
Proof: （P， PΓ ） is a discrete topological space, and the discrete topological space is the 
space which meets all the properties of the spaces stated by the separability axiom [24], 
which includes T1 space, T2 space (also called Hausdorff space), T3 space, T3.5 space (also 
called Tychonoff Space), T4 space, regular space and so on. Therefore, as a discrete 
topological space, the prototype topological space（P， PΓ ) can satisfy any axiom of 
separability, the proposition is proved and established.  
From Proposition 3.7, the prototype P is compact, so the open coverage must have limited 
sub-coverage in prototype P. In other words, the process of the prototype matching is to use 
the topological transformation of one or more elements in prototype set to cover the 
components of the pattern.  

3.6 The evaluation of matching 
The multi-value problem of matching extent between prototype and pattern’s components 
changes into the yes-or-no problems that whether matching or not matching. There is a 
decision-making process and a evaluation criteria. The evaluation method of the traditional 
machine pattern recognition is Bayesian decision theorem, the final judgement is the 
threshold. The threshold is the value of domain, if higher than the threshold, it pass; 
otherwise it fails. In pattern recognition, the threshold is established artificially by people’s 
hard working, the higher the threshold is, the higher the rate of rejecting identifier and the 
lower that of wrong identifier are, Otherwise, the lower the rate of rejecting identifier and 
the higher that of wrong identifier are.  
In fact, the method of threshold is derived from a way of information solving or data 
processing in statistic, rather than a law of nature. 
In a condition of large sample, by using the method of threshold, the workload of data 
processing can be greatly reduced. For example, the scores of exam which entering school by 
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students, uses a threshold to differentiate. Matriculating the students whose scores are higher 
than the threshold, and rejecting the students whose scores are lower than the threshold.For 
instance, a product has a qualified threshold, higher that is eligible, lower is not. 
In fact, the students who get higher scores at one exam not actually learn well than the one 
who gets lower scores. While the groups of student who get higher scores learn well than 
the groups of students who get lower scores. 
The people whose ages are over 60 are elders, while the others whose ages are 59 and 11 
months are not elders. Even though all are 60 years old, the psychology and physiology are 
diverse. Therefore, the threshold is the method of handling problem but not a natural law. 
However, in some situations, we cannot adopt the method of threshold. For instance, the 
voting may fail if we set a threshold, that is, there exist some possibilities that the threshold 
is so high that nobody can reach it or the threshold is so low that lots of people can reach it. 
It seems that there is an orientation to pursue “best” around our world. Most people hope 
his or her room bigger at home. However, in the earthquake areas having happened in china 
in May 12th 2008, the temporary movable rooms are only tens of square meters, but people 
also live well, even they live in the several -square -meters tents. People always hope the bed 
can be bigger, it is surprise that two meters beds can be brought nowadays. It is a 
fashionable that people sleep in big beds, so people almost want to buy the big bed. While 
the sleepers are only 60cm wide in the trains, which is less than the 1/3 of the big beds, 
people also can sleep very well. But we can observe that people on the train are changing 
the posture frequently when they are sleeping. Whether or not the example above can prove 
that people have the orientation to pursue the “best” under a certain restricted condition? 
There is a similar situation in the natural world. We have observed that the trees grow 
under the stones, the advantage of them is that they can break through the huge stone and 
grow up under great resistance. Groups of bamboos can grow up highly and straightly, 
while the single trees or bamboos which grow on the wide area are short and bended, they 
are Looking for a best developing direction when they are restricted by the surrounding 
environment, can it be explained that the plants which grow in the natural world also have 
the orientation to pursue the “best” under a certain restricted condition?   
These exists a extreme point at mathematics, which means the function can get the extreme 
value at this point or at the boundary points of the interval. 
In human pattern recognition, which is researched by cognition psychology, once the 
external stimulating information has the nearest matching with certain prototype in brain, it 
can be added into the category of this prototype and then recognized. The nearest means the 
best matching among them, obviously, it is not enough to satisfy one threshold.   
Actually, sometimes these twos are combined to use. The modern people like to obtain the 
projects or business contracts by bid. The process of bid can be viewed as the recognition for 
suppliers or contractors. The first condition in the bid process is the qualification, also call 
the threshold. Only the people who meet the qualification of bid can submit a bid. However, 
the best method is to summarize the elements of the quality, price, service etc, and then 
choose the winner among several qualified bidder who meet the tenderee’s profit.   
We can take the same idea used to solve public bidding problem to deal with the problem of 
estimating the discriminating result in recognition. The threshold method and the extreme 
method are always introduced in the estimation: we choose the most nearest matching from 
those whom satisfy the very condition of threshold. 
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3.7 Processing method  
The theory of prototype matching adopts up-down processing method, which is the fault of 
this matching theory. The work of human’s pattern recognition is complex. Take the image 
recognition as an example, recognizing the plant, animal, all kinds of objects which are man-
made, image, character even all the objects in the world are very complex. Just because the 
objects that people facing are so complex that we can not forecast the properties of them, so 
it can not prepare the corresponding matching information to build up the up-down 
processing method. In fact, if possible, people often use the up-down processing method or 
combine them when recognition, for example, when someone has heard that some relative 
will come to visit, they will adopt up-down processing method to recognize the coming 
person, of course they will make mistake by up-down process. 
The work of recognition is more easily for the system in machine pattern recognition, which 
is a special recognition system that usually aims to a class of objects. For example, character 
recognition aims to character, while face recognition aims to face, fingerprint recognition 
aims to fingerprint, and glass inspecting recognition aims to glass. The ability of machine 
pattern recognition is much weaker than people’s. Just because we can build up a systemic 
knowledge by using of the special knowledge of special system to achieve or partly achieve 
the combination of up-down process method and bottom-up process method. For example, 
“0” is recognized as a number in number recognition system but recognized as a character 
in character recognition system. For the images of visual perception, especially for the 
images’ topology, the topology of them is the same. And it settles the shortage of up-down 
processing method to a certain extent. 

3.8 Memory  
In machine pattern recognition, because knowledge and prototype must be memorized, the 
memory mechanism of cognition psychology must be used. But in machine pattern 
recognition, sensory memory need not be considered. Figure 13 is the memory model.  
 

 
Fig. 13. 
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the combination of up-down process method and bottom-up process method. For example, 
“0” is recognized as a number in number recognition system but recognized as a character 
in character recognition system. For the images of visual perception, especially for the 
images’ topology, the topology of them is the same. And it settles the shortage of up-down 
processing method to a certain extent. 

3.8 Memory  
In machine pattern recognition, because knowledge and prototype must be memorized, the 
memory mechanism of cognition psychology must be used. But in machine pattern 
recognition, sensory memory need not be considered. Figure 13 is the memory model.  
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In the model, the short-term memory seems to a work memory, used for memorizing the 
correlative knowledge extracted form the prototype database and the knowledge database 
in the long-term memory, which is necessary for analyzing the input data. The operation 
itself has characteristics of the up-down processing method, and then calculate it according 
to prototype pattern recognition. Add the prototype and knowledge which are needed to 
their corresponding database. 

3.9 The organization of knowledge 
In most of person’s free imagination, it can be shown their knowledge is organized. As for 
how to organize, it is the content of cognition psychology. 
The above chapters have introduced that the achievement we have got in cognition 
psychology are three hypothetic models: symbol-net model, level-semantics-net model and 
activation-diffusion model. 
In the researching of cognitive pattern recognition, we can research the level-semantics-net 
model firstly, the reason is that this model is proposed according to language understanding 
of computer simulation. This hypothetic model explains the organization and expression of 
the human knowledge by logic not psychology. It is much easily realized in computers, 
though has a suspicion to take a shortcut, it is a good method. 

4. The systemic construction of cognitive pattern recognition 
4.1 The systemic construction of traditional pattern recognition 
From the perspective of technique, pattern recognition experiences the whole course which 
is from the mode space to the feature space, then to the type space. So, the system of pattern 
recognition must have some essential functions such as pattern collection, feature 
extraction/selection, pattern classification and so on, the systemic framework of machine 
pattern recognition can be showed as the figure 14. 

 
Fig. 14. The systemic framework of machine pattern recognition  
According to the object for recognition, the process of pattern collection can choose every 
kind of sensors such as metrical devices, image collecting devices and some other devices 
used for conversion, filter, enhancement, reducing noise, correcting distortion. Feature 
extraction is realized by transforming mode space to feature space, which compress 
dimensions effectively. The classifier can classify those samples with unknown property. In 
order to design the classifier, we should confirm its evaluated rules and train it firstly. Then, 
the classifier can work effectively. 
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4.2 The framework of cognitive pattern recognition 
In the traditional machine pattern recognition, the template approach has been used; 
however, the feature theory has been used widely. We believe that there is no essentially 
difference among the template theory, the prototype theory and the feature theory. They are 
all a description of the object in the application of machine recognition. We believe that the 
prototype is a method which describes feature, is the component templates of the object. In 
other words, we can believe that the feature is a method used to describe the prototype, and 
the template is also a describing method of the feature. These are controversies of different 
academic attitudes in cognitive psychology. We do not want to join these arguments, but 
just to meet targets of the description of requirements. In order to facilitate the handling, the 
following discussion will consider the feature/prototype, that is, integrating the template 
into the discussion of the prototype. 

4.3 The application of the memory principle  
Cognitive psychology believes that the process of memory can be divided into three stages, 
that is, feeling memory→short-term memory→long-term memory. Accordingly, in the 
process of machine recognition, there are only two stages, one stage can acquire information 
of the outside world through a sensor, another stage can store the objects recognized in the 
computer for a short time. The knowledge stored in long-term memory is features and the 
prototypes as well as knowledge and rules, then the databases can be created to store the 
corresponding features, prototypes and the knowledge and rules. In the traditional pattern 
recognition, the rejection conclusions will be obtained, when it can not be matched in the 
short-term memory. While in the pattern recognition, if the appropriate patterns can not be 
found in the databases of the feature or the prototype, then the corresponding patterns will 
be added to the appropriate databases. If no relations, structures, methods or other 
knowledge can be found in the databases of the knowledge and the rule, then they will be 
added to the corresponding databases, in order to simulate human’s learning ability better. 
Cognitive psychology proposes two information processing modes of the top-down and 
bottom-up, while in machine pattern recognition the processing mode mainly used is the 
data-driven process supported with the top-down process, and the partial knowledge can be 
used to predict. The processing method of that global features processed before local 
features is adopted in the global and local aspect. 
Cognitive psychology suggests that in the process of pattern recognition if the background 
information related with the object is stored in the long-term memory, it may have an 
important impact on decision through the so-called superiority effect. In the process of 
recognition, computer must deal with the problems of the overall and partial, topology, the 
superiority effect and so on, and carry on effective imagination. These can be integrated into 
the scope of knowledge.  
Based on the above analysis, we can get the framework of cognitive pattern recognition, as 
shown in Figure 15. The process of pattern collection is as the same of that in traditional 
pattern recognition, that is, we can choose various sensors such as metrical devices, image 
collecting devices, and other devices used for conversion, filter, enhancement, reducing 
noise, correcting distortion and so on according to the object to be recognized. The functions 
of the pattern analysis processing are a little stronger than that of traditional pattern 
recognition, it can analyze the simulating signal collecting from the real world, including 
feature extraction, prototype analysis, topological judgment, description for the organization 
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and structure of the features or prototypes, as well as the background description and so on, 
preparing for further works including knowledge searching, character/prototype searching, 
and matching   
 

 
Fig. 15. The framework of cognitive pattern recognition 

decision-making.The database of the character/prototype, which stores the features of the 
external objects and the prototypes that constitute of them, only contains a part of human’s 
long-term memory. This database have extended the ability which is able to append new 
character/prototype into it. The database of the feature/prototype together with the 
database of knowledge/rule which stores transcendent knowledge, rules of prototype 
combining, feature relation knowledge and so on, responds to human’s long-term memory. 
The section of matching decision-making is combing the result of pattern analysis, first 
searching the feature /prototype and the knowledge/rule from the corresponding database, 
and then matching them and evaluating the result with some rules, in the end outputting 
the results of the recognition. If the matching fails, the system will add those new items to 
their databases correspondingly, In this way, the system can learn and memorize new 
things. 

5. Example application of cognition pattern recognition to Chinese character 
intelligent formation 
Combined with the tradition theory of Chinese character formation with prototype theory in 
cognition psychology, Chinese character intelligent formation is formed basing on cognition 
mechanism and can be expressed as follows: 
The Chinese character is a combination of either single hieroglyphic or self-explanatory 
symbol, or the combination of several of them based on meaning and echoism rules. The 
hieroglyphic and self-explanatory symbols of the all components in Chinese character set 
are Chinese character prototype. In other words, the hieroglyphic and self-explanatory 
symbols are the basic unit of Chinese character, so they are called basic elements. The 
components of the Chinese character are the basic elements with the topological mapping 
on the structure of the Chinese character. The relationship between the entire character and 
the basic elements, and the basic elements themselves which constitute the character, 
constitutes the hierarchical structure of the Chinese character. According to the 
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mathematical model of the prototype structure object in equation (3.1), we can build a 
mathematical model of Chinese character intelligent formation, which can be defined as  

 M=S（C）=S（ : Pg C→ ） （4.1） 

Where M is the Chinese character set, S is the structure set, P is the basic element set, C is the 
Chinese character component set, and g is the topological mapping from basic element to 
Chinese character component.  

5.1 Systemic structure of the Chinese character intelligent formation 
According to 4.1, the Chinese character is composed of mapping from basic elements of 
Chinese character to structure of Chinese character. The principle of Chinese character 
intelligent formation according to the research above is shown in figure 16. 
 

 
Fig. 16. The principle of Chinese character intelligent formation 
In figure 16, we can see that the Chinese character intelligent formation is composed of the 
Chinese character basic element database, the Chinese character knowledge database, the 
inference machine and the Chinese character intelligent formation models, which are stated 
separately as follows:  
（1）Basic element database 
Basic element database, one kind of long-term memory, stores basic elements. As argued 
above, the Chinese character contains hieroglyphic and self-explanatory symbols and their 
combinations, which embodies the ideographic characteristic of the Chinese character 
because each basic element which constitutes the character has its own meaning. Therefore, 
the Chinese character is, currently, the only remained ideographic character. From the above 
analysis, the hieroglyphic and self-explanatory symbols are basic elements. The Chinese 
character, whose basic elements mainly manifest the meaning of Chinese character, is a 
combination of the shape, sound and meaning. 
（2）Knowledge database 
Knowledge database, another kind of long-term memory, stores the knowledge of structure 
and mapping. The Chinese character being a kind of structured character, is also a 
combination of the shape, sound and meaning. The “shape” embodies the structure of the 
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Chinese character, which is the combination relationship between the entire character and the 
basic elements, and between the basic elements themselves which constitute the character. 
Moreover, the structure, which can describe the position, the size and the shape of the basic 
elements in the Chinese character, is also the combination rules in Chinese character intelligent 
formation. With the structure of Chinese character, the unceasingly developing Chinese 
character can be formed by some limited basic elements. As the long history of Chinese 
character, there already have many research results of structure of Chinese character, so 
determining the structure of Chinese character, as well as determining the basic element, has 
double tasks of inheriting culture and realizing high efficiency of computer processing.  
The basic element, as an abstract, is the most basic and representative characteristic of Chinese 
character. The conversion from the basic element to the components of Chinese character is 
called topological transformation. The Chinese character has its concrete form, which is 
composed by the concrete basic elements distributed in a character plain based on the structure 
of Chinese character. The process from the basic elements to the specific component of Chinese 
character is a mapping from abstract to concrete object maintaining the topological invariance.  
（3）Inference machine 
The inference machine perceives the input information, and then explains the meaning of 
the information, such as what is the structure of the Chinese character, how many levels are 
there in the structures, what is the basic elements in each level of the structure. Next, 
according to the result, the corresponding basic elements can be searched out from the basic 
element database, and the corresponding topology mapping knowledge can also be 
searched out according to the structure. 
（4）Chinese character intelligent formation model 
The principle of Chinese character intelligent formation model can be described as follows: 
first, extracting the corresponding basic element form the basic element library, then, 
according to the knowledge of basic element mapping, mapping the basic element to the 
structure of Chinese character, and finally after accomplishing all the mapping of the 
components, a Chinese character is formed, as shown in figure 17 and 18. 
 

 
Fig. 17. The process of Chinese character intelligent formation 

The basic elements corresponding to some prototypes don’t constitute integral structure of 
the Chinese character directly, which is exactly constituted by some compounds from the 
basic elements after one or more times changes, such a character has the multistage 
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structures. According to the compound number of times, it is called second-level structure, 
third-level structure, and fourth-level structure. Taking“蘑”for example, the analysis 
process of the hierarchical structure of Chinese character is shown in Figure 19. 
 

 
Fig. 18. Sketch of Chinese character intelligent formation 

 
Fig. 19. Analysis of the structure of Chinese character 
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1. Introduction 
Pattern recognition is one of the main research areas in the computer vision community. The 
basic problem consists in detecting and recognizing one or several known patterns in a data 
stream. Patterns can be specified in the raw data space or in any feature space suitable for 
the analysis of the input data. In particular, visual pattern recognition deals with 
applications where the pattern description is specified in terms of visual information and 
where input data comes from any kind of visual sensor (Chen & Wang, 2005). A common 
classification scheme divides pattern recognition according to the way the pattern is 
defined. There are then structural and statistical techniques. With respect to the problem 
solving approach, object location techniques are divided into two types of methods: i) 
deterministic methods like Hough transform, e.g. (Yuen et al., 1990), geometric hashing and 
template or model matching, e.g. (Iivarinen et al., 1997; Jones et al., 1990) and ii) stochastic 
techniques, including RANSAC (Fischer & Bolles, 1981), simulated annealing and genetic 
algorithms (Roth & Levine, 1994).  
Geometric shapes are very useful in a number of tasks because they are often present in 
human-made environments. They are also widely used as a part of man-designed symbols. 
To recognize this kind of shapes, many methods have been developed. In particular, circle 
and ellipse detection problems have been widely studied in the shape recognition 
community. Most approaches use Hough transform-based techniques. For instance, Lam 
and Yuen (Lam & Yuen, 1996) have proposed to use a hypothesis filtering approach to a 
Hough transform to detect circles in images. Yuen and Lo (Yuen & Lo, 1994) have posed the 
circle detection problem as a multi-resolution problem for the Hough transform. A traffic 
sign detector proposed by Mainzer uses a circle detector (Mainzer, 2002a,b). Shape 
classification using a soft computing approach is addressed by Rosin and Nyongesa (Rosin 
& Nyongesa, 2000).  
Genetic Algorithms (GA), proposed by Holland (Holland, 1975) in the 60s, are a family of 
algorithms where we apply an artificial evolution process. The purpose of the evolution is to 
produce a computational individual which is the best fitted to solve a specific problem. GA 
have been extensively used to solve optimization problems. Genetic Algorithms (GA) have 
been already used for several pattern classification tasks. In order to apply them to a pattern 
recognition problem, we need to pose the pattern recognition problem as an optimization 
problem. We need then to associate key elements in both approaches. Bandyopadhay 
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1. Introduction 
Pattern recognition is one of the main research areas in the computer vision community. The 
basic problem consists in detecting and recognizing one or several known patterns in a data 
stream. Patterns can be specified in the raw data space or in any feature space suitable for 
the analysis of the input data. In particular, visual pattern recognition deals with 
applications where the pattern description is specified in terms of visual information and 
where input data comes from any kind of visual sensor (Chen & Wang, 2005). A common 
classification scheme divides pattern recognition according to the way the pattern is 
defined. There are then structural and statistical techniques. With respect to the problem 
solving approach, object location techniques are divided into two types of methods: i) 
deterministic methods like Hough transform, e.g. (Yuen et al., 1990), geometric hashing and 
template or model matching, e.g. (Iivarinen et al., 1997; Jones et al., 1990) and ii) stochastic 
techniques, including RANSAC (Fischer & Bolles, 1981), simulated annealing and genetic 
algorithms (Roth & Levine, 1994).  
Geometric shapes are very useful in a number of tasks because they are often present in 
human-made environments. They are also widely used as a part of man-designed symbols. 
To recognize this kind of shapes, many methods have been developed. In particular, circle 
and ellipse detection problems have been widely studied in the shape recognition 
community. Most approaches use Hough transform-based techniques. For instance, Lam 
and Yuen (Lam & Yuen, 1996) have proposed to use a hypothesis filtering approach to a 
Hough transform to detect circles in images. Yuen and Lo (Yuen & Lo, 1994) have posed the 
circle detection problem as a multi-resolution problem for the Hough transform. A traffic 
sign detector proposed by Mainzer uses a circle detector (Mainzer, 2002a,b). Shape 
classification using a soft computing approach is addressed by Rosin and Nyongesa (Rosin 
& Nyongesa, 2000).  
Genetic Algorithms (GA), proposed by Holland (Holland, 1975) in the 60s, are a family of 
algorithms where we apply an artificial evolution process. The purpose of the evolution is to 
produce a computational individual which is the best fitted to solve a specific problem. GA 
have been extensively used to solve optimization problems. Genetic Algorithms (GA) have 
been already used for several pattern classification tasks. In order to apply them to a pattern 
recognition problem, we need to pose the pattern recognition problem as an optimization 
problem. We need then to associate key elements in both approaches. Bandyopadhay 



 Pattern Recognition Techniques, Technology and Applications 

 

464 

(Bandyopadhay et al., 1995) have proposed a GA-based method to classify patterns by 
selecting the position of the decision boundaries in an N-dimensional feature space. They 
place H hyper planes in order to minimize misclassification of the sample points. They have 
also developed some methods to remove the redundant hyper planes originated by the 
overestimation of H (Pal, et al., 1998). Decision boundaries selected by the GA-based pattern 
classification method will approach those found by the Bayes maximum likelihood 
classification (Murthy, et al., 1996). Van Hove and Verschoren (van Hove & Verschoren, 
1996) have also applied a GA-based method in the recognition of binary trees that represent 
bitmap images. They propose to use a two dimensional GA (2DGA) as a model to use GA in 
image processing tasks. Buckles et al. (Buckles, et al., 1996) apply a GA to label mesoscale 
features arising from satellite images. They use a combination between semantic nets and 
fuzzy predicates to improve labeling of satellite images. 
We are interested in the problem of interacting with a computer by using graphical sketches 
to simplify its use by novice users. Sketch understanding is a research field where shape 
recognition plays a role to complete successfully the task (Notowidigdo & Miller, 2004). 
Hand-drawn input has been already used in a number of human-computer interface 
applications. 
In this application context, we are interested in approximating geometrical shapes drawn by 
a human user to parametric ones to be handled by a computer user interface. As a first 
example, we show how to approximate circles drawn by a human user to ideal circles by 
using a GA-based approach. Using GAs to detect shapes in an image involves mainly the 
making of design choices for the solution elements in a genetic algorithms framework. We 
work on images containing one or several circles. The circles are searched through the edge 
image resulting from an image pre-processing step. A classical Sobel edge detector was used 
for this purpose. Our algorithm can detect one or many circles present in the image under 
analysis and estimate shape parameters for them. Parametric estimation is achieved with 
sub-pixel accuracy. In the rest of this paper, we will show how to pose the circle detection 
problem in terms of a genetic algorithm approach. Section 2 presents an overview of GA. 
We show how GA can be used to solve a circle detection task in Section 3. The test protocol 
and the performance evaluation results for the proposed approach are shown in Section 4. 
Conclusions arising from these results are presented in Section 5. Some extensions to this 
work are also depicted in this section. 

2. Genetic algorithms 
Genetic algorithms are a pseudo-random optimization technique that mimics natural 
evolution to find the solution of the problem being solved.  The block diagram of the Simple 
Genetic Algorithm (SGA) is shown in Figure 1. As described by this diagram, to use a SGA, 
we need to initialize a population of candidate solutions. Each potential solution is 
represented as a computational individual where the genetic material is encoded in the form 
of on and off bits. We name computational chromosome to such a string of bits. There is also 
an encoding and decoding function that let us go both ways from the solution space to the 
chromosome space. Every computational individual is evaluated in order to find the best 
solutions among the population. We need to define the so called fitness function in order to 
assign a fitness value to each potential solution. The fitness value encodes the knowledge we 
have about the characteristics of the best solution and tries to reward potential solutions that 
best fit these features.  Best solutions are kept and they are given the privilege of mating to 
generate a new population that will be analyzed in the same way, until a stopping condition 
is fulfilled. Genetic operators like mating and mutation operate directly on the bit string 
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representing the parent individuals in order to generate bit patterns that represent best-
fitted solutions to the problem being solved. 
Main advantage of such stochastic optimization is the possibility of escaping from local 
minima through the mutation, selection and mating operations. Main drawback is the need 
of definition of a good fitness function that reflects how well any bit pattern performs in the 
solution space. For the sake of completeness, we are going to present an overview of the key 
elements of a GA. 

2.1 Encoding mechanism 
The encoding scheme used in a GA has the function of representing in a unique way each 
solution in the problem search space by using one or several computational chromosomes. 
We understand by computational chromosome a concatenated string of symbols, where the 
symbols are chosen from a particular alphabet. Most often used representations are based in 
a binary alphabet. That is, every potential solution is represented as a string of bits. We can 
use binary strings to encode candidates in almost any optimization problem with good 
results. Many optimization problems require using real precision values as the computer 
implementation data type. We can use integer representations to simplify computational 
handling of the information. However, we use a mapping function to decode the integer 
index of the candidate into a real value. 

2.2 Population initialization  
GA work on an initial population searching for best fitted individuals. Each individual 
corresponds to a potential solution of the optimization problem. We can use any a priori 
procedure to populate the GA. Such initialization schemes could exploit a priori knowledge 
on the specific problem to be solved. Nevertheless, and as a mean of providing diversity to 
the GA population, this step is done by randomly selecting a number of individuals from 
the search space.   

2.3 Fitness evaluation 
We need to evaluate how well each candidate solution performs. To do this, we use a 
function f(x) that is optimized when x assumes the value that solves the problem. In this 
function, we need to encode all the knowledge about the problem being solved. For each 
potential solution, this function returns a fitness score used to rank potential solutions. In 
this step, the bit string representing the solution (also called the genotype) is decoded to get 
the features associated to such a bit string (also called the phenotype). These parameters are 
used by the fitness function to compute the fitness score. Fitness function complexity can 
vary depending on the problem being solved. The fitness score is always the key to decide 
which individuals remain being part of the GA population. 

2.4 Selection mechanism  
The selection mechanism let us set up survival strategies in the evolutionary framework. 
One of the simplest survival strategies to be considered is the best fitted survival. In this 
method, individuals which have the better fitness score are kept to participate with its 
genetic code to the next iteration of the GA population. We need to define how many parent 
individuals will be selected to mate among them in order to generate a new population for 
the GA, and how much will each of them contribute to the next generation of the GA. 
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used by the fitness function to compute the fitness score. Fitness function complexity can 
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which individuals remain being part of the GA population. 
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Fig. 1. A block diagram of the operations involved in a SGA.    

2.5 Mating procedure 
In order to generate a new population of candidate solutions, a mating operator is used. We 
choose the parents to be mated and how they will exchange genetic material to generate 
new individuals. We need to specify a crossover rate that defines the probability of a genetic 
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code exchange to occur. At each generation, there are a number of individuals that are kept 
as elite individuals. They possess the best fitness scores among the genotype population 
currently being analyzed, and they are kept for the fitness function to follow a monotonic 
behavior in its temporal evolution. 

2.6 Mutation operator 
The mutation operator is a random perturbation operator used to change in a slightly sort 
the genetic material of the computational chromosomes. The application of such an operator 
is intended to maintain the population diversity and to avoid the premature convergence of 
the algorithm in a local optimum. The operator is represented by a mutation probability 
value. This value is proportional to the easiness of a random change in each bit in the 
genotype. It is recommended to use small values for this probability.  

3. Circle approximation using genetic algorithms 
3.1 Related work 
Chakraborty and Deb (Chakraborty & Deb, 1998) have proposed to use a GA in combination 
with the Randomized Hough Transform (RHT) to detect analytic curves in images. In their 
work, they extract straight lines from an image. They use GA to guide the random search 
associated to the RHT.  Roth and Levine (Roth & Levine, 1994) have proposed to use 
minimal point subsets to define geometric primitives. Lutton and Martinez (Lutton & 
Martinez, 1994) have improved the shape parameters to reduce redundancy in the primitive 
representation. They show an implementation to detect several shapes in images including 
segments, circles and ellipses in synthetic and real images. Yuen and Ma (Yuen & Ma, 2000) 
have proposed to use a GA to detect shape templates in images.  They detect shapes with up 
to 6 degrees of freedom using a multi-modal GA.  A multi-population GA is used by Yao et 
al. (Yao et al., 2004) to detect ellipses in images. They use the coordinates of five points as the 
genes of the computational individuals.  In the work by Ayala et al. (Ayala et al., 2006), it is 
proposed to arrange all the edge points in an array and to use only the index of the point in 
this array as the encoding value of the point. Their approach reduces dimensionality of the 
search space.  A recent application (Moreno et al., 2008) uses a variant of the former approach 
for depth estimation of micro-sized particles. They use a SGA to identify the minimal intensity 
ring on an image generated by the diffraction of the light of a laser beam when micro-sized 
particles are illuminated. As said before, the characteristics of that ring (namely the central 
spot size, CSS) identify the depth of the small particle in a microscopic test setup. In order to 
apply a SGA to the CSS measurement problem, they have used a fitness function that 
concurrently optimizes the existence of low- intensity pixel points along the circumference of 
the candidate solution and the low intensity average of the individual under test. 

3.2 Our approach 
Our method uses the following steps:  
i. Firstly, a binary image is acquired as input. We consider this image as figure-

background edge image. Such an image can contain any number of shapes; however, at 
this time we are only interested in detecting circles.  

ii. We create a vector by considering only the figure points in the image under analysis. To 
decide which points are the figure points, we need to consider the application context. 
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representation. They show an implementation to detect several shapes in images including 
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ring on an image generated by the diffraction of the light of a laser beam when micro-sized 
particles are illuminated. As said before, the characteristics of that ring (namely the central 
spot size, CSS) identify the depth of the small particle in a microscopic test setup. In order to 
apply a SGA to the CSS measurement problem, they have used a fitness function that 
concurrently optimizes the existence of low- intensity pixel points along the circumference of 
the candidate solution and the low intensity average of the individual under test. 

3.2 Our approach 
Our method uses the following steps:  
i. Firstly, a binary image is acquired as input. We consider this image as figure-

background edge image. Such an image can contain any number of shapes; however, at 
this time we are only interested in detecting circles.  

ii. We create a vector by considering only the figure points in the image under analysis. To 
decide which points are the figure points, we need to consider the application context. 
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According to the acquisition system convention, figure points could be black or white 
points in the input image.  

iii. We set up a simple genetic algorithm to search for the best circle in the image under 
analysis. Circles are encoded as three integer vector indexes in the GA chromosome. 
These indexes define a circle in a continuous parametric space ( , , )x y r . Circle 
optimality is defined by using a fitness function that validates if the candidate circle is 
actually present in the test image. Presence of the candidate circle is verified in a set of 
points along the circumference of the candidate.  

iv. The search procedure in the reduced sub-space leads to a circle finding algorithm fast 
enough to identify a circle in an input image. The best individual of the genetic 
population is considered as the best solution to generate the approximated circle. In the 
case of multiple circles present in the input image, the best circle is deleted from the 
input image and steps iii) and iv) are repeated. 

3.1 GA design 
Using GAs to detect shapes in an image involves mainly the making of design choices for 
the solution elements in a genetic algorithms framework. We work on images containing 
one or several circles. The circles are searched through the edge image obtained from an 
image pre-processing step. A classical Sobel edge detector is used for this purpose. In the 
following paragraphs we show how to pose the circle detection problem in terms of a 
genetic algorithm approach as stated by (Ayala et al., 2006).  

3.2 Individual representation 
Each individual C uses three edge points as chromosomes. Edge points are represented by 
their relative index in a list V of all the edge points resulting from the edge extraction step. 
Each individual represents then a feasible circle where their 0 0( , , )x y r parameters are 
defined as follows: 
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and 

 = − + −2 2
0 0( ) ( )r x x y y  (4) 

 

We can then represent the shape parameters (for the circle, [x0, y0, r]) as a transformation T 
of the edge vector indexes i, j, k. 
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This approach enables us to sweep a continuous space for the shape parameters while 
keeping a binary string for the GA individual. We can then reduce the search space by 
eliminating unfeasible solutions.  

3.3 Fitness evaluation 
Each individual has a fitness value proportional to the number of actual edge points 
matching the locus generated by the parameters of the shape 0 0( , , )x y r . In our practical 
implementation, we can not test for every point in the feasible circle so we perform a 
uniform sampling along the circumference. If we take sN  points, we construct an array of 
points ( , )i i iS x y= . Their coordinates are given by: 
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Fitness function F(C) accumulates the number of expected edge points (i.e. the points in the 
set S) that actually are present in the edge image ( , )i iE x y . That is: 
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We also use some other factors to favour the context of specific applications for detection, 
including completeness of the circumference or a given size for the circles.  

4. Tests and results 
We present tests on images containing a single circle on several images. Our test set contains 
synthetic and hand-drawn images. Our method presents a good qualitative approximation 
over a set of test images.  
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and 
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Fitness function F(C) accumulates the number of expected edge points (i.e. the points in the 
set S) that actually are present in the edge image ( , )i iE x y . That is: 
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We also use some other factors to favour the context of specific applications for detection, 
including completeness of the circumference or a given size for the circles.  

4. Tests and results 
We present tests on images containing a single circle on several images. Our test set contains 
synthetic and hand-drawn images. Our method presents a good qualitative approximation 
over a set of test images.  
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4.1 Test protocol 
Given that hand-drawn shapes cannot be standardized to some measure, we  propose to 
measure the accuracy of our approach by using the following two quantitative tests: i) We 
have generated synthetic circles having a sinusoidal undulation effect along its 
circumference, and ii) We have also generated synthetic circles corrupted by additive 
Gaussian noise in the radius parameter. Figure 2 shows examples for both types of synthetic 
images. In both cases, we know the parameters of the perturbation functions and our goal is 
to measure how the results of our approach are related to the ground truth information. 

 
                         (a)                                                  (b)                                                  (c) 

 
                        (d)                                                  (e)                                                   (f) 

Fig. 2. Sample deformed circles: showing sinusoidal undulations along the circumference (a-
c) and corrupted with noise in the radius parameter (d-f). 
Circles perturbed by a sinusoidal undulation are described by the following equation in the 
polar plane ( , )ρ θ : 

 ( )k n sen mρ θ= + ⋅  (9) 

Where n is the amplitude of the sinusoidal perturbation and m is the number of periods that 
it will traverse along the circumference of the circle. 
Noisy circles are constructed by computing a set of points modified with additive Gaussian 
noise in the radius parameter along the circumference of the circle.  In the polar plane 
( , )ρ θ , we have: 

 ( ),kρ η μ σ= +  (10) 

With μ being the mean value of the Gaussian pdf ( )η •  and  being the standard deviation 
value for the noise pdf. In our tests, we have used μ=0 in order to avoid biasing estimation. 
Synthetic images were computed using VGA resolution (640×480pixels). Without loss of 
generality, we have placed the circle in the middle of the image.  
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A qualitative test was also performed, we have presented the systems with real human user 
drawn circles, and we have subjectively analyzed the results to gain insight on the 
advantages and inconveniences of the proposed method. 

4.2 Test results 
4.2.1 Circles corrupted by undulating sinusoids  
A circle for each combination of the Cartesian product k×n×m, has been created, using k=32, 96, 
160, 224; n=2, 4;  and m=2, 4, 8, according to Equation 9. For each image, series of 30 estimations 
of the center (x,y) and radius (k) are performed and then the mean and standard deviation of 
such parameters are compared against those used for the ground truth construction. Just for 
comparison purposes, the circles estimated in one execution of the algorithm over those images 
in Figures 2 a-c, are shown as light gray overlays in Figures 3 a-c. Note in Figure 3a the circle 
detected for a figure containing two periods of the oscillating perturbation. 
Results for the estimation of parameter k are given in Table 1. Here, each row corresponds to 
a 30 execution series. Mean and standard deviation values should be compared against the n 
value, which controls the deformation in the circles. We can see a small relative error of the 
estimated radius against the ground truth data except for some cases. In particular, let us 
consider the cases where n=4, m=2, 4. In these cases, the perturbed circle has lost its circular 
appearance, and it seems like a rounded rectangle. Our method tries to adjust the best circle 
in the image. So it gets in a random manner a circle inscribed on one of the four corners as 
the best result.  
 

Parameters k kμ  kσ  ke  
n = 2 , m = 2 32 29.1750 0.2711 2.8250 
n = 2 , m = 4 32 33.3615 0.8627 1.3615 
n = 2 , m = 8 32 33.3034 0.0761 1.3034 
n = 4 , m = 2 32 26.2145 0.1842 5.7855 
n = 4, m = 4 32 29.4962 0.0661 2.5038 
n = 4, m = 8 32 35.6446 0.0443 3.6446 
n = 2 , m = 2 96 92.5663 0.2959 3.4337 
n = 2 , m = 4 96 93.8680 0.1385 2.1320 
n = 2 , m = 8 96 97.7291 0.0577 1.7291 
n = 4 , m = 2 96 88.3233 0.3180 7.6767 
n = 4, m = 4 96 67.4882 4.7472 28.5118 
n = 4, m = 8 96 92.5621 0.0783 3.4379 
n = 2 , m = 2 160 156.5334 0.1239 3.4666 
n = 2 , m = 4 160 158.3205 0.0449 1.6795 
n = 2 , m = 8 160 161.6845 0.0413 1.6845 
n = 4 , m = 2 160 151.4321 0.3150 8.5679 
n = 4, m = 4 160 155.5221 0.2715 4.4779 
n = 4, m = 8 160 163.7453 0.0371 3.7453 
n = 2 , m = 2 224 220.2067 0.1070 3.7933 
n = 2 , m = 4 224 225.5948 0.0490 1.5948 
n = 2 , m = 8 224 222.5754 0.0719 1.4246 
n = 4 , m = 2 224 217.0377 0.1371 6.9623 
n = 4, m = 4 224 227.4639 1.3441 3.4639 
n = 4, m = 8 224 227.3497 0.0446 3.3497 

Table 1. Results for the estimated radius. 
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Fig. 3. Deformed circles in Figure 2 a-c and the circles estimated using a GA. 
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Fig. 4.  Center of circles estimations for k=2 and m=2 in (a), m=4 in (b), and m=8 in (c). 
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Fig. 5.  Center of circles estimations for k=4 and m=2 in (a), m=4 in (b), and m=8 in (c). 

Results for the center of circles estimations are given in Figures 4a-c for k=2, while Figures 
5a-c show results for k=4. Observe in Figures 4a-b and 5a-b, the oscilating nature of the 
center estimation when we have m=2 and m=4 periods of the sinusoidal perturbation along 
the circumference of the circle. 
We can observe on both figures, the cyclic nature of the estimated position of the center of 
the circle. As explained before, the center shift is provoked by the round polygon 
appearance of the perturbed circles. A difference with this trend is shown in Figures 4c and 
5c, where the center estimation shows a sub-pixellic error (lower than 0.5 pixels). In this 
case, the perturbed circle seems more like a circle because of the low amplitude of the 
sinusoidal perturbation. 

4.2.2 Circles corrupted by additive gaussian noise 
A circle for each combination of the Cartesian product k×, has been created, using k=32, 96, 
160, 224, and =4 ,8, 16, for the additive Gaussian noise perturbation, defined in Equation 
10. 
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As for the circles distorted with sinusoidal waves, series of 30 estimations of the center (x,y) 
and radius (k) are performed for each image, and then the mean and standard deviation of 
such parameters are compared agaist those used for the ground truth construction. 
Circles estimated in one execution of the algorithm over those images in Figures 2 d-f, are 
shown in Figures 6 a-c, in a light gray overlay. Note here that circle accuracy is higher than 
for the undulating distortion case. That happens because the distorted points follow a 
normal distribution in the radius coordinate in the polar plane.  
 

 
                         (a)                                                  (b)                                                  (c) 

Fig. 6. Deformed circles in Figure 2 d-f and their corresponding circles estimated using a GA. 

Results for the estimation of parameter k are given in Table 2, each row corresponding to a 
30 execution series. Compare these results with those given previously in Table 1. In this 
kind of tests, error bound is lowered, as expected, with respect to the undulating circles. 
 

Parameters k kμ  kσ  ke  
σ =4 32 31.6944 0.1056 0.3056 
σ =8 32 30.4204 0.0813 1.5796 
σ =16 32 24.9730 0.4624 7.0270 
σ =4 96 95.7740 0.0293 0.2260 
σ =8 96 95.1253 0.1399 0.8747 
σ =16 96 91.0716 1.3534 4.9284 
σ =4 160 159.6619 0.0189 0.3381 
σ =8 160 159.2446 0.1209 0.7554 
σ =16 160 159.7199 0.4473 0.2801 
σ =4 224 223.6464 0.0277 0.3536 
σ =8 224 222.8001 0.1105 1.1999 
σ =16 224 223.6822 0.2805 0.3178 

Table 2. Results for the estimated radius of noisy circles. 

Plots of centers of circles estimated on tests are given in Figure 7. Note the high accuracy on 
parameter determination, yielding errors less than 1 pixel in magnitude. 

4.2.3 Hand drawn circle approximation 
Qualitative testing of our algorithm has been made by using as input images, circles drawn 
by a human user on a computer drawing program. Figure 8 shows eight hand-drawn circles 
by human users. A lighter gray overlay shows the best circle approximating the graphical 
sketch. As we can see in Figure 8, our approach results in good circle approximation. The 
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parametric circle found using our approach follows very closely the graphical sketch. As we 
can see in the results, the approximated circle sticks to the longer circular arcs present in the 
hand-drawn shape.  
 

 
                                (a)                                                                            (b) 

 
                                                                           (c) 
Fig. 7.  Center of circles estimations for σ =4, 8,16  are shown in (a), (b), and (c), 
respectively. 

4.3 Analysis and discussion 
Tests have shown a good performance of our algorithm in both syntethic and real images 
using quantitative and qualitative tests. The undulation perturbation tests present to the 
algorithm smooth curves to be approximated by a circle. As expected, there is a bias in center 
position originated by the rounded corner effect generated by the sinusoidal waveform 
mounted on the circumference of the circle being detected. This effect is attenuated when the 
amplitude of the perturbating waveform is kept as a small fraction of the radius of the circle. 
That represents a more common case for circles drawn by human users.  
With respect to the Gaussian noise test, we get accuracies in the sub-pixellic range because 
outlier points along the circumference generate candidate circles that are not supported by 
evidence. This leads the GA to choose as the best solution a circle bound by points in the 
ring where there is a larger density of points. In our case, the ring with the ground truth 
radius is very close to the found parameter. 



 Pattern Recognition Techniques, Technology and Applications 

 

474 

As for the circles distorted with sinusoidal waves, series of 30 estimations of the center (x,y) 
and radius (k) are performed for each image, and then the mean and standard deviation of 
such parameters are compared agaist those used for the ground truth construction. 
Circles estimated in one execution of the algorithm over those images in Figures 2 d-f, are 
shown in Figures 6 a-c, in a light gray overlay. Note here that circle accuracy is higher than 
for the undulating distortion case. That happens because the distorted points follow a 
normal distribution in the radius coordinate in the polar plane.  
 

 
                         (a)                                                  (b)                                                  (c) 

Fig. 6. Deformed circles in Figure 2 d-f and their corresponding circles estimated using a GA. 

Results for the estimation of parameter k are given in Table 2, each row corresponding to a 
30 execution series. Compare these results with those given previously in Table 1. In this 
kind of tests, error bound is lowered, as expected, with respect to the undulating circles. 
 

Parameters k kμ  kσ  ke  
σ =4 32 31.6944 0.1056 0.3056 
σ =8 32 30.4204 0.0813 1.5796 
σ =16 32 24.9730 0.4624 7.0270 
σ =4 96 95.7740 0.0293 0.2260 
σ =8 96 95.1253 0.1399 0.8747 
σ =16 96 91.0716 1.3534 4.9284 
σ =4 160 159.6619 0.0189 0.3381 
σ =8 160 159.2446 0.1209 0.7554 
σ =16 160 159.7199 0.4473 0.2801 
σ =4 224 223.6464 0.0277 0.3536 
σ =8 224 222.8001 0.1105 1.1999 
σ =16 224 223.6822 0.2805 0.3178 

Table 2. Results for the estimated radius of noisy circles. 

Plots of centers of circles estimated on tests are given in Figure 7. Note the high accuracy on 
parameter determination, yielding errors less than 1 pixel in magnitude. 

4.2.3 Hand drawn circle approximation 
Qualitative testing of our algorithm has been made by using as input images, circles drawn 
by a human user on a computer drawing program. Figure 8 shows eight hand-drawn circles 
by human users. A lighter gray overlay shows the best circle approximating the graphical 
sketch. As we can see in Figure 8, our approach results in good circle approximation. The 

Parametric Circle Approximation Using Genetic Algorithms 

 

475 

parametric circle found using our approach follows very closely the graphical sketch. As we 
can see in the results, the approximated circle sticks to the longer circular arcs present in the 
hand-drawn shape.  
 

 
                                (a)                                                                            (b) 

 
                                                                           (c) 
Fig. 7.  Center of circles estimations for σ =4, 8,16  are shown in (a), (b), and (c), 
respectively. 

4.3 Analysis and discussion 
Tests have shown a good performance of our algorithm in both syntethic and real images 
using quantitative and qualitative tests. The undulation perturbation tests present to the 
algorithm smooth curves to be approximated by a circle. As expected, there is a bias in center 
position originated by the rounded corner effect generated by the sinusoidal waveform 
mounted on the circumference of the circle being detected. This effect is attenuated when the 
amplitude of the perturbating waveform is kept as a small fraction of the radius of the circle. 
That represents a more common case for circles drawn by human users.  
With respect to the Gaussian noise test, we get accuracies in the sub-pixellic range because 
outlier points along the circumference generate candidate circles that are not supported by 
evidence. This leads the GA to choose as the best solution a circle bound by points in the 
ring where there is a larger density of points. In our case, the ring with the ground truth 
radius is very close to the found parameter. 



