
Multiple Sequence Alignment

using Particle Swarm Optimization

by

Fabien B. R. Zablocki

Submitted in partial fulfillment of the requirements for the degree

Magister Scientiae (Computer Science)

in the Faculty of Engineering, Built Environment and Information Technology

University of Pretoria, South Africa

November 2007

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

A research publication of

C I R G

Computational Intelligence Research Group

Visit the research group online at

cirg.cs.up.ac.za

An electronic, hyperlinked PDF version of this work is available online at:

http://cirg.cs.up.ac.za/thesis/

A complete, BibTEX format, reference for this work is available online at:

http://cirg.cs.up.ac.za/

cirg.cs.up.ac.za
http://cirg.cs.up.ac.za/thesis/
http://cirg.cs.up.ac.za/

Multiple Sequence Alignment using Particle Swarm

Optimization

by

Fabien B. R. Zablocki

E-mail: fzablocki@cs.up.ac.za

Abstract

The recent advent of bioinformatics has given rise to the central and recurrent problem

of optimally aligning biological sequences. Many techniques have been proposed in an

attempt to solve this complex problem with varying degrees of success. This thesis

investigates the application of a computational intelligence technique known as particle

swarm optimization (PSO) to the multiple sequence alignment (MSA) problem. Firstly,

the performance of the standard PSO (S-PSO) and its characteristics are fully analyzed.

Secondly, a scalability study is conducted that aims at expanding the S-PSO’s application

to complex MSAs, as well as studying the behaviour of three other kinds of PSOs on the

same problems. Experimental results show that the PSO is efficient in solving the MSA

problem and compares positively with well-known CLUSTAL X and T-COFFEE.

Keywords: Artificial Intelligence, Bioinformatics, Particle Swarm Optimization, Com-

putational Intelligence, Multiple Sequence Alignment, DNA.

Supervisor : Prof. A. P. Engelbrecht

Department : Department of Computer Science

Degree : Magister Scientiae

mailto:fzablocki@cs.up.ac.za

“All truth passes through three stages. First, it is ridiculed. Second, it is

violently opposed. Third, it is accepted as being self-evident.”

- Arthur Schopenhauer

“Research is what I’m doing when I don’t know what I’m doing.”

- Wernher Von Braun

Acknowledgements

I would like to express my sincere thanks to the following people for their assistance

during the production of this work:

• Prof. Andries P. Engelbrecht for his valuable guidance through the process of

achieving the work presented in this thesis.

• Roman Zablocki for his contagious motivation, constant supportive presence and

the laptop I used to finish this thesis.

• Nadine Noel for believing in me in a very special mother’s way.

• Dr. Fourie Joubert and Prof. Andries P. Engelbrecht for making it possible for me

to attend the three-day seminar at the bioinformatics department.

• Techteam and particularly Ian Galpin for providing me with machine support.

• All my friends, inside and outside CIRG, who supported me.

• Last, but not least, everyone who helped proofreading my writing which made

the production of this final version possible, in particular Vanessa Smeets, Nelis

Franken and Roland Canivet.

This thesis was typeset exclusively with the use of standard LATEX2ε. Bibliographic

references were maintained using BibTEX, while TEXshade [13] was used to typeset

alignments.

Contents

List of Figures v

List of Algorithms vii

List of Tables viii

1 Introduction 1

1.1 Problem Statement and Overview . 2

1.2 Objectives . 2

1.3 Contributions . 3

1.4 Thesis Outline . 4

2 Multiple Sequence Alignment 6

2.1 Introduction . 6

2.2 Biological Aspects . 7

2.2.1 The Code of Life . 7

2.2.2 Life Origins . 9

2.3 Definitions, Notations and Examples . 10

2.3.1 Building Blocks . 10

2.3.2 Alignment Evaluation . 14

2.3.3 Scoring Enhancement . 16

2.4 Use of Sequence Alignments . 19

2.4.1 Computer-Aided Molecular Biology 20

2.4.2 Briteny Spears . 22

2.5 Where Does the MSA Problem Lie? . 23

i

2.5.1 Choice of Sequence . 23

2.5.2 Is This Alignment Any Good? . 23

2.5.3 Computer Complexity . 24

2.6 State of the Art . 25

2.6.1 The Exact Approach . 26

2.6.2 The Progressive Approach . 27

2.6.3 The Iterative Approach . 28

2.6.4 The Consistency-based Approach 29

2.7 Summary . 30

3 Computational Intelligence Paradigms 31

3.1 Introduction . 31

3.2 Classical Optimization . 32

3.2.1 Minimization Definition . 32

3.2.2 NP-Complete Problems . 33

3.3 Genetic Algorithms . 34

3.3.1 Genetic Algorithm Essentials . 34

3.3.2 Evolutionary Operators . 36

3.3.3 Cooperative Coevolutionary Genetic Algorithm 38

3.4 Particle Swarm Optimization . 39

3.4.1 Algorithm Essentials . 39

3.4.2 Neighbourhood Topologies . 41

3.4.3 PSO Parameters . 43

3.4.4 Modifications to PSO . 47

3.5 Swarm Intelligence versus Evolutionary Computation 52

3.6 Summary . 53

4 Particle Swarm Optimization for Multiple Sequence Alignment 54

4.1 Introduction . 54

4.2 Representation Schemes . 54

4.2.1 Integer Search Space . 56

4.2.2 Binary Search Space . 56

4.3 Fitness Evaluation . 57

ii

4.4 Summary . 58

5 Empirical Analysis 59

5.1 Introduction . 59

5.2 S8 Analysis . 60

5.2.1 DNA Data Set S8 . 61

5.2.2 Characteristic Selection . 62

5.2.3 Experimental Procedure . 63

5.2.4 Experimental Results for S-PSO 64

5.2.5 Experimental Results for B-PSO 79

5.2.6 Conclusion . 84

5.3 Scalability Analysis . 85

5.3.1 MSA Data Sets . 85

5.3.2 PSO Algorithms and Configurations 87

5.3.3 Experimental Procedure . 89

5.3.4 Experimental Results . 90

5.3.5 Comparison with Other MSA Programs 96

5.3.6 Conclusion . 100

5.4 Summary . 101

6 Conclusion and Future Work 102

6.1 Conclusion . 102

6.2 Future Work . 105

Bibliography 107

A Data Sets 120

B CIlib XML Configuration 122

C Acronyms & Abbreviations 128

D Symbols 131

E Alphabets and S. Matrices 135

iii

Index 139

iv

List of Figures

2.1 The DNA double helix model . 8

2.2 Steps for protein synthesis . 9

2.3 The alignment and consensus of two DNA sequences 13

2.4 The alignment and consensus of five protein sequences 13

3.1 Three cross-over operators for bit representations 36

3.2 Common PSO topologies . 42

5.1 Visualization of DNA data set S8 . 62

5.2 Best alignment of S8 optimized by the OF using the similarity method . 68

5.3 Influence of weights ξ1 and ξ2 on S8 (similarity method) 69

5.4 Best alignment of S8 optimized by the OF using the matches method . . 73

5.5 Influence of weights ξ1 and ξ2 on S8 (matches method) 73

5.6 Visualization of aligned data set S8 by CLUSTAL X 75

5.7 Visualization of aligned data set S8 by T-COFFEE 76

5.8 Alignment of S8 (best similarity variation) – first iteration 77

5.9 Alignment of S8 (best similarity variation) – 50th iteration 77

5.10 Alignment of S8 (best similarity variation) – 100th iteration 77

5.11 Alignment of S8 (best similarity variation) – 150th iteration 78

5.12 Alignment of S8 (best similarity variation) – 200th iteration 78

5.13 Alignment of S8 (best similarity variation) – 250th iteration 78

5.14 Final alignment of S8 with similarity method (55.0) – last iteration (272th) 78

5.15 Progression in sub-objectives for S8 . 79

5.16 Visualization of the best S8 alignment for the similarity method 81

5.17 Visualization of the best S8 alignment for the matches method 83

v

5.18 Number of full columns aligned in S2 with three PSOs 92

5.19 Number of full columns aligned in S4 with three PSOs 94

5.20 Number of full columns aligned in S5 with three PSOs 95

5.21 Number of full columns aligned inaligned in S6 with three PSOs 96

5.22 Best score comparison between PSO, T-COFFEE and CLUSTAL X . . . 98

E.1 The PAM250 S. matrix . 137

E.2 The BLOSUM62 S. matrix . 138

vi

List of Algorithms

3.1 Pseudocode outline of the genetic algorithm 35

3.2 The standard PSO algorithm . 41

3.3 The binary PSO algorithm . 48

3.4 The mutating PSO algorithm . 49

3.5 The cooperative split PSO algorithm . 51

vii

List of Tables

2.1 Score produced according to the SoP function 16

2.2 Score produced according to the linearly scaled match count 17

5.1 Properties of DNA data set S8 . 61

5.2 Performance table for S-PSO aligning S8 - similarity method 66

5.3 Performance table for S-PSO aligning S8 - matches method 70

5.4 Comparison of S8 alignments: S-PSO vs. two common MSA programs . 75

5.5 Results for B-PSO aligning S8 - similarity method 80

5.6 Results for B-PSO aligning S8 - matches method 82

5.7 Properties of the seven new data sets (S1 through S7) 85

5.8 Split factors for the four selected data sets 89

5.9 PSO performance on hard data sets (similarity method) 91

5.10 PSO performance on hard data sets (matches method) 92

5.11 Results from T-COFFEE and CLUSTAL X on seven data sets 97

E.1 Residue alphabet for DNA . 135

E.2 Residue alphabet for RNA . 135

E.3 Residue alphabet for amino acids (proteins) 136

E.4 A typical DNA identity matrix . 137

viii

Chapter 1

Introduction

“An idea that is not dangerous is unworthy of being called an idea at all.”

- Oscar Wilde

Specialized data banks all over the world offer curated biological data of high quality.

The amount of genomic information stored from various biological sequences has grown

exponentially in recent years and has become extensive. This sudden rise in biological

data has led to the need for automated tools and powerful processing devices. The

blooming field of bioinformatics has opened the door to make the most of what the

combination of biology and computers has to offer.

Directly emanating from the bioinformatics discipline, a central and fundamental

task has come to surface: aligning molecular sequences. Undoubtedly, analyses such as

recreating phylogenetic trees, finding homologies or detecting protein functions are all

achieved by first applying some degree of sequence alignment. Consequently, sequence

alignment has become a major tool in molecular sequence analysis.

In recent years, computational intelligence (CI) [38], a sub-discipline of artificial

intelligence (AI), has provided systems that are capable of adaptive behaviour within

changing environments. The most notable algorithms have been based on a variety

of natural systems, ranging from ant colonies [33] and bird flocks [62], to the human

neurological [95] and immune [30] systems. One approach in particular, particle swarm

optimization (PSO) [62], has proved to be successful in a wide range of optimization

1

Chapter 1. Introduction 2

problems [39, 64]. This thesis investigates the application of PSO algorithms as a viable

approach to solving the problem of aligning multiple molecular sequences.

1.1 Problem Statement and Overview

Multiple sequence alignment (MSA) is in essence a double objective optimization prob-

lem: Gaps have to be inserted into the original sequences in such a way that (1) the

number of matching characters is maximized and (2) the number of gaps inserted is min-

imized. Bearing in mind that the two requirements are conflicting, an optimal alignment

solution cannot always be found.

Many previous sequence alignment techniques have been employed, such as tree-based

algorithms [3] which combine results from pairwise alignments. The main problem with

these algorithms is that they assume the existence of a tree that correctly describes

the relationships between sequences. Because such trees cannot always be derived or

calculated, a shortage still remains in the techniques available to solve the MSA problem.

Most of the commonly used MSA methods [113] are based on dynamic programming

(DP) [80]. However, DP requires time and memory proportional to the product of the

sequence lengths. Hence, many heuristic methods [67, 82] have been developed to find

good alignments, which are not necessarily optimal, within a reasonable time.

1.2 Objectives

The main objective of this thesis is to conduct an empirical analysis of PSO as a new

iterative approach to solving the MSA problem. In this research, the applicability of

the PSO family of algorithms as a successful sequence aligning optimizer is investigated.

Several other techniques, such as T-COFFEE [84] and CLUSTAL X [112], are compared

with PSO. Advantages and disadvantages of these methods are discussed, and ways to

improve MSA using PSO are explored.

In fact, PSO algorithms have never been applied in the manner described in this

thesis. This thesis therefore represents a leading experiment of its kind.

The primary objectives of this thesis are summarized as follows:

Chapter 1. Introduction 3

• To provide an acquaintance with the concept of biological sequence alignment, with

an emphasis on MSAs.

• To provide an overview of the relevant CI techniques that would serve as valuable

candidates for solving MSA problems.

• To study the effects and performance of optimizing different sequence alignment

objective functions (scoring schemes).

• To conduct a scalability analysis by observing the impact of PSO on MSA problems

that differ by their complexity (number of sequences in the set, length of sequences

and overall similarity).

• To investigate the performance of four variations of PSOs, namely the standard

PSO, the binary PSO, the mutating PSO, and the cooperative split PSO, as applied

to the MSA problem.

• To compare solutions from PSOs with solutions from other MSA programs in order

to position PSO’s performance with respect to several factors, such as alignment

accuracy.

1.3 Contributions

The novel contributions of this work include the following:

• A novel application of swarm intelligence to the field of bioinformatics dealing with

sequence alignment.

• The derivation of two representation schemes for the MSA problem, namely binary-

valued and integer-valued.

• The introduction of a gap-reducing factor based on overall similarity in order to

lower the complexity in MSAs.

• The development and analysis of new ways of optimizing sequence alignment ob-

jective functions.

Chapter 1. Introduction 4

• The implementation of a generic MSA package within the computational intelli-

gence library (CIlib1) framework [91].

1.4 Thesis Outline

The list below presents the organization of the chapters which make up this thesis. Also

given is a brief description of the topics each chapter deals with.

• Chapter 2 covers the necessary background relating to methods designed to align

molecular sequences. This chapter includes a theoretical basis on sequence align-

ment, building blocks, concepts, uses and current alignment methods.

• Chapter 3 provides an overview of population-based optimization methods. This

chapter covers genetic algorithms (GA) and particle swarm optimization (PSO)

algorithms in detail.

• Chapter 4 describes how PSO can be applied to MSA. Representation schemes

and the fitness evaluation mechanism are given.

• Chapter 5 provides an empirical analysis of PSO solving the MSA problem. The

core of this thesis resides in this chapter. All aspects relating to the experimental

procedure are covered, comprising mainly the experimental methodology, descrip-

tion of experiments, experiments themselves and analysis of the results.

• Chapter 6 provides a summary of the findings of this thesis, and considers possible

future research that emanates from it.

The following appendices are also included. They contain supplementary material

related to the main text of this thesis, as well as a number of lists containing relevant

information for quick referencing purposes.

• Appendix A offers complementary information about all data sets used through-

out the experimental procedure.

1CIlib is freely available at http://cilib.sourceforge.net

http://cilib.sourceforge.net

Chapter 1. Introduction 5

• Appendix B lists XML code snippets that were used to generate simulations

within CIlib.

• Appendix C provides a list of the acronyms used in this work, as well as their

meanings.

• Appendix D alphabetically lists and defines the mathematical symbols used in

this work.

• Appendix E shows tables for all correspondences between names of the DNA,

RNA and proteins residue alphabets. Substitution matrices for both PAM and

BLOSUM are also displayed.

Chapter 2

Multiple Sequence Alignment

“Man is still the most extraordinary computer of all.”

- John F. Kennedy

There is much to learn from biological sequences and much to do in order to learn from

them. However simple a few DNA sequences may seem at first, the intrinsic information

contained in them is phenomenal and complex. Since biological sequences represent the

essential blueprints of any living species, it is a crucial and fundamental task to study

those sequences. This chapter provides detailed material on the theory behind sequence

alignment, and more particularly focuses on the most common task in bioinformatics

today, namely multiple sequence alignment [19].

2.1 Introduction

The continuous motivation to better understand how the human body works has al-

ways been a priority in the biological sciences. Amongst the flourishing research in the

field of bioinformatics, recent techniques like multiple sequence alignment (MSA) have

allowed researchers to accomplish what is claimed to be the greatest achievement in

scientific history. Better known as the human genome project (HGP) [85], the venture

tackled the gargantuan task of sequencing the entire human genome1. At the heart of

1The human genome comprises 23 pairs of chromosomes, each of which is made up of several thousand

genes, with a grand total of just over 3 billion nucleotides.

6

Chapter 2. Multiple Sequence Alignment 7

such an achievement lies the ability to extrapolate information from related sequences.

The development of automated techniques for sequence analysis has therefore become

preponderant in bioinformatics.

Researching new tools to perform sequence comparisons in a reasonable amount of

time has been in the spotlight for a number of years [81]. Along with the birth of

advanced techniques came the creation of biological databases, which are doubling in

size every year.

The aim of this chapter is to provide an overview of the current landscape of MSA

research. Furthermore, the reader will become familiar with all the concepts and notions

related to the topic. Section 2.2 gives a brief biological background on both nucleic

and amino acids, while Section 2.3 provides formal definitions and notations. As a core

discipline of bioinformatics, MSA has many uses, which are discussed in Section 2.4.

Next, Section 2.5 discusses why no single technique is best suited for solving MSA prob-

lems. For completeness, Section 2.6 surveys existing sequencing techniques. Finally, the

chapter is summarized in Section 2.7.

2.2 Biological Aspects

What is so interesting in biological cells that cannot be seen? To the naked eye, nothing.

A journey on a microscopic level must be undertaken to discover the invisible. The next

two sections provide answers from a scientific perspective to the fundamental questions:

Where do we come from? And, why are we what we are?

2.2.1 The Code of Life

Nucleic acids such as deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) repre-

sent the chemical carriers of a cell’s genetic information [9]. All the information that

determines the phenotype and genotype of a cell is coded in its DNA. In short, DNA

represents the building blocks of life and, as such, also controls cell growth and division

and arbitrates biosynthesis of the enzymes, as well as other proteins required for all

cellular functions. Nucleic acids are made up of nucleotides bonded together to form a

long chain (or sequence) in the form of a double helix, as illustrated in Figure 2.1.

Chapter 2. Multiple Sequence Alignment 8

Figure 2.1: The famous Watson-Crick model of the DNA double helix, adapted from the

Oxford Dictionary of Biology [52]

However, the notion of sequences is an artificial one as it only serves the purpose of

being a conceptual entity. In reality, all these molecules take the form of an intricate

three-dimensional shape.

From a chemical point of view, RNA and DNA are very similar. The main differences

lie in their respective sizes and roles within the cell. Molecules of DNA are gigantic: they

have a molecular weight of up to 150 billion and lengths of up to 100 centimetres when

stretched out [25]. DNA molecules are mostly found in the nuclei of cells. By contrast,

RNA molecules are much tinier, with a molecular weight of only 35,000, and generally

reside outside the cell nucleus.

The function of DNA is to store an organism’s blueprint and pass it on to RNA. In

turn, the role of RNA is to read, decode and use the information received from DNA to

make proteins. Proteins are chains of amino acids and serve as instruments in virtually

everything organisms do. Humans have thousands of different proteins, each having a

specific structure along with a unique function. As a matter of fact, proteins are the

most structurally sophisticated molecules ever identified [69].

The procedure of transferring genetic information comprises the following three fun-

damental steps [18], as illustrated in Figure 2.2:

1. Replication is the action by which exact copies of DNA are made, so that infor-

mation can be safeguarded and passed on to offspring.

Chapter 2. Multiple Sequence Alignment 9

2. Transcription is the action by which the genetic messages are read and carried

out of the cell nucleus, where protein synthesis occurs.

3. Translation is the action by which the genetic messages are decoded and employed

to synthesize proteins.

Figure 2.2: Steps for protein synthesis

2.2.2 Life Origins

Darwinian theories [28] promote a natural evolutionary process. Under the umbrella

of evolution, the whole process can be interpreted as a race to become the best, from

which the term ‘survival of the fittest’ was coined. From time immemorial, within any

population the least fit individual dies fast, while the fittest one lives longer. Through

many cycles of generations following the evolutionary concept, only those individuals

that evolved to become more adapted to the environment remain.

As a result of evolution, several ‘changes’ have taken place within individuals. Changes

are represented by mutations within DNA sequences. Mutations in a sequence refer to

the random occurrence of genetic transformations under the influence of external and

chemical factors. Transformations may be expressed as a combination of either inser-

tions, deletions or even substitutions of nucleotide pairs within a DNA sequence [18]. As

a result, the mutation phenomenon is at the origin of species evolution. It is precisely

these mutations that gave rise to the task of aligning sequences.

The process of aligning sequences does not have the goal of reversing the effect of

evolution. On the contrary, the objective is to discover what relationship remains. It is

Chapter 2. Multiple Sequence Alignment 10

then necessary to analyze both evolutionary similarities and differences in order to find

out whether several sequences have a common origin or not. A wide range of parameters,

such as ageing and species relatedness, may influence mutations and can thus render the

aligning task quasi-impossible. Nevertheless, in cases where a high similarity percentage

can be found, evolutionary scenarios can be reconstructed. Such scenarios make extensive

use of phylogenetic trees to illustrate paths from descendants to their ancestors.

Sequences may be either closely or loosely related. Three degrees of relatedness be-

tween a pair of sequences exist (which can be generalized to more than two sequences) [9]:

• Identity: two sequences are said to be identical if all characters from one sequence

match all the characters in the other sequence.

• Similarity: two sequences are said to be similar if they are relatively close without

being identical.

• Homology: this is a special case of similarity, where two similar sequences are

considered to be coming from the same root. This means that the sequences are

mutated sequences originating from a common initial sequence.

2.3 Definitions, Notations and Examples

As for every concept, it is necessary to define the topic in a formal way. This section

presents theoretical background on sequence alignment.

2.3.1 Building Blocks

In an effort to better understand the action of aligning sequences, consider the following

formal definition: The Oxford Advanced Learner’s Dictionary proposes the following

meaning of the verb ‘align’ [119]: ‘to change something slightly so that it is in the

correct relationship to something else.’ Attention should be given here to the fact that

something has to be changed, but only slightly.

Since the task is specifically about aligning sequences, it means that sequences must

therefore be changed slightly in order to be in the correct relationship with the other

sequence(s). To understand how the sequences must be changed, it is crucial to expose

Chapter 2. Multiple Sequence Alignment 11

how sequences are defined. Firstly, the notion of an alphabet is provided:

Definition 2.1 Alphabet: An alphabet, A, is a finite set of arbitrary symbols.

In molecular biology, two different alphabets (see Appendix E for symbol references)

are used to represent sequences:

1. A nucleic acid alphabet to model DNA sequences: ADNA = {A, C, T, G}. Sim-

ilarly, the RNA alphabet is also composed of four symbols: ARNA = {A, C, U, G},

where the symbol U replaces T.

2. The protein alphabet, which consists of 20 different amino acids, as follows:

AProtein = {A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y}.

Using these alphabets it is possible to construct sequences where a sequence is defined as:

Definition 2.2 Sequence: A sequence, S, is a series of ordered symbols taken from

a specific alphabet. That is,

S =
{
s1, s2, . . . , sn

}

where sp or S[p] is the pth symbol in the sequence S. The length, n, of a sequence is

denoted by |S|.

Definition 2.3 Sub-sequence: A sub-sequence, S[p, q], from sequence S is a se-

quence of symbols from the pth position to the qth position inclusive.

Sequences must be aligned in order to extract meaningful information about homo-

logy. A sequence alignment is the adaptation of two or more sequences in a way that

highlights their relationship. More precisely, the result obtained from the alignment is

the identification of conserved zones (identical sub-sequences) within sequences. In other

words, the level of similarity between involved sequences is determined after a successful

alignment.

The core process of aligning consists of inserting a minimum number of gaps rep-

resented by ‘−’ in the sequences so that the columns contain a maximum number of

Chapter 2. Multiple Sequence Alignment 12

matching symbols (each row of symbols represents one sequence). It is important to

note that during the course of this work the meanings of the terms ‘symbol’ and ‘charac-

ter’ are equivalent and are used interchangeably. Formally, sequence alignment is defined

as follows:

Definition 2.4 Sequence Alignment: An alphabet Â = A ∪ {−} is defined. Let

T =
{
S1,S2, . . . ,Sk

}
be a set of k sequences. Then, an alignment of the set T results in

a new set T̂ =
{
Ŝ1, Ŝ2, . . . , Ŝk

}
of sequences over the alphabet Â.

An alignment is considered to be valid if and only if all the following properties are

verified:

1. All aligned sequences, Ŝı, must be of equal length, n̂. That is,

n̂ = max{|Ŝı|}, ∀Ŝı ∈ T̂ (2.1)

2. ∀ı ∈
{
1, 2, . . . , k

}
: Ŝı reverts to the original Sı by removing all the inserted gap

characters.

3. Columns which only consist of gap characters must be removed.

From a mathematical point of view, a sequence alignment can be represented as a

matrix with k rows of length n̂, where the ıth row contains a sequence Ŝı. In this work, the

general matrix structure will be used for both manipulating and displaying alignments

(see [77] for a thorough mathematical definition of sequence alignment). Two types of

sequence alignments are recognized:

• A global sequence alignment of k sequences represents an alignment involving all

characters in these sequences. If not mentioned, a sequence alignment is global

(by default). Global sequence alignment is the most widely used alignment type

in practice.

• A local sequence alignment is a specialization of global alignment, in which the best

alignment of a sub-sequence within entire sequences or sub-sequences is found.

Local sequence alignments offer the flexibility to locate specific related regions

within sequences.

Chapter 2. Multiple Sequence Alignment 13

Sequence alignments can be classified further according to the number of participating

sequences, k. An alignment is referred to as a pairwise sequence alignment (PSA) when

k = 2. In this case, the alignment process consists of searching for a series of the best

matching |Ŝ| pairs. A pair is made up of one character from the first sequence Ŝ1 and

its corresponding character from the second sequence Ŝ2.

For all the other cases where k ≥ 3, the expression multiple sequence alignment

(MSA) is used. In short, MSA is simply a logical expansion of PSA which includes more

than two sequences in the alignment. However, it is not necessarily true that one MSA

is constructed from several PSAs. As a result, the techniques for processing PSAs and

MSAs are not always the same. During the course of this work, the focus will mainly be

on global MSA. Figure 2.3 illustrates an example of a possible pairwise DNA sequence

alignment.

DNAseq1 ATCCG-AACT 9
DNAseq2 AGCGGTA-GT 9
consensus A-C-GtAa-T

Figure 2.3: The alignment and consensus of two DNA sequences

Figure 2.4 illustrates what a multiple protein sequence alignment looks like.

PROTseq1 TLGLLLSCQISILRAVMYIIAQCVGAIVASAIL 112
PROTseq2 TVACLVGCHVSFLRAAFYVAAQLLGAVAGAAIL 104
PROTseq3 TFAMCFLAREPWIKLPIYTLAQTLGAFLGAGIV 112
PROTseq4 TVAMVCTRKISIAKSVFYITAQCLGAIIGAGIL 133
PROTseq5 TLALLIGNQISLLRAVFYVAAQLVGAIAGAGIL 105
consensus T-a-l----is-lravfY--AQ-lGAi-gagIl

Figure 2.4: The alignment and consensus of five protein sequences

Chapter 2. Multiple Sequence Alignment 14

Figures 2.3 and 2.4 have the following properties:

- a header name (e.g. DNAseq1 or PROTseq3) for sequence identification;

- a per column highlight illustrating best character similarity;

- an index, at the end of each line, which stops at the last character of the aligned

sequence;

- a bar chart, above each column, giving a quick view of the similarity level (higher

is better); and

- a consensus sequence at the bottom. The consensus constructs a representative

sequence by taking per column the character with highest similarity. An upper

case letter indicates maximum similarity (entire column of identical characters). A

lower case letter indicates intermediate degrees of similarity, while ‘−’ represents

no similarity.

2.3.2 Alignment Evaluation

From a general point of view, a sequence alignment can be seen as a morphing operation

with the objective to make two or more sequences as similar as possible. In order to

find a good alignment, a kind of measurement is needed to quantify which pairs of

characters are better than others. A numerical value given to quantify the ‘goodness’ of

an alignment is called the score of an alignment. Two popular scoring schemes are now

provided.

The Similarity Method

A ‘similarity’ approach [97] suggests the following to determine how alike sequences

actually are. If, for each possible pair, an arbitrary positive value or cost is assigned

to an atomic mutation/edit operation (e.g. substitution, insertion or deletion), then a

minimization of the costs will lead to sequences of higher similarity. Conversely, instead

of minimizing the dissimilarity, an alignment could be scored by maximizing the level

of similarity. An effective way of achieving an alignment maximization is by rewarding

matching characters while penalizing gaps and mismatches.

Chapter 2. Multiple Sequence Alignment 15

Let a gap represent a character deletion or a character insertion (i.e. holes in either

of the sequences). Additionally, let a mismatch represent a character substitution (char-

acter has mutated). The score, w, is computed by adding a cost assigned to each set of

pairs, using the common sum of pairs (SoP) formula defined as

w(T̂) =
k−1∑

ı=1

k∑

=ı+1

Cost(Ŝı, Ŝ) (2.2)

To clarify, the SoP scores all possible pairwise combinations in aligned sequences,

which requires k(k−1)
2

comparisons for k sequences. Then, the total score is the sum of

scores obtained over all pairs of sequences. Thus, the alignment problem can be stated

as the search for an alignment, T̂ , that maximizes its score, defined as

w∗(T̂) = max

k−1∑

ı=1

k∑

=ı+1

Cost(Ŝı, Ŝ) (2.3)

The optimization process is inevitably driven by the costs. But, what cost is best

suited for comparisons? As previously stated, a reward is given for a match, while

anything else is penalized. A cost is given according to the nature of the pair in question.

