11,688 research outputs found

    A psychophysical study of the neural representation of time by striatal populations

    Get PDF
    Time is a fundamental dimension of the environment. The ability to estimate the passage of time is essential for both learning and performance of adaptive behavior in natural situations. Yet, how this ability is implemented in the brain is poorly understoo

    Feedforward and feedback control in apraxia of speech: effects of noise masking on vowel production

    Full text link
    PURPOSE: This study was designed to test two hypotheses about apraxia of speech (AOS) derived from the Directions Into Velocities of Articulators (DIVA) model (Guenther et al., 2006): the feedforward system deficit hypothesis and the feedback system deficit hypothesis. METHOD: The authors used noise masking to minimize auditory feedback during speech. Six speakers with AOS and aphasia, 4 with aphasia without AOS, and 2 groups of speakers without impairment (younger and older adults) participated. Acoustic measures of vowel contrast, variability, and duration were analyzed. RESULTS: Younger, but not older, speakers without impairment showed significantly reduced vowel contrast with noise masking. Relative to older controls, the AOS group showed longer vowel durations overall (regardless of masking condition) and a greater reduction in vowel contrast under masking conditions. There were no significant differences in variability. Three of the 6 speakers with AOS demonstrated the group pattern. Speakers with aphasia without AOS did not differ from controls in contrast, duration, or variability. CONCLUSION: The greater reduction in vowel contrast with masking noise for the AOS group is consistent with the feedforward system deficit hypothesis but not with the feedback system deficit hypothesis; however, effects were small and not present in all individual speakers with AOS. Theoretical implications and alternative interpretations of these findings are discussed.R01 DC002852 - NIDCD NIH HHS; R01 DC007683 - NIDCD NIH HH

    The Resonant Dynamics of Speech Perception: Interword Integration and Duration-Dependent Backward Effects

    Full text link
    How do listeners integrate temporally distributed phonemic information into coherent representations of syllables and words? During fluent speech perception, variations in the durations of speech sounds and silent pauses can produce different pereeived groupings. For exarnple, increasing the silence interval between the words "gray chip" may result in the percept "great chip", whereas increasing the duration of fricative noise in "chip" may alter the percept to "great ship" (Repp et al., 1978). The ARTWORD neural model quantitatively simulates such context-sensitive speech data. In AHTWORD, sequential activation and storage of phonemic items in working memory provides bottom-up input to unitized representations, or list chunks, that group together sequences of items of variable length. The list chunks compete with each other as they dynamically integrate this bottom-up information. The winning groupings feed back to provide top-down supportto their phonemic items. Feedback establishes a resonance which temporarily boosts the activation levels of selected items and chunks, thereby creating an emergent conscious percept. Because the resonance evolves more slowly than wotking memory activation, it can be influenced by information presented after relatively long intervening silence intervals. The same phonemic input can hereby yield different groupings depending on its arrival time. Processes of resonant transfer and competitive teaming help determine which groupings win the competition. Habituating levels of neurotransmitter along the pathways that sustain the resonant feedback lead to a resonant collapsee that permits the formation of subsequent. resonances.Air Force Office of Scientific Research (F49620-92-J-0225); Defense Advanced Research projects Agency and Office of Naval Research (N00014-95-1-0409); National Science Foundation (IRI-97-20333); Office of Naval Research (N00014-92-J-1309, NOOO14-95-1-0657

    Causal frequency-specific contributions of frontal spatiotemporal patterns induced by non-invasive neurostimulation to human visual performance

    Get PDF
    Neural oscillatory activity is known to play a crucial role in brain function. In the particular domain of visual perception, specific frequency bands in different brain regions and networks, from sensory areas to large-scale frontoparietal systems, have been associated with distinct aspects of visual behavior. Nonetheless, their contributions to human visual cognition remain to be causally demonstrated. We hereby used non-uniform (and thus non-frequency-specific) and uniform (frequency-specific) high-beta and gamma patterns of noninvasive neurostimulation over the right frontal eye field (FEF) to isolate the behavioral effects of oscillation frequency and provide causal evidence that distinct visual behavioral outcomes could be modulated by frequency-specific activity emerging from a single cortical region. In a visual detection task using near-threshold targets, high-beta frequency enhanced perceptual sensitivity (d ) without changing response criterion (beta), whereas gamma frequency shifted response criterion but showed no effects on perceptual sensitivity. The lack of behavioral modulations by non-frequency-specific patterns demonstrates that these behavioral effects were specifically driven by burstfrequency. We hypothesizethat suchfrequency-coded behavioral impact of oscillatory activity may reflect a general brain mechanism to multiplex functions within the same neural substrate. Furthermore, pathological conditions involving impaired cerebral oscillations could potentially benefit in the near future from the use of neurostimulation to restore the characteristic oscillatory patterns of healthy systems