 Pattern Recognition Techniques, Technology and Applications 

 

476 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

Fig. 8. Results for the circle detection using hand drawn shapes by human users. 
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5. Conclusions and perspectives 
We have presented an algorithm that approximates circles by using a GA-based approach.  
Also, we have presented a brief overview of GA-based techniques and we have shown how 
to pose a pattern recognition problem to use GA for solving it. To know, we solve a circle 
approximation task. 
We have executed two quantitative tests to evaluate the performance of the proposed 
method. We have also performed a subjective qualitative test over hand-drawn images. As a 
result, we have found in one hand, a high accuracy algorithm performance on circles 
corrupted by Gaussian noise. In the other hand, sinusoidal perturbations are better 
recognized if the amplitude of the perturbation is small with respect to the circle radius. For 
any other case, our algorithm will try to fit a circle to one of the rounded corners of the 
perturbed circle. We have also shown the result of a number of qualitative tests on human 
input. The results are promising enough to consider this as a building block for graphical 
sketch recognition.   
We are developing at this moment other modules to recognize more geometrical shapes that 
can be expressed in parametric terms. We are developing modules to recognize ellipses, 
quadrilaterals and polygons in general.  
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Fig. 8. Results for the circle detection using hand drawn shapes by human users. 
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1. Introduction 
Registration of point patterns is a fundamental process prior to many applications such as 
image alignment, object recognition, and pattern retrieval. When two images are aligned, 
people prefer to deal with sets of local features (for example, dominant points) instead of 
pixel arrays to increase the accuracy and save the computational time. Given two point 
patterns, the aim of point pattern registration (PPR) problem is to find an optimal geometric 
transformation which transforms one point pattern by reference to the other such that a 
dissimilarity measure between them is minimized.  
PPRs can be classified into various categories according to two features, completeness and 
label. Complete registration stipulates that the two registered patterns should have exactly 
the same number of points and there exists a one-to-one correspondence mapping between 
the members of the two point sets. While the incomplete registration deals with patterns 
with missing and spurious points, a mapping between subsets of the point patterns is thus 
sought. On the other hand, labeled registration is conducted using the a priori information 
(e.g., point order, intensity, gradient, etc.) as well as the point coordinates. While unlabeled 
registration determines the point correspondences based on the coordinates information of 
the data points only. Conspicuously, incomplete unlabeled registration is the hardest 
category of all the PPR classifications.  
The PPR considered in this chapter is confined by the affine transformation consisting of 
rotation, scaling, and translation. Let A = { }1,  2,  ...,  ia i n=  and B = { }1,  2,  ...,  ib i m=  be 

two point patterns in R2 and they are affinely-dependent under a transformation T = (θ, s, tx, 
ty) where θ denotes the rotation angle, s is the scale factor, and tx and ty are the translation 
offsets along the directions of x- and y-axis. Also let (ai, bj) be one of the pair-wise point 
mappings with T, and denote by [    ]

i i

T
i a aa x y=  and [    ]

j j

T
j b bb x y=  the corresponding 

coordinates, we have the following affine relation. 
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Nevertheless, the ideal transformation (1) usually does not hold under many real situations 
such as the existence of missing and spurious points and the distortion of patterns, resulting 
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1. Introduction 
Registration of point patterns is a fundamental process prior to many applications such as 
image alignment, object recognition, and pattern retrieval. When two images are aligned, 
people prefer to deal with sets of local features (for example, dominant points) instead of 
pixel arrays to increase the accuracy and save the computational time. Given two point 
patterns, the aim of point pattern registration (PPR) problem is to find an optimal geometric 
transformation which transforms one point pattern by reference to the other such that a 
dissimilarity measure between them is minimized.  
PPRs can be classified into various categories according to two features, completeness and 
label. Complete registration stipulates that the two registered patterns should have exactly 
the same number of points and there exists a one-to-one correspondence mapping between 
the members of the two point sets. While the incomplete registration deals with patterns 
with missing and spurious points, a mapping between subsets of the point patterns is thus 
sought. On the other hand, labeled registration is conducted using the a priori information 
(e.g., point order, intensity, gradient, etc.) as well as the point coordinates. While unlabeled 
registration determines the point correspondences based on the coordinates information of 
the data points only. Conspicuously, incomplete unlabeled registration is the hardest 
category of all the PPR classifications.  
The PPR considered in this chapter is confined by the affine transformation consisting of 
rotation, scaling, and translation. Let A = { }1,  2,  ...,  ia i n=  and B = { }1,  2,  ...,  ib i m=  be 

two point patterns in R2 and they are affinely-dependent under a transformation T = (θ, s, tx, 
ty) where θ denotes the rotation angle, s is the scale factor, and tx and ty are the translation 
offsets along the directions of x- and y-axis. Also let (ai, bj) be one of the pair-wise point 
mappings with T, and denote by [    ]

i i

T
i a aa x y=  and [    ]

j j

T
j b bb x y=  the corresponding 

coordinates, we have the following affine relation. 
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Nevertheless, the ideal transformation (1) usually does not hold under many real situations 
such as the existence of missing and spurious points and the distortion of patterns, resulting 
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in a registration error. Two error dissimilarity measures between two aligning point 
patterns are broadly used in the literature to assess the quality of the registration result. 
• Agrawal’s Heuristic Dissimilarity (AHD) Measure          Let Ω  be the set of point 

correspondences between the two patterns with ( )mn,min≤Ω . The registration error 

of Ω  with respect to transformation T can be evaluated using the integral squared error 
defined as 
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22

,
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where •  indicates the vector length in the Euclidean space. Agrawal et al. (1994) 

proposed an overall registration dissimilarity measure as  
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The AHD measure is normalized with the scale factor s and includes a penalty term for 
the unregistered points in the searched pattern. 

• Partial Hausdorff Distance (PHD) Huttenlocher et al. (1993) used the directed partial 
Hausdorff distance from A to B as 
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where Kth returns the kth smallest value of 
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)(min  for all Aai ∈ . The directed 

partial Hausdorff distance from B to A can be analogously defined as 
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Finally, the partial Hausdorff distance from both patterns is given by 

 ( ) ( ) ( )( )ABDPHDBADPHDBAPHD kkk ,  ,,max, =  (6) 

In contrast to AHD, the PHD measure only takes into account the registered points such 
that the situation of incomplete registration can be accommodated.  

Many approaches have been proposed for tackling various PPR problems. According to our 
recent survey, there was a departure in the PPR approaches in 1990s. Traditional approaches 
take advantage of the geometric properties involved with the point patterns to improve the 
search efficiency and effectiveness. More recently, some evolutionary algorithms were 
proposed to evolve the optimal transformation between the given point sets. The 
conceptions of existing methods are summarized as follows. 
• Clustering  The technique (Chang et al., 1997; Goshtasby & Stockman, 1985; Umeyama, 

1991; Wang & Chen, 1997; Yuen, 1993) calculates the registration transformation 
parametersθ, s, tx and ty for each pair of points contained in both patterns and increases 
the frequency count of the corresponding cell (θ, s, tx, ty) in an accumulator. The clusters 
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of the cells with respect to the frequencies are detected. The peak of the cluster with the 
maximum frequency corresponds to the optimal transformation parameters. Clustering 
methods are computationally intensive due to the large number of combinations of 
point pairs and the dimensionality of the parameter space. 

• Parameter decomposition   The method (Griffin & Alexopoulos, 1991; Huttenlocher et al., 
1993; Olson & Huttenlocher, 1997) divides the parameter estimation process into 
multiple phases. At the first phase, a selected parameter is estimated based on the 
domain knowledge such as the geometric invariant constraints. Then, at each of the 
following phases, one or more of the remaining parameters are estimated by reference 
to the partial parameters values previously determined, hence, the number of possible 
combinations between values of separate parameters is greatly reduced. However, the 
inaccuracy of parameter estimation could be magnified due to successive propagation 
through various phases. 

• Relaxation   The technique (Ogawa, 1984; Ranade & Rosenfeld, 1980; Ton and Jain, 1989) 
iteratively updates the merit score of every point mapping (ai, bj) from both patterns 
given the merit scores of the other interacting point mappings. The interacting point 
mappings are those that are mutually constrained for registration due to geometry 
properties. The algorithm converges when those merit values become consistent (or 
hardly changed) between consecutive iterations and the point mappings with the 
maximum merits are considered as the true transformation point correspondence.  

• Bounded alignment   Mount et al. (1999) proposed a geometric branch-and-bound search 
of the transformation space and used the point alignment information to bound the 
search. They specify an approximation factor to guarantee the accuracy of the final 
match and use point alignments when a significant number of point correspondences 
can be inferred to accelerate the search. The robustness of the algorithm has been 
demonstrated on registration of real satellite images. 

• Spectral graph analysis   Carcassoni and Hancock (2003) applied the spectral graph 
theory to compute the point correspondence. The global structural properties of the 
point pattern are ascribed by the eigenvalues and eigenvectors of the proximity 
weighting matrix. The influence of the contamination and drop-out in the point pattern 
is discounted via the EM algorithm so the accuracy of the registration is increased.  

• Genetic algorithms   Some researchers (Ansari et al., 1990; Zhang et al., 2003) have 
applied genetic algorithms to explore the search space of point mappings. The 
chromosomes encode instances of point mappings and evolve by performing genetic 
operators to reduce the AHD or PHD dissimilarity values, such that the optimal 
registration transformation can be obtained.  

• Simulated annealing   The authors of (Ansari et al., 1993; Starink & Backer, 1995) 
employed the simulated annealing technique to tackle the PPR problem. The 
identification of point correspondences between two point patterns is mathematically 
formulized as energy minimization. The registration error incurred by the current 
configuration of point correspondences is treated as the energy of that configuration. 
Simulated annealing rearranges the particles of configuration to reach thermal 
equilibrium at various temperature levels and finally converges to an optimum 
configuration as the system is frozen. 

This chapter investigates the strengths and weaknesses of applying modern evolutionary 
algorithms, in particular, the particle swarm optimization and scatter search, to cope with 
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in a registration error. Two error dissimilarity measures between two aligning point 
patterns are broadly used in the literature to assess the quality of the registration result. 
• Agrawal’s Heuristic Dissimilarity (AHD) Measure          Let Ω  be the set of point 

correspondences between the two patterns with ( )mn,min≤Ω . The registration error 

of Ω  with respect to transformation T can be evaluated using the integral squared error 
defined as 
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The AHD measure is normalized with the scale factor s and includes a penalty term for 
the unregistered points in the searched pattern. 

• Partial Hausdorff Distance (PHD) Huttenlocher et al. (1993) used the directed partial 
Hausdorff distance from A to B as 
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Finally, the partial Hausdorff distance from both patterns is given by 
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In contrast to AHD, the PHD measure only takes into account the registered points such 
that the situation of incomplete registration can be accommodated.  

Many approaches have been proposed for tackling various PPR problems. According to our 
recent survey, there was a departure in the PPR approaches in 1990s. Traditional approaches 
take advantage of the geometric properties involved with the point patterns to improve the 
search efficiency and effectiveness. More recently, some evolutionary algorithms were 
proposed to evolve the optimal transformation between the given point sets. The 
conceptions of existing methods are summarized as follows. 
• Clustering  The technique (Chang et al., 1997; Goshtasby & Stockman, 1985; Umeyama, 

1991; Wang & Chen, 1997; Yuen, 1993) calculates the registration transformation 
parametersθ, s, tx and ty for each pair of points contained in both patterns and increases 
the frequency count of the corresponding cell (θ, s, tx, ty) in an accumulator. The clusters 
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of the cells with respect to the frequencies are detected. The peak of the cluster with the 
maximum frequency corresponds to the optimal transformation parameters. Clustering 
methods are computationally intensive due to the large number of combinations of 
point pairs and the dimensionality of the parameter space. 

• Parameter decomposition   The method (Griffin & Alexopoulos, 1991; Huttenlocher et al., 
1993; Olson & Huttenlocher, 1997) divides the parameter estimation process into 
multiple phases. At the first phase, a selected parameter is estimated based on the 
domain knowledge such as the geometric invariant constraints. Then, at each of the 
following phases, one or more of the remaining parameters are estimated by reference 
to the partial parameters values previously determined, hence, the number of possible 
combinations between values of separate parameters is greatly reduced. However, the 
inaccuracy of parameter estimation could be magnified due to successive propagation 
through various phases. 

• Relaxation   The technique (Ogawa, 1984; Ranade & Rosenfeld, 1980; Ton and Jain, 1989) 
iteratively updates the merit score of every point mapping (ai, bj) from both patterns 
given the merit scores of the other interacting point mappings. The interacting point 
mappings are those that are mutually constrained for registration due to geometry 
properties. The algorithm converges when those merit values become consistent (or 
hardly changed) between consecutive iterations and the point mappings with the 
maximum merits are considered as the true transformation point correspondence.  

• Bounded alignment   Mount et al. (1999) proposed a geometric branch-and-bound search 
of the transformation space and used the point alignment information to bound the 
search. They specify an approximation factor to guarantee the accuracy of the final 
match and use point alignments when a significant number of point correspondences 
can be inferred to accelerate the search. The robustness of the algorithm has been 
demonstrated on registration of real satellite images. 

• Spectral graph analysis   Carcassoni and Hancock (2003) applied the spectral graph 
theory to compute the point correspondence. The global structural properties of the 
point pattern are ascribed by the eigenvalues and eigenvectors of the proximity 
weighting matrix. The influence of the contamination and drop-out in the point pattern 
is discounted via the EM algorithm so the accuracy of the registration is increased.  

• Genetic algorithms   Some researchers (Ansari et al., 1990; Zhang et al., 2003) have 
applied genetic algorithms to explore the search space of point mappings. The 
chromosomes encode instances of point mappings and evolve by performing genetic 
operators to reduce the AHD or PHD dissimilarity values, such that the optimal 
registration transformation can be obtained.  

• Simulated annealing   The authors of (Ansari et al., 1993; Starink & Backer, 1995) 
employed the simulated annealing technique to tackle the PPR problem. The 
identification of point correspondences between two point patterns is mathematically 
formulized as energy minimization. The registration error incurred by the current 
configuration of point correspondences is treated as the energy of that configuration. 
Simulated annealing rearranges the particles of configuration to reach thermal 
equilibrium at various temperature levels and finally converges to an optimum 
configuration as the system is frozen. 

This chapter investigates the strengths and weaknesses of applying modern evolutionary 
algorithms, in particular, the particle swarm optimization and scatter search, to cope with 
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the incomplete unlabeled PPR problem. The performance of the two algorithms is evaluated 
by competing with existing algorithms on synthetic datasets. The experimental results 
manifest that the modern evolutionary algorithms are superior and malleable against 
varying scenarios such as positional perturbations, contaminations and drop-outs from the 
point patterns. 
The remainder of this chapter is organized as follows. Section 2 reviews the underlying 
modern evolutionary algorithms. Section 3 presents the proposed methods for the PPR 
problem. In Section 4, the experimental results are illustrated. Finally, a conclusion is given 
in Section 5. 

2. Modern evolutionary algorithms  
The notion of evolutionary algorithms has been introduced since 1960’s and usually refers to 
a class of genome-inspired computation algorithms consisting of genetic algorithms, 
evolutionary programming, evolutionary strategy and genetic programming. These novel 
algorithms have exhibited great successes in many engineering and science applications. In 
the mid 1990’s, another class of evolutionary algorithms emerged. These algorithms are bio-
inspired and established on metaphors of socio-cognition. Typical examples in this class 
include culture algorithms, ant colony optimization, particle swarm optimization and scatter 
search. This chapter is focused on the application of particle swarm optimization and scatter 
search to the point pattern registration problem. In this section, we give a brief review of the 
two modern evolutionary algorithms.  

2.1 Particle swarm optimization 
Particle swarm optimization (PSO) is a new evolutionary algorithm proposed in (Kennedy 
& Eberhart, 1995). PSO is bio-inspired and it models the social dynamics of bird flocking. A 
large number of birds flock synchronously, change direction suddenly, scatter and regroup 
iteratively, and finally perch on a target. This form of social intelligence not only increases 
the success rate for food foraging but also expedites the process. The PSO algorithm 
facilitates simple rules simulating bird flocking and serves as an optimizer for continuous 
nonlinear functions. The general principles of the PSO algorithm can be outlined in the 
following features. 
• Particle representation   The particle in the PSO is a candidate solution to the underlying 

problem and move iteratively and objectively in the solution space. The particle is 
represented as a real-valued vector rendering an instance of all parameters that 
characterize the optimization problem. We denote the ith particle by 

( ) dT
idiii RpppP ∈= ,...,, 21

, where d is the number of parameters. 
• Swarm   The PSO explores the solution space by flying a number of particles, called 

swarm. The initial swarm is generated at random and the size of swarm is usually kept 
constant through iterations. At each iteration, the swarm of particles search for target 
optimal solution by referring to previous experiences. 

• Personal best experience and swarm’s best experience   The PSO enriches the swarm 
intelligence by storing the best positions visited so far by every particle. In particular, 
particle i remembers the best position among those it has visited, referred to as pbesti, 
and the best position by its neighbors. There are two versions for keeping the 
neighbors’ best position, namely lbest and gbest. In the local version, each particle keeps 
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track of the best position lbest attained by its local neighboring particles. For the global 
version, the best position gbest is determined by any particles in the entire swarm. 
Hence, the gbest model is a special case of the lbest model. It has been shown that the 
local version is often better, particularly the one using random topology neighborhood 
where each particle generates L links at random after each iteration if there has been no 
improvement i.e. if the best solution seen so far by the swarm is still the same. In our 
implementation, we set L = 10. 

• Particle movement    The PSO is an iterative algorithm according to which a swarm of 
particles fly in the solution space until the stopping criterion is satisfied. At each 
iteration, particle i adjusts its velocity vij and position pij through each dimension j by 
reference to, with random multipliers, the personal best position (pbestij) and the 
swarm’s best position (lbestij, if the local version is adopted) using Eqs. (7) and (8) as 
follows. 

 vij = K[vij + c1r1(pbestij – pij) + c2r2(lbestij – pij)]  (7) 

and 

 pij = pij + vij  (8) 

where c1 and c2 are the cognitive coefficients and r1 and r2 are random real numbers 
drawn from U(0, 1). Thus the particle flies toward pbest and lbest in a navigated way 
while still exploring new areas by the stochastic mechanism to escape from local 
optima. Clerc & Kennedy (2002) has pointed out that the use of the constriction factor K 
is needed to insure convergence of the algorithm and its value is determined by  
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where ϕ = c1+c2, ϕ > 4. Typically, ϕ is set to 4.1 and K is thus 0.729. 
• Stopping criterion   The PSO algorithm is terminated with a maximal number of 

iterations or the best particle position of the entire swarm cannot be improved further 
after a sufficiently large number of iterations. 

PSO has received great successes in many applications including evolving weights and 
structure for artificial neural networks (Eberhart & Shi, 1998), manufacture end milling [21], 
state estimation for electric power distribution systems (Shigenori et al., 2003), and curve 
segmentation (Yin, 2004). The convergence and parameterization aspects of the PSO have 
been also discussed (Clerc & Kennedy, 2002; Trelea, 2003). 

2.2 Scatter search 
Scatter search (SS) is another new evolutionary algorithm proposed in (Glover, 1998), 
although its original proposal may appear in an earlier literature (Glover, 1977). SS operates 
on a set of diverse elite solutions, referred to as reference set, and typically consists of the 
following elementary components. 
• Diversification generation method An arbitrary solution is used as a starting point (or 

seed) to generate a set of diverse trial solutions. There are a number of ways to 
implement this process such as using experimental design in statistics or taking 
advantage of the problem structure. 
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the incomplete unlabeled PPR problem. The performance of the two algorithms is evaluated 
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facilitates simple rules simulating bird flocking and serves as an optimizer for continuous 
nonlinear functions. The general principles of the PSO algorithm can be outlined in the 
following features. 
• Particle representation   The particle in the PSO is a candidate solution to the underlying 

problem and move iteratively and objectively in the solution space. The particle is 
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, where d is the number of parameters. 
• Swarm   The PSO explores the solution space by flying a number of particles, called 

swarm. The initial swarm is generated at random and the size of swarm is usually kept 
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follows. 
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and 
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where c1 and c2 are the cognitive coefficients and r1 and r2 are random real numbers 
drawn from U(0, 1). Thus the particle flies toward pbest and lbest in a navigated way 
while still exploring new areas by the stochastic mechanism to escape from local 
optima. Clerc & Kennedy (2002) has pointed out that the use of the constriction factor K 
is needed to insure convergence of the algorithm and its value is determined by  
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segmentation (Yin, 2004). The convergence and parameterization aspects of the PSO have 
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Scatter search (SS) is another new evolutionary algorithm proposed in (Glover, 1998), 
although its original proposal may appear in an earlier literature (Glover, 1977). SS operates 
on a set of diverse elite solutions, referred to as reference set, and typically consists of the 
following elementary components. 
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implement this process such as using experimental design in statistics or taking 
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• Improvement method This method is concerned with solution improvement in two 
aspects: feasibility and quality. The improvement method generally incorporates a 
heuristic procedure to transform an infeasible solution into a feasible one, or to 
transform an existing feasible solution to a new one with a better objective value.  

• Reference set update method A small reference set containing high quality and mutually 
diverse solutions is dynamically updated throughout the evolution process. Subsets of 
the reference set are used to produce new solutions that compete with the incumbent 
members of the reference set for inclusion as new members. A simple option to update 
the reference set is to include the best solution as the first member and then select the 
remaining members according to their solution quality relative to the objective value. 
However, the next solution to be selected must satisfy the minimum diversity criterion 
requesting that the minimum distance between this solution and the members currently 
in the reference set is greater than a specified threshold.  

• Subset generation method Subsets from the reference set are successively generated as a 
basis for creating combined solutions. The simplest implementation is to generate all 2-
element subsets consisting of exactly two reference solutions. Campos et al. (2001) have 
empirically shown that the subset generation method employing 2-element subsets can 
be quite effective, though systematic procedures for generating key subsets consisting 
of larger numbers of elements invite further investigation. 

• Solution combination method Each subset produced by the subset generation method is 
used to create one or more combined solutions. The combination method for solutions 
represented by continuous variables employs linear combinations of subset elements, 
not restricted to convex combinations. The weights are systematically varied each time 
a combined solution is generated.  

SS manifested a wealth of successful applications (Marti, 2006), ranging from resource 
assignment, flow shop scheduling, network routing, software testing, to bioinformatics.  

3. The proposed methods  
Next, we propose our methods for tackling PPR using PSO and SS, respectively. 

3.1 PSO for PPR 
This method is based on our previous work (Yin, 2006). To apply PSO for solving the PPR 
problem, we device specific features as follows. 
Particle Coding Scheme 
We encode the affine transformation parameters, namely, the rotation angle θ, the scale 
factor s, and the translation offsets tx and ty in the particle representation, i.e., the particle 
vector looks like 

 P = (θ, s, tx, ty)T  (10) 

where each parameter value is a random real number and is restricted by an appropriate 
range. In particular, 3600 ≤≤θ , 100 ≤< s , and –200 ≤ tx, ty ≤ 200 are appropriate for a 
large number of applications. As such each particle encoded in this way corresponds to one 
set of affine transformation parameters to align the point patterns. During evolution, the 
particles are constrained to move in the same ranges as they are initialized. When the 
particles reach the boundary constraints, they are set to boundary values. 
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Fitness Evaluation and Bounding Criterion 
In PSO, the solution quality, or fitness, delivered by each particle is evaluated. The two 
alternative registration distance measures, AHD and PHD, can be used for this purpose. 
Since these measures are error functions, a particle delivering a smaller AHD or PHD value 
is considered to be superior to the other particles with larger AHD or PHD values. As such 
the pbest and lbest can be determined according to the fitness values of all particles. 
Here we propose a bounding criterion to speedup the computation for determining pbest 
and lbest. The formulae (7)-(9) of particle movement refer to representations of pbest, lbest, 
and the particle itself, not directly to their fitness values. We propose to use this property for 
saving computation time. Since the fitness value of a particle is only used for updating of 
pbest and lbest, we can use the fitness value of the incumbent pbesti as an error upper bound 
to terminate the fitness computation of particle i. More precisely, the computation of AHD 
involves an error summation over point registration (see Eqs. (2) and (3)) and the 
computation of PHD is also resulted from the maximum of two sub-error measures (see Eq. 
(6)), both of which are a value-increasing computation. Hence, we can terminate the error 
computation for particle i upon the time the intermediate error value exceeds the fitness 
value of the incumbent pbesti, and go directly to the fitness evaluation of the next particle. 
Also, only those pbesti that have been updated at the current iteration need to be compared 
to associated lbest for its possible updating. The use of bounding criterion can save the 
computational time significantly. 
The Algorithm 
The proposed algorithm is summarized in Fig. 1. Initially, a swarm of particles are created at 
random and each of which is a vector corresponding to an instance of transformation 
parameters to the underlying problem. Then, the particle movement is repeated until a 
maximal number of iterations have been passed. During each iteration, the particle 
individual best and swarm’s best positions are determined using the bounding criterion. 
The particle adjusts its position based on the individual experience (pbesti) and the swarm 
intelligence (lbesti). When the algorithm is terminated, the best of all pbesti and the 
corresponding fitness value are output and considered as the optimal transformation 
parameters and the alignment error. 
 

1. Initialize. 
1.1 Randomly generate M particles, P1, P2, …, PM, according to Eq. (10). 

2. Repeat until a given maximal number of iterations is achieved. 
2.1 Determine pbesti and lbesti, i = 1, 2, …, M using the bounding criterion. 
2.2 Update velocities vij using Eqs. (7) and (9) 
2.3 Update particles’ positions using Eq. (8). 

3. Output the best of all pbesti and the corresponding fitness value as the optimal 
transformation parameters and the alignment error. 

 
Fig. 1.  PSO algorithm for the PPR problem. 

Unless specified, in all of the experiments presented in the next section we use a swarm of 
20 particles, acceleration constants c1 = c2 = 2.05, and constriction factor K is equal to 0.729. 
These parameter values are determined empirically and conform to most settings in existing 
applications. 
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• Improvement method This method is concerned with solution improvement in two 
aspects: feasibility and quality. The improvement method generally incorporates a 
heuristic procedure to transform an infeasible solution into a feasible one, or to 
transform an existing feasible solution to a new one with a better objective value.  

• Reference set update method A small reference set containing high quality and mutually 
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the reference set are used to produce new solutions that compete with the incumbent 
members of the reference set for inclusion as new members. A simple option to update 
the reference set is to include the best solution as the first member and then select the 
remaining members according to their solution quality relative to the objective value. 
However, the next solution to be selected must satisfy the minimum diversity criterion 
requesting that the minimum distance between this solution and the members currently 
in the reference set is greater than a specified threshold.  

• Subset generation method Subsets from the reference set are successively generated as a 
basis for creating combined solutions. The simplest implementation is to generate all 2-
element subsets consisting of exactly two reference solutions. Campos et al. (2001) have 
empirically shown that the subset generation method employing 2-element subsets can 
be quite effective, though systematic procedures for generating key subsets consisting 
of larger numbers of elements invite further investigation. 

• Solution combination method Each subset produced by the subset generation method is 
used to create one or more combined solutions. The combination method for solutions 
represented by continuous variables employs linear combinations of subset elements, 
not restricted to convex combinations. The weights are systematically varied each time 
a combined solution is generated.  

SS manifested a wealth of successful applications (Marti, 2006), ranging from resource 
assignment, flow shop scheduling, network routing, software testing, to bioinformatics.  

3. The proposed methods  
Next, we propose our methods for tackling PPR using PSO and SS, respectively. 

3.1 PSO for PPR 
This method is based on our previous work (Yin, 2006). To apply PSO for solving the PPR 
problem, we device specific features as follows. 
Particle Coding Scheme 
We encode the affine transformation parameters, namely, the rotation angle θ, the scale 
factor s, and the translation offsets tx and ty in the particle representation, i.e., the particle 
vector looks like 

 P = (θ, s, tx, ty)T  (10) 

where each parameter value is a random real number and is restricted by an appropriate 
range. In particular, 3600 ≤≤θ , 100 ≤< s , and –200 ≤ tx, ty ≤ 200 are appropriate for a 
large number of applications. As such each particle encoded in this way corresponds to one 
set of affine transformation parameters to align the point patterns. During evolution, the 
particles are constrained to move in the same ranges as they are initialized. When the 
particles reach the boundary constraints, they are set to boundary values. 
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Fitness Evaluation and Bounding Criterion 
In PSO, the solution quality, or fitness, delivered by each particle is evaluated. The two 
alternative registration distance measures, AHD and PHD, can be used for this purpose. 
Since these measures are error functions, a particle delivering a smaller AHD or PHD value 
is considered to be superior to the other particles with larger AHD or PHD values. As such 
the pbest and lbest can be determined according to the fitness values of all particles. 
Here we propose a bounding criterion to speedup the computation for determining pbest 
and lbest. The formulae (7)-(9) of particle movement refer to representations of pbest, lbest, 
and the particle itself, not directly to their fitness values. We propose to use this property for 
saving computation time. Since the fitness value of a particle is only used for updating of 
pbest and lbest, we can use the fitness value of the incumbent pbesti as an error upper bound 
to terminate the fitness computation of particle i. More precisely, the computation of AHD 
involves an error summation over point registration (see Eqs. (2) and (3)) and the 
computation of PHD is also resulted from the maximum of two sub-error measures (see Eq. 
(6)), both of which are a value-increasing computation. Hence, we can terminate the error 
computation for particle i upon the time the intermediate error value exceeds the fitness 
value of the incumbent pbesti, and go directly to the fitness evaluation of the next particle. 
Also, only those pbesti that have been updated at the current iteration need to be compared 
to associated lbest for its possible updating. The use of bounding criterion can save the 
computational time significantly. 
The Algorithm 
The proposed algorithm is summarized in Fig. 1. Initially, a swarm of particles are created at 
random and each of which is a vector corresponding to an instance of transformation 
parameters to the underlying problem. Then, the particle movement is repeated until a 
maximal number of iterations have been passed. During each iteration, the particle 
individual best and swarm’s best positions are determined using the bounding criterion. 
The particle adjusts its position based on the individual experience (pbesti) and the swarm 
intelligence (lbesti). When the algorithm is terminated, the best of all pbesti and the 
corresponding fitness value are output and considered as the optimal transformation 
parameters and the alignment error. 
 

1. Initialize. 
1.1 Randomly generate M particles, P1, P2, …, PM, according to Eq. (10). 

2. Repeat until a given maximal number of iterations is achieved. 
2.1 Determine pbesti and lbesti, i = 1, 2, …, M using the bounding criterion. 
2.2 Update velocities vij using Eqs. (7) and (9) 
2.3 Update particles’ positions using Eq. (8). 

3. Output the best of all pbesti and the corresponding fitness value as the optimal 
transformation parameters and the alignment error. 

 
Fig. 1.  PSO algorithm for the PPR problem. 

Unless specified, in all of the experiments presented in the next section we use a swarm of 
20 particles, acceleration constants c1 = c2 = 2.05, and constriction factor K is equal to 0.729. 
These parameter values are determined empirically and conform to most settings in existing 
applications. 
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3.2 SS for PPR 
Now we describe the implementation details of SS for solving the PPR problem. 
Solution Coding Scheme and Improvement 
The nature parameter coding scheme (10) can also be employed in SS to represent a 
candidate solution x, respecting the appropriate ranges of parameters. At this stage, the SS 
method generates a set of random solutions and improves their quality by perturbation. For 
each random solution, the improvement method sequentially selects each parameter in turn 
and alters its value by an arbitrary small deviation. If the fitness of the random solution is 
improved, the altered solution replaces the random solution. Otherwise, the random 
solution is restored. This process is repeatedly performed until the current solution cannot 
be further improved by examining all parameters once. As such, we obtain a set of local 
optimal solutions from the initial random solutions.  
The initial reference set is built by selecting elements from the local optimal solutions based 
on the minimum diversity criterion. The best local optimal solution is firstly included in the 
reference set, the selection of the next best member, however, should satisfy the minimum 
diversity criterion, i.e., the minimum distance between the solution to be selected and all the 
members currently contained in the reference set is greater than a specified threshold. 
Therefore, the quality and diversity of the reference set are above a critical level.  
Subset Generation and Solution Combination 
Inspired by previous comparative researches, we implement 2-element subset generation 
and linear solution combination. In other words, every subset of reference set containing 
exactly two reference solutions is subject to linear solution combination. Given a subset 
containing two reference solutions x1 and x2, from which three new solutions x3, x4 and x5 
are generated as follows.  

 x3= x1 − r(x2-x1) (11) 

 x4= x1 + r(x2-x1) (12) 

 x5= x2 + r(x2-x1) (13) 

where r ∈ (0, 1). Hence, the generated solutions x3, x4 and x5 are located on the line 
determined by the two reference solutions x1 and x2 if r is constant. Nevertheless, we 
adopted different values of r along various parameter dimensions to expand the search 
beyond the line. 
Bounding Criterion and Reference Set Update 
The bounding criterion used in our PSO method is also enforced here to expedite the 
process. For each candidate solution produced by the solution combination method, we 
evaluate its fitness and use the worst fitness of current members in reference set as the 
upper bound. That is, the fitness evaluation of the candidate solution is terminated if the 
intermediate fitness value exceeds the upper bound and this candidate solution is 
abandoned. 
Assume that k1 feasible solutions (satisfying the bounding criterion) are produced by the 
solution combination method and the reference set contains k2 solutions. Our reference set 
update method is conducted as follows. The best k2/2 solutions in the pool of new solutions 
and the reference set are selected first into the new reference set. For each of the rest k1 + 
k2/2 solutions, the minimum distance to the current members in the new reference set is 
computed. Then, the solution with the maximum of these minimum distances is added to 
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the new reference set. This max-min selection process is repeated until the new reference set 
contains k2 solutions. Thus, both the quality and the diversity of the reference set members 
are guaranteed.  
The Algorithm 
Our SS algorithm proceeds as follows. The diversification generation method and 
improvement method are applied to create a set of random solutions that satisfy a critical level 
of diversity and quality. This set is used to produce the initial reference set. Every 2-element 
subset of the reference set is generated and used to produce three new solutions by the 
solution combination method. Only quality new solutions passing the bounding criterion are 
remained. The remained solutions are further improved by the improvement method. The 
reference set is then updated by comparing the new solutions to the solutions currently in the 
reference set according to the reference set update method. The process is repeated until the 
reference set cannot be further updated. The SS algorithm is summarized in Fig. 2. 
 

1. Initialize. 
1.1 Create a set P of local optimal solutions obtained by altering a set of random 

solutions using the improvement method. 
1.2 Build the initial reference set, denoted by RefSet, by selecting members from 

P based on the minimum diversity criterion. 
2. Repeat until RefSet cannot be further updated. 

2.1 Generate all 2-element subsets of RefSet. 
2.2 Use the members of each 2-element subset to generate three new solutions by 

applying Eqs. (11)-(13). 
2.3 Remain quality new solutions using the bounding criterion and improve 

them by the improvement method. 
2.4 Update RefSet by the max-min selection process. 

3. Output the best member of RefSet and the corresponding fitness value as the optimal 
transformation parameters and the alignment error. 

 
Fig. 2.  SS algorithm for the PPR problem. 

4. Experimental results  
In this section, we present the experimental results and analyze the computational 
performance. The platform of the experiments is a PC with a 1.8 GHz CPU and 192 MB 
RAM. All programs are coded in C++ language.  

4.1 Synthetic datasets 
To evaluate the performance of competing algorithms, several synthetic datasets are 
prepared. Fig. 3(a) shows a typical point set, referred to as pattern A, consisting of 250 points 
generated at random. Four scenarios widely seen in real-world applications are used to 
generate testing patterns as shown in Figs. 3(b)-3(e) to match with pattern A. 
• Scenario RST: A testing pattern is generated by applying to pattern A with an affine 

transformation consisting of rotation, scaling, and translation. In particular, the 
transformation parameters (θ, s, tx, ty) are set to ( 30 , 1.5, 19.0, 42.0). The resulting 
testing pattern, referred to as pattern B, is shown in Fig. 3(b). It can be formulated by 
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determined by the two reference solutions x1 and x2 if r is constant. Nevertheless, we 
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the new reference set. This max-min selection process is repeated until the new reference set 
contains k2 solutions. Thus, both the quality and the diversity of the reference set members 
are guaranteed.  
The Algorithm 
Our SS algorithm proceeds as follows. The diversification generation method and 
improvement method are applied to create a set of random solutions that satisfy a critical level 
of diversity and quality. This set is used to produce the initial reference set. Every 2-element 
subset of the reference set is generated and used to produce three new solutions by the 
solution combination method. Only quality new solutions passing the bounding criterion are 
remained. The remained solutions are further improved by the improvement method. The 
reference set is then updated by comparing the new solutions to the solutions currently in the 
reference set according to the reference set update method. The process is repeated until the 
reference set cannot be further updated. The SS algorithm is summarized in Fig. 2. 
 

1. Initialize. 
1.1 Create a set P of local optimal solutions obtained by altering a set of random 

solutions using the improvement method. 
1.2 Build the initial reference set, denoted by RefSet, by selecting members from 

P based on the minimum diversity criterion. 
2. Repeat until RefSet cannot be further updated. 

2.1 Generate all 2-element subsets of RefSet. 
2.2 Use the members of each 2-element subset to generate three new solutions by 

applying Eqs. (11)-(13). 
2.3 Remain quality new solutions using the bounding criterion and improve 
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2.4 Update RefSet by the max-min selection process. 

3. Output the best member of RefSet and the corresponding fitness value as the optimal 
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Fig. 2.  SS algorithm for the PPR problem. 

4. Experimental results  
In this section, we present the experimental results and analyze the computational 
performance. The platform of the experiments is a PC with a 1.8 GHz CPU and 192 MB 
RAM. All programs are coded in C++ language.  

4.1 Synthetic datasets 
To evaluate the performance of competing algorithms, several synthetic datasets are 
prepared. Fig. 3(a) shows a typical point set, referred to as pattern A, consisting of 250 points 
generated at random. Four scenarios widely seen in real-world applications are used to 
generate testing patterns as shown in Figs. 3(b)-3(e) to match with pattern A. 
• Scenario RST: A testing pattern is generated by applying to pattern A with an affine 

transformation consisting of rotation, scaling, and translation. In particular, the 
transformation parameters (θ, s, tx, ty) are set to ( 30 , 1.5, 19.0, 42.0). The resulting 
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Pattern B = T[Pattern A] 
• Scenario RSTP: In addition to applying Scenario RST, a random perturbation quantity is 

added to the coordinates of each transformed data point. The random perturbation 
quantity is generated uniformly within one percent of the maximum positional span 
along every coordinate axis dimension and the resulting testing pattern is shown in Fig. 
3(c). The formulation is as follows. 

Pattern B = T[Pattern A] + perturbation 
• Scenario RSTPA: Besides applying Scenario RSTP, we augment the size of the resulting 

point pattern by 20% by adding 50 spurious random points and thus yielding a 300-
point pattern (see Fig. 3(d)), viz., 

Pattern B = T[Pattern A] + perturbation + 20% points 
• Scenario RSTDA: First, Scenario RST is applied to pattern A. Then, randomly select 20% 

of the points and remove them. Generate the same number of spurious points and add 
them to the point pattern (see Fig. 3(e)). The formulation is as follows. 

Pattern B = T[Pattern A] - 20% points + 20% points 
 
 

 
                (a)                                      (b)                                       (c) 

      
                                      (d)                                                (e) 

Fig. 3  Synthetic point patterns. (a) Pattern A, (b) a testing pattern generated by Scenario 
RST, (c) a testing pattern generated by Scenario RSTP, (d) a testing pattern generated by 
Scenario RSTPA, and (e) a testing pattern generated by Scenario RSTDA. 
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Following the protocol generating the previous dataset, we can create other datasets with 
different numbers of points (n), in particular, point patterns having 50, 250, and 500 points 
under the previously noted real scenarios are built. 

4.2 Empirical study 
The comparative performance of the proposed evolutionary algorithms is analyzed by 
comparing to competing algorithms under various testing scenarios. In particular, we have 
implemented two traditional evolutionary algorithms, namely, genetic algorithm (GA) and 
simulated annealing (SA). GA is a population-based evolutionary algorithm which explores 
the search space using a number of individual agents, called chromosomes. We implemented 
the GA with the same coding scheme, initialization ranges, and fitness evaluation as used to 
implement our proposed algorithms. In addition to the broadly used genetic operations, 
namely the selection, crossover, and mutation, we further emploied fitness scaling and elitist 
strategy (Goldberg, 1989) to enhance the performance of the GA. On the other hand, SA is 
an evolutionary algorithm based on perturbation of the current configuration (candidate 
solution) in order to reach an equilibrium state, simulating the thermal annealing process. 
The implemented SA also uses the same coding scheme, initialization ranges, and fitness 
function as used by our algorithms. 
The comparative performance of competing algorithms is evaluated with different datasets 
containing various numbers of data points (n), in particular, n = 50, 250, and 500, 
respectively. For a fair comparison, all competing algorithms are terminated when they have 
consumed 4000 times of fitness evaluations because solution fitness is the most informative 
element and is also the most time consuming component. In all experiments, PSO is 
executed with 20 particles, SS maintains a reference set containing 20 elite solutions, and GA 
is conducted with 20 chromosomes. It is worth noting that SA is a single agent search 
algorithm instead of a population-based one, we thus let SA execute with 4000 iterations. 
The numerical results for each dataset are the mean value and the standard deviation (σ) 
from 30 independent runs and they are summarized in Tables 1 and 2 (the CPU times are 
evaluated in seconds) for AHD and PHD measures, respectively. We have the following 
observations.  
• Overall, PSO and SS have the best performance among all the competing algorithms in 

terms of both dissimilarity measures (AHD and PHD) and computational time, SA is 
ranked at the middle place, and GA seems to be the worst of all.  

• PSO and SS are also more stable than GA and SA, by producing consistent results with 
smaller standard deviation values.  

• For all RST testing datasets, PSO does not yield any registration errors for both AHD 
and PHD measures because RST incurs a complete registration with no perturbation, SS 
produces negligible errors, while both GA and SA entail significant amount of errors 
and fail to find the optimal transformation.  

• For all RSTDA testing datasets, PSO produces no registration errors for the PHD 
measure, which means the PSO algorithm is able to find the groundtruth 
transformation for incomplete registration without perturbation (PSO does not generate 
zero error with AHD measure because AHD penalizes an incomplete registration, 
however, the point correspondences are still correctly identified).  

• At average, PSO consumes about 80% of the CPU time required by GA and about 91% 
of the CPU time required by SA. The average CPU time cost by SS is comparable to that 
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Following the protocol generating the previous dataset, we can create other datasets with 
different numbers of points (n), in particular, point patterns having 50, 250, and 500 points 
under the previously noted real scenarios are built. 
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The comparative performance of the proposed evolutionary algorithms is analyzed by 
comparing to competing algorithms under various testing scenarios. In particular, we have 
implemented two traditional evolutionary algorithms, namely, genetic algorithm (GA) and 
simulated annealing (SA). GA is a population-based evolutionary algorithm which explores 
the search space using a number of individual agents, called chromosomes. We implemented 
the GA with the same coding scheme, initialization ranges, and fitness evaluation as used to 
implement our proposed algorithms. In addition to the broadly used genetic operations, 
namely the selection, crossover, and mutation, we further emploied fitness scaling and elitist 
strategy (Goldberg, 1989) to enhance the performance of the GA. On the other hand, SA is 
an evolutionary algorithm based on perturbation of the current configuration (candidate 
solution) in order to reach an equilibrium state, simulating the thermal annealing process. 
The implemented SA also uses the same coding scheme, initialization ranges, and fitness 
function as used by our algorithms. 
The comparative performance of competing algorithms is evaluated with different datasets 
containing various numbers of data points (n), in particular, n = 50, 250, and 500, 
respectively. For a fair comparison, all competing algorithms are terminated when they have 
consumed 4000 times of fitness evaluations because solution fitness is the most informative 
element and is also the most time consuming component. In all experiments, PSO is 
executed with 20 particles, SS maintains a reference set containing 20 elite solutions, and GA 
is conducted with 20 chromosomes. It is worth noting that SA is a single agent search 
algorithm instead of a population-based one, we thus let SA execute with 4000 iterations. 
The numerical results for each dataset are the mean value and the standard deviation (σ) 
from 30 independent runs and they are summarized in Tables 1 and 2 (the CPU times are 
evaluated in seconds) for AHD and PHD measures, respectively. We have the following 
observations.  
• Overall, PSO and SS have the best performance among all the competing algorithms in 

terms of both dissimilarity measures (AHD and PHD) and computational time, SA is 
ranked at the middle place, and GA seems to be the worst of all.  

• PSO and SS are also more stable than GA and SA, by producing consistent results with 
smaller standard deviation values.  

• For all RST testing datasets, PSO does not yield any registration errors for both AHD 
and PHD measures because RST incurs a complete registration with no perturbation, SS 
produces negligible errors, while both GA and SA entail significant amount of errors 
and fail to find the optimal transformation.  

• For all RSTDA testing datasets, PSO produces no registration errors for the PHD 
measure, which means the PSO algorithm is able to find the groundtruth 
transformation for incomplete registration without perturbation (PSO does not generate 
zero error with AHD measure because AHD penalizes an incomplete registration, 
however, the point correspondences are still correctly identified).  

• At average, PSO consumes about 80% of the CPU time required by GA and about 91% 
of the CPU time required by SA. The average CPU time cost by SS is comparable to that 
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cost by PSO, but the large value of standard deviation indicates that the individual CPU 
time spent by SS in each independent run varies a lot. This is because the CPU time 
consumed by SS depends on the number of times the reference set is updated and this 
number is determined by the time upon which good quality solutions are generated, 
which varies with different runs. 

 

  PSO SS GA SA 
n Scenario AHD (σ) Time (σ) AHD (σ) Time (σ) AHD (σ) Time (σ) AHD (σ) Time (σ) 
50 RST 0.0 (0.0) 8.8 (0.1) 0.1 (0.1) 8.8 (0.6) 9.2 (0.5) 11.5 (0.1) 0.3 (0.3) 9.9 (0.3) 

 RSTP 11.2 (0.0) 8.6 (0.1) 11.2 (0.0) 7.6 (2.6) 14.3 (1.1) 10.8 (0.1) 11.6 (0.5) 9.7 (0.2) 
 RSTPA 14.1 (0.0) 10.3 (0.1) 14.2 (0.0) 6.6 (1.6) 14.9 (1.2) 12.9 (0.2) 14.6 (0.3) 11.2 (0.1) 
 RSTDA 204.2 (0.0) 8.7 (0.1) 204.4 (0.1) 6.2 (2.3) 211.4 (6.2) 10.9 (0.1) 205.9 (1.9) 9.5 (0.1) 

250 RST 0.0 (0.0) 206.4 (3.0) 0.0 (0.0) 155.6 (2.6) 9.5 (0.7) 262.1 (2.5) 0.9 (1.3) 237.0 (2.6) 
 RSTP 10.8 (0.0) 206.4 (1.6) 10.8 (0.1) 153.7 (1.3) 40.9 (2.4) 262.8 (1.6) 11.4 (0.5) 229.7 (1.9) 
 RSTPA 13.0 (0.0) 245.4 (0.2) 13.5 (0.3) 189.7 (3.6) 29.5 (1.7) 309.4 (1.8) 16.1 (2.3) 271.1 (2.5) 
 RSTDA 112.3 (0.0) 204.9 (0.2) 112.5 (0.2) 155.7 (4.3) 123.9 (3.6) 263.9 (2.4) 113.4 (1.1) 224.6 (1.5) 

500 RST 0.0 (0.0) 821.2 (2.1) 0.1 (0.1) 612.0 (7.9) 15.1 (1.3) 1060.3 (8.6) 0.8 (0.6) 895.7 (1.9) 
 RSTP 11.4 (0.0) 817.7 (1.8) 11.5 (0.1) 597.0 (11.2) 15.9 (1.1) 1059.0 (9.3) 13.1 (2.3) 895.7 (3.6) 

 RSTPA 55.3 (0.0) 979.3 (2.4) 55.3 (0.0) 692.0 (6.1) 72.6 (3.4) 1249.5 (9.2) 60.7 (3.9) 1077.6 
(13.1) 

 RSTDA 53.9 (0.0) 816.6 (2.0) 53.9 (0.1) 570.8 (10.5) 62.8 (3.0) 1042.9 
(10.4) 55.9 (0.8) 893.9 (2.3) 

Table 1. Comparative performances of the PSO, SS, GA and SA algorithms with respect to 
the AHD measure and the used computational time (in seconds). 
 

  PSO SS GA SA 
n Scenario PHD (σ) Time (σ) PHD (σ) Time (σ) PHD (σ) Time (σ) PHD (σ) Time (σ) 
50 RST 0.0 (0.0) 12.1 (0.2) 0.2 (0.1) 11.7 (2.6) 20.4 (1.4) 14.1 (0.1) 2.0 (2.4) 13.0 (0.1) 

 RSTP 16.6 (0.1) 11.8 (0.1) 17.4 (0.1) 14.1 (5.7) 24.5 (1.6) 14.3 (0.2) 20.3 (2.0) 12.9 (0.1) 
 RSTPA 22.4 (0.6) 14.1 (0.1) 23.8 (0.6) 16.0 (2.1) 36.4 (2.2) 17.2 (0.3) 24.8 (1.8) 15.4 (0.1) 
 RSTDA 0.0 (0.0) 11.8 (0.1) 0.1 (0.1) 12.3 (5.3) 29.5 (1.9) 16.9 (0.2) 1.4 (1.4) 12.9 (0.1) 

250 RST 0.0 (0.0) 288.3 (1.8) 0.3 (0.2) 312.0 (5.3) 149.7 (4.8) 374.0 (2.1) 1.0 (1.1) 315.3 (1.3) 
 RSTP 19.8 (0.1) 289.3 (1.7) 20.5 (0.2) 306.7 (2.2) 37.2 (2.1) 347.9 (2.3) 22.0 (1.0) 314.0 (0.3) 
 RSTPA 24.1 (1.5) 341.6 (1.9) 25.8 (0.4) 369.6 (14.9) 168.9 (6.1) 427.9 (2.9) 30.4 (5.0) 376.8 (1.8) 
 RSTDA 0.0 (0.0) 283.8 (0.2) 0.1 (0.0) 269.8 (7.6) 116.8 (3.9) 346.0 (1.9) 2.4 (2.6) 312.8 (1.4) 

500 RST 0.0 (0.0) 1148.8 (2.2) 0.1 (0.1) 1132.3 
(26.3) 9.7 (0.7) 1386.7 (6.2) 1.2 (1.0) 1259.0 (1.1) 

 RSTP 18.4 (0.1) 1147.3 (2.7) 19.0 (0.1) 1215.4 
(21.7) 24.5 (1.2) 1382.2 (8.1) 22.4 (2.4) 1259.3 (3.1) 

 RSTPA 53.7 (2.1) 1385.5 (8.0) 56.6 (0.8) 1305.2 
(35.8) 70.4 (4.5) 1656.1 (9.3) 71.7 (14.7) 1497.4 (2.2) 

 RSTDA 0.0 (0.0) 1130.9 (2.7) 0.1 (0.1) 1090.8 
(13.6) 76.2 (3.8) 1366.8 (8.6) 0.9 (0.9) 1234.7 (2.2) 

Table 2. Comparative performances of the PSO, SS, GA and SA algorithms with respect to 
the PHD measure and the used computational time (in seconds). 