Particular attention must be given to both gap and character substitution costs because

they can corrupt the score maximization if chosen wrongly.

A plain model for character comparison, with its three possible scoring cases for pairs,

along with their arbitrary cost, is established as follows [97]:

• Character match: The reward for matching characters is +2. A match occurs when

a pair contains identical non-gap characters.

• Character mismatch (substitution): When a mismatch occurs, zero penalty is

given. An evolutionary mutation into another non-gap character has occurred

and is not rewarded. Comparatively, a mismatch must be rewarded less than a

match.

• Indel (INsertion/DELetion): For an indel, a penalty of -1 is assigned. An indel is

a special case of character mismatch that involves a gap. An indel penalty, also

referred to as a gap penalty, GP , prevents unrelated ‘gappy’ sequences to achieve

high scores. Lastly, this penalty must be (1) higher than the character mismatch

Chapter 2. Multiple Sequence Alignment 16

penalty because, biologically, a mutation is more probable and desirable than a

sequence being cut by a gap; and (2) not severe enough to cancel out a match

reward.

The model is illustrated in Table 2.1. A SoP score is computed on the alignment

previously shown in Figure 2.3. The total score is derived by adding up all the arbitrary

pairwise costs per column.

Table 2.1: Score produced according to the SoP function

DNAseq1 : A T C C G - A A C T Total

DNAseq2 : A G C G G T A - G T score

Scores : +2 0 +2 0 +2 -1 +2 -1 0 +2 = 8

Match Counts

Chellapilla and Fogel [22] proposed a method where the goal is ultimately to get fully

matched columns. Matches are taken into account to compute the score (gaps do not

count at this stage as they are penalized separately). The principle relies on counting

solely the number of matched symbols over all columns and linearly scaling them. The

effect of counting the number of matches over columns rather than pairwise (as in SoP)

promotes growing more matches per column. Growing matches per column is obtained

by linearly scaling the number of matches in each column so that if a column is fully

matched, the score is doubled. The total score is computed using

w(T̂) =

n̂∑

c=1

Mc(1 +
Mc

k
) (2.4)

where Mc is the number of matches in the cth column. The example in Table 2.2 illus-

trates the match count measure.

2.3.3 Scoring Enhancement

In most cases, the simplistic similarity model described above results in good approx-

imate alignments [111]. An alignment process may also be adjusted by modifying the

Chapter 2. Multiple Sequence Alignment 17

Table 2.2: Score produced according to the linearly scaled match count

DNAseqA : A T C C Total

DNAseqB : - T - G score

DNAseqC : A T T G

Scores : 1.34 6.00 0.00 1.34 = 8.68

cost of a specific edit operation. However, the model needs to be further improved in a

way that reflects other biological constraints. An example of a biological constraint is

defining a more realistic gap repartition, which tends to reflect the way natural indels oc-

cur. The SoP function with fixed arbitrary values performs reasonably well when dealing

solely with DNA/RNA sequences, but soon becomes limited when aligning protein se-

quences that have more properties [81]. In effect, protein sequences embody biochemical

properties which greatly influence their respective evolutionary substitution probability.

A valid protein alignment cannot be obtained when these important affinity factors are

ignored. Therefore, a scoring scheme that takes the evolutionary aspects into account

must be used. A brief presentation of potential scoring enhancements follows.

Penalizing Gaps

The first scoring enhancement aims at refining the way that gaps are penalized. A bi-

ologically more accurate way of producing gaps in a sequence is to have κ contiguous

indels appearing at once, which is more plausible from an evolutionary perspective than

successively getting κ single indels. Hence, gaps are rather defined as groups of κ con-

tiguous indels, as gaps usually tend to appear under the form of many indels at once.

Consequently, instead of using a length independent, linear gap penalty model where

lGP (κ) = κ(gfixed) (2.5)

with gfixed as the fixed indel penalty, the more accurate affine gap penalty model is

broadly preferred. This length dependent, affine gap penalty – with O(n̂2) complexity –

is defined as

aGP (κ) = gop + (κ− 1)gext (2.6)

Chapter 2. Multiple Sequence Alignment 18

where gop is the penalty for opening a gap (i.e. always the first indel) and gext is the

penalty for extending a gap (second indel and so forth). A higher penalty is usually

assigned for opening a gap because it is less difficult to extend an existing gap than to

open a new one. Usually, there will be a one-to-many ratio between the opening and

extending gaps, which justifies a higher penalty for opening gaps and encourages gap

extension rather than introduction. Finally, a completely different way of penalizing

gaps consists in linearly scaling the number of gaps over all columns [22].

Sequence Weight

Moreover, an attempt to gain a higher level of biological accuracy promotes that pairwise

scores of aligned sequences may be proportionally weighted [5, 102] according to the

amount of unique information enclosed in the sequence. These weights try to decrease the

influence of redundant information from strongly related sequences. A weight represents

a percentage equal to a percentage identity (PID) calculated over each pair of aligned

sequences as follows (excluding gaps):

PID =
matches

matches + mismatches
(2.7)

Protein Scoring Matrices

Next, the concept of a scoring matrix is introduced. A scoring matrix is a fixed table filled

with pre-calculated values designed to reflect affinities between known acids (amino and

nucleic). Typically, protein sequence alignments benefit from scoring (or substitution)

matrices because they reflect the relative likelihood of all possible amino acid substitu-

tions, which amounts to 210 in total. As a result, matches and mismatches throughout

protein alignments can be scored in a more biologically accurate way. When appropriate,

DNA sequence alignments may also benefit from a substitution matrix called an identity

matrix (see Table E.4 in Appendix E). For proteins, different types of matrices exist,

with each one following a different evolutionary scheme. It is therefore crucial to choose

carefully which matrix to use to acquire the desired alignment. Types of protein scoring

matrices include:

• PAM (point accepted mutation per 108 years) matrices [29] have been de-

signed for global protein alignments. Scores in PAM matrices have been devised

Chapter 2. Multiple Sequence Alignment 19

according to the study of how frequently specific amino acid substitutions occur

during evolution. PAM matrices range from 1 to 500, where the number indicates

the maximum divergence percentage of sequences that the scores have been cal-

culated from. For example, the PAM250 matrix is the most widely used and is

considered a good general matrix for scoring distantly related protein sequences

(250% divergence assumed). See Table E.1 in Appendix E for a PAM matrix

example.

• BLOSUM (blocks substitution matrices) [49] have scores derived from ob-

servations of the frequencies of substitutions in blocks of local alignments, which

makes BLOSUM generally best suited for local sequence alignments. BLOSUM

range from 1 to 100, where the number specifies, unlike PAM matrices, the mini-

mum identity percentage of sequences the scores have been calculated from. As an

example, the BLOSUM62 is best suited for aligning protein sequences for which no

prior knowledge exists as well as detecting weak protein similarities (no less than

62% identity). See Figure E.2 in Appendix E for a BLOSUM example.

• The Gonnet matrix [46] has been developed through exhaustive pairwise align-

ment on protein sequence databases. It is the recommended matrix for a prelimi-

nary protein sequence alignment.

From the above description, it is clear that choosing the most appropriate scoring

matrix lies in setting the best PAM or BLOSUM number according to the level of

relatedness from the set of protein sequences to be aligned. A final note on the use of

scoring matrices consists of the following easy guidelines:

- For closely related sequences, use a high number BLOSUM and low PAM.

- For distantly related sequences, use a high number PAM and low BLOSUM.

2.4 Use of Sequence Alignments

The process of aligning entails iterative comparisons. In everyday life, decisions are

often taken upon the result of making comparisons, for example, comparing prices when

shopping, comparing which tool is most suitable to dig a hole, or comparing two images

Chapter 2. Multiple Sequence Alignment 20

at work. The action of comparing choices only requires some memory to store previous

states in order to recall these states when necessary. The output of a comparison is

simple: it can be either a match or a mismatch (same or different). Then, when the

result is different, it can be either better or worse. So, for purposes of comparison,

two complementary actions take place: finding differences as well as similarities2. Since

comparing ‘things’ seems omnipresent, a wide range of applications has emerged from

several disciplines. The subsequent sections emphasize the important uses of computers

based on alignment.

2.4.1 Computer-Aided Molecular Biology

Computational biology is rich in applications [68]. It involves many branches of genetics

including structural genomics, comparative genomics and proteomics, which rely exten-

sively on MSA. But, what exactly is the use of MSAs? In bioinformatics, MSA is used to

study properties of related biological sequences. Given two sequences, if the properties

of only one of the two sequences are known, then after a successful alignment, similar

properties may be inferred from the known sequence over the unknown sequence. More

precisely, relationship properties are studied through the following categories:

• Detection of protein functions.

• Identification of conserved zones/motifs/domains within multiple related sequences

to predict further functional and structural properties.

• Classification of new sequences within specific families through extrapolation from

known patterns.

• Contribution to the prediction of the secondary and even tertiary structure of

proteins.

• Discovery of protein behaviours with regard to hydrophobicity as well as hy-

drophilicity.

2The English language contains the verb ‘to differentiate’ but, interestingly, does not have the verb

‘to similarize’.

Chapter 2. Multiple Sequence Alignment 21

• Tool for biological database searching. Given some input sequences, T , the process

performs an exhaustive search on the entire database contents. The way to achieve

this is to align T locally with one sequence after another (i.e. pairwise alignment).

Depending on the alignment scores obtained throughout the search, a similarity

ranking can be established. Top rankings would then yield the closest related

sequences found. Examples of database searching tools include FASTA [89, 90]

and BLAST (Basic Local Alignment Search Tool) [4, 6], while PROSITE [11] or

Pfam [12] are popular types of biological databases.

• Study of phylogeny or evolution of organisms. The aim here is to build phylogenetic

trees based on the evolutionary relationships between species. In order to infer a

particular homology (e.g. lineage, shared origins or common ancestors), MSAs

are used to establish similarity scores, which in turn guide the clustering process

necessary to construct the tree.

• Design of PCR (polymerase chain reaction) primers [1] can be enhanced through

the localization of strongly conserved zones, which are useful to clone new members

of a specific family.

• Lastly, the determination of the consensus sequence from aligned sequences, as

illustrated in Figures 2.3 and 2.4.

Diverse but worthy applications, including DNA analysis which is heavily relied on

in forensics and the investigation of crime scenes, form an important part of the field

of bioinformatics. Positive victim identification through DNA tests have the power to

validate a verdict for lawsuits. Some cases even demonstrate that wrongly accused

individuals are proven innocent and are freed from prison as a result of DNA post-

authentication. Exoneration through DNA tests also occurs in cases where paternity or

other family relationships have required identification.

IBM and National Geographic are taking the MSA problem to the next level: their

combined efforts led to the launch of a far-reaching worldwide project named The Geno-

graphic Project [57]. With the advent of IBM’s new supercomputer Blue Gene, which

achieves a monstrous theoretical peak of 360 Teraflops, IBM provides the power to

analyze the largest collection of DNA samples ever assembled. The project aims at

Chapter 2. Multiple Sequence Alignment 22

discovering exactly how Earth was populated.

Finally, in a totally different domain, bioinformatics even intruded the minds of

science fiction movie producers like Andrew Niccol with his 1997 motion picture Gattaca

(observe how all the letters are taken from the DNA alphabet). The film depicts a far-

fetched technological world in the future where what you have in your blood ultimately

determines your destiny.

2.4.2 Briteny Spears

This section broadens the spectrum of computer applications that extensively use align-

ment techniques to compare data. These applications radiate from a common feature

found in computer operating systems; that is, a search functionality. Many computer

applications such as text processing also have built-in search functionalities. A search

process ultimately incorporates some form of comparison mechanism. Searching retains

only compared elements that match, while discarding the rest. Furthermore, when com-

paring data, a similarity relation between discarded elements may also be established.

Command tools like comp (Windows) or diff (Linux) [56] offer to compare files rather

than to output meaningful information.

A famous tool used worldwide by millions of users every day is the spelling correction

system on the Google search engine. Under the umbrella of a small spelling mistake

such as ‘Briteny Spears’ resides a plethora of related applications designed to compare.

Typically, all queries are compared against a dictionary, after which an orthographic

confirmation is returned. Queries are also checked against similar previous inputs that

have returned a higher number of hits. The search engine will then suggest a better

spelling if appropriate. For interest’s sake, Google has 593 registered ways of spelling

‘Britney Spears’ [47] because users have made spelling mistakes in the input query. Each

variant was written by at least two unique users within a period of three months.

Lastly, miscellaneous sequence alignment theories have also been applied to the study

of linguistics [21, 43] including the evolution of languages, automatic translation or even

speech recognition. A plagiarism tool is another example of a direct alignment appli-

cation making extensive use of comparisons [70]. The main feature of such tools is the

ability to find similarities from and within texts. The following section expresses several

Chapter 2. Multiple Sequence Alignment 23

inherent difficulties beyond finding similarities and making comparisons when solving

MSA problems.

2.5 Where Does the MSA Problem Lie?

MSAs are hard to solve, and there is never one perfect solution, making the MSA problem

complicated as well as intricate. In this section, the MSA problem will be dissected in

order to understand which potential obstacles stand in the way of its resolution. For clar-

ity’s sake, the generic MSA problem is expressed with the following declaration: “Insert

gaps within a given set of sequences in order to maximize a similarity criterion”.

From the previous statement, the problem can be broken down into three distinct inher-

ent difficulties (listed in bold). The intricacy of MSA comes from the fact that all three

difficulties addressed in the following paragraphs must be overcome simultaneously.

2.5.1 Choice of Sequence

It is evident that an amino acid sequence cannot be aligned with a nucleotide sequence.

Less evident is that having sequences of the same kind is still not sufficient. In or-

der to produce a biologically meaningful alignment, aligned sequences must also share

homologous roots.

The problem with totally unknown sequences is that sequences need to be aligned to

discover how related they are but, at the same time, sequences are required to have some

relatedness prior to obtaining a meaningful alignment. Therefore, a way of ‘learning’

about sequences is to align them in an empirical manner. Such learning begins with zero

knowledge, then progressively adjusts criteria according to obtained results. One-shot

perfect alignment simply does not exist.

2.5.2 Is This Alignment Any Good?

The alignment process is driven by the maximization of a similarity criterion that eval-

uates the quality of a sequence alignment. This similarity criterion, in the context of

sequence alignment by optimization, is referred to as an objective function (OF). Hence,

the ‘best possible’ alignment is reached when the maximization of the OF is terminated.

Chapter 2. Multiple Sequence Alignment 24

Virtually any scoring function can be custom-tailored to suit the needs of a particular

sequence alignment. One of the most widely used functions is the simple SoP function as

described in Section 2.3.2. The ultimate goal for bioinformaticists is to find an objective

function which, when optimized, always results in the best possible sequence alignment.

Finding such an objective function can be a daunting task for a number of reasons, two

of which are listed below.

The first difficulty resides in the lack of biological information incorporated into

the objective function. Such additions would increase the mathematical complexity of

the OF, therefore increasing the time complexity of each comparison. Although the

OF should ideally take into account as many biological properties as possible, such

information is often not available.

The second problem takes the form of gap penalties: even where the affine gap

penalty model is usually used (as seen in Section 2.3.3), it is still hard to reproduce

accurately what actually happened from an evolutionary perspective. Actually, finding

realistic values for both the gap opening and extension penalty is uncertain. The ratio

between the opening and extension gap penalties may also be adjusted proportionally

(or not) to the length of the sequences concerned. The best penalty values remain largely

dependent on a specific alignment and therefore need to be set empirically. Each single

set of sequences to be aligned would require custom values obtained through methods of

trial and error. Generic optimal penalty values for any set of sequences do not exist.

2.5.3 Computer Complexity

Doing a sequence alignment by hand is possible, although only for very short pairwise

alignments (as illustrated in Figure 2.3). This is due to the fact that the number of com-

parisons to be executed on such small alignments is kept reasonable. For two sequences

of length n, let β represent the total number of all different alignment possibilities, which

is calculated as

β =

n∑

k=0

(
n + k

k

)(
n

k

)
(2.8)

A brute force pairwise alignment ultimately needs to evaluate all possibilities of gap

insertions in two sequences. As an example, a pair of sequences each containing 500

residues makes the count of all possible alignments rocket to approximately 10400.

Chapter 2. Multiple Sequence Alignment 25

PSAs are actually quite computationally simple compared to MSAs, as MSAs have

a minimum of three sequences to be aligned. Having more than two sequences causes

the algorithmic complexity to grow exponentially because of the considerable increase

in comparisons. MSAs require a k-wise alignment for k sequences. Therefore searching

for the best MSA using an exhaustive enumeration of all possible alignments becomes

strictly proscribed and not reasonable. A microcomputer would quickly give up any brute

force processing of a medium MSA because of an explosion in the memory size required.

Even with the right amount of physical and virtual memory, the computation would take

centuries to complete. Clearly, this problem is of a combinatorial nature (NP-complete,

described in detail in the next chapter) and needs to be optimized accordingly.

The focus lies in circumventing the MSA’s high computational complexity. Conse-

quently, sophisticated and efficient strategies have been proposed in order to deal with

the MSA problem in a practical way. A powerful strategy to narrow the search space is

to make use of heuristics [27, 72, 108, 110, 113]. The idea is to take the initial sequences

and refine them progressively or iteratively to maximize the ‘goodness’ of an alignment.

Using heuristics instead of brute force methods has the negative effect of finding only

approximate, sub-optimal solutions. The loss of optimality is created by the propor-

tional trade-off made between complexity and time. As a result, for one specific set of

sequences there can be many solutions that are equivalently good and acceptable.

There exists a myriad of different techniques to solve the MSA problem efficiently.

None of them is superior in all cases and none of them can claim to be the best way of

aligning more than two sequences. The MSA problem remains largely open and could

benefit from various improvements. Section 2.6 below reviews practical methods and

current techniques used to solve the MSA problem.

2.6 State of the Art

Since no single MSA solving method performs best in all cases, niche applications [81]

emerged in bioinformatics practice because certain algorithms would be better suited for

specific alignment conditions. Twenty-five years of continuous attempts to solve MSAs

more accurately and efficiently have led to the development of numerous techniques [81].

Bioinformatics practitioners have therefore always had a toolbox containing consciously

Chapter 2. Multiple Sequence Alignment 26

selected tools, with each having one specific purpose.

An exhaustive enumeration of all available MSA techniques lies beyond the scope of

this thesis. The goal here is to give a general taxonomy of existing MSA techniques,

with special emphasis on techniques which are the most relevant within the frame of this

work. For an extensive review, refer to the excellent survey by Notredame [81].

Most practical and commonly used methods for MSAs are logical extensions of PSAs.

The rationale is that multiple alignments are achieved by the successive application of

pairwise methods. Methods to solve MSAs are divided into four distinct categories, each

of which is described below.

2.6.1 The Exact Approach

Applied to MSAs, dynamic programming (DP) [80] was initially used for the alignment

of two sequences. DP first converts the sequence alignment problem into the problem of

finding the shortest path in a weighted direct acyclic graph. DP’s objective is to build up

the best possible alignment using previous solutions of optimal alignment from smaller

sub-sequences. Three steps occur in DP, namely

1. creation of a two-dimensional alignment path matrix (default for pairwise align-

ment);

2. stepwise calculation of score values; and

3. backtracking path (i.e. evaluation of the optimal path).

Due to the exhaustive nature of the method, DP always returns a mathematically

optimum solution given its objective function. With an O(nk) computational complexity

for k sequences of mean length n, DP is well suited for solving PSAs [19]. The DP

method has also been extended directly to MSAs, involving comparisons of more than two

sequences. Regrettably, DP fails quickly as the length and number of sequences increase

(hence, DP is not feasible when k ≥ 4). Lipman, Altschul and Kececioglu [72] pioneered

an algorithm called MSA which extends the ability of DP to align up to 10 medium-

sized sequences (of a high degree of similarity) simultaneously. MSA discards ‘fruitless’

areas within the k-dimensional hypercube volume in order to shrink the search space.

In other words, MSA applies tight lower and upper search bounds, thereby considerably

Chapter 2. Multiple Sequence Alignment 27

decreasing the computational complexity. Within this exact approach, Stoye [104] and

Stoye, Perry and Dress [105] also proposed a divide-and-conquer algorithm (DCA) which

significantly extends the potential of the original MSA. Stoye’s DCA has been built

around the following steps:

• Firstly, split up the problem of aligning long sequences into two or more problems

of aligning shorter sequences. Original sequences are cut at suitable cut positions.

• Secondly, align each chunk of smaller sequences optimally using MSA.

• Finally, concatenate all resulting chunk alignments into one alignment, recreating

the final alignment of the original sequences.

2.6.2 The Progressive Approach

Progressive alignment algorithms as described by Taylor [109], Feng and Doolittle [41]

perform quickly (linear complexity) and use only a small amount of memory. Typically,

a progressive alignment is constructed by starting with the most similar sequences and

then incrementally aligning more distant sequences or groups of sequences to the initial

alignment.

The standard representative of progressive methods is CLUSTAL W [113]. CLUSTAL

W can create multiple alignments, manipulate existing alignments, do profile analysis

and create phylogenetic trees. CLUSTAL W is an updated version of CLUSTAL [51]

where W stands for ‘weighting’, which represents the program’s ability to apply weights

to both sequences and program parameters. The deterministic heuristics optimized by

CLUSTAL W is based on the SoP described in Section 2.3.2 using the affine gap penalty

model. The order in which sequences are successively added is guided by a constructed

phylogenetic tree (magnitude of similarity) and pairwise DP. Advantages from CLUSTAL

W include the ability to automatically select the best suited substitution matrix and gap

penalties. As a replacement of the command line program, CLUSTAL X [112] provides

a graphical user interface for CLUSTAL W.

The main problem with progressive algorithms is twofold:

• Dependence upon initial pairwise alignments:

Chapter 2. Multiple Sequence Alignment 28

1. The very first sequences to be aligned are the most closely related on the

sequence tree. If alignment is good, there will be few errors in the initial

alignment.

2. The propagation of errors from the root alignment throughout the entire align-

ment.

3. The more distantly related these sequences will be, the more errors there will

be.

• The choice of a suitable alignment scoring scheme (substitution matrices and gap

penalties) that applies to all sequences simultaneously.

Other progressive algorithms include MUSCLE [37], MATCH-BOX [31], MultAl-

ign [27] and PileUp [32].

2.6.3 The Iterative Approach

With iterative methods, the result does not depend on the initial pairwise alignment.

Instead, an iterative algorithm starts with a generated initial alignment, then repeatedly

refines it until no more improvement can be obtained. The main objective of the iterative

approach is to globally enhance the quality of a sequence alignment.

A particularity and advantage of iterative algorithms is the clear decoupling between

the optimization per se and the objective function itself. The successive alignment refine-

ments are governed by a so-called alignment improver. The nature of such an improver

further divides the iterative methods into deterministic and stochastic categories. On

the one hand, modifications ruled by DP qualify as deterministic. On the other hand,

stochastic iterative methods rely on a heuristic improver. However paradoxical it may

seem, many techniques making use of the stochastic principle have left their mark as

being robust MSA solvers [22]. Those techniques include hidden Markov model (HMM)

training [36, 73, 93], simulated annealing (SA) [67], Gibbs sampling (local alignment

only) [71], ant colony optimization (ACO) [23, 79], and particle swarm optimization

(PSO) [55].

To date, it appears that PSO has been applied to MSA in one publication by Hsiao

and Chuang [55]. Unfortunately, little detail is provided on how this was done.

Chapter 2. Multiple Sequence Alignment 29

A number of evolutionary algorithm (EA) approaches have also been developed [54]

for solving MSAs. One of the first approaches used simple genetic algorithms (GA) [44],

where a bit-matrix representation was applied. Zhang and Wong [121] also successfully

combined GA techniques with pairwise DP. Other GAs include the well-known sequence

alignment by genetic algorithm (SAGA) [82] boasting 22 operators. As GAs have a

substantial role within this work, a treatment of GAs is provided in Section 3.3 of the

next chapter.

Unfortunately, iterative algorithms still lack speed and reliability. Firstly, conver-

gence to a global optimum may take a relatively long time because of the iterative

nature of the method (improved in [94]). Moreover, computational time becomes drasti-

cally worse by the use of stochastic methods. To alleviate the need for speed, GAs have

also been implemented on parallel computers [7]. Secondly, iterative methods are mostly

considered unreliable because of the fact that one specific set of sequences would almost

always yield a different final alignment due to the randomness factor. Furthermore, GAs

and HMMs have shown weaknesses when dealing with ab initio3 alignments, but, rather,

excel as optimizers of existing MSA solutions. Gotoh [48] made significant efforts to

improve accuracy in multiple protein sequence alignments using iterative refinement.

2.6.4 The Consistency-based Approach

Consistency-based approaches consider an MSA as superior when a maximal consensus

of optimal pairwise alignments has been reached. First introduced in 1993, Kececioglu

formulated the MSA problem as a maximum weight trace problem (MWTP) [60]. In 2000,

Notredame, Higgins and Heringa proposed a novel method called T-COFFEE (tree-

based consistency objective function for alignment evaluation) [83, 84] which constitutes

the most recent objective function designed with consistency in mind. When T-COFFEE

is optimized, mainly by SAGA, MSAs are solved by emulating the MWTP. Essentially,

T-COFFEE exposes the ability to combine results from a collection of alignments from

heterogeneous sources into one final alignment. Starting by computing a library of

pairwise alignments from all input sequences, the program then finds the two best global

and local alignments. Secondly, T-COFFEE progressively assembles a final alignment

3Latin term meaning ‘from the beginning’.

Chapter 2. Multiple Sequence Alignment 30

that has the highest level of consistency within the library. This consistency method has

been shown to outperform most current MSA packages with regard to accuracy. The

price for accuracy is a high time complexity in the order of O(k3n2). DIALIGN [2, 75, 76,

78, 106] employs a segment-to-segment comparison scheme (in opposition to character-

wise) and no gap penalties. DIALIGN works best for finding local relations between

sequences.

2.7 Summary

This chapter examined various aspects relating to sequence alignments. It focused on

the multiple sequence alignment (MSA) problem on account of its high complexity.

Section 2.2 began at the root of sequences by suggesting a succinct introduction to

molecular biology. DNA, RNA and proteins were covered from a scientific point of

view, followed by a short history of life. Section 2.3 laid out the foundation of both the

manipulation and creation of alignment by defining its conceptual building blocks. A

part of this chapter was then devoted to outlining the usage significance of the sequence

aligning discipline. The wide array of uses in Section 2.4 ranged from the fundamental

bioinformatics tool to science fiction movies. Next, Section 2.5 analyzed the multi-faceted

MSA problem. Furthermore, explanations were provided on why there is no single way

that leads to the desired solution. Section 2.6 looked at typical techniques employed to

solve the MSA problem. Many common approaches were described, with attention being

given to the most relevant ones.

Chapter 3

Computational Intelligence

Paradigms

“Pure mathematics is, in its way, the poetry of logical ideas.”

- Albert Einstein

The previous chapter provided relevant background on MSA. Obtaining reasonably

optimal alignments requires the optimization of an objective function. This chapter

aims at providing background on optimization techniques within the computational in-

telligence (CI) field. Initially, a brief formalism on classical optimization is presented.

The remainder of the chapter then expands on two CI paradigms. Further attention is

paid to key algorithms which are relevant to experiments conducted in this work, namely

genetic algorithms and particle swarm optimizers. Lastly, both paradigms are contrasted

in a final discussion.

3.1 Introduction

A toothbrush and an ultra sophisticated nuclear reactor only have one thing in com-

mon: optimization. Consider the following fictitious example. The brand new ‘XYZ ’

ambidextrous toothbrush fits nicely in the hand and allows for effective tooth cleaning

and whitening, as well as offering the ultimate in brushing comfort. A cutting-edge nu-

clear reactor is designed by teams of chemical and structural engineers, where absolutely

31

Chapter 3. Computational Intelligence Paradigms 32

no room for the slightest mistake is permitted. Ultimately, a finalized, secured reac-

tor must also imperatively comply with specific requirements such as radioactive γ-rays

exposure, massive heat dissipation, cost effectiveness, throughput efficiency and envi-

ronmental friendliness, amongst others. Innovation, design and growing development

are the spearheads of contemporary industry. As the toothbrush and nuclear reactor

comparison shows, this constant need for performance can easily be found in all aspects

in life; optimization is omnipresent.

The focal point of this chapter concerns optimization techniques and, more precisely,

viable techniques that belong to the realm of computational intelligence (CI). CI refers to

the study of intelligent behaviour from self-adjusting agents in complex systems within

changing environments [38]. Furthermore, CI paradigms can be thought of as a collection

of algorithms modelled and inspired by behaviours that originate from the elegance of

Mother Nature. Such systems include the human brain with its network made up of

billions of neurons, the highly organized society of ants or even a flock of lapwings

heading together towards their dormitory at dusk.

The chapter is articulated in six parts. Section 3.2 defines optimization problems,

along with basic optimization notions. Section 3.3 begins the exploration of CI with

Darwinian-based algorithms such as the genetic algorithm (GA). Swarm intelligence

(SI) is thereafter introduced in Section 3.4 with an in-depth study of particle swarm

optimization (PSO). The subsequent discussion in Section 3.5 puts both PSO and GAs

into perspective to highlight the strong and weak points observed in both techniques. The

chapter is concluded with Section 3.6, where the aforementioned material is summarized.

3.2 Classical Optimization

This section defines the basics of optimization and the intrinsic nature of nondetermin-

istic polynomial complete (NP-complete) problems.

