61 research outputs found

    Dynamic Resource Allocation in Embedded, High-Performance and Cloud Computing

    Get PDF
    The availability of many-core computing platforms enables a wide variety of technical solutions for systems across the embedded, high-performance and cloud computing domains. However, large scale manycore systems are notoriously hard to optimise. Choices regarding resource allocation alone can account for wide variability in timeliness and energy dissipation (up to several orders of magnitude). Dynamic Resource Allocation in Embedded, High-Performance and Cloud Computing covers dynamic resource allocation heuristics for manycore systems, aiming to provide appropriate guarantees on performance and energy efficiency. It addresses different types of systems, aiming to harmonise the approaches to dynamic allocation across the complete spectrum between systems with little flexibility and strict real-time guarantees all the way to highly dynamic systems with soft performance requirements. Technical topics presented in the book include: Load and Resource Models Admission Control Feedback-based Allocation and Optimisation Search-based Allocation Heuristics Distributed Allocation based on Swarm Intelligence Value-Based Allocation Each of the topics is illustrated with examples based on realistic computational platforms such as Network-on-Chip manycore processors, grids and private cloud environments.Note.-- EUR 6,000 BPC fee funded by the EC FP7 Post-Grant Open Access Pilo

    Dynamic Resource Allocation in Embedded, High-Performance and Cloud Computing

    Get PDF
    The availability of many-core computing platforms enables a wide variety of technical solutions for systems across the embedded, high-performance and cloud computing domains. However, large scale manycore systems are notoriously hard to optimise. Choices regarding resource allocation alone can account for wide variability in timeliness and energy dissipation (up to several orders of magnitude). Dynamic Resource Allocation in Embedded, High-Performance and Cloud Computing covers dynamic resource allocation heuristics for manycore systems, aiming to provide appropriate guarantees on performance and energy efficiency. It addresses different types of systems, aiming to harmonise the approaches to dynamic allocation across the complete spectrum between systems with little flexibility and strict real-time guarantees all the way to highly dynamic systems with soft performance requirements. Technical topics presented in the book include: ‱ Load and Resource Models‱ Admission Control‱ Feedback-based Allocation and Optimisation‱ Search-based Allocation Heuristics‱ Distributed Allocation based on Swarm Intelligence‱ Value-Based AllocationEach of the topics is illustrated with examples based on realistic computational platforms such as Network-on-Chip manycore processors, grids and private cloud environments

    Dynamic Resource Allocation in Embedded, High-Performance and Cloud Computing

    Get PDF
    The availability of many-core computing platforms enables a wide variety of technical solutions for systems across the embedded, high-performance and cloud computing domains. However, large scale manycore systems are notoriously hard to optimise. Choices regarding resource allocation alone can account for wide variability in timeliness and energy dissipation (up to several orders of magnitude). Dynamic Resource Allocation in Embedded, High-Performance and Cloud Computing covers dynamic resource allocation heuristics for manycore systems, aiming to provide appropriate guarantees on performance and energy efficiency. It addresses different types of systems, aiming to harmonise the approaches to dynamic allocation across the complete spectrum between systems with little flexibility and strict real-time guarantees all the way to highly dynamic systems with soft performance requirements. Technical topics presented in the book include: ‱ Load and Resource Models‱ Admission Control‱ Feedback-based Allocation and Optimisation‱ Search-based Allocation Heuristics‱ Distributed Allocation based on Swarm Intelligence‱ Value-Based AllocationEach of the topics is illustrated with examples based on realistic computational platforms such as Network-on-Chip manycore processors, grids and private cloud environments