Fig. 4 shows the registration results between pattern A and pattern B with all testing 
scenarios obtained using the proposed PSO method. The registration results obtained using 
the proposed SS method is very similar to that obtained by PSO, so we omit the illustration 
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of SS for saving space. For each testing scenario, PSO is performed with AHD and PHD 
dissimilarity metrics, respectively. For the Scenario RST (see Figs. 4(a) and 4(b)) and the 
Scenario RSTP (see Figs. 4(c) and 4(d)), the PSO can find the complete registration between 
the two patterns and the one-to-one correspondence relationship is correctly identified. For 
the Scenario RSTPA (see Figs. 4(e) and 4(f)) and the Scenario RSTDA (see Figs. 4(g) and 
4(h)), the PSO derives the incomplete registration. The point patterns are appropriately 
aligned for both scenarios and the groundtruth point registration correspondences are 
found. Note that in all testing scenarios both AHD and PHD measures work well with the 
proposed method.  
 
 

 
                                 (a)                                                           (b) 

 
                                   (c)                                                            (d) 

Fig. 4 Registration results obtained using the PSO method for all testing scenarios. (a) 
Scenario RST with AHD metric, (b) Scenario RST with PHD metric, (c) Scenario RSTP with 
AHD metric, (d) Scenario RSTP with PHD metric, (e) Scenario RSTPA with AHD metric, (f) 
Scenario RSTPA with PHD metric, (g) Scenario RSTDA with AHD metric, and (h) Scenario 
RSTDA with PHD metric. 
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cost by PSO, but the large value of standard deviation indicates that the individual CPU 
time spent by SS in each independent run varies a lot. This is because the CPU time 
consumed by SS depends on the number of times the reference set is updated and this 
number is determined by the time upon which good quality solutions are generated, 
which varies with different runs. 

 

  PSO SS GA SA 
n Scenario AHD (σ) Time (σ) AHD (σ) Time (σ) AHD (σ) Time (σ) AHD (σ) Time (σ) 
50 RST 0.0 (0.0) 8.8 (0.1) 0.1 (0.1) 8.8 (0.6) 9.2 (0.5) 11.5 (0.1) 0.3 (0.3) 9.9 (0.3) 

 RSTP 11.2 (0.0) 8.6 (0.1) 11.2 (0.0) 7.6 (2.6) 14.3 (1.1) 10.8 (0.1) 11.6 (0.5) 9.7 (0.2) 
 RSTPA 14.1 (0.0) 10.3 (0.1) 14.2 (0.0) 6.6 (1.6) 14.9 (1.2) 12.9 (0.2) 14.6 (0.3) 11.2 (0.1) 
 RSTDA 204.2 (0.0) 8.7 (0.1) 204.4 (0.1) 6.2 (2.3) 211.4 (6.2) 10.9 (0.1) 205.9 (1.9) 9.5 (0.1) 

250 RST 0.0 (0.0) 206.4 (3.0) 0.0 (0.0) 155.6 (2.6) 9.5 (0.7) 262.1 (2.5) 0.9 (1.3) 237.0 (2.6) 
 RSTP 10.8 (0.0) 206.4 (1.6) 10.8 (0.1) 153.7 (1.3) 40.9 (2.4) 262.8 (1.6) 11.4 (0.5) 229.7 (1.9) 
 RSTPA 13.0 (0.0) 245.4 (0.2) 13.5 (0.3) 189.7 (3.6) 29.5 (1.7) 309.4 (1.8) 16.1 (2.3) 271.1 (2.5) 
 RSTDA 112.3 (0.0) 204.9 (0.2) 112.5 (0.2) 155.7 (4.3) 123.9 (3.6) 263.9 (2.4) 113.4 (1.1) 224.6 (1.5) 

500 RST 0.0 (0.0) 821.2 (2.1) 0.1 (0.1) 612.0 (7.9) 15.1 (1.3) 1060.3 (8.6) 0.8 (0.6) 895.7 (1.9) 
 RSTP 11.4 (0.0) 817.7 (1.8) 11.5 (0.1) 597.0 (11.2) 15.9 (1.1) 1059.0 (9.3) 13.1 (2.3) 895.7 (3.6) 

 RSTPA 55.3 (0.0) 979.3 (2.4) 55.3 (0.0) 692.0 (6.1) 72.6 (3.4) 1249.5 (9.2) 60.7 (3.9) 1077.6 
(13.1) 

 RSTDA 53.9 (0.0) 816.6 (2.0) 53.9 (0.1) 570.8 (10.5) 62.8 (3.0) 1042.9 
(10.4) 55.9 (0.8) 893.9 (2.3) 

Table 1. Comparative performances of the PSO, SS, GA and SA algorithms with respect to 
the AHD measure and the used computational time (in seconds). 
 

  PSO SS GA SA 
n Scenario PHD (σ) Time (σ) PHD (σ) Time (σ) PHD (σ) Time (σ) PHD (σ) Time (σ) 
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Table 2. Comparative performances of the PSO, SS, GA and SA algorithms with respect to 
the PHD measure and the used computational time (in seconds). 

Fig. 4 shows the registration results between pattern A and pattern B with all testing 
scenarios obtained using the proposed PSO method. The registration results obtained using 
the proposed SS method is very similar to that obtained by PSO, so we omit the illustration 
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of SS for saving space. For each testing scenario, PSO is performed with AHD and PHD 
dissimilarity metrics, respectively. For the Scenario RST (see Figs. 4(a) and 4(b)) and the 
Scenario RSTP (see Figs. 4(c) and 4(d)), the PSO can find the complete registration between 
the two patterns and the one-to-one correspondence relationship is correctly identified. For 
the Scenario RSTPA (see Figs. 4(e) and 4(f)) and the Scenario RSTDA (see Figs. 4(g) and 
4(h)), the PSO derives the incomplete registration. The point patterns are appropriately 
aligned for both scenarios and the groundtruth point registration correspondences are 
found. Note that in all testing scenarios both AHD and PHD measures work well with the 
proposed method.  
 
 

 
                                 (a)                                                           (b) 

 
                                   (c)                                                            (d) 

Fig. 4 Registration results obtained using the PSO method for all testing scenarios. (a) 
Scenario RST with AHD metric, (b) Scenario RST with PHD metric, (c) Scenario RSTP with 
AHD metric, (d) Scenario RSTP with PHD metric, (e) Scenario RSTPA with AHD metric, (f) 
Scenario RSTPA with PHD metric, (g) Scenario RSTDA with AHD metric, and (h) Scenario 
RSTDA with PHD metric. 
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                                  (e)                                                              (f) 

 
                                    (g)                                                              (h) 

Fig. 4 Registration results obtained using the PSO method for all testing scenarios 
(continued.) 

5. Conclusion 
This chapter investigates the strengths and weaknesses of PPR approaches based on modern 
evolutionary algorithms, in particular, the particle swarm optimization (PSO) and scatter 
search (SS). The experimental results manifest that PSO and SS are malleable under varying 
scenarios such as positional perturbations, contaminations and drop-outs from the point 
patterns. PSO and SS are also more effective and efficient than the methods based on genetic 
algorithm (GA) and simulated annealing (SA) in minimizing the registration error. The 
advantage of our algorithms is due to the natural metaphor, stochastic move, adaptivity, 
and positive feedback. Our observations disclose the truism that modern evolutionary 
algorithms have competitive features that provide a chance to create a solution method 
which is both effective and efficient and is significantly different from that created by 
tradition evolutionary algorithms.  
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Fig. 4 Registration results obtained using the PSO method for all testing scenarios 
(continued.) 

5. Conclusion 
This chapter investigates the strengths and weaknesses of PPR approaches based on modern 
evolutionary algorithms, in particular, the particle swarm optimization (PSO) and scatter 
search (SS). The experimental results manifest that PSO and SS are malleable under varying 
scenarios such as positional perturbations, contaminations and drop-outs from the point 
patterns. PSO and SS are also more effective and efficient than the methods based on genetic 
algorithm (GA) and simulated annealing (SA) in minimizing the registration error. The 
advantage of our algorithms is due to the natural metaphor, stochastic move, adaptivity, 
and positive feedback. Our observations disclose the truism that modern evolutionary 
algorithms have competitive features that provide a chance to create a solution method 
which is both effective and efficient and is significantly different from that created by 
tradition evolutionary algorithms.  
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1. Introduction     
The discovery of new functionalities through the study of human physiology has 
contributed toward the evolution of Artificial Immune Systems. In this chapter we can 
investigate a new architecture through observations of natural immunological behaviour, 
for which application to known algorithms contributed toward an improved performance. It 
considers a boarding where the antibodies are grouped in an organized way and from an 
evolutionary process the antibodies that belong to these groupings can improve the 
adaptive immune reply to a determined antigen. Thus, antibodies of the same class are in 
the same grouping. Others techniques were implemented such as Clonalg, MLP and K-NN 
to compare this new model. 

2. Artificial immune systems 
The Artificial Immune Systems (AIS) are a relatively new area of research with considerable 
potential in helping solve a myriad of difficulties. Its growth has allowed the proposal of 
new techniques and approaches for solving known problems. 
The aim of this technology is to model defence mechanism characteristics and functionalities 
of living beings. The defence mechanism allows an organism to defend against invasion 
from foreign substances. The recognition of these substances is based on the key and lock 
analogy, in which the objective is to find antibodies that have the best immune response to 
the invading antigens (De Castro & Timmis, 2002). 
The natural immune system stores the best antibodies in its genetic memory. These are later 
used to identify antigens that have previously invaded the organism, thereby obtaining a 
quicker, more efficient response. 
New functionalities observed in the biological environment were studied for the modelling 
of this new immunological approach, principally the organization and clustering of similar 
antibodies (Ab) throughout the process. It is believed that these functionalities may improve 
the recognition capacity of artificial immune algorithms. 

3. Hybrid architecture 
There are a number of factors that motivate the hybridization of artificial immune 
algorithms with other techniques. Many complex problems can be decomposed into a 



 Pattern Recognition Techniques, Technology and Applications 

 

494 

Shigenori, N.; Takamu, G.; Toshiku, Y. & Yoshikazu, F. (2003). A hybrid particle swarm 
optimization for distribution state estimation, IEEE Transaction on Power Systems, 
Vol. 18, pp. 60-68. 

Starink, J.P. & Backer, E. (1995). Finding point correspondences using simulated annealing, 
Pattern Recognition, Vol. 28, pp. 231-240. 

Tandon, V. (2000). Closing the gap between CAD/CAM and optimized CNC end milling, 
Master thesis, Purdue School of Engineering and Technology, Indiana University 
Purdue University Indianapolis. 

Ton, J. & Jain, A.K. (1989). Registering Landsat images by point matching, IEEE Transactions 
on Geoscience and Remote Sensing, Vol. 27, pp. 642-651. 

Trelea, I.C. (2003). The particle swarm optimization algorithm: convergence analysis and 
parameter selection, Information Processing Letters, Vol. 85, pp. 317-325. 

Umeyama, S. (1991). Least-squares estimation of transformation parameters between two 
point patterns, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 13, 
pp. 376-380. 

Wang, W.H. & Chen, Y.C. (1997). Point pattern matching by line segments and labels, 
Electronic Letters, Vol. 33, pp. 478-479. 

Yin, P.Y. (2004). A discrete particle swarm algorithm for optimal polygonal approximation 
of digital curves, Journal of Visual Communication and Image Representation, Vol. 15, 
pp. 241-260. 

Yin, P. Y. (2006). Particle swarm optimization for point pattern matching, Journal of Visual 
Communication and Image Representation, Vol. 17, pp. 143-162. 

Yuen, P.C. (1993). Dominant point matching algorithm, Electronic Letters, Vol. 29, pp. 2023-
2024. 

Zhang, L.; Xu, W. & Chang, C. (2003). Genetic algorithm for affine point pattern matching, 
Pattern Recognition Letters, Vol. 24, pp. 9-19. 

20 

Investigation of a New Artificial Immune System 
Model Applied to Pattern Recognition 

José Lima Alexandrino, Cleber Zanchettin, Edson C. de B. Carvalho Filho 
Federal University of Pernambuco 

Brazil 

1. Introduction     
The discovery of new functionalities through the study of human physiology has 
contributed toward the evolution of Artificial Immune Systems. In this chapter we can 
investigate a new architecture through observations of natural immunological behaviour, 
for which application to known algorithms contributed toward an improved performance. It 
considers a boarding where the antibodies are grouped in an organized way and from an 
evolutionary process the antibodies that belong to these groupings can improve the 
adaptive immune reply to a determined antigen. Thus, antibodies of the same class are in 
the same grouping. Others techniques were implemented such as Clonalg, MLP and K-NN 
to compare this new model. 

2. Artificial immune systems 
The Artificial Immune Systems (AIS) are a relatively new area of research with considerable 
potential in helping solve a myriad of difficulties. Its growth has allowed the proposal of 
new techniques and approaches for solving known problems. 
The aim of this technology is to model defence mechanism characteristics and functionalities 
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from foreign substances. The recognition of these substances is based on the key and lock 
analogy, in which the objective is to find antibodies that have the best immune response to 
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The natural immune system stores the best antibodies in its genetic memory. These are later 
used to identify antigens that have previously invaded the organism, thereby obtaining a 
quicker, more efficient response. 
New functionalities observed in the biological environment were studied for the modelling 
of this new immunological approach, principally the organization and clustering of similar 
antibodies (Ab) throughout the process. It is believed that these functionalities may improve 
the recognition capacity of artificial immune algorithms. 

3. Hybrid architecture 
There are a number of factors that motivate the hybridization of artificial immune 
algorithms with other techniques. Many complex problems can be decomposed into a 
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number of parts, for some of which exact methods, or very good heuristics, may already be 
available. In these cases it makes sense to use a combination of the most appropriate 
methods for different sub problems. 
In practice frequently, apply those algorithms and evolutionary algorithms (EAs) to a 
problem where there is a considerable amount of hard-won user experience and knowledge. 
In such cases performance benefits can often arise from utilizing this information in the form 
of specialist operators and/or good solutions. Provided that care is taken not to bias the 
search too much away from the generation of novel solutions. EAs are very good at rapidly 
identifying good areas of the search space (exploration) and they are less good at the 
“endgame” of fine-tuning solutions (exploitation) partly as a result of the stochastic nature 
of the variation operators. 
An overall successful and efficient general problem solver, in fact, do not exist. It is commonly 
experienced that the combination of an evolutionary algorithm and a heuristic method (the 
hybrid EA) performs better than either of its “parents” algorithms alone (Eiben & Smith, 2003).  
For this reason, a Memetic Algorithm (Smith & Krasnogor, 2005) was developed based on 
features of natural immune systems. Memetic algorithms are characterized by the 
hybridization of Evolutionary Algorithms with the use of Local Searches at particular points 
of the algorithm (Alexandrino & Carvalho Filho, 2006; Oliveira et al., 2006; Eiben & Smith, 
2003). The initialization method for the main population of antibodies is also a hybridization 
method, as it employs known solutions (Eiben & Smith, 2003). 
The performance of this model was compared to other techniques found in the literature in 
order to assess the response quality of the algorithm. MLP (Multi-Layer Perceptron 
(Rumelhart et al., 1986)), K-NN (K-Nearest Neighbor (Duda & Hart, 2000)) and Clonalg 
(Clonal Selection Algorithm (De Castro & Von Zuben, 2000)) were used. Thus, it was 
possible to estimate the contribution this new model may have in research regarding 
artificial immune systems and pattern recognition. 

4. Artificial immune functions 
The discovery of new features from research into the physiology of the human body has 
contributed toward the evolution of the Artificial Immune System (Dasgupta, 2006). Such 
architecture has developed the organization and clustering of similar antibodies. The main 
features of this algorithm are hybridization with local search techniques, the heuristics of 
population construction, and uses of “intelligent” operators and the generational selection 
of survivors. 

4.1 Antibody memory 
Smith and Krasnogor (2005) suggest the use of information on previous populations 
through the retrieval of individuals from past generations. The aim of this technique is to 
recover genetic information that the algorithm has discarded, functioning as a kind of 
genetic memory bank to influence the search mechanisms of the algorithm. 
This architecture was implemented using genetic memory to investigate the impact of this 
functionality on the performance of the algorithm. 

4.2 Antibody clustering 
The idea of evolving multiple populations in tandem is also known as island EAs, parallel 
EAs and more precisely coarse-grain parallel EAs (Eiben & Smith, 2003). The essential idea 
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is to run multiple populations in parallel, in some kind of communication structure. After a 
(usually fixed) number of generations (known as an epoch), a number of individuals are 
selected from each population to be exchange with others from neighboring populations – 
this can be thought of as migration. 
The original formulation of the GA as a trade-off between exploration of unexplored regions 
of the search space and exploitation of knowledge gained via search in the vicinity of known 
high quality solutions. The suggest that during the epochs between communication, when 
each subpopulation is evolving independently of the others, exploitation occurs, so that the 
subpopulations each explore the search space around the fitter solutions that they contain. 
When communication takes place, the injection of individuals of potentially high fitness, 
and with (possibly) radically different genotypes, facilitates exploration, particularly as 
recombination happens between the two different solutions. 
Whilst extremely attractive in theory, and possessing the highly desirable quality of explicit 
parallelism, it is obvious that there are no guarantees per se that the different 
subpopulations are actually exploring different regions of the search space. One possibility 
is clearly to achieve a start at this through a careful initialization process, but even if this is 
used, there are a number of parameters that have been shown to affect the ability if this 
technique to explore different peaks and obtain good results even then when only a single 
solution is desired as the end result. 
 

 
Fig. 1. Clusters with similar antibody 

In this specific model, similar antibodies responsible for recognizing a class of antigens are 
organized into clusters (Fig. 1). With the presentation of an antigen from this class, the 
antibodies from this cluster multiply and differentiate by means of mutation in order to 
improve the immune response of the individuals to the antigen class presented. After 
recognition, the swarm of antibodies undergoes reduction back to its normal size, 
discarding less apt individuals. The best individuals remain in the swarm of antibodies to 
improve recognition during future events. 
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number of parts, for some of which exact methods, or very good heuristics, may already be 
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genetic memory bank to influence the search mechanisms of the algorithm. 
This architecture was implemented using genetic memory to investigate the impact of this 
functionality on the performance of the algorithm. 
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The idea of evolving multiple populations in tandem is also known as island EAs, parallel 
EAs and more precisely coarse-grain parallel EAs (Eiben & Smith, 2003). The essential idea 
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is to run multiple populations in parallel, in some kind of communication structure. After a 
(usually fixed) number of generations (known as an epoch), a number of individuals are 
selected from each population to be exchange with others from neighboring populations – 
this can be thought of as migration. 
The original formulation of the GA as a trade-off between exploration of unexplored regions 
of the search space and exploitation of knowledge gained via search in the vicinity of known 
high quality solutions. The suggest that during the epochs between communication, when 
each subpopulation is evolving independently of the others, exploitation occurs, so that the 
subpopulations each explore the search space around the fitter solutions that they contain. 
When communication takes place, the injection of individuals of potentially high fitness, 
and with (possibly) radically different genotypes, facilitates exploration, particularly as 
recombination happens between the two different solutions. 
Whilst extremely attractive in theory, and possessing the highly desirable quality of explicit 
parallelism, it is obvious that there are no guarantees per se that the different 
subpopulations are actually exploring different regions of the search space. One possibility 
is clearly to achieve a start at this through a careful initialization process, but even if this is 
used, there are a number of parameters that have been shown to affect the ability if this 
technique to explore different peaks and obtain good results even then when only a single 
solution is desired as the end result. 
 

 
Fig. 1. Clusters with similar antibody 

In this specific model, similar antibodies responsible for recognizing a class of antigens are 
organized into clusters (Fig. 1). With the presentation of an antigen from this class, the 
antibodies from this cluster multiply and differentiate by means of mutation in order to 
improve the immune response of the individuals to the antigen class presented. After 
recognition, the swarm of antibodies undergoes reduction back to its normal size, 
discarding less apt individuals. The best individuals remain in the swarm of antibodies to 
improve recognition during future events. 
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Genetic memory is organized as islands of evolution (Eiben & Smith, 2003). This suggests 
that clusters within sets of similar antibodies are maintained in separate evolution, which 
allows antibodies to be spatially organized into clusters of individuals in Fig. 1. 
Separation allows the antibodies to evolve more quickly, which is different from the 
approach used in Clonalg (De Castro & Von Zuben, 2000), where the principal population of 
antibodies has individuals from a number of different classes. Thus, a more intuitive and 
better quality evolution is expected in the proposed approach, with antibodies that have a 
closer affinity to the antigens. This characteristics is important for multi-objective problems. 
Specifically for pattern recognition like handwritten digit problems. 
The individuals of the genetic memory may be newly selected to once again compose the 
main antibody population, thereby participating in the evolution process. Thus, lost genetic 
filaments from previous generations can be recovered and reused in future generations. 

5. Immunological model 
This study uses an artificial immune algorithm based on the clonal selection theory and the 
hill climbing search algorithm (Russell & Norvig, 2003) as a local search method of the 
antibodies of the offspring population. The best individuals are stored in a structure based 
on the adaptive resonance theory. 
In the model, similar antibodies responsible for recognizing a class of antigens are organized 
into clusters. With the presentation of an antigen from this class, the antibodies from this 
cluster multiply and differentiate by means of mutation in order to improve the immune 
response of the individuals to the antigen class presented. After recognition, the swarm of 
antibodies undergoes reduction back to its normal size, discarding less apt individuals. The best 
individuals remain in the swarm of antibodies to improve recognition during future events. 
Genetic memory is organized as islands of evolution (Eiben & Smith, 2003). This concept 
suggests that clusters within sets of similar antibodies are maintained in separate evolution, 
which allows antibodies to be spatially organized into clusters of individuals. 
Separation allows the antibodies to evolve more quickly, which is different from the 
approach used in Clonalg, where the principal population of antibodies has individuals 
from a number of different classes. Thus, a more intuitive and better quality evolution is 
expected in the proposed approach, with antibodies that have closer affinity to the antigens. 
The individuals from the genetic memory may be newly selected to once again compose the 
main antibody population, thereby participating in the evolution process. Thus, lost genetic 
filaments from previous generations can be recovered and reused in future generations. 

5.1 Generation of the populations 
In the present approach, it was determined that the main antibody population would be 
composed of λ = 20 individuals and the offspring population would have 40 individuals. 
The memory population is the same size as the training set and is generated from a selection 
of the best individuals. 
At the beginning of the algorithm, the main population is generated randomly. With the 
next generation, the main population is composed of 50% random individuals and 50% 
individuals from the genetic memory of the antigen class that is being presented. This type 
of formation helps maintain the diversity of the main antibody population and allows the 
reuse of lost genetic material to initialize the main population with individuals of high 
affinity (Eiben & Smith, 2003). 
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Each individual of the offspring population is generated from a size-2 tournament selection 
(Eiben & Smith, 2003) of the antibodies in the main population. The antibody chosen 
undergoes the application of the mutation operators.   
This type of main population generation seeks to model a biological generational 
characteristic in the human organism. When an antigen is presented, the multiplication of 
antibodies in that set occurs in order to find the antibody that has the best response to the 
antigen. This type of initialization of the main population allows the algorithm to retrieve 
individuals from the genetic memory bank that may have been discarded during a survival 
selection based on fitness (Eiben & Smith, 2003). 

5.2 Memory population 
De Castro & Von Zuben (2000) propose Clonalg using a selection of survivors proportional 
to fitness, in which only the most apt antibodies survive to the next generation. In the 
present study, the antibody population is generational (Eiben & Smith, 2003). This choice 
was made to avoid the premature convergence of the algorithm in regions of local 
minimums due to the highly elitist choice of antibodies used in Clonalg. 
This point of the algorithm is determined by the add antibody to population memory Fig. 3 and 
constitutes the memory population, which is responsible for the learning of the training antigens.  
At each iteration, the best antibody in the principal and offspring populations is selected by 
the flow chart demonstrated in Fig. 3. This antibody is the candidate to integrate the 
memory population. If it possesses better fitness than an individual in the memory 
population, it will replace it. The added antibody is responsible for recognizing the antigen 
presented by the training population. There will be one antibody in the memory population 
associated to each antigen of the training population. 
Following this step, the individual is added to the genetic memory of the class of training 
antigen that is being presented. There is a genetic memory for each class of the training set. 
This memory contains all the antibody candidates from the memory population that were 
selected during the execution of the algorithm. The set of antibodies will be used to compose 
the main population of upcoming generations. 

5.3 Populevaluation 
The quality of each antibody in the population is measured by the Hamming Distance DH 
(De Castro & Timmis, 2002) calculation between it and the antigen that is being presented, 
according to (1). Shorter distances equal greater quality.  
Considering N the set of antigens (Ag) N)iL(Ag1,...,i,iAg ∈= to be recognized, and P the 

set of antibodies (Ab) P)iL(Ab1,...,i,iAb ∈=  to be used as pattern recognizers. The 
antigens and antibodies have the same length L. 
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5.4 Mutation operators 
Two mutation operators were employed in the present study: simpleMutation and 
totalMutation. With the first operator, one gene is chosen from all possible genes and only 
this gene will undergo mutation (Eiben & Smith, 2003). 
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Genetic memory is organized as islands of evolution (Eiben & Smith, 2003). This suggests 
that clusters within sets of similar antibodies are maintained in separate evolution, which 
allows antibodies to be spatially organized into clusters of individuals in Fig. 1. 
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into clusters. With the presentation of an antigen from this class, the antibodies from this 
cluster multiply and differentiate by means of mutation in order to improve the immune 
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5.4 Mutation operators 
Two mutation operators were employed in the present study: simpleMutation and 
totalMutation. With the first operator, one gene is chosen from all possible genes and only 
this gene will undergo mutation (Eiben & Smith, 2003). 
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With the second operator, all genes have a 30% likelihood of undergoing mutation (Eiben & 
Smith, 2003). 
All antibodies have 30% likelihood of mutation application. This variable determines if an 
individual will undergo mutation or return to its copy. 

5.5 Local search 
The Hill Climbing (HC) Search Algorithm (Russell & Norvig, 2003) is a local search and is 
shown in Fig. 2. It is simply a loop that continually moves in direction of increasing quality 
value.  
 

 
Fig. 2. The general schema of a search in pseudocode 

This architecture opts to implement the local search after the mutation operations and before 
the selection of survivors, as described in Fig. 3. 
 

 
Fig. 3. Flow chart of the algorithm 

5.6 Description of the algorithm 
With each presentation of an antigen, a new main population is created. From this, a new 
offspring population is formed through the application of mutation operators. The best 
antibody found by the two populations is the candidate for incorporating the memory 
population of antibodies. This antibody will automatically be added to the genetic memory 
of the antigen class that is being added. At the end of the presentation of all the training 
patterns, a generation of the algorithm will be considered. 
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At the end of each generation, the classification rate in the test set is calculated in relation to 
the memory population of antibodies. The best configuration of the memory population is 
stored until the stopping criterion of the algorithm is satisfied. Only the maximum number 
of generations was considered in this implementation. 
At the end of each generation, the classification rate in the test set is calculated in relation to 
the memory population of antibodies. The best configuration of the memory population is 
stored until the stopping criterion of the algorithm is satisfied. Only the maximum number 
of generations was considered in this implementation. 

6. Recognition of handwritten digits 
The analyzed patterns consist of binary images of handwritten digits from 0 to 9. The 
database used in this analyse corresponds to 8000 handwritten digit patterns divided into 
two sets of 6000 training patterns and 2000 test patterns. Each one of the ten classes had the 
same number of patterns.  
 

 
Fig. 4. Examples of patterns used 

The patterns have 24x16 pixels and were transformed into binary matrices with 24 lines and 
16 columns. An individual is composed of 24 genes, corresponding to a Size-24 vector that is 
the number of input features. Each element of the vector corresponds to each line of the 
binary matrices and one gene in the pattern. Each gene was formed by a number with 
binary form and size 16 that corresponds to a line of the binary matrix. This number was 
transformed into base 10. 

7.  Experiments and results 
In the neural network training the aim is to achieve topologies with few connections and 
small error. In these tests, an MLP was used with only one intermediate layer and a Sigmoid 
Logistic Function. The MLP contains all possible connections of forward propagation 



 Pattern Recognition Techniques, Technology and Applications 

 

500 

With the second operator, all genes have a 30% likelihood of undergoing mutation (Eiben & 
Smith, 2003). 
All antibodies have 30% likelihood of mutation application. This variable determines if an 
individual will undergo mutation or return to its copy. 

5.5 Local search 
The Hill Climbing (HC) Search Algorithm (Russell & Norvig, 2003) is a local search and is 
shown in Fig. 2. It is simply a loop that continually moves in direction of increasing quality 
value.  
 

 
Fig. 2. The general schema of a search in pseudocode 

This architecture opts to implement the local search after the mutation operations and before 
the selection of survivors, as described in Fig. 3. 
 

 
Fig. 3. Flow chart of the algorithm 

5.6 Description of the algorithm 
With each presentation of an antigen, a new main population is created. From this, a new 
offspring population is formed through the application of mutation operators. The best 
antibody found by the two populations is the candidate for incorporating the memory 
population of antibodies. This antibody will automatically be added to the genetic memory 
of the antigen class that is being added. At the end of the presentation of all the training 
patterns, a generation of the algorithm will be considered. 

Initializing 

Population Antibody 

Population Offspring 

Mutation 

Local 
Search 

Best  
Antibody 

Population Offspring 

Selecting Best 
Antibody 

Clusters of Antibodies 

Population 
Memory 

Investigation of a New Artificial Immune System Model Applied to Pattern Recognition 

 

501 

At the end of each generation, the classification rate in the test set is calculated in relation to 
the memory population of antibodies. The best configuration of the memory population is 
stored until the stopping criterion of the algorithm is satisfied. Only the maximum number 
of generations was considered in this implementation. 
At the end of each generation, the classification rate in the test set is calculated in relation to 
the memory population of antibodies. The best configuration of the memory population is 
stored until the stopping criterion of the algorithm is satisfied. Only the maximum number 
of generations was considered in this implementation. 

6. Recognition of handwritten digits 
The analyzed patterns consist of binary images of handwritten digits from 0 to 9. The 
database used in this analyse corresponds to 8000 handwritten digit patterns divided into 
two sets of 6000 training patterns and 2000 test patterns. Each one of the ten classes had the 
same number of patterns.  
 

 
Fig. 4. Examples of patterns used 

The patterns have 24x16 pixels and were transformed into binary matrices with 24 lines and 
16 columns. An individual is composed of 24 genes, corresponding to a Size-24 vector that is 
the number of input features. Each element of the vector corresponds to each line of the 
binary matrices and one gene in the pattern. Each gene was formed by a number with 
binary form and size 16 that corresponds to a line of the binary matrix. This number was 
transformed into base 10. 

7.  Experiments and results 
In the neural network training the aim is to achieve topologies with few connections and 
small error. In these tests, an MLP was used with only one intermediate layer and a Sigmoid 
Logistic Function. The MLP contains all possible connections of forward propagation 



 Pattern Recognition Techniques, Technology and Applications 

 

502 

(feedforward) between adjacent layers, without having connections that link the processing 
units of non-adjacent layers. In network training, considering NC classes in the data set, the 
true class of the pattern x from the training set Pt is defined as: 

 ( ) { } tPx,CN1,2,...,xγ ∈∀∈  (2) 

In the experiment, the winner-takes-all classification rule was used, in which the number of 
output units (N3) is equal to the number of classes (NC). 
As o (x)k  is the output value of the output unit k for the pattern x, the class assigned to 

pattern x is defined as: 

 ( ) ( ) { }= ∀ ∈ ∈φ x argmaxο x , x P , k 1, 2, ..., Nt 3k  (3) 

The network error for the pattern x is defined as follows: 

 ( )
( ) ( )
( ) ( )

≠
=

=

⎧⎪
⎨
⎪⎩

1,  if  φ x γ x .
ε x

0,  if  φ x γ x .
 (4) 

Therefore, the classification error for the training set Pt, which represents the percentage of 
incorrectly classified training patterns, can be defined as: 

 ( ) ( )= ∑
∈

100
E P ε xt x P#P tt

 (5) 

where #Pt is the number of patterns in the set Pt. 
The percentage of connections used by the network is given by: 

 ( ) = ∑
=

Nmax100
ψ C cii 1Nmax

 (6) 

The training process stops if: (1) the GL5 criterion defined in Proben1 (Prehelt, 1994) is met 
(based on the classification error or SEP of the validation set); or (2) the maximum number 
of iterations is reached. For the implementation of the GL5 criterion, the classification error 
or SEP for the validation set is evaluated at each IT iterations. 
The GL5 criterion is a good approach for avoiding overfitting to the training set. The 
classification error for the validation set Pv is given by E(Pv), which is calculated according 
to Equation (5). Thus, using V(k) to denote the classification error E(Pv) at iteration =i kI ,T  

=k 1, 2, ..., I Imax T , the generalization loss parameter (GL) is defined as the relative 

increase in the validation error over the minimum-so-far. The GL5 criterion stops the 
execution when the parameter GL becomes higher than 10%. 

 ( ) ( )
= −

<

⎛ ⎞
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

V k
GL k 1

min Vjj k
 (7) 
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To choose a data set of training patterns for the K-NN was used uniform distribution with 
maximum size of training patterns (600). For each execution a new set of training is chosen. 
Liu et al., 2003 state that the quality of the K-NN classifier is directly influenced by the k 
number of its nearest neighbors. Therefore, all training patterns are used as prototypes in 
the present analysis. 
 

# Architecture Clonalg K-NN MLP 

1 [46.43, 47.57] [38.44, 40.43] [41,97, 43,03] [87.36, 93.84] 

2 [48.74, 49.73] [39.00, 40.74] [47,45, 48,22] [88.24, 93.89] 

4 [56.46, 57.41] [42.82, 44.31] [56,34, 57,40] [88.77, 94.43] 

8 [60.72, 61.81] [44.73, 45.87] [58,89, 60,04] [90.94, 97.13] 

16 [63.81, 64.73] [47.92, 48.54] [66,19, 67,47] [90.63, 96.64] 

32 [72.83, 73.50] [52.65, 53.35] [74,93, 75,74] [91.68, 97.38] 

64 [76.02, 77.11] [53.62, 55.05] [79,84, 80,90] [90.02, 95.91] 

Table 1. Analysis of algorithm performance in relation to aggregate training performance 

Each algorithm was executed with the same training data, but of different sizes. This 
served to test the generalization capacity of each algorithm under situations of different 
quantities of training patterns and analyze their performance. Training sets of the 
following sizes were used: 1, 2, 4, 8, 16, 32 and 64 patterns per class. For all cases, the 
classes always have the same number of patterns. The test set has the same 100 patterns 
for each class. At the end of the training step, the classification rate is calculated for the 
four algorithms analyzed. 
Each algorithm was executed 30 times to obtain the classification rate. Table 1 displays the 
confidence intervals of the samples for the four algorithms studied. These intervals serve for 
a grounded comparison between algorithms. The confidence level considered was 95%. 
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Fig. 5. Evolution of classification rate 
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The present study demonstrates that the new approach is both more biologically plausible 
and obtains better results than other AIS, such as clonalg. 
Algorithm performance is measured through the classification rate in the data set of test 
patterns.  
As Fig. 5 shows, the proposed algorithm obtained similar results to K-NN. This performance 
proximity between the proposed architecture and K-NN, with a comparison to Clonalg, 
suggests that the new approach makes a significant contribution toward improving the 
results. Considering the average value of the recognition rate, the algorithm proposed 
obtained a good performance. Analyzing the computational cost of the four algorithms, the 
MLP presented the best cost-benefit in providing training time when compared to the other 
algorithms. Despite having the best recognition rate, the architecture proposed had the 
longest training time of all the algorithms. 
Depending on the type of problem studied, the time available for training can be a critical 
variable. Regarding the analysis of test patterns, this approach, Clonalg and MLP 
presented similar times. K-NN obtained the longest time of all due to its high 
computational cost. 

8. Conclusions 
This chapter describes an application based on Artificial Immune System (AIS) with 
biologically inspired characteristics, such as the grouping of similar antibodies and memory 
antibodies were studied to allow the evolution of the AIS. The focus of this chapter was to 
evaluate the quality of this model to recognize handwritten digits patterns and evolving its 
performance and comparing it to other technique. 
This architecture combined different techniques to form a hybrid immune algorithm. It was 
biologically inspired, with the use of the Clonal selection principle as a method for 
propagating the genetic material of the individuals. Biological memory proved to be an 
efficient functionality for hybridization in the generation of the main population, thereby 
constituting a more biologically plausible evolutionary view.  
The selection of generational survivors proved more biologically plausible, suggesting the 
organization of antibodies into clusters during the evolution process. This model allowed a 
more intuitive evolution of antibodies. All the antibodies created during the evolutionary 
process are stored in an antibody memory in order to avoid the loss of good individuals. It 
is possible to use good genetic material in the future by employing antibodies from past 
generations. The best antibodies are responsible for the recognition of the set of test antigens 
and these individuals will be organized into clusters.  
The selection of generational survivors proved more biologically plausible, suggesting the 
organization of antibodies into clusters during the evolution process. This model allowed a 
more intuitive evolution of antibodies.  
One advantage of this model is the possibility of adaptation to new patterns through the 
preservation of previously acquired knowledge while continuing to learn new knowledge.  
This study offers a good contribution to the literature. It presents an efficient model in 
comparison to other artificial immune systems, thereby contributing significantly toward an 
improvement in the results.  
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1. Introduction     
Most neural networks that have been designed to solve the problems of pattern recognition 
use a supervised training method with a training data set. This data set contains examples of 
input patterns together with the corresponding output results, and the neural network 
learns to infer the relationship between input patterns and output results through training. 
In supervised training, we often try to find out a set of weights and biases for the neural 
network in order to classify all patterns in the training data set. In general, training with a 
larger training data set can reduce the recognizing error rate. However, it would be difficult 
to find out a good design of neural network that will be able to learn all patterns in a large 
training data set, because it usually contains some patterns that are difficult to classify. Even 
if network layers and neurons were added more, there are still some misclassified patterns 
after a long time training process. The number of these patterns will increase when the size 
of the training data set is enlarged. If the neural network has to recognize a pattern that 
approximates in shape to one of the misclassified patterns, the recognition result will be 
incorrect. Furthermore, if a new pattern is updated, which  approximates in shape to one of 
the misclassified patterns in the old training data set, the neural network may not still 
classify it, and it will become a new misclassified; thus, the error rate will increase.  
In this chapter, we introduce a new design of pattern recognition neural network that has a 
simple structure but is still able to classify almost all training patterns exactly. The neural 
network is designed with an especial output that is called “Reject output”. With this output, 
a large training data set can be separated into some parts, and with a smaller number of 
patterns in each part, they can be classified by the neural network more easily using a 
distinct set of weights and biases. Additionally, we also design a training method with some 
phases, which helps the neural network with the reject output to find out not only one but 
many sets of weights and biases for classifying almost all the training patterns. All the sets 
of weights and biases have to be kept in the order that they have been received from the 
training process. 
Moreover, the reject output is also used to control the updating process for new patterns 
more easily. With the reject output, the pattern recognition neural network can produce not 
only correct or incorrect results but also reject results; therefore, it can control the 
recognizing rejection and reduce the error rate. 
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On the other hand, with this design, the size of the neural network can be reduced to be 
implemented on a hardware-based platform in order to make fast classifiers. 

2. Neural network with a reject output and many sets of weights and biases 
In this session, the idea of designing a reject output for a pattern recognition neural network 
will be presented, and then the reason why this neural network uses many sets of weight 
and biases will be also explained.  

2.1 Problems with a large training data set 
Most pattern recognition neural networks have been designed with a supervised training 
algorithm, which uses the training data set to adjust the network's weights and bias so as to 
minimize an error function, such as the mean squared error function (MSE) (Martin et al., 
1996), and try to classify all patterns in the training data set. The neural network can be 
considered a transfer function that changes a pattern space into an output space, in which 
each pattern class is clustered in a separate area. Figure 1 shows an example of handwritten 
digit pattern recognition for the above principle. After training, the neural network will 
have a set of weights and biases that will be used to recognize the new patterns. 
 

 
 

Fig. 1. Neural network is trained with a supervised training algorithm to cluster all training 
patterns from pattern space into output space. 

In general, training neural network with a larger training data set can reduce the 
recognizing error rate, but there are some problems that we have to consider. 
• Training neural network with a larger training data set, it requires more time to 

minimize the error function, especially when the data set contains some patterns that 
are difficult to classify correctly. Even though the neural network has been trained by 
many epochs (Martin et al., 1996), they are still clustered in a wrong area; hence, they 
are called the misclassified patterns (Gloger et al., 1997). These patterns keep some 
other patterns staying close to boundary line (Fig. 1); therefore, the error function 
reduces very slowly in training process.  

• The number of the misclassified patterns will increase when the size of the training data 
set is enlarged. If the neural network has to recognize a pattern that approximates in 
shape to one of the above patterns, the recognition result will be incorrect. 
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• When some new patterns are updated to the training data set, the neural network must 
be trained with all old and new patterns, so it takes more time. Furthermore, if a new 
pattern approximates in shape to one of the misclassified patterns in the old data set, 
maybe it will become a new misclassified in the new data set. 

• Adding more hidden layers and neurons to the neural network in some cases, it can 
classify more patterns in the large training data set. However, it is difficult to determine 
how many hidden layers and neurons we have to add. Moreover, with a large number 
of neurons and complex connections, the neural network definitely spends more time to 
bring out a recognition result.   

2.2 The idea of reject output 
To solve the above problems, we propose a new structure of pattern recognition neural 
network with an especial output that is called “Reject output”, and build a training method 
corresponding to this structure.  The name “Reject output” that means it is used to separate 
all difficult recognizing patterns (Fig.1) from the training data set. Hence, these patterns are 
called “Rejected patterns”. 
In order to explain the idea of the reject output straightforwardly, we will start with the 
single layer perceptron that was invented in 1957 by Frank Rosenblatt. The single layer 
perceptron with the perceptron learning rule is only capable to cluster linearly separable 
patterns (Frank, 1958). In the training pattern space, if there is not any hyperplane (or 
decision boundary) (Martin et al., 1996), which can separate all types of patterns perfectly, 
the training process of the perceptron is not guaranteed to converge. This was showed in a 
famous book entitled “Perceptrons” by Marvin Minsky and Seymour Papert in 1969 with 
the well-known problem that was called the exclusive-or (XOR) problem (Fig. 2). 
 

 
 

Fig. 2. The single layer perceptron and the XOR problem (Minsky & Papert, 1969). 

Until the 1980s, the above limitation of the single layer perceptron was overcome with 
multilayer perceptron (Rumelhart et al., 1986) and back-propagation learning rule. Figure 3 
illustrates the way that a multilayer perceptron with a hidden layer solves the XOR 
problem. 
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Fig. 3. A two-layer perceptron can solve the XOR problem (Martin et al., 1996). 

We realized that adding a reject output to the single layer perceptron is also able to solve the 
XOR problem. In figure 2, the hyperplane separated the XOR patterns space into two areas 
for two types of the pattern, but the pattern – (P4) was classified incorrectly. Thus, (P4) is a 
misclassified pattern and (P1), (P2), (P3) are classified patterns, and now it can be considered 
as a new classifying problem with two classes: classified and misclassified. In this classifying 
problem, a hyperplane can be found out easily to separate perfectly misclassified pattern 
from classified patterns (Fig. 4). The reject output is added to the single layer perceptron to 
determine this hyperplane. Hence, (P4) will be masked as a rejected pattern and trained by 
the reject output. If the reject output (a2) is inactive, the normal output (a1) gives the correct 
result of the XOR function. If the reject output (a2) is active, the result given by the normal 
output (a1) is incorrect. In this two class problem, that means the inversion of this result (a1) 
is the correct result (Fig. 4).        

 
Fig. 4. Using the reject output to solve the XOR problem.  

In brief, the reject output plays a role to separate all misclassified patterns from classified 
patterns. It can also be said that the reject output is used to reject all misclassified patterns 
from the training data set. However, it cannot be said that the reject output always rejects 
perfectly all misclassified patterns. The example pattern space in figure 5 shows that the 
reject output (a2) cannot reject perfectly two misclassified patterns (PA3) (PA4) from all 
classified patterns that have already classified by the normal output (a1).  The reject output 
tried to separate 2 misclassified patterns (PA3) (PA4) from the others, but it also rejected 2 
classified patterns (PB3) (PB4). However, this problem leaded us to the idea to extend the 
training process in order to find more sets of weight and biases to classify almost all training 
patterns. 
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2.3 Neural network uses many sets of weights and biases 
After training, the perceptron (Fig 5) with the reject output (a2) and a set of weights and 
biases can reject four patterns, such as (PA3) (PA4) (PB3) and (PB4). They are thus called 
rejected patterns. These rejected patterns include both types of training patterns, such as (A) 
and (B). And now, we can consider them as a new training data set to train the perceptron. 
With this new training data set, the perceptron can classify easily, and then the second set of 
weights and biases will be found out from this extended training process. 
  

 
 

Fig. 5. Separate rejected patterns from training data set and then train them in the extended 
training process. The perceptron will use 2 sets of weights and biases to classify all patterns.  
With a larger training data set, the number of the misclassified patterns will increase, that 
means the number of the rejected patterns that will be trained in the extended training 
process will also increase. If the normal output cannot classify all these patterns in the 
extended training process, the reject output will be used once more to separate misclassified 
patterns looks like the way in the previous training step.  Therefore, we can receive more 
than 2 sets of weights and biases. The neural network will use all these sets of weights and 
biases to classify a new pattern in a fixed order. As a result, all the sets of weights and biases 
have to be kept in the order that we receive them from the training process. The training 
process can be divided into some phases. 

2.4 Advantages and disadvantages 
In principle, the pattern space in figure 2 can be clustered by 3 hyperplanes, it means that a 
multilayer perceptron with a hidden layer included 3 neurons can also cluster all patterns 
correctly. However, using the reject output and many sets of weights and biases still has 
some advantages in comparison with a multilayer perceptron without the reject output: 
• With a simpler structure, the neural network will run faster. Moreover, this structure 

can be designed in parallel processing structure on a hardware-based platform; 
therefore the response time of the hardware-based neural network will be reduced.   

• The neural network is designed with a reject output to separate the training data set 
into some parts, and with a smaller number of patterns in each part, they can be 
classified more easily. 

• If a new training pattern is added to the training data set, maybe it would be a 
misclassified pattern when the neural network uses the first set of weights and biases, 
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but it is rejected by the reject output. In this case, we only have to train this pattern with 
other rejected patterns in the extended training process; thus, the neural network can 
learn this new pattern more easily. 

• With the reject output, the reject rate of recognition can be controlled. We can increase 
the reject rate to reduce the error rate by changing a threshold at the reject output.  

There are some disadvantages of this neural network: 
• Because the training process has some phases, the training program is more complex. 
• The data set of rejected patterns in the previous training process sometimes has a large 

number of patterns in the same class in comparison with the other classes; thus, training 
the neural network with this data set usually gives a not good set of weights and biases. 
Therefore, we have to select more patterns to add to this data set for training. How to 
select these patterns that is still a problem for studying.        