3.2.1 Minimization Definition

The process of optimization is defined as finding the best values for variables that will lead

to either the maximization or minimization of an objective function, which reflects a given

Chapter 3. Computational Intelligence Paradigms 33

problem. Note that minimizing the mathematical function f(x) equally corresponds to

maximizing −f(x). In this work, an objective function or evaluation function (EF),

namely the MSAfunc, which quantifies the quality of solutions for the MSA problem

is optimized over an m-dimensional search space Ω. Firstly, let x represent a vector of

values from Ω. That is,

x = [x1, x2, . . . , xm]T , ∀x ∈ Ω

Additionally, Ω may either symbolize a real-valued space, R
m, or a discrete space where

values are taken from a predefined set of values. An unconstrained global minimization

of MSAfunc(x) is formally defined as

Find x∗ for which MSAfunc(x∗) ≤MSAfunc(x), ∀x ∈ Ω (3.1)

In order to accommodate problems exposing more than one objective, an objective

function f can be extended to represent a vector of p objectives so that

f(x) = [f1(x), f2(x), . . . , fp(x)]T

3.2.2 NP-Complete Problems

The ‘NP’ tag attached to a problem originates from its nondeterministic polynomial

execution property. The term ‘polynomial’ means that if at least one solution exists,

it can be estimated and validated within an exponential time period which is usually

worsened proportionally to the input length of a problem. The adjective ‘nondetermin-

istic’ suggests that no definite solving rule exists, implying some kind of guessing and

estimation.

If a problem is NP and all other NP problems are polynomial time reducible to the

problem, then the problem becomes NP-complete. Moreover, these problems are said

to be intractable, which refers to the solving incapability of deterministic algorithms.

Representatives of NP-complete problems include the famous knapsack problem, the

Hamiltonian cycle problem and the travelling salesman problem (TSP).

The MSA problem, as detailed in Chapter 2, also falls into the category of NP-

complete problems [15, 59, 118]. Due to their nondeterministic nature, several CI algo-

rithms have been successful at finding near optimal solutions to NP-complete problems

Chapter 3. Computational Intelligence Paradigms 34

in a reasonable amount of time [101, 121]. Two CI paradigms that have been applied to

MSA are reviewed in the Sections 3.3 and 3.4.

3.3 Genetic Algorithms

This section discusses a paradigm of CI, evolutionary computation (EC), which draws its

inspiration from Darwinian theories of evolution. Evolutionary algorithms all share the

same principle of ‘survival of the fittest’ (as discussed in Section 2.2.2). A vast range of

evolutionary models under the EC paradigm exists [10], but the genetic algorithm [42], in

particular, fits within the scope of this thesis. The first application of the EC paradigm

was the GA model, which was popularized by Holland [53] in 1975. This presentation of

GAs only serves as an introduction, leaving the reader to consult more literature on the

topic [38, 42, 44]. A general overview of the GA is given in Section 3.3.1. An explanation

of the internal GA operators follows in Section 3.3.2. Finally, Section 3.3.3 overviews a

modification to the original GA called the cooperative coevolutionary genetic algorithm

(CCGA).

3.3.1 Genetic Algorithm Essentials

A genetic algorithm evolves an initial population of random individuals, each representing

a potential solution, over an arbitrary amount of time. A fitness function that reflects

the optimization problem takes the role of evaluating each individual’s quality. In GA

practice, a fitness function is computed for the purpose of ranking solutions within a

population. At regular time intervals, called generations, the algorithm carries out a

selection of individuals which in turn survive to the next generation.

After each generation, a portion of individuals are submitted, firstly, to recombination

in an effort to produce more promising solutions, and, secondly, to mutation (discussed

in Section 3.3.2) to enhance diversity. The reproductive cycle then restarts until some

optimization criteria are met.

The algorithm is dubbed ‘genetic’ because it models genetic evolution through many

generation cycles. Within the evolutionary scheme, sexual reproduction allows parents to

pass on their chromosomal information to new offspring. In general, every offspring pro-

Chapter 3. Computational Intelligence Paradigms 35

duced in this manner joins the new generation’s population. Each individual comprises

one chromosome, made up of several genes used to form its unique genotype inherited

from the biological parents. A gene in a GA represents a parameter of the problem.

In conventional GAs, it is common to represent the genotype of an individual as

a fixed-length bit string. The string length must be determined prior to optimization

and reflects the dimensionality of the problem. Parameters for a specific problem can

thus be easily mapped into a bit string by turning the corresponding bits ‘on or off’.

Other representations include variable length bit strings [45] and vectors of real-valued

numbers [58].

A genetic algorithm therefore optimizes a fitness function by evolving candidate so-

lutions over a maximum number of generations, gmax. The pseudocode in Algorithm 3.1

explains the steps adopted for a general GA.

g ← 0

Initialize all individuals of the initial population Cg

while not converged, or g ≤ gmax:

Perform fitness evaluation on each individual in Cg

g ← g + 1

Select parents from Cg−1

Create offspring Og by applying cross-over operators to parents

Apply mutation to Og

Form the new generation population Cg by mixing a selection of

individuals from Cg−1 and Og

Algorithm 3.1: Pseudocode outline of the genetic algorithm

A population is declared to have converged when individuals have reached an op-

timum. Alternatively, convergence in a population may also be considered when there

exists at least one individual whose fitness f(x) satisfies a minimum threshold value fφ

or when there is no change in average fitness f(x) over a number of generations.

Chapter 3. Computational Intelligence Paradigms 36

3.3.2 Evolutionary Operators

Operators are applied on individuals to mimic evolution processes found in nature. These

GA operators, namely cross-over, mutation and selection, are briefly examined below.

Cross-over

The cross-over operator models the creation of offspring, which simulates natural repro-

duction through a recombination of the genetic material from two parents. The process

involves taking genes from both parents to produce offspring.

Assuming a bit-level data representation, a binary bit mask dictates the selection

of bits from both parents in order to recreate two new bit strings. The extraction of

bit string pieces from the parents may be conducted by using any of the three different

masks as illustrated in Figure 3.1 and explained below. Cross-over occurs at a particular

rate, called the cross-over probability.

Figure 3.1: Three cross-over operators for bit representations

Uniform cross-over: A mask is randomly generated by assigning a bit value to a mask

element with equal probability. Uniform cross-over produces offspring through a

random composition of the two parents. See Figure 3.1(a).

Chapter 3. Computational Intelligence Paradigms 37

One-point cross-over: An offset is chosen at random, marking a pivot point. Bits

from both parents are taken in their original order until the offset is reached, after

which all positions are swapped. See Figure 3.1(b).

Two-point cross-over: The same principle as for one-point cross-over is followed,

where two different offsets are randomly selected. All bits from parent one are

taken from the positions enclosed by the two offset delimiters, the rest is obtained

from the other parent. See Figure 3.1(c).

Moreover, one-point and two-point cross-overs can also be applied to chromosomes

with a real-valued representation. Considering real-valued genes only, arithmetic cross-

over can be used. Two offspring, Og,1 and Og,2, are generated using

Og,1 = r1Cg−1,1 + (1.0− r1)Cg−1,2

Og,2 = (1.0− r1)Cg−1,1 + r1Cg−1,2

where r1 ∼ U(0, 1) and the two parents are Cg−1,1 and Cg−1,2.

Mutation

The objective of mutation is to introduce new genetic material into existing individuals

to reduce the chances that individuals get trapped into local optima. Therefore, mu-

tation schemes facilitate diversification (i.e. adds ‘natural noise’) in a population. For

a binary representation, mutation is applied by randomly alternating bit values. For

a real-valued representation, mutation adds a random number to the original values,

usually sampled from a zero-mean Gaussian distribution. Mutation occurs at a certain

probability referred to as the mutation rate. Normally, a large mutation rate is initially

used to encourage global exploration of the search space. The mutation rate is then

decreased progressively as solutions are starting to converge to the optimum.

Selection

Selection is used to select parents for cross-over or parents to survive to the next gen-

eration. Ideally, fit individuals must be emphasized in order to promote good genes

through generations. This is not the case when random selection is applied, because

Chapter 3. Computational Intelligence Paradigms 38

the current fitness level is simply ignored. Random selection may incur negative reper-

cussions; for example, good potential solutions may be discarded while weak ones are

promoted. However, random selection reduces the effect of selection pressure.

A selection scheme that reflects the ‘survival of the fittest’ idea is called elitist se-

lection, which is applied to select parents to survive to the next generation. In elitist

selection, all individuals within a population are first ranked according to their respective

fitnesses. Then highly fit individuals are marked to form part of the next generation.

Another popular scheme is tournament selection. For each parent to be selected,

a tournament of a limited number of individuals is randomly selected. The best indi-

vidual in the tournament is the parent. One advantage of tournament selection is that

weak individuals are discarded while good individuals are retained to construct the next

generation.

3.3.3 Cooperative Coevolutionary Genetic Algorithm

In 1997, Potter developed the cooperative coevolutionary genetic algorithm (CCGA) [92].

The main objective of CCGA was to address scalability issues observed in traditional

GAs. In the CCGA, an individual’s genes are distributed over a set of K independent

sub-populations which are each responsible for evolving a limited set of genes. As a

consequence, no single sub-population has the necessary information to solve the problem

itself, which implies that the fitness evaluation requires a special mechanism to handle

a split chromosome in sub-populations.

The construction of a solution is done by adding together the best individuals from

each sub-population. The difficulty is how to select the best individual from a sub-

population since the individuals in question do not represent complete solutions. The

issue is resolved by maintaining the complete m-dimensional solution as a context vector.

The basic way of constructing the context vector is by concatenating the best in-

dividuals from all sub-populations. All components within the context vector remain

fixed except for the components that correspond to the current sub-population under

evaluation. The value of the corresponding components in the context vector is then

replaced with the selected individual from the sub-population. After the individual

from the sub-population is replaced within the context vector, the fitness of the context

Chapter 3. Computational Intelligence Paradigms 39

vector is evaluated, and that fitness is assigned as the fitness of the individual in the

sub-population.

3.4 Particle Swarm Optimization

From an ornithological perspective, Mother Nature’s quiet sophistication inspires when

a harmonious flight of Canada geese (Branta canadensis) heads flawlessly as an arrow-

shaped flock, which is an illustration of an interesting phenomenon: group behaviour.

Likewise, schools of fish and ant colonies have also displayed astonishing social behaviour.

Many disciplines, including physics and computer science, have been intrigued by the

implication of such simple, yet powerful, organisms. The key to such self-organizing

formations is the local interaction constantly happening between individuals. In 1995,

Kennedy and Eberhart [62] derived particle swarm optimization (PSO) directly from

the choreography of bird flocks. The PSO is a population-based stochastic search algo-

rithm for global optimization. PSO has been found to be successful in a wide variety

of optimization problems [38, 39, 115]. Since the introduction of PSO, there has been

a considerable amount of work done in developing new PSO algorithms with improved

convergence and diversity. The PSO has been in the spotlight of CI research for several

years, resulting in a wealth of literature available on the topic [8, 24, 86, 87, 88, 107].

Section 3.4.1 presents the general PSO algorithm. Different PSO neighbourhood

topologies are overviewed in Section 3.4.2. Section 3.4.3 discusses important PSO char-

acteristics, emphasizing their respective influence on performance. Finally, three versions

of PSO are reviewed in Section 3.4.4.

3.4.1 Algorithm Essentials

In analogy with GAs, individuals within a population in the context of PSO become par-

ticles within a swarm. Each particle in a swarm, Φ, is represented by an m-dimensional

position vector, xi, that represents a potential solution to the optimization problem.

Each particle is treated as one point in the m-dimensional problem space. At first,

all particles are uniformly scattered throughout the search space. Particles are then

gradually ‘flown’ through a multi-dimensional search space which marks the start of

Chapter 3. Computational Intelligence Paradigms 40

the optimization process. The motion of a particle is governed according to its own

experience as well as the experience of its neighbours.

Furthermore, each particle keeps track of the best position it came across thus far,

denoted by yi. The worth of a particle at a position, xi, is measured using a predefined

fitness function, f : R
m → R, that represents the optimization problem. Particles within

the swarm are organized based on a neighbourhood topology, which defines the mode

of information sharing among particles. This topology allows particles to communicate

with each other. The behaviour that emerges is that particles are attracted towards

better particles, similar to the flocking behaviour. Three characteristics are maintained

by each particle:

1. The current position, xi, in search space. The position at time step t of a particle

is updated by adding a velocity to its current position as follows:

xi(t + 1) = xi(t) + vi(t + 1) (3.2)

2. A personal best position, yi, is the best position that the particle has recorded since

the first time step. When dealing with minimization, yi at next time step t + 1 is

computed as

yi(t + 1) =

{
yi(t) if f(xi(t + 1)) ≥ f(yi(t))

xi(t + 1) if f(xi(t + 1)) < f(yi(t))
(3.3)

3. Its current velocity, vi. At time step t, the velocity vi,j(t) in dimension j is updated

using

vi,j(t + 1) = vi,j(t) + c1r1,j(t)[yi,j(t)− xi,j(t)] + c2r2,j(t)[ŷi,j(t)− xi,j(t)] (3.4)

where c1 and c2 are positive acceleration coefficients of the cognitive and social com-

ponents respectively (discussed below), while r1,j(t), r2,j(t) ∼ U(0, 1) are uniform

random numbers in the range [0,1]. The symbol ŷi(t) refers to the neighbourhood’s

best particle position vector so far, as demonstrated in the next section.

Depending on the nature of the problem being optimized, different stopping criteria

may be applied to declare that convergence on to an optimum solution is reached. Usu-

ally, a PSO algorithm executes for an arbitrary number of iterations or fitness function

Chapter 3. Computational Intelligence Paradigms 41

evaluations. A PSO may also be terminated when the average velocity update over all

particles approximates zero, indicating that particles are no longer moving. Alterna-

tively, the search can be terminated when an acceptable solution is found (e.g. the error

bound becomes small enough).

Create a swarm Φ of size s

Initialize the position vectors of all particles, xi(0) ∼ U(xmin,xmax)

yi(0) ← xi(0), ∀i ∈ {1, . . . , s}

vi(0) ← 0, ∀i ∈ {1, . . . , s}

t ← 0

repeat:

for all particles i ∈ {1, . . . , s} do:

if f(xi(t)) < f(yi(t)) then

yi(t) ← xi(t)

end if

if f(yi(t)) < f(ŷi(t)) then

ŷi(t) ← yi(t)

end if

Update velocity vi according to Equation (3.4)

Update position xi according to Equation (3.2)

end for

t ← t + 1

until stopping condition is true

Algorithm 3.2: The standard PSO algorithm

The standard PSO algorithm is summarized in Algorithm 3.2.

3.4.2 Neighbourhood Topologies

The social interaction established in the PSO algorithm is driven by the structure through

which particles inter-communicate. Only particles that belong to the same neighbour-

hood can exchange information among each other. Therefore, a swarm may contain many

Chapter 3. Computational Intelligence Paradigms 42

networks of particles of different shapes and connections, called topologies. Neighbour-

hood topologies are also known as information sharing structures. Two early versions of

the original PSO are the Global Best (GBest) and Local Best (LBest) [34]. The GBest

PSO and the LBest PSO respectively reflect the star and the ring topologies. Addition-

ally, a more recent topology called Von Neumann has been proposed [65]. Figure 3.2

depicts all three topologies. The rest of the section reviews these information sharing

structures.

Figure 3.2: Common PSO topologies

Star Topology

The star neighbourhood structure offers an entirely interconnected network where all

particles within the swarm are able to share information with one another. In this

case, the swarm is comprised of only one neighbourhood englobing every particle, as

pictured in Figure 3.2(a). Advantages of the GBest PSO, using the star topology, reside

in its ease of implementation and its rapid convergence. However, a major drawback

emanating from this structure is poor performance in multimodal search spaces. In

effect, the GBest PSO may prematurely converge on a false optimum when dealing with

convoluted search spaces.

With reference to velocity update equation (3.4), the neighbourhood best, ŷi, is

selected as the best solution found by the entire swarm, i.e.

ŷ(t) ∈ {y0(t),y1(t), . . . ,ys(t)} | f(ŷ(t)) = min{f(y0(t)), f(y1(t)), . . . , f(ys(t))} (3.5)

Chapter 3. Computational Intelligence Paradigms 43

Ring Topology

The ring neighbourhood structure connects several particles in a ring structure based

on particle indices, as shown in Figure 3.2(b). Particles have several channels of com-

munication, which depend on the size of the neighbourhood. As a result, a swarm ends

up being organized into many overlapping neighbourhoods, ℵi, with each containing one

neighbourhood best particle position, ŷi, defined as

ŷi(t + 1) ∈ ℵi | f(ŷi(t + 1)) = min{f(yi)}, ∀yi ∈ ℵi (3.6)

where a neighbourhood ℵi is defined as

ℵi = {yi−sℵi
(t),yi−sℵi

+1(t), . . . ,yi−1(t),yi(t),yi+1(t), . . . ,yi+sℵi
−1(t),yi+sℵi

(t)} (3.7)

with neighbourhoods of size sℵi
. Note that the GBest PSO is a special case of the LBest

PSO where sℵi
= s.

It has been shown [34, 100] that a PSO based on the LBest model converges more

slowly than its GBest counterpart because of its larger search space exploration, but at

the advantage of ultimately finding better optimal solutions.

Von Neumann (VN) Topology

The Von Neumann structure organizes the particles into a three-dimensional lattice, like

a grid, as illustrated in Figure 3.2(c). Introduced by Kennedy and Mendes [65], this

recent information sharing structure has shown significant improvements over the LBest

and GBest models, compared to the original PSO.

3.4.3 PSO Parameters

This section discusses parameters which have an impact on the behaviour of PSO. By

adding or modifying certain parameters that have an influence on diversity, a PSO may

demonstrate various degrees of success with reference to a specific problem. Empirical

research aims at adjusting PSO parameters to achieve better solutions while improving

convergence speed. A discussion of the influence of these parameters is conducted in the

next six subsections.

Chapter 3. Computational Intelligence Paradigms 44

Acceleration Coefficients

As mentioned earlier, a particle does not rely solely on its previous velocity to calculate its

next step. The velocity update equation, reprinted below in equation (3.8), incorporates:

• a cognitive component, which expresses the confidence in the particle’s own expe-

rience (includes the particle’s best position found so far); and

• a social component, which expresses the confidence in the neighbourhood’s experi-

ence (includes the best position obtained thus far within the particle’s neighbour-

hood).

vi,j(t + 1) = vi,j(t) + c1r1,j(t)[yi,j(t)− xi,j(t)]︸ ︷︷ ︸
Cognitive

+ c2r2,j(t)[ŷi,j(t)− xi,j(t)]︸ ︷︷ ︸
Social

(3.8)

Both cognitive and social components are independently weighted by acceleration

coefficients c1 and c2 respectively (displayed in bold in the equation). With c1 > c2,

each particle is biased towards its own best position, therefore exploring more. However,

c2 > c1 facilitates exploitation by making every particle more ‘attracted’ to the best

position of the neighbourhood. Assuming no inertia, smooth particle trajectories may

be obtained by setting a low value for both c1 and c2. Conversely, higher values propel

particles in irregular and oscillatory trajectories. Usually, c1 and c2 are static values set to

be roughly equal to ensure an equilibrium of knowledge for each particle. However, their

optimal values may vary and are therefore problem dependent. Kennedy [61] suggested

that:

c1 + c2 ≤ 4.0 (3.9)

Inertia Weight

The application of an additional weight variable, ω, to the previous velocity in veloc-

ity update equation (3.4) has been shown to notably improve performance in terms of

convergence speed. Known as the inertia weight, this factor, introduced by Shi and

Eberhart [98], serves as an extension to the original PSO (except when ω is set to 1).

The velocity update changes to

vi,j(t + 1) = ωvi,j(t) + c1r1,j(t)[yi,j(t)− xi,j(t)] + c2r2,j(t)[ŷi,j(t)− xi,j(t)] (3.10)

Chapter 3. Computational Intelligence Paradigms 45

The inertia weight acts as a scaling factor over the previous velocity. As a result, the

calculation of the new velocity will include some proportionality of its anterior velocity.

The impact of this mechanism on the trajectory of a particle is either a deceleration

or an acceleration. It is important to note that if a particle accelerates due to larger

step sizes (when ω > 1.0), then its trajectories would immediately cause larger coverage

of the search space, which is preferred for exploration. The deceleration of a particle

(with ω < 1.0) creates an effect of a fine-grained search that may be desired for the ex-

ploitation of a particular area in the search space. The key to setting the inertia weight

adequately is to find an efficient trade-off between exploration and exploitation to ensure

optimal convergence of the particles. Work on PSO convergence behaviour by Van den

Bergh [115] has led to the theoretical derivation of a constraint that represents the re-

lationship between parameters. This constraint must be satisfied to ensure convergence,

stated formally as:

1.0 > ω >
(c1 + c2)

2
− 1 (3.11)

Instead of applying a static inertia throughout the entire course of a PSO algorithm,

inertia values may be changed dynamically over time. By doing so, the early stages of

the algorithm are favoured towards exploration, while exploitation of local areas occurs

at later stages. An inertia weight that is linearly decreased over time has been introduced

and studied by Shi and Eberhart [99].

Velocity Clamping

Monitoring the velocity of a particle is recommended in order to reduce potential diver-

gent behaviour. In effect, when the velocity explodes to large values, a particle is more

likely to leave the search space or never settle in a specific area because of giant steps. In

general, the velocity is clamped over a range with lower and upper bounds [−Vmax, Vmax]

in each dimension. The value of Vmax is usually set to a value proportional to the domain

of the variables being optimized.

Swarm Size

Indicated by s, the swarm size denotes the number of particles present in the swarm.

The number of particles does have an impact on the way the search space is covered. On

Chapter 3. Computational Intelligence Paradigms 46

the one hand, large swarms have the advantage of spreading faster, thus exploring and

attaining optimal solutions in fewer iterations than smaller swarms. On the other hand,

small swarms cost computationally less per iteration and have also proven to find optimal

solutions successfully [115]. Again, the most adequate number of particles depends on

the problem under consideration. Empirical methods need to be applied in order to find

an ideal swarm size.

Number of Iterations

Iterations in the context of PSO correspond to generations in GAs. An iteration repre-

sents an atomic execution (one time step t) of the PSO algorithm. When utilized as a

stopping criterion, a PSO will then terminate when an arbitrary maximum number of

iterations, T , has been reached. If the iteration limit has been set too low, a risk exists

that acceptable solutions may not yet have been found. Conversely, too many iterations

may result in a waste of computational time, as an optimal solution will already have

been discovered well before the end of the computation time. Relative to the number of

iterations, the number of objective function evaluations can also be used as a stopping

criterion. Each particle’s fitness over all iterations represents the number of objective

function evaluations.

Synchronous versus Asynchronous Updates

In a synchronous update, the personal best and global (or neighbourhood) best positions

are updated after all the particle position updates have been computed and only once

per iteration. Alternatively, asynchronous updates calculate the new best positions after

each particle position update. This work adheres to the study by Carlisle and Dozier [20]

which states that a synchronous update is more appropriate for the GBest PSO and an

asynchronous update is more suitable for the Lbest PSO. Furthermore, in this work,

asynchronous updates are applied to PSOs that rely on the Von Neumann topology

(Von Neumann topology is not global, whereas the star topology in Gbest PSO) is.

Chapter 3. Computational Intelligence Paradigms 47

3.4.4 Modifications to PSO

After the examination of crucial internal parameters of the particle swarm optimizer,

three relevant variations of the original PSO, namely binary PSO, mutating PSO and

cooperative split PSO, are now discussed. These modifications are discussed due their

direct use in the work presented in this thesis.

Binary PSO

While the basic PSO has been designed to work with real-valued, continuous domains,

problems such as the n-queens require optimization of discrete-valued variables. The

binary PSO (B-PSO), introduced by Kennedy and Eberhart [63] in 1997, has been de-

veloped to allow optimization over binary search spaces. The B-PSO may also be applied

to real-valued optimization problems after their domain has been converted to a binary-

valued domain.

An outline of the B-PSO is provided in Algorithm 3.3. In the binary version of the

PSO, values for the position vectors are restricted to the set {0, 1}; that is, xi,yi, ŷi ∈ B
m.

However, no restriction exists on the velocity values. Consequently, the velocity update

used for the B-PSO remains identical to the S-PSO. The velocity in the B-PSO is used to

determine the probability of flipping a bit. Transformation of the S-PSO into a B-PSO

lies in a probabilistic position update equation, given by

xi,j(t + 1) =

{
0 if r3,j(t) ≥ sig(vi,j(t))

1 if r3,j(t) < sig(vi,j(t))
(3.12)

where r3,j(t) ∼ U(0, 1) and sig(vi,j(t)), is the sigmoid function,

sig(vi,j(t)) =
1

1 + e−vi,j (t)
(3.13)

Since velocity is interpreted as a probability, and vi ∈ R
m, the sigmoid function

is used to scale velocities to the range [0,1]. Due to asymptotic characteristics of the

sigmoid function, and to ensure that probabilities do not converge too quickly towards

0 or 1, velocities are usually clamped within the range [-4,+4] [35]. Performance-wise,

Kennedy and Spears [66] observed that the B-PSO was able to find solutions to problems

of high dimensionality and outperformed GAs in terms of speed.

Chapter 3. Computational Intelligence Paradigms 48

Create a swarm Φ of size s

Initialize the position vectors of all particles, xi(0) ∼ U(xmin,xmax)

yi(0) ← xi(0), ∀i ∈ {1, . . . , s}

vi(0) ← 0, ∀i ∈ {1, . . . , s}

t ← 0

repeat:

for all particles i ∈ {1, . . . , s} do:

if f(xi(t)) < f(yi(t)) then

yi(t) ← xi(t)

end if

if f(yi(t)) < f(ŷi(t)) then

ŷi(t) ← yi(t)

end if

Update velocity vi according to Equation (3.4)

Update position xi according to Equation (3.12)

end for

t ← t + 1

until stopping condition is true

Algorithm 3.3: The binary PSO algorithm

Mutating PSO

Premature convergence is a tendency that seems to be recurrent for the basic PSO [50,

96, 103]. However, this tendency is largely problem-dependent as highly multimodal

functions such as the complex Schwefel function falsely attract particles to local optima.

Early particle convergence and stagnation are a direct consequence of a lack of di-

versity [40, 120]. Mutation mechanisms, as utilized by evolutionary programming (EP),

have successfully been applied to PSO [74, 96, 122] to maintain diversity throughout the

optimization process. When applied to either the velocity or position vectors of parti-

cles, mutation enhances the exploration capability of the PSO. During the execution of

a typical mutating PSO, a high mutation probability is used at the beginning, which is

then steadily decreased as the number of iterations increases. The rationale behind the

Chapter 3. Computational Intelligence Paradigms 49

gradual decrease in the mutation probability is to promote diversity during the initial

steps of the search for greater exploration and later to improve exploitation of superior

solutions.

Create a swarm Φ of size s

Initialize the position vectors of all particles, xi(0) ∼ U(0, 1)

yi(0) ← xi(0), ∀i ∈ {1, . . . , s}

vi(0) ← 0, ∀i ∈ {1, . . . , s}

t ← 0

repeat:

for all particles i ∈ {1, . . . , s} do:

if f(xi(t)) < f(yi(t)) then

yi(t) ← xi(t)

end if

if f(yi(t)) < f(ŷi(t)) then

ŷi(t) ← yi(t)

end if

Update velocity vi according to Equation (3.4)

Update position xi according to Equation (3.2)

for all dimensions j ∈ Ω do:

if U(0, 1) < Pm(t) then

Mutate position xi,j according to Equation (3.14)

end if

end for

end for

t ← t + 1

Decrease Pm(t)

until stopping condition is true

Algorithm 3.4: The mutating PSO algorithm

The application of Gaussian mutation predominantly aims at adjusting position vec-

tors after the completion of both velocity and position update equations. Position vectors

Chapter 3. Computational Intelligence Paradigms 50

are then perturbed by adding a random value sampled from a Gaussian distribution of

zero-mean to each component of the particle position vectors. Higashi and Iba [50] mu-

tate all j components of particle position vectors, xi(t + 1), to obtain a new position,

x
′

i(t+1). Mutation occurs at a predefined probability, Pm(t), which is linearly decreased

over time (usually from 0.9 down to 0.1). Each component, xi,j(t + 1), is mutated using

x
′

i,j(t + 1) = xi,j(t + 1) + N(0, σ)xi,j(t + 1) (3.14)

where the standard deviation, σ, is defined as one tenth of the length of the search

space [50], i.e.

σ = 0.1(xmax − xmin) (3.15)

Unlike the use of a static σ by Higashi and Iba, σ can also dynamically decrease.

Experiments conducted by Higashi and Iba [50] revealed that the PSO combined with

Gaussian mutation was always able to outperform the standard PSO when minimizing

typical test functions, all characterized by either unimodality or multimodality. The

pseudocode for the mutating PSO is outlined in Algorithm 3.4.

Cooperative Split PSO

Based on Potter’s CCGA, Van den Bergh and Engelbrecht [116, 117] introduced the

cooperative split PSO algorithm (CPSO-SK). The prime motivation for using a coop-

erative PSO was to improve the performance of PSO in optimizing high dimensional

functions. The CPSO-SK algorithm functions in a similar fashion to Potter’s CCGA

(refer to Section 3.3.3). The crucial difference resides in its participant algorithm, with

the particles representing parts of the solution as opposed to genes.

The CPSO-SK has K (referred to as the split factor) independent sub-swarms, Sk,

which encompass all the split particles and are each responsible for optimizing one part

of the divided particle vector. The construction of a solution is achieved by recreating

the original full-sized particles from all sub-swarms. Several approaches can be used to

calculate K. The approach called perfect split splits the problem into parts of equal

dimension to be assigned to each participant. Using integer values, excluding 1, the

smallest divisibility factor of the total number of dimensions that is returned is used as

K.