    Habituation to pain : a motivational-ethological perspective

    Get PDF
    Habituation to pain is mainly studied using external pain stimuli in healthy volunteers, often to identify the underlying brain mechanisms, or to investigate problems in habituation in specific forms of pain (eg, migraine). Although these studies provide insight, they do not address one pertinent question: Why do we habituate to pain? Pain is a warning signal that urges us to react. Habituation to pain may thus be dysfunctional: It could make us unresponsive in situations where sensitivity and swift response to bodily damage are essential. Early theories of habituation were well aware of this argument. Sokolov argued that responding to pain should not decrease, but rather increase with repeated exposure, a phenomenon he called “sensitization.” His position makes intuitive sense: Why would individuals respond less to pain that inherently signals bodily harm? In this topical review, we address this question from a motivational ethological perspective. First, we describe some core characteristics of habituation. Second, we discuss theories that explain how and when habituation occurs. Third, we introduce a motivational-ethological perspective on habituation and explain why habituation occurs. Finally, we discuss how a focus on habituation to pain introduces important methodological, theoretical, and clinical implications, otherwise overlooked

    Duration of Coherence Intervals in Electrical Brain Activity in Perceptual Organization

    Get PDF
    We investigated the relationship between visual experience and temporal intervals of synchronized brain activity. Using high-density scalp electroencephalography, we examined how synchronized activity depends on visual stimulus information and on individual observer sensitivity. In a perceptual grouping task, we varied the ambiguity of visual stimuli and estimated observer sensitivity to this variation. We found that durations of synchronized activity in the beta frequency band were associated with both stimulus ambiguity and sensitivity: the lower the stimulus ambiguity and the higher individual observer sensitivity the longer were the episodes of synchronized activity. Durations of synchronized activity intervals followed an extreme value distribution, indicating that they were limited by the slowest mechanism among the multiple neural mechanisms engaged in the perceptual task. Because the degree of stimulus ambiguity is (inversely) related to the amount of stimulus information, the durations of synchronous episodes reflect the amount of stimulus information processed in the task. We therefore interpreted our results as evidence that the alternating episodes of desynchronized and synchronized electrical brain activity reflect, respectively, the processing of information within local regions and the transfer of information across regions

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task

    A habituation account of change detection in same/different judgments

    Get PDF
    We investigated the basis of change detection in a short-term priming task. In two experiments, participants were asked to indicate whether or not a target word was the same as a previously presented cue. Data from an experiment measuring magnetoencephalography failed to find different patterns for “same” and “different” responses, consistent with the claim that both arise from a common neural source, with response magnitude defining the difference between immediate novelty versus familiarity. In a behavioral experiment, we tested and confirmed the predictions of a habituation account of these judgments by comparing conditions in which the target, the cue, or neither was primed by its presentation in the previous trial. As predicted, cue-primed trials had faster response times, and target-primed trials had slower response times relative to the neither-primed baseline. These results were obtained irrespective of response repetition and stimulus–response contingencies. The behavioral and brain activity data support the view that detection of change drives performance in these tasks and that the underlying mechanism is neuronal habituation

    Ongoing Spontaneous Activity Controls Access to Consciousness: A Neuronal Model for Inattentional Blindness

    Get PDF
    Even in the absence of sensory inputs, cortical and thalamic neurons can show structured patterns of ongoing spontaneous activity, whose origins and functional significance are not well understood. We use computer simulations to explore the conditions under which spontaneous activity emerges from a simplified model of multiple interconnected thalamocortical columns linked by long-range, top-down excitatory axons, and to examine its interactions with stimulus-induced activation. Simulations help characterize two main states of activity. First, spontaneous gamma-band oscillations emerge at a precise threshold controlled by ascending neuromodulator systems. Second, within a spontaneously active network, we observe the sudden “ignition” of one out of many possible coherent states of high-level activity amidst cortical neurons with long-distance projections. During such an ignited state, spontaneous activity can block external sensory processing. We relate those properties to experimental observations on the neural bases of endogenous states of consciousness, and particularly the blocking of access to consciousness that occurs in the psychophysical phenomenon of “inattentional blindness,” in which normal subjects intensely engaged in mental activity fail to notice salient but irrelevant sensory stimuli. Although highly simplified, the generic properties of a minimal network may help clarify some of the basic cerebral phenomena underlying the autonomy of consciousness
    corecore