3. Design of pattern recognition neural network with a reject output 
The single layer perceptron with the reject output in the previous session is only a simple 
example to present basically our idea of neural network designed with a reject output and 
many sets of weights and biases. In order to interpret in detail the problems of this chapter, 
a design of neural network for recognizing handwritten digits patterns will be chosen as an 
illustrative example, because the handwritten digits recognition that is a typical application 
of pattern recognition neural network (Le & Mizukawa, 2006). 

3.1 Structure of the pattern recognition neural network 
There are many types of neural network that can be used for pattern recognition (Bishop et 
al., 1986). The convolutional neural network (CNN) is a famous type of pattern recognition 
neural network that has been successfully applied to handwritten character recognition 
(LeCun et al., 1995). The CNNs are designed to recognize visual patterns directly from pixel 
images with minimal pre-processing (LeCun et al., 1998). Thus, the convolutional structure 
was chosen for the design of pattern recognition neural network in this chapter. However, 
we intentionally designed a small and simple CNN, because we want to prove our small 
CNN can still classify almost all patterns in a large training data set by using the reject 
output and many sets of weights and biases. That is the main goal of this chapter. 
Figure 6 illustrates our CNN designed for recognizing the handwritten digit pattern 16x16 
pixels. Therefore, the input layer has 256 neurons arrange in a matrix 16x16. The CNN has 
only one convolutional layer and one sub-sampling (LeCun et al., 1998). The convolutional 
layer (C1) has only 2 non-symmetric feature maps of size 7x7 and 5x5. Each neuron in each 
feature map connects to the input layer in a matrix 4x4 neighbourhood type (LeCun et al., 
1998). Moreover, this neighbourhood type is design with two unit overlap (Patrice et al., 
2003) for the 7x7 feature map and one unit overlap for the 5x5 feature map. The sub-
sampling layer (S1) has 2 feature maps of size 5x5 and 2 feature maps 3x3 using 3x3 
neighbourhood type to connect to (C1) with two unit overlap. The neural networks for 
handwritten digits recognition have almost only 10 outputs corresponding to 10 digits (from 
0 to 9); thus, our CNN also has 10 outputs that we called 10 normal outputs. 
With this design, our CNN can be considered as a small CNN. We assert that it would be 
difficult to classify all patterns in a large training data set by the above CNN (without the 
reject output structure). In fact, we have already tried to train our CNN (without the reject 

Designing a Pattern Recognition Neural Network with a Reject Output  
and Many Sets of Weights and Biases 

 

513 

output) with a training data set of 5000 patterns. After more 500 epochs, there are still 267 
misclassified patterns. Adding more feature maps to the convolutional layer and sub-
sampling layer will help the CNN to classify more patterns in the training data set. 
However, the size of the CNN will increase considerably and there are still some 
misclassified patterns. The consideration leads us to design the reject output for our CNN to 
cluster all misclassified patterns, and then they are extracted from the training data set in 
order to set up a new training data set for classifying in the extended process (Fig. 6). 
 

 
Fig. 6. A small convolutional neural network is designed with the reject output. 

3.2 Design of the reject output 
With the role of the reject output to classify all rejected patterns, which included all 
misclassified patterns and some classified patterns, the design of the reject output will be 
considered as a design of neural network. Therefore, we added to the CNN not only one 
neuron for the reject output but also a hidden layer before the reject output (Fig. 6). The 
hidden layer has 45 neurons corresponding to 45 areas between any two of ten directions in 
the patterns space. In fact, we have already tried to use 10, 25, 45, 55 and 100 neurons for this 
hidden layer and finally the hidden layer with 45 neurons is the best selection for the ability 
and speed of classification.  All neurons of this hidden layer are fully connected to the sub-
sampling layer (S1) of CNN.  Especially, the reject output also connects to 10 normal 
outputs, because the values of 10 normal outputs are considered as important data for the 
rejection. Although 46 neurons are added to the CNN, it is still a small CNN in comparison 
with other CNN (LeCun et al., 1998) (Patrice et al., 2003). The activation function of the reject 
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but it is rejected by the reject output. In this case, we only have to train this pattern with 
other rejected patterns in the extended training process; thus, the neural network can 
learn this new pattern more easily. 

• With the reject output, the reject rate of recognition can be controlled. We can increase 
the reject rate to reduce the error rate by changing a threshold at the reject output.  

There are some disadvantages of this neural network: 
• Because the training process has some phases, the training program is more complex. 
• The data set of rejected patterns in the previous training process sometimes has a large 

number of patterns in the same class in comparison with the other classes; thus, training 
the neural network with this data set usually gives a not good set of weights and biases. 
Therefore, we have to select more patterns to add to this data set for training. How to 
select these patterns that is still a problem for studying.        

3. Design of pattern recognition neural network with a reject output 
The single layer perceptron with the reject output in the previous session is only a simple 
example to present basically our idea of neural network designed with a reject output and 
many sets of weights and biases. In order to interpret in detail the problems of this chapter, 
a design of neural network for recognizing handwritten digits patterns will be chosen as an 
illustrative example, because the handwritten digits recognition that is a typical application 
of pattern recognition neural network (Le & Mizukawa, 2006). 

3.1 Structure of the pattern recognition neural network 
There are many types of neural network that can be used for pattern recognition (Bishop et 
al., 1986). The convolutional neural network (CNN) is a famous type of pattern recognition 
neural network that has been successfully applied to handwritten character recognition 
(LeCun et al., 1995). The CNNs are designed to recognize visual patterns directly from pixel 
images with minimal pre-processing (LeCun et al., 1998). Thus, the convolutional structure 
was chosen for the design of pattern recognition neural network in this chapter. However, 
we intentionally designed a small and simple CNN, because we want to prove our small 
CNN can still classify almost all patterns in a large training data set by using the reject 
output and many sets of weights and biases. That is the main goal of this chapter. 
Figure 6 illustrates our CNN designed for recognizing the handwritten digit pattern 16x16 
pixels. Therefore, the input layer has 256 neurons arrange in a matrix 16x16. The CNN has 
only one convolutional layer and one sub-sampling (LeCun et al., 1998). The convolutional 
layer (C1) has only 2 non-symmetric feature maps of size 7x7 and 5x5. Each neuron in each 
feature map connects to the input layer in a matrix 4x4 neighbourhood type (LeCun et al., 
1998). Moreover, this neighbourhood type is design with two unit overlap (Patrice et al., 
2003) for the 7x7 feature map and one unit overlap for the 5x5 feature map. The sub-
sampling layer (S1) has 2 feature maps of size 5x5 and 2 feature maps 3x3 using 3x3 
neighbourhood type to connect to (C1) with two unit overlap. The neural networks for 
handwritten digits recognition have almost only 10 outputs corresponding to 10 digits (from 
0 to 9); thus, our CNN also has 10 outputs that we called 10 normal outputs. 
With this design, our CNN can be considered as a small CNN. We assert that it would be 
difficult to classify all patterns in a large training data set by the above CNN (without the 
reject output structure). In fact, we have already tried to train our CNN (without the reject 
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output) with a training data set of 5000 patterns. After more 500 epochs, there are still 267 
misclassified patterns. Adding more feature maps to the convolutional layer and sub-
sampling layer will help the CNN to classify more patterns in the training data set. 
However, the size of the CNN will increase considerably and there are still some 
misclassified patterns. The consideration leads us to design the reject output for our CNN to 
cluster all misclassified patterns, and then they are extracted from the training data set in 
order to set up a new training data set for classifying in the extended process (Fig. 6). 
 

 
Fig. 6. A small convolutional neural network is designed with the reject output. 

3.2 Design of the reject output 
With the role of the reject output to classify all rejected patterns, which included all 
misclassified patterns and some classified patterns, the design of the reject output will be 
considered as a design of neural network. Therefore, we added to the CNN not only one 
neuron for the reject output but also a hidden layer before the reject output (Fig. 6). The 
hidden layer has 45 neurons corresponding to 45 areas between any two of ten directions in 
the patterns space. In fact, we have already tried to use 10, 25, 45, 55 and 100 neurons for this 
hidden layer and finally the hidden layer with 45 neurons is the best selection for the ability 
and speed of classification.  All neurons of this hidden layer are fully connected to the sub-
sampling layer (S1) of CNN.  Especially, the reject output also connects to 10 normal 
outputs, because the values of 10 normal outputs are considered as important data for the 
rejection. Although 46 neurons are added to the CNN, it is still a small CNN in comparison 
with other CNN (LeCun et al., 1998) (Patrice et al., 2003). The activation function of the reject 
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output neuron is Hyperbolic Tangent Sigmoid that differs from 10 normal outputs with Log-
Sigmoid function. Therefore, the value of the reject output is in range between -1 and +1. 

Reject output value = 
netnet

netnet

nn
nn

ee
ee

   a   
+

=  

a> threshold  the input pattern is rejected 
a≤ threshold  the input pattern is not rejected 

(1) 

The threshold value should be determined for the reject output in order to decide between 
rejected pattern and un-rejected pattern. We will discuss this problem in section 4. 

4. The training method with the reject output 
Our training method is designed for a training process with many phases. The number of 
phases depends on the training data set that is used in the training process. If the training 
data set is not so large, the training process is often performed in four basic phases. With a 
larger training data set, the training process needs more extend phases. On the other hand, 
the training method is also concerned with the case when there are some new patterns that 
should be update to the training data set. For training the CNN by minimizing the mean 
squared error function (MSE), we have chosen the back-propagation algorithm (Bishop et 
al., 1986), which is perhaps the most widely used training algorithm for multilayer 
feedforward networks (Martin et al., 1996). 
 

 
Fig. 7. The basic training process with four basic phases. 

4.1 Four basic phases in the training process 
• The first phase: the neural network is trained with all patterns in the training data set. 

The reject output is not active, that means the reject output neuron and 45 neurons in 
the hidden layer is not connected to the neural network. Back-propagation algorithm is 
used for 10 normal outputs. We use online-training method with 10 learning rates that 
are distributed for 10 outputs corresponding to their error values (Le & Mizukawa, 
2006). In this phase, the biggest learning rate was used that is 0.5. This method makes 
the MSE to reduce faster. Our training software always tracks the decrease of MSE and 
the current total of misclassified patterns. Until two values reduce very slowly, we will 
switch to the second phase. After this phase, if there are some misclassified patterns, 
they will be marked as rejected patterns. 

• The second phase: The neural network is still trained with all patterns but there is a 
small change. After the first phase, all misclassified patterns have already marked as 
rejected patterns, and the remains of training data set are classified patterns. To 
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separate all misclassified patterns from the classified patterns in the next phase more 
easily, in the second phase we train the neural network with all classified patterns in 
normal manner, but train all outputs with zero value for all rejected patterns. This 
training manner can push all rejected patterns toward the root (Fig. 8); thus, they will be 
clustered more easily in the third phase. However, in this phase, the reject output is still 
not active. The MSE usually continues to reduce in this phase, and we can increase the 
learning rate. Until MSE attains a low value, we will switch to the third phase. 
However, before doing the third phase, we should check all the rejected patterns and 
mark the rejected patterns again. In fact, some of the rejected patterns are classified 
correctly after the second phase; thus, they should be marked as the classified patterns. 

 
Fig. 8. Training the neural network with rejected patterns. 

• The third phase: All patterns are used for training, and the reject output is active now 
to cluster all rejected patterns that were marked in the second phase. That is the most 
important phase in our training method.   

In this phase, when a training pattern is placed into the input layer, the training program 
has already known the pattern is one of rejected or un-rejected pattern that correspond with 
misclassified or classified pattern in the second phase. If this pattern is one of rejected 
patterns, the neural network will be trained with value 0 for all ten normal outputs and 
value 1 for the reject output. If the pattern is an un-rejected pattern (or classified pattern), it 
will be classified by the corresponding normal output and the reject output is trained with 
value -1. In this manner, we want to continue clustering all rejected patterns in the area that 
is near the root point (Fig. 8).    
We realize that the number of the rejected patterns is always smaller than the number of the 
un-rejected pattern, and if the neural network was trained with all rejected and un-rejected 
patterns in the original order of them in the training data set, the training process would 
take a long time to converge. Thus, the rejected patterns and the un-rejected patterns should 
be placed one after the other into the input layer of the neural network for training. The 
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separate all misclassified patterns from the classified patterns in the next phase more 
easily, in the second phase we train the neural network with all classified patterns in 
normal manner, but train all outputs with zero value for all rejected patterns. This 
training manner can push all rejected patterns toward the root (Fig. 8); thus, they will be 
clustered more easily in the third phase. However, in this phase, the reject output is still 
not active. The MSE usually continues to reduce in this phase, and we can increase the 
learning rate. Until MSE attains a low value, we will switch to the third phase. 
However, before doing the third phase, we should check all the rejected patterns and 
mark the rejected patterns again. In fact, some of the rejected patterns are classified 
correctly after the second phase; thus, they should be marked as the classified patterns. 

 
Fig. 8. Training the neural network with rejected patterns. 

• The third phase: All patterns are used for training, and the reject output is active now 
to cluster all rejected patterns that were marked in the second phase. That is the most 
important phase in our training method.   

In this phase, when a training pattern is placed into the input layer, the training program 
has already known the pattern is one of rejected or un-rejected pattern that correspond with 
misclassified or classified pattern in the second phase. If this pattern is one of rejected 
patterns, the neural network will be trained with value 0 for all ten normal outputs and 
value 1 for the reject output. If the pattern is an un-rejected pattern (or classified pattern), it 
will be classified by the corresponding normal output and the reject output is trained with 
value -1. In this manner, we want to continue clustering all rejected patterns in the area that 
is near the root point (Fig. 8).    
We realize that the number of the rejected patterns is always smaller than the number of the 
un-rejected pattern, and if the neural network was trained with all rejected and un-rejected 
patterns in the original order of them in the training data set, the training process would 
take a long time to converge. Thus, the rejected patterns and the un-rejected patterns should 
be placed one after the other into the input layer of the neural network for training. The 
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training software can do it very easy. As a result, the rejected patterns are used in rotation in 
each training epoch; thus, they usually are clustered by the reject output faster than the un-
rejected patterns.  
The reject output value is always in range from -1 to +1. The neural network uses the reject 
output to cluster for the rejected patterns with value 1 and for the un-rejected patterns with 
value -1. Therefore, a threshold value R has been determined for the reject output to 
separate all the rejected patterns from the un-rejected patterns (Fig. 9). That means the 
minimum value α of all the values of the reject output corresponding to all the rejected 
patterns must be higher than R, and the maximum value β of all the values of the reject 
output corresponding to all the un-rejected patterns must be lower than or equal R. The 
training software can track the α and β in this phase, and the neural network should be 
trained until α > β. At that time, the reject output can separate all the rejected patterns from 
the un-rejected patterns by the threshold R = α. 
 

 
Fig. 9. Determine the threshold (R) for the reject output. 

However, we do not need to wait until α > β, because if α < β and R = α, all the rejected 
patterns are still clustered by the reject output, although some un-rejected patterns are 
classified as rejected patterns (Fig. 9). It is no problem, because these patterns will be 
classified again in the next phase. Thus, if α is still smaller than β after hundreds of epochs, 
we should check all the training patterns and mark the rejected patterns again. If a pattern 
has already clustered by the rejected output, it is still marked as a rejected pattern. If a 
pattern is not classified correctly by the normal outputs, it should be marked as a rejected 
pattern. As the result, the number of the patterns that were marked as the rejected patterns 
may be changed in this phase. In brief, the rejected patterns and un-rejected patterns are 
classified flexibly. The threshold value R can be used to control the reject rate of the neural 
network. After this phase, we have the first set of weights and biases (SWB1) and the 
threshold value R for the reject output separated the training data set into two parts. 
• The fourth phase: We must reset all weights and biases in order to start training the 

neural network with only the rejected patterns that have been classified by the reject 
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output in the third phase.  The reject output is not active. If the number of the rejected 
patterns is not so large, the training process will converge in a short time. However, if 
the number of the rejected patterns is too small in comparison with the total of patterns 
in the training data set, or it includes a large number of patterns in the same class in 
comparison with the other classes, the set of weights and biases that we received in this 
phase is usually not good for recognizing. Therefore, we have to select more patterns to 
add to this training phase. In fact, we have had to use a smaller threshold value R to 
reject provisionally some patterns for this training phase. After this phase, the second 
set of weights and biases (SWB2) is determined. The training process is over and the 
neural network has two sets of weights and biases for recognizing. 

4.2 Extended phases 
If the number of the rejected pattern is large, the neural network might be not able to classify 
all of them in the fourth phase. Thus, the training process must be continued with some 
extended phases. The reject output will be used again to separate the set of the rejected 
patterns into 2 parts for classifying with the extend phases look like the third phase and the 
fourth phase (Fig. 10). In that way, we can separate a large training data set into more than 
two parts and use only one neural network with many sets of weights and biases to classify 
all patterns in each part. All the sets of weights and biases should be numbered in the order 
that we received them in the training process.  If the size of neural network is reduced, the 
training process will require more extended phases, and the neural network will have many 
sets of weights and biases. 
 

 
Fig. 10. With the reject output, a large training data set can be separated into more two parts 
to classify by using many sets of weights and biases (SWB). 

4.3 Update new patterns to the training data set     
First of all, we use the neural network to recognize all new patterns and check the 
recognition results. There are some cases of the recognizing result for each new pattern and 
the corresponding update method as follow: 
• The new pattern is recognized incorrectly (misclassified) but the reject output does not 

reject this pattern. Thus, the pattern should be trained as an un-rejected pattern in the 



 Pattern Recognition Techniques, Technology and Applications 

 

516 
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output in the third phase.  The reject output is not active. If the number of the rejected 
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phase is usually not good for recognizing. Therefore, we have to select more patterns to 
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third phase. After some epochs, if the pattern cannot be classified correctly, it will be 
marked as a rejected pattern for training with the reject output. After the reject output 
can be able to reject this pattern, it will be used to train the neural network in forth 
phase.  

• In the case of the recognizing result is not correct and the reject output rejects this 
pattern, this pattern should be trained in the fourth phase.    

• If the new pattern is recognized correctly but the reject output rejects this pattern, we 
should try to train this pattern as an un-rejected pattern in the third phase. If it takes a 
long time, the updating process should stop and return to the starting point, and then 
training this pattern as a rejected pattern in the fourth phase.     

• In the case of the recognizing result is correct and the reject output does not rejects this 
pattern, the pattern could be trained as an un-rejected pattern in the third phase. 

• We realize that the third phase and the fourth phase sometimes can perform 
simultaneously; thus, the time that we spend for updating new patterns is reduced. 

5. Experimental result 
The goal of our experiments is to prove a not big neural network with the reject output can 
be able to classify almost all training patterns and the recognizing ability of the neural 
network is improved. 
The patterns that we use for training and testing are from the well-known MNIST database 
of handwritten digits (http://yann.lecun.com/exdb/mnist). Our software extracts the 
patterns in the MNIST database (with 60000 training patterns) to build our own data sets, 
such as data sets of 600 patterns and 5000 patterns. We also built two testing data set with 
200 patterns and 1000 patterns from the MNIST testing database (with 10000 testing 
patterns). 
• The first experiment: The data set of 600 patterns was used to train the neural network. 

After 30 epochs of training in the first phase and second phase, 22 misclassified patterns 
were found out. They were masked as rejected patterns for training with the reject 
output in the third phase. In the third phase, 22 rejected patterns were separated easily 
from the training data set by the reject output with threshold R=0.76. With this 
threshold, these 22 patterns do not include any un-rejected patterns (we mean that is 
the case of α > β).  Then, these patterns were classified completely in the fourth phase. 
We received 2 sets of weights and biases (SWB1 and SWB2). Moreover, we also 
continuously tried to train the neural network in the first phase with hundreds of 
epochs but there were still 14 misclassified patterns. After this work, the neural network 
also has a set of weights and biases (SWB0) for testing. It is clear that the neural 
network with reject output and two 2 sets of weights and biases (SWB1 and SWB2) can 
classify all 600 training patterns correctly. 

The recognizing ability of the neural network has been tested with 200 and 1000 testing 
patterns in some cases that were showed in Table 1. 
From the testing results in Table I, we can see that the number of errors will be reduced if 
we use SWB1 and SWB2. If the neural network uses only SWB1 and the reject output is 
active, the number of errors is reduced more but we have to accept a number of rejected 
patterns, which may include some patterns that have been classified correctly by the normal 
outputs. 
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Testing 
data set 

Use 
SWB0 

Use SWB1 not use 
reject output 

Use SWB1 with 
reject output 

Use  SWB1 and SWB2 
with reject output 

200 
patterns 

7 
errors 11 errors 0 error 

12 rejected 
0 error 

 
1000 

patterns 
166 

errors 167 errors 138 errors 
36 rejected 

146 errors 
 

Table 1. Testing results after training the neural network with 600 patterns. 

We also tested the neural network with some values of threshold R. Table 2 illustrates the 
testing results when we use the threshold R=0, R=0.5, R=0.76 and R=0.85 for the reject 
output. The threshold R=0.76 is equal the minimum value α of 22 values of the reject output 
corresponding to 22 rejected patterns that were found out in the third phase. From table 2, 
we can see that the result is best with R=α. 
   

Test R=0.76 (=α) R=0 R=0.5 R=0.9 

1000 
patterns 

146 errors 
36 rejected 

8 errors with 
SWB2 

158 errors 
94 rejected 

53 errors with 
SWB2 

150 errors 
66 rejected 

30 errors with 
SWB2 

163 errors 
5 rejected 

0 errors with 
SWB2 

Table 2. Testing the reject output with some threshold values 

• The second experiment: we use the data set of 5000 patterns for training. The number 
of patterns that were marked as the rejected patterns for the fourth phases is 426, but 
that included 159 un-rejected patterns (we mean that is the case α<β). With R=0.59, 
there were still 11 rejected patterns that the reject output cannot classified correctly.  
After checking these patterns, we realize that they look like other patterns very much; 
thus, it is difficult to cluster them by the rejected output. They should be rejected from 
the training data set because they are bad patterns (Fig. 11). 

In the fourth phase, we tried to classify the above 421 patterns, but after hundreds of epochs, 
there were still 36 rejected patterns classified not correctly. Thus, we had to continue with 
two extended phases. After these extended phases, we found out 2 sets of weights and 
biases, such as SWB2 and SWB3. As a result, the neural network uses three sets of weights 
and biases to classify the 5000 training patterns with only 11 errors. The neural network was 
also tested with the 1000 testing patterns. Table 3 shows that the error rate will be reduced, 
if the neural network uses many SBWs with the reject output.  
 

 
Fig. 11. Some bad patterns cannot be clustered by the reject output. 

We also tried to train the neural network with 60000 patterns from the MNIST training 
database. That is really larger number for our small neural network. After the third phase, 
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third phase. After some epochs, if the pattern cannot be classified correctly, it will be 
marked as a rejected pattern for training with the reject output. After the reject output 
can be able to reject this pattern, it will be used to train the neural network in forth 
phase.  

• In the case of the recognizing result is not correct and the reject output rejects this 
pattern, this pattern should be trained in the fourth phase.    

• If the new pattern is recognized correctly but the reject output rejects this pattern, we 
should try to train this pattern as an un-rejected pattern in the third phase. If it takes a 
long time, the updating process should stop and return to the starting point, and then 
training this pattern as a rejected pattern in the fourth phase.     

• In the case of the recognizing result is correct and the reject output does not rejects this 
pattern, the pattern could be trained as an un-rejected pattern in the third phase. 

• We realize that the third phase and the fourth phase sometimes can perform 
simultaneously; thus, the time that we spend for updating new patterns is reduced. 

5. Experimental result 
The goal of our experiments is to prove a not big neural network with the reject output can 
be able to classify almost all training patterns and the recognizing ability of the neural 
network is improved. 
The patterns that we use for training and testing are from the well-known MNIST database 
of handwritten digits (http://yann.lecun.com/exdb/mnist). Our software extracts the 
patterns in the MNIST database (with 60000 training patterns) to build our own data sets, 
such as data sets of 600 patterns and 5000 patterns. We also built two testing data set with 
200 patterns and 1000 patterns from the MNIST testing database (with 10000 testing 
patterns). 
• The first experiment: The data set of 600 patterns was used to train the neural network. 

After 30 epochs of training in the first phase and second phase, 22 misclassified patterns 
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Testing 
data set 

Use 
SWB0 

Use SWB1 not use 
reject output 

Use SWB1 with 
reject output 

Use  SWB1 and SWB2 
with reject output 

200 
patterns 

7 
errors 11 errors 0 error 

12 rejected 
0 error 

 
1000 

patterns 
166 

errors 167 errors 138 errors 
36 rejected 

146 errors 
 

Table 1. Testing results after training the neural network with 600 patterns. 

We also tested the neural network with some values of threshold R. Table 2 illustrates the 
testing results when we use the threshold R=0, R=0.5, R=0.76 and R=0.85 for the reject 
output. The threshold R=0.76 is equal the minimum value α of 22 values of the reject output 
corresponding to 22 rejected patterns that were found out in the third phase. From table 2, 
we can see that the result is best with R=α. 
   

Test R=0.76 (=α) R=0 R=0.5 R=0.9 

1000 
patterns 

146 errors 
36 rejected 

8 errors with 
SWB2 

158 errors 
94 rejected 

53 errors with 
SWB2 

150 errors 
66 rejected 

30 errors with 
SWB2 

163 errors 
5 rejected 

0 errors with 
SWB2 

Table 2. Testing the reject output with some threshold values 

• The second experiment: we use the data set of 5000 patterns for training. The number 
of patterns that were marked as the rejected patterns for the fourth phases is 426, but 
that included 159 un-rejected patterns (we mean that is the case α<β). With R=0.59, 
there were still 11 rejected patterns that the reject output cannot classified correctly.  
After checking these patterns, we realize that they look like other patterns very much; 
thus, it is difficult to cluster them by the rejected output. They should be rejected from 
the training data set because they are bad patterns (Fig. 11). 

In the fourth phase, we tried to classify the above 421 patterns, but after hundreds of epochs, 
there were still 36 rejected patterns classified not correctly. Thus, we had to continue with 
two extended phases. After these extended phases, we found out 2 sets of weights and 
biases, such as SWB2 and SWB3. As a result, the neural network uses three sets of weights 
and biases to classify the 5000 training patterns with only 11 errors. The neural network was 
also tested with the 1000 testing patterns. Table 3 shows that the error rate will be reduced, 
if the neural network uses many SBWs with the reject output.  
 

 
Fig. 11. Some bad patterns cannot be clustered by the reject output. 

We also tried to train the neural network with 60000 patterns from the MNIST training 
database. That is really larger number for our small neural network. After the third phase, 
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with SWB1 and R=0 the reject output separated 12159 rejected patterns from the 60000 
patterns, and there are 5903 un-rejected patterns that were clustered by the reject output. 
The neural network was trained with only these rejected patterns in the fourth phase and we 
received the SWB2, but there are still 2445 misclassified patterns. 
 

Testing 
data set 

Use SWB1 not use 
reject output 

Use  SWB1 and SWB2 
with reject output 

Use  SWB1,SWB2 and 
SWB3 with reject output 

1000 
patterns 119 errors 103 errors 

85 rejected 
97 errors 

 

Table 3. Testing results after training the neural network with 5000 patterns 

Table 4 illustrates the testing results when the neural network tries to classify 10000 testing 
patterns from the MNIST testing database. We also see that the error rate 8.7 % will be 
reduced to 5.4 %, if the neural network uses SBW1 and SWB2 with the reject output. 
 

Testing 
data set Use only SWB1 Use  SWB1 with reject 

output 
Use  SWB1,SWB2 with 

reject output 
10000 

patterns 870 errors 225 errors 
and 1699 rejected 

540 errors 
 

Table 4. Testing results after training the neural network with 60000 patterns 

6. Future work 
The main objective of our research is to design a smart vision sensor for the robots. This 
sensor will be designed with pattern recognition neural networks that require a small 
response time. The design of reject output for pattern recognition neural network in this 
chapter can reduce the size of pattern recognition neural network; thus, it can be applied to 
design our smart vision sensor in the near future. The structure of neural network with 
reject output has already opened some abilities to design the neural network in parallel 
processing structure that will be implemented on FPGA to make the smart sensor run faster 
(Fig. 12). 
The manner that the neural network using the reject output to update a new pattern is one 
of studying directions to make the smart sensor can enhance its ability after it is 
commissioned.   

7. Conclusion 
Adding the reject output to the pattern recognition neural network is an approach to help 
the neural network can classify almost all patterns of a training data set by using many sets 
of weights and biases, even if the neural network is small. With a smaller number of 
neurons, we can implement the neural network on a hardware-based platform more easily 
and also reduce the response time of it. With the reject output the neural network can 
produce not only right or wrong results but also reject results. It is significant, if we design a 
neural network to help a robot to interact with people. The reject results can be accepted by 
the robot in this interaction process. If the neural network rejected a pattern, the robot 
would ask people to make the pattern again that looks like we talk “Pardon me”. 
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Fig. 12. Implement the neural network with the reject output on FPGA in parallel structure. 
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1. Introduction     
Recently, with the increasing demand of high security, person identification has become 
more and more important in our everyday life. The purpose of establishing the identity is to 
ensure that only a legitimate user, and not anyone else, accesses the rendered services. The 
traditional identification methods are based on “something that you possess” and “something 
that you know” such as key, user-ID, password, PIN, etc. Examples of such applications 
include secure access to buildings, airports, computer systems, cellular phones and ATM 
machines. Another family of identification methods uses biometric characteristics. Biometric 
recognition, or simply biometrics, refers to the automatic recognition of individuals based on 
their physiological and/or behavioral characteristics. Biometrics allows us to confirm or 
establish an individual’s identity based on who she is, rather than by what she possesses (e.g., 
an ID card) or what she knows (e.g., a password). Current biometric systems make use of 
identifiers such as fingerprints, hand geometry, iris, face and voice to establish an identity. 
Biometric systems also introduce an aspect of user convenience. For example, they alleviate 
the need for a user to remember multiple passwords associated with different applications.  
Fingerprint characterization is the oldest and the prevalent member of the biometric family 
and has been extensively used for person identification in a number of commercial, civil and 
forensic applications. 
The question that is being asked about biometric technologies in general and about  
fingerprints in particular is that whether these technologies can work all the time, 
everywhere, and  in all contexts for reliable person identification and authentication.   
One of the design criteria for building such completely automatic and reliable fingerprint 
identification (and  verification) systems is that the underlying sensing, representation, and 
matching technologies must also be very robust. 
In practice, due to variations in impression conditions, ridge configuration, skin conditions 
(aberrant formations of epidermal ridges of fingerprints, postnatal marks, occupational 
marks), acquisition devices and non-cooperative attitude of subjects a significant percentage 
of acquired fingerprint images is of poor quality. In order to ensure that the performance of 
a feature extraction algorithm will be robust with respect to the quality of input fingerprint 
images, an enhancement algorithm which can improve the clarity of the ridge structures is 
useful. Most of the fingerprint image enhancement methods (Gabor, directional or 
anisotropic filter based) use convolution to obtain the results. Another way to address these 
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requirements of robust performance is to adopt robust representation schemes that capture 
the discriminatory information in fingerprint impressions.  
Also, thanks to the increasing power of computers and to the substantial improvement in 
capture devices, the use of fingerprint for personal identification in portable applications is 
very significant.  
For purpose of commercialization, a fingerprint verification system has to take the following 
four crucial factors into consideration: processing speed, recognition rate, power consumption 
and size. These approaches described are computationally very expensive tasks. 
An alternative to the traditional approaches is provided by the Cellular Neural Network 
(CNN) paradigm, introduced by Prof. L.O. Chua in 1988 (Chua & Yang, 1988a; 1988b). A 
CNN consists of a network of first order nonlinear circuits, locally interconnected by linear 
(resistive) connections. 
The rapidly growing field of Cellular Neural Networks (CNNs) and analogic cellular 
computing CNN-UM  (Chua & Roska, 1993) has found a number of potential applications 
(Chua & Yang, 1988b), especially in image and video processing problems (Moreira-
Tamayos & Gyvez, 1999; Iannizzotto et al., 2005, Costantini et al., 2004) where real-time 
signal processing is required. This architecture provides an efficient tool to explore the rich 
world of dynamical systems and makes possible to introduce new approaches for pattern 
recognition (Szirànyi & Csicsvàri, 1993; Theodoridis & Koutroumbas, 2006) and object 
classification (Milanova & Buker, 2000; Bálya, 2003), relevant problems in image processing.  
CNNs can process information at very high speeds comparable to today’s supercomputers. 
The regular lattice architecture of CNNs allows massive parallelism that makes it very 
suitable for performance-demanding applications in image processing.  
Fingerprint-based identification (and verification) systems using CNNs are very promising 
for personal identification and in particular, if incorporated in a VLSI chip, for use in 
portable applications. 
They have the potential to realize a fingerprint-based identification  (or verification) system on one 
chip assuming that it is possible to incorporate a capacitive or optical sensor on the same chip. 
Various approaches to implement real-time person verification and identification systems 
on CNNs have been proposed (Su et al., 2006; Gao et al., 2001; Gao & Moschytz, 2001;  2004). 
However in (Su et al., 2006) the level of accuracy and robustness of the fingerprint 
verification  system was not investigated and in (Gao & Moschytz, 2004) are not used public 
domain fingerprint databases.  
The most popular method for fingerprint representation is based on local landmarks called 
minutiae. The minutiae-based systems first locate the points, often referred as minutiae 
points, in fingerprint image where the fingerprint ridges either terminate or bifurcate (see 
fig. 1) and then match minutiae relative placement in a given finger and the stored template 
(Jain et al.,  1997).  
While minutiae-based fingerprint verification systems have shown to be fairly accurate, 
further improvements are needed for acceptable performance, especially in applications 
involving very large scale databases.  
The aim of this chapter is to re-formulate an algorithm for fingerprint verification using 
Scale Invariant Feature Transform (SIFT) (Lowe 1999; Lowe, 2004; Park et al., 2008) in such a 
way to exploit the high degree of parallelism inherent in a single-layer CNN.  
SIFT detects and describes local features in images. The SIFT features are local and based on 
the appearance of the object at particular interest points and are invariant to image scale and 
rotation. They are also robust to changes in illumination, noise, occlusion and minor 
changes in viewpoint. In addition, the SIFT features are discriminant and allow for correct 
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object identification with low probability of mismatch and are easy to match against a (large) 
database of local features (Bicego et al., 2006). 

 
Fig. 1. An example of bifurcation and ridge ending in a fingerprint image 

In our implementation we extract characteristic SIFT feature points in scale space and 
perform a matching based on the texture information around the feature points using the 
SIFT operator (Chikkerur, 2006).  
The input to the system is a gray level fingerprint image where a number of feature points 
(keypoints) are located using a difference-of-Gaussian function in a scale space. A descriptor,  
representing each feature point and invariant to rotation, scale and change of lighting, is 
calculated.   
In this chapter we describe the technique developed and present a set of experimental 
results. In the final section we draw our conclusions on the work carried out. 

2. Scale invariant feature transform  
There are three typical categories of fingerprint verification methods: i) minutiae, ii) 
correlation, and iii) ridge features. However, considering the types of information used, a 
method can be broadly categorized as minutiae based or texture based. While the minutiae 
based fingerprint verification systems have shown high accuracy (Jain et al., 1997; Ratha et 
al., 1996), they ignore the rich information in ridge patterns which can be useful to improve 
the matching accuracy. Most of the texture based matchers use the entire fingerprint image 
or local texture around minutiae points (Chikkerur et al., 2006). Using local texture is more 
desirable because the global texture will be more sensitive to non-linear and non-repeatable 
deformation of fingerprint images. When the local texture is collected based on the minutiae 
points, the texture based fingerprint representation is again limited and its performance 
depends upon the reliability of extracted minutiae points. It is not obvious how one could 
capture the rich discriminatory texture information in the fingerprints that is not critically 
dependent on finding minutiae points or core points.   
For the purpose of extending characteristic feature points of fingerprint beyond minutiae 
points, we adopt Scale Invariant Feature Transform (SIFT) (Lowe, 2004). SIFT extracts 
repeatable characteristic feature points from an image and generates descriptors 
representing the texture around the feature points. In (Park, 2008) the authors have 
demonstrated the  utility of SIFT representation for fingerprint-based identification.  As the 
SIFT feature points have already demonstrated their efficacy in generic object recognition 
problems, in the same way  this representation is also stable and reliable for many of the 
matching problems related to the fingerprint domain. Further, since SIFT feature points are 
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depends upon the reliability of extracted minutiae points. It is not obvious how one could 
capture the rich discriminatory texture information in the fingerprints that is not critically 
dependent on finding minutiae points or core points.   
For the purpose of extending characteristic feature points of fingerprint beyond minutiae 
points, we adopt Scale Invariant Feature Transform (SIFT) (Lowe, 2004). SIFT extracts 
repeatable characteristic feature points from an image and generates descriptors 
representing the texture around the feature points. In (Park, 2008) the authors have 
demonstrated the  utility of SIFT representation for fingerprint-based identification.  As the 
SIFT feature points have already demonstrated their efficacy in generic object recognition 
problems, in the same way  this representation is also stable and reliable for many of the 
matching problems related to the fingerprint domain. Further, since SIFT feature points are 
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based on texture analysis of the entire scale space, these feature points are probably robust 
to the fingerprint quality and deformation variation.  
The features are selected to be invariant to image scale and rotation, and to provide robust 
matching across a substantial range of affine distortion, addition of noise and partial    
change in lighting.  
The features are highly distinctive, in the sense that a single feature can be correctly 
matched with high probability against a large database of features from many images, 
providing a basis for object and scene recognition. In the original implementation, the 
recognition proceeds by matching individual features to a database of features from known 
objects using a fast nearest-neighbour algorithm, followed by a generalized Hough 
transform to identify clusters belonging to a single object, and finally performing 
verification through least-squares solution for  consistent pose parameters. 
Following are the major stages of computation used to generate the set of image features:  
• Scale-space extrema detection: to identify potential interest points invariant to scale it's 

used a difference-of-Gaussian function (see fig.2). 
• Keypoint localization: at each candidate location, a detailed model is fit to determine 

location and scale. Keypoints are selected based on measures of their stability.  
• Orientation assignment: one or more orientations are assigned to each keypoint 

location based on local image gradient directions. All future operations are performed 
on image data that has been transformed relative to the assigned orientation (providing 
invariance to these transformations).  

• Keypoint descriptor: the local image gradients are measured at the selected scale in the 
region around each keypoint. These are transformed into a representation that allows 
for significant levels of local shape distortion and change in illumination.  

 
Fig. 2. Scale-space extrema detection 

This approach has been named Scale Invariant Feature Transform (SIFT), as it transforms 
image data into scale-invariant coordinates relative to local features.  
An important property of this approach is that it generates large numbers of features that 
densely cover the image over the full range of scales and locations. A typical image of size 
500x500 pixels will give rise to about 2000 stable features (although this number depends on 
both image content and choices for various parameters). The quantity of features is 
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particularly important for object recognition, where the ability to detect small objects in 
cluttered backgrounds requires that at least 3 features be correctly matched from each object 
for reliable identification.  
For image matching and recognition, SIFT features are first extracted from a set of reference 
images and stored in a database. A new image is matched by individually comparing each 
feature from the new image to this previous database. In seminal work of Lowe (Lowe, 
1999) the finding candidate matching features is based on Euclidean distance of their feature 
vectors. Specifically,  a fast nearest-neighbour algorithm is used to perform this computation 
rapidly against large  databases. In our implementation, we have evaluated two different 
metrics: the Lowe and  Szatmári (Szatmári, 2006) metrics. 

3. Cellular Neural Network 
As stated in the introduction, a CNN consists of an array of non-linear, locally 
interconnected, first order circuits. As connections are local, each cell is connected only to 
the cells belonging to its neighbourhood, as it is shown in fig.3. 
 

 
Fig. 3. Architecture of a CNN  

If we call the generic cell in the MxN array as Cij (the cell on the i-th row and the j-th column 
of the array), a formal definition of the neighbourhood of radius r of the cell Cij, Nr(i,j), is 
given by: 
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particularly important for object recognition, where the ability to detect small objects in 
cluttered backgrounds requires that at least 3 features be correctly matched from each object 
for reliable identification.  
For image matching and recognition, SIFT features are first extracted from a set of reference 
images and stored in a database. A new image is matched by individually comparing each 
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1999) the finding candidate matching features is based on Euclidean distance of their feature 
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where:  
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where xij
v , uij

v , yij
v are respectively the state, input and output voltage of the CNN cell.  

The state and output vary in time, whereas the input is kept constant. The indexes ij refer to 
the position of the cell in the 2D grid, while rkl N∈  is a grid point in the neighborhood 
within the radius r of the cell ij. Matrices A, B, A1, B1, D, called templates, describe the 
interaction of the cell with its neighbourhood and regulate the evolution of the CNN state 
and output vectors. Template connections can be realised by voltage-driven current 
generators. 

ij,klA  is called linear feedback template, ij,klB the linear control template, ijI is a current bias 

in the cell. ij,klA1 , ij,klB1  and ij,klD  are non-linear templates respectively applied to yyΔv , 

uuΔv  and Δv . ij,klA1  is called difference controlled nonlinear feedback template, ij,klB1  is 

the difference controlled non-linear control template, ij,klD  is the generalized non-linear 
generator. The output characteristic f adopted is a sigmoid-type piecewise-linear function.  
CNNs are exploited for image processing by associating each pixel of the image to the input 
or initial state of a single cell. Subsequently, both the state and output of the CNN matrix 
evolve  to reach an equilibrium state. The evolution of the CNN is governed by the choice of 
the template. A lot of templates have already been defined in order to perform basic image 
processing operations, like gradient computation, smoothing, hole detection, line deletion, 
isolated pixel extraction and deletion, and so on. Simple operations can be performed just by 
using the basic templates A, B, and the bias I, whereas more complicated processing 
requires the use of the nonlinear templates A1, B1, and the generalized nonlinear generator 
D.  The proposed algorithm can be totally implemented onto a “CNN Universal Machine” 
(CNN-UM), an hardware structure able to implement CNNs (Chua & Roska, 1993). 
The main advantage of using CNNs in image processing is related to the increasing of 
throughput due to the massive parallelism of the structure, joined to the similar  way of 
signal processing, typical of CNNs. In fact they are able to perform a complete image 
processing analysis in time of order of 10-6 s (by using a CNN hardware implementation), 
this in form of sequences of simple tasks like array target segmentation, background 
intensity extraction, target detection and target intensity extraction. 
Depending on the type of neurons that are basic elements of the network, it is possible to 
distinguish continuous-time CNN (CTCNN), discrete-time CNN (DTCNN) (oriented 
especially on binary image processing), CNN based on multi-valued neurons (CNN-MVN) 
and CNN based on universal binary neurons (CNN-UBN). CNN-MVN makes possible 
processing, which is defined by some multiple-valued threshold functions, and CNN-UBN 
allows processing defined not only by threshold, but also by arbitrary boolean function. 
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4. The fingerprint verification system 
Scale Invariant Feature Transform (SIFT) (Lowe, 2004) was originally developed for general 
purpose object recognition. SIFT detects stable feature points in an image and performs 
matching based on the descriptor representing each feature point.   
Even though SIFT was originally developed for general purpose object recognition and does 
not require image preprocessing, we have performed a few preprocessing steps on 
fingerprint images to obtain better matching performance. The preprocessing is performed 
in two steps: i) adjusting the graylevel distribution (Csapodi & Roska, 1996) ii) defining a   
bounding box search area to filter the boundary points of fingerprint. When the fingerprint 
images show similar texture, the performance is expected to be improved because SIFT uses  
texture information both for extracting feature points and matching. First, to overcome some 
apparent differences in gray level distributions, we consider the “image intensity” and 
adjust the histogram. Second, the boundary area of a fingerprint always causes some feature 
points to be detected because they are local extrema.  
However, the boundary region is different for every fingerprint impression even for the 
same finger. Therefore, feature points on the fingerprint boundary usually result in false 
matches. We construct a binary mask that includes only the inner part of a fingerprint and 
use it to prevent any noisy feature points from being detected on the boundary. In fig.4 is 
shown a schematic representation of the our algorithm. 
 

 
Fig. 4. Flow chart of fingerprint matching using SIFT operator 

The feature points are detected using a cascade filtering approach to identify candidate 
locations that are then examined in further detail. The first stage of keypoint detection is to 
identify locations and scales that can be assigned under differing “views” of the same object. 
Detecting locations that are invariant to scale change of the image can be accomplished by 
searching for stable features using a continuous function of scale known as scale space 
(Witkin, 1983).  
To obtain a scale space (see fig. 2) the initial image is incrementally convolved with 
Gaussians to produce images separated by a constant factor k in scale space, shown stacked 
in the left column of fig. 2. Adjacent image scales are subtracted to produce the difference-
of-Gaussian images (DOG) shown on the right of fig. 2. The set of Gaussian-smoothed 
images and DOG images are called an octave. Once a complete octave has been processed, 
we resample the Gaussian image that has twice the initial value of σ by taking every second 
pixel in each row and column. As stated in (Park, 2008) a typical number of scales and 
octaves for SIFT operation is 5 and 6, respectively. 
In a CNN, an implementation of the Gaussian filter with aperture σ can be obtained using  
the Heat Diffusion template (Rekeczky et al., 1998; 1999) with ad hoc diffusion coefficient 
(Roska, 1999). As pointed out by Witkin (Witkin, 1983), convolution of the original signal 
with Gaussians at each scale is equivalent to solving the heat equation with the original 
image as initial condition.   
An example of Heat Diffusion template is as follow: 
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4. The fingerprint verification system 
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purpose object recognition. SIFT detects stable feature points in an image and performs 
matching based on the descriptor representing each feature point.   
Even though SIFT was originally developed for general purpose object recognition and does 
not require image preprocessing, we have performed a few preprocessing steps on 
fingerprint images to obtain better matching performance. The preprocessing is performed 
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bounding box search area to filter the boundary points of fingerprint. When the fingerprint 
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apparent differences in gray level distributions, we consider the “image intensity” and 
adjust the histogram. Second, the boundary area of a fingerprint always causes some feature 
points to be detected because they are local extrema.  
However, the boundary region is different for every fingerprint impression even for the 
same finger. Therefore, feature points on the fingerprint boundary usually result in false 
matches. We construct a binary mask that includes only the inner part of a fingerprint and 
use it to prevent any noisy feature points from being detected on the boundary. In fig.4 is 
shown a schematic representation of the our algorithm. 
 

 
Fig. 4. Flow chart of fingerprint matching using SIFT operator 

The feature points are detected using a cascade filtering approach to identify candidate 
locations that are then examined in further detail. The first stage of keypoint detection is to 
identify locations and scales that can be assigned under differing “views” of the same object. 
Detecting locations that are invariant to scale change of the image can be accomplished by 
searching for stable features using a continuous function of scale known as scale space 
(Witkin, 1983).  
To obtain a scale space (see fig. 2) the initial image is incrementally convolved with 
Gaussians to produce images separated by a constant factor k in scale space, shown stacked 
in the left column of fig. 2. Adjacent image scales are subtracted to produce the difference-
of-Gaussian images (DOG) shown on the right of fig. 2. The set of Gaussian-smoothed 
images and DOG images are called an octave. Once a complete octave has been processed, 
we resample the Gaussian image that has twice the initial value of σ by taking every second 
pixel in each row and column. As stated in (Park, 2008) a typical number of scales and 
octaves for SIFT operation is 5 and 6, respectively. 
In a CNN, an implementation of the Gaussian filter with aperture σ can be obtained using  
the Heat Diffusion template (Rekeczky et al., 1998; 1999) with ad hoc diffusion coefficient 
(Roska, 1999). As pointed out by Witkin (Witkin, 1983), convolution of the original signal 
with Gaussians at each scale is equivalent to solving the heat equation with the original 
image as initial condition.   
An example of Heat Diffusion template is as follow: 
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where z is the central element of the matrix I (see eq. 2). 
In fig. 5 is shown the obtained results applying the Heat Diffusion template on an image of 
example. 