Chapter 3. Computational Intelligence Paradigms 51

The CPSO-SK offers the advantage that a finer-grained search is performed. As

a result, the CPSO-SK can be perceived as ‘virtual parallel PSOs’ and as a powerful

local search mechanism. However, the CPSO-SK raises a problem in terms of swarm

credit assignment. Each sub-swarm needs to be assigned credit for the quality of its

participation in the overall solution. The danger is that the algorithm could spend too

much time optimizing variables that have little effect on the overall solution.

Create and initialize K (m/K)-dimensional swarms

Initialize the position vectors of all particles, Sk.xi(0) ∼ U(xmin,xmax)

Sk.yi(0) ← Sk.xi(0), ∀i ∈ {1, . . . , Sk.s}, ∀k ∈ {1, . . . , K}

Sk.vi(0) ← 0, ∀i ∈ {1, . . . , Sk.s}, ∀k ∈ {1, . . . , K}

t ← 0

repeat:

for each sub-swarm Sk, k = 1, . . . , K do:

for all particles i ∈ {1, . . . , Sk.s} do:

if f(b(k, Sk.xi(t)) < f(b(k, Sk.yi(t)) then

Sk.yi(t) ← Sk.xi(t)

end if

if f(b(k, Sk.yi(t)) < f(b(k, Sk.ŷi(t)) then

Sk.ŷi(t) ← Sk.yi(t)

end if

Update velocity Sk.vi according to Equation (3.4)

Update position Sk.xi according to Equation (3.2)

end for

end for

until stopping condition is true

Algorithm 3.5: The cooperative split PSO algorithm

The algorithm for CPSO-SK is outlined in Algorithm 3.5. The context vector, b(k, z),

represents the necessary mechanism that provides the glue for the cooperative approach.

In effect, b(k, z) returns an m-dimensional vector which is formed by the concatenation

of the global best positions from all sub-swarms, but excluding the kth component which

Chapter 3. Computational Intelligence Paradigms 52

is replaced by z. The position vector of a particle from the Sk
th sub-swarm is denoted

by z. The context vector is thus defined as

b(k, z) = (S1.ŷ, . . . , Sk−1.ŷ, z, Sk+1.ŷ, . . . , SK .ŷ) (3.16)

3.5 Swarm Intelligence versus Evolutionary Compu-

tation

This section compares the characteristics of PSO (as introduced in Section 3.4) with

those of EAs (as seen in Section 3.3).

Population versus Swarm: A population of individuals merely implies that a ‘group’

of individuals exists. In the case of PSO, the term ‘swarm’ is used to refer to a

group of individuals. Individuals are referred to as particles. Particles are bound

together by social interactions. The fact that particles act as an ensemble strongly

differentiates PSO, since individuals in EC are independent and totally unaware

of the existence of their neighbours. Fundamentally, particles in a swarm explore

the search space exhibiting collective behaviour, while EC individuals do not.

Generation versus Iterations: EC and PSO both keep track of the algorithm progress.

In the case of EC, individuals can die and reproduce through generations. In PSO,

particles never die, they live throughout all iterations of the algorithm.

Memory: Since PSO relies on previously obtained best solutions, PSO algorithms need

memory to retain and compare positions. Unless elitism is used, EC does not make

use of memory because individuals explore the search space on their own without

knowing what other individuals, including themselves, have found.

Randomness factor: For both paradigms, movements are based on stochastic varia-

tion in current positions. The shared stochastic nature affects the search for a

solution in PSO and EC differently. In PSO, the r1 and r2 factors in the ve-

locity update equation (refer to equation (3.4)) act as the random components.

The stochastic element in PSO affects the direction to find a solution. In EC,

Chapter 3. Computational Intelligence Paradigms 53

the stochastic element affects its mutation and selection schemes (refer to Sec-

tion 3.3.2). Individuals in EC are randomly mutated in the hope of introducing

better solutions, which is not the case in PSO.

Conclusively, while both PSO and EC are population-based, stochastic optimization

algorithms, PSO does not fall under EC. The fact that PSO relies on collective, social

interaction to enable the optimization process is enough to acknowledge its identity as

a distinct member of SI.

3.6 Summary

This chapter dealt mainly with evolutionary computation (EC) and swarm intelligence

(SI) paradigms within computational intelligence (CI). Section 3.2 covered a short intro-

duction on optimization theory and NP-complete problems. Next, the genetic algorithm

(GA), a common representative of the EC paradigm, was overviewed in Section 3.3.

An outline of the GA pseudocode was given, followed by the exploration of various GA

evolutionary operators. The core of this chapter was provided in Section 3.4 where the

particle swarm optimization (PSO) was described. Several aspects of SI were examined,

including the PSO algorithm, topologies, parameters and three modifications (binary

PSO, mutating PSO and cooperative split PSO). Lastly, Section 3.5 debated upon the

identity of the PSO in a discussion opposing EC and SI paradigms in four different as-

pects. The material covered in this chapter marks the end of the background material

necessary to introduce the work established in this thesis.

Chapter 4

Particle Swarm Optimization for

Multiple Sequence Alignment

“You do not really understand something unless you can explain it to your

grandmother.”

- Albert Einstein

This short chapter describes the application of particle swarm optimization to the

multiple sequence alignment problem. More precisely, data representation schemes and

alignment evaluation mechanisms are described in detail.

4.1 Introduction

This chapter shows how the background given in the previous chapters is applied to the

MSA. The focus of the chapter is on how PSO can be applied to solve MSA problems.

Section 4.2 describes data representation schemes while Section 4.3 presents methods

for alignment evaluations. This chapter ends at Section 4.4 with a short summary.

4.2 Representation Schemes

In order to apply PSO to an MSA, it is necessary to define suitable representations. This

section presents two representation schemes that permit the application of PSO to an

54

Chapter 4. Particle Swarm Optimization for Multiple Sequence Alignment 55

MSA.

Throughout this study, all particles from the swarm held a well defined representation.

Each element of a particle represents the relative position where one gap is to be inserted.

Hence, gap positions are the variables that are optimized. The position index within

input sequences always starts at 0.

Each particle has a dimension of totalGaps, where

totalGaps = k(gapsAllowed) + gapF iller (4.1)

where gapsAllowed is a fixed parameter that is set to specifically determine, per sequence,

the maximum number of gaps that can be inserted. Chellapilla and Fogel [22] observed

that common alignment rarely contained a gaps/characters ratio of more than 20%. A

pre-processing step is necessary to adjust input sequences since they are commonly of

different lengths and valid alignments require that all aligned sequences are of the same

length (refer to Section 2.3.1). gapF iller represents the number of padding gaps that

are needed for each sequence to ensure that all sequences are of the same length.

The choice of this representation offers a dimensionality that is equal to the total

number of gaps to be inserted. This method has the primary advantage of being totally

independent of the number of sequences to align. If, for example, S1, S2 and S3 have 2,

3, 2 gaps to be inserted respectively, then the representation is given as:

x =

totalGaps︷ ︸︸ ︷
[x1, x2︸ ︷︷ ︸

S1

, x3, x4, x5︸ ︷︷ ︸
S2

, x6, x7︸ ︷︷ ︸
S3

]

where xi represents the ith component of the position vector x of a particle. The following

example illustrates how the position vector is used to convert an original sequence into

the corresponding aligned sequence. Let S1 =“ACTG” be the original sequence (n = 4)

with given gap positions {4, 0, 3}. Each gap position represents the index at which one

gap must be inserted within the original sequence. Positions are sorted to give {0, 3, 4}.

Gaps are then inserted accordingly in the original sequence (after padding as required),

as illustrated below:

1. Position at index 0, “ACTG” → “-ACTG”.

2. Position at index 3, “-ACTG” → “-ACT-G”.

Chapter 4. Particle Swarm Optimization for Multiple Sequence Alignment 56

3. Position at index 4, “-ACT-G” → “-ACT-G-” which becomes Ŝ1 with n̂ = 7.

This study investigates two different search spaces, namely integer-valued and bit-

valued search spaces.

4.2.1 Integer Search Space

The default search space used in this study is defined using integer-valued numbers. The

domain of each dimension of the search space is [0, longestLength], where longestLength

is the length of the longest sequence in the input set. The rationale of this choice of

range is that gaps are allowed to be inserted at any given position limited by the span

of the original – potentially padded – sequence.

It is possible for particles to move beyond the boundaries of the search space. All

negative values are clipped to 0. However, no boundary enforcement was applied for

values higher than longestLength because positions that are equal to or greater than

longestLength automatically append a gap at the end of a sequence, as explained in the

next paragraph.

Elements of particle position vectors are floating-point numbers. It is therefore nec-

essary to discretize particle positions, which is done by rounding off their real-valued

elements. When a gap is designated to be inserted at index position ≥ longestLength,

the gap is appended at the end of the sequence. Conversely, a gap at position 0 will be

inserted in the sequence as the first (leading) character.

4.2.2 Binary Search Space

As described in Section 3.4.4, the B-PSO requires a bit-valued search space. The bi-

nary representation is different from the integer-valued representation with regards to

the following points. In the B-PSO, the components of the position vector hold bits.

Therefore, the bit vector must be translated into integer-valued gap positions. Since

gap positions range within [0, longestLength], several bits are needed to represent in-

teger values within this range. As an example, if longestLength = 15, then 4 bits are

needed to code values ranging from 0 (0000) to 15 (1111). Thus, the number of bits

needed equals ⌈log2 longestLength⌉. Each group of 4 bits in the particle position vector

therefore represents one gap position.

Chapter 4. Particle Swarm Optimization for Multiple Sequence Alignment 57

This representation has the drawback of growing in dimensionality as the size of the

domain increases.

4.3 Fitness Evaluation

Prior to the evaluation of candidate alignments, columns containing only gaps are re-

moved (according to Definition 2.4). An objective function for MSA is a function that

maps an aligned set of sequences to a real number, which is designed to produce larger

values for better alignments. The objective is then to maximize the MSA objective

function, defined as

Fitness = ξ1(SymbolScore)− ξ2(GapScore)

where SymbolScore can be one of the methods previously described in Section 2.3.2, de-

veloped to reward character matches, namely the similarity or matches approaches. Ad-

ditionally, a PID weight, as specified in Section 2.3.3, can be applied to the SymbolScore

in an effort to eliminate potential bias caused by the relatedness of sequences. GapScore

is obtained by applying one of the two gap penalizing methods described in Section 2.3.3,

namely the aGP (affine gap penalty) and the lGP (linear gap penalty) approaches. Note

that the lGP can be forced either by setting a penalty of 0 for gaps when using the simi-

larity method or by setting a value of 0 for gext when using the aGP approach. A major

problem that emerges from the use of the aGP approach has to do with finding the best

values for its gap opening and extension penalty parameters. The best values for these

parameters remain largely problem-dependent. Also, two proportionality variables, ξ1

and ξ2, act as independent weights to allow for flexibility in terms of favouring the opti-

mization of either one of the two scores. The objective is to simultaneously maximize the

SymbolScore (i.e. the overall score for the number of matched symbols over all columns)

and to minimize the GapScore (i.e. the number of all gaps over all columns).

The presented fitness evaluation aggregates two conflicting objectives as one objec-

tive. However, a multiple objective optimization (MOO) algorithm [26] would optimize

each of the two conflicting objectives simultaneously to yield multiple non-dominating

solutions. Since an aggregation-based approach showed to be sufficient for the MSA

problem (refer to Chapter 2), an investigation into Pareto-based MOO methods is left

Chapter 4. Particle Swarm Optimization for Multiple Sequence Alignment 58

for future work (refer to Section 6.2).

To find the best biologically accurate objective function lies beyond the scope of this

research. In this work, an alignment that attained the best possible evaluation score is

considered to be optimal, whether it is biologically accurate or not. Recall that biological

accuracy means that biochemical properties between sequences are taken into account. In

general, the production of an optimal sequence alignment embodies a trade-off between

computational efficiency, biological accuracy and score optimality.

For any MSA problem, an optimal alignment (i.e. global optimum solution) always

exists. In addition to at least one global optimum, multiple local optima or sub-optimal

solutions that are all considered equally good can potentially be produced from the same

set of input sequences.

To complete the topic of fitness evaluation, it is worth noting that the order of the

input sequences poses no influence on the resulting alignment. Provided that the same

initial conditions are used, the alignment will always yield the same score and matches.

The reason for this insensitivity to order resides in the way alignments are scored. Since

the aligned sequences are evaluated in a pairwise fashion, two sequences at a time, the

pairwise scores will simply remain the same but might be added in a permutated order

which does not affect the results in a mathematical addition.

4.4 Summary

This chapter showed how PSO can be used to solve the MSA problem. Two represen-

tation schemes were given in Section 4.2, while Section 4.3 presented the corresponding

fitness functions. The next chapter discusses the experimental work.

Chapter 5

Empirical Analysis

“I have not failed. I’ve just found 10,000 ways that won’t work.”

- Thomas Alva Edison

The core of all experimental work conducted for this thesis is presented in this

chapter. Tests start with a comparatively small alignment (of low complexity) to test

the viability of PSO as a valid aligner. Further experiments increase the complexity of

the alignments, to identify strengths and pitfalls of PSOs occurring in larger alignments.

The analysis of results and solutions to potential weaknesses in alignment strategies are

investigated.

5.1 Introduction

Sets of experiments can now be conducted to determine the viability of using PSOs as

an efficient and robust approach for solving MSAs.

Thus far, the closest PSOs have come to solving MSAs is in Hsiao and Chuang [55],

where an unknown version of PSO was used to solve MSAs. Unfortunately, little detail

is provided on how this was done. Considering the lack of information, no comparison is

done between Hsiao and Chuang’s work and the empirical work enclosed in this thesis.

As already mentioned, the complexity of the MSA problem originates from the com-

bination of the following criteria:

59

Chapter 5. Empirical Analysis 60

1. The relatedness and nature of the sequences to be aligned.

2. The length and number of sequences to be aligned.

3. The choice of the objective function (OF).

Since this work has no prior reference in terms of PSOs solving MSAs, this research

started with zero knowledge. Considering the knowledge at hand on PSO and MSA,

empirical analysis has been applied in an effort to derive results in a cognitive fashion.

The experimental procedure starts with problems of low complexity and incrementally

increases the complexity as the experiments progress. To achieve complexity incre-

ments, the criteria enumerated above will be adjusted individually to obtain the desired

complexity. Each experimental step will represent the concretization of a ‘mini’ trial ex-

periment (upon success or failure of the alignment optimization), thereby also creating

a new starting point for the next experiment based on previous and current observa-

tions. Experiments in this work are then derived empirically from the step before and

will determine the step thereafter. Conclusions are subsequently drawn for every ex-

perimented objective. Also, potential PSO limitations and pitfalls are identified, along

with a discussion to understand and possibly overcome them. Lastly, PSO-generated

MSA solutions are systematically submitted for comparison (benchmarking) with other

third-party MSA programs.

Section 5.2 conducts the first set of experiments that intends to evaluate the influence

of individual S-PSO and B-PSO characteristics on a low complexity MSA data set. The

second part of experiments conducts a scalability analysis in Section 5.3, where high

complexity data sets and various kinds of PSOs are tested. Section 5.4 closes the chapter

by providing a short summary.

5.2 S8 Analysis

This section is dedicated to experimenting exclusively on S8. Section 5.2.1 gives details

on data set S8. Characteristics for both PSO and MSA are listed and motivated in

Section 5.2.2. Next, the experimental procedure is provided in Section 5.2.3. The first

set of experiments produced results from the similarity and matches methods using the S-

PSO (see Section 5.2.4). The B-PSO is applied in Section 5.2.5, also using the similarity

Chapter 5. Empirical Analysis 61

and matches methods. Concluding on S8 experiments, Section 5.2.6 provides a brief

summary and sheds light upon the future direction of experiments.

5.2.1 DNA Data Set S8

As priorly mentioned, the major aim of the preliminary experiments in this chapter is

to validate the application of PSO as a viable MSA solver. The first candidate data set

is the computationally low DNA set, S8, as displayed in Figure 5.1. Data set S8 has

no reference because it was not extracted from a biological source. S8 was artificially

generated for the purpose of this thesis. The legend above the sequences indicates the

frequency of matches for each character in the corresponding column. Characters are

scaled larger for more matches. The number at the end of each sequence represents the

index, which stops at the last character.

Table 5.1: Properties of DNA data set S8

ID Type k Lengthmean(min, max) Similarity %

S8 DNA 5 8 (7,10) 52.5 (medium)

Data set S8 contains 5 very short DNA sequences of varying lengths. S8 totals 48

characters and has a medium similarity of 52.5%.

Characteristics of S8 are summarized in Table 5.1. Note that properties of input

data sets are always summed up using the same table headings. These headings have

the following meaning:

ID – The name of the data set.

Type – The biological nature of the sequences, i.e. DNA.

k – The number of sequences in the set.

Lengthmean(min, max) – The computed mean length of the input sequences followed

by an interval stating minimal and maximal lengths within the set.

Similarity % – An indicator of the global similarity level among all input sequences.

The scale is as follows: (1) very low (< 25 %); (2) low (from 25% to 44%); (3)

Chapter 5. Empirical Analysis 62

medium (from 45% to 64%); (4) high (from 65% to 84%); and (5) very high (≥

85%).

Logo 1

2

T
A
A
T
A
G
C
G
T
A
T
A
C
C
G
T
AA
C
T
A
GT

1

2

S1 ATGCAAG 7
S2 TAAGTCAAGT 10
S3 ATGCAACT 8
S4 TAAGTCATA 9
S5 ATGGATTC 8

Figure 5.1: Visualization of DNA data set S8

With reference to the complexity criteria enumerated in Section 5.1, S8 exhibits a

low complexity alignment problem due to (1) its small number of sequences, (2) its short

sequence length and (3) a medium similarity percentage. Computationally, the objective

function has also been kept to a bare minimum by means of excluding sequence weighting

when calculating the SymbolScore.

5.2.2 Characteristic Selection

The experimental work presented in this study is based on the analysis of the influence

of selected characteristics for both PSOs and MSAs. All PSO aspects and parameters

discussed in Sections 3.4.2 and 3.4.3 are separately investigated. Two MSA characteris-

tics were investigated, namely the SymbolScore method and the two ξ weights. For this

purpose, a ‘reference configuration’ has been used to serve as a reference point against

which the effect of different characteristics are compared.

PSO Characteristics

Characteristics of the PSO reference configuration have been assigned default starting

values to be further optimized empirically:

• PSO algorithm: Standard PSO (S-PSO)

Chapter 5. Empirical Analysis 63

• Topologies: LBest topology (asynchronous, neighbourhood size = 3)

• Swarm size: 25

• Number of iterations: 1,000 (i.e. 25,000 objective function evaluations)

• Vmax: No clamping applied

• Velocity vector initialization: 0.0

• Inertia weight: Constant of 0.729844

• Cognitive coefficient c1: Constant of 1.496180

• Social coefficient c2: Constant of 1.496180

MSA Characteristics

The following default starting values were applied to MSA characteristics:

• Sequence weight: None

• ξ1 and ξ2: 1.0

• SymbolScore: Similarity with rewards and penalties in accordance with Section 2.3.2

where a match is rewarded +2, a mismatch penalty of 0 is used and a gap penalty

of -1 is used.

• GapScore: aGP with gop = +2 and gext = +1

• #gapsAllowed: 3, which amounts to 30% of the longest sequence length, which is

10.

5.2.3 Experimental Procedure

All algorithms, problems and measurements utilized throughout this research were per-

formed using the computational intelligence library (CIlib) [91]. CIlib represents a col-

lective project aimed at building a generic framework designed to accommodate the

development of CI algorithms. Written in the Java 1.5 programming language, CIlib

Chapter 5. Empirical Analysis 64

further allows CI simulations to be performed on various problems. This work made

use of CIlib version 0.6.5, which is freely available at http://cilib.sourceforge.net.

Refer to Appendix B for an example of a typical CIlib simulation file.

Experiments in this research took the form of running simulations of CI algorithms

that optimize several MSA problems. Each simulation was run, as a standard, 30 times to

ensure statistical soundness and meaningful results. Results obtained for each experiment

were as follows:

Best : the maximum score achieved during the course of 30 simulations.

Mean: the average score computed over 30 simulations.

Ci: the confidence interval calculated with α = 0.95 using the t-test (confidence of

95%).

All simulations are defined as a variation of the reference configuration. A variation

means that one or more characteristics found in the reference configuration is changed

while all other characteristics remain unchanged.

In the context of this work, the term ‘univariate’ means that results are obtained by

testing the influence of a single characteristic at a time. Univariate results come from

testing different values of a single characteristic while keeping all other characteristics

identical.

Lastly, this work uses the term ‘instable’ as a way to express the fact that results

obtained over all simulations exposed a large confidence interval, which means that

results vary extensively from each other. Instable results are consequently not reliable.

Conversely, the term ‘stable’ means that results obtained over all simulations were similar

and exposed a small confidence interval, which makes stable results reliable.

5.2.4 Experimental Results for S-PSO

This section presents the first results obtained from aligning S8 using S-PSO. The aim

was to change one variable at a time to observe exactly the influence of individual

characteristics. Two tables display the results. Both tables only differ by the method

employed to compute the SymbolScore term of the objective function. Table 5.2 displays

results for the similarity method, while Table 5.3 displays results for the matches method

http://cilib.sourceforge.net

Chapter 5. Empirical Analysis 65

with the #gapsAllowed parameter set to 3 and 8 (splitting both tables vertically). In an

effort to facilitate the browsing of results, all variations that outperformed the reference

configuration in terms of the Mean fitness were indicated in bold in the relevant rows

of all tables. Note that the arrow symbols ‘ր’ and ‘ց’ respectively mean linearly

increasing and decreasing over time. Also, these arrow symbols are associated with a

range of values which is indicated with square brackets separated by a comma, such as

‘[from, to]’. For space constraints, the terms ‘asynchronous’, ‘synchronous’ and ‘domain’

have been abbreviated ‘async’, ‘sync’ and ‘dom’, respectively.

With reference to Section 4.2, all the variations that deal with #gapsAllowed = 3,

the search space remains of a low complexity with 23 dimensions (i.e. maximum of 23

gaps to insert). As for variations dealing with #gapsAllowed = 8, the dimensionality

increases to 48 (roughly doubling the number of gaps that can be inserted) to observe the

effect of increasing the complexity. Care should be given when setting the #gapsAllowed

parameter because of the fact that the problem dimensionality is multiplied proportion-

ally to the number of sequences involved. For example, to add only 2 more gaps to a

current #gapsAllowed would result in 20 more dimensions to an MSA problem that

contains a set of 10 sequences. Refer to Section 4.2 for the mathematical relationship

between the number of gaps, dimensionality and the number of sequences.

SymbolScore with Similarity Method

Table 5.2 provides the results of all single characteristic variations (one on each row)

and the reference configuration (last row of the table). The following observations in

comparison with the reference configuration can be made:

• Topologies: The reference topology (LBest) was found to perform the best, espe-

cially when #gapsAllowed = 8, but not significantly for #gapsAllowed = 3. The

Von Neumann topology performed efficiently with 3 gaps allowed, considering that

it compared slightly worse but statistically no different than the LBest reference

topology. However, the Von Neumann topology showed a clear decline in perfor-

mance when dealing with 5 more gaps (#gapsAllowed = 8). The GBest topology

showed instability and remained statistically the worst performer, a fact confirmed

by its drastic performance decline observed when #gapsAllowed was set to 8.

Chapter 5. Empirical Analysis 66

Table 5.2: Performance table for S-PSO optimizing the S8 alignment based on the similarity

method with 3 and 8 gaps

#gapsAllowed = 3 #gapsAllowed = 8

V ariations Best Mean Ci[lo, hi] Best Mean Ci[lo, hi]

Von Neumann (async) 55.0 51.40 [49.82062,52.97938] 55.0 50.90 [49.17873,52.62128]

GBest (sync) 55.0 47.46667 [42.85819,52.07515] 55.0 35.36666 [25.90489,44.82844]

Swarm of 50 particles 55.0 54.70 [54.12129,55.27871] 55.0 54.0 [53.06590,54.93410]

Swarm of 10 particles 55.0 51.13334 [49.35731,52.90936] 55.0 35.76667 [27.61305,43.92028]

100 iterations 55.0 51.10 [49.75222,52.44778] 55.0 48.76667 [46.95736,50.57597]

2500 iterations 55.0 54.40 [53.59582,55.20418] 55.0 54.03333 [53.06557,55.00109]

Vmax clamped [± 4] 55.0 51.66667 [49.23130,54.10203] 55.0 36.70 [29.41082,43.98918]

Vmax clamped [± dom] 55.0 52.90 [51.32401,54.47599] 55.0 51.16667 [49.44357,52.88976]

Vmax ց [dom,+4] 55.0 54.50 [53.81564,55.18436] 55.0 51.26667 [49.37813,53.15521]

Vmax ց [+100,dom] 55.0 53.30 [52.06898,54.53101] 55.0 51.93333 [50.42506,53.44160]

vi(0) ∼ U(vmin,vmax) 55.0 55.0 [55.0,55.0] 55.0 55.0 [55.0, 55.0]

Large inertia=0.9 55.0 52.53333 [51.11630,53.95037] 55.0 51.40 [49.89552,52.90449]

Small inertia=0.3 55.0 42.46667 [38.76393,46.16941] 19.0 -17.80 [-24.40274,-11.19725]

ր inertia [0.3,0.9] 55.0 46.50 [43.21597,49.78403] 55.0 3.83333 [-4.17067,11.83733]

ց inertia [0.9,0.3] 55.0 51.56667 [50.02821,53.10512] 55.0 51.03333 [49.56953,52.49713]

Large cognitive=2.5 55.0 54.80 [54.41419,55.18580] 55.0 52.63334 [51.26311,54.00357]

Small cognitive=0.5 55.0 51.10 [49.57645,52.62355] 55.0 48.96667 [47.07688,50.85645]

ր cognitive [0.5,2.5] 55.0 52.83333 [51.47691,54.18976] 55.0 51.66667 [50.17436,53.15897]

ց cognitive [2.5,0.5] 55.0 53.43333 [52.23566,54.63101] 55.0 52.90 [51.68931,54.11070]

Large social=2.5 55.0 50.60 [49.01252,52.18748] 55.0 49.70 [48.21397,51.18603]

Small social=0.5 55.0 23.70 [21.31106,26.08894] 10.0 -25.56667 [-30.82288,-20.31046]

ր social [0.5,2.5] 55.0 48.83333 [46.69588,50.97079] 55.0 46.36666 [41.86642,50.86691]

ց social [2.5,0.5] 46.0 43.16667 [40.57023,45.76311] 46.0 34.70 [30.10973,39.29027]

reference configuration 55.0 53.80 [52.70409,54.89591] 55.0 54.16667 [53.39793,54.93541]

• Number of particles (swarm size): Small swarm sizes proved to be instable and

statistically highly inferior when dealing with the 5 gaps increase from 3 to 8 but

were nevertheless able to perform satisfactorily otherwise. The largest swarm was

always statistically superior to the smallest swarm but equal to the reference swarm

(25 particles). Even so, the reference swarm was outperformed based on the Mean

fitness by a swarm double the size when dealing with #gapsAllowed equal to 3

but gave a better Mean fitness when increased to 8.

• Number of iterations: The general trend suggests that results obtained with runs

of 100 iterations are the worst and always statistically inferior. The scores from

the reference number of iterations (1000) were statistically equal to the scores of

Chapter 5. Empirical Analysis 67

the 2500 iterations variation. However, the 2500 iterations variation showed the

best Mean fitness score when dealing with #gapsAllowed set to 3, but not for 8

where the reference configuration performed best.

• Vmax: Four different velocity clamping strategies have been investigated. Results

failed to create a definite pattern. Severe clamping restricted velocities with fixed

values as in the two first rows of velocity clamping variations, yielding good, sta-

tistically identical results for 3 gaps and 8 gaps except for clamping using Vmax ±

4, which significantly degraded for 8 gaps. For the dynamic clamping strategies,

the Mean fitnesses for 3 gaps outperformed the reference in the linear decreas-

ing from domain length to +4 strategy. The increase to 8 gaps resulted in lower

scores, where the reference clamping strategy (no clamping at all) performed better

overall.

• Velocity initialization: The random velocity initialization variation consistently

and statistically outperformed the reference variation. Furthermore, this variation

was shown to be extremely stable since all simulations converged on the average

(standard deviation of zero). In addition to always finding the best solution, this

variation also performed very fast. On average, 205 iterations were required to find

a solution.

• Inertia weight: For #gapsAllowed = 3, it appeared that small weights invariably

led to instable and statistically inferior results. When the #gapsAllowed was

increased to 8, it was clearly observed that starting with or keeping a low inertia

weight led to very poor performance. Large weights for 3 allowed gaps showed

performance statistically equal to the reference inertia weight (fixed at 0.729844).

Also, large weights were minimally affected by the increase in gaps. However, with

8 gaps allowed, the reference inertia weight achieved statistically the best results.

Note that linearly increasing or decreasing the weights over time did not show a

clear advantage over fixed weights.

• Cognitive coefficient c1: With #gapsAllowed = 3, all results were statistically equal

to the reference cognitive coefficient (fixed at 1.496180) except for one, where the

smallest coefficient of 0.5 was applied. The best Mean fitness, 54.8, was achieved

Chapter 5. Empirical Analysis 68

by the large coefficient variation. With 8 gaps allowed, small and high c1’s declined

slightly in performance and were all inferior to the Mean result of the reference c1.

Again, note that linearly increasing or decreasing the coefficient values over time

did not show a clear advantage over fixed weights.