    Energy Aware Runtime Systems for Elastic Stream Processing Platforms

    Get PDF
    Following an invariant growth in the required computational performance of processors, the multicore revolution started around 20 years ago. This revolution was mainly an answer to power dissipation constraints restricting the increase of clock frequency in single-core processors. The multicore revolution not only brought in the challenge of parallel programming, i.e. being able to develop software exploiting the entire capabilities of manycore architectures, but also the challenge of programming heterogeneous platforms. The question of “on which processing element to map a specific computational unit?”, is well known in the embedded community. With the introduction of general-purpose graphics processing units (GPGPUs), digital signal processors (DSPs) along with many-core processors on different system-on-chip platforms, heterogeneous parallel platforms are nowadays widespread over several domains, from consumer devices to media processing platforms for telecom operators. Finding mapping together with a suitable hardware architecture is a process called design-space exploration. This process is very challenging in heterogeneous many-core architectures, which promise to offer benefits in terms of energy efficiency. The main problem is the exponential explosion of space exploration. With the recent trend of increasing levels of heterogeneity in the chip, selecting the parameters to take into account when mapping software to hardware is still an open research topic in the embedded area. For example, the current Linux scheduler has poor performance when mapping tasks to computing elements available in hardware. The only metric considered is CPU workload, which as was shown in recent work does not match true performance demands from the applications. Doing so may produce an incorrect allocation of resources, resulting in a waste of energy. The origin of this research work comes from the observation that these approaches do not provide full support for the dynamic behavior of stream processing applications, especially if these behaviors are established only at runtime. This research will contribute to the general goal of developing energy-efficient solutions to design streaming applications on heterogeneous and parallel hardware platforms. Streaming applications are nowadays widely spread in the software domain. Their distinctive characiteristic is the retrieving of multiple streams of data and the need to process them in real time. The proposed work will develop new approaches to address the challenging problem of efficient runtime coordination of dynamic applications, focusing on energy and performance management.Efter en oförĂ€nderlig tillvĂ€xt i prestandakrav hos processorer, började den flerkĂ€rniga processor-revolutionen för ungefĂ€r 20 Ă„r sedan. Denna revolution skedde till största del som en lösning till begrĂ€nsningar i energieffekten allt eftersom klockfrekvensen kontinuerligt höjdes i en-kĂ€rniga processorer. Den flerkĂ€rniga processor-revolutionen medförde inte enbart utmaningen gĂ€llande parallellprogrammering, m.a.o. förmĂ„gan att utveckla mjukvara som anvĂ€nder sig av alla delelement i de flerkĂ€rniga processorerna, men ocksĂ„ utmaningen med programmering av heterogena plattformar. FrĂ„gestĂ€llningen ”pĂ„ vilken processorelement skall en viss berĂ€kning utföras?” Ă€r vĂ€l kĂ€nt inom ramen för inbyggda datorsystem. Efter introduktionen av grafikprocessorer för allmĂ€nna berĂ€kningar (GPGPU), signalprocesserings-processorer (DSP) samt flerkĂ€rniga processorer pĂ„ olika system-on-chip plattformar, Ă€r heterogena parallella plattformar idag omfattande inom mĂ„nga domĂ€ner, frĂ„n konsumtionsartiklar till mediaprocesseringsplattformar för telekommunikationsoperatörer. Processen att placera berĂ€kningarna pĂ„ en passande hĂ„rdvaruplattform kallas för utforskning av en designrymd (design-space exploration). Denna process Ă€r mycket utmanande för heterogena flerkĂ€rniga arkitekturer, och kan medföra fördelar nĂ€r det gĂ€ller energieffektivitet. Det största problemet Ă€r att de olika valmöjligheterna i designrymden kan vĂ€xa exponentiellt. Enligt den nuvarande trenden som förespĂ„r ökad heterogeniska aspekter i processorerna Ă€r utmaningen att hitta den mest passande placeringen av berĂ€kningarna pĂ„ hĂ„rdvaran Ă€nnu en forskningsfrĂ„ga inom ramen för inbyggda datorsystem. Till exempel, den nuvarande schemalĂ€ggaren i Linux operativsystemet Ă€r inkapabel att hitta en effektiv placering av berĂ€kningarna pĂ„ den underliggande hĂ„rdvaran. Det enda mĂ€tsĂ€ttet som anvĂ€nds Ă€r processorns belastning vilket, som visats i tidigare forskning, inte motsvarar den verkliga prestandan i applikationen. AnvĂ€ndning av detta mĂ€tsĂ€tt vid resursallokering resulterar i slöseri med energi. Denna forskning hĂ€rstammar frĂ„n observationerna att dessa tillvĂ€gagĂ„ngssĂ€tt inte stöder det dynamiska beteendet hos ström-processeringsapplikationer (stream processing applications), speciellt om beteendena bara etableras vid körtid. Denna forskning kontribuerar till det allmĂ€nna mĂ„let att utveckla energieffektiva lösningar för ström-applikationer (streaming applications) pĂ„ heterogena flerkĂ€rniga hĂ„rdvaruplattformar. Ström-applikationer Ă€r numera mycket vanliga i mjukvarudomĂ€n. Deras distinkta karaktĂ€r Ă€r inlĂ€sning av flertalet dataströmmar, och behov av att processera dem i realtid. Arbetet i denna forskning understöder utvecklingen av nya sĂ€tt för att lösa det utmanade problemet att effektivt koordinera dynamiska applikationer i realtid och fokus pĂ„ energi- och prestandahantering

    Trade union motivations for corporate social responsibility

    Get PDF
    Trade unions in Europe have showed a mixed response to Corporate Social Responsibility (CSR) and have adopted a broad spectrum of positions on CSR. Prior research has identified five distinct positions of trade unions across Europe by way of which some of the unions perceive CSR as a threat, some are sceptical about the fact that whether CSR could deliver, yet others champion the cause of CSR, whereas two other categories of which some are disillusioned and others lack knowledge regarding CSR. This spectrum of positions raises the question whether we are going to witness a convergence of union positions over the medium term. The proposed research analyzes the positions adopted by trade unions in Europe. On the basis of this analysis, it tries to explain various strategies adopted by trade unions. The key argument is that the whole process is linked to neoliberalism. The outcome of neoliberal approach is deregulation, not only of financial market, but labour market as well. Withdrawal of state from regulation of businesses has created a vacuum. There is a vacuum of regulation at the national level and there are inadequate governance mechanisms available at the global level. Businesses have tried to fill this vacuum by engaging in CSR. Trade unions are apprehensive of CSR due to its voluntary nature; greenwashing; questionable nature of CSR tools including audits, awards, an attempt to replace binding rules; and some see CSR as a threat because there is evidence that adoption of CSR as an alternative to binding regulations has hampered trade union power. Simultaneously, to increase their influence in dealing with the businesses, trade unions want to use the opportunities offered by CSR to gain maximum benefits out of it. Trade unions see similarities in company CSR agenda with trade union agenda. There are trade unions that are progressing CSR agenda. To couple their efforts at the national level, trade unions are trying to develop some supranational regulatory institutions and development of IFAs is an evidence of that. An attempt has been made to provide evidence from the data collected for this study to interpret trade union responses in the light of hypotheses developed in this study. The dominant paradigm employed for the present study would be interpretivist/qualitative. The reason for preference of interpretivism over the other with relation to the present study is that it tries to explain strategy. The process of strategy formulation is difficult to capture with entirely quantitative approach. There is a lot of brainstorming at the union management level to adopt a certain strategy and to get a handle on how a specific strategy is adopted, it is easy to explain using an interpretive approach. Doctoral level research is meant to make original contribution towards the existing body of knowledge. The present study seeks to contribute original insights from data collected for this study. Prior research had informed us about the trade unions’ principled positions about CSR. The present study analyses the reason why trade unions are getting involved in CSR initiatives by businesses
    • 

    corecore