 
Fig. 5. An example of use of the Heat Diffusion template 

The standard deviation of the Gaussian filter depend on the aij matrix elements.  
Also, to obtain a difference image it's possible to use the technology described in (Sadeghi-
Emamchaie, 1998), where a locally connected analog cellular neural networks (CNNs) is 
used to implement digital arithmetic arrays; the arithmetic is implemented using a Double-
Base Number System (DBNS).  Specifically, a CNN array, using a simple non-linear 
feedback template, with hysteresis, can perform arbitrary length arithmetic with good 
performance in terms of stability and robustness.  
In according to (Lowe, 2004), to obtain a number of feature points we detect the local 
maxima and minima of the DOG images; each sample point is compared to its eight 
neighbours in the current image and nine neighbours in the scale above and below           
(see fig.  2). A feature point is selected only if it is larger than all of these neighbours or 
smaller than all of them. Then, the same technique is applied for the higher (and lower) 
octave. 
If the first octave is sampled at the same rate as the input image, the highest spatial 
frequencies will be ignored. This is due to the initial smoothing, which is needed to provide 
separation of peaks for robust detection.  
Therefore, we expand the input image by a factor of 2, using an algorithm of interpolation, 
prior to building the scale space. In a CNN, an implementation of an algorithm of 
interpolation (Roska, 1999) can be obtained using the following template: 

 

(5) 

In fig. 6 we show an example of interpolation obtained with this template. 
The local maximum (and minimum) in a given neighbourhood (see fig. 7) can be computed 
using a single layer CNN through a difference-controlled template (Local maxima detector 
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template), as described in (Chua et al., 1993). Each local minimum can also be detected if the 
input image is inverted. However an improvement of the performances can be obtained 
using a local maxima detector based on multi-layer CNN (Roska & Chua, 1993). 
 

 
Fig. 6. Fitting a surface on three given points. Image size: 80x80. 

 
Fig. 7. Maxima and minima of the difference-of-Gaussian images are detected by comparing 
a pixel (marked with X) to its 26 neighbours in 3x3 regions at the current and adjacent scales 
(marked with circles).  

A local extrema is observed if its derivative in scale space is stable and if it is on an apparent 
edge. If an extremum is decided as unstable or is placed on an edge, it is removed because it 
can not be reliably detected again with small deformations or lighting changes.    
To remove the extremum placed on an edge we use a mask image obtained processing the 
input image with an edge-detector described in (Roska, 1999). Then, the next step is to reject 
the points that have low contrast (and are therefore sensitive to noise). 
In order to reject the points that have low contrast we use a mask image obtained processing 
the input image with the technique introduced in (Cserey et al., 2003). In this approach a 
parallel histogram modification technique based on embedded morphological pre-
processing is formulated in terms of non-linear partial differential equations (PDE).  
Now, to characterize the image at each key location (keypoint), the first smoothed image at 
each octave of the pyramid is processed to extract image gradients and orientations.  
In a CNN, the estimation of the gradient intensity in a local neighbourhood can be obtained 
using the following template: 

 

(6) 

where b =|vuij – vukl|/8 . 
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where b =|vuij – vukl|/8 . 
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To each key location is assigned a “canonical orientation”, so that the image descriptors are 
invariant to rotation. This orientation is estimated by the gradient orientations of sample 
points within a region around the keypoints. To make the descriptor stable against lighting 
or contrast changes, the orientation is determined as follow: 
• we estimate the gradient orientation of the pixels, within a region around the keypoint, 

applying a grayscale line detector template (8 templates for 8 directions) presented in 
(Roska, 1999); 

• we add the 8 maps obtained (SUM – to each pixel of the image we have an estimate of 
its orientation); 

• we obtain an image mask applying the mathematical morphology operator dilation 
(Roska, 1999) on an image that contains only keypoints (keypoints mask). The mask 
locates the points that will contribute to the estimate of the keypoints orientation;  

• we calculate the local mean (neighbourhood – 3x3) of the image SUM (Moreira-
Tamayos &  Gyvez, 1999) on the points “selected” by the mask image. 

The orientations estimated correspond to dominant directions of local gradients. Given a 
stable location, scale, and orientation for each key, it is now possible to describe the local 
image region in a manner invariant to these transformations. In addition, it is desirable to 
make this representation robust against change in lighting and small shifts in local 
geometry, such as arise from affine. 
One obvious approach would be to sample the local image intensities around the keypoint 
at the appropriate scale, and to match these using a normalized correlation measure. 
However, simple correlation of image patches is highly sensitive to changes that cause 
misregistration of samples, such as affine or non-rigid deformations.  
In according to (Park, 2008), now we generate a map of gradient orientations around each local 
extremum and then to make the descriptor orientation invariant, all gradient orientations are 
rotated respect to the major orientation (keypoints orientation) of the local extremum. 
To obtain a local map of gradient orientation we proceed as follow: 
• we calculate the gradient intensity of the fingerprint image; 
• we use the grayscale line detector templates (8 orientation images, applied only on the 

keypoints neighbourhood – size: 16x16); 
• we add the 8 orientation images to obtain a local gradient orientation image;  
• we calculate the difference (SUB) between the local gradient orientation image and the 

keypoints orientation image (canonical orientation of the keypoints), the SUB image 
contains the gradient orientations rotated respect to the keypoints orientation; 

• we calculate a weighted mean (Moreira-Tamayos &  Gyvez, 1999) of the intensity 
gradient image and of the “rotated” local gradient orientation image. 

In the original implementation (Lowe, 1999) of SIFT the best candidate match for each 
keypoint is found by identifying its nearest neighbour in the database of keypoints from 
training images. The nearest neighbour is defined as the keypoint with minimum Euclidean 
distance for the invariant descriptor vector. To obtain more details on matching process read 
(Lowe, 2004).  
In our tests we used two metrics: 
• the original solution described in (Lowe, 1999); 
• the metric described in (Szatmári, 2006). 
The first solution is more accurate (see Section 5) but it's not implemented on a CNN. The 
second metric though implemented on CNN, indeed,  is less accurate, reliable and robust. 
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In  (Szatmári, 2006) the author investigated PDE-based dynamic phenomena for comparing 
objects and introduced a spatio-temporal non-linear wave metric. This metric is capable of 
comparing both binary and gray-scale object pairs in a parallel way. Spatio-temporal waves 
are controlled to explore the quantitative properties of objects. In addition to spatial data  
time related information is also extracted and used for evaluating differences and 
similarities. The detailed analysis of the proposed metric shows that this wave-based 
approach can outperform well-known metrics such as Hausdorff and Hamming metrics in 
selectivity and sensitivity. 

5. Experimental results 
In according to (Park, 2008), the performances of the proposed SIFT based fingerprint 
verification has been evaluated on FVC2002 DB1 and DB2 fingerprint databases (Maio,  
2002). Both the databases contain images of 100 different fingers with 8 impressions for each 
finger. In FVC2002 project, a total of ninety students (20 years old on the average) enrolled 
in the first two years of a Computer Science degree program agreed to act as volunteers for 
providing fingerprints. The volunteers were randomly partitioned into different groups, 
each group was associated to a DB and therefore to a different fingerprint scanner. 
Forefinger and middle finger of both the hands (four fingers total) of each volunteer were 
acquired by interleaving the acquisition of the different fingers to increase differences in 
finger placement. The top-ten quality fingers were removed from each database since they 
do not constitute an interesting case study. The remaining 110 fingers were split into set A 
(100 fingers - evaluation set) and set B (10 fingers - training set). To make set B 
representative of the whole database, the 110 collected fingers were ordered by quality. 
During a session, fingers were alternatively dried and moistened.   
Some characteristics of these two databases are summarized in table 1. 
 

 Sensor Type Image Size Images Resolution 

DB1 Optical Sensor 388x374 100x8 500 dpi 

DB2 Optical Sensor 296x560 100x8 569 dpi 

Table 1. Description of FVC 2002 DB1 and DB2 databases 

The performance of the whole system, was evaluated by the Equal Error Rate (EER) for each 
metric used (see table 2). At Equal Error Rate, FAR=FRR. As the name implies, the FAR 
(False Acceptance Rate)  describes the ability of the system to reject fingerprints which are 
not allowed to access the system, while  the FRR (False Rejection Rate) describes the ability 
of the system to accept fingerprints which belong to the system users. 
 

 EER1 EER2 
DB1 9.30% 9.67% 
DB2 11.65% 12.36% 

Table 2. Description of the experimental results. EER1 and EER2 are, respectively, the equal 
error rate with the Lowe's metric and the Szatmári's metric. 

As stated in section 4, the first metric is more accurate but  it's not implemented on CNNs 
(therefore with a lower matching speed). 
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distance for the invariant descriptor vector. To obtain more details on matching process read 
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• the original solution described in (Lowe, 1999); 
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(therefore with a lower matching speed). 
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6. Conclusion 
In this chapter we re-formulate an algorithm for fingerprint verification using the Scale 
Invariant Feature Transform (SIFT) (Lowe, 2004; Park et al., 2008) in such a way to exploit 
the high degree of parallelism inherent in a single-layer CNN.  In our implementation we 
extract characteristic SIFT feature points in scale space and perform a matching based on the 
texture information around the feature points using the SIFT operator (Chikkerur, 2006). 
Experimental measures of the accuracy of the our fingerprint verification system  were 
carried out. 
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1．Introduction 

A reliable biometric system, which is essentially a pattern-recognition that recognizes a 
person based on physiological or behavioral characteristic [1], is an indispensable element in 
several areas, including ecommerce(e.g. online banking), various forms of access control 
security(e.g. PC login), and so on. Nowadays, security has been important for privacy 
protection and country in many situations, and the biometric technology is becoming the 
base approach to solve the increasing crime. 
As the significant advances in computer processing, the automated authentication 
techniques using various biometric features have become available over the last few 
decades. Biometric characteristics include fingerprint, face, hand/finger geometry, iris, 
retina, signature, gait, voice, hand vein, odor or the DNA information [2], while fingerprint, 
face, iris and signature are considered as traditional ones.  
 

 
Fig. 1. IBG Biometric Market by Technology [3] 

Due to each biometric technology has its merits and shortcoming, it is difficult to make a 
comparison directly. Jain et al. have identified seven factors [4], which are (1) universality, (2) 
uniqueness, (3) permanence, (4) measurability, (5) performance, (6) acceptability, (7) 
circumvention, to determine the suitability of a trait to be used in a biometric application.  
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1．Introduction 

A reliable biometric system, which is essentially a pattern-recognition that recognizes a 
person based on physiological or behavioral characteristic [1], is an indispensable element in 
several areas, including ecommerce(e.g. online banking), various forms of access control 
security(e.g. PC login), and so on. Nowadays, security has been important for privacy 
protection and country in many situations, and the biometric technology is becoming the 
base approach to solve the increasing crime. 
As the significant advances in computer processing, the automated authentication 
techniques using various biometric features have become available over the last few 
decades. Biometric characteristics include fingerprint, face, hand/finger geometry, iris, 
retina, signature, gait, voice, hand vein, odor or the DNA information [2], while fingerprint, 
face, iris and signature are considered as traditional ones.  
 

 
Fig. 1. IBG Biometric Market by Technology [3] 

Due to each biometric technology has its merits and shortcoming, it is difficult to make a 
comparison directly. Jain et al. have identified seven factors [4], which are (1) universality, (2) 
uniqueness, (3) permanence, (4) measurability, (5) performance, (6) acceptability, (7) 
circumvention, to determine the suitability of a trait to be used in a biometric application.  
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Vein pattern is the network of blood vessels beneath person’s skin. The idea using vein 
patterns as a form of biometric technology was first proposed in 1992, while researches only 
paid attentions to vein authentication in last ten years. Vein patterns are sufficiently 
different across individuals, and they are stable unaffected by ageing and no significant 
changed in adults by observing. It is believed that the patterns of blood vein are unique to 
every individual, even among twins.  
Contrasting with other biometric traits, such as face or fingerprint, vein patterns provide a 
really specific that they are hidden inside of human body distinguishing them from other 
forms, which are captured externally. Veins are internal, thus this characteristic makes the 
systems highly secure, and they are not been affected by the situation of the outer skin (e.g. 
dirty hand).  
At the same time, vein patterns can be acquired by infrared devices by two ways, non-
contact type and contact type. In the case of non-contact method, there is no need to touch 
the device, and therefore it is friendly to individuals in the target population who utilize the 
systems. In the contact type, the collection type is the same as fingerprint which has already 
been accepted by most people.  
From the customer’s point of view, the authentication system is not only high accuracy level 
for security but also easy to enroll. Vein patterns serve as a high secure form of personal 
authentication as iris recognition (Iris is known for high accurate rates of authentication, but 
it is regarded unfriendly by users due to the direct application of light into their eyes), and 
serve as a convenient form as fingerprint recognition. 
On account of the several advantages, vein authentication is not only interested in lab 
researchers but also in industries, and the products perform well in tests of the International 
Biometric Group (IBG) [5]. Recently, vein recognition appears to be making real headway in 
the market, and considered as one of the more ’novel’ biometric, which is called ‘the Fourth 
Biometric’.  

2．Vein pattern recognition  
Nearly any part of vein in human body (such as retinal vein, facial vein, veins in hand) 
could be used for personal identification, but veins in hand are always preferred [6]. It is 
usually an uncovered part. Veins in hand are closer to the surface than other organizes, so 
the traits can be easier detected by low-resolution cameras. In this paper, vein in hand is 
involved, finger vein, palm vein, wrist vein and dorsal hand vein, and each of them offers 
stable and unique biometric features. 
 

 
Fig. 2. the venous plexus of the hand 
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Category Traits Univer 
sality 

Uniqu 
eness 

Perma 
nence 

Measura 
bility 

Perfor 
mance 

Accepta 
bility 

Circum 
vention 

Face H L M H L H H 
FP M H H M H M M 

Vein M M M M M M L 
Iris H H H M H L H 

Conventi 
onal 

Voice M L L M L H L 
H: High     M: Medium      L:Low 

Table 1. Comparison of Various Biometric Technologies at Seven Factors [7] 

Category Traits Anti-
Forgery Accuracy Speed Enrollment 

Rates Resistance Cost 

Face M L M M H L 
Fingerprint L M M L L M 

Vein H H H M M M 
Iris M H M M H H 

 
 

Conventional 

Voice M L M M H M 
H: High     M: Medium      L:Low 

Table 2. Comparison of Various Biometric Methods [8] 

3．Imaging principle 

As veins are internal, their structure cannot be discerned in visible light. Based on the kinds 
of light of acquisition, a vein image can be classified as X-ray scanning, ultrasonic scanning 
and infrared scanning. X-ray and ultrasonic are used to capture vein images in medical 
treatment, but they are not used in identification due to the health case. Until now, 
researchers used infrared imaging for personal identification.  
Infrared (IR) is electromagnetic radiation whose wavelength is longer than that of visible 
light, and Infrared light has a range of wavelengths lies between about 750nm and 1mm, just 
like visible light has wavelengths that range from red light to violet. Infrared is commonly 
divided into 3 spectral regions: near, mid and far-infrared light, but the boundaries between 
them are not agreed upon.  
There are two choices that focuses on imaging of vein patterns in hand by infrared light, the 
far-infrared (FIR) imaging and the near-infrared (NIR) imaging, which are suitable to 
capture human bodies images in a non-harmful way. 
Some papers had discussed the principle of the FIR and NIR imaging methods. In the FIR 
method, superficial human veins have higher temperature than the surrounding tissues. For 
NIR light method, the principle could be explained by photobiology. In biology, there is a 
“medical spectral window”, which extends approximately from about 740 to 1100 nm. The 
light in this window could penetrate deeply into tissues. Because blood and surrounding 
tissues have different effect on the NIR light, we could use a CCD camera with an attached 
IR filter to capture images in which vein appears darker. 



 Pattern Recognition Techniques, Technology and Applications 

 

538 

Vein pattern is the network of blood vessels beneath person’s skin. The idea using vein 
patterns as a form of biometric technology was first proposed in 1992, while researches only 
paid attentions to vein authentication in last ten years. Vein patterns are sufficiently 
different across individuals, and they are stable unaffected by ageing and no significant 
changed in adults by observing. It is believed that the patterns of blood vein are unique to 
every individual, even among twins.  
Contrasting with other biometric traits, such as face or fingerprint, vein patterns provide a 
really specific that they are hidden inside of human body distinguishing them from other 
forms, which are captured externally. Veins are internal, thus this characteristic makes the 
systems highly secure, and they are not been affected by the situation of the outer skin (e.g. 
dirty hand).  
At the same time, vein patterns can be acquired by infrared devices by two ways, non-
contact type and contact type. In the case of non-contact method, there is no need to touch 
the device, and therefore it is friendly to individuals in the target population who utilize the 
systems. In the contact type, the collection type is the same as fingerprint which has already 
been accepted by most people.  
From the customer’s point of view, the authentication system is not only high accuracy level 
for security but also easy to enroll. Vein patterns serve as a high secure form of personal 
authentication as iris recognition (Iris is known for high accurate rates of authentication, but 
it is regarded unfriendly by users due to the direct application of light into their eyes), and 
serve as a convenient form as fingerprint recognition. 
On account of the several advantages, vein authentication is not only interested in lab 
researchers but also in industries, and the products perform well in tests of the International 
Biometric Group (IBG) [5]. Recently, vein recognition appears to be making real headway in 
the market, and considered as one of the more ’novel’ biometric, which is called ‘the Fourth 
Biometric’.  

2．Vein pattern recognition  
Nearly any part of vein in human body (such as retinal vein, facial vein, veins in hand) 
could be used for personal identification, but veins in hand are always preferred [6]. It is 
usually an uncovered part. Veins in hand are closer to the surface than other organizes, so 
the traits can be easier detected by low-resolution cameras. In this paper, vein in hand is 
involved, finger vein, palm vein, wrist vein and dorsal hand vein, and each of them offers 
stable and unique biometric features. 
 

 
Fig. 2. the venous plexus of the hand 

The Fourth Biometric - Vein Recognition 

 

539 

Category Traits Univer 
sality 

Uniqu 
eness 

Perma 
nence 

Measura 
bility 

Perfor 
mance 

Accepta 
bility 

Circum 
vention 

Face H L M H L H H 
FP M H H M H M M 

Vein M M M M M M L 
Iris H H H M H L H 

Conventi 
onal 

Voice M L L M L H L 
H: High     M: Medium      L:Low 

Table 1. Comparison of Various Biometric Technologies at Seven Factors [7] 

Category Traits Anti-
Forgery Accuracy Speed Enrollment 

Rates Resistance Cost 

Face M L M M H L 
Fingerprint L M M L L M 

Vein H H H M M M 
Iris M H M M H H 

 
 

Conventional 

Voice M L M M H M 
H: High     M: Medium      L:Low 

Table 2. Comparison of Various Biometric Methods [8] 

3．Imaging principle 

As veins are internal, their structure cannot be discerned in visible light. Based on the kinds 
of light of acquisition, a vein image can be classified as X-ray scanning, ultrasonic scanning 
and infrared scanning. X-ray and ultrasonic are used to capture vein images in medical 
treatment, but they are not used in identification due to the health case. Until now, 
researchers used infrared imaging for personal identification.  
Infrared (IR) is electromagnetic radiation whose wavelength is longer than that of visible 
light, and Infrared light has a range of wavelengths lies between about 750nm and 1mm, just 
like visible light has wavelengths that range from red light to violet. Infrared is commonly 
divided into 3 spectral regions: near, mid and far-infrared light, but the boundaries between 
them are not agreed upon.  
There are two choices that focuses on imaging of vein patterns in hand by infrared light, the 
far-infrared (FIR) imaging and the near-infrared (NIR) imaging, which are suitable to 
capture human bodies images in a non-harmful way. 
Some papers had discussed the principle of the FIR and NIR imaging methods. In the FIR 
method, superficial human veins have higher temperature than the surrounding tissues. For 
NIR light method, the principle could be explained by photobiology. In biology, there is a 
“medical spectral window”, which extends approximately from about 740 to 1100 nm. The 
light in this window could penetrate deeply into tissues. Because blood and surrounding 
tissues have different effect on the NIR light, we could use a CCD camera with an attached 
IR filter to capture images in which vein appears darker. 



 Pattern Recognition Techniques, Technology and Applications 

 

540 

 
Fig. 3. the venous plexus of the hand 

3.1 FIR Way 
The human body temperature is about 36.85°C, and the temperature of surface of human 
veins is higher than that of the surrounding parts. Therefore when the FIR light irradiates 
hand, the hand vein structure is thermally mapped by an infrared camera at room 
temperature. The captured image shows a gradient of temperature between surrounding 
tissues and the back-of-hand veins. 
 

       
Fig. 4. FIR images of dorsal hand vein 

In literature [9], it is proved that the captured FIR image of the back of hand has good 
quality, which means containing more useful information, but FIR vein image at palm and 
wrist have poor quality. Whilst this method deeply affects by the humidity and temperature 
of surrounding, as well as the users’ perspiration does.  

3.2 NIR Way 
Near infrared wavelength is between about 700 nm to 1400 nm, and we can use the same 
observing methods as that used for visible light, except for observation by eye. The NIR 
light is not thermal. NIR scanning device cannot penetrate very deep under the skin 
therefore the device will recognize the superficial veins and rarely the deep veins.  
In the NIR way, the light of specific wavelength is almost completely absorbed by the 
deoxidized hemoglobin in vein while almost penetrated the oxidized hemoglobin in the 
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arteries. Oxygenated and deoxygenated hemoglobin absorb light equally at 800 nm, whereas 
at 760 nm absorption is primarily from deoxygenated hemoglobin [10]. Then the veins appear 
as dark areas in an image taken by a CCD camera. Near-infrared (NIR) spectroscopy is a 
noninvasive technique that uses the differential absorption properties of hemoglobin to 
evaluate skeletal muscle oxygenation. 
 

       
Fig. 5. NIR images of hand vein of four different parts, dorsal hand, palm, wrist, and finger 
vein. 

NIR method is not a temperature based technique since normal body temperature or 
surrounding temperature cannot interfere with this method. The FIR method is often used 
in hand-dorsa vein imaging, and NIR method can be used in all veins imaging in hand. In 
order to benefit the processing, the captured images are always the grayscale image. 

4．Vein pattern extraction  

Because the temperature, illumination, locus and angle vary each collection, the captured 
digital picture varies each time. In order to provide ‘better’ input for automated image 
processing and realize a robust system against some fluctuation, some form of 
normalization should to be done aforehand. Conventional preprocessing algorithms can do 
this work. Then the vein patterns are extracted after noise reduction and normalization.  
Several algorithms have been carried out to separate the vein patterns from the image 
background. The captured images contain shading, noise and vein patterns, moreover, the 
vein patterns are not salient. The more the information of veins is extracted and preserved, 
the better the accuracy is. So the appropriate processing extracting the vein patterns is 
important for the authentication system. Recently vein of hand extraction algorithm has 
been widely studied. 
Wherever the veins are, in finger, wrist, palm or the back of hand, the various forms of vein 
patterns extracting algorithms usually fall into four broad categories: tracking-based, 
transform-based, matched filter method and thresholding method. Here we will describe 
some work on each of these areas. 

4.1 Tracking-based 
The tracing algorithm is based on repeated line tracking the vein from initial seed-point in 
the captured NIR image, moving pixel by pixel along the dark line in the cross sectional 
profiles [11]. In figure6, there is a certain position ‘s’, and the left is its cross sectional intensity 
profile of finger vein image. Tracking direction is determined by the position of deepest 
point in the cross sectional. This method can extract vein patterns from low quality NIR 
images, but it is sharply affected by the temporal change of widths of veins.  
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Fig. 6. cross sectional intensity profile of finger vein image 

4.2 Transform-based methods 
The captured image always has low contrast and contains noise, so contrast enhancement 
and noise reduction are crucial in ensuring the quality of the subsequent steps. Transform-
based methods can convert image to a certain domain in which it is more suitable for 
extracting the patterns. Wavelet, which supports multi-resolution analysis, is one of the 
appropriate methods for vein structure and feature extracting. The wavelet multi-resolution 
approach employs a wavelet basis to analyze at different resolutions and increase resolution 
from coarse to fine, so the content of image in each scale can be understood. Vein patterns 
are well structured objects consisting of line-like veins and areas in between. The wider 
veins can be analyzed in the lower resolution, and the thinner veins can be analyzed in the 
higher resolution.  
In paper [12], dyadic wavelet transform is adopted to extract finger vein patterns from 
background. Image is transformed from spatial domain to wavelet domain, and the 
grayscale image is changed into wavelet coefficients, which contain vein patterns wavelet 
coefficients and noise wavelet coefficients. The vein pattern variance of coefficients is larger 
than that of noise, and with the increasing of wavelet scale, the noise variance decreases. 
 

     
Fig. 7. extracted vein pattern by transform-based method 

4.3 Matched filter method 
By observing the cross sectional profiles of vein patterns, some researchers proposed an 
intensity profile model to detect vein patterns. Several models have been presented to 
describe the cross sectional profile of vessel [13-15]. The gray-level profile of the cross section 
is approximated a Gaussian shaped curve, which is prevalent used, whilst the matched filter 
is utilized to detect vein patterns. Since vein patterns may appear in any orientation, a set of 
cross sectional profiles in equiangular rotations is employed as a filter bank.  
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Fig. 8. the cross sectional profiles and the fitted Gaussian curves 
 

         
Fig. 9. the matching filter in 1-D and 2-D 

4.4 Thresholding method  
Intensity thresholding is usually utilized to obtain a better representation of shapes of the 
vein patterns. In the IR image the different location has different intensity values of the 
veins. Hence applying a single global thresholding is inappropriate. Via adaptively 
adjusting local thresholding, we can choose different threshold values for every pixel in the 
image based on the analysis of its surrounding neighbors [9], then, separate the vein patterns 
from the background, after that the desired vein image is extracted. 

5. Pattern matching 
The extracted vein patterns of the input image can directly be compared with the templates. 
A certain distance is defined to calculate the similarity between the template and the input 
patterns. But when the template is not small, the comparing time lasts long. 
After pattern extracting process, most systems are interesting in eliciting skeletonisation of 
the vein patterns. Then Vessels can be represented by the number of intersections, the total 
segment length, the longest segment, and the angles found in the image, the distribution of 
the vein, and other statistical features. Hausdorff distance, SVM, and nearest neighbor are 
adopted as matching algorithm by researchers. 
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6. Database 
Recently, significant work is continuously being done in vein recognition algorithms both in 
academy and industry. However, the conclusion of each work is usually achieved on their 
own databases but not the sharable databases. Large sharable vein databases are required to 
evaluate and compare various algorithms. 
Vein pattern data collection is an expensive and time-consuming work. There are some 
inconveniences in large databases collection [16]. Firstly, it is expensive both in terms of 
money and time; secondly, it is tedious for both the technicians and for the volunteers; 
thirdly, due to privacy information, it is difficult to share data with others. Though the real 
images cannot be replaced, the synthetic vein images have proven to be a valid substitute 
for real vein for design, benchmarking and evaluation of vein recognition systems. A 
synthetic like-vein image method is requested. 
Based on the cross sectional profiles of vein patterns, the vein pattern can be synthesized in 
semiautomatic way as figure10. Firstly, lines which look like vein patterns were drawn by 
hand [17]. Secondly, according to the different cross sectional profile models, the like-vein 
patterns can generation by programs.  
 

 
Fig. 10. synthesis finger vein image of normal pattern 

7. Application of vein recognition system and future work  
Vein recognition technology has some fundamental advantages over fingerprint systems. 
Vein patterns in hand are biometric characteristics that are not left behind unintentionally in 
everyday activities. Vein patterns of inanimate bodily parts become useless after a few 
minutes. Hence, nowadays, vein recognition system is regarded a mainstream technology. 
IBG expects it to play a larger role and comprise more than 10% of the biometric market [18]. 
Nearly all major vein authentications are manufactured in Japan and Korea, and the 
application of these manufactures are used in Asia. In Japan and some other countries, such 
products spread particularly in the financial sector.  
 

     
a                         b                      c 

Fig. 11. a) Hitachi’s Finger Vein device; b) Hitachi’s Finger Vein ATM; c) PalmSecure by Fujitsu  
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The recent launch of vein recognition technology is successful. Nevertheless, some research 
issues need to be addressed in future. For one thing, work continued across the vein 
imaging device to make it cheaper, more accurate and robust. For another thing, the quality 
of vein IR image is affected by the relationship of intensity between the IR light and the 
ambient light, as well as the ambient temperature. Moreover, the sharable large databases 
should be founded for a thorough evaluation on the efficacy of different vein recognition 
algorithms. Lastly, vein trait is able to conjunct with other biometrics in a multi-modal 
system. 
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thirdly, due to privacy information, it is difficult to share data with others. Though the real 
images cannot be replaced, the synthetic vein images have proven to be a valid substitute 
for real vein for design, benchmarking and evaluation of vein recognition systems. A 
synthetic like-vein image method is requested. 
Based on the cross sectional profiles of vein patterns, the vein pattern can be synthesized in 
semiautomatic way as figure10. Firstly, lines which look like vein patterns were drawn by 
hand [17]. Secondly, according to the different cross sectional profile models, the like-vein 
patterns can generation by programs.  
 

 
Fig. 10. synthesis finger vein image of normal pattern 

7. Application of vein recognition system and future work  
Vein recognition technology has some fundamental advantages over fingerprint systems. 
Vein patterns in hand are biometric characteristics that are not left behind unintentionally in 
everyday activities. Vein patterns of inanimate bodily parts become useless after a few 
minutes. Hence, nowadays, vein recognition system is regarded a mainstream technology. 
IBG expects it to play a larger role and comprise more than 10% of the biometric market [18]. 
Nearly all major vein authentications are manufactured in Japan and Korea, and the 
application of these manufactures are used in Asia. In Japan and some other countries, such 
products spread particularly in the financial sector.  
 

     
a                         b                      c 

Fig. 11. a) Hitachi’s Finger Vein device; b) Hitachi’s Finger Vein ATM; c) PalmSecure by Fujitsu  

The Fourth Biometric - Vein Recognition 

 

545 

The recent launch of vein recognition technology is successful. Nevertheless, some research 
issues need to be addressed in future. For one thing, work continued across the vein 
imaging device to make it cheaper, more accurate and robust. For another thing, the quality 
of vein IR image is affected by the relationship of intensity between the IR light and the 
ambient light, as well as the ambient temperature. Moreover, the sharable large databases 
should be founded for a thorough evaluation on the efficacy of different vein recognition 
algorithms. Lastly, vein trait is able to conjunct with other biometrics in a multi-modal 
system. 
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1. Introduction    
One of the important developments in modern manufacturing industry has been the trend 
towards cost savings through stuff reductions whilst simultaneously improving the product 
quality. Traditional tool change strategies are based on very conservative estimates of tool 
life from past tool data and this leads to a higher tool change frequency and higher 
production costs. Intelligent sensor based manufacturing provides a solution to this problem 
by coupling various transducers with intelligent data processing techniques to deliver 
improved information relating to tool condition. This makes optimization and control of the 
machining process possible. 
Many researchers have published results in the area of automatic tool condition monitoring. 
The research work of Scheffer C. etc. showed that proper features for a wear monitoring 
model could be generated from the cutting force signal, after investigating numerous 
features. An approach was developed to use feed force measurements to obtain information 
about tool wear in lathe turning (Balazinski M. etc.). An analytical method was developed 
for the use of three mutually perpendicular components of the cutting forces and vibration 
signature measurements (Dimla D. E. etc.). A tool condition monitoring system was then 
established for cutting tool-state classification (Dimla D. E. etc.). In another study, the input 
features were derived from measurements of acoustic emission during machining and 
topography of the machined surfaces (Wilkinson P. Etc.). Li, X etc. showed that the 
frequency distribution of vibration changes as the tool wears (Li X. etc.). Tool breakage and 
wear conditions were monitored in real time according to the measured spindle and feed 
motor currents, respectively (LI X. L. Etc. ).  
Advanced signal processing techniques and artificial intelligence play a key role in the 
development of tool condition monitoring systems. Sensor fusion is also found attractive 
since loss of sensitivity of one of the sensors can be compensated by other sensors. A new 
on-line fuzzy neural network (FNN) model with four parts was developed (Chungchoo C. 
etc.). They have the functions of classifying tool wear by using fuzzy logic; normalizing the 
inputs; using modified least-square back propagation neural network to estimate flank and 
crater wear. A new approach for online and indirect tool wear estimation in turning using 
neural networks was developed, using a physical process model describing the influence of 
cutting conditions on measured process parameters (Sick B.). Two methods using Hidden 
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Markov models, as well as several other methods that directly use force and power data 
were used to establish the health of a drilling tool (Ertunc H. M.). 
 In this study, a new fuzzy neural hybrid pattern recognition algorithm was developed to 
accomplish multi-sensor information integration and tool wear states classification. The 
technique shows some remarkable characteristics by imitating the thinking and judging 
modes of human being. It has shown that definite mathematical relationships between tool 
wear states and sensor information are not necessarily needed and that the effects caused by 
experimental noise can also be decreased greatly. The monitoring system that has been 
developed provided accurate and reliable tool wear classification results over a range of 
cutting conditions. 

2. Tool condition monitoring system 
The tool wear monitoring system is composed of four types of sensors, signal amplifying 
and collecting devices and the main computer, as shown in Fig. 1. The power consumption, 
cutting force (in three perpendicular directions), acoustic emission (AE) and vibration 
sensors chosen were found to provide healthy time domain signals for tool condition 
monitoring. 
 

 
Fig. 1. The tool condition monitoring system 

The experiments were carried out on a Cincinnati Milacron Sabre 500 machining centre. Like 
many other modern machine tools, it delivers a motor current signal that is proportional too 
torque, which at a constant spindle speed, corresponds to the actual power consumption. A 
KISTLER 9257B force dynamometer was used to measure cutting forces in three mutually 
perpendicular directions. The dynamometer has a measuring range of 5000 (N) in each 
direction, linearity of 1%, stiffness of 350 N/μm in the Z direction and 1000N/μm in the X 
and Y directions and a resonant frequency of 4kHz.  
The acoustic emission (AE) measuring apparatus includes an AE sensor and a signal 
processing device. The AE sensor has a measuring frequency range of 100KHz - 2MHz. The 
60dB pre-amplifier connects the AE sensor to the AE output instrument and has a 113KHz - 
1.1 MHz built-in filter. An analogue module receives the input from the pre-amplifier and 
provides outputs of both amplified AE analogue signals and AE RMS signals. An 
accelerometer was mounted in the feed direction. The sensor has a frequency response of 5 - 
33 kHz, mounted resonant frequency 50 kHz. Fig.2 shows the power consumption, cutting 
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force (in the cutting direction), vibration and acoustic emission signals collected in milling 
process. The entry and exit of an insert in relation to the workpiece can be easily recognized. 
From those healthy signals many tool wear relevant features can be extracted for the future 
pattern recognition process. 
 
 

 
(a)The power consumption signal 

 
(b)The cutting force signal 

 
(c)The vibration signal 

 
(d)The Acoustic emission signal 

Fig. 2. Tool condition monitoring sensor signals 
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force (in the cutting direction), vibration and acoustic emission signals collected in milling 
process. The entry and exit of an insert in relation to the workpiece can be easily recognized. 
From those healthy signals many tool wear relevant features can be extracted for the future 
pattern recognition process. 
 
 

 
(a)The power consumption signal 

 
(b)The cutting force signal 

 
(c)The vibration signal 

 
(d)The Acoustic emission signal 

Fig. 2. Tool condition monitoring sensor signals 
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3. Feature extraction 
The original signals have large dimensions and can not be directly used to estimate tool 
wear value. The purpose of feature extraction is to greatly reduce the dimension of the raw 
signal but at the same time maintain the tool condition relevant information in the extracted 
features. This step is the foundation for the pattern recognition process.  
In the time domain the mean value and the standard deviation are simple but effective 
features. Power spectrum density (PSD) analysis in the frequency domain can provide very 
useful information and experimental results show that for force, AE and vibration signals, 
the spectrum distribution changes with tool wear.  
A typical group of features extracted from the time domain and frequency domain for the 
further pattern recognition are as follows. Power consumption signal: mean value; AE-RMS 
signal: mean value, skew and kutorsis; Cutting force, AE and vibration : mean value, 
standard deviation and the mean power in 10 frequency ranges. Fig. 3 shows several 
features (under cutting condition 1*) in time and frequency doorman. It can be seen that 
both the amplitude and the distribution pattern represent the development of tool flank 
wear (VB). 
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(a) Mean value of the power consumption signal 
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(b) Standard deviation of the vibration signal 
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(c)Frequency spectra of cutting force ( xF ) signal 
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(d) Frequency spectra of the AE signal 

Fig. 3. Features extracted from different sensor signals 

4. Fuzzy driven neural network 
4.1 Fuzzy membership function 
The features of sensor signals can reflect the tool wear states. Theoretical analysis and 
experimental results show that these features can be regarded as normal distribution fuzzy 
sets. The membership function of the fuzzy set iA  can be represented as: 
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4.2 Fuzzy approaching degree 
Fuzzy approaching degree is an index that represents the fuzzy distance between two fuzzy 
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N: ℑ ( )X  × ℑ ( )X  → [0,1] satisfies: (1). A∀ ∈ℑ ( )X , ( , ) 1N A A = (2). ,A B∀ ∈ℑ ( )X , 

( , ) ( , )N A B N B A= (3). If , ,A B C∈ℑ ( )X  satisfies ( ) ( ) ( ) ( )A x C x A x B x− ≥ −  ( )x X∀ ∈  

then ( , ) ( , )N A C N A B≤ , so the map N is the approaching degree in ℑ ( )X  and ( , )N A B  is 
called the approaching degree of A  and B . Approaching degree can be calculated by using 
different methods. Here the inner and outer products are used. 
 If ,A B ∈ℑ ( )X , { }( ) ( ) :A B A x B x x X• = ∨ ∧ ∈  is defined as the inner product of A  and B  

and { }( ) ( ) :A B A x B x x X⊕ = ∧ ∨ ∈ is defined as the outer product of A  and B . Finally, 

in the map :N  ℑ ( )X × ℑ ( )X  → [0, 1] , ( ),N A B is the approaching degree of A  and B . 

 ( ) ( ) ( ), cN A B A B A B= • ∧ ⊕  (2) 

Using conventional fuzzy pattern recognition methods, the fuzzy approaching degrees 
between corresponding features of the object to be recognized and different models are 
calculated to determine the fuzzy similarity between a given object and different models. 
The method can be further improved by assigning suitable weights to different features in 
order to reflect their specific influences in the pattern recognition process. ANNs have the 
ability to continuously classify the inputs and also update classifications. In this study, 
ANNs are connected with a fuzzy logic system to establish a fuzzy driven neural network 
pattern recognition system and its principle is shown by Fig. 4. 
 

 
Fig. 4. The fuzzy driven neural network 

Here a back propagation ANN is used to carry out tool wear classification. The approaching 
degree calculation results are the input of the ANN. The associated weights can be updated 
as: ( ) ( )i i iw new w old xαδ= + . Here , , ixα δ are learning constant, associated error 
measure and input to the i-th neuron. In this updating process, the ANN recognizes the 
patterns of the features corresponding to certain tool wear state. So in practical machining 
process, the feature pattern can be accurately classified. In fact the ANN assigns each feature 
a proper synthesized weight and the outputs of the ANN are weighted approaching 
degrees. This enables the tool wear classification process be more reliable.  
Altogether six standard tool wear values were selected as standard wear values, ranging 
from new to severe wear where the width of the flank wear area increased from 0 to 0.5 mm 
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in steps of 0.1 mm.  Cutting tools with standard wear values are used in milling operations 
and multi-channel sensor signals were collected. So, for all the models, the membership 
functions of all their features can be calculated and then stored in a library in the computer. 
ANNs can then be trained to recognize different tool wear states, under each specific cutting 
condition.  
After the training the constructed frame and associated weights of the ANN can reflect the 
distinct importance of each individual feature for each model under specific cutting 
conditions. These feature weights will change, under different cutting conditions, to truely 
represent the practical situation. So the future tool wear classification results can be reliable 
and accurate. The determination of the membership functions of all the features for each 
model and the construction of ANNs for classification mark the end of the learning stage.  

5. Algebraic neurofuzzy networks 
A neural fuzzy system has both the transparent representation of a fuzzy system and the 
learning ability of neural networks. It processes information using fuzzy reasoning 
techniques, but it can be trained using neural type learning algorithms because it also has a 
multi-layer ANN structure. The combination of the rule based representation and adaptive 
numeric processing can lead to a robust modeling system. Various applications of fuzzy 
neural integrated systems may be cited ( Blanz W. E. etc.) ( Brown M. etc.) (Fukuda T. etc.). 
Many neurofuzzy systems use B-spline or Gaussian basis functions (Brown etc.). Gaussian 
representation is potentially more flexible, but it is harder to generate appropriate fuzzy 
algorithms. Adaptive B-spline based neurofuzzy system uses algebraic operators and B-
spline fuzzy membership functions to simplify the overall system, produces more 
transparent models. It is also possible to use learning algorithms to extract neurofuzzy 
models directly from the input data. 

5.1 B-spline fuzzy sets 
As mentioned before, signal features can be treated as fuzzy sets, which can then be 
represented by fuzzy membership functions. Here, B-spline basis functions, piecewise 
polynomials of order k, are used to represent fuzzy membership functions. Fig. 5 shows the 
B-spline basis function of order 3. When the order k is changed, they can represent 
membership functions of different shapes. 
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The order and the knot vector determine the smoothness and shape of the basis functions. 
The knots partition the input space into a series of intervals on which the basis functions are 
defined. Multivariate B-spline basis functions are formed by taking tensor production of n 
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N: ℑ ( )X  × ℑ ( )X  → [0,1] satisfies: (1). A∀ ∈ℑ ( )X , ( , ) 1N A A = (2). ,A B∀ ∈ℑ ( )X , 

( , ) ( , )N A B N B A= (3). If , ,A B C∈ℑ ( )X  satisfies ( ) ( ) ( ) ( )A x C x A x B x− ≥ −  ( )x X∀ ∈  
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univariate basis functions, where only one univariate function is defined on each input axis. 
The multivariate basis functions are then defined on a lattice, which is generated from the 
projection of all the individual knot vectors parallel to the remaining input axes. 

5.2 Fuzzy knowledge representation 
The relation between signal features and tool wear values can be expressed by the 
description: if the power consumption is large and cutting force is medium and  ... then the 
tool wear value is large. This can be represented:  

ijr :IF( 1 1
ix A= AND 2 2

ix A= AND…AND i
n nx A= ) THEN ( y = jB ),  ( ijc ) (3) 

 where kx and y are the input and output, ijr is the fuzzy rule and ijc  is the rule confidence. 
i
kA is the univariate linguistic term and jB is the output linguistic term. 

The union (fuzzy OR) of a group of fuzzy rules is called a fuzzy algorithm in which the 
knowledge of a fuzzy system is stored. So the set of all the confidences ijc  (rule confidence 
matrix) illustrates the complex relation between the input and the output of the system. To 
fulfill the fuzzy rule set, functions must be chosen to implement the fuzzy logic functions, 
AND, OR, IF ( ), THEN (), etc. Recent research shows that the algebraic operators, sum and 
product, can produce smoother output than the traditional truncation operators, min and 
max [12]. 

5.3 The B-spline neurofuzzy system  
The process of calculating the output of a fuzzy system includes fuzzification, inference and 
defuzzification. This involves representing the crisp input as fuzzy sets, pattern matching 
this with the rules stored in the rule base, combining each rule and mapping the resulting 
sets to crisp output. Here, B-splines are used to implement the fuzzy membership functions. 
Singleton fuzzy sets are used to represent the crisp input. Algebraic operators are chosen to 
accomplish the fuzzy logic functions and the diffuzzification is realized by using a centre of 
gravity algorithm, and the rule confidences are normalized. Thus the output of the 
neurofuzzy system can be given by: 

 ( ) ( )i iA
i

y X X wμ= ∑  (4) 

Where ( )iA
Xμ is the i-th fuzzy membership function of a multivariate input X and iw is the 

weight. The structure of the neurofuzzy system is shown in Fig. 6.  
In Fig. 6, the multivariate fuzzy input sets ( termed as basis functions ) are defined on a 
lattice in the input space. The weight of a basis function is an estimate of the value of the 
network's output; given that the input lies within the set. 
A weight can be fuzzified to produce a rule confidence vector which can then be defuzzified 
to produce the original weight. The output of the network is linearly dependent on the 
weight set. This network structure allows an efficient linear learning strategy, Conjugate 
Gradient, to be used to adapt the weights for optimal performance. 
The neurofuzzy system can be a powerful tool for cutting tool condition monitoring. In the 
training process, for all the signal features of each model ( cutting tool with standard wear 
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value ), a group of feature values are put into the neurofuzzy network as the training input. 
A fuzzy rule base is then established to describe the mapping between the systems input 
and output states. So in the practical condition monitoring process, it can recognize the 
incoming feature pattern and associate the pattern with different models with 
corresponding classification confidence. 
 

 
Fig. 6.  Algebraic neurofuzzy network  

6. Fusion on two levels  
Tool wear is a very complex process and it is unlikely that tool condition monitoring could 
be reliably accomplished by using only one sensor and conventional signal processing 
strategies. Modern condition monitoring systems are based on the integration of multi-
sensor information and the development of reliable intelligent signal classification routines. 
To make the tool condition monitoring system more reliable, fusion on two levels is 
employed in this study. The first level is sensor fusion. The monitoring system is equipped 
with four kinds of sensors and multi-sensor signal features are fused by the intelligent data 
processing process. Different sensor signals can reflect the tool wear state  from different 
aspects. Their functions are independent and mutually complementary. For example, the 
dynamometer, accelerometer and AE sensor work respectively in the frequency ranges from 
several hertz to 1 MHz and higher. The fused information describes the tool wear process 
more comprehensively.  
The second fusion is on a higher level: the fusion of two pattern recognition algorithms. As 
stated before, both the fuzzy driven neural network and the algebraic neurofuzzy network 
can carry out intelligent pattern recognition. These methods are the modified and improved 
versions of the traditional fuzzy logic and neural network pattern recognition processes and 
experimental results have shown that they have better or at least the same good 
performance. But because of the extreme complexity of the tool wear mechanism, these 
algorithms still may not be completely reliable in a few exceptional cases. 
It should be noticed that the two proposed algorithms have different characteristics and 
they can describe the tool wear process from different view points. The calculation of 
normal distribution type fuzzy membership functions is a statistical calculation process and 
this makes the results of the fuzzy driven neural network quite reliable. But in some cases 

Normalised 
Input space 

Basis 
Function 

Weight 
vector 

1−pw

1w1a  

2w2a  

pwpa



 Pattern Recognition Techniques, Technology and Applications 

 

554 

univariate basis functions, where only one univariate function is defined on each input axis. 
The multivariate basis functions are then defined on a lattice, which is generated from the 
projection of all the individual knot vectors parallel to the remaining input axes. 

5.2 Fuzzy knowledge representation 
The relation between signal features and tool wear values can be expressed by the 
description: if the power consumption is large and cutting force is medium and  ... then the 
tool wear value is large. This can be represented:  

ijr :IF( 1 1
ix A= AND 2 2

ix A= AND…AND i
n nx A= ) THEN ( y = jB ),  ( ijc ) (3) 

 where kx and y are the input and output, ijr is the fuzzy rule and ijc  is the rule confidence. 
i
kA is the univariate linguistic term and jB is the output linguistic term. 

The union (fuzzy OR) of a group of fuzzy rules is called a fuzzy algorithm in which the 
knowledge of a fuzzy system is stored. So the set of all the confidences ijc  (rule confidence 
matrix) illustrates the complex relation between the input and the output of the system. To 
fulfill the fuzzy rule set, functions must be chosen to implement the fuzzy logic functions, 
AND, OR, IF ( ), THEN (), etc. Recent research shows that the algebraic operators, sum and 
product, can produce smoother output than the traditional truncation operators, min and 
max [12]. 