• Social coefficient c2: Testing the four social variations highlighted the negative im-

pact of applying a small social coefficient value. Specifically with #gapsAllowed =

8, small values obtained the worst results, while larger values still produced good

results. Note that the fixed variation with c2 = 0.5 produced the worst results. The

reference value c2 = 1.496180 was consistently statistically better for both 3 and

8 gaps allowed, followed by the large fixed value variation with c2 = 2.5. Lastly,

linearly increasing or decreasing the social coefficient provided mixed results, con-

sidering that a low c2 resulted in a degradation in performance.

Interestingly, the only variation that produced better performance for an increase

in the number of gaps allowed is the reference configuration. Before proceeding to the

next set of experiments, it is important to gain an idea of what the best S8 alignment

found so far looks like. Figure 5.2 depicts the best S8 alignment found by optimizing

the objective function that used the similarity method to compute the SymbolScore.

Logo 1

2

TAA
TGTG

CAT
A
A
C
T
GC
T

1

2

S1 -ATG-CAAG- 7
S2 TAAGTCAAGT 10
S3 -ATG-CAACT 8
S4 TAAGTCATA- 9
S5 -ATG-GATTC 8
consensus !*! *!*

Figure 5.2: Best alignment of S8 optimized by the OF using the similarity method

In Figure 5.2 and all subsequent visualization figures, a consensus line at the bottom

is used to provide a quick impression of the quality of the depicted sequence alignment.

The consensus is determined column-wise, where a particular character has been assigned

Chapter 5. Empirical Analysis 69

to represent each column. These characters can either be an exclamation mark ‘!’, an

asterisk ‘*’ or a space ‘ ’ indicating a fully matched column, a highly matched column or

a slightly/not matched column respectively. This specific alignment achieved three fully

aligned columns as well as three highly aligned columns, and receiving a score of 55.0.

Lastly, the influence of the weights ξ1 and ξ2 in the objective function is discussed.

Comparisons between the reference configuration (ξ1, ξ2 = 1.0) and two variations were

conducted. The first variation applied a small value of ξ1 = 0.25 and a large value of

ξ2 = 0.75. Conversely, the second variation used ξ1 = 0.75 and ξ2 = 0.25. The criteria

for the comparison were based on the average number of matches and gaps found in

solutions over 30 simulations. Figure 5.3 offers a graphical summary of the analysis.

Figure 5.3: Graphical representation of the influence of weights ξ1 and ξ2 on S8 (similarity

method)

The results indicated that a large ξ1 and a small ξ2 effectively biased the search

process towards solutions that contained more matches, but using more gaps. The

reference configuration achieved the same number of matches and gaps than the variation

with a small ξ1 and a large ξ2. In summary, weights can bias the search towards more

matches/fewer gaps, but without a statistically significant difference.

Chapter 5. Empirical Analysis 70

SymbolScore with Matches Method

This new set of experiments differs from the previous set by the SymbolScore method

used, which, in this case, is the matches method. The same variations used in the

previous experiment were investigated for the matches method.

Table 5.3: Performance table for S-PSO optimizing the S8 alignment based on the matches

method with 3 and 8 gaps

#gapsAllowed = 3 #gapsAllowed = 8

V ariations Best Mean Ci[lo, hi] Best Mean Ci[lo, hi]

Von Neumann (async) 106.4 103.15331 [100.55110,105.75552] 108.0 103.83998 [101.62962,106.05034]

GBest (sync) 108.0 104.47998 [101.76031,107.19965] 108.0 89.82667 [83.16093,96.49241]

Swarm of 50 particles 108.0 106.57332 [106.40105,106.74559] 108.0 106.61331 [106.41848,106.80814]

Swarm of 10 particles 108.0 99.55332 [95.75585,103.35079] 108.0 80.61333 [73.55638,87.67027]

100 iterations 108.0 104.13998 [102.50021,105.77975] 106.4 98.02665 [95.26260,100.79069]

2500 iterations 108.0 106.7732 [106.53091,107.01573] 108.0 105.78665 [104.86827,106.70504]

Vmax clamped [± 4] 108.0 105.77999 [104.66376,106.89622] 108.0 94.75999 [89.90499,99.61500]

Vmax clamped [± dom] 108.0 106.00665 [104.80635,107.20694] 108.0 102.95999 [100.68066,105.23932]

Vmax ց [dom,+4] 108.0 106.10664 [105.09622,107.11707] 108.0 100.47332 [96.61441,104.33223]

Vmax ց [+100,dom] 108.0 106.33998 [105.58289,107.09707] 108.0 101.01331 [96.71873,105.30790]

vi(0) ∼ U(vmin,vmax) 106.4 106.39998 [106.39997,106.39999] 108.0 106.50664 [106.36367,106.64960]

Large inertia=0.9 108.0 106.6665 [106.45305,106.88024] 108.0 106.52664 [106.38042,106.67286]

Small inertia=0.3 108.0 93.89999 [89.14039,98.65959] 84.4 53.840 [48.47974,59.20026]

ր inertia [0.3,0.9] 108.0 100.860 [97.03580,104.68420] 101.0 65.94667 [59.93676,71.95658]

ց inertia [0.9,0.3] 106.4 105.73997 [104.46682,107.01313] 108.0 105.95332 [105.18801,106.71862]

Large cognitive=2.5 108.0 106.51998 [106.37598,106.66398] 108.0 105.76665 [104.73009,106.80320]

Small cognitive=0.5 106.4 102.83999 [100.60975,105.07023] 108.0 99.41335 [96.63349,102.19320]

ր cognitive [0.5,2.5] 108.0 105.51999 [103.99623,107.04375] 106.4 96.26667 [91.72136,100.81198]

ց cognitive [2.5,0.5] 108.0 106.45332 [106.35043,106.55620] 108.0 105.74665 [104.82066,106.67264]

Large social=2.5 106.4 105.97998 [105.16979,106.79017] 108.0 106.50665 [106.36368,106.64961]

Small social=0.5 108.0 80.78669 [75.54714,86.02624] 65.4 42.020 [37.46303,46.57696]

ր social [0.5,2.5] 108.0 97.95999 [93.96070,101.95928] 106.4 95.17334 [91.38480,98.96188]

ց social [2.5,0.5] 106.4 83.360 [78.68799,88.03201] 106.4 73.280 [66.05570,80.50429]

reference configuration 108.0 106.60664 [106.41046,106.80283] 108.0 102.68666 [99.69510,105.67822]

Table 5.3 provides the results of all single characteristic variations (one on each row)

and the reference configuration (last row of the table). The following observations in

comparison with the reference configuration can be made:

• Topologies: With only 3 gaps allowed, the GBest variation had a slightly better

Mean fitness than the Von Neumann one, although the GBest variation was more

instable. However, with 8 gaps allowed, the Von Neumann topology showed a

Chapter 5. Empirical Analysis 71

minimal drop in performance, whereas the GBest topology became statistically the

worst on account of a massive drop in performance. The reference topology (LBest)

achieved better Mean fitnesses than the Von Neumann and GBest topologies when

dealing with only 3 gaps, but showed a drop in performance by 4% in consequence

of the additional 5 gaps.

• Number of particles (swarm size): For #gapsAllowed = 3, doubling the size of

the swarm did not affect the performance in comparison to the 25 particles in

the reference configuration. The smaller swarm containing 10 particles scored

reasonably well, but was still largely statistically outperformed by all larger swarm

sizes. For #gapsAllowed = 8, 10 particles produced the worst score. The clear

trend here was that the more particles used, the better the scores (the 50 particles

variation was significantly better than the reference configuration).

• Number of iterations: A pattern emerged that 2500 iterations yielded better Mean

fitnesses than 100 and 1000 iterations, and proved to be proportionally less affected

by the increase in complexity when using 8 gaps. However, the 2500 iterations

variation was statistically equal to the reference configuration for both 3 and 8

gaps allowed.

• Vmax: In all cases, the four variations were statistically equal to the reference con-

figuration (using no velocity clamping), except for the ± 4 clamping variation with

8 gaps allowed. For #gapsAllowed = 8, performance deteriorated a little except

for the variation where Vmax was clamped on the domain, which was not significant.

With only 3 gaps, the performance of the reference configuration had the highest

Mean fitness but was nonetheless closely followed by the other variations.

• Velocity initialization: As suspected from previous experiments using the similarity

approach, the random initialization variation performed extremely well. Perform-

ing statistically better than the reference configuration with 8 gaps allowed, this

random variation demonstrated an increase in performance when increasing from

3 to 8 gaps.

• Inertia weight: The variation testing the fixed inertia weight of 0.9 obtained the

best overall Mean fitnesses. Also, the variation with ω = 0.9 and the variation with

Chapter 5. Empirical Analysis 72

the decreasing ω were both statistically superior to the reference configuration when

8 gaps are allowed. The small inertia variation achieved statistically the lowest

scores which were again worsened by an increase of gaps. Linearly increasing and

decreasing the weights logically produced a mixed performance, since the large

fixed ω obtained good results while the small fixed ω obtained the worst results.

However, the results showed that increasing the inertia weight from 0.3 to 0.9

yielded worse results than decreasing it from 0.9 to 0.3.

• Cognitive coefficient c1: The results showed that higher values generally performed

better than lower values. With #gapsAllowed = 3, all variations were statistically

identical to the reference configuration, except for c1 = 0.5 which produced inferior

results. All Mean fitnesses had minor losses of performance when the number of

gaps increased to 8. With 8 gaps allowed, the best Mean fitnesses were achieved

by variations keeping or starting with a value of 2.5. However, the reference con-

figuration using c1 = 1.496180 was only outperformed by the variation with c1 =

2.5 when #gapsAllowed = 8.

• Social coefficient c2: Small values confirmed the previous observations from the

similarity method in that performance significantly dropped when small social

coefficients were applied, producing, once again, statistically the worst results.

However, for c2 = 2.5, a good Mean fitness was obtained for both 3 and 8 gaps. The

variation using c2 = 2.5 also statistically outperformed the reference configuration

using c2 = 1.496180 with 8 gaps. All other variations were statistically inferior

to the reference configuration. Again, linearly decreasing and increasing values

provided mixed results.

Figure 5.4 visualizes the best S8 alignment found by the optimization of the OF that

used the matches method. The alignment achieved three fully aligned columns as well

as four highly aligned columns. A score of 108.0 was obtained. Lastly, to investigate

the influence of the weights ξ1 and ξ2 in the objective function, the same weights value

assignments as for the similarity method have been used.

Chapter 5. Empirical Analysis 73

Logo 1

2

TAA
TGTG

CAAC
T
GTA

C

1

2

S1 -ATG-CAAG-- 7
S2 TAAGTCAAGT- 10
S3 -ATG-CAACT- 8
S4 TAAGTCA--TA 9
S5 -ATG-GA-TTC 8
consensus !*! *!* *

Figure 5.4: Best alignment of S8 optimized by the OF using the matches method

Figure 5.5 offers a graphical summary of the analysis. The results indicated that

a small ξ1 and a large ξ2 effectively biased the search process towards solutions that

contained fewer gaps but also fewer matches. The reference configuration achieved the

same number of matches and gaps than the variation with a large ξ1 and a small ξ2. In

summary, weights can bias the search towards fewer gaps/more matches, but without a

statistically significant difference.

Figure 5.5: Graphical representation of the influence of weights ξ1 and ξ2 on S8 (matches

method)

Chapter 5. Empirical Analysis 74

Discussion

This section provides a summary of the findings for all experiments that have been

conducted to this point. Interestingly, the only similarity method variation that produced

a better score as the number of gaps increased from 3 to 8 was the reference configuration.

As for the matches method, many variations also produced a better score with more

gaps except for the reference configuration. In general, variations performed worse as

the number of gaps increased. All these facts indicated that some variations actually

performed better as the gaps increased (higher complexity) which is very encouraging for

further experiments on more complex MSAs. Furthermore, these facts mean that a S-

PSO configuration that is highly efficient when #gapsAllowed = 8 may not necessarily

be as efficient for #gapsAllowed = 3. However, while several variations emerged as

good candidates for solving larger MSAs, the general trend thus far suggested that the

S-PSO copes with MSAs exhibiting small dimensionality extremely well. Questions were

therefore raised, such as “To what extent can promising S-PSO variations solve larger

MSAs?” or “What if the S-SPO becomes inadequate and demonstrates poor performance

in larger MSAs?” These questions are addressed in Chapter 6.

The impact of the weights, ξ1 and ξ2, on both scoring methods was evaluated. It was

shown that there exists a relationship between the weights and the alignment solutions in

terms of matches and gaps. There exists a matches to gap ratio in each solution alignment

that can be biased towards either increasing the number of matches or decreasing the

number of gaps. The weight values that would yield the best matches to gap ratio need

to be set empirically and therefore remain largely problem-dependent. The need to find

the best weight values would not exist if an MSA problem was optimized by a multiple

objective optimization approach (refer to Section 6.2). In effect, the maximization of

matches and minimization of gaps would be optimized as two conflicting weightless

objectives and not as one aggregated objective.

Comparative Results

The results obtained by S-PSO are compared to that of CLUSTAL X (version 1.83)

and the GA-based T-COFFEE (version 4.99), described respectively in Sections 2.6.2

and 2.6.4. The output solutions from CLUSTAL X and T-COFFEE are illustrated

Chapter 5. Empirical Analysis 75

in Figures 5.6 and 5.7 respectively. CLUSTAL X was used locally and was run only

once due to the deterministic nature of its algorithm. T-COFFEE was run online

at http://www.igs.cnrs-mrs.fr/Tcoffee/tcoffee_cgi/index.cgi. T-COFFEE al-

ways returned the same result for repetitive runs. Therefore, no average and only one

result was taken.

Both CLUSTAL X and T-COFFEE use different scoring mechanisms, which also

differ from that used in S-PSO. It is therefore not possible to compare the performance

of these algorithms based on their scores. Instead, to allow fair comparison, the number

of matches (#Matches), gaps (#Gaps) and fully matched columns (#Full columns)

are used in Table 5.4. The table also provides top S-PSO scores computed with the

similarity (Sim score) and the matches (Match score) methods for reference purposes.

Table 5.4: Comparison between alignments of S8 produced by S-PSOs, T-COFFEE and

CLUSTAL X

MSA technique #Matches #Gaps #Full columns Sim score Match score

S-PSO – Similarity 48 8 3 55.0 106.4 (M conv)

S-PSO – Matches 52 13 3 38.0 (S conv) 108.0

T-COFFEE 43 13 2 24.0 80.4

CLUSTAL X 31 13 1 4.0 44.4

Logo 1

2

ATA
G
G
A
C
G
A
A
T
G
T
C
C
T
A
A
T
A
GT

1

2

S1 ATGCAAG---- 7
S2 -TAAGTCAAGT 10
S3 ATGCAACT--- 8
S4 -TAAGTCATA- 9
S5 ATGGATTC--- 8
consensus *!* ***

Figure 5.6: Visualization of aligned data set S8 by CLUSTAL X

Table 5.4 clearly emphasizes the dominance of both S-PSO methods. Both S-PSO

methods successfully balanced the two objectives of maximizing matches and minimizing

http://www.igs.cnrs-mrs.fr/Tcoffee/tcoffee_cgi/index.cgi

Chapter 5. Empirical Analysis 76

gaps. The similarity method, however, gave a larger priority to the minimization of

gaps, having achieved the lowest number of gaps, while the matches method gave a

larger priority to the maximization of matches, having achieved the highest number of

matches.

Logo 1

2

TAAG
T
T
G
G
CAT

A
C
T
G
A
TC

1

2

S1 --ATGCAAG-- 7
S2 TAAGTCAAGT- 10
S3 --ATGCAACT- 8
S4 TAAGTCAT-A- 9
S5 --ATGGA-TTC 8
consensus !***!* *

Figure 5.7: Visualization of aligned data set S8 by T-COFFEE

T-COFFEE ranked third due to having the worst number of gaps and only a satis-

factory number of matches. Two fully matched columns were achieved by T-COFFEE

while both S-PSOs obtained three fully matched columns. CLUSTAL X, ranking fourth,

only achieved one fully matched column on account of its poor number of matches and

despite having the lowest number of gaps.

It is worth noticing that a top similarity score of 55.0 was equivalent to a score of

106.4 when measured with the matches method (‘M conv’ in Table 5.4). However, the

opposite could not be verified: the top matches score of 108.0 only obtained an equivalent

similarity score of 38 (‘S conv’ in Table 5.4). This low score accentuated the fact that the

matches method primarily focused on achieving more matches rather than fewer gaps.

No clear winner between the S-PSO methods was declared, because their respective top

solutions were both considered to be optimal.

Progression of S8 Alignment

It is instructive to follow a step-by-step alignment optimization process. Figures 5.8 to

5.14 show, in increments of 50 iterations, the progression of a S8 alignment using the

random velocity initialization variation and the similarity method (#gapsAllowed = 8).

Chapter 5. Empirical Analysis 77

Logo 1

2

TA
TAT

A
G
T
T
G
C
GTA

C
A
C
T
A
T
A
C
G
T

A
T
A
C
A
GT

1

2

S1 ---A-TG-C-AAG---- 7
S2 -TAAG--T-C---AAGT 10
S3 -A-T-GC-A-A-CT--- 8
S4 T-AA-G-T-C-AT--A- 9
S5 --A-TGG--ATT--C-- 8
consensus ** *

Figure 5.8: Alignment of S8 (best similarity variation) – first iteration

⇓

Logo 1

2

TT
A
T
A
A
G
T
C
T
G
G
T
C
C
A
T
A
C
G
T
ATC

GT

1

2

S1 -ATGC-AAG--- 7
S2 -TAAGTCAA-GT 10
S3 --ATGCAACT-- 8
S4 TAAGTCATA--- 9
S5 --ATGGA-TTC- 8
consensus * * **

Figure 5.9: Alignment of S8 (best similarity variation) – 50th iteration

⇓

Logo 1

2

T
A
A
T
A
G
C
G
T
A
A
C
T

T
A
C
A
C
G
TAGT

1

2

S1 ATGCA-AG--- 7
S2 TAAGT-CAAGT 10
S3 ATGCAACT--- 8
S4 TAAGTCATA-- 9
S5 ATGGATTC--- 8
consensus *****

Figure 5.10: Alignment of S8 (best similarity variation) – 100th iteration

Observe how the initial gaps are randomly scattered and then progressively removed

or moved to positions that developed into an improved alignment. Figure 5.15 depicts

a graphical summary of the S8 alignment progression that clearly contrasts between the

maximization of matches and the minimization of gaps throughout the S-PSO iterations.

Chapter 5. Empirical Analysis 78

⇓

Logo 1

2

TAT
A
T
G
G
C
T
G
A
CAC

A
T
A
T
GTC

1

2

S1 -ATGCA-AG-- 7
S2 TAAGTCAAGT- 10
S3 -ATGCAACT-- 8
S4 TAAGTCATA-- 9
S5 --ATGGAT-TC 8
consensus *** *

Figure 5.11: Alignment of S8 (best similarity variation) – 150th iteration

⇓

Logo 1

2

TAT
AT
G
C
G
T
A
G
CAA

T
A
T
G
T
CT

1

2

S1 -ATGCAA-G-- 7
S2 TAAGTCAAGT- 10
S3 -A-TGCAA-CT 8
S4 TAAGTCATA-- 9
S5 --ATGGATTC- 8
consensus *** *!

Figure 5.12: Alignment of S8 (best similarity variation) – 200th iteration

⇓

Logo 1

2

TAAG
T
T
G
G
CAT

A
A
C
T
GC
T

1

2

S1 --ATGCAAG- 7
S2 TAAGTCAAGT 10
S3 --ATGCAACT 8
S4 TAAGTCATA- 9
S5 --ATGGATTC 8
consensus !***!*

Figure 5.13: Alignment of S8 (best similarity variation) – 250th iteration

⇓

Logo 1

2

TAA
TGTG

CAT
A
A
C
T
GC
T

1

2

S1 -ATG-CAAG- 7
S2 TAAGTCAAGT 10
S3 -ATG-CAACT 8
S4 TAAGTCATA- 9
S5 -ATG-GATTC 8
consensus !*! *!*

Figure 5.14: Final alignment of S8 with similarity method (55.0) – last iteration (272th)

Chapter 5. Empirical Analysis 79

Figure 5.15: Progression in sub-objectives for S8

5.2.5 Experimental Results for B-PSO

This section applies the binary PSO (B-PSO), as detailed at Section 3.4.4, to solve the

MSA problem. To the knowledge of the author, this is the first application of B-PSO to

solve MSAs.

For the purpose of this section, the reference configuration as for the S-PSO has been

used. Additionally, velocities were clamped on the range [−4, +4].

The univariate results consisted in testing single PSO characteristics. Univariate re-

sults consisted in testing the following PSO characteristic variations: different topologies,

different swarm sizes, and different velocity initialization schemes. Additionally, a newly

introduced configuration called ‘explorer’ is compared.

The explorer configuration has the following characteristics:

• number of iterations is 2000;

• a Von Neumann topology;

• a linearly increasing Vmax ranging from 0.001 to 4.0;

• a linearly increasing inertia weight ranging from 0.001 to 0.7; and

• c1 and c2 set to linearly increase from 0.5 to 2.0

Table 5.5 displays results for the similarity method while Table 5.6 displays results

for the matches method with the #gapsAllowed parameter set to 3 and 8. All variations

Chapter 5. Empirical Analysis 80

that outperformed the reference configuration in terms of the Mean fitness are indicated

in bold. Results are now discussed.

SymbolScore with Similarity

Table 5.5 provides results of all single characteristic variations (one on each row) and

the reference configuration (last row of the table).

Table 5.5: Results for B-PSO optimizing the S8 alignment based on the similarity method

with 3 and 8 gaps

#gapsAllowed = 3 #gapsAllowed = 8

V ariations Best Mean Ci[lo, hi] Best Mean Ci[lo, hi]

Von Neumann (async) 35.0 27.60 [26.59276,28.60725] 29.0 17.93333 [16.43645,19.43022]

GBest (sync) 40.0 27.66667 [26.22688,29.10646] 30.0 16.56667 [15.06764,18.06569]

Swarm of 50 particles 38.0 27.40 [26.37591,28.42409] 27.0 17.90 [16.75466,19.04534]

vi(0) ∼ U(vmin,vmax) 37.0 26.93333 [25.80840,28.05826] 23.0 17.56667 [16.41265,18.72069]

Explorer 37.0 29.53333 [28.44788,30.61879] 28.0 20.46667 [19.10191,21.83142]

reference configuration 35.0 27.06667 [26.11025,28.02309] 27.0 17.73333 [16.46541,19.00126]

The following observations in comparison with the reference configuration can be

made:

• Topologies: All three topologies were statistically identical with both 3 and 8 gaps

allowed. The GBest topology variation obtained the best Mean and Best fitnesses

with #gapsAllowed = 3. Also, the Von Neumann topology variation achieved

better Mean fitnesses than the reference topology (LBest) with both 3 and 8 gaps

allowed. All tested topologies experienced a large drop in performance when the

number of gaps increased from 3 to 8.

• Number of particles (swarm size): Doubling the size of the reference swarm from 25

particles to 50 particles resulted in an increase in the Mean performance, although

not a significant one. The gain in performance was too small compared to the

expense of a longer execution time. Furthermore, the confidence intervals indicated

that both swarm sizes had statistically equal performance.

• Velocity initialization: The high level of performance of the random velocity ini-

tialization observed in S-PSO was not observed with the B-PSO. This is explained

Chapter 5. Empirical Analysis 81

by the fact that random large velocities increased the probability of switching bits,

which made the B-PSO search erratic. In fact, this variation had the worst Mean

fitnesses overall. Also, all scores from this variation were approximately equal to

the reference velocity initialization, where initial velocities were set to zero.

• Explorer configuration: The explorer configuration yielded a statistically superior

performance than the reference configuration. Also, it can be noted that this con-

figuration achieved the highest Mean fitnesses of all variations. Linearly increasing

values of Vmax, ω, c1 and c2 resulted in a clear advantage over fixed values (ref-

erence configuration). The superiority of this configuration can be attributed to

its initial small Vmax and inertia weight, which increased the exploration ability.

A larger number of iterations also allowed the B-PSO to optimize solutions more

efficiently.

Figure 5.16 visualizes the best S8 alignment produced by the similarity method.

Logo 1

2

TAA
TGC

G
T
A
CAA

C
T
G
A
T
C
G
T

1

2

S1 -ATG-CA-AG 7
S2 TAAGTCAAGT 10
S3 -ATGCAACT- 8
S4 TAAGTCATA- 9
S5 -ATGG-ATTC 8
consensus !*! *!

Figure 5.16: Visualization of the best S8 alignment for the similarity method

This alignment exhibited three fully matched columns as well as two highly aligned

columns. A score of 40.0 (equivalent to a matches score of 92.4) was obtained. This

score was the Best fitness from the GBest topology variation.

SymbolScore with Matches

This new set of experiments differed from the previous set by the SymbolScore method

used, which, in this case, is the matches method. The same variations as used in the

Chapter 5. Empirical Analysis 82

previous experiment were investigated for the matches method. Table 5.6 provides results

of all single characteristic variations (one on each row) and the reference configuration

(last row of the table).

Table 5.6: Results for B-PSO optimizing the S8 alignment based on the matches method with

3 and 8 gaps

#gapsAllowed = 3 #gapsAllowed = 8

V ariations Best Mean Ci[lo, hi] Best Mean Ci[lo, hi]

Von Neumann (async) 81.20 66.55333 [64.49950,68.60715] 75.0 58.67332 [56.23402,61.11263]

GBest (sync) 77.0 65.53334 [63.67043,67.39625] 64.40 55.44667 [53.71401,57.17933]

Swarm of 50 particles 82.80 66.54668 [64.59789,68.49546] 72.40 58.32666 [56.34916,60.30416]

vi(0) ∼ U(vmin,vmax) 77.80 65.13999 [63.25700,67.02298] 93.60 59.62667 [56.72687,62.52646]

Explorer 83.60 68.52666 [66.63566,70.41765] 80.80 61.11333 [58.99666,63.23001]

reference configuration 82.80 65.66667 [63.66186,67.67149] 75.20 57.77333 [55.15395,60.39271]

The following observations in comparison with the reference configuration can be

made:

• Topologies: The Von Neumann topology variation again proved to be stable and

efficient with its high Mean fitnesses. Analogous to the observations made with

the similarity method, all topology variations had statistically equal performance.

Also, the drop in performance was persistent across all topologies when the increase

of 5 gaps was applied.

• Number of particles (swarm size): The results from this variation confirmed the

observations made for the similarity method. Doubling the reference swarm size

produced slightly higher Mean fitnesses, but they remained nonetheless statisti-

cally equal to the reference configuration. Again, the increase in performance was

minimal compared to the computational expense of executing a larger swarm.

• Velocity initialization: As seen with the similarity method, the random velocity

initialization had the effect of slightly degrading performance. The only case where

the reference velocity initialization was worse based on the Mean fitness occurred

when #gapsAllowed increased to 8. Both velocity initialization schemes achieved

statistically equal results.

Chapter 5. Empirical Analysis 83

• Explorer configuration: The results show that the explorer configuration had higher

Mean fitnesses compared to the reference configuration and all other variations.

However, there was no statistically significant difference in performance between

the reference configuration and the explorer configuration for #gapsallowed = 3

and 8.

Figure 5.17 depicts the best alignment obtained by the B-PSO for the matches

method. This alignment exhibited three fully matched columns, as well as two highly

aligned columns. A score of 93.6 (equivalent to a similarity score of 53.0) was obtained.

This score was the Best fitness from the random initialization topology variation.

Logo 1

2

TAA
TGC

T
A
G
CAA

T
A
C
T
GC
T

1

2

S1 -ATGCAA-G- 7
S2 TAAGTCAAGT 10
S3 -ATG-CAACT 8
S4 TAAGTCATA- 9
S5 -ATG-GATTC 8
consensus !*! *!

Figure 5.17: Visualization of the best S8 alignment for the matches method

Discussion

This section compares B-PSO scores with that of S-PSO, T-COFFEE and CLUSTAL

X scores. The best similarity score achieved by the B-PSO was 40.0 (see Best column

in Table 5.5), which is significantly better than the scores of T-COFFEE (24.0) and

CLUSTAL X (4.0). However, the B-PSO score was below the similarity result of S-PSO

(55.0). The best matches score from the B-PSO was 93.6 (see Best column in Table 5.6),

which is significantly better than the scores of T-COFFEE (80.4) and CLUSTAL X

(44.4). Also, the S-PSO remained better, with a matches score of 108.0.

The worse performance of B-PSO in comparison with S-PSO can be attributed to the

increased dimensionality of solutions for the B-PSO. With reference to Section 4.2.2, data

Chapter 5. Empirical Analysis 84

set S8 has a maximal unaligned length of ten, requiring 4 bits. For #gapsAllowed = 3,

m = 23 (total of 23 gaps that can be inserted). Therefore the dimension of each particle

for the B-PSO is 4m = 92 compared to 23 for the S-PSO. Similarly for #gapsAllowed =

8, m = 48 resulted in particle dimensions of 192. The increase in dimension for 8 gaps

allowed compared to 3 gaps allowed also explains the significant drop in performance for

more gaps. This dimensionality problem becomes more severe for longer sequences. It

is for this reason that the B-PSO is not further investigated in subsequent experiments.

5.2.6 Conclusion

This section concludes on all experiments conducted on data set S8. Conclusions are

drawn and pointers for further experimentation are established. The goal of the experi-

ments on S8 was to test the S-PSO extensively to evaluate its viability to solve MSAs.

A comprehensive selection of characteristics was used to determine the effectiveness of

the S-PSO. The B-PSO was also tested but was discarded on account of its recurring

bad performance.

