117 research outputs found

    BRIDGING THE GAP BETWEEN TECHNOLOGY AND SCIENCE WITH EXAMPLES FROM ECOLOGY AND BIODIVERSITY

    Get PDF
    Early informatics focused primarily on the application of technology and computer science to a specific domain; modern informatics has broadened to encompass human and knowledge dimensions. Application of technology is but one aspect of informatics. Understanding domain members’ issues, priorities, knowledge, abilities, interactions, tasks and work environments is another aspect, and one that directly impacts application success. Involving domain members in the design and development of technology in their domain is a key factor in bridging the gap between technology and science. This user-centered design (UCD) approach in informatics is presented via an ecoinformatics case study in three areas: collaboration, usability, and education and training

    Scientific instruments for climate change adaptation: estimating and optimizing the efficiency of ecosystem service provision

    Get PDF
    Adaptation to the consequences of climate change can depend on efficient use of ecosystem services (ES), i.e. a better use of natural services through management of the way in which they are delivered to society. While much discussion focuses on reducing consumption and increasing production of services, a lack of scientific instruments has so far prevented other mechanisms to improve ecosystem services efficiency from being addressed systematically as an adaptation strategy. This paper describes new methodologies for assessing ecosystem services and quantifying their values to humans, highlighting the role of ecosystem service flow analysis in optimizing the efficiency of ES provision.Ecosystem services, flow analysis, Bayesian modeling, spatial analysis, Environmental Economics and Policy, Q01, Q54, Q55, Q57,

    WASOS: An Ontology for Modelling Traditional Knowledge of Sustainable Water Stewardship

    Get PDF
    Recent work and publications concerning sustainable water stewardship in Rajasthan (India) highlight how contemporary challenges are eroding traditional, communal approaches to water stewardship through mechanised extraction beyond the renewable capacities of ecosystems. Our work is focused on developing a formal ontology for modelling the knowledge of traditional water stewardship in India’s drylands by capturing the key constitutional elements of regenerative methods. Our method follows an iterative evolving prototype process for delivering the first version of the Ontology for Sustainable Water Stewardship (WASOS). The ontology contains a moderate number of high-level classes and properties that represent the water management decisionmaking process. By making key relationships visible, we aim to support decision-making in complex catchments particularly where there are contested urban and rural claims on water

    Scientific instruments for climate change adaptation: Estimating and optimizing the efficiency of ecosystem service provision

    Get PDF
    Adaptation to the consequences of climate change can depend on efficient use of ecosystem services (ES), i.e. a better use of natural services through management of the way in which they are delivered to society. While much discussion focuses on reducing consumption and increasing production of services, a lack of scientific instruments has so far prevented other mechanisms to improve ecosystem services efficiency from being addressed systematically as an adaptation strategy. This paper describes new methodologies for assessing ecosystem services and quantifying their values to humans, highlighting the role of ecosystem service flow analysis in optimizing the efficiency of ES provision

    The Delft Report: Linked Data and the challenges for geographic information standardization

    Get PDF
    The addition of Linked Data to the geographic standards may produce effective cost savings in spatial data production and use by improving some issues relevant to Spatial Data Infrastructures (SDI). The combination of Linked Data and SDIs, its benefits and challenges are collected in the report on Linked Data presented at 32nd ISO/TC 211 plenary in Delft. This paper presents a brief summary of the mentioned report, where we focus on the main recommendations in the context and evaluate their potential impact in SDIs