5.3 The B-spline neurofuzzy system  
The process of calculating the output of a fuzzy system includes fuzzification, inference and 
defuzzification. This involves representing the crisp input as fuzzy sets, pattern matching 
this with the rules stored in the rule base, combining each rule and mapping the resulting 
sets to crisp output. Here, B-splines are used to implement the fuzzy membership functions. 
Singleton fuzzy sets are used to represent the crisp input. Algebraic operators are chosen to 
accomplish the fuzzy logic functions and the diffuzzification is realized by using a centre of 
gravity algorithm, and the rule confidences are normalized. Thus the output of the 
neurofuzzy system can be given by: 

 ( ) ( )i iA
i

y X X wμ= ∑  (4) 

Where ( )iA
Xμ is the i-th fuzzy membership function of a multivariate input X and iw is the 

weight. The structure of the neurofuzzy system is shown in Fig. 6.  
In Fig. 6, the multivariate fuzzy input sets ( termed as basis functions ) are defined on a 
lattice in the input space. The weight of a basis function is an estimate of the value of the 
network's output; given that the input lies within the set. 
A weight can be fuzzified to produce a rule confidence vector which can then be defuzzified 
to produce the original weight. The output of the network is linearly dependent on the 
weight set. This network structure allows an efficient linear learning strategy, Conjugate 
Gradient, to be used to adapt the weights for optimal performance. 
The neurofuzzy system can be a powerful tool for cutting tool condition monitoring. In the 
training process, for all the signal features of each model ( cutting tool with standard wear 

A Hybrid Pattern Recognition Architecture for Cutting Tool Condition Monitoring 

 

555 

value ), a group of feature values are put into the neurofuzzy network as the training input. 
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algorithms still may not be completely reliable in a few exceptional cases. 
It should be noticed that the two proposed algorithms have different characteristics and 
they can describe the tool wear process from different view points. The calculation of 
normal distribution type fuzzy membership functions is a statistical calculation process and 
this makes the results of the fuzzy driven neural network quite reliable. But in some cases 

Normalised 
Input space 

Basis 
Function 

Weight 
vector 

1−pw

1w1a  

2w2a  

pwpa



 Pattern Recognition Techniques, Technology and Applications 

 

556 

the confidence of the classification may not be as high as it should. The algebraic neurofuzzy 
network works in a different way. It uses B-splines to represent the membership functions of 
the input sets and the relation between the signal features and the tool wear values are 
represented by a fuzzy rule base and the rule confidence matrix. This algorithm is quite 
accurate for most circumstances but exceptionally, where the rule base is not perfectly 
complete, the system may refuse to classify some individual objects.The authors of this 
paper argue that by combining the two algorithms to establish a fused pattern recognition 
process the tool wear classification results can be more reliable and this idea is supported by 
large amounts of experiment results. 

7. Fuzzy neural hybrid pattern recognition system  
The fuzzy neural hybrid pattern recognition system is established by the integration of the 
fuzzy driven neural network and the algebraic neurofuzzy network. The multi-sensor 
signals collected from the machining process are first processed to extract tool wear relevant 
features. Then the membership functions of the features and the fuzzy approaching degrees 
between the corresponding features of the object and different models can be calculated. 
These features that have unstable value or only small change of value of approaching degree 
for different models should be removed. This step can filter out the redundant features and 
decrease the training time of the network greatly. The parameters of the determined 
membership  functions can also help the neurofuzzy network to choose correct knots on 
each input axis. 
Both the two systems provide the similarities between the object and different models and 
classify the object to the most similar model with a certain confidence value. These two 
confidence values are not necessarily equal, but combining them provides a more reliable 
and accurate result. A threshold is set by considering the difference between the 
classification confidence values and tool wear values of the two classification results. Should 
the two pattern recognition processes give different results, the system averages the results 
when the difference is within threshold and refuses to do the classification if the threshold is 
exceeded. The failure of the classification shows the incoming data is too noisy or the 
networks have not been fully trained and need to be improved. By doing this, the reliability 
of the classification process is improved. 
Signals collected under 220 representative cutting conditions have been processed to verify 
the proposed fuzzy neural hybrid system (Experiments were partly carried out in the 
Advanced Manufacturing Lab. of Southampton Institute, U.K.). The system showed very 
good classification accuracy and reliability.y. Following is an example, fifteen tools with 
unknown flank wear value were used in milling operations and Fig.7 shows the 
classification results. It can be seen that all the tools were classified correctly with the 
confidence of higher than 80%. Experiments under other representative cutting conditions 
showed the similar results. 

8. Conclusion 
An intelligent tool condition monitoring system has been established. Tool wear 
classification is realized by applying a unique fuzzy neural hybrid pattern recognition 
system. On the basis of this investigation, the following conclusions can be made. 
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Fig. 7.  A group of tool wear states classification results 

1. Power consumption, vibration, AE and cutting force sensors are applicable for 
monitoring tool wear in metal cutting process. The healthy signals picked up by these 
sensors describe tool condition comprehensively.  

2. Many features extracted from time and frequency domains are found to be relevant to 
the changes of tool wear state. This makes accurate and reliable pattern recognition 
possible. 

3. The combination of ANNs and fuzzy logic system integrates the strong learning and 
classification ability of the former and the superb flexibility of the latter to express the 
distribution characteristics of signal features with vague boundaries. This methodology 
indirectly solves the weight assignment problem of the conventional fuzzy pattern 
recognition system and the resulting fuzzy driven neural network is more accurate and 
reliable. 

4. B-splines that are defined on a lattice-type structure mean that a fuzzy representation of 
the network can be generated. The Fuzzy rule base established can well describe the 
mapping between the systems input and output states. A smoother defuzzification 
surface can be obtained by the use of algebraic operators. The developed neurofuzzy 
networks have a simplified structure and produces better and more transparent models 
than a general fuzzy system. 

5. Armed with the advanced pattern recognition methodology, the established intelligent 
tool condition monitoring system has the advantages of being suitable for different 
machining conditions, robust to noise and tolerant to faults. 

* Cutting condition 1( for milling operation): cutting speed - 600 rev/min, feed rate - 1 
mm/rev, cutting depth - 0.6 mm, workpiece material - EN1A, cutting inserts -Stellram 
SDHT1204 AE TN-42. 
Please read these instructions carefully. Prepare your manuscript exactly according to the 
instructions. That is the easiest and the most efficient way to have a good published 
manuscript. 
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the confidence of the classification may not be as high as it should. The algebraic neurofuzzy 
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Advanced Manufacturing Lab. of Southampton Institute, U.K.). The system showed very 
good classification accuracy and reliability.y. Following is an example, fifteen tools with 
unknown flank wear value were used in milling operations and Fig.7 shows the 
classification results. It can be seen that all the tools were classified correctly with the 
confidence of higher than 80%. Experiments under other representative cutting conditions 
showed the similar results. 

8. Conclusion 
An intelligent tool condition monitoring system has been established. Tool wear 
classification is realized by applying a unique fuzzy neural hybrid pattern recognition 
system. On the basis of this investigation, the following conclusions can be made. 
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monitoring tool wear in metal cutting process. The healthy signals picked up by these 
sensors describe tool condition comprehensively.  
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indirectly solves the weight assignment problem of the conventional fuzzy pattern 
recognition system and the resulting fuzzy driven neural network is more accurate and 
reliable. 

4. B-splines that are defined on a lattice-type structure mean that a fuzzy representation of 
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tool condition monitoring system has the advantages of being suitable for different 
machining conditions, robust to noise and tolerant to faults. 

* Cutting condition 1( for milling operation): cutting speed - 600 rev/min, feed rate - 1 
mm/rev, cutting depth - 0.6 mm, workpiece material - EN1A, cutting inserts -Stellram 
SDHT1204 AE TN-42. 
Please read these instructions carefully. Prepare your manuscript exactly according to the 
instructions. That is the easiest and the most efficient way to have a good published 
manuscript. 

Classification 
confidence 

Classification    
results 



 Pattern Recognition Techniques, Technology and Applications 

 

558 

9. References 
Balazinski M., Czogala E. and Jemielniak K. Jan., (2002). Tool condition monitoring using 

artificial intelligence methods, Engineering Application of Artificial Intelligence, pp. 73-
80,  

Blanz W. E. and Gish S. L. (1990), A connectionist classifier architecture applied to image 
segmentation, Proc. 10th lnt. Conf. Pattern Recognition, pp. 272-277.  

Brown M. and Harris C. J. (1995), On the condition of adaptive neurofuzzy models, Int. Conf. 
of the 4th Int. Conf. on Fuzzy Systems and the 2nd Int. Fuzzy Engineerig Symp., 
IEEE/IFES, pp. 663-670. 

Chungchoo C., and Saini D. (2002), On-line tool wear estimation in CNC turning operations 
using fuzzy neural network model, Int. J. of Machine Tools and Manufacture, pp. 29-
40. 

Dimla D. E. and Lister P. M, (2000). On-line metal cutting tool condition monitoring. I: force 
and vibration analyses, Int. J. of Machine Tools and Manufacturing, pp. 739-768, ,  

Dimla D. E. and Lister P. M, May (2000), On-line metal cutting tool condition monitoring. II: 
tool-state classification using multi-layer perceptron neural networks, Int. J. of 
Machine Tools and Manufacturing, pp. 769-781,  

Ertunc H. M., and Loparo K. A. (2001), A decision fusion algorithm for tool wear condition 
monitoring in drilling, Int. J. of Machine Tools and Manufacture, pp. 1347-1362. 

Fukuda T., Shimojima K., etc. (1992), “Multi-sensor integration system with fuzzy inference 
and neural network”, Proc. Int. Joint Conf. Neural networks, vol. II, pp. 757-762. 

Li X., Dong S. and Venuvinod P. K. (2000),  Hybrid learning for tool wear monitoring, Int. J. 
of Advanced Manufacturing Technology, pp. 303-307. 

LI X. L., Tso S. K. and Wang J. (2000), Real-time tool condition monitoring using wavelet 
transforms and fuzzy techniques, IEEE Transactions on Systems, Man and Cybernetics 
Part C: Applications and Reviews, pp. 353-357. 

Scheffer C. and Kratz H., May. (2003). Development of a tool wear-monitoring system for 
hard turning, Int. J. of Machine Tools and Manufacturing, pp. 973-985,  

Sick B. (2001), Tool wear monitoring in turning: A neural network application, Measurement 
and Control, pp. 207-222. 

Wilkinson P., Reuben R. L. and Jones J. D. C. et al. (1999), Tool wear prediction from acoustic 
emission and surface characteristics via an artificial neural network, Mechanical 
Systems and Signal Processing, pp. 955-966. 

25 

Mining Digital Music Score Collections: Melody 
Extraction and Genre Recognition 

Pedro J. Ponce de León, José M. Iñesta and David Rizo 
Department of Software and Computing Systems 

University of Alicante,  
Spain 

1. Introduction 
In the field of computer music, pattern recognition algorithms are very relevant for music 
information retrieval (MIR) applications. Two challenging tasks in this area are the 
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In the field of computer music, pattern recognition algorithms are very relevant for music 
information retrieval (MIR) applications. Two challenging tasks in this area are the 
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music score collections the information can be found in standard MIDI file format. Music is 
structured as a number of tracks in this file format, usually one of them containing the 
melodic line, while other tracks contain the accompaniment. Finding that melody track is 
very useful for a number of applications, like speeding up melody matching when searching 
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or extracting melodic ringtones from MIDI files. 
In the first part of this chapter, musical content information is modeled by computing global 
statistical descriptors from track content. These descriptors are the input to a random forest 
classifier that assigns the probability of being a melodic line to each track. The track with the 
highest probability is then selected as the one containing the melodic line of the MIDI file. 
The first part of this chapter ends with a discussion on results obtained from a number of 
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and used to classify them as one of several genres. The proposed methodology is presented, 
covering the feature extraction, feature selection, and genre classification stages. Different 
supervised classification methods, like Bayesian classifier and nearest neighbors are applied. 
As a proof of concept, the performance of such algorithms against different description models 
and parameters is analyzed for two particular musical genres, like jazz and classical music. 

2. Symbolic music information retrieval 
Music information retrieval (MIR) is a field of research devoted to the extraction of 
meaningful information from the content of music sources. In the application of pattern 
recognition techniques to MIR, two main folds can be found in the literature: audio 
information retrieval and symbolic music information retrieval. 
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In the first case the raw digital audio signal is processed. Usually wav or MP3 files are the 
input to these systems. No explicit information about notes, voices or any musical symbol or 
tag is encoded in the signal. On the other hand, symbolic MIR is based on processing 
symbols with direct musical meaning: notes with pitch and duration, lyrics, tags, etc. The 
most common formats used as input for these systems are ASCII text files like kern, abc, 
MusicXML, or binary files containing note control information like MIDI files. In these 
formats input data contain information about what and how is to be played, instead of the 
rendered music itself like in the audio signal. The semantics of both approaches is different, 
at least in the first stage of information retrieval algorithms. In the case of symbolic 
processing, as musical information use to be found as input, most existing music 
information theory can be applied to the task. On the other hand, the use as raw audio lacks 
from the basic music information as notes or voices notes or voices. Signal processing 
techniques must be used to extract this musical data, thus introducing noise to the actual 
musical material found in the audio. Currently, some of the most active tasks in audio 
information retrieval have as objective the extraction of that musical information like note 
onsets, timbre or voices. With this preprocessing of the raw audio, many of the work lines 
that can be found in the symbolic music information retrieval can also be tackled, but with 
the drawback of the possibly ill musical data extracted. 
The goals of symbolic music information retrieval can be said to be more close to the actual 
music theory or musicological analysis that those of audio information retrieval. Some of the 
most active work areas in the symbolic approach nowadays is listed below: 
• Genre and mood classification: the objective in those two tasks is to tell the mood or 

musical genre a given input belongs to (McKay & Fujinaga, 2004; Zhu et al., 2004; Cruz 
et al., 2003; Buzzanca, 2002; Pérez-Sancho et al., 2004; Dannenberg et al., 1997; van 
Kranenburg & Backer, 2004; Ponce de León et al., 2004) 

• Similarity and retrieval: the final target in this work line is to be able to perform a search 
in a music data base to get the most similar pieces to an input query (Typke et al., 2003; 
Lemstrom & Tarhio, 2000) 

• Cover song identification: the detection of plagiarisms and variations of the same song is 
the main goal in this case (Grachten et al., 2004; Li & Sleep, 2004; Rizo et al., 2008) 

• Key finding: Guess the tonality and key changes of the score given the notes (Rizo et al., 
2006a; Temperley, 2004) 

• Melody identification: to identify the melody line among several MIDI tracks or music 
staffs, in opposite to those that contain accompaniment (Rizo et al., 2006b) 

• Motive extraction: to find motives (short note sequences) in a score that are the most 
repeated ones acting as the main themes of the song (Serrano & Iñesta, 2006) 

• Meter detection: given the input song reconstruct the meter from the flow of notes 
(Temperley, 2004) 

• Score segmentation: split the song in parts like musical phrases (Spevak et al., 2002) 
• Music analysis: perform musicological analysis for teaching, automatic or computed 

assisted composition, automatic expressive performance, and build a musical model for 
other MIR tasks (Illescas et al., 2007) 

3. Melody characterization 
A huge number of digital music score can be found on the Internet or in multimedia digital 
libraries. These scores are stored in files conforming to a proprietary or open format, like 
MIDI or the various XML music formats available. Most of these files contain music 
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organized in a way such that the leading part of the music, the melody, is stored separately 
from the rest of the musical content, which is often the accompaniment for the melody. In 
particular, a standard MIDI file is usually structured as a number of tracks, one for each 
voice in a music piece. One of them usually contains a melodic line or melody, specially in 
the case of modern popular music. 
Melody is a somewhat elusive musical term that often refers to a central part of a music piece 
that catches most of the listener’s attention, and which the rest of music parts are 
subordinated to. This is one of many definitions that can be found in many places, 
particularly music theory manuals. Most of these definitions share some melody traits, like 
’sequential’, ’monophonic’, ’main reference’, ’unity in diversity’, ’lyrics related’, ’culturally 
dependent’, etc. 
Our goal is to automatically find this melody track in a MIDI file using statistical properties 
of the musical content and pattern recognition techniques. The proposed methodology can 
be applied to other symbolic music file formats, because the information used to take 
decisions is based solely on how the notes are arranged within each voice of a digital score. 
Only the feature extraction front-end would need to be adapted for dealing with other 
formats. 
The identification of the melody track is very useful for a number of applications. For 
example, in melody matching, when the query is either in symbolic format (Uitdenbogerd & 
Zobel, 1999) or in audio format (Ghias et al., 1995), the process can be speeded up if the 
melody track is known or if there is a way to know which tracks are most likely to contain 
the melody, because the query is almost always a melody fragment. Another useful 
application can be helping motif extraction systems to build music thumbnails of digital 
scores for music collection indexing. 

3.1 Related works 
To our best knowledge, the automatic description of a melody has not been tackled as a 
main objective in the literature. The most similar problem to the automatic melody 
definition is that of extracting a melody line from a polyphonic source. This problem has 
been approached from at least three different points of view with different understandings 
of what a melody is. The first approach is the extraction of melody from a polyphonic audio 
source. For this task it is important to describe the melody in order to leave out those notes 
that are not candidates to belong to the melody line (Eggink & Brown, 2004). In the second 
approach, a melody line (mainly monophonic) must be extracted from a symbolic polyphonic 
source where no notion of track is used (I.Karydis et al., 2007). With this approach, 
Uitdenbogerd and Zobel (Uitdenbogerd & Zobel, 1998) developed four algorithms for 
detecting the melodic line in polyphonic MIDI files, assuming that a melodic line is a 
monophonic sequence of notes. These algorithms are based mainly on note pitches; for 
example, keeping at every time the note of highest pitch from those that sound at that time 
(skyline algorithm). 
Other works on this line focus on how to split a polyphonic source into a number of 
monophonic sequences by partitioning it into a set of melodies (Marsden, 1992). In general, 
these works are called monophonic reduction techniques (Lemstrom & Tarhio, 2000). 
The last approach to melody characterization is to select one track containing the melody 
from a list of input tracks of symbolic polyphonic music (e.g. MIDI). This is, by the way, our 
own approach. Other authors, like (Ghias et al., 1995), built a system to process MIDI files 
extracting a sort of melodic line using simple heuristics. (Tang et al., 2000) presented a work 
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onsets, timbre or voices. With this preprocessing of the raw audio, many of the work lines 
that can be found in the symbolic music information retrieval can also be tackled, but with 
the drawback of the possibly ill musical data extracted. 
The goals of symbolic music information retrieval can be said to be more close to the actual 
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organized in a way such that the leading part of the music, the melody, is stored separately 
from the rest of the musical content, which is often the accompaniment for the melody. In 
particular, a standard MIDI file is usually structured as a number of tracks, one for each 
voice in a music piece. One of them usually contains a melodic line or melody, specially in 
the case of modern popular music. 
Melody is a somewhat elusive musical term that often refers to a central part of a music piece 
that catches most of the listener’s attention, and which the rest of music parts are 
subordinated to. This is one of many definitions that can be found in many places, 
particularly music theory manuals. Most of these definitions share some melody traits, like 
’sequential’, ’monophonic’, ’main reference’, ’unity in diversity’, ’lyrics related’, ’culturally 
dependent’, etc. 
Our goal is to automatically find this melody track in a MIDI file using statistical properties 
of the musical content and pattern recognition techniques. The proposed methodology can 
be applied to other symbolic music file formats, because the information used to take 
decisions is based solely on how the notes are arranged within each voice of a digital score. 
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where the aim was to propose candidate melody tracks, given a MIDI file. They take 
decisions based on single features derived from informal assumptions about what a melody 
track may be. (Madsen & Widmer, 2007) try to solve the problem by the use of several 
combination of the entropies of different melody properties like pitch classes, intervals, etc. 

3.2 What’s a melody? 
Before focusing on the machine learning methodology to extract automatically the 
characterization of a melody, the musical concept ofmelody needs to be reviewed. 
Melody is a concept that has been given many definitions, all of them complementary. The 
variability of the descriptions can give an idea on the difficulty of the task to extract a 
description automatically. 
From the music theory point of view, Ernst Toch (Toch, 1997) defines it as “a succession of 
different pitch sounds brighten up by the rhythm”. He also writes “a melody is a sound sequence 
with different pitches, in opposition to its simultaneous audition that constitutes what is named as 
chord”. He distinguishes also the term ‘melody’ from the term ‘theme’. 
A music dictionary (Sadie & Grove, 1984) defines melody as: “a combination of a pitch series 
and a rhythm having a clearly defined shape”. 
The music theory literature lacks works about melody in favour of works about 
counterpoint, harmony, or "form" (Selfridge-Field, 1998). Besides, the concept of melody is 
dependant on the genre or the cultural convention. The most interesting studies about 
melody have appeared in recent years, mainly influenced by new emerging models like 
generative grammars (Baroni, 1978), artificial intelligence (Cope, 1996), and Gestalt and 
cognitive psychology (Narmour, 1990). All these works place effort on understand the 
melody in order to generate it automatically. 
The types of tracks and descriptions of melody versus accompaniment is posed in (Selfridge-
Field, 1998). The author distinguishes: 
• compound melodies where there is only a melodic line where some notes are principal, 

and others tend to accompany, being this case the most frequent in unaccompanied 
string music. 

• self-accompanying melodies, where some pitches pertain both to the thematic idea and to 
the harmonic (or rhythmic) support 

• submerged melodies consigned to inner voices 
• roving melodies, in which the theme migrates from part to part 
• distributed melodies, in which the defining notes are divided between parts and the 

prototype cannot be isolated in a single part. 
From the audio processing community, several definitions can be found about what a 
melody is. Maybe, the most general definition is found in (Kim et al., 2000): “melody is an 
auditory object that emerges from a series of transformations along the six dimensions: pitch, tempo, 
timbre, loundness, spatial location, and reverberant environment". 
(Gomez et al., 2003) gave a list of mid and low-level features to describe melodies: 
• Melodic attributes derived from numerical analysis of pitch information: number of 

notes, tessitura, interval distribution, melodic profile, melodic density. 
• Melodic attributes derived from musical analysis of the pitch data: key information, 

scale type information, cadence information. 
• Melodic attributes derived from a structural analysis: motive analysis, repetitions, 

patterns location, phrase segmentation. 
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Another attempt to describe a melody can be found in (Temperley, 2004). In that book, 
Temperley proposes a model of melody perception based on three principles: 
• Melodies tend to remain within a narrow pitch range. 
• Note-to-note intervals within a melody tend to be small. 
• Notes tend to conform to a key profile (a distribution) that depends on the key. 
All these different properties a melody should have can be used as a reference to build an 
automatic melody characterization system. 

4. Melody track identification 
As stated before, in this work the aim is to decide which of the tracks contains the main 
melody in a multitrack standard MIDI file. For this, we need to assume that the melody is 
indeed contained in a single track. This is the case for today’s world music. 
The features that should characterize melody and accompaniment voices must be defined in 
order to be able to select the melodic track. There are some features in a melody track that, at 
first sight, seem to be enough for identifying it, like the presence of higher pitches 
(Uitdenbogerd & Zobel, 1998) or being monophonic. Unfortunately, any empirical analysis 
will show that these hypotheses do not hold in general, and more sophisticated criteria need 
to be devised in order to take accurate decisions. 
To overcome these problems, a classifier ensemble able to learn what is a melodic track from 
note distribution statistics has been used in this work. In order to setup and test the 
classifier, a number of data sets based on several music genres and consisting of multitrack 
standard MIDI files have been constructed. All tracks in such files are labeled either as 
melody or non-melody. 
The classic methodology in the pattern recognition field has been used in this work. A 
vector of numeric descriptors is extracted from each track of a target midifile, and these 
descriptors are the input to a classifier that assigns to each track its probability of being a 
melody. This is the big picture of the method. The random forest classifier (Breiman, 2001) –
an ensemble of decision trees– was chosen as the pattern recognition tool for this task. The 
WEKA (Witten & Frank, 1999) toolkit was used to implement the system. 

4.1 MIDI track characterization 
The content of each non-empty track1 is characterized by a vector of descriptors based on 
descriptive statistics of note pitches and durations that summarize track content 
information. This kind of statistical description of musical content is sometimes referred to 
as shallow structure description (Pickens, 2001; Ponce de León et al., 2004b). 
A set of descriptors has been defined, based on several categories of features that assess 
melodic and rhythmic properties of a music sequence, as well as track related properties. 
This set of descriptors is presented in Table 1. The left column indicates the category being 
analyzed, and the right one shows the kind of statistics describing properties from that 
category. 
Four features were designed to describe the track as a whole and fifteen to describe 
particular aspects of its content. For these fifteen descriptors, both normalized and non-
normalized versions have been computed. The former were calculated using the formula 
(valuei −min)/(max −min), where valuei is the descriptor to be normalized corresponding to 

                                                 
1 tracks containing at least one note event. Empty tracks are discarded. 
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where the aim was to propose candidate melody tracks, given a MIDI file. They take 
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Another attempt to describe a melody can be found in (Temperley, 2004). In that book, 
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first sight, seem to be enough for identifying it, like the presence of higher pitches 
(Uitdenbogerd & Zobel, 1998) or being monophonic. Unfortunately, any empirical analysis 
will show that these hypotheses do not hold in general, and more sophisticated criteria need 
to be devised in order to take accurate decisions. 
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This set of descriptors is presented in Table 1. The left column indicates the category being 
analyzed, and the right one shows the kind of statistics describing properties from that 
category. 
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normalized versions have been computed. The former were calculated using the formula 
(valuei −min)/(max −min), where valuei is the descriptor to be normalized corresponding to 

                                                 
1 tracks containing at least one note event. Empty tracks are discarded. 
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the i-th track, and min and max are, respectively, the minimum and maximum values for this 
descriptor for all the tracks of the target midifile. This allows to know these properties 
proportionally to the other tracks in the same file. This way, a total number of 4+15×2 = 34 
descriptors were initially computed for each track. 
 

 
Table 1. Track content descriptors 
The track information descriptors are its normalized duration, number of notes, occupation 
rate (proportion of the track length occupied by notes), and the polyphony rate, defined as 
the ratio between the number of ticks in the track where two or more notes are active 
simultaneously and the track duration in ticks. 
Pitch descriptors are measured using MIDI pitch values. The maximum possible MIDI pitch 
is 127 (note G8) and the minimum is 0 (note C−2). The interval descriptors summarize 
information about the difference in pitch between consecutive notes. The absolute pitch 
interval values were computed. Finally, note duration descriptors were computed in terms 
of beats, so they are independent from the MIDI file resolution. 

4.2 Feature selection 
The descriptors listed above are a complete list of computed features, but any pattern 
recognition system needs to explore which are those features that actually are able to 
separate the target classes. 
Some descriptors show evidence of statistically significant differences when comparing their 
distributions for melody and non-melody tracks, while other descriptors do not. This 
property is implicitly observed by the classification technique utilized (see Section 4.3), that 
performs a selection of features in order to take decisions. 
A view to the graphs in Figure 1 provides some hints on how a melody track could look like. 
This way, a melody track seems to have less notes than other non-melody tracks, an average 
mean pitch, it contains small intervals, and has not too long notes. When this sort of hints 
are combined by the classifier, a decision about the track “melodicity” is taken. 
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Fig. 1. Distribution of values for some descriptors: (top-left) number of notes, (top-right) 
mean pitch, (bottom-left) mean absolute interval, and (bottom-right) mean relative duration. 

4.3 The random forest classifier 
A number of classifiers were tested in an initial stage of this research and the random forest 
classifier yielded the best results among them, so it was chosen for the experiments 
presented in the next section. 
Random forests (Breiman, 2001) are weighed combinations of decision trees that use a 
random selection of features to build the decision taken at each node. This classifier has 
shown good performance compared to other classifier ensembles with a high robustness 
with respect to noise. One forest consists of K trees. Each tree is built to maximum size using 
CART (Duda et al., 2000) methodology without pruning. Therefore, each leaf on the tree 
corresponds to a single class. The number F of randomly selected features to split on the 
training set at each node is fixed for all the trees. After the trees have grown, new samples 
are classified by each tree and their results are combined, giving as a result a membership 
probability for each class. 
In our case, the membership for class “melody” is interpreted as the probability that a track 
will contain a melodic line. 

4.4 Track selection procedure 
There are MIDI files that contain more than one track which is suitable to be classified as 
melody: singing voice, instrument solos, melodic introductions, etc. On the other hand, as 
usually happens in classical music, some songs do not have an obvious melody, like in 
complex symphonies or single-track piano sequences. The algorithm proposed here can deal 
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with the first case. For the second case, there are more suitable methods (Uitdenbogerd & 
Zobel, 1998) that perform melody extraction from polyphonic data. 
In some of the experiments in the next section, at most one melody track per MIDI file is 
selected. However, a file can contain more than one melody track. Therefore, given a file, all 
its non-empty tracks are classified and their probabilities of being a melody are obtained. 
Then the track with the highest probability is selected as the melody track. If all tracks have 
near-zero probability (actually less than 0.01), no melody track is selected –that is, all tracks 
are considered as non-melody tracks. 
In the first stages of this work, a probability threshold around 0.5 was established in order to 
discard tracks whose probability of being a melody was below that value. This resulted in 
some files in our test datasets being tagged as melody-less. However most of those files 
actually have a melody. In general, this produced systems with lower estimated accuracy 
than systems with a near-zero probability threshold. 

4.5 Experiments 
4.5.1 Datasets and tools 
Six corpora (see Table 2) were created, due to the lack of existing databases for this task. The 
files were downloaded from a number of freely accessible Internet sites. First, three corpora 
(named JZ200, CL200, and KR200) were created to set up the system and to tune the 
parameter values. JZ200 contains jazz music files, CL200 has classical music pieces where 
there was a melody track, and KR200 contains popular music songs with a part to be sung 
(karaoke (.kar) format). All of them are made up of 200 files. Then, three other corpora 
(named JAZ, CLA, and KAR) from the same music genres were compiled from a number of 
different sources to validate our method. This dataset is available for research purposes on 
request to the authors. 
 

 
Table 2. Corpora used in the experiments, with identifier, music genre, number of files, total 
number of tracks, total number of melody tracks and baseline success ratio. 
The main difficulty for building the data sets was to label the tracks in the MIDI files. Text 
tagging of MIDI tracks based on metadata such as the track name, is unreliable. Thus, a 
manual labeling approach was carried out. A musician listened to each one of the MIDI files 
playing all tracks simultaneously. For each file, tracks containing the perceived melody were 
identified and tagged as melody. The rest of tracks in the same file were tagged as non-
melody. In particular, introduction passages, second voices or instrumental solo parts were 
tagged as non-melody. 
Some songs had no tracks tagged as melody because either it was absent, or the song 
contained some kind of melody-less accompaniment, or it had a canon-like structure, where 
the melody moves constantly from one track to another. Other songs contained more than 
one melody track (e.g. duplicates, often with a different timbre) and all those tracks were 
tagged as melody. 
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The WEKA package was used to carry out the experiments described here. It was extended 
to compute the proposed track descriptors directly from MIDI files. 
Four experiments have been carried out, as listed below: 
• Melody vs. non-melody classification 
• Melody track selection 
• Genre specificity 
• Training set specificity 
The first one tries to assess the capability of random forests to classify melodic and non-
melody tracks properly. In the second experiment, the aim is to evaluate how accurate the 
system is for identifying the melody track in a MIDI file. Finally, the specificity of the system 
with respect to both the music genre and the corpora utilized were tested. 

4.5.2 Melody versus non-melody classification 
As described before, our aim is to assess the capability of the classifier to discriminate 
melody from non-melody tracks. Therefore, given a set of tracks, this experiment classifies 
them either as melody or non-melody. The random forest classifier assigns a class 
membership probability to each test sample, so in this experiment a test track is assigned to 
the class with the highest membership probability. 
As a proof of concept, three independent sub-experiments were carried out, using the three 
200-file corpora (CL200, JZ200, and KR200). This way, 2826 tracks provided by these files 
were classified in two classes: melody / non-melody. A ten-fold cross-validation scheme was 
used to estimate the accuracy of the method. The success results are shown in Table 3 and 
figure 2, along with the baseline ratio when considering a dumb classifier that always 
output the most frequent class (non-melody for all datasets). The remarkable success 
percentages obtained are due to the fact that the classifier was able to successfully map the 
input feature vector space to the class space. This shows that content statistics in 
combination with decision tree based learning can produce good results on the task at hand. 
Also, precision (P), recall (R) and the F-measure (F) are shown for melody tracks. These 
standard information retrieval measures are based on the so-called true-positive (TP), false-
positive (FP) and false-negative (FN) counts. For this experiment, TP is the number of melody 
tracks successfully classified, FP is the number of misclassified non-melody tracks, and 
finally, FN is the number of misclassified melody tracks. The precision, recall and F-measure 
are calculated as follows: 

 
These results have been obtained using K = 10 trees and F = 5 randomly selected features for 
the random forest trees. The same classifier structure was used in the rest of experiments 
presented in the next sections. 
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Table 3. Melody versus non-melody classification results. 

 
Fig. 2. Melody vs. non-melody classification success and baseline 

4.5.3 Melodic track selection experiment 
In this second experiment, the goal is to test wether the method selects the proper melody 
track from a MIDI file. For this experiment, the system was trained the same way as in the 
previous one, but now a test sample is not a single track but a MIDI file. Due to the limited 
number of samples available (200 per corpus), this experiment was performed using a leave-
one-out scheme at the MIDI file level to estimate the classification accuracy. The classifier 
assigns a class membership probability to each track in a test file. For each file, the system 
outputs the track number that gets highest membership probability for class melody, except 
when all these probabilities are near-zero, in which case the system considers the file has no 
melody track. 
The classifier answer for a givenMIDI file is considered correct if 
1. At least one track is tagged as melody and the selected track is one of them. 
2. There are no melody tracks and the classifier outputs no melody track number. 
Results are shown in Table 4. 

 
Table 4. Melody track selection results. 

Note the high quality of the results for CL200 and JZ200. However, a lower success rate has 
been obtained for the karaoke files. This is due to the fact that 31 out of 200 files in this 
corpus were tagged by a human expert as having no actual melody track, but they have 
some portions of tracks that could be considered as melody (like short instrument solo 
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parts), thus confusing the classifier as FP hits, therefore lowering the classifier precision for 
this corpus. 

4.5.4 Genre specificity 
This experiment was designed in order to evaluate the system robustness against different 
corpora. In particular, it is interesting to know how specific the classifier’s inferred rules are 
with respect to the music genre of files considered for training. For it, two melody track 
selection sub-experiments, like the ones in the previous section, were performed: in the first 
one, the classifier was trained with a 200-file corpus of a given music genre, and tested with 
a different corpus of the same genre (see Table 5). For the second sub-experiment, the 
classifier was trained using data from two genres and then tested with files from the third 
genre dataset (see Table 6). 
 

 
Table 5. Melody track selection within genre. 
 

 
Table 6. Melody track selection across genres. 

The results in Table 5 show that the performance of the system degrades when more 
complex files are tested. The 200-file corpora are datasets that include MIDI files that were 
selected among many others for having an ’easily’ (for a human) identifiable melody track. 
This holds also for the JAZ corpus, as most jazz music MIDI files have a lead voice (or 
instrument) track plus some accompaniment tracks like piano, bass and drums. However, it 
does not hold in general for the other two corpora. Classical music MIDI files (CLA corpus) 
come in very different structural layouts, due to both the way that the original score is 
organized and the idiosyncrasy of the MIDI file authors. This is also mostly true for the KAR 
corpus. Moreover, karaoke files tend to make intensive use of duplicate voices and dense 
pop arrangements with lots of tracks containing many ornamentation motifs. In addition, 
we have verified the presence of very short sequences for the CLAS corpus, causing less 
quality in the statistics that also degrades the classification results. 
As both the training and test corpora contain samples of the same music genre, better results 
were expected. However, the CLA and KAR corpora are definitively harder to deal with, as 
it became clear in the second experiment presented in this section. So, it can be said that the 
difficulty of the task resides more on the particular internal organization of tracks in the 
MIDI files than on the file music genre, despite that the results in Table 5 seem to point out 
that genre makes a difference. The second experiment presented in Table 6 showed some 
evidence in that direction. 
Most errors for the CLA test set were produce because a non-melody track was selected as 
melody (a kind of false positive). Same type of errors can be found for the KAR corpus, 
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along with errors due to the classifier not finding any melody tracks in files with a melody 
tagged track (a kind of false-negative). 
Results from the second sub-experiment show that performance is poorer (with respect to 
the first one) when no data from the test genre were used for training. This does not happen 
in classical music, probably due to effects related to the problems expressed above. 

4.5.5 Training set specificity 
To see how conditioned are these results by the particular training sets utilized, a 
generalization study was carried out building a new training set merging the three 200-files 
corpora (named ALL200), and then using the other corpora for test. The problem to solve is 
again the one discussed in section 4.5.3: selecting the proper melody track from a MIDI file. 
The results are detailed in Table 7. 
This shows that, when using a multi-genre dataset, the performance of the system is 
somewhat improved (now the training set contains samples from the same genre as the test 
dataset). Note that the results are better despite that the size of the training set is smaller 
than the size of those used in Section 4.5.4. 
 

 
Table 7. Melody track selection by genres when training with data from all the genres. 

When combining all the success results, taking into account the different cardinalities of the 
test sets, the average successful melody track identification percentage is 81.2 %. 
The method proposed here can be used as a tool for extracting the melody track in 
conjunction with a system for music genre recognition presented in the next section. This 
system is a melody based genre recognition system. It extracts information from melody 
tracks in order to recognize the melody genre. This way MIDI files need not to be 
preprocessed by an expert in order to identify the melody track. 

5. Music genre recognition 
One of the problems to solve in MIR is the modelization of music genre. The computer could 
be trained to recognise the main features that characterise music genres in order to look for 
that kind of music over large musical databases. The same scheme is suitable to learn 
stylistic features of composers or even model a musical taste for users. Other application of 
such a system can be its use in cooperation with automatic composition algorithms to guide 
this process according to a given stylistic profile. 
A number of papers explore the capabilities of machine learning methods to recognise 
music genre. Pampalk et al. (Pampalk et al., 2003) use self-organising maps (SOM) to pose 
the problem of organising music digital libraries according to sound features of musical 
themes, in such a way that similar themes are clustered, performing a content-based 
classification of the sounds. (Whitman et al., 2001) present a system based on neural 
networks and support vector machines able to classify an audio fragment into a given list of 
sources or artists. Also, in (Soltau et al., 1998) a neural system to recognise music types from 
sound inputs is described. An emergent approach to genre classification is used in (Pachet et 
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al., 2001), where a classification emerges from the data without any a priori given set of 
genres. The authors use co-ocurrence techniques to automatically extract musical similarity 
between titles or artists. The sources used for classification are radio programs and 
databases of compilation CDs. 
Other works use music data in symbolic form (most MIDI data) to perform genre 
recognition. (Dannenberg et al., 1997) use a naive Bayes classifier, a linear classifier and 
neural networks to recognize up to eight moods (genres) of music, such as lyrical, frantic, 
etc. Thirteen statistical features derived from MIDI data are used for this genre 
discrimination. In (Tzanetakis et al., 2003), pitch features are extracted both from MIDI data 
and audio data and used separately to classify music within five genres. Pitch histograms 
regarding to the tonal pitch are used in (Thom, 2000) to describe blues fragments of the 
saxophonist Charlie Parker. Also pitch histograms and SOM are used in (Toiviainen & 
Eerola, 2001) for musicological analysis of folk songs. Other researchers use sequence 
processing techniques like Hidden Markov Models (Chai & Vercoe, 2001) and universal 
compression algorithms (Dubnov & Assayag, 2002) to classify musical sequences. 
(Stamatatos & Widmer, 2002) use stylistic performance features and the discriminant 
analysis technique to obtain an ensemble of simple classifiers that work together to 
recognize the most likely music performer of a piece given a set of skilled candidate pianists. 
The input data are obtained from a computer-monitored piano, capable of measuring every 
key and pedal movement with high precision. 
Compositions from five well known eighteenth-century composers are classified in (van 
Kranenburg & Backer, 2004) using several supervised learning methods and twenty genre 
features, most of them being counterpoint characteristics. This work offers some conclusions 
about the differences between composers discovered by the different learning methods. 
In other work (Cruz et al., 2003), the authors show the ability of grammatical inference 
methods for modeling musical genre. A stochastic grammar for each musical genre is 
inferred from examples, and those grammars are used to parse and classify new melodies. 
The authors also discuss about the encoding schemes that can be used to achieve the best 
recognition result. Other approaches like multi-layer feed-forward neural networks 
(Buzzanca, 2002) have been used to classify musical genre from symbolic sources. 
(McKay & Fujinaga, 2004, 2007a) use low and mid-level statistics of MIDI file content to 
perform music genre recognition by means of genetic algorithms and pattern recognition 
techniques. They have developed several tools for feature extraction from music symbolic 
sources (particularly MIDI files) or web sites (McKay & Fujinaga, 2006a, 2007b). In (McKay 
& Fujinaga, 2006b), the authors provide some insight on why is it worth continuing research 
in automatic music genre recognition, despite the fact that the ground-truth information 
available for research is often not too reliable, being subject to subjective tagging, market 
forces or being culture-dependent. Most of the classification problems detected seem to be 
related to the lack of reliable ground-truth, from the definition of realistic and diverse genre 
labels, to the need of combining features of different nature, like cultural, high- and low-
level features. They also identify, in particular, the need for being able to label different 
sections of a music piece with different tags. 
The system presented in this section share some features with the one developed by McKay, 
as the use of low level statistics and pattern recognition techniques but, while McKay extract 
features from the MIDI file as a whole, our system focus on melody tracks, using a sliding 
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along with errors due to the classifier not finding any melody tracks in files with a melody 
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Table 7. Melody track selection by genres when training with data from all the genres. 
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window technique to obtain melody segments that become instances to feed the pattern 
recognition tools. This allows to obtain partial decisions for a melody track that can offer the 
users sensible information for different parts of a music work. Also, this decisions can be 
combined to output a classification decision for a music piece. 

5.1 An experimental framework for automatic music genre recognition 
In this section a framework for experimenting on automatic music genre recognition from 
symbolic representation of melodies (digital scores) is presented. It is based on shallow 
structural features of melodic content, like melodic, harmonic, and rhythmic statistical 
descriptors. This framework involves all the usual stages in a pattern recognition system, 
like feature extraction, feature selection, and classification stages, in such a way that new 
features and corpora from different musical genres can be easily incorporated and tested. 
Our working hypothesis is that melodies from a same musical genre may share some 
common low-level features, permitting a suitable pattern recognition system, based on 
statistical descriptors, to assign the proper musical genre to them. 
Two well-defined music genres, like jazz and classical, have been chosen as a workbench for 
this research. The initial results have been encouraging (Ponce de León & Iñesta, 2003) but 
the method performance for different classification algorithms, descriptor models, and 
parameter values needed to be thoroughly tested. This way, a framework for musical genre 
recognition can be set up, where new features and new musical genres can be easily 
incorporated and tested. 
This section presents the proposed methodology, describing the musical data, the 
descriptors, and the classifiers used. The initial set of descriptors will be analyzed to test 
their contribution to the musical genre separability. These procedures will permit us to build 
reduced models, discarding not useful descriptors. Then, the classification results obtained 
with each classifier and an analysis of them with respect to the different description 
parameters will be presented. Finally, conclusions and possible lines of further work are 
discussed. 

5.2 Musical data 
MIDI files from jazz and classical music, were collected. These genres were chosen due to 
the general agreement in the musicology community about their definition and limits. 
Classical melody samples were taken from works by Mozart, Bach, Schubert, Chopin, Grieg, 
Vivaldi, Schumann, Brahms, Beethoven, Dvorak, Haendel, Paganini and Mendelssohn. Jazz 
music samples were standard tunes from a variety of well known jazz authors including 
Charlie Parker, Duke Ellington, Bill Evans, Miles Davis, etc. The MIDI files are composed of 
several tracks, one of them being the melody track from which the input data are extracted2. 
The corpus is made up of a total of 110 MIDI files, 45 of them being classical music and 65 
being jazz music. The length of the corpus is around 10000 bars (more than 6 hours of 
music). Table 8 summarizes the distribution of bars from each genre. This dataset is 
available for research purposes on request to the authors. 

                                                 
2 All the melodies are written in 4/4 meter. Anyway, any other meter could be used because 
the measure structure is not use in any descriptor computation. All the melodies are 
monophonic sequences (at most one note is playing at any given time). 
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Table 8. Distribution of melody length in bars 

This corpus has been manually checked for the presence and correctness of key, tempo and 
meter meta-events, as well as the presence of a monophonic melody track. The original 
conditions under which the MIDI files were created are unknown; They may be human 
performed tracks or sequenced tracks (i.e. generated fromscores) or even something of both 
worlds. Nevertheless, most of the MIDI files seem to fit a rather common scheme: a human-
performed melody track with several sequenced accompaniment tracks. 
The monophonic melodies consist of a sequence of musical events that can be either notes or 
silences. The pitch of each note can take a value from 0 to 127, encoded together with the 
MIDI note onset event. Each of these events at time t has a corresponding note off event at 
time t +d, being d the note duration measured in ticks3. Time gaps between a note off event 
and the next note onset event are silences. 

5.3 Description scheme 
A description scheme has been designed based on descriptive statistics that summaris the 
content of the melody in terms of pitches, intervals, durations, silences, harmonicity, 
rhythm, etc.  
Each sample is a vector of musical descriptors computed from each melody segment 
available (See section 5.4 for a discussion about how these segments are obtained). Each 
vector is labeled with the genre of the melody which the segment belongs to. We have 
defined an initial set of descriptors based on a number of feature categories that assess the 
melodic, harmonic and rhythmic properties of a musical segment, respectively. 
This initial model is made up of 28 descriptors summarized in table 9, and described next: 
• Overall descriptors: 

- Number of notes, number of significant silences, and number of not significant silences. 
The adjective significant stands for silences explicitly written in the underlying 
score of the melody. In MIDI files, short gaps between consecutive notes may 
appear due to interpretation nuances like stacatto. These gaps (interpretation 
silences) are not considered significant silences since they should not appear in the 
score. To make a distinction between kinds of silence is not possible from the MIDI 
file and it has been made based on the definition of a silence duration threshold. 
This value has been empirically set to a duration of a sixteenth note. All silences 
with longer or equal duration than this threshold are considered significant. 

• Pitch descriptors: 
- Pitch range (the difference in semitones between the highest and the lowest note in 

the melody segment), average pitch relative to the lowest pitch, and standard 
deviation of pitches (provides information about how the notes are distributed in the 
score). 

                                                 
3 A tick is the basic unit of time in a MIDI file and is defined by the resolution of the file, 
measured in ticks per beat. 
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deviation of pitches (provides information about how the notes are distributed in the 
score). 

                                                 
3 A tick is the basic unit of time in a MIDI file and is defined by the resolution of the file, 
measured in ticks per beat. 
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Table 9. Musical descriptors 

• Note duration, silence duration and IOI4 descriptors are measured in ticks and computed 
using a time resolution of Q = 48 ticks per bar 5. Interval descriptors are computed as the 
difference in absolute value between the pitches of two consecutive notes. 

• Harmonic descriptors: 
- Number of non diatonic notes. An indication of frequent excursions outside the song 

key (extracted from the MIDI file) or modulations. 
- Average degree of non diatonic notes. Describes the kind of excursions. This degree is a 

number between 0 and 4 that indexes the non diatonic notes of the diatonic scale of 
the tune key, that can be major or minor key6 

- Standard deviation of degrees of non diatonic notes. Indicates a higher variety in the non 
diatonic notes. 

                                                 
4 An IOI is the distance, in ticks, between the onsets of two consecutive notes. Two notes are 
considered consecutive even in the presence of a silence between them. 
5 This is call quantisation. Q = 48 means that when a bar is composed of 4 beats, each beat 
can be divided, at most, into 12 ticks. 
6 Non diatonic degrees are: 0:♭II, 1: ♭III (♮III for minor key), 2: ♭V, 3: ♭VI, 4: ♭VII. The 
key is encoded at the beginning of the melody track. It has been manually checked for 
correctness in our data. 
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• Rhythmic descriptor: 
- Number of syncopations: notes that do not begin at measure beats but in some places 

between them (usually in the middle) and that extend across beats. 
• Normality descriptors. They are computed using the D’Agostino statistic for assessing 

the distribution normality of the n values vi in the segment for pitches, durations, 
intervals, etc. The test is performed using this equation: 

 
(1) 

For pitch and interval properties, the range descriptors are computed as maximum minus 
minimum values, and the average-relative descriptors are computed as the average value 
minus the minimum value (only considering the notes in the segment). For durations (note 
duration, silence duration, and IOI descriptors) the range descriptors are computed as the 
ratio between the maximum and minimum values, and the average-relative descriptors are 
computed as the ratio between the average value and the minimum value. 
This descriptive statistics is similar to histogram-based descriptions used by other authors 
(Thom, 2000; Toiviainen & Eerola, 2001) that also try to model the distribution of musical 
events in a music fragment. Computing the range, mean, and standard deviation from the 
distribution of musical properties, we reduce the number of features needed (each 
histogram may be made up of tens of features). Other authors have also used this sort of 
descriptors to classify music (Tzanetakis et al., 2003; Blackburn, 2000), mainly focusing on 
pitches. 