The main outcome of this section was the identification of the best configuration for

each scoring method:

• For the similarity scoring method, the best configuration used a LBest topology

using asynchronous iterations with 3 neighbours; a swarm containing 25 particles;

1000 iterations for a complete run; no restriction on Vmax; a random velocity ini-

tialization; an inertia weight kept constant at 0.729844; and c1 = c2 = 1.496180

throughout.

• For the matches scoring method, the best configuration used a LBest topology using

asynchronous iterations with 6 neighbours; a swarm containing 50 particles; 1000

iterations for a complete run; no restriction on Vmax; a zero velocity initialization;

an inertia weight kept constant at 0.729844; and c1 = c2 = 1.496180 throughout.

These configurations will be used as the reference configurations in the next section

where more sequences of differing complexity are used.

Chapter 5. Empirical Analysis 85

5.3 Scalability Analysis

The previous section explored the ability of S-PSO to align multiple sequences. This

section extends the empirical analysis to more complex MSAs. Additionally, the section

also presents a comparative analysis of the performance of different PSO algorithms.

This section is organized as follows. Section 5.3.1 describes the MSA data sets used.

Configurations of the three newly participating PSO algorithms are given in Section 5.3.2.

The experimental procedure is described in Section 5.3.3. Experimental results are

presented and discussed in Section 5.3.4. Before the conclusion, a comparison between

solutions from commonly used MSA programs and top PSOs is given in Section 5.3.5.

5.3.1 MSA Data Sets

As discussed in Section 5.1, the difficulty of an MSA problem is influenced by the fol-

lowing factors:

1. The relatedness and nature of the sequences to be aligned.

2. The length and number of sequences to be aligned.

3. The choice of the OF.

Based on these factors, a suite of MSA problems of varying complexity is defined in

Table 5.7.

Table 5.7: Properties of the seven new data sets (S1 through S7)

ID Type Name k Lengthmean(min, max) Similarity % #gaps m

S1 DNA Hepatitis C virus 10 212 (211, 212) 92.2 (very high) 3 31

S2 DNA CGM13 gene 5 1,780 (1,775, 1,782) 63.0 (medium) 132 668

S3 DNA Histone H3 21 122 (122, 122) 95.6 (very high) 1 21

S4 DNA Partial HIV 8 1,437 (1,356, 1,485) 44.4 (low) 165 1,701

S5 DNA Partial HIV 8 1,680 (1,680, 1,680) 95.4 (very high) 15 120

S6 mRNA Pithecia 6 1,456 (1,430, 1,463) 77.7 (high) 65 427

S7 rRNA 16S Microcystis 8 457 (457, 457) 99.3 (very high) 1 8

These MSA problems are used in the rest of this chapter to further investigate the

behaviour of PSOs solving more difficult MSAs. Criteria for the selection of the seven

Chapter 5. Empirical Analysis 86

data sets are divided into four distinct factors. Indeed, the new data sets differ with

respect to their (1) number of sequences within the set in column four of Table 5.7, (2)

sequence lengths in column five, (3) global similarity among the sequences in the set in

column six, and (4) number of gaps allowed for alignment in column seven. The last

column lists the calculated problem dimensionality for each set (refer to Section 4.2 for

full details on how this is calculated). Complementary details such as accession IDs and

data set sources are listed in Appendix A.

The four aforementioned factors have been chosen carefully to provide a diverse range

of problems. The minimum average length was 122, for S3, while the maximum length

was 1780, for S2. With regards to percentage similarity, the sets exhibited low, medium,

high and very high similarities. Sets also varied with respect to the number of sequences

contained. The smallest set contained 5 sequences for S2 while the largest set contained

21 sequences for S3. The number of gaps allowed also varied, but did not contribute as

a true independent factor because it was derived from two other factors, as explained

next.

The method of allocating the number of gaps allowed for the alignment process

resulted from observations from the experiments on the S8 sequences. From these ex-

periments it was observed that the S-PSO loses its accuracy when dealing with more

gaps. In order to reduce the number of gaps allowed, a relation between number of gaps

and sequence similarity is considered. For sequences with a low percentage similarity,

more gaps would be required to produce an acceptable alignment. Conversely, in the

case where the global similarity of the set is high, fewer gaps would be required. As

already mentioned, Chellapilla and Fogel [22] proposed that the maximum number of

gaps should be equal to 20% of the longest sequence length in the set of sequences. This

is based on the observation that valid alignment rarely contained a gaps/characters ratio

of more than 20%. Therefore, an initial rather large number of gaps that may eventu-

ally decrease over time makes sense to begin aligning with. Alternative approaches to

calculate the number of gaps allowed include:

• Using the number of gaps published in literature. This approach is not used because

one of the objectives of this work is to compare PSO results against two MSA

programs found in the research literature: CLUSTAL X and T-COFFEE.

Chapter 5. Empirical Analysis 87

• Randomly selecting the number of gaps allowed. This is not used for two reasons

(observed from preliminary trial tests): The probability of getting an optimal

number of gaps allowed is too small to ensure (1) an accurate resulting alignment

and (2) no unnecessary extra computational cost.

• Calculating the number of gaps as a function of similarity percentage and the

maximum sequence length found in the set. For the purpose of this study, this

thesis proposes

#gapsAllowed = ̟%
(
20% (max{|Sı|})

)
, ∀Sı ∈ T

where ̟ = 100−similarity percentage of the set.

The latter option provides a more accurate estimation of the initial number of gaps

allowed. Moreover, this option yielded a minimum acceptable threshold which resulted,

most of the time, in a considerable decrease in initial gaps (instead of a generic 20%). The

stochastic aspect of aligning sequences with PSO should be kept as minimal as possible,

which can be achieved if the third approach is used instead of the second approach. At

equal computational cost, the third approach has the advantage of being deterministic

while the second method is not (random).

5.3.2 PSO Algorithms and Configurations

This preliminary section serves to introduce the experimental results. This step provides

information concerning the key players in the next set of experiments. Three kinds of

PSOs were evaluated, namely the standard PSO (S-PSO), the mutating PSO (M-PSO),

and the cooperative split PSO (CPSO-SK).

Standard PSO Configuration

Characteristics for the S-PSO and MSA were kept identical throughout all tests in order

to maintain comparison consistency. The objective of this particular set of experiments

was to identify possible limitations encountered by the S-PSO when optimizing harder

MSAs.

Chapter 5. Empirical Analysis 88

Most importantly, the set of experiments conducted with the S-PSO made use of

the ‘optimized’ configurations of S-PSOs for the similarity and matches methods. On

the one hand, the reference S-PSO configuration associated with the optimization of the

similarity method OF was as follows: a LBest topology using asynchronous iterations

with 3 neighbours; a swarm containing 25 particles; 1000 iterations for a complete run; no

restriction on Vmax; a random velocity initialization; an inertia weight kept constant at

0.729844; and c1 = c2 = 1.496180 throughout. On the other hand, the reference S-PSO

configuration associated with the optimization of the matches method OF was as follows:

a LBest topology using asynchronous iterations with 6 neighbours; a swarm containing

50 particles; 1000 iterations for a complete run; no restriction on Vmax; a zero velocity

initialization; an inertia weight kept constant at 0.729844; and c1 = c2 = 1.496180

throughout.

Mutating PSO Configuration

The M-PSO was described in Section 3.4.4.

The main objective and motivation for these experiments are to test the increased di-

versity ability of the M-PSO [50] and to discover any potential gain in performance, such

as accuracy or speed. Results obtained with the M-PSO were systematically subjected

to direct comparison with S-PSO results to identify advantages and disadvantages.

Two M-PSOs, one used for the similarity method and another one used for the

matches method, used the reference configurations for S-PSO as an initial configuration.

The mutation rate (refer to Section 3.3.2 for details) was linearly decreased from 0.9 to

0.1 over time. Lastly, it is important to note that the M-PSO employed for this set of

experiments was modified from the original version. A newly mutated particle position

replaced the non-mutated position if and only if a better fitness was returned. This

conditional replacement has the advantage of discarding worse solutions while retaining

the better ones.

Cooperative Split PSO-SK Configuration

The CPSO-SK , which was described in Section 3.4.4, was identified as a valuable candi-

date algorithm to optimize high complexity MSAs.

Chapter 5. Empirical Analysis 89

To achieve the cooperative mechanism on MSAs, the problem dimensionality, m,

was perfectly split into an equal number of chunks (refer to Section 3.4.4 for details

on how this is calculated). Furthermore, sets exhibiting both high similarity and low

dimensionality were excluded from the CPSO-SK experiments (S1, S3 and S7) because S-

PSO already found the global optimum for S1, S3 and S7. Only harder sets were used to

investigate whether CPSO-SK can improve on S-PSO’s performance. Experiments were

thus conducted on the S2, S4, S5 and S6 data sets. Table 5.8 provides the respective split

factor, K, pertaining to the selected data sets. Also shown in Table 5.8 is the respective

number of gaps allowed per sub-swarm.

Table 5.8: Split factors calculated for the four selected data sets used in the CPSO-SK

experiments

ID m K #gapsAllowed per sub− swarm

S2 678 6 113

S4 1,701 9 189

S5 120 2 60

S6 427 7 61

Two CPSO-SKs, one for the similarity method and one for the matches method,

using the reference configurations for S-PSO as an initial configuration, were used.

5.3.3 Experimental Procedure

All subsequent experiments were conducted using the default set of MSA characteristics

as outlined in Section 5.2.2, with regard to both similarity and matches methods. PSO

characteristics and configurations are as defined in the previous subsections.

Tables 5.9 and 5.10 facilitate the comparison between the three PSOs used. The

‘PSO’ column indicates which optimizer was applied. Furthermore, numerical figures

that relate to the number of matches found (‘#Mat’), the number of gaps inserted

(‘#Gaps’) and the number of fully aligned columns (‘#FullC’) originated from the best

alignment solution out of 30 simulations. In all cases, the best alignment solution was

elected according to the highest score produced (‘Best’). The two columns remaining

– the ‘Mean’ and ‘Ci[lo, hi]’ – represent the typical statistical values computed over

Chapter 5. Empirical Analysis 90

30 simulation runs. The alignment method is specified with either an ‘S’ or ‘M’ letter,

which stand for similarity and matches method respectively.

Finally, note that no more alignment visualizations will be provided due to the large

size of alignments, although bar graphs will be presented for purposes of visual analysis.

5.3.4 Experimental Results

This section presents the results acquired by aligning the new data sets with the three

versions of PSO discussed earlier – the S-PSO, the M-PSO and the CPSO-SK . An

analysis of the results, which entails inter-PSO comparisons and alignment methods, is

also included. Note that observations and analyses will be provided one data set at a

time, from S1 to S7.

Before discussing the results, attention must be given to the comparison of MSA

scores. It is reasonable to compare solutions of ‘low difficulty’ MSAs using only the

number of fully aligned columns as an indicator, but this was not entirely satisfactory

for harder MSAs. Certainly, MSAs with a high percentage of similarity were more prone

to achieve fully aligned columns. However, lower similarity MSAs which achieved a

low number of fully aligned columns did not necessarily indicate that they were badly

aligned. They may have contained many matches, despite not having entirely matched

columns. For this reason, it is more sensible to look at the number of matches – a finer-

grained indicator of quality – when comparing more difficult MSAs. It is evident that all

three scores (number of matches, gaps and fully aligned columns) were needed in order

to evaluate and determine the worth of the alignment. Ultimately, all three indicators

needed to be evaluated to judge whether an MSA was better or worse. Nevertheless,

the emphasis shifted from the number of fully aligned columns indicator to the num-

ber of matches and gaps indicators when the evaluation changed from low difficulty to

medium/high difficulty MSAs.

Tables 5.9 and 5.10 summarize all the results obtained from aligning the seven ‘harder’

sets by the three PSOs, with the similarity method and matches method respectively.

Four 3-D bar graphs are provided to visually compare the performance.

Chapter 5. Empirical Analysis 91

Table 5.9: Performance results from S-PSO, M-PSO and CPSO-SK optimizing the similarity

method OF on data sets S1 through S7

ID PSO #Mat #Gaps #FullC Best Mean Ci[lo, hi]

S1 S-PSO 9,392 1 198 9,454.18164 9,454.18457 [9,454.18352, 9,454.18562]

S1 M-PSO 9,392 1 198 9,454.18164 9,454.18457 [9,454.18352, 9,454.18562]

S2 S-PSO 13,443 13 782 14,882.21582 14,545.82324 [14,469.62164, 14,622.02485]

S2 M-PSO 14,452 28 1,073 15,748.76953 14,324.12988 [14,169.14688, 14,479.11289]

S2 CPSO-S6 15,380 68 1,251 16,189.75781 11,088.62305 [9,241.24541, 12,936.00068]

S3 S-PSO 24,503 0 109 25,043.65430 25,043.64648 [25,043.64369, 25,043.64928]

S3 M-PSO 24,503 0 109 25,043.65430 25,043.64648 [25,043.64369, 25,043.64928]

S4 S-PSO 17,821 381 242 22,778.13672 22,667.14258 [22,641.18671, 22,693.09844]

S4 M-PSO 16,027 381 137 20,901.01367 19,569.87305 [19,372.85226, 19,766.89384]

S4 CPSO-S9 21,344 461 302 25,577.53125 21,329.78516 [20,480.33813, 22,179.23218]

S5 S-PSO 44,910 0 1,440 45,949.80469 45,949.79688 [45,949.79408, 45,949.79967]

S5 M-PSO 44,910 0 1,440 45,949.80469 45,949.79688 [45,949.79408, 45,949.79967]

S5 CPSO-S2 44,910 0 1,440 45,949.80469 44,779.08984 [44,318.67753, 45,239.50216]

S6 S-PSO 17,920 43 887 19,415.15039 19,199.84570 [19,176.03514, 19,223.65627]

S6 M-PSO 17,699 43 866 19,280.79688 19,156.85156 [19,145.23530, 19,168.46782]

S6 CPSO-S7 17,934 109 843 19,077.05078 14,168.64941 [12,653.37313, 15,683.92570]

S7 S-PSO 12,713 0 449 12,754.33789 12,754.34082 [12,754.33977, 12,754.34187]

S7 M-PSO 12,713 0 449 12,754.33789 12,754.34082 [12,754.33977, 12,754.34187]

For the first data set, S1, the S-PSO and the M-PSO achieved statistically equivalent

scores with the similarity method and the matches method. The optimal alignment was

found, having 198 fully aligned columns, only one gap and a total of 9392 matches.

The fact that the optimal alignment was consistently obtained, shows that having 10

sequences of about 212 characters did not affect the convergence onto an optimum as

long as the dimensionality was kept low (m=31). This set was, therefore, labelled as

‘low difficulty’, in consideration of the fact that it had a high overall similarity and a low

dimensionality.

The second data set, S2, contained half the number of sequences than S1 does and

was roughly eight times longer. The characteristics of S2 were a medium similarity (63%)

and a dimensionality of 668, which represented more than 20 times the dimensionality

of S1. The ‘staircase’ pattern that emerged, as evidenced in Figure 5.18, shows that all

three PSOs achieved improved performance with respect to the number of fully aligned

columns. The S-PSO achieved the worst performance with 13,443 matches and 782 fully

aligned columns when optimizing the OF that used the similarity method. However, the

S-PSO and the M-PSO had statistically equal similarity scores.

Chapter 5. Empirical Analysis 92

Table 5.10: Performance results from S-PSO, M-PSO and CPSO-SK optimizing the matches

method OF on data sets S1 through S7

ID PSO #Mat #Gaps #FullC Best Mean Ci[lo, hi]

S1 S-PSO 9,392 1 198 51,157.19922 50,828.14844 [50,714.08840, 50,942.20848]

S1 M-PSO 9,392 1 198 51,157.19922 50,958.87891 [50,881.35093, 51,036.40688]

S2 S-PSO 13,463 108 929 36,254.0 28,083.51953 [26,686.45668, 29,480.58239]

S2 M-PSO 14,640 38 1,120 40,802.0 31,307.66211 [30,334.65203, 32,280.67219]

S2 CPSO-S6 14,296 368 1,086 38,842.39844 32,326.90625 [30,333.84675, 34,319.96575]

S3 S-PSO 24,503 0 109 263,570.09375 263,466.06250 [263,358.74562, 263,573.37938]

S3 M-PSO 24,503 0 109 263,570.09375 263,453.28125 [263,326.14591, 263,580.41659]

S4 S-PSO 17,180 613 83 49,217.0 40,677.69141 [39,415.82245, 41,939.56037]

S4 M-PSO 18,848 453 92 57,188.250 39,234.89063 [37,553.18986, 40,916.59139]

S4 CPSO-S9 19,021 981 206 58,503.3750 43,390.49219 [39,506.64287, 47,274.34150]

S5 S-PSO 43,481 64 1,307 187,769.3750 175,396.64063 [172,696.20020, 178,097.08105]

S5 M-PSO 44,910 0 1,440 197,274.0 197,274.0 [197,274.0, 197,274.0]

S5 CPSO-S2 44,663 88 1,420 195,467.3750 191,293.18750 [190,196.93100, 192,389.44400]

S6 S-PSO 16,131 151 691 49,759.16797 29,457.95117 [27,929.11248, 30,986.78987]

S6 M-PSO 17,409 37 853 55,641.16797 41,596.00391 [40,010.52637, 43,181.48145]

S6 CPSO-S7 17,938 277 845 56,975.33203 49,386.95703 [47,092.48738, 51,681.42668]

S7 S-PSO 12,713 0 449 57,038.6250 57,038.6250 [57,038.6250, 57,038.6250]

S7 M-PSO 12,713 0 449 57,038.6250 57,038.6250 [57,038.6250, 57,038.6250]

Figure 5.18: Number of full columns aligned in S2 with three PSOs using both the similarity

and the matches methods

As illustrated in Figure 5.18, the M-PSO optimizing the OF that used the matches

method on S2 achieved the highest Best score with 1120 fully aligned columns and 14640

matches. The CPSO-S6, using the similarity method, achieved the highest Best score

Chapter 5. Empirical Analysis 93

and managed a total of 15380 matches as well as the greatest number of fully aligned

columns (1251). The CPSO-S6 that optimized the OF using the similarity method proved

to be instable on account of its large confidence interval. For this data set, the similarity

method was consistently outperformed by the matches method except in the case of the

CPSO-S6. Lastly, the significantly larger number of gaps observed in solutions that used

the matches method was a recurrent phenomenon.

Data set S3 produced very similar results to data set S1. S3 had roughly twice

the number of sequences than S1, as well as half the sequence length of S1. Most

importantly, S3 similarly had a very high percentage of similarity (95.6%) and a low

dimensionality (m=21), which also classified S3 as ‘low difficulty’. The S-PSO and M-

PSO results showed that optimal alignment solutions were found consistently. Both PSOs

had statistically identical scores and converged on the best solutions using both methods.

In other words, it appeared that doubling the number of sequences did not affect the

accuracy of the PSO, bearing in mind that the set offered a high overall similarity and

a low dimensionality. In fact, secondary tests demonstrated that S3 converged perfectly,

even with its length twice that of S1.

The fourth data set, S4, was, according to observations so far, the hardest MSA to

optimize. S4 has eight relatively long sequences (1437). S4 was opposite to S1 and

S3 in terms of overall similarity, which was the lowest with 44.4%, and dimensionality,

which was the highest with m=1701. CPSO-SK again dominated in the S4 results. Fi-

gure 5.19 depicts results again suggesting the superiority of the similarity method over

the matches method. Indeed, the matches method frequently inserted gaps that were

unnecessary since no increase in the number of matches was gained for the undesirable

increase in gaps. With the similarity method, the S-PSO was statistically superior to the

CPSO-S9 and the M-PSO. However, with 21344 matches and 302 fully aligned columns,

the CPSO-S9 managed to find the best S4 alignment. As for the matches method op-

timization, all PSOs were statistically identical but, again, the CPSO-S9 achieved the

highest number of full columns and matches. Lastly, it appeared that the CPSO-SK

finds excellent solutions but in a very instable manner.

Chapter 5. Empirical Analysis 94

Figure 5.19: Number of full columns aligned in S4 with three PSOs using both the similarity

and the matches methods

S5 and S4 both had eight sequences as well as roughly the same sequence length. S5,

however, critically differed from S4 through its greater percentage of similarity (95.4%)

and a much lower dimensionality (m=120). S5, therefore, also qualified as a ‘low diffi-

culty’ MSA. As illustrated in Figure 5.20, this set was well optimized by the M-PSO, the

only PSO which managed to produce top solutions with both the similarity and matches

methods: 1440 fully aligned columns. The direct consequence of the lower dimensionality

and greater similarity observed in S5 was that all three PSOs using the similarity method

performed extremely well and reached convergence by finding the optimal alignment. S5

therefore confirmed that dimensionality and overall set similarity have a critical influence

on accuracy. Note again how the matches method was worse, in that it produced more

gaps and fewer matches.

The sixth data set, S6, provided mixed results that failed to accurately indicate which

alignment method was better overall. Notice that the CPSO-S7 managed to generate

the highest number of matches of all S6 results, which again proved its superiority –

recall that the number of matches prevailed in evaluations of difficult MSAs. However,

the S-PSO managed to achieve the highest number of fully aligned columns (887) and

a remarkably low number of gaps with the similarity method, with the M-PSO closely

following. Furthermore, the S-PSO achieved statistically the worst performance with

the matches method. The stability of the M-PSO surfaced strongly in this set, while the

Chapter 5. Empirical Analysis 95

CPSO-S7 again showed instability.

Figure 5.20: Number of full columns aligned in S5 with three PSOs using both the similarity

and the matches methods

As depicted in Figure 5.21, for the first time using the similarity method and consid-

ering the number of fully aligned columns, the CPSO-S7 ranked third after the M-PSO,

which also produced the lowest number of gaps using the matches method (37). There is

no straightforward way to determine which alignment was better. Instead, it should be

acknowledged that all three PSOs produced equally good solutions (CPSO-S7 had the

greatest number of matches, M-PSO had the lowest number of gaps and S-PSO produced

the highest number of fully aligned columns). Data set S6 was special in the sense that

it was the only set to share a high level of similarity (77.7%) with a significantly large

dimensionality (m=427). With such characteristics and six long sequences, S6 positioned

itself directly after data set S2 in terms of MSA difficulty. Remember that the CPSO-S7

largely dominated data set S2, which suggested that the CPSO-S7 is more inclined to

prevail in higher complexity sets where other PSOs might fail.

The last data set tested was S7. This set also provided an opportunity to analyze

scalability in terms of length of sequences. S7 contained roughly the same number of

sequences as S1 and has roughly double the length of S1, while keeping a very high

percentage of similarity and a low dimensionality.

Chapter 5. Empirical Analysis 96

Figure 5.21: Number of full columns aligned in S6 with three PSOs using both the similarity

and the matches methods

Both S-PSO and M-PSO, optimizing both alignment methods, successfully converged

onto optimal solutions (449 fully aligned columns). Observations here confirmed that

‘low difficulty’ MSAs were affected neither by the number of sequences presented in the

set, nor by the sequence length.

5.3.5 Comparison with Other MSA Programs

Top alignments produced with PSO algorithms in this research are now compared against

widely used MSA programs. CLUSTAL X (version 1.83) and T-COFFEE (version 4.99)

were used for this purpose (refer to Sections 2.6.2 and 2.6.4 for background).

Score Comparison

The main criterion subjected to comparison was alignment accuracy, using a scoring

scheme identical to the one applied in all the PSO experiments. All alignment scores

from T-COFFEE and CLUSTAL X are summarized in Table 5.11. Additionally, a graph

in Figure 5.22 provides a visual comparison of the alignment scores obtained from the

hardest sets (S2, S4 and S6) between the best PSO, T-COFFEE and CLUSTAL X.

Chapter 5. Empirical Analysis 97

Table 5.11: Comparison of results obtained from sets S1 through S7 with T-COFFEE and

CLUSTAL X

ID MSA technique #Mat #Gaps #FullC Sim score Match score

S1 S-PSO, M-PSO 9,392 1 198 9,454.18180 51,157.19999

S1 T-COFFEE 9,392 1 198 9,454.18180 51,157.19999

S1 CLUSTAL X 9,392 1 198 9,454.18180 51,157.19999

S2 CPSO-S6 15,380 68 1,251 16,189.75781 —

S2 T-COFFEE 17,058 28 1,611 17,305.91219 50,306.39999

S2 CLUSTAL X 17,055 28 1,613 17,305.30551 50,307.79999

S3 S-PSO, M-PSO 24,503 0 109 25,043.65468 263,570.09523

S3 T-COFFEE 24,503 0 109 25,043.65468 263,570.09523

S3 CLUSTAL X 24,503 0 109 25,043.65468 263,570.09523

S4 CPSO-S9 21,344 461 302 25,577.53125 —

S4 T-COFFEE 34,462 1,037 914 32,521.76227 142,679.0

S4 CLUSTAL X 34,274 629 899 34,203.86675 142,251.75

S5 ALL PSOs 44,910 0 1,440 45,949.80498 197,274.0

S5 T-COFFEE 44,910 0 1,440 45,949.80498 197,274.0

S5 CLUSTAL X 44,910 0 1,440 45,949.80498 197,274.0

S6 S-PSO 17,920 43 887 19,415.15039 —

S6 T-COFFEE 19,832 133 1,131 20,256.87428 66,400.33333

S6 CLUSTAL X 19,777 67 1,122 20,440.58684 66,204.16666

S7 S-PSO, M-PSO 12,713 0 449 12,754.33785 57,038.625

S7 T-COFFEE 12,713 0 449 12,754.33785 57,038.625

S7 CLUSTAL X 12,713 0 449 12,754.33785 57,038.625

When dealing with ‘low difficulty’ MSAs (i.e. S1, S3, S5 and S7), both T-COFFEE

and CLUSTAL X managed to match all the optimal alignment solutions found by the

PSOs.

However, a ‘high difficulty’ MSA such as S2 was aligned almost identically by both

CLUSTAL X and T-COFFEE, since they managed to discover more than 17000 matches

and roughly 1600 fully aligned columns. In comparison, the top PSO solution achieved

by the CPSO-S6 with the similarity method managed to discover 15380 matches and

1251 fully aligned columns. Additionally, the CPSO-S6 solution managed to reduce the

total number of gaps to 68, which was close to the 28 gaps produced by the CLUSTAL

X and T-COFFEE solutions.

Chapter 5. Empirical Analysis 98

The hardest MSA of all data sets was S4. T-COFFEE dominated this alignment by

having found 34462 matches, but produced the largest number of gaps (1037). CLUSTAL

X was behind T-COFFEE in terms of matches, but was better with regards to the number

of gaps, namely only 629. Once again, the top alignment solution amongst all proposed

PSOs was the CPSO-S9 with 21344 discovered matches and 461 gaps. The comparison

between the number of fully aligned columns was quite contrastive, considering that the

CPSO-S9 ‘only’ found 302 of them, while T-COFFEE discovered a little over 900. The

CPSO-S9 was worse with regards to the number of matches too, but had the lowest

number of gaps.

Figure 5.22: Best score comparison between PSO, T-COFFEE and CLUSTAL X on the three

hardest sets (S2, S4 and S6)

Lastly, data set S6, classified as ‘medium difficulty’, was best aligned by T-COFFEE

with 19832 matches found and 1131 fully aligned columns. CLUSTAL X closely followed,

by having found fewer matches and fewer fully aligned columns, but minimized the num-

ber of gaps more successfully. The S-PSO produced a good sub-optimal S6 alignment,

with the best number of fully aligned columns out of the PSOs (887). However, the

CPSO-S7 also managed to find a satisfactory alignment with the top number of matches

(17938) amongst PSOs, although with more gaps as well.

Chapter 5. Empirical Analysis 99

Discussion

No MSA program can rightly claim its superiority in all aspects of solving MSAs. It

is, therefore, about appreciating which qualities one MSA program has to offer. Indeed,

MSA programs excel in specialized aspects of MSAs, such as speed or biological accuracy.

It is in the user’s best interest to make use of an MSA tool that would provide, according

to each user’s specific needs, the most adequate service.

Commonly used approaches, such as CLUSTAL X, are assumed to be very successful

when an MSA has a small to medium number of sequences, short to medium length

and a high to medium overall similarity. Due to its algorithmic nature and the time

complexity of O(k4 + n2), CLUSTAL X grows exponentially, which, as a consequence,

makes it a slow algorithm on large alignments. A similar phenomenon occurs when using

exact algorithms such as dynamic programming [80]. It is a fact that most biologists use

some degree of post-processing to refine the alignment that is produced by CLUSTAL

X [22]. The reason for this lies in the limitations that CLUSTAL X has in the kind of

objective function it can optimize.

T-COFFEE is a GA-based algorithm that proved to be very robust, but very slow.

The order of its time complexity is O(k3n2), which explains the lack of speed. In com-

pensation, however, it allows for better accuracy. The convergence of T-COFFEE is

slow, which is once again not a disadvantage, but rather an advantage for the user who

expects solutions of high accuracy for difficult problems.

The basic PSO algorithm has the crucial advantages of low computational complexity,

O(Tsm), and low memory space requirements, which makes the PSO a fast algorithm

to execute. The size and length of the sequences were the criteria that proportionally

affected the OF in terms of time complexity. For a total computational complexity of

PSO for MSA, the cost of the specific OF used must be included. For instance, the

OF that uses the similarity method requires O(k2n̂ + n̂2) to compute the SoP and aGP

scores. A thorough study of the speed of PSO for MSA is listed as a recommendation

for future work in Section 6.2.

Chapter 5. Empirical Analysis 100

5.3.6 Conclusion

This section finalizes the portion of this research dedicated to expanding the potential

of PSOs to optimize harder MSAs. This last part of the experiments is understood as

a scalability study. Firstly, results on seven ‘harder’ MSA data sets between the three

proposed PSOs (the standard PSO, the mutating PSO and the cooperative split PSO)

were compared and analyzed. Secondly, top PSO solutions were tested against solutions

found by widely used MSA programs.

