577 research outputs found

    Big Data Optimization : Algorithmic Framework for Data Analysis Guided by Semantics

    Get PDF
    Fecha de Lectura de Tesis: 9 noviembre 2018.Over the past decade the rapid rise of creating data in all domains of knowledge such as traffic, medicine, social network, industry, etc., has highlighted the need for enhancing the process of analyzing large data volumes, in order to be able to manage them with more easiness and in addition, discover new relationships which are hidden in them Optimization problems, which are commonly found in current industry, are not unrelated to this trend, therefore Multi-Objective Optimization Algorithms (MOA) should bear in mind this new scenario. This means that, MOAs have to deal with problems, which have either various data sources (typically streaming) of huge amount of data. Indeed these features, in particular, are found in Dynamic Multi-Objective Problems (DMOPs), which are related to Big Data optimization problems. Mostly with regards to velocity and variability. When dealing with DMOPs, whenever there exist changes in the environment that affect the solutions of the problem (i.e., the Pareto set, the Pareto front, or both), therefore in the fitness landscape, the optimization algorithm must react to adapt the search to the new features of the problem. Big Data analytics are long and complex processes therefore, with the aim of simplify them, a series of steps are carried out through. A typical analysis is composed of data collection, data manipulation, data analysis and finally result visualization. In the process of creating a Big Data workflow the analyst should bear in mind the semantics involving the problem domain knowledge and its data. Ontology is the standard way for describing the knowledge about a domain. As a global target of this PhD Thesis, we are interested in investigating the use of the semantic in the process of Big Data analysis, not only focused on machine learning analysis, but also in optimization

    Robot Consciousness: Physics and Metaphysics Here and Abroad

    Get PDF
    Interest has been renewed in the study of consciousness, both theoretical and applied, following developments in 20th and early 21st-century logic, metamathematics, computer science, and the brain sciences. In this evolving narrative, I explore several theoretical questions about the types of artificial intelligence and offer several conjectures about how they affect possible future developments in this exceptionally transformative field of research. I also address the practical significance of the advances in artificial intelligence in view of the cautions issued by prominent scientists, politicians, and ethicists about the possible dangers of such sufficiently advanced general intelligence, including by implication the search for extraterrestrial intelligence

    Ontology Alignment using Biologically-inspired Optimisation Algorithms

    Get PDF
    It is investigated how biologically-inspired optimisation methods can be used to compute alignments between ontologies. Independent of particular similarity metrics, the developed techniques demonstrate anytime behaviour and high scalability. Due to the inherent parallelisability of these population-based algorithms it is possible to exploit dynamically scalable cloud infrastructures - a step towards the provisioning of Alignment-as-a-Service solutions for future semantic applications

    Hybrid Honey Bees Mating Optimization Algorithm for Identifying the Near-Optimal Solution in Web Service Composition

    Get PDF
    This paper addresses the problem of optimality in semantic Web service composition by proposing a hybrid nature-inspired method for selecting the optimal or near-optimal solution in semantic Web Service Composition. The method hybridizes the Honey-Bees Mating Optimization algorithm with components inspired from genetic algorithms, reinforcement learning, and tabu search. To prove the necessity of hybridization, we have analyzed comparatively the experimental results provided by our hybrid selection algorithm versus the ones obtained with the classical Honey Bees Mating Optimization algorithm and with the genetic-inspired algorithm of Canfora et al

    A Repository of Semantic Open EHR Archetypes

    Get PDF
    This paper describes a repository of openEHR archetypes that have been translated to OWL. In the work presented here, five different CKMs (Clinical Knowledge Managers) have been downloaded and the archetypes have been translated to OWL. This translation is based on an existing translator that has been improved to solve programming problems with certain structures. As part of the repository a tool has been developed to keep it always up-to-date. So, any change in one of the CKMs (addition, elimination or even change of an archetype) will involve translating the changed archetypes once more. The repository is accessible through a Web interface (http://www.openehr.es/)

    A self-adaptive multimeme memetic algorithm co-evolving utility scores to control genetic operators and their parameter settings

    Get PDF
    Memetic algorithms are a class of well-studied metaheuristics which combine evolutionary algorithms and local search techniques. A meme represents contagious piece of information in an adaptive information sharing system. The canonical memetic algorithm uses a fixed meme, denoting a hill climbing operator, to improve each solution in a population during the evolutionary search process. Given global parameters and multiple parametrised operators, adaptation often becomes a crucial constituent in the design of MAs. In this study, a self-adaptive self-configuring steady-state multimeme memetic algorithm (SSMMA) variant is proposed. Along with the individuals (solutions), SSMMA co-evolves memes, encoding the utility score for each algorithmic component choice and relevant parameter setting option. An individual uses tournament selection to decide which operator and parameter setting to employ at a given step. The performance of the proposed algorithm is evaluated on six combinatorial optimisation problems from a cross-domain heuristic search benchmark. The results indicate the success of SSMMA when compared to the static Mas as well as widely used self-adaptive Multimeme Memetic Algorithm from the scientific literature

    Evolving Neural Networks to Solve a Two-Stage Hybrid Flow Shop Scheduling Problem with Family Setup Times

    Get PDF
    We present a novel strategy to solve a two-stage hybrid flow shop scheduling problem with family setup times. The problem is derived from an industrial case. Our strategy involves the application of NeuroEvolution of Augmenting Topologies - a genetic algorithm, which generates arbitrary neural networks being able to estimate job sequences. The algorithm is coupled with a discrete-event simulation model, which evaluates different network configurations and provides training signals. We compare the performance and computational efficiency of the proposed concept with other solution approaches. Our investigations indicate that NeuroEvolution of Augmenting Topologies can possibly compete with state-of-the-art approaches in terms of solution quality and outperform them in terms of computational efficiency

    IN2GESOFT: Innovation and Integration of Methods for the Development and Quantitative Management of Software Projects TIN2004-06689-C03

    Get PDF
    This coordinated project intends to introduce new methods in software engineering project management, integrating different quantitative and qualitative technologies in the management processes. The underlying goal to all three subprojects participants is the generation of information adapted for the efficient performance in the directing of the project. The topics that are investigated are related to the capture of decisions in dynam ical environments and complex systems, software testing and the analysis of the manage ment strategies for the process assessment of the software in its different phases of the production. The project sets up a methodological, conceptual framework and supporting tools that facilitate the decision making in the software project management. This allows us to eval uate the risk and uncertainty associated to different alternatives of management before leading them to action. Thus, it is necessary to define a taxonomy of software models so that they reflect the current reality of the projects. Since the software testing is one of the most critical and costly processes directed to guarantee the quality and reliability of the software, we undertake the research on the automation of the process of software testing by means of the development of new technologies test case generation, mainly based in metaheuristic and model checking techniques in the domains of database and internet applications. The software system developed will allow the integration of these technologies, and the management information needed, from the first phases of the cycle of life in the construction of a software product up to the last ones such as regression tests and maintenance. The set of technologies that we investigate include the use of statistical analysis and of experimental design for obtaining metrics in the phase of analysis, the application of the bayesian nets to the decision processes, the application of the standards of process eval uation and quality models, the utilization of metaheuristics algorithms and technologies of prediction to optimize resources, the technologies of visualization to construct control dashboards, hybrid models for the simulation of processes and others
    corecore