5.4 Free parameter space 
Given a melody track, the statistical descriptors presented above are computed from equal 
length segments extracted from the track, by defining a window of size ω measures. Once 
the descriptors of a segment have been extracted, the window is shifted  measures forward 
to obtain the next segment to be described. Given a melody with m > 0 measures, the 
number of segments s of size ω > 0 obtained from that melody is 

 
(2) 

showing that at least one segment is extracted in any case (ω and s are positive integers; m 
and  may be positive fractional numbers). 
Taking ω and  as free parameters in our methodology, different datasets of segments have 
been derived from a number of values for those parameters. The goal is to investigate how 
the combination of these parameters influences the segment classification results. The 
exploration space for this parameters will be referred to as ω-space. A point in this space is 
denoted as 〈ω, 〉. 
ω is the most important parameter in this framework, as it determines the amount of 
information available for the descriptor computations. Small values for ω would produce 
windows containing few notes, providing little reliable statistical descriptors. Large values 
for ω would lead to merge –probably different– parts of a melody into a single window and 
they also produce datasets with fewer samples for training the classifiers (see Eq. 2). The 
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showing that at least one segment is extracted in any case (ω and s are positive integers; m 
and  may be positive fractional numbers). 
Taking ω and  as free parameters in our methodology, different datasets of segments have 
been derived from a number of values for those parameters. The goal is to investigate how 
the combination of these parameters influences the segment classification results. The 
exploration space for this parameters will be referred to as ω-space. A point in this space is 
denoted as 〈ω, 〉. 
ω is the most important parameter in this framework, as it determines the amount of 
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windows containing few notes, providing little reliable statistical descriptors. Large values 
for ω would lead to merge –probably different– parts of a melody into a single window and 
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value of  would affect mainly to the number of samples in a dataset. A small  value 
combined with quite large values for ω may produce datasets with a large number of 
samples (see also Eq. 2). The details about the values used for these parameters can be found 
in section 5.7. 

5.5 Feature selection procedure 
The features described above have been designed according to those used in musicological 
studies, but there is no theoretical support for their genre classification capability. We have 
applied a selection procedure in order to keep those descriptors that better contribute to the 
classification. The method assumes feature independence, that is not true in general, but it 
tests the separability provided by each descriptor independently, and uses this separability 
to obtain a descriptor ranking. 
Consider that the M descriptors are random variables {Xj } 1

M
j=  whose N sample values are 

those of a dataset corresponding to a given ω-point. We drop the subindex j for clarity, 
because all the discussion applies to each descriptor. We split the set of N values for each 
descriptor into two subsets: {XC,I } 1

CN
i=  are the descriptor values for classical samples and  

{XJ,I } 1
NJ
i=  are those for the jazz samples, being NC and NJ the number of classical and jazz 

samples, respectively. XC and XJ are assumed to be independent random variables, since 
both sets of values are computed from different sets of melodies. We want to know whether 
these random variables belong to the same distribution or not. We have considered that both 
sets of values hold normality conditions, and assuming that the variances for XC and XJ are 
different in general, the test contrasts the null hypothesis H0 ≡ μC = μJ  against  H1 ≡ μC ≠ μJ . If 
H1 is concluded, it is an indication that there is a clear separation between the values of this 
descriptor for the two classes, so it is a good feature for genre classification. Otherwise, it 
does not seem to provide separability between the classes. 
The following statistical for sample separation has been applied: 

 

(3) 

where X C and X J are the means, and s 2
C  and s 2

J  the variances for the descriptor values for 
both classes. The greater the z value is, the wider the separation between both sets of values 
is for that descriptor. A threshold to decide when H0 is more likely than H1, that is to say, the 
descriptor passes the test for the given dataset, must be established. This threshold, 
computed from a t-student distribution with infinite degrees of freedom and a 99.7% 
confidence interval, is z = 2.97. Furthermore, the z value permits to arrange the descriptors 
according to their separation ability. 
When this test is performed on a number of different ω-point datasets, a threshold on the 
number of passed tests can be set as a criterion to select descriptors. This threshold is 
expressed as a minimum percentage of tests passed. Once the descriptors are selected, a 
second criterion for grouping them permits to build several descriptor models 
incrementally. First, selected descriptors are ranked according to their z value averaged over 
all tests. Second, descriptors with similar z values in the ranking are grouped together. This 
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way, several descriptor groups are formed, and new descriptor models can be formed by 
incrementally combining these groups. See the section 5.7.1 for the models that have been 
obtained. 

5.6 Classifier implementation and tuning 
Two algorithms from different classification paradigms have been used for genre 
recognition. They are fully supervised methods: The Bayesian classifier and the k-nearest 
neighbor (k-NN) classifier (Duda et al., 2000). 
The Bayesian classifier is parametric and, when applied to a two-class problem, computes a 
discriminant function: 

 
(4) 

for a test sample X where P(X | ω i ) is the conditional probability density function for class i 
and πi are the priors of each class. Gaussian probability density functions for each genre are 
assumed for each descriptor. Means and variances are estimated separately for each class 
from the training data. The classifier assigns a sample to ω1 if g (X) > 0, and to ω2 otherwise. 
The decision boundaries, where g (X) = 0, are in general hyperquadrics in the feature space. 
The k-NN classifier uses an Euclidean metrics to compute the distance between the test 
sample and the training samples. The genre label is assigned to the test sample by a majority 
decision among the nearest k training samples (the k-neighborhood). 

5.7 Experiments and results on music genre recognition 
5.7.1 Feature selection results 
The feature selection test presented in section 5.5 has been applied to datasets corresponding 
to 100 randomly selected points of the ω-space. This is motivated by the fact that the 
descriptor computation is different for each ω and the set of values is different for each , so 
the best descriptors may be different for different ω-points. Thus, by choosing a set of such 
points, the sensitivity of the classification to the feature selection procedure can be analysed. 
Being a random set of points is a good trade-off decision to minimise the risk of biasing this 
analysis. 
The descriptors were sorted according to the average z value ( z ) computed for the 
descriptors in the tests. The list of sorted descriptors is shown in table 10. The z  values for 
all the tests and the percentage of passed tests for each descriptor are displayed. In order to 
select descriptors, a threshold on the number of passed tests has been set to 95%. This way, 
those descriptors which failed the separability hypothesis in more than a 5% of the 
experiments were discarded from the reduced models. Only 12 descriptors out of 28 were 
selected. In the right most column, the reduced models in which the descriptors were 
included are presented. Each model is denoted with the number of descriptors included in it. 
Three reduced size models have been chosen, with 6, 10, and 12 descriptors. This models are 
built according to the z  value as displayed in figure 3. The biggest gaps in the z  values for 
the sorted descriptors led us to group the descriptors in these three reduced models. Note 
also that the values for z  show a small deviation, showing that the descriptor separability 
is quite stable in the ω-space. 
It is interesting to remark that at least one descriptor from each category of those defined in 
section 5.3 were selected for a reduced model. The best represented categories were pitches 
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value of  would affect mainly to the number of samples in a dataset. A small  value 
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and intervals, suggesting that the pitches of the notes and the relation among them are the 
most influent features for this problem. From the statistical point of view, standard 
deviations were the most important features, since five from six possible ones were selected. 
 

 
Table 10. Feature selection results 
 

 
Fig. 3. Values for z  for each descriptor as a function of their order numbers. The relative 
deviations for z  in all the experiments are also displayed. The biggest gaps for z  and the 
models are outlined. 
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5.7.2 The ω-space framework 
The melodic segment parameter space has been established as follows: 

 (5) 

and, for each ω 

 
(6) 

The range for  when ω> 50 has been limited to 20 due to the very few number of samples 
obtained with large  values for this ω range. This setup produces a total of 2275 points 〈ω,〉 
in the ω-space. A number of experiments have been made for each of these points: one with 
each classifier (Bayes, NN) for each of the four description models discussed in section 5.7.1. 
Therefore, 12 different experiments for each ω-point have been made, denoted by (ω,,μ,γ), 
where μ ∈ {6,10,12,28} is the description model and γ ∈ {Bayes,NN} the classifier used. 
In order to obtain reliable results, a ten-fold crossvalidation scheme has been carried out for 
each of the (ω,,μ,γ) experiments, making 10 sub-experiments with about 10% of samples 
saved for test in each sub-experiment. The success rate for each (ω,,μ,γ) experiment is 
averaged for the 10 sub-experiments. 
The partitions were made at the MIDI file level, to make sure that training and test sets do 
not share segments from any common melody. Also the partitions were made in such a way 
that the relative number of measures for both genres were equal to those for the whole 
training set. This permits us to estimate the prior probabilities for both genres once and then 
use them for all the sub-experiments. Once the partitions have been made, segments of ω 
measures are extracted from the melody tracks, and labeled training and test datasets 
containing μ-dimensional descriptor vectors are constructed. 
To summarise, 27300 experiments consisting of 10 sub-experiments each, have been carried 
out. The maximum number of segments extracted is s = 9339 for the ω-point 〈3,1〉. The 
maximum for s is not located at 〈1,1〉 as expected, due to the fact that segments not 
containing at least two notes are discarded. The minimum is s = 203 for 〈100,20〉. The 
average number of segments in the whole ω-space is 906. The average proportion of jazz 
segments is 36% of the total number of segments, with a standard deviation of about 4%. 
This is a consequence of the classical MIDI files having a greater length in average than jazz 
files, although there are less classical files than jazz files. 

5.8 Classification results 
Each (ω,,μ,γ) experiment has an average success rate, obtained from the crossvalidation 
scheme discussed in the previous section. The results presented here are based on those rates. 

5.8.1 Bayes classifier 
For one sub-experiment in a point in the ω-space, all the parameters needed to train the 
Bayesian classifier are estimated from the particular training set, except for the priors of each 
genre, that are estimated from the whole set, as explained above. 
Figure 4 shows the classification results for the Bayesian classifier over the ω-space for the 
12-descriptor model. This was one of the best combination of model and classifier (89.5%of 
success) in average for all the experiments. The best results for this classifier were found 
around 〈58,1〉, where a 93.2% average success was achieved. 
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Fig. 4. Illustration of the recognition percentage in the ω-space for the Bayesian classifier 
with the 12-descriptor model. Numbers on top of level curves indicate the recognition 
percentage at places on the curve. The best results (around 93.2%) are found in the lighter 
area, with large widths and small displacements. 

The best results for genre classification were expected to be found for moderate ω values, 
where enough musical events to calculate reliable statistical descriptors are contained in a 
segment, while musical events located in other parts of the melody are not mixed in a single 
segment. But the best results are generally obtained with a combination of large ω values 
and small . Experiments for ω = ∞ (taking the whole melody as a single segment) are 
discussed in section 5.8.3. 
The worst results occurred for small ω, due to the few musical events at hand when 
extracting a statistical description for such a small segment, leading to non reliable 
descriptors for the training samples. 
All the three reduced models outperformed the 28-descriptor model (see Fig. 5 for a 
comparison between models for  = 1), except for ω ∈[20,30], where the 28- descriptor model 
obtains similar results for small values of . For some reason, still unknown, the particular 
combination of ω and  values in this range results in a distribution of descriptor values in 
the training sets that favours this classifier. 
The overall best result (95.5% of average success) for the Bayesian classifier has been 
obtained with the 10-descriptor model in the point 〈98,1〉. See Table 11 for a summary of best 
results – indices represent the 〈ω, 〉 values for which the best success rates were obtained. 
About 5% of the sub-experiments (4556 out of 91000) for all models yielded a 100% 
classification success. 
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Fig. 5. Bayes recognition results for the differentmodels versus the windowwidth, with a 
fixed  = 1. 

 
Table 11. Best success rates 

5.8.2 k-NN classifier 
Before performing the main experiments for this classifier, a study of the evolution of the 
classification as a function of k has been designed, in order to test the influence of this 
parameter in the classification task. The results are displayed in Fig. 6. Recognition 
percentage is averaged for all 〈ω,1〉 points. Note that there is almost no variation in the 
recognition rate as k increases, except a small improvement for the 6-descriptor model. Thus, 
the simplest classifier was selected: k = 1, to avoid unnecessary time consumption due to the 
very large number of experiments to be performed. 
Once the classifier has been set, the results for the different models were obtained and are 
displayed in Fig. 7 for  = 1. All models performed comparatively for ω ≤ 35. For ω > 35, the 
28-descriptor model begins to perform better than the reduced models. Its relatively high 
dimensionality and a greater dispersion in the samples (the larger the ω, the higher the 
probability of different musical parts to be contained in the same segment) causes larger 
distances among the samples, making the classification task easier for the k-NN. 
The best results (96.4%) were obtained for the point 〈95,13〉 with the 28-descriptor model. 
The best results for all the models have been consistently obtained with very large segment 
lengths (see Table 11). The percentage of perfect (100%) classification sub-experiments 
amounts to 18.7% (17060 out of 91000). 
For the whole ω-space, the NN classifier obtained an 89.2% in average with the 28-
descriptor model, while the other models yielded similar rates, around 87%. The behavior of 
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the 10- and 12-descriptor models was almost identical over the parameter space (Fig. 7) and 
for the different tested values for k (Fig. 6). 
 

 
Fig. 6. Evolution of k-NN recognition for the different models against values of k. 
 

 
Table 12. Averages and standard deviations of success rates 

 
Fig. 7. NN recognition results for the different models versus the window width, with a 
fixed  = 1. 
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5.8.3 Whole melody segment classification 
The good results obtained for large ω called our attention to the question of how good 
would be the results of classifying whole melodies, instead of fragments, as presented so far. 
The first problem is the small number of samples available this way (110 samples for 
training and test). The results of these experiments are displayed in Table 13. The same 10-
fold cross-validation scheme described in section 5.7.2 was used here. The results are 
comparable or even better than the average in the ω-space for both classification 
paradigms. 
 

 
Table 13. Average success rates for whole melody segment length (ω = ∞) 

In spite of this good behavior for Bayes and k-NN, this approach has a number of 
disadvantages. Training is always more difficult due to the smaller number of samples. The 
classification cannot be performed on-line in a real-time system, because all the piece is 
needed in order to take the decision. There are also improvements to the presented 
methodology, like cooperative decisions using different segment classifications that can not 
be applied to the complete melody approach. 

5.8.4 Results comparison 
Bayesian and NN classifier performed comparatively. There were, in general, lower 
differences in average recognition percentages between models for NN than those found 
with the Bayesian classifier (see Table 12), probably due to its non-parametric nature. 
An ANOVA test with Bonferroni procedure for multiple comparison statistics (Hancock & 
Klockars, 1996) was used to determine which combination of model and classifier gave the 
best classification results in average. According to this test, with the number of experiments 
performed, the required difference between any two recognition rates in Table 12 must be at 
least 0.45123 in order to be considered statistically different at the 95% confidence level. 
Thus, it can be stated that Bayes classifier with 12-descriptor model and NN classifier with 
28-descriptor model perform comparatively well, and both outperform the rest of classifier 
and model combinations. The Bayes classifier has the advantage of using a reduced size 
description model. 
In a recent work using the same data set (Pérez-Sancho et al., 2004), several text 
categorization algorithms have been used to perform genre recognition from whole 
melodies. In particular, a naive Bayes classifier with several multivariate Bernoulli and 
multinomial models are applied to binary vectors indicating the presence or absence of n-
length words (sequences of n notes) in a melody. The work reported around 93% of success 
as the best performance. This is roughly the same best result reported here for the whole 
melody, although it is outperformed by the window classification results. 
Results for the ω-space are hardly comparable with results by other authors, due to our use 
of segments instead of complete melodies, and mainly due to the different datasets put 
under study by different authors. Nevertheless a comparison attempt can be made with the 
results found in (Tzanetakis et al., 2003) for pair-wise genre classification. The authors use 
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In a recent work using the same data set (Pérez-Sancho et al., 2004), several text 
categorization algorithms have been used to perform genre recognition from whole 
melodies. In particular, a naive Bayes classifier with several multivariate Bernoulli and 
multinomial models are applied to binary vectors indicating the presence or absence of n-
length words (sequences of n notes) in a melody. The work reported around 93% of success 
as the best performance. This is roughly the same best result reported here for the whole 
melody, although it is outperformed by the window classification results. 
Results for the ω-space are hardly comparable with results by other authors, due to our use 
of segments instead of complete melodies, and mainly due to the different datasets put 
under study by different authors. Nevertheless a comparison attempt can be made with the 
results found in (Tzanetakis et al., 2003) for pair-wise genre classification. The authors use 
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information from all the tracks on the MIDI files except tracks playing on the percussion 
channel. In that work, a 94% accuracy for Irish Folk music and Jazz identification is reported 
as the best result. Unfortunately, they did not use Classical samples. This accuracy 
percentage is similar to our results with whole melody length segments and the NN 
classifier (93%). A study on the classification accuracy as a function of the input data length 
is also reported, showing a behavior similar to the one reported here: classification accuracy 
using statistical information reaches its maximum for larger segment lengths, as they 
reported a maximum accuracy for five classes with 4 minute segment length. Our best 
results were obtained for ω > 90 (see Table 11). 

6. Some conclusions and future work 
6.1 Conclusions on melody characterization 
The method proposed here identifies the voice containing the melody in a multitrack digital 
score. It has been applied to standard MIDI files in which music is stored in several tracks, 
so the system determines whether a track is a melodic line or not. The track with the highest 
probability among the melodic tracks is finally labeled as the one containing the melody of 
that song. 
The decisions are taken by a pattern recognition algorithm based on statistical descriptors 
(pitches, intervals, durations and lengths), extracted from each track of the target file. The 
classifier used for the experiments was a decision tree ensemble classifier named random 
forest. It was trained using MIDI tracks with the melody track previously labeled by a 
human expert. 
The experiments yielded promising results using databases from different music genres, like 
jazz, classical, and popular music. Unfortunately, the results could not be compared to other 
systems because of the lack of similar works. 
The results show that enough training data of each genre are needed in order to successfully 
characterize the melody track, due to the specificities of melody and accompaniment in each 
genre. Classical music is particularly hard for this task, because of the lack of a single track 
that corresponds to the whole melodic line in some files. In these files, melody moves from 
one track to another, as different instruments take the melody lead role. To overcome this 
problem, more sophisticated schemes oriented to melodic segmentation are needed. 
The use of information about the layout of the tracks within a MIDI file is being 
investigated. We hope this would help to improve the performance of the system when 
dealing with particularly hard instances like the ones found in karaoke files. The extraction 
of human-readable rules from the trees in the random forest that help characterize melody 
tracks has been another topic of research that yielded some promising results. Several rule 
systems, including some fuzzy rule systems have been obtained (Ponce de León et al., 2007; 
Ponce de León et al., 2008). Being able to automatically obtain melody characterization rules 
that easily understandable by humans could be of interest for musicologists and would help 
building better tools for searching and indexing symbolically encoded music. 

6.2 Conclusions on music genre recognition 
Our main goal in this work has been to test the capability of melodic, harmonic, and 
rhythmic statistical descriptors to perform musical genre recognition. We have developed a 
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framework for feature extraction, selection and classification experiments, where new 
corpora, description models, and classifiers can be easily incorporated and tested. 
We have shown the ability of two classifiers, based on different paradigms, to map symbolic 
representations of melodic segments into a set of musical genres. Jazz and classical music 
have been used as an initial benchmark to test this ability. The experiments have been 
carried out over a parameter space defined by the size of segments extracted from melody 
tracks of MIDI files and the displacement between segments sequentially extracted from the 
same source. A total of 273000 classification sub-experiments have been performed. 
From the feature selection stage, a number of interesting conclusions can be drawn. From 
the musical point of view, pitches and intervals have shown to be the most discriminant 
features. Other important features have been the number of notes and the rhythm 
syncopation. Although the former set of descriptors may be probably important in other 
genre classification problems, probably these latter two have found their importance in this 
particular problem of classical versus jazz. From the statistical point of view, standard 
deviations were very relevant, since five of them from six possible ones were selected. 
The general behavior for all the models and classifiers against the values for ω was to have 
bad classification percentages (around 60%) for ω = 1, rapidly increasing to an 80% for  
ω ≈ 10, and then keep stable around a 90% for ω > 30. This general trend supports the 
importance of describing large melody segments to obtain good classification results. The 
preferred values for  were small, because they provide a higher number of training data. 
Bayes and NN performed comparatively. The parametric approach preferred the reduced 
models but NN performed well with all models. In particular, with the complete model, 
without feature selection, it achieved very good rates, probably favored by the large 
distances among prototypes obtained with such a high dimensionality. The best average 
recognition rate in the ω-space has been found with the Bayesian classifier and the 12-
descriptor model (89.5%), although the best result was obtained with the NN, that reached a 
96.4% with ω = 95 and  = 13. 
Also, whole melody classification experiments were carried out, removing the segment 
extraction and segment classification stage. This approach is simpler, faster, and provide 
comparative results even with few training samples, but has a number of disadvantages. It 
does not permit the use of on-line implementations where the system can input data and 
take decisions in real-time, since all the piece needs to be entered to the classifier in a single 
step. In addition, the segment classification approach permits to analyse a long theme by 
sections, performing local classifications. 
An extension to this framework is under development, where a voting scheme for segments 
is used to collaborate in the classification of the whole melody. The framework permits the 
training of a large number of classifiers that, combined in a multi-classifier system, could 
produce even better results. 
An experimental graphical user interface has been developed to facilitate working on the 
problem of music genre recognition. The main motivation for such a tool is to allow 
investigate why classification errors occur. A snapshot of the interface (actually in spanish) 
is shown in figure 8. The interface allows to select a model (ω,,μ,γ) for classifying selected 
tracks from MIDI files. The classification of each extracted window is shown in a row and 
encoded by colors. Each window content can be played individually and its description 
visualized. 
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Fig. 8. Graphical user interface for automatic music genre recognition. 
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1. Introduction 
The indoor localisation of a mobile target is an important issue in many robotics, 
automation, virtual reality and pervasive computing environments. The most sophisticated 
method for indoor localisation is based on processing the images captured by cameras that 
are placed on the target in order to recognise familiar landmarks and their distance (Jin et al, 
2004); (Porta & Krose, 2006); (Clerentin et al, 2005); (Tovar et al, 2006); (Se et al, 2002). Image 
processing in conjunction with other localisation approaches described below (Borenstein et 
al., 1996) is very popular in autonomous robotics applications making feasible the 
familiarisation of a robot with unknown areas. Stochastic processing is often applied in this 
case in order to evaluate an estimated position. Nevertheless, expensive sensors and 
processing units are required in order to support the high computational complexity of this 
approach.  
More popular lower cost approaches are based either on measuring the round trip time of a 
reflected wave or the strength of a signal. In the first case, the cost is higher if optical or laser 
scanning is employed since very short time intervals have to be measured with high 
precision (Miura et al, 2006); (Clerentin et al, 2005); (Victorino et al, 2003); (Arras et al, 2001). 
Ultrasonic signals can offer a lower cost alternative to this approach since the sonar waves 
travel with much lower speed than light but their main drawback is that this type of signal 
is not directional enough (Smith & Zografos, 2005); (Minami et al, 2004); (Tardos et al, 2002); 
(Bicho et al, 2000); (Baskent & Barshan, 1999). Moreover, it is more difficult to isolate the 
sonar transmitter from the receiver in order to reassure that only the reflected signal will be 
received. 
Measuring the signal strength of multiple transmitters (Ladd et al, 2005); (Flora et al, 2005) 
can also provide an indication about the target position. This technique has already been 
adopted in cellular phone, Wireless Local Access Network (WLAN) or Bluetooth 
applications. Although wide areas can be covered in these networks, the distance estimation 
error is usually higher than half a meter. Even magnetic fields have been used for the 
accurate non-contact control of tools and medical instruments (Schlageter et al, 2001); (Kosel 
et al, 2005). The distance measured in this approach cannot be longer than some tenths of 
centimetres although a distance estimation of up to 10m has been reported in (Prigge & 
How, 2004). 
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Infrared light has been employed using either passive or active sensors in order to avoid 
obstacles, estimate distance (Jin et al, 2004); (Bicho, 2000) or to profile the surface of an object by 
recognising its texture (Aytac & Barshan, 2004); (Benet et al, 2002); (Novotny & Ferrier, 1999). 
A low cost infrared–based solution that relies on recognising digital patterns has been 
presented in (Petrellis et al, 2007a and 2007b). The reception quality of the patterns that are 
sent by at least two transmitters that are placed around the covered area is utilised for 
estimating the position of the receiver. A calibration procedure, that is carried out once, 
before real time operation, familiarises the target with the area. During this stage, the target 
visits predetermined positions and enumerates the recognised patterns in a period of time. 
Using several types of patterns, a position identity can be formed by the success rate of each 
pattern type. During real time operation, the current position identity is compared to the 
identities that were estimated during the calibration stage and the closer position is selected. 
Specific regression techniques can be employed in order to reach a more accurate estimation 
of the real target position. 
The speed and accuracy of the position estimation method described above are strongly 
affected by instant noise that has not been taken into account during the calibration stage. 
The estimation speed can be improved by increasing the frequency of the carrier that is used 
for the pattern transmission. In this way, shorter patterns can be employed. Several rules 
can be applied to validate the results of the position estimation procedure and discard false 
results caused by instant noise. In this case, the estimation procedure should be repeated for 
the specific position (Petrellis et al, 2007b). 
In the present work, we employ Forward Error Correction (FEC) techniques in order to 
reduce the effect of instant noise and speed up the estimation procedure. The interleaving 
process employed in Turbo decoding can minimize the effect of the burst errors caused by 
the instant noise (Schlegel & Perez, 2004); (Kschischang et al, 2001); (Hagenauer et al, 1996); 
(Gamal & Hammons, 2001) (Arzel et al, 2007). Instead of recognizing a large number of long 
patterns as the case was in our previous work, a small number of short signatures are used. 
These signatures are encoded in both interleaved and uninterleaved form at the side of the 
transmitter and the resulting bit stream is broadcast as an infrared signal. When the 
attenuated signal is received at the target, it is corrected by a decoder that can be 
implemented either in software or by dedicated hardware (Gioulekas et al, 2005); 
(Bickerstaff et al, 2003). Since our localisation approach is based on the quality of the 
received signal, the intension is to minimise the burst errors caused by instant noise through 
the selected FEC method rather than fully correct all the errors.  
The control of the error rate margins can be based on the study of the behaviour of the 
specific infrared channel and its noise sources. Choosing “equalised” signatures can 
minimise some types of errors. The new sampling method employed at the side of the 
receiver increases significantly the estimation speed. The processing overhead of the error 
correction is small compared to the duration of the infrared signatures used. Besides the 
speed enhancement, the accuracy and the estimation reliability is also improved. 
The architecture of the infrared transmitters and receivers of the present work as well as 
their topology is described in Section 2. The infrared channel features are studied and the 
decoding algorithms used are discussed in Section 3 and Section 4 respectively. The 
simulation results are presented in Section 5. The different experimental pattern structures 
that were tested are described in Section 6. Finally, the experimental results are presented in 
Section 7 along with some discussion on the advantages and the disadvantages of the 
various pattern structures. 
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2. System architecture and topology 

 
Fig. 1. The topology of the infrared transmitters and receivers 

The Position Estimation System described in this work consists of 2 or more infrared 
transmitters (IRTX) positioned at the borders of the covered area as shown in Fig. 1. Each 
one of these transmitters is broadcasting a specific set of pattern types. The second IRTX 
device is basically used to break the symmetry between the right and the left side of the first 
IRTX device as well as to extend the covered area. Two infrared sensors are placed at the 
target facing opposite directions. The main transmitting device (IRTX1) is used as a 
reference for the position of the target. The coordinates of the target in Fig. 1, are (y,xL), 
meaning that the target has horizontal and vertical distance x and y respectively and is 
positioned at the left (L) side of the IRTX1.  
The architecture of an infrared transmitter is shown in Fig. 2. The processing unit of the 
IRTX device is responsible for the generation of the supported infrared patterns. It is also 
responsible for the encoding and the interleaving of the transmitted information although 
the encoded and interleaved form of the original signatures may have been stored a priori in 
the memory of the IRTX device. The patterns are transmitted over a carrier that may also be 
generated by the processing unit of the transmitter in order to reduce external circuitry. The 
patterns and the carrier are mixed and amplified before the infrared emitting diode is 
driven. More than one infrared emitting diode may be connected in parallel and placed in 
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circular arrangement in order to cover a wider area. In the present setup we used two 
diodes in parallel in both IRTX devices.  
Different IRTX devices should be wired if they share the same processing unit. Independent 
IRTX devices may also be employed but this may have an impact on the estimation speed, 
accuracy and cost as will be discussed in Sections 6 and 7. 
 

 
Fig. 2. Architecture of the IRTX device 

The architecture of the receivers (IRRX devices) that are mounted on the target is presented 
in Fig. 3. An IRRX device accepts only the signals that were modulated on a specific carrier 
frequency. This is achieved through a bandpass filter and a carrier rejection circuitry that 
may be embedded in the infrared sensor if a standard carrier frequency is used. The use of 
the carrier protects from the interference of other infrared sources like the sunlight. The 
processing unit of the receiver is responsible for the sampling of the input signal and the 
recognition of the limits of the signatures, the encoded parity bits, etc. The received 
interleaved or uninterleaved signatures along with the parity bits are input to the Decoder 
and the Interleaver blocks. The corrected patterns are sent to a host computer that estimates 
the position of the target. The results of the position estimation could be utilised by other 
applications installed on the host computer. The decoding and error correction of the 
received signatures can be alternative performed by the host computer instead of the 
processing unit of the receiver. This is mandatory for a decoding algorithm that is based on 
complicated high precision arithmetic operations that cannot be handled by a low cost 
microcontroller.  
The patterns transmitted by the IRTX devices in (Petrellis et al, 2007) are described in Fig. 4. 
The transmission starts with a preamble that is actually a long pause period. Then, a 
constant number of identical patterns are sent. These patterns are of the same type and each 
one consists of i pulses. These patterns are named MODi and are separated by a pause 
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interval. Then, another set of MODj patterns is transmitted with different number of pulses 
(j). In the example of Fig. 4, the preamble is followed by two MOD2 and one MOD4 pattern. 
The pulse width is not the same for different patterns types. More specifically, the pulse 
width in MODi is chosen to be longer than the pulse width of MODj, if i<j. In this way, 
MODi patterns can be recognised with lower error rate than MODj patterns. The number of 
MODi patterns that are recognised at the receiver is the success rate of MODi. The set of the 
success rates of all the supported pattern types forms an identity for a specific position. The 
receiver simply counts rising or falling edges between the pause intervals of the input 
signal, in order to recognise a pattern. Although the sampling is a simple procedure in this 
case, the pause intervals between the patterns lead to higher convergence times and lower 
estimation speed. 
 

 
Fig. 3. Architecture of the IRRX devices 

The sampling method described above cannot be applied if the transmitted patterns are not 
just a sequence of identical pulses. If more complicated signatures are transmitted, the 
receiver should sample the input signal at regular time intervals. 
 
 

 
Fig. 4. The patterns transmitted in (Petrellis et al, 2007) 
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Consider for example the case where the signature 0x01 followed by the parity bytes 0x01 
and 0x68 have to be transmitted as shown in Fig. 5a. The preamble in this case is again a 
long pause interval followed by a Start File Delimiter (SFD). As an SFD we selected the 
binary code 101. In general, the preamble is followed by the SFD, the original signature 
(SGN1), the parity bits of SGN1 (PA1) and the parity bits of the interleaved SGN1 (PB1) as 
shown in Fig. 5b. The code rate of this transmission is 1/3 if the PA1 and PB1 are considered 
as redundant information. Alternatively, the interleaved SGN1 can also be transmitted in 
order to increase the error correcting capability of the receiver (code rate 1/4). 
 

 
(a) 

 

 
(b) 

Fig. 5. Signature transmission in the present work 
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found to be logic ‘1’, the specific bit is recognised as logic ‘1’, otherwise as ‘0’. This 
procedure is shown in Fig. 6. Using the scheme described in Fig. 5 and Fig. 6, no pause 
intervals are necessary between the signatures and the parity info and hence, the position 
estimation speed is significantly improved. 
 

 
Fig. 6. Bit recognition based on the majority of samples  
The retrieved signatures and parity bits are input to the interleaver and the decoder at the 
side of the receiver. These two modules are attempting to correct some error bits. 
Nevertheless, this is not always feasible due to the low Signal to Noise Ratio of the channel. 
The receiver may accept or ignore the results of the error correcting method since it is aware 
of the expected signature and parity bits. The matching degree of the received signatures 
with the expected ones forms an identity of the corresponding position.  
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Before the real time operation of the system, the target visits predetermined position in the 
covered area (e.g., the nodes of a virtual grid) and stores the matching degree of the various 
patterns that were retrieved at each node. During real time operation, the matching degrees 
estimated at the current target position are compared to the stored ones and the closer node 
is selected. The real target position can be further approximated if a two dimensional 
interpolation search is applied (Petrellis et al, 2007a). 

3. Error sources in the specific infrared channel 
The estimation of the distortion posed by the infrared channel in the transmitted signal is 
very important since the selection of the appropriate patterns and correction method can 
modify the bit error rate features of the reception. The experimental study of the errors that 
appear in the various patterns shows that we can distinguish five error sources: (a) 
reflections, (b) sampling method (c) scrambling of patterns transmitted by different IRTX 
devices, (d) signal attenuation and (e) random errors.  
As already mentioned in the previous section, during the transmission of a logic ‘1’, the 
IRTX device sends a high pulse modulated at the carrier frequency while nothing is sent 
during the transmission of a logic ‘0’. The infrared light transmitted when a ‘1’ is sent 
reaches directly the receiver but is also reflected at the walls and the obstacles of the 
environment. Although the reflected infrared light fades soon, it is possible that the receiver 
will interpret a ‘10’ transmission as a ‘11’ since some additional samples can still be 
interpreted as ‘1’ during the transmission of the second bit. Hence, the channel has memory 
due to the Inter-Symbol Interference (ISI) caused by the reflections since the currently 
received bit value depends on the previously transmitted one. If the environment favours 
reflections, the previous 2 bits that were transmitted may still affect the value of the current 
bit but their contribution is different in that case. By adopting the model used in the Partial 
Response channels of the magnetic storage media (Vasic & Kurtas, 2005), the reflections and 
the random errors of a channel are expressed as: 
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The parameter x(t) is the transmitted bit while y(t) is the received one at the time point t. Mc 
is the memory of the channel i.e., the number of previous bits that affect the current one. The 
parameter n(t) expresses the Additive White Gaussian Noise (AWGN) of the channel with 
variance σ2 (where Ec is the energy per coded bit, Eb is the energy per uncoded bit and N0/2 
is the (two-sided) noise power spectral density . If expression (2) is valid, then the Signal to 
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The parameter x(t) is the transmitted bit while y(t) is the received one at the time point t. Mc 
is the memory of the channel i.e., the number of previous bits that affect the current one. The 
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Noise Ratio (SNR) of the channel is estimated by (3). Fig. 7 shows the ISI of the current bit 
with the previous two bits. 
 

 
Fig. 7. Description of 2-bit interference scheme in the specific infrared channel 

The sampling method described in the previous paragraph determines the value of the 
current bit from the majority of the samples retrieved in a period of time equal to the 
duration of the bit transmission. This method may lead to false recognition of a bit for two 
reasons: (a) the majority of the samples are noisy or (b) lack of synchronisation. The 
synchronisation is carried out when a preamble is sent. The lack of synchronisation may 
occur if a long bit sequence is transmitted and will usually affect the last bits of this 
sequence. It usually appears in the received pattern as an early recognised logic ‘1’. For 
example, the transmission of ‘01’ may be recognised as ‘11’ at the receiver. 
The patterns transmitted concurrently by different IRTX devices are received by the two 
IRRX devices mounted on the target either directly or through reflections. For example, if 
IRTX1 is facing IRRXA and IRTX2 is facing IRRXB, then if both IRTX devices transmit a logic 
‘1’, this bit will be probably recognised correctly by the two IRRX devices. Nevertheless, if 
the IRTX devices do not transmit the same bit value, both the IRRX devices may recognise a 
logic ‘1’ due to the reflected signal of the IRTX device that transmits a logic ‘1’. 
The signal of an IRTX device is attenuated if the target is positioned at a long distance from 
the transmitter. This is the main noise source that is responsible for the recognition of a 
transmitted logic ‘1’ as a logic ‘0’. The errors caused by signal attenuation are considered to 
have been generated by a Rayleigh-like effect and expression (1) becomes: 
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Equation (6) represents the probability density function for the Rayleigh parameter aR(t), 
while l(t) is the distance of the receiver from the transmitter. 
All the noise sources described above can be combined in the pair of expressions that 
describe how each IRRX device is expected to receive the signals transmitted by the two 
IRTX devices: 
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The IRTX1 and IRTX2 devices transmit the input signals x1(t) and x2(t) respectively while 
IRRXA receives yA(t) and IRRXB receives yB(t). The summation starts from k=-1 in order to 
include the sampling errors. The parameter Mc is practically less or equal than 2. The second 
summation term at the right side of both (7) and (8) represents the reflected signal that is 
transmitted by the IRTX device that is not facing the specific IRRX sensor. Since the reflected 
signal is more attenuated compared to the signal that is received directly, it holds that: 

 kaa kk ∀≥ ,'  (9) 

Some of the error types described above are shown in the example of Fig. 8. 
 

 
Fig. 8. Example errors during reception from the target 

4. Decoding algorithms 
The encoding of the signatures at the side of the transmitter is carried out through the well 
known Recursive Systematic Convolutional (RSC) encoder presented in Fig. 9 and described 
by the polynomial (1+ D2)/(1+D+D2). If a signature is n-bits long, the encoded parity bits 
have also n-bits length. Each signature is interleaved and the interleaved signature bits are 
also encoded by the same RSC encoder. The n-bits of the original signature (SGN), its parity 
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signal is more attenuated compared to the signal that is received directly, it holds that: 
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bits that are generated by the RSC encoder (PA) and the parity bits of the interleaved 
signature (PB) are transmitted by the Sequencer module of the IRTX device as shown in Fig. 
5b (code rate: 1/3). It is also possible that the interleaved signature is also transmitted in 
order to enhance the error correction capability at the side of the receiver by providing more 
redundant information (code rate: 1/4). 
 

 
Fig. 9. Recursive Convolutional Encoder scheme employed 

The encoding performed by the RSC state machine of Fig. 9 is also described by the state 
machine of Fig. 10 and the Trellis diagram of Fig. 11. The state names represent the output 
of the two Delay elements of the encoder. Each arrow in the state diagram is marked with 
the symbol i/o, where i is the input required for the state transition and o the resulting 
output of the RSC encoder. 

 
 
Fig. 9. The state diagram of the RSC encoder of Fig. 8 

D D 

D Exclusive OR One bit delay 

Encoder Input 

Encoder 
Output 
(PA) 

To 
Sequencer 

SGN 

0/0 

S00 

S01 S10 

S11 

1/1 1/1 
1/0 

0/0 

0/1 0/1 

1/0 

Application of Forward Error Correcting Algorithms to Positioning Systems 

 

601 

 

 
 

Fig. 10. The Trellis diagram of the RSC encoder of Fig. 8 

The received signature and parity bits are input to the decoder. The decoder exploits the 
redundancy information of the parity bits in order to correct the error bits in the received 
signatures. The correction capability is strongly related to the SNR of the channel. If the SNR 
is too low, the decoder may not be able to correct all the error bits or it may even produce an 
output that has more error bits than its input. The decoder that we used is based on the 
Trellis diagram of Fig. 10. Every Trellis stage is implemented by the architectural blocks that 
are shown in Fig. 11. 
The calculations performed at each one of the A-G blocks of Fig. 11 if a Sum-Product 
decoding algorithm is used (Hagenauer et al, 1996) are listed in Table 1. The input of each 
stage consists of: (a) the probabilities that yu(t) is received given that the transmitted data bit 
is 1 (xu(t)=1) or 0 (xu(t)=0), (b) the probabilities that yp(t) is received given that the 
transmitted parity bit is 1 (xp(t)=1) or 0 (xp(t)=0) respectively. Due to the conditional 
probabilities used as soft input, the decoder that is constructed by the blocks shown in Fig. 
11 is called Soft In Soft Out decoder (SISO). In Turbo decoding, two SISO decoders need to 
be used in parallel as shown in Fig. 12 operating on either the interleaved or the 
uninterleaved received data. Each SISO decoder produces the extrinsic information (block F 
of Fig. 11) that is exploited by the complementary SISO decoder as intrinsic information 
(block B). The SISO decoders are activated in an iterative way i.e., SISO 1 uses the input and 
initial intrinsic information and produces extrinsic information that is interleaved and used 
along with the interleaved input by the SISO 2 decoder. The extrinsic information of SISO 2 
is deinterleaved and provided as intrinsic info to SISO 1 that is activated next. This process 
is repeated for a specific number of iterations. 
Blocks A and B of Fig. 11 estimate the branch metrics of the Trellis diagram from the 
data/parity input and the intrinsic information. Blocks C and D estimate the node metrics of 
the Trellis diagram which are propagating forwards (a_S) and backwards (b_S) through the 
Trellis. The blocks E, F and G combine the input, the node and the branch metrics in order to 
produce the output (block G) and the extrinsic information (block F). 
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Fig. 11. Implementation of a Trellis decoder stage 
 

 
 

 
 

Fig. 12. A Turbo decoder 
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Table 1. Calculations performed by the Sum-Product Algorithm 

The operations listed in Table 1 are additions and multiplications. If the Sum-Product 
algorithm is implemented by the processing unit of the receiver of Fig. 2, then the 
processing unit should support multiplications of high accuracy. Lower cost processing 
units can be used if the Min-Sum or the Max-Log MAP algorithm is used instead of the 
Sum-Product. Specifically, by using the Andersen identity: 

 | |ln( ) min( , ) ln(1 )x y y xe e x y e− − − −− + = − +  (10) 

and applying the –ln(x) function to the left and the right side of the expressions in the blocks 
A, B and C of Table 1 we get: 
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Fig. 11. Implementation of a Trellis decoder stage 
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Table 1. Calculations performed by the Sum-Product Algorithm 

The operations listed in Table 1 are additions and multiplications. If the Sum-Product 
algorithm is implemented by the processing unit of the receiver of Fig. 2, then the 
processing unit should support multiplications of high accuracy. Lower cost processing 
units can be used if the Min-Sum or the Max-Log MAP algorithm is used instead of the 
Sum-Product. Specifically, by using the Andersen identity: 
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The correction factor appearing in (13) has the form of the second term at the right part of 
(10). If a similar transformation is applied to the rest of the blocks of Table 1 and the 
correction factor is omitted, then we get the expressions of the Min Sum Algorithm that are 
listed in Table 2.  
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Table 2. Calculations performed by the Min-Sum algorithm 

If (14) is used and ln(x) is applied instead of –ln(x) the expressions of the Max-Log MAP 
algorithm can be derived, but they are omitted since they are identical to the ones of Table 2 
if min function is replaced with the max one. 

 min( , ) max( , )x y x y= − − −  (14) 

5. Simulation Results 
The Sum-Product and the Min-Sum decoding algorithms described in the previous section 
have been simulated using as input the specific 160-bit signatures that are used in the 
localisation system of the present work and are listed in Table 3. 
 

Non-equalised signatures Equalised signatures 

IRTX1 IRTX2 IRTX1 IRTX2 

0x01010101 
0x11111111 
0x15151515 
0x55555555 
0x33333333 

0x66666666 
0xaaaaaaaa 
0xa4a4a4a4 
0x44444444 
0x04040404 

0x88888484 
0x18181212 
0xc8c8c4c4 
0x38383232 
0xe3e3e7e7 

0x89898c8c 
0x1c1c1313 
0xc9c9cccc 
0x3c3c3333 
0xe1e1f3f3 

Table 3. The 160 bit signatures used 
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The non-equalised signatures consist of 5 parts where the frequency of the bit value 1 occurs 
is different in each one of these parts. Moreover, the transmission of 1’s by IRTX1 is not 
overlapping with the transmission of 1’s by IRTX2. Based on this fact, a lot of scrambling 
errors are expected during real time operation.  
The definition of the equalised signatures is based on the use of signature parts by the two 
IRTX devices that differ in fewer bits than the non-equalised signatures in order to avoid 
scrambling. Moreover, the 1s are gathered together in order to reduce the errors caused by 
the reflections since less 1 0 transitions appear in the signatures as discussed in Section 3. 
The original signatures are transmitted along with the corresponding parity bits of the 
original and the interleaved signatures that are generated by the encoder. The techniques 
applied for reducing the scrambling and reflection errors in the equalised signatures do not 
have any effect in the parity bits since if for example less 1 0 transitions appear in the 
original signature, it is not guaranteed that fewer 1 0 transitions will also appear in the 
parity bits. 
The only simulated noise is of AWGN type with the SNR being in the range of [-
1dB..+2dB]. This SNR range has been experimentally determined by taking into 
consideration the total number of errors in the received patterns at various spots in the 
covered area. 
Fig. 13 presents the simulated results for various Turbo iterations. The non-equalised 
signatures are tested with a Random Interleaver. The equalised signatures are tested with 
the same Random interleaver and with a 2-level interleaver as well that generates 
equalised interleaved signatures. The 2-level interleaver rotates to the right by 3 positions 
the 32-bit signature parts at the first level and then the internal 32-bits of each part are 
reversed. This type of interleaving is described in Fig. 14 for which the following 
expression holds: 

 [32 ] 32 (( 3)%5) 31Interleaver i j i j⋅ + = ⋅ + + − ,0≤i<5, 0≤j<32 (15) 

Based on the diagrams of Fig. 13 it can be concluded that if the number of iterations is 10 or 
higher, the error correcting capability is not significantly improved. For this reason, the 
Turbo decoder at the position localisation system will use 10 iterations as the best trade off 
between decoder performance and speed. 
The Min-Sum algorithm shows a 0.5dB penalty in its performance compared to the Sum-
Product if the SNR is low due to the omission of the correction factor. If the SNR is high, 
these algorithms have the same performance. In our experimental setup the error correction 
algorithm is executed in the Host Computer. Hence, the Sum-Product algorithm is used in 
order to achieve a better error correcting performance. 
The choice of a proper interleaver affects significantly the performance since the 2-level 
interleaver tested has 0.5dB penalty at low SNR and more than 1.5dB penalty if the SNR is 
higher than 1dB. Even if the interleaved signature is also transmitted (code rate 1/4), the 
final bit error rate of the corrected patterns will not be improved since although fewer errors 
will occur at the interleaved signature, the capability of correcting the rest of the errors is 
reduced. For this reason, for the position localisation system, the Random Interleaver is used 
with the equalised signatures that are transmitted along with the corresponding parity bits 
of the signatures (code rate 1/3). 
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The correction factor appearing in (13) has the form of the second term at the right part of 
(10). If a similar transformation is applied to the rest of the blocks of Table 1 and the 
correction factor is omitted, then we get the expressions of the Min Sum Algorithm that are 
listed in Table 2.  
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Table 2. Calculations performed by the Min-Sum algorithm 

If (14) is used and ln(x) is applied instead of –ln(x) the expressions of the Max-Log MAP 
algorithm can be derived, but they are omitted since they are identical to the ones of Table 2 
if min function is replaced with the max one. 

 min( , ) max( , )x y x y= − − −  (14) 

5. Simulation Results 
The Sum-Product and the Min-Sum decoding algorithms described in the previous section 
have been simulated using as input the specific 160-bit signatures that are used in the 
localisation system of the present work and are listed in Table 3. 
 