These last experiments on harder MSAs were rich in observations. One important

observation was that the greater the similarity percentage, the less the similarity method

scores differed among the three PSOs. This means that the similarity percentage played

a central role in determining PSO capabilities. Another major observation was that

the matches method had a tendency to find solutions involving many unnecessary gaps,

compared to the similarity method. This is a parameter problem and, therefore, may be

alleviated by optimizing the affine gap penalties.

The S-PSO demonstrated good performance by successfully aligning difficult MSAs,

but lacked accuracy when the MSA problem dimensionality became too large. Indeed,

the main phenomenon that emerged from experiments on the first data set, S8, was

that S-PSO seemed to lose its accuracy when dealing with a higher number of gaps.

The S-PSO converged quickly, which made it a competitive algorithm for easy problems.

However, it performed poorly on a few hard problems because of local optima traps.

The dimensionality of particles and the degree of difficulty associated with finding an

optimum solution usually played a significant role in performance.

The increased diversity of the M-PSO did not always suffice to optimize a higher de-

gree of alignment complexity but, compared to the S-PSO, showed a clear improvement.

The M-PSO was superior in several cases, but failed to distinctively prove itself as a

better algorithm. Unfortunately, the M-PSO suffered from similar disadvantages than

the S-PSO.

The cooperative feature of the CPSO-SK is designed to scale well with growing MSA

complexity. The cooperative approach is flexible and can cater for more participating

algorithms where necessary. Results produced with the CPSO-SK were encouraging and

overall largely better than the S-PSO and M-PSO. The CPSO-SK successfully demon-

strated that it represents a robust MSA solver and a very promising MSA alternative

Chapter 5. Empirical Analysis 101

solver.

5.4 Summary

This chapter examined and discussed the experimental procedure that has been con-

ducted in this thesis. Section 5.1 positioned the objectives and scope of the experimental

work to be accomplished. Section 5.2 presented the experimental work on S8, testing the

viability of the S-PSO and B-PSO as an effective MSA solver. Section 5.3 analyzed the

performance of PSO algorithms on a variety of MSA problems, differing in complexity.

Chapter 6

Conclusion and Future Work

“V’la autch’!”

- Andrzej Romanshkou a.k.a. W-Dad

This chapter summarizes the major findings derived from the work conducted in this

thesis. Finally, a set of future directions worth investigating is suggested.

6.1 Conclusion

The main objective of this study was to verify the following hypothesis: “Is particle

swarm optimization a viable approach to solving the multiple sequence alignment problem,

and, if so, to what degree of success?” Considering the novelty of the approach, steps

towards defining a proper experimental procedure were carefully designed.

The research work started in the Chapter 2 with a discussion of the background of

multiple sequence alignment (MSA). MSAs are complex in many respects and, thus, need

to be explored thoroughly. Important concepts and basic building blocks were defined in

order to construct a solid base of knowledge. Focus was given to alignment manipulation

strategies, evaluation methods and current alignment techniques.

Chapter 3 was mainly dedicated to particle swarm optimization (PSO). Genetic al-

gorithms were covered to provide a computational intelligence perspective on the GA-

based MSA tool, T-COFFEE. Definitions of nondeterministic polynomial complete (NP-

complete) problems, which represent a critical characteristic of MSA problems, were

102

Chapter 6. Conclusion and Future Work 103

provided. Particle swarm optimization was thereafter explored in depth, with respect to

the algorithm, topologies and parameters. Modifications to PSOs were also discussed,

which identified the candidates to be tested on MSAs. The PSOs under evaluation were

the standard PSO (S-PSO), the binary PSO (B-PSO), the mutating PSO (M-PSO) and

the cooperative split PSO (CPSO-SK).

The core of this work took the form of experiments. The experimental work that

was conducted throughout the completion of this thesis is presented in Chapter 5. The

experimental procedure was divided into two parts.

The first part extensively analyzed the S-SPO and B-PSO on a small, low complex-

ity MSA. Several characteristics were tested to study their impact on the optimization

process. Either of two aligning methods were employed as part of the objective func-

tion, namely the similarity method or the matches method. Success was achieved when

both methods proved to optimally align a small MSA data set. However, many S-PSO

variations failed to consistently demonstrate convergent behaviour. The B-PSO showed

some promise, but did not convincingly represent a valuable MSA optimizer. The major

discoveries can be summarized with the following statements. The first is that randomly

initializing the S-PSO velocity yielded superior results, especially when using the sim-

ilarity method. The other is that increasing the number of particles within the swarm

usually improved solutions. The goal of this part of the experiments was achieved when

a proper identification of the impact of each factor regarding MSA optimization was

made. An important fact should not be overlooked: the S-PSO seemed to lose its accu-

racy when dealing with more gaps (higher complexity). From the S8 set of experiments,

two ‘optimized’ versions of S-PSOs were derived. These two versions managed to out-

perform T-COFFEE and CLUSTAL X on the small data set. This means that the PSO

approach excels at solving small alignments of a high similarity.

The second part investigated to what extent the S-PSO scales for harder MSA prob-

lems. Applying the empirical analysis done in the S8 experiments, two optimized S-PSOs

were tested on higher complexity MSAs. Seven harder MSA data sets were used. Ex-

periments that involved the M-PSO and CPSO-SK were also conducted on the same

data sets. With more complex MSAs, several aspects of the problem were modified: the

problem space was considerably increased, the overall similarity percentage was lowered,

and the number of gaps to insert became larger. Ways to reduce complexity in hard

Chapter 6. Conclusion and Future Work 104

MSAs were used, such as decreasing the number of gaps allowed in the alignment or

breaking the alignment into chunks. The S-PSO and M-PSO showed some degree of suc-

cess but were both significantly outperformed by the CPSO-SK . The main conclusion

is that the CPSO-SK offers a flexible solution that creates a new range of possibilities.

As the PSO approach needs to mature, several improvements remain that could increase

its potential as a robust MSA solver. A comparative analysis with widely used MSA

programs revealed that CPSO-SK solutions could not improve on results of CLUSTAL

X and T-COFFEE.

Conclusions about the advantages of using PSO as an MSA optimizer include the

following:

• The PSO approach, unlike CLUSTAL X, relaxes heuristics limitation by allowing

the use of any arbitrary objective function. Custom-tailored objective functions

could then be oriented towards either accuracy or speed, to be more adequate for

specific MSAs.

• PSOs are fast algorithms, low in memory requirement, and simple to implement.

• Extra computations such as pre-processing and post-processing, i.e. tree creation,

sequence grouping, calculating distance between sequences or sequence selection,

are not needed.

• No specific knowledge about species’ origins or sequence structure is required.

Again, the PSO is a stochastic approach that uses heuristics, so it does not guar-

antee that alignments are optimal. However, sub-optimal alignments are still sat-

isfactory for many applications.

• For time constrained executions, the PSO is a valuable alternative as the PSO can

be limited to a certain number of iterations or desired fitness for a sufficiently accu-

rate or fit solution. Any sequence alignment algorithm must trade-off computation

speed for alignment accuracy, especially when there exists a low similarity between

the sequences that are to be aligned.

• For the same set of sequences, a method based on pairwise DP may require hours

to align, while the PSO can produce results of slightly less or similar quality within

a much smaller time period.

Chapter 6. Conclusion and Future Work 105

Lastly, an area where the PSO approach and particularly the CPSO-SK revealed

itself particularly useful – as the scalability analysis revealed – was in the alignment of

long and large sets of high similarity sequences. In fact, the PSO accuracy was negligibly

affected by the number and length of the sequences, as long as the similarity remained

high. Furthermore, its accuracy combined with its efficiency in computing time formed a

major strength; this is especially significant when aligning vast sets of similar sequences.

6.2 Future Work

Throughout this thesis, several ideas and avenues for future research have been identified.

A brief overview is listed below.

Scalability

Understanding scalability factors ultimately helps to calibrate the optimization param-

eters. The second part of the experiments aimed to cover several aspects of PSO scala-

bility. However, several other scalability facets could be investigated. One facet would

involve aligning a ten sequences set by starting with only two sequences at first, then

three, four . . . until ten and observing the impact on performance. Another facet might

entail comparing the performance of a set against the same set but with its number and

length of sequences doubled, tripled, and so forth.

Alignment Refining

Studies refining alignment might attempt to produce alignments of better overall qual-

ity/accuracy. Several techniques could be applied that are independent of the PSO pro-

cess. The first technique involves applying any improver listed in Section 2.6 after the

PSO to refine a solution (post-processing). Another technique involves using solutions

from an external MSA program such as CLUSTAL X to seed and initialize PSO particles.

PSO solutions might also be fed into an external MSA program to be further improved.

Indeed, PSO solutions could be improved before (pre-processing), during (each iteration

with a local search mechanism such as DP) or after (post-processing/improver).

Chapter 6. Conclusion and Future Work 106

Multiple Solution PSOs

It would be worthwhile to investigate the performance and behaviour of PSOs that

have the capability to optimize multiple solutions such as the multiple objective PSO

(MOPSO) [26] or the niche PSO [16].

Particle Initialization

Future research might include an investigation into the impact of different particle ini-

tialization strategies. In effect, various ways of positioning the particles in the search

space may influence convergence and performance on the MSA problem.

Speed Analysis

An in-depth study of the impact of the optimization of very large alignments (more

sequences and/or longer sequences) versus computational time would be useful.

Cooperative Behaviour

The CPSO-SK proved to be robust and efficient. More investigation into this promising

approach needs to be conducted to expand its potential. For instance, future research

may include studying the impact of different numbers of participant algorithms, and the

effect of hybridizing the cooperative approach with different optimizers.

Proteins

This study only made use of DNA sequences. However, proteins also need to be aligned

in many bioinformatics applications. An in-depth study was not conducted in this work,

but early testing using the BAliBASE 2.01 benchmark [114] showed promising results,

which need to be further investigated.

Bibliography

[1] K. A. Abd-Elsalam. Bioinformatic tools and guideline for PCR primer design.

African Journal of Biotechnology, 2(5):91–95, May 2003.

[2] S. Abdeddäım and B. Morgenstern. Speeding up the DIALIGN multiple align-

ment program by using the ‘greedy alignment of BIOlogical sequences LIBrary’

(GABIOS-LIB). In Olivier Gascuel and Marie-France Sagot, editors, Journées

Ouvertes Biologie, Informatique et Mathématiques, volume 2066 of Lecture Notes

in Computer Science, pages 1–11. Springer, 2000.

[3] S. F. Altschul, R. J. Carroll, and D. J. Lipman. Weights for data related by a tree.

Journal of Molecular Biology, 207:647–653, 1989.

[4] S. F. Altschul, W. Gish, E. W. Myers, and D. J. Lipman. Basic local alignment

search tool. Journal of Molecular Biology, 215(3):403–410, October 1990.

[5] S. F. Altschul and D. J. Lipman. Trees, stars and multiple biological sequence

alignment. Society for Industrial Applied Mathematics, 49(1):197–209, February

1989.

[6] S. F. Altschul, T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller,

and D. J. Lipman. Gapped BLAST and psi-BLAST: a new generation of protein

database search programs. Nucleic Acids Research, 25:3389–3402, 1997.

[7] L. A. Anbarasu, P. Narayanasamy, and V. Sundararajan. Multiple sequence align-

ment using parallel genetic algorithms. In Bob McKay, Xin Yao, Charles S. Newton,

Jong-Hwan Kim, and Takeshi Furuhashi, editors, Simulated Evolution and Learn-

107

Bibliography 108

ing, volume 1585 of Lecture Notes in Computer Science, pages 130–137. Springer,

1998.

[8] P. J. Angeline. Using selection to improve particle swarm optimization. In Pro-

ceedings of the IEEE International Joint Conference on Neural Networks, pages

84 – 89, July 1999.

[9] K. Arms and P. S. Camp. Biologie, volume 1, chapter 5. Editions Universitaires,

Paris, 1989.

[10] T. Bäck, D. B. Fogel, and T. Michalewicz, editors. Basic Algorithms and Operators,

volume 1 of Evolutionary Computation. Institute of Physics Publishing, Bristol and

Philidelphia, 1999.

[11] A. Bairoch, P. Bucher, and K. Hofmann. The PROSITE database, its status in

1997. Nucleic Acids Research, 25(1):217–221, 1997.

[12] A. Bateman, E. Birney, R. Durbin, S. Eddy, and E. Sonnhammer. The Pfam

protein families database. Nucleic Acids Research, 28:263–266, 2000.

[13] E. Beitz. TEXshade: shading and labeling multiple sequence alignments using

LATEX2ε. Bioinformatics, (16):135–139, 2000.

[14] D. A. Benson, M. Boguski, D. J. Lipman, and J. Ostell. Genbank. Nucleic Acids

Research, 22(17):3441–3444, September 1994.

[15] P. Bonizzoni and G. D. Vedova. The complexity of multiple sequence alignment

with SP-score that is a metric. Theoretical Computer Science, 259(1–2):63–79,

2001.

[16] R. Brits, A.P. Engelbrecht, and F. van den Bergh. A niching particle swarm

optimizer. In Proceedings of the Fourth Asia-Pacific Conference on Simulated

Evolution and Learning, pages 692–696, 2002.

[17] C.F. Brunk and L.A. Sadler. Characterization of the promoter region of Tetrahy-

mena genes. Nucleic Acids Research, 18(2):323–329, 1990.

Bibliography 109

[18] N. A. Campbell and J. B. Reece. Biology, chapter 16–17. Pearson, seventh edition,

2006.

[19] H. Carillo and D. Lipman. The multiple sequence alignment problem in biology.

Society for Industrial Applied Mathematics, 48:1073–1082, 1988.

[20] A. Carlisle and G. Dozier. An off-the-shelf PSO. In Proceedings of the Workshop

on Particle Swarm Optimization, pages 1–6, 2001.

[21] R. Catizone, G. Russell, and S. Warwick-Armstrong. Deriving translation data

from bilingual texts. In Zernik, editor, Lexical Acquisition Workshop, 1989.

[22] K. Chellapilla and G. B. Fogel. Multiple sequence alignment using evolutionary

programming. In Peter J. Angeline, Zbyszek Michalewicz, Marc Schoenauer, Xin

Yao, and Ali Zalzala, editors, Proceedings of the Congress on Evolutionary Com-

putation, volume 1, pages 445–452, Washington D.C., USA, 6-9 July 1999. IEEE

Press.

[23] Y. Chen, Y. Pan, J. Chen, W. Liu, and L. Chen. Multiple sequence alignment by

ant colony optimization and divide-and-conquer. In Vassil N. Alexandrov, G. Dick

van Albada, Peter M. A. Sloot, and Jack Dongarra, editors, International Con-

ference on Computational Science (2), volume 3992 of Lecture Notes in Computer

Science, pages 646–653. Springer, 2006.

[24] M. Clerc and J. Kennedy. The particle swarm – explosion, stability and conver-

gence in a multidimensional complex space. IEEE Transactions on Evolutionary

Computation, 6(1):58 – 73, February 2002.

[25] E. Cloete and R. Atlas, editors. Basic and Applied Microbiology, chapter 6. Van

Schaik Publishers, 2006.

[26] C. A. Coello Coello and M. Salazar Lechuga. MOPSO: a proposal for multiple

objective particle swarm optimization. In Congress on Evolutionary Computation,

volume 2, pages 1051–1056, New Jersey, May 2002. IEEE Service Center.

[27] F. Corpet. Multiple sequence alignment with hierarchial clustering. Nucleic Acids

Research, 16(22):10881–10890, 1988.

Bibliography 110

[28] C. Darwin. On the Origin of Species by Means of Natural Selection. J. Murray,

London, 1859.

[29] M. O. Dayhoff, R. M. Schwartz, and B. C. Orcutt. A model of evolutionary

change in proteins. In M. O. Dayhoff, editor, Atlas of Protein Structure, volume

5 (Suppl. 3), pages 345–352. National Biomedical Reasearch Foundataion, Silver

Spring, 1979.

[30] L. N. de Castro and J. Timmis. Artificial Immune Systems: A New Computational

Intelligence Paradigm. Springer Verlag, November 2002.

[31] E. Depiereux and E. Feytmans. MATCH-BOX: a fundamentally new algorithm for

the simultaneous alignment of several protein sequences. Computer Applications

in the Biosciences, 8(5):501–509, 1992.

[32] J. Devereux, P. Haeberli, and O. Smithies. A comprehensive set of sequence anal-

ysis programs for the Vax. Nucleic Acids Research, 12:387–395, 1984.

[33] M. Dorigo and G. Di Caro. The ant colony optimization meta-heuristic. In David

Corne, Marco Dorigo, and Fred Glover, editors, New Ideas in Optimization, pages

11–32. McGraw-Hill, London, 1999.

[34] R. Eberhart, P. Simpson, and R. Dobbins. Computational Intelligence—PC Tools.

AP Professional, Academic Press, Inc., 1996.

[35] R. C. Eberhart and J. Kennedy. Swarm Intelligence. Morgan Kaufmann, 2001.

[36] S. R. Eddy. Multiple alignment using hidden markov models. In Proceedings of

the Third International Conference on Intelligent Systems for Molecular Biology.,

pages 114–120, 1995.

[37] R. C. Edgar. MUSCLE: a multiple sequence alignment method with reduced time

and space complexity. BioMed Central Bioinformatics, 5(1), August 2004.

[38] A. P. Engelbrecht. Computational Intelligence: An Introduction. Wiley and Sons,

October 2002.

[39] A. P. Engelbrecht. Computational Swarm Intelligence. Wiley and Sons, 2005.

Bibliography 111

[40] S. C. Esquivel and C. A. Coello Coello. On the use of particle swarm optimization

with multimodal functions. In Proceedings of the 2003 Congress on Evolutionary

Computation, volume 2, pages 1130–1136, Canberra, December 2003. IEEE Press.

[41] D. Feng and R. F. Doolittle. Progressive sequence alignment as a prerequisite to

correct phylogenetic trees. Journal of Molecular Evolution, 25:351–360, 1987.

[42] A. S. Fraser. Simulation of genetic systems by automtic digital computers I. intro-

duction. Australian Journal of Biological Sciences, 10:484–491, 1957.

[43] W. A. Gale and K. W. Church. A program for aligning sentences in bilingual

corpora. Computational Linguistics, 19(1):75–102, March 1993.

[44] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learn-

ing. Addison Wesley, Reading, MA, 1989.

[45] D. E. Goldberg and J. Richardson. Genetic algorithm with sharing for multimodal

function optimization. In Proceedings of the Second International Conference on

Genetic Algorithms, pages 41 – 49, 1987.

[46] G. H. Gonnet, M. A. Cohen, and S. A. Benner. Exhaustive matching of the entire

protein sequence database. Science, 256:1443–1445, June 1992.

[47] Google. 593 ways of spelling Britney Spears, 2006. Accessed

http://www.google.com/jobs/britney.html on 8 August 2006.

[48] O. Gotoh. Significant improvement in accuracy of multiple protein sequence align-

ments by iterative refinement as assessed by reference to structural alignments.

Journal of Molecular Biology, 264:823–838, 1996.

[49] S. Henikoff and J. G. Henikoff. Amino acid substitution matrices from protein

blocks. In Proceedings of the National Academy of Sciences USA, volume 89,

pages 10915–10919, 1992.

[50] H. Higashi and H. Iba. Particle swarm optimization with Gaussian mutation. In

Proceedings of the IEEE Swarm Intelligence Symposium, pages 72–79, April 2003.

http://www.google.com/jobs/britney.html

Bibliography 112

[51] D. G. Higgins and P. M. Sharp. CLUSTAL: a package for performing multiple

sequence alignment on a microcomputer. Gene, 73:237–244, 1988.

[52] R. S. Hine and E. Martin, editors. Oxford Dictionary of Biology, page 194. Oxford

University Press, fifth edition, 2004.

[53] J. Holland. Adaptation in Natural and Artificial Systems. University of Michigan

Press, 1975.

[54] J. Horng, C. Lin, B. Liu, and C. Kao. Using genetic algorithms to solve multiple

sequence alignments. In Darrell Whitley, David Goldberg, Erick Cantu-Paz, Lee

Spector, Ian Parmee, and Hans-Georg Beyer, editors, Proceedings of the Genetic

and Evolutionary Computation Conference, pages 883–890, Nevada, USA, July

2000. Morgan Kaufmann.

[55] Y. Hsiao and C. Chuang. Particle swarm optimization approach for multiple biose-

quence alignment. In Proceedings of the Genomic Signal Processing and Statistics,

Rhode Island, May 2005. IEEE press.

[56] J. W. Hunt and M. D. McIlroy. An algorithm for differential file comparison.

Computer Science Technical Report No. 41, Bell Laboratories, New Jersey, June

1976.

[57] IBM and National Geographic. The genogaphic project, 2006. Accessed

http://www.ibm.com/za on 10 September 2006.

[58] C. Z. Janikow and Z. Michalewicz. An experimental comparison of binary and

floating point representations in genetic algorithms. In Proceedings of the 4th In-

ternational Conference on Genetic Algorithms, pages 31 – 36. Morgan Kaufmann,

San Diego, USA, 1991.

[59] W. Just. Computational complexity of multiple sequence alignment with SP-score.

Journal of Computational Biology, 8(6):615–623, 2001.

[60] J. D. Kececioglu. The maximum weight trace problem in multiple sequence align-

ment. In Alberto Apostolico, Maxime Crochemore, Zvi Galil, and Udi Manber,

http://www.ibm.com/za

Bibliography 113

editors, Combinatorial Pattern Matching, 4th Annual Symposium, volume 684 of

Lecture Notes in Computer Science, pages 106–119, Padova, Italy, 2-4 June 1993.

Springer.

[61] J. Kennedy. The behavior of particles. In Proceedings of the 7th International

Conference on Evolutionary Programming, pages 581–589, 1998.

[62] J. Kennedy and R. C. Eberhart. Particle swarm optimization. In Proceedings

of the IEEE International Conference on neural networks, pages 1942–1948, NJ,

1995. IEEE Service Center.

[63] J. Kennedy and R. C. Eberhart. A discrete binary version of the particle swarm

algorithm. In Proceedings of the Conference on Systems, Man and Cybernetics,

pages 4104 – 4109, 1997.

[64] J. Kennedy, R. C. Eberhart, and Y. Shi. Swarm Intelligence. Evolutionary Com-

putation Series. Morgan Kaufman, San Francisco, 2001.

[65] J. Kennedy and R. Mendes. Population structure and particle swarm performance.

In Proceedings of the IEEE World Congress on Evolutionary Computation, pages

1671 – 1676, Honolulu, Hawaii, May 2002.

[66] J. Kennedy and W. M. Spears. Matching algorithms to problems: an experi-

mental test of the particle swarm and some genetic algorithms on the multimodal

problem generator. In Proceedings of the IEEE World Congress on Computational

Intelligence, pages 78 – 83, Achorage, Alaska, 1998.

[67] J. Kim, S. Pramanik, and M. J. Chung. Multiple sequence alignment using simu-

lated annealing. Computer Applications in the Biosciences, 10(4):419–426, 1994.

[68] D. T. Kingsbury. Computational biology. ACM Computing Surveys, 28(1):101–103,

March 1996.

[69] W. S. Klug, M. R. Cummings, and C. A. Spencer. Concepts of Genetics, chapter 14.

Pearson Education, Inc., eighth edition, 2006.

Bibliography 114

[70] T. Lancaster and F. Culwin. Towards an error free plagarism detection process.

In Proceedings of the 6th Annual Conference on Innovation and Technology in

Computer Science Education, University of Kent at Canterbury, England, June

25-27, 2001, pages 57–60, New York, 2001. ACM SIGCSE, ACM Press.

[71] C. E. Lawrence, S. F. Altschul, M. S. Boguski, J. S. Liu, A. F. Neuwald, and J. C.

Wootton. Detecting subtle sequence signals: a gibbs sampling strategy for multiple

alignment. Science, 262:208–214, October 1993.

[72] D. J. Lipman, S. F. Altschul, and J. D. Kececioglu. A tool for multiple sequence

alignment. Proceedings of the National Academy of Science USA, 86:4412–4415,

1989.

[73] A. Löytynoja and M. C. Milinkovitch. A hidden Markov model for progressive

multiple alignment. Bioinformatics, 19(12):1505–1513, 2003.

[74] V. Miranda and N. Fonseca. EPSO - best-of-two worlds meta-heuristic applied

to power system problems. In David B. Fogel, Mohamed A. El-Sharkawi, Xin

Yao, Garry Greenwood, Hitoshi Iba, Paul Marrow, and Mark Shackleton, editors,

Proceedings of the 2002 Congress on Evolutionary Computation, pages 1080–1085.

IEEE Press, 2002.

[75] B. Morgenstern. DIALIGN 2: improvement of the segment-to-segment approach

to multiple sequence alignment. Bioinformatics, 15(3):211–218, 1999.

[76] B. Morgenstern, K. Frech, A. W. M. Dress, and T. Werner. DIALIGN: finding

local similarities by multiple sequence alignment. Bioinformatics, 14(3):290–294,

1998.

[77] B. Morgenstern, J. Stoye, and A. Dress. Consistent equivalence relations: a set-

theoretical framework for multiple sequence alignment. Technical Report Materi-

alien und Preprints 133, University of Bielefeld, 1999.

[78] B. Morgenstern and T. Werner. DIALIGN 1.0: multiple alignment by segment

rather than by position comparison. In German Conference on Bioinformatics,

pages 69–71, 1997.

Bibliography 115

[79] J. D. Moss and C. G. Johnson. An ant colony algorithm for multiple sequence

alignment in bioinformatics. In David W. Pearson, Nigel C. Steele, and Rudolf F.

Albrecht, editors, Artificial Neural Networks and Genetic Algorithms, pages 182–

186. Springer, April 2003.

[80] S. B. Needleman and C. D. Wunsch. A general method applicable to the search

for similarity in the amino acid sequences of two proteins. Journal of Molecular

Biology, 48:443–453, 1970.

[81] C. Notredame. Recent progress in multiple sequence alignment: a survey. Phar-

macogenomics, 3(1):131–144, January 2002.

[82] C. Notredame and D. G. Higgins. SAGA: sequence alignment by genetic algorithm.

Nucleic Acids Research, 24:1515 – 1524, April 1996.

[83] C. Notredame, D. G. Higgins, and J. Heringa. T-COFFEE: a novel method for

fast and accurate multiple sequence alignment. Journal of Molecular Biology,

302(1):205–217, September 2000.

[84] C. Notredame, L. Holm, and D. G. Higgins. COFFEE: an objective function for

multiple sequence alignments. Bioinformatics, 14(5):407–422, 1998.

[85] U.S. Department of Energy and the National Institutes of

Health. Human genome project, December 2005. Accessed

http://www.ornl.gov/sci/techresources/Human_Genome/project/about.shtml

on 10 October 2006.

[86] E. Ozcan and C. K. Mohan. Analysis of a simple particle swarm optimization

system. In Intelligent Engineering Systems Through Artificial Neural Networks,

volume 8, pages 253 – 258, 1998.

[87] E. Ozcan and C. K. Mohan. Particle swarm optimization: surfing the waves.

In Proceedings of the International Congress on Evolutionary Computation, pages

1939 – 1944, Washington, USA, 1999.

[88] K. E. Parsopoulos and M. N. Vrahatis. Particle swarm optimization method for

constrained optimization, volume 76, pages 214 – 220. IOS Press, 2002.

http://www.ornl.gov/sci/techresources/Human_Genome/project/about.shtml

Bibliography 116

[89] W. R. Pearson. Rapid and sensitive sequence comparison with fastp and fasta.

Methods Enzymol, 183:63–98, 1990.

[90] W. R. Pearson and D. J. Lipman. Improved tools for biological sequence compar-

ison. Proceedings of the National Acadademy of Science USA, 85(8):2444–2448,

April 1988.

[91] E. S. Peer. A serendipitous software framework for facilitating collaboration in

computational intelligence. Master’s thesis, Department of Computer Science,

University of Pretoria, Pretoria, South Africa, 2004.

[92] M. A. Potter. The Design and Analysis of a Computational Model of Cooperative

Coevolution. PhD thesis, George Mason University, Fairfax, Virginia, USA, 1997.

[93] T. K. Rasmussen and T. Krink. Improved hidden Markov model training for multi-

ple sequence alignment by a particle swarm optimization - evolutionary algorithm

hybrid. Biosystems, 72(1–2):5–17, November 2003.

[94] K. Reinert, J. Stoye, and T. Will. An iterative method for faster sum-of-pairs

multiple sequence alignment. Bioinformatics, 16(9):808–814, 2000.

[95] E. Ruppin and J. A. Reggia. Seeking order in disorder: computational studies of

neurologic and psychiatric diseases. Artificial Intelligence in Medicine, 13(1-2):1–

12, 1998.

[96] B. R. Secrest and G. B. Lamont. Visualizing particle swarm optimization - Gaus-

sian particle swarm optimization. In Proceedings of the IEEE Swarm Intelligence

Symposium, pages 198–204, 2003.

[97] J. Setubal and J. Meidanis. Introduction to Computational Molecular Biology.

Brooks-Cole, 1997.

[98] Y. Shi and R. C. Eberhart. A modified particle swarm optimizer. In Proceedings of

IEEE World Conference on Computational Intelligence, pages 69–73, Anchorage,

Alaska, May 1998. IEEE Service Center.

Bibliography 117

[99] Y. Shi and R. C. Eberhart. Parameter selection in particle swarm optimization.

In Proceedings of Evolutionary Programming VII, pages 561–600, Springer Verlag,

1998.