    A Geographic Ontology and GIS Model for Carolina Bays

    Get PDF
    Carolina bays are a unique geomorphologic entity located along the Atlantic coastal plain. Even without the benefit of an overhead view, they have been noted as a distinct feature of the coastal plain as first described by the South Carolina Geological Survey of South Carolina in 1848. The first aerial photographs in the 1930 coastal South Carolina region revealed that the unique depression wetlands were more than just a strange local phenomenon. Aerial photos enabled observers to see qualities in addition to their relative distribution that make them unique: their oval shape, northwest to southeast orientation and the presence of raised sand rims along their eastern and southeastern edges in many instances. Being such a distinctive surface feature and recognized for their ecological value, it would seem that Carolina bays would have been defined within their own map coverage across the Atlantic Coastal plain. However, just two statewide inventories have been completed for South Carolina and Georgia, and one for North Carolina has never been conducted. While previous inventories have employed onscreen digitization with Geographic Information Systems (GIS) in order to inventory bays, researchers have raised concerns over how individuals define Carolina bay as a geographic entity. The differences in human perception make the classification of geographic entities that exist on a continuum such as Carolina bays a challenge and may have contributed to widely varying estimates of their numbers. In order to explore the classification issues related to Carolina bays, and the usefulness of geographic ontology and cartographic modeling for inventory, a cartographic model was constructed for use within the Ocean Bay quad in Francis Marion National Forest in Berkeley and Charleston Counties, South Carolina. To test the model’s selective ability, a comparison was made between Carolina bay features that a researcher selected and bays identified by a cartographic model. The model positively identified 76 percent of Carolina bays that a researcher identified in an image within a single quadrangle. The approach used in this model showed that the initial identification rule of any pixel within a bay’s border counted as a positive identification was inadequate. Other aspects not accounted for, including false positive identification, neither researcher nor model being able to identify a bay, or bays that the model was able to select that the researcher was not were added into a subsequent model. Results from the amended model show fewer researcher identified instances of Carolina bays, but a slightly higher rate of mutual identification by the model and the researcher. With these complications in mind, a similar approach was taken with Bladen County North Carolina, but with significant revisions. A cartographic model was created for Bladen County North Carolina in which bay characteristics were selected from the North Carolina Gap Analysis Program (GAP) land use/landcover dataset, the Soil Survey Geographic Database (SSURGO) and National Wetlands Inventory (NWI). The predictive ability of the model was assessed by manually selecting Carolina bays from a high resolution image and comparing the manually selected bays with the model identifications. In order to remedy the issue of forcing all instances of bays into one of two categories (either an object is a bay or it is not), a ranking system was developed that was based upon a core/radial cognitive model, and the approach taken with the Savannah River Ecology Lab (SREL) inventory. The rule for positive identification was changed from a single pixel to a visual estimation of 50 percent coverage of a Carolina bay. As a whole, the predictive model identified 57 percent of the features also identified manually by the researcher, but the bay ranking system gives a different breakdown of how well the model worked within each category: exemplar (86 percent), less distinct (79 percent), bay-like (53 percent), and destroyed (19 percent) show significant differences. In addition to the ranking system, other attributes were assessed, such as the presence or absence of a sand rim, water visibility, overlap, diverging, long axis length and orientation. The analysis shows that the model has the potential to identify well defined bays with at least 50 percent areal coverage, and as such offers the first iteration of a computational ontology for the Carolina bays of Bladen County, North Carolina. Results from this research may provide a basis for modeling the entire range of Carolina bays, defining one of the most curious features of the Atlantic Coastal Plain and uniting differing definitions under one digital concept

    A methodology for adaptable and robust ecosystem services assessment

    Get PDF
    Ecosystem Services (ES) are an established conceptual framework for attributing value to the benefits that nature provides to humans. As the promise of robust ES-driven management is put to the test, shortcomings in our ability to accurately measure, map, and value ES have surfaced. On the research side, mainstream methods for ES assessment still fall short of addressing the complex, multi-scale biophysical and socioeconomic dynamics inherent in ES provision, flow, and use. On the practitioner side, application of methods remains onerous due to data and model parameterization requirements. Further, it is increasingly clear that the dominant one model fits all paradigm is often ill-suited to address the diversity of real-world management situations that exist across the broad spectrum of coupled human-natural systems. This article introduces an integrated ES modeling methodology, named ARIES (ARtificial Intelligence for Ecosystem Services), which aims to introduce improvements on these fronts. To improve conceptual detail and representation of ES dynamics, it adopts a uniform conceptualization of ES that gives equal emphasis to their production, flow and use by society, while keeping model complexity low enough to enable rapid and inexpensive assessment in many contexts and for multiple services. To improve fit to diverse application contexts, the methodology is assisted by model integration technologies that allow assembly of customized models from a growing model base. By using computer learning and reasoning, model structure may be specialized for each application context without requiring costly expertise. In this article we discuss the founding principles of ARIES - both its innovative aspects for ES science and as an example of a new strategy to support more accurate decision making in diverse application contexts

    The Hierarchic treatment of marine ecological information from spatial networks of benthic platforms

    Get PDF
    Measuring biodiversity simultaneously in different locations, at different temporal scales, and over wide spatial scales is of strategic importance for the improvement of our understanding of the functioning of marine ecosystems and for the conservation of their biodiversity. Monitoring networks of cabled observatories, along with other docked autonomous systems (e.g., Remotely Operated Vehicles [ROVs], Autonomous Underwater Vehicles [AUVs], and crawlers), are being conceived and established at a spatial scale capable of tracking energy fluxes across benthic and pelagic compartments, as well as across geographic ecotones. At the same time, optoacoustic imaging is sustaining an unprecedented expansion in marine ecological monitoring, enabling the acquisition of new biological and environmental data at an appropriate spatiotemporal scale. At this stage, one of the main problems for an effective application of these technologies is the processing, storage, and treatment of the acquired complex ecological information. Here, we provide a conceptual overview on the technological developments in the multiparametric generation, storage, and automated hierarchic treatment of biological and environmental information required to capture the spatiotemporal complexity of a marine ecosystem. In doing so, we present a pipeline of ecological data acquisition and processing in different steps and prone to automation. We also give an example of population biomass, community richness and biodiversity data computation (as indicators for ecosystem functionality) with an Internet Operated Vehicle (a mobile crawler). Finally, we discuss the software requirements for that automated data processing at the level of cyber-infrastructures with sensor calibration and control, data banking, and ingestion into large data portals.Peer ReviewedPostprint (published version

    2005 LNO Annual Report to the Executive Committee

    Get PDF
    This report summarizes activities and accomplishments of the LTER Network Office (LNO) during the period March 1, 2004 until February 28, 2005. Along with the survey of sites administered by the Executive Board, this document will be used to facilitate the annual review of LNO performance. - Presented to the LTER Excutive Boar
    • 

    corecore