Non-equalised signatures Equalised signatures 

IRTX1 IRTX2 IRTX1 IRTX2 

0x01010101 
0x11111111 
0x15151515 
0x55555555 
0x33333333 

0x66666666 
0xaaaaaaaa 
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0x44444444 
0x04040404 

0x88888484 
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The non-equalised signatures consist of 5 parts where the frequency of the bit value 1 occurs 
is different in each one of these parts. Moreover, the transmission of 1’s by IRTX1 is not 
overlapping with the transmission of 1’s by IRTX2. Based on this fact, a lot of scrambling 
errors are expected during real time operation.  
The definition of the equalised signatures is based on the use of signature parts by the two 
IRTX devices that differ in fewer bits than the non-equalised signatures in order to avoid 
scrambling. Moreover, the 1s are gathered together in order to reduce the errors caused by 
the reflections since less 1 0 transitions appear in the signatures as discussed in Section 3. 
The original signatures are transmitted along with the corresponding parity bits of the 
original and the interleaved signatures that are generated by the encoder. The techniques 
applied for reducing the scrambling and reflection errors in the equalised signatures do not 
have any effect in the parity bits since if for example less 1 0 transitions appear in the 
original signature, it is not guaranteed that fewer 1 0 transitions will also appear in the 
parity bits. 
The only simulated noise is of AWGN type with the SNR being in the range of [-
1dB..+2dB]. This SNR range has been experimentally determined by taking into 
consideration the total number of errors in the received patterns at various spots in the 
covered area. 
Fig. 13 presents the simulated results for various Turbo iterations. The non-equalised 
signatures are tested with a Random Interleaver. The equalised signatures are tested with 
the same Random interleaver and with a 2-level interleaver as well that generates 
equalised interleaved signatures. The 2-level interleaver rotates to the right by 3 positions 
the 32-bit signature parts at the first level and then the internal 32-bits of each part are 
reversed. This type of interleaving is described in Fig. 14 for which the following 
expression holds: 

 [32 ] 32 (( 3)%5) 31Interleaver i j i j⋅ + = ⋅ + + − ,0≤i<5, 0≤j<32 (15) 

Based on the diagrams of Fig. 13 it can be concluded that if the number of iterations is 10 or 
higher, the error correcting capability is not significantly improved. For this reason, the 
Turbo decoder at the position localisation system will use 10 iterations as the best trade off 
between decoder performance and speed. 
The Min-Sum algorithm shows a 0.5dB penalty in its performance compared to the Sum-
Product if the SNR is low due to the omission of the correction factor. If the SNR is high, 
these algorithms have the same performance. In our experimental setup the error correction 
algorithm is executed in the Host Computer. Hence, the Sum-Product algorithm is used in 
order to achieve a better error correcting performance. 
The choice of a proper interleaver affects significantly the performance since the 2-level 
interleaver tested has 0.5dB penalty at low SNR and more than 1.5dB penalty if the SNR is 
higher than 1dB. Even if the interleaved signature is also transmitted (code rate 1/4), the 
final bit error rate of the corrected patterns will not be improved since although fewer errors 
will occur at the interleaved signature, the capability of correcting the rest of the errors is 
reduced. For this reason, for the position localisation system, the Random Interleaver is used 
with the equalised signatures that are transmitted along with the corresponding parity bits 
of the signatures (code rate 1/3). 
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Fig. 13. Simulation results for the Sum-Product and the Min-Sum algorithms 
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(b) 

Fig. 14. A 2-level interleaver that generates equalised signatures 

6. Experimental setup 
The experimental setup beyond the signatures listed in Table 3 include also a number of 
short 8-bit signatures. The latter were not simulated in the previous section due to the fact 
that it is known that Turbo decoding has not considerable effect on data blocks with short 
length. We define the following signature structures that were experimentally tested: 

6.1 Previous architecture (Setup1) 
This is the previous setup described in (Petrellis et al, 2007). The patterns transmitted have 
the form of Fig. 4. The IRTX1 device transmits MOD2, MOD5, MOD6, MOD9 while IRTX2 
transmits MOD3, MOD4, MOD7 and MOD8. The IRTX devices are independent and 
transmit concurrently. The number of the received pattern codes of each type is used as a 
multidimensional position identity. The time needed to transmit all the supported patterns 
between two preambles is: 

,9652max(10 96521
TTTTT

setup
+++∝  

)8743 8743 TTTT +++  
(16) 

The parameter Ti is the duration of a pulse in MODi. If the time needed to transmit a bit in 
the rest of the setups is Tb, then the following values have been chosen for T2-T9: T9=Tb, 
T9<T8<…< T2. The pause interval between the successive patterns transmitted is 10Tb. 

6.2 Overlapping 8-bit signatures (Setup2) 
The new architecture with a Sum-Product Turbo Decoder is used. Five short 8-bit signatures 
are transmitted along with their corresponding randomly interleaved signatures and their 
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Fig. 13. Simulation results for the Sum-Product and the Min-Sum algorithms 
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Fig. 14. A 2-level interleaver that generates equalised signatures 

6. Experimental setup 
The experimental setup beyond the signatures listed in Table 3 include also a number of 
short 8-bit signatures. The latter were not simulated in the previous section due to the fact 
that it is known that Turbo decoding has not considerable effect on data blocks with short 
length. We define the following signature structures that were experimentally tested: 

6.1 Previous architecture (Setup1) 
This is the previous setup described in (Petrellis et al, 2007). The patterns transmitted have 
the form of Fig. 4. The IRTX1 device transmits MOD2, MOD5, MOD6, MOD9 while IRTX2 
transmits MOD3, MOD4, MOD7 and MOD8. The IRTX devices are independent and 
transmit concurrently. The number of the received pattern codes of each type is used as a 
multidimensional position identity. The time needed to transmit all the supported patterns 
between two preambles is: 
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)8743 8743 TTTT +++  
(16) 

The parameter Ti is the duration of a pulse in MODi. If the time needed to transmit a bit in 
the rest of the setups is Tb, then the following values have been chosen for T2-T9: T9=Tb, 
T9<T8<…< T2. The pause interval between the successive patterns transmitted is 10Tb. 

6.2 Overlapping 8-bit signatures (Setup2) 
The new architecture with a Sum-Product Turbo Decoder is used. Five short 8-bit signatures 
are transmitted along with their corresponding randomly interleaved signatures and their 
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parity bits (code rate 1/4). The receiver tests alternatively the original or the interleaved 
signature bits as input to the decoder and uses the best results that are obtained.  The two 
IRTX devices are independent and transmit concurrently. The set of signatures that are 
transmitted by IRTX1 is {0x85, 0x94, 0xa9, 0xd5, 0xbb} while IRTX2 transmits: {0x24, 0x4c, 
0x5a, 0x3b, 0x6f}. These signatures have been selected so that each one of them differs in the 
number 1’s. This is expected to force the receiver to recognise each one of these signatures 
with different error rate and hence, a multidimensional identity will be assigned to the 
specific position of the target. If s is the number of signatures, r is the code rate and b the 
number of bits per signature, then the time needed to transmit a set of signatures is: 

 
2setup

bs b TT
r

⋅ ⋅
∝  (17) 

6.3 Non-overlapping 8-bit signatures (Setup3) 
Similar to Setup2 but the IRTX devices transmit in a non overlapping manner i.e., the IRTX1 
does not transmit when IRTX2 does and vice versa. The signatures in this setup are received 
from the channel with lower bit error rate since scrambling is avoided. The time needed to 
transmit a set of signatures in this case is: 

 
3

2
setup

bs b TT
r

⋅ ⋅
∝  (18) 

6.4 Overlapping 160-bit signatures (Setup4) 
The non-equalised signatures of Table 3 are transmitted concurrently by the two IRTX 
devices. The interleaved signature bits are not transmitted (code rate 1/3). The time needed 
to transmit the signature and the parity bits is determined by (17). 

6.5 160-bit signatures. One IRTX transmitting (Setup5) 
Similar to the Setup4 but only one IRTX device is transmitting. The position identities are 
formed by 5 signature match degrees instead of 10 since the single IRTX device transmits a 
160-bit signature with 5 parts. This setup is tested in order to see whether a second IRTX 
device is really necessary. The time needed to transmit the signature and the parity bits is 
determined again by (17). 

6.6 Non-Overlapping 160-bit signatures (Setup6) 
Similar to the Setup4 but the IRTX devices transmit in a non overlapping manner in order to 
avoid scrambling. The time needed to transmit the signature and the parity bits is 
determined by (18). 

6.7 Equalised 160-bit signatures (Setup7) 
The equalised signatures of Table 3 are used in order to let the IRTX devices transmit 
concurrently but achieve a lower bit error rate at the channel due to the structure of the 
signatures. The code rate is again 1/3 since the interleaved signatures are not transmitted. 
The time needed to transmit the signature and the parity bits is determined by (17). 
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7. Experimental results - discussion 
The experiments for each of the aforementioned set-ups (described in the previous section) 
were performed with the IRTX1 and IRTX2 placed in 2.5m vertical distance and 60cm 
horizontal displacement as shown in Fig. 1. We focused in a region of 2.5mx1.5m between 
the two IRTX devices where the signal of both transmitters is strong. A virtual grid with 
30cmx30cm squares is assumed to cover this region. The coordinates of a grid node or a real 
target position within this region are represented as (y,xD), where y is the vertical distance 
from IRTX1, x the horizontal displacement from IRTX1 and D denotes whether the target is 
on the Left (L) or the Right (R) of the IRTX1 device. 
During the calibration stage that was carried out in each setup before real time operation, 
the target visited the nodes of the grid and stored the measured signature (parts) matching 
degrees. Then, during real time operation the target visited positions that were closer to 
each one of the grid nodes listed in Table 4. In each one of these positions, 5 localisation 
procedures were carried out repeatedly. The results of these localisation procedures are not 
all identical. If at least one of them finds the closer grid node or one of the other three 
neighbouring grid nodes, the position is marked as Successful (S), or Acceptable (A) 
respectively, otherwise it is marked as Fail (F). The exact results for each position are 
presented in Table 4. 
In the first column the position coordinates are listed and the mark of the position appears 
in column C1. If a position is marked as Successful, the column C2 has a number that 
indicates how many of the 5 localisation procedures led to the closer grid node while 
column C3 indicates how many localisation procedures led to an acceptable grid node. 
Column C4 shows how many different grid nodes were selected in each position by the 
localisation procedures. The asterisk in Setup3-Setup7 marks a position in which the Turbo 
Decoding results were used. We do not have such an indication in Setup2 although Turbo 
Decoding was used in that case too, since in this setup the better results of Turbo Decoding 
on either the interleaved or the original signatures are always used.  
 
Position

C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4
30,30L A 2 2 F 1 F* 1 F 1 A* 3 2 A* 2 3 S 1 2 2
30,30R S 2 2 A 2 2 F* 1 S 2 1 5 S* 1 1 S* 1 2 3 A 2 4
60,30L S 3 2 A 5 2 F* 1 A* 2 2 A* 2 3 F* 1 F* 2
60,0 S 2 2 3 A 5 1 F* 1 F 1 S 2 2 4 A* 3 3 A 3 2
60,30R A 2 2 S 5 1 F 1 A* 1 3 A* 2 5 S* 2 2 3 S 1 3 3
60,60R S 1 3 3 F 2 A 5 1 A 2 5 F 1 F 3 S 2 1 4
90,60L F 2 S 5 1 F 1 S* 5 1 F* 2 S* 5 1 A* 3 3
90,0 F 2 A 5 1 F 1 A 3 3 A 5 2 S 2 2 F 1
90,30R F 2 S 5 1 F 1 S 1 4 A 5 3 A 2 3 S* 2 1 3
90,60R S 2 1 4 A 5 1 F* 1 F 2 F 2 F 2 A 5 4
120,30L F 4 F 5 F 1 A* 5 1 A* 3 4 A* 5 1 S 1 2 3
120,30R F 3 A 4 2 F* 1 S 2 3 2 S 3 3 S 2 2 4 A 1 3
150,0 A 1 5 F 1 F 1 A 4 3 A 5 1 S 5 2 S 1 4 2
150,60R F 1 S 5 1 A* 3 3 A 5 4 A* 1 3 S 2 2 4 S 5 1
180,30L A 1 2 F 1 F 1 F 2 F* 2 A* 3 3 F 1
180,0 S 1 4 2 A 5 1 A 5 1 A 3 3 F 2 S 3 2 2 A 2 2
180,30R A 4 2 S 3 2 2 A* 5 1 A 5 2 A 2 2 S 3 2 3 S* 1 2 4
210,0 S 4 2 S 5 1 A* 5 1 S 2 3 F* 3 S 5 1 F 1
210,60R S 5 1 S 1 3 S* 1 4 2 S* 1 2 2 F* 1 A* 4 3 S 3 2

Totals
8S 5A 6F

20 20
7S 7A 5F

29 33
1S 5A 13F

1 27
6S 9A 3F

13 36
3S 9A 7F

6 30
10S 6A 3F 30 31 9S 6A 4F 17 31

Setup 5 Setup 6 Setup 7Setup 1 Setup 2 Setup 3 Setup 4

 
Table 4. The experiment results 
Based on the results of Table 4 the accuracy and stability results can be obtained for each 
setup. Achieving a successful estimation is 3 times more important than an acceptable 
estimation since for a specific position there is only one successful node and three acceptable 
nodes among the ones of the whole grid. Using this fact the accuracy and stability results are 
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parity bits (code rate 1/4). The receiver tests alternatively the original or the interleaved 
signature bits as input to the decoder and uses the best results that are obtained.  The two 
IRTX devices are independent and transmit concurrently. The set of signatures that are 
transmitted by IRTX1 is {0x85, 0x94, 0xa9, 0xd5, 0xbb} while IRTX2 transmits: {0x24, 0x4c, 
0x5a, 0x3b, 0x6f}. These signatures have been selected so that each one of them differs in the 
number 1’s. This is expected to force the receiver to recognise each one of these signatures 
with different error rate and hence, a multidimensional identity will be assigned to the 
specific position of the target. If s is the number of signatures, r is the code rate and b the 
number of bits per signature, then the time needed to transmit a set of signatures is: 

 
2setup

bs b TT
r

⋅ ⋅
∝  (17) 

6.3 Non-overlapping 8-bit signatures (Setup3) 
Similar to Setup2 but the IRTX devices transmit in a non overlapping manner i.e., the IRTX1 
does not transmit when IRTX2 does and vice versa. The signatures in this setup are received 
from the channel with lower bit error rate since scrambling is avoided. The time needed to 
transmit a set of signatures in this case is: 
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6.4 Overlapping 160-bit signatures (Setup4) 
The non-equalised signatures of Table 3 are transmitted concurrently by the two IRTX 
devices. The interleaved signature bits are not transmitted (code rate 1/3). The time needed 
to transmit the signature and the parity bits is determined by (17). 

6.5 160-bit signatures. One IRTX transmitting (Setup5) 
Similar to the Setup4 but only one IRTX device is transmitting. The position identities are 
formed by 5 signature match degrees instead of 10 since the single IRTX device transmits a 
160-bit signature with 5 parts. This setup is tested in order to see whether a second IRTX 
device is really necessary. The time needed to transmit the signature and the parity bits is 
determined again by (17). 

6.6 Non-Overlapping 160-bit signatures (Setup6) 
Similar to the Setup4 but the IRTX devices transmit in a non overlapping manner in order to 
avoid scrambling. The time needed to transmit the signature and the parity bits is 
determined by (18). 

6.7 Equalised 160-bit signatures (Setup7) 
The equalised signatures of Table 3 are used in order to let the IRTX devices transmit 
concurrently but achieve a lower bit error rate at the channel due to the structure of the 
signatures. The code rate is again 1/3 since the interleaved signatures are not transmitted. 
The time needed to transmit the signature and the parity bits is determined by (17). 
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7. Experimental results - discussion 
The experiments for each of the aforementioned set-ups (described in the previous section) 
were performed with the IRTX1 and IRTX2 placed in 2.5m vertical distance and 60cm 
horizontal displacement as shown in Fig. 1. We focused in a region of 2.5mx1.5m between 
the two IRTX devices where the signal of both transmitters is strong. A virtual grid with 
30cmx30cm squares is assumed to cover this region. The coordinates of a grid node or a real 
target position within this region are represented as (y,xD), where y is the vertical distance 
from IRTX1, x the horizontal displacement from IRTX1 and D denotes whether the target is 
on the Left (L) or the Right (R) of the IRTX1 device. 
During the calibration stage that was carried out in each setup before real time operation, 
the target visited the nodes of the grid and stored the measured signature (parts) matching 
degrees. Then, during real time operation the target visited positions that were closer to 
each one of the grid nodes listed in Table 4. In each one of these positions, 5 localisation 
procedures were carried out repeatedly. The results of these localisation procedures are not 
all identical. If at least one of them finds the closer grid node or one of the other three 
neighbouring grid nodes, the position is marked as Successful (S), or Acceptable (A) 
respectively, otherwise it is marked as Fail (F). The exact results for each position are 
presented in Table 4. 
In the first column the position coordinates are listed and the mark of the position appears 
in column C1. If a position is marked as Successful, the column C2 has a number that 
indicates how many of the 5 localisation procedures led to the closer grid node while 
column C3 indicates how many localisation procedures led to an acceptable grid node. 
Column C4 shows how many different grid nodes were selected in each position by the 
localisation procedures. The asterisk in Setup3-Setup7 marks a position in which the Turbo 
Decoding results were used. We do not have such an indication in Setup2 although Turbo 
Decoding was used in that case too, since in this setup the better results of Turbo Decoding 
on either the interleaved or the original signatures are always used.  
 
Position

C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4
30,30L A 2 2 F 1 F* 1 F 1 A* 3 2 A* 2 3 S 1 2 2
30,30R S 2 2 A 2 2 F* 1 S 2 1 5 S* 1 1 S* 1 2 3 A 2 4
60,30L S 3 2 A 5 2 F* 1 A* 2 2 A* 2 3 F* 1 F* 2
60,0 S 2 2 3 A 5 1 F* 1 F 1 S 2 2 4 A* 3 3 A 3 2
60,30R A 2 2 S 5 1 F 1 A* 1 3 A* 2 5 S* 2 2 3 S 1 3 3
60,60R S 1 3 3 F 2 A 5 1 A 2 5 F 1 F 3 S 2 1 4
90,60L F 2 S 5 1 F 1 S* 5 1 F* 2 S* 5 1 A* 3 3
90,0 F 2 A 5 1 F 1 A 3 3 A 5 2 S 2 2 F 1
90,30R F 2 S 5 1 F 1 S 1 4 A 5 3 A 2 3 S* 2 1 3
90,60R S 2 1 4 A 5 1 F* 1 F 2 F 2 F 2 A 5 4
120,30L F 4 F 5 F 1 A* 5 1 A* 3 4 A* 5 1 S 1 2 3
120,30R F 3 A 4 2 F* 1 S 2 3 2 S 3 3 S 2 2 4 A 1 3
150,0 A 1 5 F 1 F 1 A 4 3 A 5 1 S 5 2 S 1 4 2
150,60R F 1 S 5 1 A* 3 3 A 5 4 A* 1 3 S 2 2 4 S 5 1
180,30L A 1 2 F 1 F 1 F 2 F* 2 A* 3 3 F 1
180,0 S 1 4 2 A 5 1 A 5 1 A 3 3 F 2 S 3 2 2 A 2 2
180,30R A 4 2 S 3 2 2 A* 5 1 A 5 2 A 2 2 S 3 2 3 S* 1 2 4
210,0 S 4 2 S 5 1 A* 5 1 S 2 3 F* 3 S 5 1 F 1
210,60R S 5 1 S 1 3 S* 1 4 2 S* 1 2 2 F* 1 A* 4 3 S 3 2

Totals
8S 5A 6F

20 20
7S 7A 5F

29 33
1S 5A 13F

1 27
6S 9A 3F

13 36
3S 9A 7F

6 30
10S 6A 3F 30 31 9S 6A 4F 17 31

Setup 5 Setup 6 Setup 7Setup 1 Setup 2 Setup 3 Setup 4

 
Table 4. The experiment results 
Based on the results of Table 4 the accuracy and stability results can be obtained for each 
setup. Achieving a successful estimation is 3 times more important than an acceptable 
estimation since for a specific position there is only one successful node and three acceptable 
nodes among the ones of the whole grid. Using this fact the accuracy and stability results are 
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compared in Fig. 15a and Fig. 15b. The speed of a localisation procedure in each setup is 
determined by the delay estimated by the expressions: (16)-(18). These expressions lead to 
the speed comparison of Fig. 15c. 
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Fig. 15. Setup Comparison 

Fig. 15d, presents the number of nodes where Turbo Decoding of the original signatures was 
exploited during the calibration stage, since error correction was achieved. Error correction 
could not be achieved in the rest positions due to the fact that the SNR is extremely low there.  
 The results with the best accuracy are obtained by Setup6 followed by Setup7 where non-
overlapping or equalised signatures are used respectively. Nevertheless, Setup7 is twice as 
fast as Setup6. Setup2 is the fastest and the most stable setup, but produces results with 
moderate accuracy. This is due to the fact that short signatures are received with a small 
number of errors. Most of these few errors are further corrected by the Turbo Decoder. This 
leads to position identities that do not differ enough and may be easily confused with each 
other. This impact of this fact is worse in Setup3 where the signatures are transmitted in a 
non overlapping manner. Setup3 is twice slower than Setup2 and produces the worse 
accuracy results. 
Besides the wider area coverage, the use of a second IRTX device improves the accuracy and 
the stability results of a localisation procedure since these features are not quite good in 
Setup5 where a single IRTX device was used. 
Concluding, it can be said that all the new setup architectures tested are 2-13 times faster 
than our previous setup and most of them provide better accuracy and stability results. The 
use of equalised signatures in Setup7 seems to provide the best trade off between speed 
accuracy and stability. 

8. Conclusions 
Several new position estimation methods based on the error rate of received infrared patters 
were discussed in this chapter. The estimation of the features of the infrared channel of the 
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positioning system allowed the selection of appropriate pattern structures and forward error 
correction methods that improve the speed, the accuracy and the stability of the localisation 
procedure. This is due to the fact that the impact of instant noise that cannot be taken into 
consideration during the calibration stage was limited.  
Future work will focus on testing other pattern types as well as different forward correction 
techniques like Viterbi or LDPC.  Moreover, different encoders with more delay elements 
will also be tested in order to correct more efficiently shorter patterns. 
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compared in Fig. 15a and Fig. 15b. The speed of a localisation procedure in each setup is 
determined by the delay estimated by the expressions: (16)-(18). These expressions lead to 
the speed comparison of Fig. 15c. 
 

Accuracy

Setup1 Setup2 Setup3 Setup4 Setup5 Setup6 Setup7

Success

Acceptable

Fail

Stability

0
10
20

30
40
50

Setup1 Setup2 Setup3 Setup4 Setup5 Setup6 Setup7

Stability

 
(a)      (b) 

Position Estimation Speed

0
500

1000
1500

2000
2500

Setup1 Setup2 Setup3 Setup4 Setup5 Setup6 Setup7

Delay

Cor r ected Posi tions

0

5

10

15

20

25

Setup1 Setup2 Setup3 Setup4 Setup5 Setup6 Setup7

 
(c)      (d) 

Fig. 15. Setup Comparison 

Fig. 15d, presents the number of nodes where Turbo Decoding of the original signatures was 
exploited during the calibration stage, since error correction was achieved. Error correction 
could not be achieved in the rest positions due to the fact that the SNR is extremely low there.  
 The results with the best accuracy are obtained by Setup6 followed by Setup7 where non-
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fast as Setup6. Setup2 is the fastest and the most stable setup, but produces results with 
moderate accuracy. This is due to the fact that short signatures are received with a small 
number of errors. Most of these few errors are further corrected by the Turbo Decoder. This 
leads to position identities that do not differ enough and may be easily confused with each 
other. This impact of this fact is worse in Setup3 where the signatures are transmitted in a 
non overlapping manner. Setup3 is twice slower than Setup2 and produces the worse 
accuracy results. 
Besides the wider area coverage, the use of a second IRTX device improves the accuracy and 
the stability results of a localisation procedure since these features are not quite good in 
Setup5 where a single IRTX device was used. 
Concluding, it can be said that all the new setup architectures tested are 2-13 times faster 
than our previous setup and most of them provide better accuracy and stability results. The 
use of equalised signatures in Setup7 seems to provide the best trade off between speed 
accuracy and stability. 
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positioning system allowed the selection of appropriate pattern structures and forward error 
correction methods that improve the speed, the accuracy and the stability of the localisation 
procedure. This is due to the fact that the impact of instant noise that cannot be taken into 
consideration during the calibration stage was limited.  
Future work will focus on testing other pattern types as well as different forward correction 
techniques like Viterbi or LDPC.  Moreover, different encoders with more delay elements 
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1. Introduction 
Pattern recognition is a very powerful tool in automated data analysis and it is widely used 
in many different applications (Chou & Juang, 2003; Jiang,1994; Blue et al., 1994; 
Milosavljević, 1994; Moreels & Smrekar, 2003). However, the application of such a tool can 
be a difficult task in some cases. For example, in a correlation-type scheme, the basic idea is 
to correlate the signal being analyzed with a known template or templates (Shiavi, 1999; 
Scharf, 1991) and make decisions based on the magnitude of the correlation coefficients, 
which is between 0 and 1. In practice, these extreme values are seldom achieved due to 
corrupting signals/noise that can affect the accuracy of pattern matching and subsequently 
lead to errors in classification (Kil & Shin, 1996). The corrupting signals may also bear some 
resemblance to the template being matched. This is particularly true if the pattern of interest 
is a non-stationary transient signal. Furthermore, it is well known that traditional time 
domain correlation-based pattern recognition methods do not fully utilize the frequency 
characteristics of the template and the signal being analyzed. Hence, such methods perform 
poorly when applied to transient signals. To overcome these difficulties, a scheme known as 
selective regional correlation (SRC) has been developed (Sejdić & Jiang, 2007). It has been 
shown that if a template has bandlimited characteristics, significant improvement in the 
performance of pattern recognition can be readily made by a relatively simple pre-
processing of the signal and the template in the time-frequency domain (Sejdić & Jiang, 
2007). The redundant representation of a 1D signal in a 2D time-frequency domain can 
provide an additional degree of freedom for signal analysis. Such pre-processing effectively 
separates the intertwined time domain features of the signal, allowing the important 
characteristics to be exposed in the time-frequency domain, resulting in more effective 
pattern matching. Hence, correlation between the signal being analyzed and the template 
needs to be conducted only in selected regions of interest in the time-frequency domain. 
An overview of the theoretical developments behind the SRC is provided in this chapter 
along with some recent results. The performance of the scheme is briefly reviewed and 
compared with that of the general correlation technique through the analysis of a set of 
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1. Introduction 
Pattern recognition is a very powerful tool in automated data analysis and it is widely used 
in many different applications (Chou & Juang, 2003; Jiang,1994; Blue et al., 1994; 
Milosavljević, 1994; Moreels & Smrekar, 2003). However, the application of such a tool can 
be a difficult task in some cases. For example, in a correlation-type scheme, the basic idea is 
to correlate the signal being analyzed with a known template or templates (Shiavi, 1999; 
Scharf, 1991) and make decisions based on the magnitude of the correlation coefficients, 
which is between 0 and 1. In practice, these extreme values are seldom achieved due to 
corrupting signals/noise that can affect the accuracy of pattern matching and subsequently 
lead to errors in classification (Kil & Shin, 1996). The corrupting signals may also bear some 
resemblance to the template being matched. This is particularly true if the pattern of interest 
is a non-stationary transient signal. Furthermore, it is well known that traditional time 
domain correlation-based pattern recognition methods do not fully utilize the frequency 
characteristics of the template and the signal being analyzed. Hence, such methods perform 
poorly when applied to transient signals. To overcome these difficulties, a scheme known as 
selective regional correlation (SRC) has been developed (Sejdić & Jiang, 2007). It has been 
shown that if a template has bandlimited characteristics, significant improvement in the 
performance of pattern recognition can be readily made by a relatively simple pre-
processing of the signal and the template in the time-frequency domain (Sejdić & Jiang, 
2007). The redundant representation of a 1D signal in a 2D time-frequency domain can 
provide an additional degree of freedom for signal analysis. Such pre-processing effectively 
separates the intertwined time domain features of the signal, allowing the important 
characteristics to be exposed in the time-frequency domain, resulting in more effective 
pattern matching. Hence, correlation between the signal being analyzed and the template 
needs to be conducted only in selected regions of interest in the time-frequency domain. 
An overview of the theoretical developments behind the SRC is provided in this chapter 
along with some recent results. The performance of the scheme is briefly reviewed and 
compared with that of the general correlation technique through the analysis of a set of 
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synthetic short duration transients. The results have shown that the SRC enhances the 
resolution and accuracy for classification of transient signals significantly. The technique 
described herein may be of significance in many applications where correlation-based 
techniques have traditionally been used. The technique has already been applied to 
classification of heart sounds (Sejdić & Jiang, 2007), and to classification of a faulty machine 
tool positioning drive (Rehorn et al., 2006). In both cases, the SRC convincingly outperforms 
the general correlation based technique. 
The theoretical background of the SRC is covered in Section 2, whereas Section 3 illustrates 
its performance using a set of synthetic signals. In Section 4, the application of SRC to heart 
sound analysis is reviewed, while in Section 5 the review of the application of SRC to detect 
a specific fault in a machine tool positioning drive is presented. Finally, conclusions are 
drawn in Section 6. 

2. Mathematical developments behind SRC 
The decision of a correlation-based pattern classifier depends on the output value of the 
correlator and thus its performance will be directly related to the quality of the correlation 
process. Hence, the essence of SRC is to represent a 1D time domain signal in a 2D time-
frequency representation to reveal its true characteristics for more accurate pattern matching 
as depicted in Fig. 1. 
 

 
Fig. 1. A block diagram of SRC. 

A time-frequency transform of a bandlimited template, (t), can be represented as: 

 
(1) 

and 

 (2) 

where t1 and t2 are the lower and the upper limits of the time band, ω1 and ω2 are the lower 
and the upper limits of the frequency band and φt,ω∈L2(R) (sometimes known as the time-
frequency atom) is a well-concentrated function in time and frequency (Mallat, 1999). The 
time-frequency atoms considered in this chapter are given in Table 1. 
Furthermore, assume that there exists a finite duration signal, s(t), composed of elements 
that are similar to the template, s (1)(t), and elements different from the template, s (2)(t). Thus, 
the following signal decomposition is in order: 

 (3) 
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Table 1. The time-frequency atoms in different transforms. 

where 

 (4) 

and 

 (5) 

with Ts (1)(t, ω) and Ts (2)(t, ω) denoting time-frequency representations of s (1)(t) and s (2)(t), 
respectively. To effectively obtain Ts (1)(t, ω) from Ts(t, ω), different 2D windows can be used 
(Sejdić & Jiang, 2007): 

 (6) 

where W(t, ω) is a 2D window in the time-frequency domain. 

Assuming that s (1)(t) is similar to pattern p(t), then the following statement is true: 

 
(7) 

where max  is defined as: 

 

(8) 

and x(t) and y(t) are assumed to be zero-mean signals. This statement is possible due to the 
fact that s (2)(t) lies in the frequency and the time bands outside those of pattern p(t). For a 
complete proof, please refer to (Sejdić & Jiang, 2007). 
The concept of the SRC is also applicable to a multiple templates case, but the templates 
must be mutually exclusive. Hence, the templates p1(t), …, pm(t) with the time-frequency 
representations Tp1(t, ω), …, Tpm(t, ω) would have 

 (9) 

However, if 

 (10)
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for some k and l, it is necessary to introduce a mutually exclusive template in order to 
reduce the peak correlation coefficient when the signal does not match the template. This 
exclusivity is represented in the time-frequency domain as: 

 (11)

and the corresponding template can be found by multiplying a time-frequency 
decomposition of the template  with a 2D window, Wk(t, ω), with appropriate time 
and frequency bands, and inverting back to the time domain.  
Based on (9)-(11), it can be stated that any template can be expressed as a sum of mutually 
exclusive terms, p(1)(t), and p(2)(t), that is, 

 (12)

where p(2)(t) would be zero for disjoint templates. Therefore, if the signal z (t) does not 
contain the template p(t), the SRC using p(1)(t) will produce a smaller correlation coefficient, 
namely, 

 
(13)

where max  is as defined in (8). In addition, it is necessary to have the 
following constraint:  

 
(14)

For a complete proof, please refer to (Sejdić & Jiang, 2007). 
The mutual exclusivity of the templates is the main reason why SRC is a superior pattern 
matching technique to general correlation-based approaches. The exclusivity of the 
templates is only possible by introducing a redundant representation of the signal, such as 
the one in time-frequency domain. 

3. Comparative performance evaluation of SRC using synthetic test signals 
In this section, the performance of the SRC compared to general correlation is reviewed 
through a set of test signals. Having this objective in mind, it is prudent to understand that 
most of the real-world patterns are not limited to a single frequency, but rather are often a 
sum of transients containing different frequencies. These frequencies can vary with time and 
are often within a certain frequency band. Therefore, in order mimic practical conditions, 
the following templates and signals have been selected in this evaluation: 

 

(15)
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(16)

 

(17)

 

(18)

where 

 (19)

and R ~ |N (0, 1)| simulates the uncertainties in the signals with t ∈ [0, 1]. ⎣x⎦ represents the 
greatest integer function, which gives the largest integer less than or equal to x. 
 

 
Fig. 2. Time-domain and time-frequency domain representations of dual templates: (a) time 
domain representation of template of the first template; (b) time domain representation of 
template of the second template; (c) time-frequency domain representation of the first 
template; (d) time-frequency domain representation of the second template; (e) time domain 
representation of the first template after pre-processing; (f) time domain representation of 
the second template after pre-processing. 



 Pattern Recognition Techniques, Technology and Applications 

 

616 

for some k and l, it is necessary to introduce a mutually exclusive template in order to 
reduce the peak correlation coefficient when the signal does not match the template. This 
exclusivity is represented in the time-frequency domain as: 

 (11)

and the corresponding template can be found by multiplying a time-frequency 
decomposition of the template  with a 2D window, Wk(t, ω), with appropriate time 
and frequency bands, and inverting back to the time domain.  
Based on (9)-(11), it can be stated that any template can be expressed as a sum of mutually 
exclusive terms, p(1)(t), and p(2)(t), that is, 

 (12)

where p(2)(t) would be zero for disjoint templates. Therefore, if the signal z (t) does not 
contain the template p(t), the SRC using p(1)(t) will produce a smaller correlation coefficient, 
namely, 

 
(13)

where max  is as defined in (8). In addition, it is necessary to have the 
following constraint:  

 
(14)

For a complete proof, please refer to (Sejdić & Jiang, 2007). 
The mutual exclusivity of the templates is the main reason why SRC is a superior pattern 
matching technique to general correlation-based approaches. The exclusivity of the 
templates is only possible by introducing a redundant representation of the signal, such as 
the one in time-frequency domain. 

3. Comparative performance evaluation of SRC using synthetic test signals 
In this section, the performance of the SRC compared to general correlation is reviewed 
through a set of test signals. Having this objective in mind, it is prudent to understand that 
most of the real-world patterns are not limited to a single frequency, but rather are often a 
sum of transients containing different frequencies. These frequencies can vary with time and 
are often within a certain frequency band. Therefore, in order mimic practical conditions, 
the following templates and signals have been selected in this evaluation: 

 

(15)

Pattern Recognition in Time-Frequency Domain:  
Selective Regional Correlation and Its Applications 

 

617 

 

(16)

 

(17)

 

(18)

where 

 (19)

and R ~ |N (0, 1)| simulates the uncertainties in the signals with t ∈ [0, 1]. ⎣x⎦ represents the 
greatest integer function, which gives the largest integer less than or equal to x. 
 

 
Fig. 2. Time-domain and time-frequency domain representations of dual templates: (a) time 
domain representation of template of the first template; (b) time domain representation of 
template of the second template; (c) time-frequency domain representation of the first 
template; (d) time-frequency domain representation of the second template; (e) time domain 
representation of the first template after pre-processing; (f) time domain representation of 
the second template after pre-processing. 



 Pattern Recognition Techniques, Technology and Applications 

 

618 

The templates are depicted by the top two graphs in Fig. 2. They have the same low 
frequency content, but the transients that occur in the templates represent two different 
phenomena as described by (15) and (16). The time-frequency representations of the 
templates are obtained according to (1) using the S-transform. Their main characteristics can 
be summarized by the following equations: 

 
(20)

 
(21)

with the regions of support including the bands in which the amplitude of time-frequency 
representations is greater than or equal to one percent of its maximum amplitude. The 
overlapped time-frequency areas are excluded by windowing in order to form the mutually 
exclusive templates p (1)

1 (t) and p (1)
2 (t). The time domain representations of these mutually 

exclusive templates are shown in the bottom two graphs of Fig. 2. 
Furthermore, ten thousand test signals, si(t) where i = 1...10000, were constructed according 
to (17) and (18); with half of the signals containing the patterns similar to p1(t) and the other 
half similar to p2(t). Since each of these signals can contain either of the templates, a window 
function is needed to capture all the variations. In this case, a window, Wgd(t,ω) was 
designed to support the region Ωgd = {(t, ω) : t ∈ [0.38, 0.77], ω ∈ [40, 160] Hz}. 
The correlations were performed by using general correlation and the SRC, and the results 
are presented in Table 2. These results represent an average of 10000 trials. In Table 2, ρM 

represents the situation where the signal matches the template as specified, while ρNM 

represents the situation where the signal does not match the template. Also, ϕ = ρM - ρNM 

denotes the resolution, and the error percentage (EP) is calculated according to EP = 
MC/(MC + CC) ∗ 100%, where CC and MC represent the number of correct classifications 
and misclassifications, respectively. 
 

 
Table 2. Comparison of the peak correlation coefficients for SRC and general correlation. 

The SRC performed significantly better than general correlation as shown in Table 2, 
especially when the S-transform and STFT are used. Furthermore, the error percentage for 
the SRC-based classifier is only 0-2%, while for the conventional correlation-based classifier 
is almost 20%. 
To be useful in practice, any pattern recognition scheme should possess a high degree of 
sensitivity to the template, and be robust to slight variations in the signals being analyzed. 
Therefore, the robustness of the SRC has been examined by stretching and shrinking the 

Pattern Recognition in Time-Frequency Domain:  
Selective Regional Correlation and Its Applications 

 

619 

signals at three different levels. The results of such an analysis are presented in Table 3 and 
these represent an average of 10000 trials with the S-transform used as a time-frequency 
representation. Also, each trial represents the mean value of the two operations: expansion 
and compression. 
 

 
Table 3. Robustness of the proposed scheme to expansion and compression. 

As demonstrated, slight variations in the range of 0 - 15% have no major effect on the 
performance of the SRC based pattern classifier since the accuracy remains almost the same 
as shown in Table 3, even though the resolution has decreased by a factor of 2. However, 
deterioration in performance can be seen for variations larger than 20%. Therefore, the SRC 
can be considered very robust. 

4. Heart sound classification by SRC based scheme 
Despite numerous advances and decades of declining death rates, cardiovascular diseases 
(CVDs) remain the leading cause of death worldwide; contributing to more than 17 million 
deaths or one-third of all deaths each year. CVD is becoming increasingly prevalent in 
developing countries and, by 2010, CVDs are expected to kill more people in developing 
countries than infectious diseases according to World Health Organization (W. H. 
Organization, 2006). Fortunately, clinical experience has shown that heart sounds analysis 
can be an effective tool to noninvasively diagnose some of the diseases (Khan, 1996; Ravin, 
1977), since they provide clinicians with valuable diagnostic and prognostic information 
concerning the heart valves and hemodynamics. Heart auscultation is an important 
technique for detecting abnormal heart behaviour before using more sophisticated 
techniques such as the ECG or ultrasound imaging (Durand & Pibarot, 1995; Erickson, 1997; 
Obadiat, 1993). 
Heart sounds are the result of a sudden closure of the heart valves at different phases of the 
cardiac contraction. They are non-stationary, non-deterministic signals that carry 
information about the anatomical and physiological state of the heart. Heart sounds are 
result of the interplay of dynamic events associated with the contraction and relaxation of 
atria and ventricles, valve movements and blood flow (Ravin, 1977; Durand & Pibarot, 
1995). Each heart beat consists of at least the first heart sound (S1) and second heart sound 
(S2). S1 occurs at the onset of the ventricular contraction during closure of the mitral and the 
tricuspid valves. It indicates the beginning of the ventricular systole. The intensity of S1 is 
closely related to that event. S1 consists of four components with frequency range 70-110 Hz. 
It starts with a low-frequency component (M1) synchronous with the first myocardial 
contraction after the onset of rise in the ventricular pressure. The second component (T1) has 
a higher frequency and is caused by tension of the left ventricular structures; contraction of 
myocardium and deceleration of blood. The third occurs at the time of opening of the aortic 
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valve and is related to sudden acceleration of blood into the ventricular walls. The fourth 
component is due to turbulence in the blood flow in the ascending aorta. The intensity of S1 
varies depending on the following factors: position of auscultation, the anatomy of chest, the 
vigor of ventricular contraction, valve position at the onset of ventricular contraction, and 
the pathological alternation of the valve structure (Erickson, 1997; Horovitz, 1988). S2 marks 
the end of ventricular systole and the beginning of ventricular relaxation following the 
closure of the aortic and the pulmonary valves. Therefore, two different components could 
be heard in S2, and those are A2 and P2. These are produced by vibrations initiated by the 
closure of the aortic and the pulmonary semilunar valves, and by sudden cessation of 
backflow of the blood (Khan, 1996; Ravin, 1977). 
A heart problem known as mitral stenosis is caused by a rheumatic heart disease in the 
majority of cases. This leads to narrowing of the mitral valve. As a result, it slows down the 
free flow of blood from the left atrium to the left ventricle. Blood returning from the lungs 
backs up in the left atrium and in the lungs. As a consequence, there is a gradual increase in 
pressure in the left atrium and in the pulmonary (lung) circulation. This condition can 
eventually lead to enlargement of the left atrium, weakening of the atrium wall, and 
gradually result in more serious conditions due to the reduced ability to propel blood 
efficiently (Horovitz, 1988). Mitral stenosis is very often manifested through a heart sound 
known as the opening snap (OS); a short, sharp sound occurring in the early diastole. It is 
caused by the abrupt halting at its maximal opening of an abnormal atrioventricular valve 
and the OS usually occurs 0.08-0.10 s after S2 (Ravin, 1977; Erickson, 1997). However, the 
difficulty, as shown in the top two graphs of Fig. 3, lies in the fact that the OS sounds very 
similar to the third heart sound (S3), which is often heard in normal children or young 
adults. When S3 is heard in individuals over the age of 40, it usually reflects cardiac disease 
characterized by ventricular dilatation, decreased systolic function, and elevated ventricular 
diastolic filling pressure. It is generally difficult to distinguish these two sounds without 
going through proper training  (Khan, 1996; Ravin, 1977; Erickson, 1997). 
The objective of this study is to examine the suitability of the SRC for classification of 
aforementioned conditions. For full details of the study, please refer to (Sejdić & Jiang, 2007). 
For the purpose of clear illustration, one signal from each group is selected as the template 
for that group and both templates are depicted in the top two graphs of Fig. 3. As shown, 
most of the energy associated with an OS is concentrated between 50 and 300 Hz, while that 
of S3 lies between 30 and 150 Hz (boxed regions in Fig. 3). The templates have to be 
decoupled, since there is an overlap in some frequency ranges between the two signals. 
Based on the numerical analysis, it is concluded that the template for OS, pOS(t), should have 
frequency range between 120 and 300 Hz and its time duration should be around 50 ms, 
while the template for S3, S3(t), should have frequency range between 30 and 70 Hz and its 
time duration should be near 100 ms. Since the signal being analyzed could contain either 
OS or S3, the frequency band for the window is chosen as ω ∈ [30 300] Hz. 
Similar to the previous case, the performance of the SRC is again evaluated by comparing it 
with that of the general correlation, and the results are shown in Table 4. These results 
represent an average of thirty trials. M, NM and ' are the standard deviations of ρM, ρNM 

and ϕ, respectively. A comparison of the values of these two states shows that the SRC 
performs significantly better than the general correlation. Furthermore, T-test is used to 
inspect whether ρM and ρNM are statistically different for classifiers based both on SRC and 
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general correlation. The analysis concludes that the null hypothesis (the means are equal) 
can be rejected at the 0.05 significance level for the SRC based classifier, but not for the 
classifier based on the general correlation. 
 

 
Fig. 3. Time domain, time-frequency domain representations and the templates: (a) time 
domain representation of heart sounds with a typical OS; (b) time domain representation of 
heart sounds with a typical S3; (c) time-frequency representation of (a); (d) time-frequency 
representation of (b); (e) the template based on the typical OS; (f) the template based on the 
typical S3. 
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characteristic signature. These signatures can be used for machine condition monitoring 
(MCM). The key is to identify a set of features that correspond unambiguously to either 
the healthy mode or possible faulty modes of the machine. Such features can be found in 
vibration signals of the axes during machining. By comparing the measured data to the 
failure signature, the health of the machine tool positioning drives can be determined. 
This study focuses on brush seizing faults in a DC servo motor drive that controls the 
position of the spindle block on the machine tool. This fault originates from the design and 
construction of the brush holders, which are plastic and often warp with exposure to heat 
and lubricant. Whenever this happens, the spindle block experiences excessive vibration. 
When one of the servos is faulty, the axis jumps along the guideways rather than moving 
smoothly. Experience has shown that this type of fault always leads to failure. 
It has been found that, for a healthy spindle, there are no fixed patterns in the vibration 
signals. However, periodic phenomena arise when a fault starts to develop in the system 
(Rehorn, 2003). These phenomena become much more apparent in the time-frequency 
domain because they often appear as transient spikes of short durations. It is difficult to 
detect them either in the time domain or in the frequency domain alone. This is because both 
the healthy and the faulty drives contain energy in the same frequency bands. However, 
there are increased periodic fluctuations with energy concentrated in the 20-200 Hz band 
when the system is faulty. Thus, a faulty system will exhibit a regular pattern of spikes in 
this frequency range, while a healthy one will not (Rehorn, 2003). 
Templates are selected using three different 2D windows, with each of the windows 
isolating a feature in the time-frequency domain which exists for a range R = {(t, ω) : t ∈ 
[540, 630], ω ∈ [20, 200]} (Rehorn et al., 2006). The selection of a specific template with the 
rectangular window in the X direction is shown in Fig. 4. The upper graph depicts the S-
transform of the entire vibration signal, TvF(t, ω), and the boxed region on the graph 
represents the area covered by the 2D window. The middle graph displays the windowed 
and isolated feature of interest in the time-frequency domain, TvF1(t, ω). The bottom graph 
shows the corresponding time domain signal, vF1(t), that is used in SRC. 
SRC improves the ability to distinguish between similar and dissimilar patterns beyond 
conventional correlation by improving the resolution for different states of the system. The 
results are presented in Tables 5-8. The values for ρM and ρNM are the average values over 
twelve tests. From these results, several interesting observations can be made. The highest 
values of ϕ for a specified time-frequency method are generally in Z direction, although this 
is not the case for the S-transform. Also, changing the time-frequency method used has a 
more pronounced effect on the SRC resolution than do the shape and type of the window 
employed for feature extraction. It should also be noted that the S-transform has achieved 
the best resolution among all three time-frequency methods used, with the STFT being the 
runner up. The CWT has the poorest resolution of the three methods tested in the X and Y 
directions, but its resolution is equal to, or even better than, the others in Z direction. Of the 
three windows considered, the Kaiser yields the highest resolution while the Gaussian 
window performs the worst. 
By comparing the values in Tables 5 - 7, with those in Table 8, the values generated by 
general correlation for similar events are much smaller than those calculated using time-
frequency methods and SRC in the given direction. General correlation of similar events 
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generates only 10% similarity at the most; well below the value of ρNM produced by any of 
the time-frequency methods. This is mainly due to the non-stationary nature of the vibration 
signals in this case. The resolution of general correlation is extremely poor as well, and 
never exceeds 5%, while any combination of time-frequency method and 2D window with 
SRC results in very high resolution between the two states. Thus, an MCM system that relies 
on general correlation will not be able to perform as effectively as the one based on time-
frequency methods and SRC. 
 
 

 
 

Fig. 4. Template signal selection from the S-transform of a faulty drive: (a) time-frequency 
representation of a faulty drive; (b) extracted template in time-frequency domain; and (c) the 
template in the time domain. 
 

 
 
Table 5. Performance of SRC using a 2D rectangular window. 
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Table 6. Performance of SRC using a 2D Gaussian window. 

 

 
Table 7. Performance of SRC using a 2D Kaiser window. 

 

 
Table 8. Performance of classifier using general correlation. 

6. Conclusion 
In this chapter, a recently developed technique for pattern classification based on time-
frequency decomposition is presented. The essence of the scheme is that the correlation 
between the observed signal and the template is conducted only in selected regions of 
interest in the time-frequency domain. The results of two applications have indicated 
conclusively that the proposed technique provides a consistent improvement over the 
traditional correlation-based pattern classification schemes. 
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