[100] Y. Shi and R. C. Eberhart. Empirical study of particle swarm optimization. In Pro-

ceedings of Congress on Evolutionary Computation, pages 1945–1950, Piscataway,

NJ, 1999. IEEE Service Center.

[101] C. Shyu, L. Sheneman, and J. A. Foster. Multiple sequence alignment with evolu-

tionary computation. Genetic Programming and Evolvable Machines, 5(2):121–144,

2004.

[102] P. R. Sibbald and P. Argos. Weighting aligned protein or nucleic acid sequences to

correct for unequal representation. Journal of Molecular Biology, (216):813–818,

1990.

[103] A. Stacey, M. Jancic, and I. Grundy. Particle swarm optimization with mutation.

In Ruhul Sarker, Robert Reynolds, Hussein Abbass, Kay Chen Tan, Bob McKay,

Daryl Essam, and Tom Gedeon, editors, Proceedings of the 2003 Congress on Evo-

lutionary Computation, pages 1425–1430, Canberra, 8-12 December 2003. IEEE

Press.

[104] J. Stoye. Divide-and-conquer multiple sequence alignment. Master’s thesis, Tech-

nische Fakultat der Universitat Bielefeld, 1997.

[105] J. Stoye, S. Perrey, and A. Dress. Improving the divide-and-conquer approach to

sum-of-pairs multiple sequence alignment. Applied Mathematics Letters, 10, 1997.

[106] A. R. Subramanian, J. Weyer-Menkhoff, M. Kaufmann, and B. Morgenstern.

DIALIGN-T: an improved algorithm for segment-based multiple sequence align-

ment. Bioinformatics, 6:66, 2005.

[107] P. N. Suganthan. Particle swarm optimizer with neighborhood operator. Proceed-

ings of the IEEE Congress on Evolutionary Computation, pages 1958 – 1961, July

1999.

Bibliography 118

[108] W. R. Taylor. Multiple sequence alignment by a pairwise algorithm. Computer

Applications in the Biosciences, 3(2):81–87, 1987.

[109] W. R. Taylor. A flexible method to align large numbers of biological sequences.

Journal of Molecular Evolution, 28:161–169, 1988.

[110] W. R. Taylor, G. Salensminde, and I. Eidhammer. Multiple protein sequence

alignment using double-dynamic programming. Computers & Chemistry, 24(1):3–

12, 2000.

[111] J. Thompson, F. Plewniak, and O. Poch. A comprehensive comparison of multiple

sequence alignment programs. Nucleic Acids Research, 27(13):2682–2690, 1999.

[112] J. D. Thompson, T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins.

The CLUSTAL X windows interface: flexible strategies for multiple sequence align-

ment aided by quality analysis tools. April 2003.

[113] J. D. Thompson, D. G. Higgins, and T. J. Gibson. CLUSTAL W: improving the

sensitivity of progressive multiple sequence alignment through sequence weighting,

position-specific gap penalties and weight matrix choice. Nucleic Acids Research,

22:4673–4680, 1994.

[114] J. D. Thompson, F. Plewniak, and O. Poch. BAliBASE: a benchmark align-

ment database for the evaluation of multiple alignment programs. Bioinformatics,

15(1):87–88, 1999.

[115] F. van den Bergh. An Analysis of Particle Swarm Optimizers. PhD thesis, Depart-

ment of Computer Science, University of Pretoria, Pretoria, South Africa, 2002.

[116] F. van den Bergh and A. P. Engelbrecht. Cooperative learning in neural networks

using particle swarm optimizers. South African Computer Journal, 26:84–90, 2000.

[117] F. van den Bergh and A. P. Engelbrecht. A cooperative approach to particle

swarm optimization. IEEE Transactions on Evolutionary Computation, 8(3):225–

239, 2004.

Bibliography 119

[118] L. Wang and T. Jiang. On the complexity of multiple sequence alignment. Journal

of Computational Biology, 1(4):337–348, 1994.

[119] S. Wehmeier, editor. Oxford Advanced Leaner’s Dictionary, pages 35–36. Oxford

University Press, seventh edition, 2005.

[120] X. Xie, W. Zhang, and Z. Yang. A dissipative particle swarm optimization. In

Proceedings of the Congress on Evolutionary Computation, volume 2, pages 1456–

1461, May 2002.

[121] C. Zhang and A. K. Wong. A genetic algorithm for multiple molecular sequence

alignment. Computer Applications in the Biosciences, 13(6):565–581, 1997.

[122] H. Zhang and M. Ishikawa. Evolutionary particle swarm optimization (EPSO)

- estimation of optimal PSO parameters by GA. In S. I. Ao, Oscar Castillo,

Craig Douglas, David Dagan Feng, and Jeong-A Lee, editors, Proceedings of the

International MultiConference of Engineers and Computer Scientists 2007 Volume

I, Hong Kong, Lecture Notes in Engineering and Computer Science, pages 13–18.

International Association of Engineers, Newswood Limited, 2007.

Appendix A

Data Sets

This appendix offers information about real data sets used throughout the research

experiments. Information regarding each data set is composed of accession IDs and

the data set’s source. All sequences can be retrieved at the European Bioinformatics

Institute website from the EMBL database at http://www.ebi.ac.uk by entering the

accession IDs in the query.

Accession IDs for all data sets follow:

Data Set S1 [121] (DNA): HCV2L1A10 HCV2L3A5 HCV2L3C1 HCV2L3C8 HCV2L3D4

HCV2L3E6 HCV2L3A7 HCV2L3A9 HCV2L3B2 HCV2L3B1

Data Set S2 [121] (DNA): HS06674 HS06675 HS06676 HS06677 HS06679

Data Set S3 [17] (DNA): TPAHISIN TNIHISIN TNHISIN TMIHISIN TMHISIN

THHISIN TFHISIN TEHISIN TCUHISIN TCHISIN TBHISIN TAUHISIN

TAHISIN TTHISIN TSHISIN TRHISIN TPYHISIN TPIHISIN TPHISIN

TCAHISIN TLHISIN

Data Set S4 [121] (DNA): HI1U16764 HI1U16766 HI1U16768 HI1U16776 HI1U16778

HI1U16770 HI1U16774 HI1U16772

Data Set S5 [121] (DNA): HI1U16765 HI1U16767 HI1U16769 HI1U16771 HI1U16773

HI1U16775 HI1U16777 HI1U16779

120

http://www.ebi.ac.uk

Appendix A. Data Sets 121

Data Set S6 [121] (mRNA): PP59651 PP59652 PP59653 PP59654 PP59655

PP59656

Data Set S7 [14] (rRNA): AB023287 AB023286 AB023285 AB023284 AB023283

AB023279 AB023278 AB023276

Appendix B

CIlib XML Configuration

This appendix lists the content of an XML configuration file which illustrates how sim-

ulations are generated within CIlib version 0.6.5. Because of space constraints, all sim-

ulations have not been included, but rather a representative example of each of the four

PSOs used throughout the experiments is reproduced here. The XML content is divided

into four sections:

• Algorithm definitions: Four PSO algorithms were defined, in order – the S-PSO

(“Lbest-PSO” ID tag), one CPSO-S6 participant (“LbestPSO50-Matches” ID tag),

the B-PSO (“BinaryPSO-Explorer” ID tag) and the M-PSO (“MutPSO” ID tag).

• Problem definitions: Four different MSA problems were defined, in order – S8 (in

binary mode) with 3 gaps allowed and the matches method (“Mmsa-3gap” ID tag),

S6 with 65 gaps allowed and the similarity method (“Smsa-gapS6” ID tag), S2

with 134 gaps allowed and the matches method (“Mmsa-gapS2” ID tag) and S7

with 1 gap allowed and the similarity method (“Smsa-gapS7” ID tag).

• Measurement definitions: Two different measurement suites were defined – both

launch 30 simulations (samples), report a single fitness every 250 iterations (resolution)

and the actual alignment solution. The first is used in conjunction with all PSOs

except B-PSO (“measurements1” ID tag) and the second one is used exclusively

in conjunction with the B-PSO (“measurements2” ID tag).

• Simulation definitions: Four different simulations were defined, in order – the S-

122

Appendix B. CIlib XML Configuration 123

PSO solving S7 (“Lbest-PSO” ID tag), the B-PSO solving S8 (“BinaryPSO-Explorer”

ID tag), M-PSO solving S6 (“MutPSO” ID tag) and CPSO-S6 solving S2 (“coop-pso”

ID tag).

The XML listing follows:

<?xml version="1.0"?> <!DOCTYPE simulator [

<!ATTLIST algorithm id ID #IMPLIED>

<!ATTLIST problem id ID #IMPLIED>

<!ATTLIST measurements id ID #IMPLIED>]>

<simulator>

<!--**-->

<!--Algorithm Definitions-->

<!--**-->

<algorithm id="Lbest-PSO" class="pso.PSO" particles="25">

<addStoppingCondition class="stoppingcondition.MaximumIterations" iterations= "1000"/>

<topology class="entity.topologies.LBestTopology" neighbourhoodSize = "3"/>

<iterationStrategy class= "pso.iterationstrategies.ASynchronousIterationStrategy"/>

<initialisationStrategy class="algorithm.initialisation.ClonedEntityInitialisationStrategy">

<prototypeEntity class="pso.particle.StandardParticle">

<positionUpdateStrategy class=

"pso.positionupdatestrategies.StandardPositionUpdateStrategy" />

<velocityInitialisationStrategy class=

"pso.particle.initialisation.RandomInitialVelocityStrategy" />

</prototypeEntity>

</initialisationStrategy>

</algorithm>

<algorithm id="LbestPSO50-Matches" class="pso.PSO" particles="50">

<topology class="entity.topologies.LBestTopology" neighbourhoodSize= "6"/>

<iterationStrategy class= "pso.iterationstrategies.ASynchronousIterationStrategy"/>

</algorithm>

<algorithm id="BinaryPSO-Explorer" class="pso.PSO" particles="30">

<addStoppingCondition class="stoppingcondition.MaximumIterations" iterations="2000"/>

<topology class="entity.topologies.VonNeumannTopology"/>

<iterationStrategy class= "pso.iterationstrategies.ASynchronousIterationStrategy"/>

<initialisationStrategy class="algorithm.initialisation.ClonedEntityInitialisationStrategy">

<prototypeEntity class="pso.particle.StandardParticle">

<positionUpdateStrategy class=

"pso.positionupdatestrategies.BinaryPositionUpdateStrategy" />

<velocityInitialisationStrategy class=

"pso.particle.initialisation.ZeroInitialVelocityStrategy" />

<velocityUpdateStrategy class=

"pso.velocityupdatestrategies.StandardVelocityUpdate">

Appendix B. CIlib XML Configuration 124

<vMax class=

"controlparameterupdatestrategies.LinearIncreasingUpdateStrategy"

range="R(0.001, 4.0)"/>

<inertiaWeight class=

"controlparameterupdatestrategies.LinearIncreasingUpdateStrategy"

range="R(0.001, 0.7)"/>

<cognitiveAcceleration class=

"controlparameterupdatestrategies.LinearIncreasingUpdateStrategy"

range="R(0.5, 2.0)"/>

<socialAcceleration class=

"controlparameterupdatestrategies.LinearIncreasingUpdateStrategy"

range="R(0.5, 2.0)"/>

</velocityUpdateStrategy>

</prototypeEntity>

</initialisationStrategy>

</algorithm>

<algorithm id="MutPSO" class="pso.PSO" particles="25">

<addStoppingCondition class="stoppingcondition.MaximumIterations" iterations= "1000" />

<topology class="entity.topologies.LBestTopology" neighbourhoodSize = "3"/>

<iterationStrategy class= "pso.iterationstrategies.ASynchronousIterationStrategy"/>

<initialisationStrategy class="algorithm.initialisation.ClonedEntityInitialisationStrategy">

<prototypeEntity class="pso.particle.StandardParticle">

<positionUpdateStrategy class=

"pso.positionupdatestrategies.GaussianPositionUpdateStrategy" bestReplace="true">

<pMut class=

"controlparameterupdatestrategies.LinearDecreasingUpdateStrategy"

range ="R(0.9, 0.1)"/>

</positionUpdateStrategy>

<velocityInitialisationStrategy class=

"pso.particle.initialisation.RandomInitialVelocityStrategy" />

</prototypeEntity>

</initialisationStrategy>

</algorithm>

<!--**-->

<!--Problem Definitions-->

<!--**-->

<problems>

<problem id="Mmsa-3gap" class="bioinf.sequencealignment.BinaryMSAProblem" weight1="1.0" weight2="1.0">

<dataSetBuilder class="bioinf.sequencealignment.FASTADataSetBuilder">

<dataSet class="problem.dataset.LocalDataSet" file="inputSeq/S8.fasta" />

</dataSetBuilder>

<alignmentCreator class="bioinf.sequencealignment.BinaryAlignmentCreator" justEvaluate="false">

<scoringMethod class= "bioinf.sequencealignment.MatchFogel" verbose="false"/>

</alignmentCreator>

<gapPenaltyMethod class= "bioinf.sequencealignment.GapOpeningAndExtensionPenalty"

Appendix B. CIlib XML Configuration 125

gapOpeningPenalty = "2" gapExtensionPenalty = "1" verbose="false"/>

<maxSequenceGapsAllowed value="3"/>

</problem>

<problem id="Smsa-gapS6" class="bioinf.sequencealignment.MSAProblem" weight1="1.0" weight2="1.0">

<dataSetBuilder class="bioinf.sequencealignment.FASTADataSetBuilder">

<dataSet class="problem.dataset.LocalDataSet" file="inputSeq/S6.fasta" />

</dataSetBuilder>

<alignmentCreator class="bioinf.sequencealignment.AlignmentCreator" justEvaluate="false">

<scoringMethod class= "bioinf.sequencealignment.Similarity" MATCH="2" MISMATCH="0"

GAP_PENALTY="-1" weight="true" verbose="false"/>

</alignmentCreator>

<gapPenaltyMethod class= "bioinf.sequencealignment.GapOpeningAndExtensionPenalty"

gapOpeningPenalty = "2" gapExtensionPenalty = "1" verbose="false"/>

<maxSequenceGapsAllowed value="65"/>

</problem>

<problem id="Mmsa-gapS2" class="bioinf.sequencealignment.MSAProblem" weight1="1.0" weight2="1.0">

<dataSetBuilder class="bioinf.sequencealignment.FASTADataSetBuilder">

<dataSet class="problem.dataset.LocalDataSet" file="inputSeq/S2.fasta" />

</dataSetBuilder>

<alignmentCreator class="bioinf.sequencealignment.AlignmentCreator" justEvaluate="false">

<scoringMethod class= "bioinf.sequencealignment.MatchFogel"

verbose="false" linearScale="true"/>

</alignmentCreator>

<gapPenaltyMethod class= "bioinf.sequencealignment.GapOpeningAndExtensionPenalty"

gapOpeningPenalty = "2" gapExtensionPenalty = "1" verbose="false"/>

<maxSequenceGapsAllowed value="134"/>

</problem>

<problem id="Smsa-gapS7" class="bioinf.sequencealignment.MSAProblem" weight1="1.0" weight2="1.0">

<dataSetBuilder class="bioinf.sequencealignment.FASTADataSetBuilder">

<dataSet class="problem.dataset.LocalDataSet" file="inputSeq/S7.fasta" />

</dataSetBuilder>

<alignmentCreator class="bioinf.sequencealignment.AlignmentCreator" justEvaluate="false">

<scoringMethod class= "bioinf.sequencealignment.Similarity" MATCH="2"

MISMATCH="0" GAP_PENALTY="-1" weight="true" verbose="false"/>

</alignmentCreator>

<gapPenaltyMethod class= "bioinf.sequencealignment.GapOpeningAndExtensionPenalty"

gapOpeningPenalty = "2" gapExtensionPenalty = "1" verbose="false"/>

<maxSequenceGapsAllowed value="1"/>

</problem>

</problems>

<!--**-->

<!--Measurement Definitions-->

<!--**-->

Appendix B. CIlib XML Configuration 126

<measurements id="measurements1" class="simulator.MeasurementSuite" resolution="250" samples="30">

<addMeasurement class="measurement.single.Fitness" />

<addMeasurement class="bioinf.sequencealignment.AlignmentVisualizer" fullColumns = "true" />

</measurements>

<measurements id="measurements2" class="simulator.MeasurementSuite" resolution="250" samples="30">

<addMeasurement class="measurement.single.Fitness" />

<addMeasurement class="bioinf.sequencealignment.BinaryAlignmentVisualizer" fullColumns="true"/>

</measurements>

<!--**-->

<!--Simulation Definitions-->

<!--**-->

<simulations>

<simulation>

<algorithm idref="Lbest-PSO" />

<problem idref="Smsa-gapS7" />

<measurements idref="measurements1" file="output/S7_similarity_S-PSO.txt" />

</simulation>

<simulation>

<algorithm idref="BinaryPSO-Explorer" />

<problem idref="Mmsa-3gap" />

<measurements idref="measurements2" file="output/S8_3gaps_matches_B-PSOExplorer.txt" />

</simulation>

<simulation>

<algorithm idref="MutPSO" />

<problem idref="Smsa-gapS6" />

<measurements idref="measurements1" file="output/S6_similarity_M-PSOtrueLinDec.txt" />

</simulation>

<simulation>

<algorithm id="coop-pso" class="cooperative.SplitCooperativeAlgorithm">

<addStoppingCondition class="stoppingcondition.MaximumIterations" iterations="1000"/>

<algorithm idref="LbestPSO50-Matches"/>

<algorithm idref="LbestPSO50-Matches"/>

<algorithm idref="LbestPSO50-Matches"/>

<algorithm idref="LbestPSO50-Matches"/>

<algorithm idref="LbestPSO50-Matches"/>

<algorithm idref="LbestPSO50-Matches"/>

<splitStrategy class="cooperative.splitstrategies.PerfectSplitStrategy"/>

<populationIterator class="cooperative.populationiterators.SequentialPopulationIterator"/>

<contributionUpdateStrategy class=

"cooperative.contributionupdatestrategies.StandardContributionUpdateStrategy"/>

<fitnessUpdateStrategy class=

"cooperative.fitnessupdatestrategies.StandardFitnessUpdateStrategy"/>

Appendix B. CIlib XML Configuration 127

</algorithm>

<problem idref="Mmsa-gapS2" />

<measurements idref="measurements1" file="output/S2_matches_C-PSO_6.txt" />

</simulation>

</simulations>

</simulator>

Appendix C

Acronyms & Abbreviations

This appendix lists the acronyms and abbreviations used throughout this thesis. The list

is sorted alphabetically, with acronyms and abbreviations typeset in bold. The meaning

associated with each acronym or abbreviation is provided alongside.

ACO Ant Colony Optimization

aGP affine Gap Penalty

AI Artificial Intelligence

B-PSO Binary Particle Swarm Optimization

BLAST Basic Local Alignment Search Tool

BLOSUM BLOcks SUbstitution Matrices

CCGA Cooperative Coevolutionary Genetic Algorithm

CI Computational Intelligence

Ci Confidence interval

CIlib Computational Intelligence library

CIRG Computational Intelligence Research Group

CPSO-SK Cooperative Split Particle Swarm Optimization

CPU Central Processing Unit

CSI Computational Swarm Intelligence

128

Appendix C. Acronyms & Abbreviations 129

DCA Divide-and-Conquer Algorithm

DNA Deoxyribonucleic Acid

DoE Design of Experiments

DP Dynamic Programming

EA Evolutionary Algorithm

EBI European Bioinformatics Institute

EC Evolutionary Computation

EF Evaluation Function

EP Evolutionary Programming

GA Genetic Algorithm

GBest Global Best

HGP Human Genome Project

HMM Hidden Markov Model

IBM International Business Machine

IS Identity Score

LBest Local Best

lGP linear Gap Penalty

MSA Multiple Sequence Alignment

M-PSO Mutating PSO

MOPSO Multiple Objective PSO

MWTP Maximum Weight Trace Problem

NP Nondeterministic Polynomial

OF Objective Function

PAM Point Accepted Mutation

PCR Polymerase Chain Reaction

PDF Portable Document File

PID Percentage Identity

PSA Pairwise Sequence Alignment

PSO Particle Swarm Optimization

RNA Ribonucleic Acid

SA Simulated Annealing

SAGA Sequence Alignment by Genetic Algorithm

Appendix C. Acronyms & Abbreviations 130

SI Swarm Intelligence

SoP Sum of Pairs

T-COFFEE Tree-based Consistency Objective Function For alignmEnt Evaluation

TSP Traveling Salesman Problem

XML Extensible Markup Language

Appendix D

Symbols

This appendix lists, alphabetically, the mathematical symbols used within this thesis,

along with their definitions.

α Confidence percentage

A Alphabet

Â Extended alphabet

β Total number of possible combinations of an alignment

B
m Binary-valued, multidimensional domain

c1, c2 Acceleration coefficients

Cg Population at gth generation

Cg,q Individual q at gth generation

∆(t, z) Non-uniform mutating function

f Objective function

f(x) Function of x

f Objective function vector

f(ys(t)) Entire swarm evaluation of personal best positions at time step t

fφ Minimum fitness threshold

f(xi(t)) Fitness evaluation function of particle i at time step t

g Generation counter

gext Extension gap penalty

131

Appendix D. Symbols 132

gfixed Fixed gap penalty

gmax Generation limit

gop Opening gap penalty

i Particle index

ı, Sequence index within a set

j Dimension index

k Number of sequences within a set

k Sub-swarm index

K Split factor

κ Number of indels

λ Degree of dependency

M Matches method

Mc Number of matches in column c

m Number of dimensions in hyperspace

MSAfunc MSA objective/evaluation function

n Length of sequence S

N(0, σ) Samples a random number from a normal Gaussian distribution with

0 mean and σ deviation

ℵi Neighbourhoud of particle i

n̂ Length of aligned sequence Ŝ

Og Generated offspring at gth generation

Og,q Generated offspring q at gth generation

Ω m-dimensional search space

ω Inertia weight

p Number of objective in f

Φ Swarm of particles

Pm(t) Mutation probability

R
m Real-valued, multidimensional domain

r Random value

Appendix D. Symbols 133

r1,j(t) Random value 1 for jth dimension at time step t

r2,j(t) Random value 2 for jth dimension at time step t

r3,j(t) Random value 3 for jth dimension at time step t

r1, r2 Random values

S Sequence

Sk kth sub-swarm

s Size of swarm, i.e. number of particles

sℵi Number of particles in the neighbourhood of particle i

Sk.s Size of kthsub-swarm

sig(vi,j(t)) Sigmoid function of vi,j(t) at time step t

Ŝ Aligned sequence

S Similarity method

sp Symbol at position p in sequence S

S[p] Symbol at position p in sequence S

S[p, q] Sub-sequence delimited by index p and q within sequence S

|S| Length of sequence S

T Set of k sequences

T̂ Set of k aligned sequences

T Total number of iterations

t Time step counter

U(a, b) Samples a random number between a and b from an uniform distribution

Vmax Maximum velocity

vi,j(t) Velocity value in jth dimension of particle i at time step t

vi Velocity vector of particle i

w Alignment score

w∗ Optimal alignment score

xi Value at ith position in x

xi,j(t) jth component of position vector of particle i at time step t

x
′

i,j(t) jth mutated component of position vector of particle i at time step t

Appendix D. Symbols 134

x Vector of values over Ω

xmin Vector of minimum values for all xi

xmax Vector of maximum values for all xi

xi Position vector of ith particle

x∗ Solution vector for minimization

ξ1, ξ2 Weights associated to SymbolScore and GapScore, respectively

yi Personal best position vector of particle i

yi,j(t) jth component of personal best position vector of particle i at time step t

ŷi(t) Best position vector in neighbourhood of particle i at time step t

ŷ(t) Best position vector in swarm at time step t

ŷi,j(t) jth component of best position vector in ℵi at time step t

z Position vector used in context vector

Appendix E

Alphabets and S. Matrices

This appendix displays tables of residue alphabets and common substitution matrices

currently used in bioinformatics. Tables E.1, E.2 and E.3 show the names of the corre-

sponding symbols from the DNA, RNA and amino acids alphabets, respectively.

Table E.1: Residue alphabet for DNA

DNA code (4) Meaning

A Adenine

C Cytosine

G Guanine

T Thymine

Table E.2: Residue alphabet for RNA

RNA code (4) Meaning

A Adenine

C Cytosine

G Guanine

U Uracil

A presentation of a typical identity matrix used for DNA substitutions is given in

Table E.4.

135

Appendix E. Alphabets and S. Matrices 136

Table E.3: Residue alphabet for amino acids (proteins)

Amino Acid code (24) Meaning

A Alanine

E Glutamate

H Histidine

L Leucine

P Proline

S Serine

W Tryptophan

C Cysteine

F Phenylalanine

I Isoleucine

M Methionine

Q Glutamine

T Threonine

Y Tyrosine

D Aspartate

G Glycine

K Lysine

N Asparagine

R Arginine

V Valine

B Aspartic acid or Asparagine

Z Glutamic acid or Glutamine

X any

* translation stop

Appendix E. Alphabets and S. Matrices 137

Table E.4: A typical DNA identity matrix

- A C T G

A 1 -100 -100 -100

C -100 1 -100 -100

T -100 -100 1 -100

G -100 -100 -100 1

The full PAM250 and BLOSUM62 substitution matrices, both of which used for

protein sequence alignments, are respectively illustrated in Figure E.1 and Figure E.2.

Figure E.1: The PAM250 S. matrix

Appendix E. Alphabets and S. Matrices 138

Figure E.2: The BLOSUM62 S. matrix

Index

alphabet

definitions, 11

binary PSO

introduction, 47

pseudocode, 48

bioinformatics, 1, 7

biological data, 1

CIlib, 63

CLUSTAL, 27

computational intelligence, 1, 32

cooperative split PSO

introduction, 50

pseudocode, 51

Darwin

theories, 9

dynamic programming, 2, 26

gaps

indels, 17

penalty, 17

genetic algorithm, 29

cross-over, 36

introduction, 34

mutation, 37

population, 34

pseudocode, 35

selection, 38

genetic information

genotype, 7

phenotype, 7

hidden markov model, 28

human genome project, 6

matches approach, 16

example, 16

multiple sequence alignment, 6

exact approach, 26

computer complexity, 24

consistency-based approach, 29

difficulty, 24

evolutionary algorithms, 29

iterative approach, 28

problem, 23

progressive approach, 27

scoring function, 24

statement, 2

mutating PSO

introduction, 48

pseudocode, 49

nucleic acids

deoxyribonucleic acid, 7

139

Index 140

ribonucleic acid, 7

optimization

evaluation function, 33

maximization, 32

minimization, 32

multiple objective, 33

search space, 33

particle swarm optimization, 1

acceleration coefficients, 44

binary PSO, 47

cooperative split PSO, 50

fitness function, 40

GBest, 42

inertia weight, 45

introduction, 39

iterations, 46

LBest, 43

mutating PSO, 48

particles, 39

position, 40

pseudocode, 41

swarm, 46

topology, 42

velocity, 40

velocity clamping, 45

Von Neumann, 43

polynomial problem

nondeterministic, 33

protein synthesis, 8

SAGA, 29

scoring matrix, see substitution matrix

sequence

definition, 11

sequence alignment

biological use, 20

definition, 12

general use, 19, 22

multiple, 13

pairwise, 13

process, 11

proteins, 17

representation, 12

sequence weights, 18

types, 12

validity, 12

sequence mutation

deletions, 9

insertions, 9

sequence relatedness, 10

similarity approach, 14

costs, 15

example, 16

simulated annealing, 28

sub-sequence

definition, 11

substitution matrix, 18

BLOSUM62, 19

Gonnet, 19

identity matrix, 18

PAM250, 19

sum of pairs, 15

T-COFFEE, 29

	Final MSc thesis - F. Zablocki.pdf
	List of Figures
	List of Algorithms
	List of Tables
	Introduction
	Problem Statement and Overview
	Objectives
	Contributions
	Thesis Outline

	Multiple Sequence Alignment
	Introduction
	Biological Aspects
	The Code of Life
	Life Origins

	Definitions, Notations and Examples
	Building Blocks
	Alignment Evaluation
	Scoring Enhancement

	Use of Sequence Alignments
	Computer-Aided Molecular Biology
	Briteny Spears

	Where Does the MSA Problem Lie?
	Choice of Sequence
	Is This Alignment Any Good?
	Computer Complexity

	State of the Art
	The Exact Approach
	The Progressive Approach
	The Iterative Approach
	The Consistency-based Approach

	Summary

	Computational Intelligence Paradigms
	Introduction
	Classical Optimization
	Minimization Definition
	NP-Complete Problems

	Genetic Algorithms
	Genetic Algorithm Essentials
	Evolutionary Operators
	Cooperative Coevolutionary Genetic Algorithm

	Particle Swarm Optimization
	Algorithm Essentials
	Neighbourhood Topologies
	PSO Parameters
	Modifications to PSO

	Swarm Intelligence versus Evolutionary Computation
	Summary

	Particle Swarm Optimization for Multiple Sequence Alignment
	Introduction
	Representation Schemes
	Integer Search Space
	Binary Search Space

	Fitness Evaluation
	Summary

	Empirical Analysis
	Introduction
	S8 Analysis
	DNA Data Set S8
	Characteristic Selection
	Experimental Procedure
	Experimental Results for S-PSO
	Experimental Results for B-PSO
	Conclusion

	Scalability Analysis
	MSA Data Sets
	PSO Algorithms and Configurations
	Experimental Procedure
	Experimental Results
	Comparison with Other MSA Programs
	Conclusion

	Summary

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Data Sets
	CIlib XML Configuration
	Acronyms & Abbreviations
	Symbols
	Alphabets and S. Matrices
	Index

